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Abstract—Diffusion MRI fiber tractography is the only tech-
nique that allows to investigate the orientation of white matter
fibers non-invasively. The quality of fiber tractography critically
depends on the underlying diffusion MRI quality, including
imaging resolution. However, obtaining high-resolution diffusion
MRI data is technically challenging, and results in longer scan
times, lower signal-to-noise ratios, and limited spatial coverage.
Super-resolution techniques have emerged as a promising method
for improving image resolution by enhancing low-resolution
images to high-resolution images after acquired dMRI data. In
conventional super resolution, already acquired data is enhanced
in resolution using, for examples, spatial filters. In recent years,
deep learning techniques have also been suggested promising
for super-resolution models that enhance the quality of diffusion
MRI data. In this project, we investigated the combination
of conventional upsampling techniques with a specific deep
learning architecture, convolutional neural networks, to perform
deep super resolution (DSR) of diffusion MRI, and evaluated
its impact on subsequent fiber tractography. We considered
28 datasets from the Human Connectome Project acquired at
1.25mm3 isotropic. Data was downsampled by k-space truncation
to 2.5mm3 isotropic, then re-upsampled to the original resolution
using nearest neighbours, cubic b-spline and zero padding in k-
space, respectively. The results of the upsampling were given
as input to a DSR network with 10 layers. Different types of
DSR inputs were considered, namely 2D patches, 2D whole slices,
and 3D volumes. The combination of zero-padding and the DSR
with a 2D patch approach produced the most optimal overall
results with mean squared error, peak signal-to-noise ratio, and
structural similarity index of 36.109 ± 9.24, 29.418 ± 0.723, and
0.929 ± 0.007 as compared to ZP only, respectively. This approach
has been further investigated for fiber tractography to assess
the reconstruction of white matter tracts. The results revealed
minimal visible differences between fiber tractography with the
original data, after downsampling and after DSR implementation.
Overall, these results suggest that the tested DSR networks are
promising to improve the spatial detail of diffusion MRI data, but
are still insufficient to improve the quality of fiber tractography.

Index Terms—Super-resolution, diffusion MRI, deep learning,
convolutional neural network, diffusion tensor imaging, residual
learning, fiber tractography.

1. INTRODUCTION

The utility of magnetic resonance imaging (MRI) in medical
imaging has gained widespread attention, particularly in brain
analysis, due to its superior soft tissue contrast and the ability
to acquire high spatial resolution with minimal health risks.
Quantitative analysis of brain MRI has been used to detect
brain disorders such as Alzheimer’s, epilepsy, schizophrenia,
multiple sclerosis, malignancy, and degenerative diseases [1].

Recently, the application of dMRI have shown significant
advancements in this field [2]. dMRI measures the displace-
ment of water molecules, which allows to infer the local fiber
orientations of specific tissues and provide insights into the
connectomics of the brain [3]. Fiber tractography, a process
that visualizes the long-range connectivity throughout the
brain, utilizes the fiber orientation information obtained from
dMRI data to map the main white matter bundles [4]. This
information is crucial in pre-operative neurosurgical treatment
planning, as it evaluates brain functionality [2].

The quality of fiber tractography reconstructions in the brain
has been shown to strongly depend on the imaging resolution
of the underlying dMRI [5]. More generally, high-resolution
MRI images are critical for precise identification of abnormal
tissue structures and accurate quantitative image analysis [6].
However, obtaining high resolution dMRI data is challenging,
as it requires longer scan times, lower signal-to-noise ratios,
and limited spatial coverage [7]. While advances in MRI tech-
nology, such as increased field strength, have improved image
quality and resolution in structural and functional imaging,
such improvements have not yet systematically impacted the
quality of these images.

Super-resolution (SR) techniques offer an alternative
method for improving image resolution by enhancing low
resolution (LR) images to high-resolution (HR) images [8]
after their acquisition. The overall framework is visualized in
Fig. 1. The initial step involves downsampling of the original
HR data, which will subsequently undergo an upsampling
process. Most common upsampling methods are cubic spline
(CS) interpolation, nearest neighbor (NN) interpolation, and
zero-padding (ZP) in k-space. These LR interpolated data
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serves as a basis for reconstructing the HR image. SR ap-
proaches have the potential to increase the signal-to-noise ratio
and spatial details of images while not affecting the scan
time and do not require special adaptations. The challenge
of image resolution enhancement is not new, and a number of
traditional interpolation techniques can be used to increase the
spatial coverage of LR images. However, these methods often
fail to recover high-frequency details, such as edges. Deep
learning based SR techniques have been suggested promising
to overcome this limitation by learning specific image features
on high quality datasets, which can be used to enhance
conventionally acquired LR images [9], [10].

Fig. 1: Overall framework of super-resolution
.

The implementation of SR techniques poses significant
challenges. The challenge of developing a mapping between
the LR and HR image spaces in dMRI is compounded by
the lack of a clear definition of this mapping. The complexity
of this high-dimensional mapping is further addressed by the
large amounts of raw data involved.

The aim of this study is to evaluate whether deep learning
based SR (DSR) in combination with conventional upsampling
approaches can improve the quality of dMRI data for fiber
tractography. There is a large variety of promising deep learn-
ing approaches out there, but a sparse quantity in the context of
dMRI. After a literature search, one network architecture was
chosen as a starting point. The performance of this network
was tested in combination with different interpolation methods
as input data. Furthermore, the most promising approach
was used for diffusion tensor imaging and fiber tractography
analysis.

2. THEORY

2.1. Fundamentals of diffusion MRI

To investigate complex fiber connections of the human
brain, high-resolution dMRI becomes essential [3]. The dis
placement of water molecules along different axes will be
measured to reveal the fine fiber structures of the brain. Brain
fibers (axons) are impermeable, which constrains the water
molecules to move in their main direction.

In the field of brain dMRI, high resolution data is used
for accurate analysis and fiber tracking, a technique that
leverages the ability to construct fiber pathways [3]. Despite
not being representative of actual pathways, these pathways
offer insights into the directional relationships between fibers.

The challenge of converting low resolution data into high
resolution data in order to uncover previously unseen fiber
pathways has led to studies exploring the use of deep learning
techniques to supplement missing details [11], [12].

The principle of tensor based fiber tractography is based
on the assumption of one dominant fiber orientation per
voxel and its global fiber trajectories follows these local fiber
orientations. This is illustrated in Fig. 2. Each local fiber
orientation can be compromised as 3D vectors. By assuming
one dominant orientation, the information is reduced to the
first eigenvector. The accuracy and length of the global fiber
trajectories depend on three criteria: the fractional anisotropy
(FA), angle deviation as a predefined threshold and the step
size. By altering the predefined thresholds, a trade off has to be
made between the amount of false negative and false positive
pathway propagation segments. Moreover, the computation
time and data storage increases with smaller step sizes.

Fig. 2: Fibers constructed by fiber tractography. The concept of fiber
tractography relies on the assumption that each voxel contains a single
predominant fiber orientation and that the overall fiber trajectories
follow these local fiber orientations.

.

In order to investigate the effects of imaging resolution on
fiber tractography, Tian et al. [11] conducted a study which
is presented in Figure 3. The study employed the raw low
resolution dMRI data, which was obtained by adding noise.
Due to the fluctuations in intensities within brain voxels, fewer
fiber tracts could be generated by following the criteria when
compared to the original ground-truth data.

2.2. A brief review of deep learning based super-resolution

In recent years, deep learning techniques have undergone
rapid development. As a result, models based on deep learning
for SR have been extensively studied and have shown remark
able success [13]. The availability of large datasets has enabled
these networks to attain high accuracy. Extracting specific
features from raw images has been the fundamental approach
of deep learning neural networks [14]. This type of machine
learning uses its self-learning capability to extract a hierarchy
of low-dimensional features [1]. Moreover, deep learning
algorithms are able to generalize for large amounts of data.
Different deep learning methods have been used to SR utilities,
with the earliest being the Convolutional Neural Networks
(CNN) based method, such as SRCNN [10]. SR algorithms
using deep learning techniques typically differ in some aspects,
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Fig. 3: Comparison between the raw low-resolution and ground-truth
dMRI data. The raw dataset was intentionally corrupted with noise.
This enables differences in the FA maps and number of streamlines
generated through the use of fiber tractography.

such as network architectures, loss functions, learning prin-
ciples and strategies. The optimization of networks involves
adjusting hyper-parameters, including the number of layers,
kernel sizes, epochs, early stopping and learning rate [15].

In 1989, CNNs were first introduced and are currently the
most used deep learning architecture for image analysis. The
complexity of CNNs remains in the amount of layers. Some
approaches include more than 100 layers resulting in millions
of weights and connections up to billions. The structure of
the CNNs consists of convolutions layers, non-linearity layers,
pooling (sub-sampling) layers and classification.

• Convolutional layer: extracts features to learn the rela-
tionship between pixels of the input images, by applying
convolutional filters. At the first layer, simple features,
such as edges or lines will be extracted. More complex
features could be extracted further down the layers. The
feature information will be stored in feature maps.

• Non-linearity layer: after each convolutional layer non
linearity operations are applied, which operate as acti-
vation functions. It uses the feature maps for a sparse
representation, in the sake of computational efficiency.

Rectified linear units (ReLUs) are commonly used, being
computational cheap, but lacking in its gradient discon-
tinuity.

• Pooling (sub-sampling) layer: pooling layers modifies the
sparse representation in such a way that it summarizes
the statistics of non-overlapping neighborhoods to reduce
parameters and risk of over-fitting.

• Loss function: the learning of the model consists of using
applicable loss functions. These functions are used to
enhance the models ability to discriminate between intra
class similarity and inter-class separability.

Another promising network, which functions as a two player
mini game, is the GAN [16]. The model contains a generator
G and a discriminator D. The goal of G is to generate output
data, which looks like it came from the training data. While,
D has to decide if the output data is generated or picked from
the training data.

Like the proposed SRGAN by Ledig et al. [17], G tries
to generate HR images from LR input images. The generator
itself is a CNN, which is trained to generate HR images and the
discriminator is another neural network trying to differentiate
the super-resoluted images from the HR images. It is crucial
for the training procedure to have a balance between both
players, so neither player can outperform one another. This
will result in a stable network which is determined to acquire
high quality images.

Tian et al. [11], [18] has recently proposed a deep learning
based SR method, the SRDTI, to synthesize high-resolution
diffusion MRI data for diffusion tensor imaging. It utilizes
deep learning to derive the six unknowns in a diffusion
tensor using a reduced amount of data. The framework maps
non diffusion-weighted images, six diffusion-weighted images
as input of the 3D CNN. The model utilizes the learning
process of the residuals between the input data and ground-
truth data. This approach enables residual learning to enhance
CNN performance by adding the predicted residuals to the
original input data. Thereby, acquiring high-quality data for
DTI metrics and fiber tractography. The deep CNN employed
takes advantage of the redundancy in spatial information
and diffusion-encoding directions within the data to improve
performance.

In the study by Luo et al. [19], a novel approach to
dMRI SR was presented. The proposed method involves the
utilization of a 3D convolution kernel for reconstruction in
both the space and angle domains. Additionally, the study
introduces an adversarial learning mechanism and an attention
mechanism to address limitations of traditional loss functions
in fully quantifying the differences between high-dimensional
data and not considering important feature maps. The study
demonstrates the implementation of a deep learning based
dMRI reconstruction and the utilization of adversarial learning
in combination with a 3D convolution kernel.

While network depth grows by increasing the amount of
layers, feature information of various layers could get lost
in the process [20]. This issue can be characterized by the
vanishing gradient problem. Here, a significant amount of
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layers uses activation functions, of which the gradients will
approach zero and the training procedure will be hampered.
Skip connections can be used connecting any two layers to
preserve information. To exploit this concept, dense connec-
tions are introduced to connect layers to all forward layers.
This solves the gradients vanishing problem and improves
the propagation of feature information. Dense networks use
a gate unit to learn block weights. Another approach is to
concatenate feature maps of previous layers, hereby increasing
the parameters exponentially.

The objective of this study is to assess the effectiveness
of deep learning based methods in improving the quality of
upsampling beyond that achieved by conventional methods. To
achieve this, we decided to employ the relatively straighfor-
ward CNN architecture from Tian et al. [18] and analyze its
impact on various interpolation techniques.

3. METHODS

3.1. Data acquisition

Diffusion MRI data was provided by the Human Connec-
tome Project (HCP). This dataset contains pre-processed T1-
weighted scans of 28 volunteers, from which the training,
validation and testing sets are separated by 18, 5, 5 subjects,
respectively. The subject data is organized into 18 b=0 s/mm2

images, 90 b=1000 s/mm2 images, 90 b=2000 s/mm2 images,
and 90 b=3000 s/mm2 images, with an isotropic voxelsize of
1.25 mm.

3.2. Data pre-processing

The data processing was executed using Matlab version
9.12.0. To remove outliers, data points belonging to the last
percentile were eliminated from the raw data acquired from the
HCP. Inclusion of outliers in the dataset can cause substantial
shifts in mean and standard deviation, resulting in intensity
values that are less comparable across datasets. This step
was essential to normalize the data post-sampling for the
DSR network. Normalization was performed by subtracting
the mean and dividing the standard deviation of brain voxels
in the input images. Brain masks were extracted to exclude
background noise from the training process. The threshold for
each HCP dataset was determined by calculating the mean
value of the first b=0 s/mm2 volume. This was followed
by performing a single morphological opening and closing
operation using a structural element in the shape of a disk
with a radius of 10 pixels.

3.2.1. Downsampling: The data underwent k-space down-
sampling using Fourier transformation to simulate a realistic
acquisition of low-resolution images in MRI scans. The HCP
dataset has a 1.25 mm isotropic configuration, and scaling
the data by a factor of 2 resulted in the cropping of each
dMRI data size from 145x174x145 to 72x86x72 in k-space. By
leveraging the linear relationship between k-space and image
space resolution, upsampling to the eigenvector image space
yielded data with 2.50 mm isotropic voxels.

3.2.2. Upsampling: We evaluated three conventional meth
ods for upsampling, namely cubic spline interpolation (CS),
nearest neighbor interpolation (NN), and zero-padding (ZP).
The CS and NN methods were applied immediately following
the application of inverse Fourier transform. ZP was imple-
mented in k-space by adding rows and columns containing
zeros, followed by the application of inverse Fourier transform.
Fig. 4 visualizes the difference in image details for each up-
sampling technique. Being the simplest interpolation approach,
NN was included as a baseline reference.

Fig. 4: An example image of the ground-truth (GT), nearest neighbor
(NN), cubic spline (CS) and the zero-padding (ZP) used for the
upsampling process.

3.3. Network implementation

In this study, the proposed DSR network is based on the
DeepDTI method by Tian et al. [11]. The 2D and 3D model
of the DSR network architecture are visualized by Fig. 5.
The main difference between the models are the difference
in input data dimensions and the convolutional kernels used.
The proposed 2D and 3D networks utilize LR data with
its corresponding residuals to the GT data and mask as
input. The mask is used to train on the residuals within
this region of interest. A deep convolutional neural network
(CNN), consisting of stacked convolutional filters paired with
ReLU activation functions and batch normalization in the
middle layers. By using ReLU, networks can learn piece-wise
linear mappings between LR and HR images, which results in
faster training convergence and higher reconstruction quality,
compared to networks using other nonlinear functions such
as a sigmoid [21]. Furthermore, in order to accelerate and
stabilize training of deep CNNs, Sergey et al. [22] states
that batch normalization reduces internal covariate shift of
networks. The DSR is employed to map the input image
volumes to the residuals between the input and output image
volumes. The output is a HR image generated by adding the
predicted residuals to the input LR image.

While the 2D network is computationally less demanding,
the full image slices in addition to patches were analyzed
with the same model. The slices have dimensions of 145x174,
while the patches have dimensions of 64x64 and 64x64x64
in 3D. In order to consider both image and angle spaces, this
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Fig. 5: The proposed 2D and 3D network utilizes low-resolution data
with its corresponding ground-truth data and mask as input. A deep
3-dimensional convolutional neural network, consisting of stacked
convolutional filters paired with ReLU activation functions (n = 10
layers, k = 128 filters, d = 3 kernel size, c = 1, 18 or 90 channels), is
employed to map the input image volumes to the residuals between
the input and output image volumes. The output is a high-resolution
image generated by adding the predicted residuals to the input low-
resolution image.

study was implemented with a multi-volume (MV) approach
by an additional channel feature. This channel incorporates
all available dMRI volumes from each b-value. Hereby, 18 b0
volumes and 90 volumes of each higher order b-value were
predicted at once to account for the angular resolution.

The DSR was implemented using the Keras (version 2.9.0)
and Tensorflow (version 19.11) frameworks. For the imple-
mentation of the DSR, the empty slices and patches were
excluded, so the model would not predict empty images,
while the majority of some slices and patches are black.
The optimization of CNN parameters was achieved using the
Adam optimizer with a learning rate of 7.3e-3 and the mean-
square-error (L2) loss function, which was compared to the
ground-truth images. The utilization of L2 loss leads to an
increase in the distance between larger and smaller errors. [23]
Specifically, the L2 loss uses a more severe penalty on larger
errors, while penalizing less towards smaller errors. The L2
loss was calculated only within the predefined brain mask.

3.4. Statistical analysis

Following the optimization of the network and the training
process, an independent testing set was used for statistical
analysis. Five subjects were predicted to evaluate the network
performance using the mean squared error (MSE), peak sig-
nal to noise ratio (PSNR), and structural similarity metrics
(SSIM). The residuals between the predicted data and the
ground-truth eigenvector data were analyzed to determine

areas in which the model demonstrated the greatest capability
to supplement missing details.

MSE is a metric that combines the variance and bias of
an estimator [24]. In the case of an unbiased estimator, the
MSE is equal to the variance of the estimator. Like variance,
the MSE has units of measurement that are the square of the
quantity being estimated.

MSE =
1

MN

M−1∑
n=0

N∑
m=1

[ĝ(n,m)− g(n,m)]
2 (1)

In Eq. 1, the terms g(n,m) and ĝ(n,m) represent the
original image and the reconstructed image, respectively. The
terms M and N represent the dimensions of the image.

PSNR is a measure that compares the power of the original
signal to the power of the noise that is affecting its quality
[25]. The comparison is expressed in decibels (dB). Since
signals often have a wide dynamic range, the logarithm of the
ratio is used to compute the PSNR. The dynamic range is the
difference between the largest and smallest possible values of
the signal, which can vary depending on the signal’s quality.
The PSNR is expressed by Eq. 2, where the peakval is the
maximum possible pixel value of the image.

PSNR = 10 log10

(
peakval2

MSE

)
(2)

SSIM is a perception-based model that considers image
degradation as a change in the perception of structural in-
formation [26]. It also takes into account other important
perception-based factors, such as luminance masking and
contrast masking. Structural information refers to strongly
interdependent or spatially close pixels that provide important
information about visual objects in the image domain. Lumi-
nance masking refers to the phenomenon where the distorted
part of an image is less visible in the edges, while contrast
masking refers to the distortion being less visible in the texture
of the image. SSIM is used to estimate the perceived quality
of images and videos by measuring the similarity between the
original and the recovered images.

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (3)

The SSIM can be expressed as Eq. 3, where x and y are the
two images being compared. The variables l(x,y), c(x,y), and
s(x,y) represent the luminance, contrast, and structure of the
images, respectively. The constants α, β, and γ are weighting
parameters that determine the relative importance of each
factor in the calculation of SSIM. The equation expresses the
similarity between the two images based on their luminance,
contrast, and structure.

Based on these evaluation metrics, the best combination
of the model and resampling method was picked for further
investigation. The FA images of all 28 subjects were aligned
to MNI space using ANTS with the PNL TBSS PIPELINE
[27]. Subsequently, residual images were co-registered to
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MNI space for group analysis. The mean residuals and mean
absolute residuals were then computed.

Diffusion tensor imaging (DTI) was applied to the dMRI
data produced by the most optimal combination. Due to data
complexity, only the b0s and b1000s image volumes are used
for further investigation at this stage. The fractional anisotropy
(FA) and mean diffusivity (MD) maps obtained with LR and
DSR were compared voxelwise.

At last, whole brain FT, left arcuate FT and the
corresponding dice scores were analysed on all 5 test
subjects. The whole brain FT will illustrate the ability to
reproduce a fair amount of fibers for analyzing specific white
matter pathways. The arcuate fasciculus is a crucial white
matter pathway connecting the frontal language production
regions with the superior temporal gyrus, also known as the
Wernicke’s area, which is responsible for auditory perception
in the brain [28]. For each subject, the left arcuate will
be manually delineated individually. Although the precise
extraction of a specific tract can be a challenging task, the
ROI will remain consistent across the high-resolution GT, LR
and DSR predictions. The dice score is employed to evaluate
the overlapping regions between GT and both LR and DSR.

FT parameters:
• ’SeedPointsRes’ = [2 2 2] mm
• ’StepSize’ = 0.6 mm
• ’FAThresh’ = 0.2
• ’AngleThresh’ = 30°
• ’FiberLengthRange’ = [30 500] mm

4. RESULTS

The performance of the DSR network using different up
sampling methods, namely nearest neighbor (NN), cubic spline
(CS), and zero-padding (ZP) in combination with 2D and
3D models was evaluated. The mean squared error (MSE),
peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM) were calculated for five independent
test subjects, and the results were presented in Table I and
the box-plots of Fig. 6. The NN method exhibited the highest
overall MSE and the lowest PSNR and SSIM. In contrast, the
ZP method had the lowest MSE and the highest PSNR and
SSIM. The CS method performed better than NN, but it lacked
the ability to reconstruct a higher resolution compared to the
ZP method.

To gain a deeper understanding of the results, an overview
of one example slice is provided by Fig. 7 for visualization
purposes. The models attempted to correct for the loss of
image details, which are perceivable within the central portion
of the scoped areas. The largest differences between the
modalities can be observed by examining the NN approach,
where each network model attempts to introduce different
image details to the LR input data. The LR NN data initially
possesses fewer details, because of its utilization of intensities
for neighboring interpolation. Its blocky appearance persists
when implementing the DSR models, albeit smoother in
appearance. Furthermore, the CS and ZP methods contain

Fig. 6: Results of the DSR network performances. The NN, CS and
ZP have been implemented in combination with the 2D slices (2DS),
2D patches (2DP) and 3D patches (3DP) approach.

image properties similar to a denoised smoother representation
of the GT data and maintain this characteristic when executing
various models. The center of these LR images exhibits greater
intensities in comparison to the GT. While the 2D models
of the CS and ZP techniques reduced the intensities in these
regions, the 3D model conserved a larger proportion of the
image details from the LR input.

The addition of 2D DSR models demonstrated a notable
improvement in lowering the MSE by about 9.85%, while
increasing the PSNR (3.41%) and SSIM (1.16%). In contrast,
the 3D DSR model slightly enhanced the LR data and often
resulted in a reduction in image resolution. The improvement
of the neural networks was the highest in combination with
NN, albeit the final statistics were still lower compared to ZP
and CS. The input data format, whether as patches or full
image slices, showed minor differences in performance, as
both 2D slice and 2D patch methods displayed similar results
throughout the process. Finally, the combination of ZP and
a neural network with 2D patch approach demonstrated the
most optimal overall results, with a MSE, PSNR, and SSIM of
36.109 ± 9.24, 29.418 ± 0.723, and 0.929 ± 0.007, respectively.
The complete performances for each b-value are presented in
Appendix I.
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TABLE I: DSR network performances

LR 2D slices 2D patches 3D patches
MSE 95.421 ± 20.61 86.411 ± 19.657 81.62 ± 20.385 106.348 ± 23.36

NN PSNR 24.978 ± 0.63 25.617 ± 0.742 25.839 ± 0.772 24.616 ± 0.691
SSIM 0.848 ± 0.014 0.866 ± 0.013 0.867 ± 0.012 0.845 ± 0.014
MSE 74.48 ± 22.799 65.866 ± 18.653 61.954 ± 16.519 72.908 ± 20.207

CS PSNR 26.333 ± 0.918 26.888 ± 1.055 27.039 ± 0.95 26.348 ± 0.891
SSIM 0.88 ± 0.01 0.894 ± 0.01 0.895 ± 0.01 0.88 ± 0.011
MSE 37.118 ± 9.416 36.661 ± 9.286 36.109 ± 9.24 112.282 ± 30.288

ZP PSNR 29.265 ± 0.71 29.36 ± 0.728 29.418 ± 0.723 26.17 ± 0.472
SSIM 0.928 ± 0.007 0.928 ± 0.007 0.929 ± 0.007 0.888 ± 0.013

Fig. 7: Example slice to visualize the performances of the DSR
network. The NN, CS and ZP have been implemented in combination
with the 2D slices, 2D patches and 3D patches approach. The region
highlighted by the yellow rectangle has been dissected and scoped
for all approaches.

The residuals of one test subject’s b=1000s/mm2 image are
illustrated in Fig. 8. The residual analyses support the results
in Table I and Fig. 6. The NN and CS methods initially
exhibit a larger variance of residual amplitudes compared to
the ZP method. The network tends to overcompensate for
brain edges towards the skull when using the 2D slice method
on the NN and CS data. In contrast, ZP demonstrates minor
variances in residual amplitude among different models. The
3D model, on the other hand, overcompensates only specific
areas towards the outer edges of the brain. Although, there is
limited potential for improvement with ZP compared to NN
and CS, the network consistently produced minor adjustments
that enhanced the images with the 2D implementations.

For the quantitative analysis of FA maps, the residuals
compared to the GT were calculated and the results are
visualized in Fig. 9. The figure displays the mean absolute
error (mae) and the mean of the residuals for the LR and DSR
methods, with the mean mae above and the mean residuals at

Fig. 8: The residuals of the DSR algorithm. A sample slice was
selected from one of the test subjects and visualized to assess the vari-
ations in upsampling techniques with respect to the network models.
The color coding of the residuals in the image visualizes that light
colors correspond to lower residuals, while darker colors indicate
higher residuals. Lower residuals indicate a better correspondence
between the generated image and ground truth data.

the bottom. The mean mae indicates the absolute values of
the residuals, whereas the mean contains negative values. The
findings indicate a minor variation in the mean mae residuals.
DSR prediction displays fewer high residuals as compared to
the LR map. Additionally, the mean mae for the LR is slightly
higher than that of the DSR when examining the largest
residuals in the image. A majority of these larger residuals are
located at the boundaries of white and gray matter. In general,
the FA maps demonstrate differences between the LR and DSR
techniques. The LR method exhibits more error margins within
the white matter and edges compared to the DSR maps. This
corresponds to a higher degree of similarity between the DSR
and GT compared to the LR and GT data.

Fig. 10 visualizes the absolute FA and MD maps of a test
subject with the corresponding difference compared to the
GT. There is no apparent improvement when comparing FA
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Fig. 9: The quantitative representation of the mean absolute error
(mae) residuals above and the mean residuals of the FA maps
below. These maps were constructed by aligning and compressing
all available data.

and MD obtained with the LR and the DSR. The mean FA
of the GT, LR and DSR are 0.451±0.138, 0.448±0.142, and
0.449±0.142, respectively.

Fig. 10: The DTI based results of the absolute fractional anisotropy
and the mean diffusivity (MD). The differences of the low-resolution
(LR) and predicted high-resolution (DSR) with respect to the ground-
truth (GT) are visualized with heatmaps. The mean FA of the
GT, LR and DSR are 0.451±0.138, 0.448±0.142, and 0.449±0.142,
respectively.

The whole brain tractography of one subject from the test
set is visualized in Fig. 11. GT contains the highest number
of fibers, a total of 70349 fibers. Conversely, the LR and
DSR contain 68732 and 68999 fibers, respectively. The LR
exhibits the lowest fiber count, whereas the DSR was able to
reconstruct more fiber pathways. The visualization highlights
that the LR is less dense in comparison to the GT, while the
DSR prediction appears to be denser than the GT. The DSR
generated more similar fiber pathways around the fiber tract
of the LR data, even though the DSR fiber tract still contains
considerably fewer fibers than the GT.

Fig. 11: Whole brain tractography visualizing the GT, LR and DSR
prediction of one test subject. The GT, LR and DSR contains 70349,
68732, and 68999, respectively.

Fig.13 visualizes the outcomes of the whole brain FT, left
arcuate FT, and the corresponding dice scores. In general,
GT of the whole brain FT comprises a greater number of
fibers than the LR and DSR techniques. Furthermore, the
DSR method is capable of generating marginally more fiber
tracts than the LR approach. However, there are no notable
differences among the number of fibers related to GT, LR,
and DSR in the fiber tracts of the left arcuate. The dice scores
exhibit minor differences of overlapping regions between the
LR and DSR data with the GT, but remain in the range of
0.82 and 0.89.

The overlap among the GT, LR and DSR fiber tracts for
subject number 1 are illustrated in Figure 12. The fiber tracts
of all other tested subjects are presented in Appendix II. The
majority of the fibers show comparable orientation, and there
are not many abnormal tracts visible. Although there is a slight
variability in the number of fibers, with the GT containing
324, LR 298, and DSR 297 fibers. The dice scores for LR and
DSR are 0.85 and 0.86, respectively, with the DSR marginally
improving the dice score.

Fig. 12: The fiber tracts of the left arcuate from the GT (red), LR
(purple) and DSR (blue) overlapped from volunteer number 1.
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Fig. 13: Resulting plots of the whole brain fiber tractography, left arcuate fiber tractography and the corresponding dice scores. All 5 test
subjects are included and the GT, LR and DSR are visualized.

5. DISCUSSION

In this work, DSR networks in combination with conven-
tional upsampling approaches were evaluated to improve the
quality of dMRI data for fiber tractography.

Different types of DSR inputs were considered for enhanc-
ing diffusion MRI data, including 2D patches, 2D whole slices,
and 3D volumes. The combination of ZP and the DSR method
using 2D patches resulted in the most optimal overall results,
as measured by MSE, PSNR, and SSIM. The respective values
were 36.109 ± 9.24, 29.418 ± 0.723, and 0.929 ± 0.007, as
compared to ZP only.

Subsequently, the performance of this approach was eval-
uated on fiber tractography to assess the reconstruction of
white matter pathways. The results revealed minimal visible
differences between fiber tractography using the original data,
downsampling, and DSR implementation. These findings sug-
gest that the tested DSR networks are promising for improving
the spatial detail of diffusion MRI data but are still insufficient
to enhance the quality of fiber tractography.

The performance of three different image reconstruction
methods, namely, the NN, CS and ZP techniques were used
for evaluation. Our results demonstrated that the LR NN
data initially started with the lowest resolution, as expected,
due to its reliance on pixel intensities from neighboring
pixels while interpolating. Although the NN method initially
consisted of its blocky appearance, the DSR models were
able to add spatial image details, resulting in larger improve-
ments compared to CS and ZP. Although the NN method
was expected to have limited potential for improvement, it
demonstrated some enhancements, likely due to the larger
room for optimization. The CS method performed better than
NN, providing a smoother and denoised representation of the
GT data, although it was unable to achieve a higher resolution
than the ZP method. We selected the ZP method as the
representative method for image reconstruction, as it mimics
the MRI acquisition process in k-space. While high-frequency

image details are discarded with ZP, contrast-related image
properties were largely preserved. The findings demonstrate
the preservation of the data, as evidenced by MSE of the LR
ZP technique being approximately half that of LR using CS
and almost a third of the LR NN MSE, as measured by 37.118
± 9.416, 74.48 ± 22.799, and 95.421 ± 20.61, respectively.
In addition to the PSNR and SSIM metrics indicating higher
values for the LR ZP approach compared to the LR NN and
CS data.

Furthermore, this study investigated the performance of
2D and 3D models in enhancing image resolution. The 2D
models showed some improvements in terms of reducing MSE
and increasing PSNR and SSIM. On the other hand, the 3D
model lacked in the ability enhance low-resolution data and
often resulted in a decrease in image resolution. This was
however in contrast with our expectations, while the 3D CNN
of the study by Tian et al. [18] achieved promising results,
namely, PSNR values of approximately 31 dB and SSIM
values of around 0.98. The key differences between this study
and ours is the use of six optimized directions on a dataset
including only b=0 s/mm2 and b=1000 s/mm2 images, along
with their corresponding T1-weighted anatomical images. As a
result, the performance of the DSR model might be influenced
by the input data used by Tian et al., which incorporates
the knowledge of its underlying dMRI physics. This could
potentially explain why the current 3D DSR model, despite
having an additional dimension compared to the 2D models,
may be insufficient in capturing tissue properties.

Our experiments also involved the use of patches and whole
image slices as input data, which revealed that both 2D slice
and 2D patch methods demonstrated similar performance. This
observation was unexpected. While the use of whole image
slices corresponds with many slices into the training process,
excluding only the empty ones, patches contain smaller sizes,
leading to the exclusion of more patches due to the removal
of empty patches. Consequently, the model was expected to

9



obtain more information regarding internal brain structures.
However, our results suggest that this process did not majorly
alter the predictive capacity of the model.

We evaluated the performance of DSR models in restoring
these high-frequency image properties. Unfortunately, our re-
sults revealed minimal improvements on the ZP datasets. The
network was unable to restore much of the image details, such
as edges. While the 2D models did not degrade the resolution
of their input data, they could not find the optimal config-
urations to enhance the already higher resolution data. Our
findings suggest that while DSR enables greater improvements
in lower resolution images, it lacks the ability to enhance
higher resolution images. This limitation may be due to factors
such as large network depth or less optimal hyper-parameters,
as previously discussed.

The residual analysis revealed large variances throughout
the brain, primarily located at the edges of different tissue
properties, between gray and white matter regions. Although
the residual analysis was limited to one slice of one dataset,
it provided insights into the adjustments made by different
models to conventional upsampling methods.

For the FA and MD analysis using diffusion tensor imaging
data, there was minor improvement achievable when compar-
ing FA and MD obtained with the LR and the DSR. However,
the DSR method was able to generate slightly fewer residuals
of higher amplitude than the LR approach. To evaluate the ,
all available data was first aligned and combined into a single
volume and compared the residuals to the FA maps of the GT.
The results concerning the quantitative analysis of FA showed
that there was minor differences between the mean absolute
error (mae) of the LR and DSR methods. These variances
were more prominently visible at the edges of the brain.
The LR mean mae was slightly higher than the DSR when
examining the largest residuals in these regions. Subsequently,
the LR technique contained more error margins within the
white matter than the DSR, when visualizing the mean residual
maps, which indicates an improvement on spatial image details
by using the DSR network.

We also evaluated the performance of the GT, LR, and DSR
methods in generating whole brain and left arcuate fiber tracts.
The whole brain fiber tract generated using the GT method
contained a higher number of fibers overall, as compared to
the LR and DSR methods. The DSR method produced slightly
more fiber tracts than the LR method. As expected, the LR
method resulted in a less dense fiber tract compared to the GT
method, reflecting the fewer fibers constructed according to the
same fiber tractography criteria. However, the DSR method
exhibited a denser representation of the GT data. While the
expectation was to reconstruct more fibers as compared to the
LR data, the DSR method may also potentially discover new
fiber pathways by denoising the GT data. Conversely, there
were no major differences observed in the number of fibers
among the GT, LR, and DSR methods for the left arcuate fiber
tract analysis.

The dice scores showed minor differences of overlapping
regions between the LR and DSR data with the GT. Therefor, it

is difficult to determine the performance of the model based on
the dice scores. This could also discuss the fact of connecting
different parts of the brain, which were not applicable when
evaluating the GT data. The DSR methods could potentially
implement the denoising on the GT data, which could explain
the differences in fiber reconstruction and regions of overlap.

According to the results, the DSR network showed promise
in improving dMRI data through the multi-volume (MV) ap-
proach, but this approach is unfortunately limited to a specific
input data structure from the HCP dataset. This implies that
the DSR model can only be implemented with a particular
data size. The MV approach requires a substantial amount of
data input, which can be challenging to optimize with numer-
ous parameters. Bao et al. [20] demonstrated that increasing
the depth of the network can result in the loss of feature
information from various layers due to the vanishing gradient
problem. This is characterized by the activation functions of
many layers, which cause the gradients to approach zero and
hinder the training procedure. This issue could potentially
explain the minimal improvements of the DSR method when
applied to conventional upsampling techniques.

Furthermore, hyper-parameter optimization was additionally
a challenge due to the many degrees of freedom involved. Most
of the hyper-parameters were optimized manually, like the
amount of layers, number of filters, epochs, early stopping and
learning rate. However, this process was time-consuming and
yielded minimal effects. As the depth of the neural network
increases with the number of layers and filters, the epochs and
early stopping are crucial criteria for preventing overfitting
[15]. Early stopping refers to the number of epochs that the
model can go without improving, beyond which the current
model is presented as the best possible configuration. However,
this may also indicate that the model has become trapped
in a local minimum and has not yet achieved the optimal
model, which may require more epochs. This could well be the
case with the MV approach, while the training procedure was
relatively fast compared to the SV. Without the use of early
stopping, the model allows large computational costs, even
after finding the most optimal model, which is computationally
inefficient.

However, it should be noted that the orientation of fibers
and endpoints of fibers exhibit variations, when visualizing
all the tracts overlapped on top of each other. This could be
attributed to the connection of various brain regions, or due to
the inaccuracy of the ROI placements. All ROIs are manually
placed, so it is compelling that some tracks outside of the
arcuate were also included.

6. CONCLUSION

In conclusion, the aim of this study was to evaluate whether
the DSR network in combination with conventional upsam-
pling approaches can improve the quality of dMRI data for
fiber tractography. DSR networks were evaluated for enhanc-
ing diffusion MRI data, including 2D patches, 2D whole slices,
and 3D volumes. The combination of ZP and the 2D patches
DSR method yielded the most optimal overall results based
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on measurements of MSE, PSNR, and SSIM, with respective
values of 36.109 ± 9.24, 29.418 ± 0.723, and 0.929 ± 0.007,
when compared to ZP alone.

Subsequently, the performance of this approach was as-
sessed on fiber tractography to evaluate the reconstruction of
white matter tracts. The results demonstrated minimal visual
differences between fiber tractography using the original data,
downsampling, and DSR implementation. These findings sug-
gest that the tested DSR networks hold promise for improving
the spatial detail of diffusion MRI data, but they still fall short
in enhancing the quality of fiber tractography.

It would be beneficial for future studies to focus on hyper-
parameter optimization, given the large degree of freedom
involved. The large input data size may not be advantageous
for training, so reducing the amount of data using spherical
harmonics (SH) to compress it to the desired number of
angles could be a viable solution. Using the compressed SH
data as input volumes for the DSR model could potentially
improve performance while reducing the number of param-
eters involved in the process. Additionally, exploring more
complex models such as the SRGAN could improve network
performance beyond the current CNN model.

Overall, these results suggest that the tested DSR networks
are promising to improve the spatial detail of diffusion MRI
data, but seem to minimally impact the reconstruct brain
connectivity by fiber tractography, suggesting the need for
additional research in this direction.
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7. APPENDIX

7.1. Appendix I

TABLE II: DSR network performances on NN

Network performance
NN NN+Network

b-value 2D slices 2D patches 3D patches
b0 MSE 46.118 ± 3.171 29.644 ± 2.482 23.479 ± 1.582 38.18 ± 2.055

PSNR 28.427 ± 3.169 30.362 ± 3.423 31.331 ± 3.218 29.019 ± 3.08
SSIM 0.87 ± 0.068 0.909 ± 0.052 0.91 ± 0.052 0.874 ± 0.065

b1000 MSE 132.821 ± 11.243 132.007 ± 12.21 119.224 ± 11.65 160.744 ± 13.655
PSNR 23.893 ± 3.734 24.113 ± 4.105 24.608 ± 4.112 23.009 ± 3.768
SSIM 0.853 ± 0.077 0.876 ± 0.067 0.878 ± 0.067 0.849 ± 0.078

b2000 MSE 99.029 ± 6.374 81.238 ± 5.627 77.776 ± 5.5 98.744 ± 6.029
PSNR 24.597 ± 2.987 25.497 ± 3.084 25.656 ± 2.967 24.598 ± 2.967
SSIM 0.849 ± 0.081 0.864 ± 0.075 0.867 ± 0.074 0.849 ± 0.081

b3000 MSE 64.794 ± 4.22 58.411 ± 3.595 60.15 ± 3.649 74.297 ± 5.637
PSNR 25.75 ± 2.594 26.279 ± 2.723 26.147 ± 2.725 25.345 ± 2.751
SSIM 0.839 ± 0.086 0.848 ± 0.083 0.849 ± 0.082 0.833 ± 0.091

TABLE III: DSR network performances on CS

Network performance
CS CS+Network

b-value 2D slices 2D patches 3D patches
b0 MSE 27.434 ± 2.201 17.95 ± 1.543 20.418 ± 1.5 25.091 ± 1.18

PSNR 30.815 ± 3.248 32.682 ± 3.585 32.224 ± 3.728 31.05 ± 3.173
SSIM 0.91 ± 0.046 0.936 ± 0.033 0.934 ± 0.034 0.913 ± 0.044

b1000 MSE 111.886 ± 11.135 88.059 ± 8.497 94.196 ± 10.0 105.933 ± 10.561
PSNR 25.086 ± 4.328 25.951 ± 4.158 25.943 ± 4.531 25.224 ± 4.228
SSIM 0.887 ± 0.058 0.909 ± 0.047 0.909 ± 0.047 0.888 ± 0.058

b2000 MSE 73.153 ± 5.178 60.276 ± 4.425 67.036 ± 4.456 73.106 ± 5.091
PSNR 25.981 ± 3.187 26.764 ± 3.083 26.403 ± 3.263 25.981 ± 3.179
SSIM 0.88 ± 0.064 0.894 ± 0.058 0.893 ± 0.058 0.88 ± 0.064

b3000 MSE 48.461 ± 3.697 46.398 ± 3.691 45.994 ± 2.09 49.709 ± 3.323
PSNR 27.036 ± 2.702 27.301 ± 2.812 27.257 ± 2.712 26.901 ± 2.663
SSIM 0.867 ± 0.072 0.873 ± 0.07 0.873 ± 0.07 0.866 ± 0.073

TABLE IV: DSR network performances on ZP

Network performance
ZP ZP+Network

b-value 2D slices 2D patches 3D patches
b0 MSE 10.438 ± 0.951 9.045 ± 0.945 8.571 ± 0.858 10.704 ± 0.948

PSNR 34.907 ± 3.647 35.564 ± 3.796 35.761 ± 3.743 34.602 ± 3.561
SSIM 0.954 ± 0.024 0.958 ± 0.022 0.959 ± 0.022 0.951 ± 0.025

b1000 MSE 46.556 ± 4.906 45.206 ± 4.836 45.318 ± 4.867 65.055 ± 5.053
PSNR 28.82 ± 4.133 28.969 ± 4.149 28.953 ± 4.144 27.148 ± 3.881
SSIM 0.941 ± 0.031 0.941 ± 0.031 0.941 ± 0.031 0.926 ± 0.04

b2000 MSE 39.462 ± 2.042 38.632 ± 2.472 40.463 ± 2.809 258.518 ± 1.904
PSNR 28.719 ± 3.178 28.815 ± 3.181 28.594 ± 3.146 20.51 ± 3.137
SSIM 0.928 ± 0.04 0.928 ± 0.04 0.93 ± 0.039 0.816 ± 0.094

b3000 MSE 30.37 ± 2.319 29.604 ± 2.746 29.502 ± 2.677 30.236 ± 2.295
PSNR 29.166 ± 2.868 29.279 ± 2.872 29.295 ± 2.874 29.193 ± 2.87
SSIM 0.91 ± 0.051 0.91 ± 0.05 0.91 ± 0.05 0.909 ± 0.051
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7.2. Appendix II

Fig. 14: The fiber tracts of the left arcuate from the GT (red), LR
(purple) and DSR (blue) overlapped from volunteer number 2, 3, 4
and 5 in chronological order.
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