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Abstract

In the past 15 years much attention has been given to memristors, a type of passive electric circuit
element that combines resistance with memory, characterised by a pinched hysteresis loop in the
current-voltage diagram, when a periodic voltage is applied over the memristor. Ionic nanopores
that connect aqueous electrolytes exhibit memristive behaviour and can be used as an actual
realisation of a volatile memristor. In this thesis a general model for the conductivity and the
hysteresis behaviour of memristors is developed from first principles. This model is applied to
ionic nanopores, with consideration of the effect of changing the pore geometry and the frequency
of the applied periodic voltage. To test the accuracy of the model, it is compared to finite-
element calculations on cone-shaped and hourglass-shaped ionic nanopores. The analytic model
is successful in predicting the number of crossings present in the hysteresis loops of pores with
varying geometry, produced via finite-element calculations, and it revealed the role capacitive
elements play in maintaining zero-crossing behaviour in memristors. We strongly encourage
further experimental research into the memristive behaviour of nanopores.
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1 Introduction

In this thesis we develop an analytic model to describe the hysteresis behaviour of volatile memris-
tors. This model will be applied and tested on a nanofluidic nanopore system, as this system has
uses for mimicking the behaviour of neurons. To perform this investigation it is necessary to discuss
both memristive systems and nanofluidic transport.

1.1 Interest in Memristors

Amemristor is a basic passive circuit element, first proposed in 1971 by Leon Chua and characterised
by a relation between charge q and the magnetic flux ϕ. For this element he coined the name
memristor, a portmanteau of the words memory and resistor, as it is an element whose resistance
depends its past state: it has a memory component [1]. In 1976 Chua extended the concept of
the memristor to a broader model of memristive systems [2]. These systems can be defined by a
pinched hysteresis loop in the current-voltage-diagram: if a periodic voltage V (t) is applied over the
memristor, the resulting current-voltage Lissajous figure will be pinched in the origin.
The papers by Chua from 1971 [1] and 1976 [2] were largely mathematical and did not describe
how to develop a physical memristor. In the next thirty years very little attention was given to
memristor research [3]. However, systems with memristive hysteresis behaviour had been studied
before and after Chua published his papers. Systems such as discharge tubes, studied in 1948 [4],
and systems containing thin oxide films, as described in 1967 [5], can be analysed to show that they
possess the pinched hysteresis loop hallmark of memristors and we can therefore, according to the
definition given by Chua, denote these systems as memristors. Their pinched hysteresis behaviour,
however, requires active circuit components and thus a power supply to maintain their particular
resistance [6]. They are therefore examples of volatile memristors; a volatile memristor returns to
a fixed memristance if power over the device is turned off [7]. This is different from a ”genuine”
memristor, which is a passive circuit element that does not require a power supply. Because a
true, non-volatile memristor seemed unachievable, little research was performed on memristors and
memristive behaviour; this applied to both volatile and non-volatile memristors.
This changed in 2008, when scientists at Hewlett-Packard published a paper in which they reported
on a memristor with non-volatile memory [8]. The scientists claimed that they had developed a
two-terminal memristor of less than 50 nm diameter from titanium dioxide [9]. The realisation of
the first non-volatile memristor sparked the interest of both industry and academia into memristor-
research, as memristors now appeared to be experimentally feasible. The research into memristors
increased immensely as a result of the publication of this paper [3].

The interest and enthusiasm for memristors stems from their various promising applications. Most
interest has gone to the use of memristors as memory storage devices. Memristors can be used as
digital memory, as they can store at least one bit of information. For a non-volatile memristor this
one-bit memory can be achieved by setting its resistance to either Ron or Roff using a current- or
voltage-pulse, as the resistance of a memristor depends on the voltage applied over it in the past
[3]. However, this one-bit memory is not all that different from what is currently used in memory
devices. The promising part of the digital memory application lies in a storage method that is
a potential replacement of flash memory, called resistive random access memory (ReRAM). Flash
memory is a commonly used method for memory storage, which does not require a power supply
to store data. The ReRAM method, which uses memristors, has the potential advantage of smaller
reading and writing times over currently used memory systems [10]. Furthermore, the continuous
resistance of a memristor leads to opportunities for the development of multistate memory cells [11].
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Another interesting application of memristors lies in neuromorphic computing. Neuromorphic com-
puting is the construction and use of computing systems that mimic the architecture present in
the neural system, which has the promise of lower power consumption than standard computing
systems. Memristors can play a part in constructing these systems [12].
In this thesis we will mostly consider volatile memristors, since the systems considered in this
project are volatile. In the past most attention has been given to the possible applications of
non-volatile memristors, as the non-volatility property is very useful for memory storage purposes.
However, volatile memristor have applications in various other fields as well. These include hardware
security applications and their use in devices to access digital memory [13]. Volatile memristors
can also be used for neuromorphic computing, even though non-volatile memristors are more often
considered for computing purposes. Memristive devices are being considered to act as energy-
and space-efficient system representations for both synapses and neurons in neuromorphic systems
[14]. They also have a purpose in so-called Complementary Metal-Oxide Semiconductor (CMOS)
neural processing systems, in which the characteristic retention rate of certain volatile memristors
is used [15]. Memristive and nanoionic devices have specifically been mentioned as candidates for
the development of neuromorphic computing architectures [16].
Volatile memristors can also be used in modelling the action potential in a neuron, described
through the Hodgkin-Huxley model [17], which is a mathematical model that gives a description
of the signalling through neurons using an equivalent circuit [18]. The classical Hodgkin-Huxley
circuit contains two time varying resistors, but the model is actually wrong in the sense that these
should in fact be two memristors, that possess a time-invariant resistance [7]. These two memristors
come in the form of a sodium-ion channel and a potassium-ion channel, that are distributed over
the entire length of an axon of a neuron. These channels exhibit memristive properties, in that their
current-voltage Lissajous figures are pinched [19]. In the past few years there has been research
into nanofluidic systems, with the specific goal of reproducing the memristive effects present in the
Hodgkin-Huxley model [20].

An important example of volatile memristive systems are the aforementioned sodium- and potassium-
nanopores. The conductive properties of these sodium-ion and potassium-ion channels come from
the transport of Na+- and K−-ions through a pore of about 0.2 nm in radius [21]. In this thesis
we will investigate the memristive properties of micro- and nanopore systems with a much larger
radius of the order of 100 nm.

1.2 Nanofluidic Systems

The past few decades has shown an increase in interest in micro- and nanofluidic devices, where
attention is given to the transport of fluid and its solutes [22, 23]. Micro- and nanofluidic systems
differ from systems at the macroscale in that the flow in these systems is basically laminar and easy
to manipulate. A microfluidic channel system is characterised by a channel dimension of 100 nm to
1 µm, whereas nanofluidic system in turn is characterised by channel features of less than 100 nm,
through which or past which a fluid flows [24]. In nanofluidic systems the interactions between
individual molecules and of individual molecules with surfaces become non-negligible, however, it is
still possible to describe the main transport phenomena through these systems with theories based
on continuum and mean-field approaches [23]. In fact, the results from this continuum approach
are surprisingly similar to the results from molecular dynamic simulations, except for the few layers
of molecules closest to the channel wall [25]. From molecular dynamics simulations we find that
this continuum description of water starts to fail at a cross over length scale of lc ≈ 1 nm [26].
Below this dimension the notion of viscosity of water is no longer valid and Navier-Stokes (NS)
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hydrodynamics therefore no longer as well [27, 28], but for most nanofluidic applications involving
larger dimensions the NS approach can be safely used to study fluid mechanics.
An important feature of microfluidic and, even more so, nanofluidic systems is the high surface-
to-volume ratio [28], which leads to the interactions between fluid and wall becoming important,
resulting in various mechanical and electrochemical phenomena in classical fluids [23]. An example
of a mechanical phenomenon is the effect of friction between wall and fluid, which is often expressed
through the no slip condition, that entails that at the wall the fluid velocity is set at zero. An-
other feature of channel surfaces is that almost all materials carry some surface charge, leading to
electrochemical interactions [23]. As a result, electrostatic forces repel co-ions carrying the same
charge-type as the wall and attract counter-ions; these ions are almost always present in water.
In this thesis we will investigate the transport of solvent, salt and charge through micro- and
nanofluidic channels, connecting two reservoirs each filled with a liquid electrolyte. These types
of channels, which can be called micropores or nanopores, have many applications, such as DNA-
translocation [29, 30], electro-osmotic fluid pumping [31, 32] and energy extraction in the form
of osmotic-energy, extracted from the mixing of salt and fresh water [33–35]. These nanofluidic
channels can also be used for desalinisation [36] and for nanofiltration purposes [37]. The devices
that are used for these purposes can all be characterised as channels with charged walls, connecting
two electrolyte reservoirs with different conditions.

Our main interest lies in the electric current in nanopores, caused by transport of charged particles,
which has been observed to possess some interesting properties. Examples of these properties in
conical nanopores are diodic behaviour [38, 39] and non-linear pressure dependence of the current
[40, 41]. These current rectification effects are a result of salt accumulation and depletion in the
channel.
An interesting feature related to the current rectifying behaviour of the pores, that has not been in-
vestigated extensively, are the memristive properties of ionic channels. These memristive properties
can be observed by applying a periodic potential over the nanopore [42–44]. The memristive effects
in these nanopores are of interest, because ion-channel memristors are essential for generating the
action potential in neurons as described by the Hodgkin–Huxley model, which we mentioned before
[7]. This research project will largely focus on memristive effects in ionic nanopores, where attention
will be given to symmetric and asymmetric channel geometries with respect to exchanging the inlet
and outlet. We will study how altering the geometry of a conical channel alters the memristive
properties of the channel. We hope to develop a general analytic model for determining the type of
memristor, taking into account the conductivity and capacitance of the channel.

In this project we perform our research using two main techniques. The first technique is devel-
oping a general analytic model for the hysteresis behaviour of memristors. Secondly, we study the
memristive behaviour of ionic nanopores using numerical finite-element calculations of the Poisson-
Nernst-Planck-Stokes equations, that describe diffusive, advective and Ohmic transport of water,
co-ions and counter-ions. We then apply the general model on the nanopore system and inspect how
well the finite-element results agree with the developed analytic model. We will give special atten-
tion to how changing the geometry, and more specifically the symmetry, of the channel changes its
hysteresis loop behaviour, by inspecting the number of crossings it possesses and the area enclosed
by the loop. Through comparison of the results from the two techniques we can test the analytic
model.
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2 Theory

In this section a theoretical basis is given for how memristive systems are described mathemati-
cally. We also introduce some important concepts and equations concerning nanofluidic transport
phenomena.

2.1 Memristors

From classical circuit theory we know that there are three basic passive circuit elements: the
resistor, the capacitor and the inductor. Each of them is associated with a certain relation between
the variables charge, voltage, current and flux. The coupling by these elements occurs through the
following differential relations

Resistor: dV = RdI (2.1)

Capacitor: dq = CdV (2.2)

Inductor: dϕ = LdI (2.3)

with V, I, q and ϕ denoting voltage, current, charge and flux, respectively. The factors R,C and
L denote the resistance, capacitance and inductance of their respective elements [3]. Besides these
relations, current and charge, and voltage and flux are also related as follows

dq = Idt; dϕ = V dt, (2.4)

with current and voltage defined by time (t) derivatives of the charge and flux, respectively. These
five relations couple all of the aforementioned variables to each other, except for one set of variables:
charge q and flux ϕ. In 1971 Leon Chua used a symmetry argument to argue for the existence of a
fourth basic circuit element, besides the three classically known elements. He called this element,
which is characterised by a relation between charge q and magnetic flux ϕ, a memristor [1]. The
differential relation of this element is

dϕ =Mdq, (2.5)

with M the memristance of the memristor [3]. One can check that the dimensionality of M is equal
to resistance R, so its unit is Ohm.
The properties of a memristor are exhibited, if one applies periodic potential difference V (t) over
the device. In general, a memristor behaves like a non-linear resistor if the frequency of the applied
periodic voltage goes to zero, since the system has enough time to adjust to the applied potential
difference. It behaves as a linear resistor in the limit that this frequency goes to infinity, as the
system has too little time to adjust and has an approximately constant resistance [11].
At intermediate frequencies, however, we find that as a result of the non-linear memory effect, its
current-voltage curve (IV -curve) is characterised by a pinched hysteresis loop with the pinch at
the origin of the IV -plot [6]. In a 2013 review paper Chua even states ”If it is pinched, it is a
memristor”, as a pinched loop in the current-voltage diagram, also called IV -curve, indicates that
the studied element is a memristor [6]. In Fig. 1 we find some examples of such a pinched hysteresis
loop. This loop can also cross itself at different points in the loop and still be a memristor, but only
the pinch at the origin is indicative for a memristor.
Memristors can be classed in a broader group of physical systems or devices that resemble the
memristor, but cannot be modelled as memristors. The memristor is only a specific case in a
general class of dynamic systems, which are called memristive systems. Memristive systems, first
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introduced as a concept by Chua in 1976, are defined by

∂x

∂t
= f(x, u, t) (2.6)

y = g(x, u, t)u, (2.7)

where u and y denote the input and output of the system, respectively, and the n-dimensional
vector x denotes the state of the system [2]. The function g(x, u, t) is a generalised scalar response
function and f(x, u, t) a continuous n-dimensional vector function [11]. An important characteristic
of memristive systems can easily be identified from Eq. (2.7), namely that if the input u is zero, the
corresponding output y is zero as well. This zero-crossing property can be seen in Lissajous figures
of these systems, as the curves in these figures pass through the origin: they are pinched [2].
In this thesis we will mostly encounter voltage-controlled memristive systems, with a current as
output. These are defined by the relation

∂x

∂t
= f(x, V, t) (2.8)

I(t) = G(x, V, t)V (t), (2.9)

with I and V the current and voltage across the system, respectively, and G(x, u, t) the memduc-
tance of the system, which stands for memory conductance, the inverse of the memristance [11]. If
the memductance only depends on the flux over the memristor the system is called current-controlled
ideal memristor. For this ideal memristor the relation in Eq. (2.9) reduces to

∂ϕ

∂t
= V (t) (2.10)

I(t) = G[ϕ]V (t), (2.11)

with memductance G(ϕ) = dq(ϕ)
dϕ [6]. In this case the current through the memristor is

I(t) = G

[∫ t

−∞
dt′V (t′)

]
V (t′). (2.12)

For the sake of convenience we will refer systems described by Eq. (2.9) as a memristor in this
thesis, whereas if we are dealing with an ideal memristor, defined by Eq. (2.11), we will explicitly
refer to it as such.

2.2 Memristor Types and Symmetry

It is possible to differentiate between type-I memristors, also called self-crossing memristors, and
type-II memristors, also called non-crossing memristors [11]. The hysteresis loop of a type-I mem-
ristor crosses at the pinch, whereas the hysteresis loops of a type-II memristor only touches itself
at the pinch. We can also say that a type-I memristor exhibits a transversal hysteresis loop and
and a type-II memristor a non-transversal hysteresis loop, since the type-I memristive loop crosses
itself transversely [45]. The two types of IV -curves are illustrated in Fig. 1, from which we can see
that the hysteresis loop of a type-I memristor crosses itself once, namely at the pinch, while the
hysteresis loop of a type-II memristor does not cross itself.
The type of memristive behaviour is important if one wishes to use memristors for memory purposes.
An example is constructing a learning algorithm with nanofluidic devices, similar to the way neurons
work. In this system type-I behaviour is preferred above type-II behaviour, because its memory
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V(t)

I(t)

(a) (b)

Figure 1: Schematic of current-voltage (IV ) diagrams for (a) a type-I and (b) a type-II memristor,
over which an AC-current is applied. The arrows indicate the path of the hysteresis loop.

is not lost as the applied voltage is set to zero, since it can have two distinct conductivities at a
voltage V (t) = 0 [46].
In general the memristor-type is determined using the slope of hysteresis loop at the pinch. In the
case of a memristor driven by a periodic voltage V (t) = V0sin

(
2π t

T

)
with T the period, this pinch

occurs when the hysteresis loop meets itself at V (t) = 0. The hysteresis loop is indicative of a
type-I memristor if the slope of the loop departing from the origin is different from the slope when
returning to the origin, or

dV

dI
(t)

∣∣∣∣∣
t=nT

̸= dV

dI
(t)

∣∣∣∣∣
t=nT+T/2

, (2.13)

with n ∈ Z an integer. At the times t = nT and t = nT + T/2 the memristor passes through the
origin. In the case of a type-II memristor the slope of the hysteresis loop departing from the origin
is the same as returning to it, so

dV

dI
(t)

∣∣∣∣∣
t=nT

=
dV

dI
(t)

∣∣∣∣∣
t=nT+T/2

. (2.14)

Only the behaviour at the pinch determines the memristor type for this definition [45].
The type of memristor is determined to some capacity by the dependence on input u of the functions
f(x, u, t) and g(x, u, t) of Eq. (2.6) and Eq. (2.7). Type-II memristive behaviour is often encoun-
tered when these are even functions of u. If the functions are non-even, we expect to encounter
type-I memristive behaviour; odd functions are especially indicative of type-I crossing behaviour.
There are however exceptions to this general rule in certain memristive systems [11]. From this rule
we can however find that type-II memristive behaviour cannot occur in ideal memristive systems.
In ideal memristive systems the functions f and g are restricted: function f must be equal to the
input u, so f(x, u, t) = u, and g can only depend on the state of the system x, so g(x, u, t) = g(x).
In this memristive system, the function f(x, u, t) clearly is an odd function of u, which results in
odd-symmetric, type-I memristive behaviour [47].
This general rule can also be applied on the type of system studied in this thesis, that are described
by Eq. (2.9). The memductance G(x, V, t) can be expressed in even and odd power of input V (t)

G(x, V, t) = G0(x) +
∞∑
i=1

αi(x)V (t)2i−1 +
∞∑
j=1

βj(x)V (t)2j , (2.15)
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with G0 the memductance at V = 0. In the case that the odd-powered α-terms dominate in
G(x, V, t), we will most likely find type-I memristive behaviour, whereas if the even-powered β-
terms dominate, we expect to encounter type-II behaviour.
From the geometry of a particular system it is possible to determine some memristive characteristics
of that system. If a system is perfectly symmetric in the direction over which the potential difference
V is applied, the odd terms in Eq. (2.15) must vanish, as the system cannot behave differently if
the sign of the applied potential difference changes. Only the even-powered β-terms remain, which
means that we expect to find type-II behaviour. If any asymmetry is introduced in the system,
the odd terms reappear and type-I behaviour is again possible. System symmetry clearly is of
importance in determining the memristor type.

Up until now we made the assumption that the hysteresis loop of a memristive system always crosses
in the origin. However, as a result of different possible mechanisms, it can occur that the pinch
of the hysteresis loop does not lie at the origin of the IV -plot anymore. This is called a non-zero
crossing hysteresis loop [48]. This behaviour is often the result of a capacitive element present in the
system [49, 50], which is illustrated in Fig. 2. Depending on the type of memristor and the type of
capacitance, this can lead to non-pinched hysteresis loops, hysteresis loops with two crossings and
hysteresis loops with the pinch at a point other than the origin [48]. In this thesis we will inspect
the effect of capacitance on the hysteresis behaviour of a memristor. As this means that we will
encounter non-zero crossing behaviour, we define the memristor type not by its slope at the origin,
but rather by its crossing behaviour in a hysteresis loop: a type-I memristor has a single crossing
and a type-II memristor has none. This is what we will mean when discussing these type-I and
type-II memristors in this report.

V(t)

I(t)

V(t)

I(t)

V(t)

I(t)

+ =

M C
(a)

V(t)

I(t)

+ =

M C
(b)

Figure 2: Schematic of current-voltage (IV ) diagrams for (a) a type-I and (b) a type-II memristor
(M), over which an AC-current is applied, added up with the current response of a capacitor (C).
This creates non-zero crossing behaviour for (a) and no-crossing behaviour for (b).
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2.3 Electrostatics and Ionic Fluids

This thesis is mostly concerned with the behaviour of an ionic nanochannel under a periodic, time-
dependent potential difference. However, before we can start to study time-dependent phenomena
of electrolytic systems, we first look at the equilibrium. In this subsection we will set up some
of the theoretical framework required for studying electric charge transport through a channel, by
describing how an electric double layer (EDL) is formed. An EDL forms when a charged solid
surface is in contact with an electrolyte. Near this surface the electrolyte will have a net opposite
charge.
In this subsection, we largely reproduce the derivations as found in chapter 11 of Ref. [51] and
in chapter 8 of Ref. [52]. In these derivations we consider an aqueous 1:1 electrolyte, in contact
with a planar surface with fixed charge density eσ, where e is the elementary charge. The surface
is located at coordinate z = 0 and the electrolyte in the region z > 0. We assume the surface and
the electrolyte to extend infinitely in the x- and y-directions, which means that the geometry in
translationally invariant with respect to these two coordinates.

2.3.1 Electric Double Layer

The electric double layer can be described using the electric potential ψ(z) and the distribution
of the positive and negative ions ρ±(z) near the surface. The connection between the density and
electric potential is given by Poisson’s equation

∇2ψ(r) = −Q(r)

ϵ0ϵr
, (2.16)

where ϵr is the relative permittivity of the medium and Q the electric charge density. For an ionic
solution this density becomes Q = e (ρ+ − ρ−). As the planar geometry is translationally invariant
in the xy-plane, the Poisson equation reduces to

d2ψ(z)

dz2
= −eρ+(z)− ρ−(z)

ϵ0ϵr
. (2.17)

The second relation we have to take into account is the Boltzmann distribution, which relates the
energy ±eψ(z) of an ion with charge e in an electric potential ψ(z) to the concentration of the ion
species ρ±(z). In the planar geometry the Boltzmann distribution becomes

ρ±(z) = ρb exp [∓βeψ(z)], (2.18)

with β = 1
kBT

, where T is the temperature and kB Boltzmann constant, and ρb the bulk ion
concentration far from the surface at z → ∞. Combining Eq. (2.17) and Eq. (2.18) gives

d2ψ(z)

dz2
= − eρb

ϵ0ϵr
(exp [−βeψ(z)]− exp [βeψ(z)]) =

2eρb
ϵ0ϵr

sinh [βeψ(z)] . (2.19)

For convenience we introduce the dimensionless potential ϕ(z) = βeψ(z), which simplifies Eq. (2.19)

to ∂2ϕ(z)
∂z2

= κ2sinh [ϕ(z)], where we have introduced the constant κ2 = 2e2βρb
ϵ0ϵr

.
To solve the differential equation, we can impose some boundary conditions. The first boundary
condition concerns the potential at an infinite distance from the surface (z → ∞), where the electric
potential vanishes, so

lim
z→∞

ϕ(z) = 0. (2.20)
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Another boundary condition confines the electric potential at the charged surface, which has an
electric charge density of eσ. By imposing charge neutrality of the total system, we can find the
potential at the surface. This charge neutrality combined with Eq. (2.17) gives

σ = −
∫ ∞

0
dz (ρ+(z)− ρ−(z)) =

ϵ0ϵr
e

∫ ∞

0
dz
∂2ψ(z)

∂z2

=
ϵ0ϵr
e

(
∂ψ

∂z
(∞)− ∂ψ

∂z
(0+)

)
= −ϵ0ϵr

e

∂ψ

∂z
(0+), (2.21)

where ∂ψ
∂z (0

+) is the first derivative of the electric potential at limz↓0. We have found the following
three equations for the electric potential near a surface

∂2ϕ(z)

∂z2
= κ2sinh [ϕ(z)] (2.22)

lim
z→∞

ϕ(z) = 0 (2.23)

∂ϕ

∂z
(0+) = −4πλBσ. (2.24)

These equations contain the two length scales κ−1 and λB, which are the Debye length and the
Bjerrum length, respectively. These two lengths are defined as

κ−1 =

√
2ρbe2β

ϵ0ϵr
and λB =

e2β

4πϵ0ϵr
. (2.25)

The differential equation given in Eq. (2.22) together with the two corresponding boundary condi-
tions can be solved analytically [53], which results in the following potential

ϕ(z) = 2 log

[
1 + γe−κz

1− γe−κz

]
, (2.26)

where the constant γ can be found using the boundary condition Eq. (2.24). Solving it gives

γ =

√
1 + (a/2)2 − 1

a/2
, (2.27)

with the dimensionless surface charge a = 4π λBσκ . Using this expression for the electric potential
and using Eq. (2.18), we can find the ion concentration as a function of distance from the charged
surface

ρ±(z) = ρb exp [∓ϕ(z)] = ρb exp

(
∓2 log

[
1 + γe−κz

1− γe−κz

])
= ρb

(
1± γe−κz

1∓ γe−κz

)2

. (2.28)

This equation shows what the EDL entails: near the charged surface the concentration of the
counter-ion is larger than the bulk concentration and the concentration of the co-ion is smaller.
Moving away from the surface both concentration move towards bulk concentration, as the electric
potential of the surface vanishes at large distance. This behaviour is illustrated in Fig. 3, in which
ion concentrations ρ±(z) and the potential ϕ(z) are shown for distances z close to the charged
surface. From these density-equations we can find the physical meaning of the Debye length κ−1 =
λD, namely the characteristic thickness of the electric double layer.
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Figure 3: The electric double layer (EDL) of an infinitely large charged planar surface. The dimen-
sionless potential ϕ and the concentrations of the positive and negative ions ρ± are plotted as a
function of distance z from the charged surface.

2.3.2 Cylindrical Geometry

The pores studied in this thesis are cylindrically symmetric. We try to find an approximation for
the electric potential in an infinitely long cylinder of radius R as a consequence of a charged surface.
In the cylindrical geometry and the long channel limit, the Poisson-Boltzmann equation becomes

1

r

∂

∂r

(
r
∂ϕ(r)

∂r

)
= κ2sinh [ϕ(r)] , (2.29)

where r ∈ [0, R] is the distance from the cylinder’s central axis. By symmetry the potential ϕ(r)
does not depend on the polar angle θ and the lateral coordinate x.
This equation cannot be solved analytically, without making some assumptions. The weak field
assumption, in which we assume that the potential ϕ(r) ≪ 1, is a natural step to take. Under this
assumptions we can reduce the differential equation to

1

r

∂

∂r

(
r
∂ϕ(r)

∂r

)
= κ2ϕ(r). (2.30)

This equation can be reduced to a modified Bessel differential equation of the first kind,

(κr)2
∂2ϕ

∂ (κr)2
+ κr

∂ϕ

∂ (κr)
− (κr)2ϕ = 0, (2.31)

and has as the general solution

ϕ(r) = c1I0 (κr) + c2K0 (−κr) (2.32)
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with the constants c1, c2 ∈ R and I0 and K0 the zeroth order modified Bessel functions of the first
and second kind, respectively. To have the potential be finite at r = 0, we need the constant c2 = 0,
as K0(0) diverges. The other constant c1 can be found using the boundary condition in Eq. (2.24),
which indicates that at r = R, we need ϕ′(r) = 4πλBσ. The derivative of the zeroth order Bessel
function is the first order Bessel function, so we find that the solution of the potential is

ϕ(r) = 4πλBσ
I0 (κr)

κI1 (κR)
, (2.33)

with r ∈ [0, R]. The potential above can be used to find the ion concentrations in the channel,
which are given by

ρ±(r) = ρb exp [∓ϕ(r)] = ρb exp

[
∓4πλBσ

I0 (κr)

κI1 (κR)

]
. (2.34)

Under the assumptions made in this section the charge density and the salt concentration are given
by

ρe(r) = 2ρbsinh

[
−4πλBσ

I0 (κr)

κI1 (κR)

]
; ρs(r) = 2ρbcosh

[
−4πλBσ

I0 (κr)

κI1 (κR)

]
. (2.35)

A second assumption we can make is assuming that that the radius of the channel is so large, that
we can approximate the channel wall to be a plane. We can make this approximation when the
radius of the channel is much larger than the Debye length, so when R≫ κ−1. By introducing the
coordinate s = R− r we can reduce the Laplacian derivative in cylindrical coordinates to

∇2ϕ(s) =
1

R− s

∂

∂ (R− s)

(
(R− s)

∂ϕ(s)

∂ (R− s)

)
≈ ∂2ϕ(s)

∂s2
, (2.36)

as we are only interested in the region where s ≪ R, because this is where the double layer is
present. We can therefore reduce Poisson’s equation, given in Eq. (2.29), to

∂2ϕ(s)

∂s2
= κ2sinh [ϕ(s)] , (2.37)

which is identical to the planar Poisson equation in Eq. (2.22). The approximate solution for the
electric potential in the channel is therefore given by

ϕ(s) = 2 log

[
1 + γe−κs

1− γe−κs

]
, (2.38)

and its corresponding ion concentration distribution by

ρ±(s) = ρb

(
1± γe−κs

1∓ γe−κs

)2

. (2.39)

The constant γ is the same as in Eq. (2.27). In this thesis we will use the potential as given in Eq.
(2.38), except if indicated otherwise.
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2.4 PNPS Dynamics

In this project we study ionic nanochannel through finite-element calculations and analytic calcula-
tions with the equations that govern the dynamics of the systems. In the following section we will
go through these equations. The dynamics present in the system at hand can be described by the
Poisson-Nernst-Planck equations (PNP-equations) and the Stokes equation, which together can be
abbreviated as the PNPS-equations.
Fluid flow is in general described by the Navier-Stokes equation. However, because the length
scales of the system are in the order of micrometers, the Reynolds number Re = ρuL

η is small. The
parameters ρ, u, L and η are the characteristic fluid mass density, velocity, length scale and dynamic
viscosity of the system, respectively. For the nanopore we study we find Re ≈ 10−4, so Re ≪ 1,
which indicates that we can neglect the inertial forces in the system, as they are insignificant in
system with small Reynolds number. The flow in the system is therefore described by Stokes’ flow,
which for an incompressible fluid is given by

η∇2u−∇P − eρe∇ψ = ρ
∂u

∂t
, (2.40)

∇ · u = 0. (2.41)

The forces applied on the fluid are the electric Coulomb force and the mechanical forces applied by
the pressure gradients.
The fluxes of the charged ions in the electrolyte is described by the Nernst-Planck equation

j± = −D±

(
∇ρ± ± ρ±

e∇ψ
kBT

)
+ uρ±. (2.42)

In this equation the concentration of the positive ions and negative ions in the 1:1 electrolyte are
given by ρ+ and ρ−, respectively, and the corresponding fluxes of these ions by j±. The expression
is composed of a Fickian diffusive term, an Ohmic conduction term and a Stokesian advective term,
respectively. The electric potential ψ as a consequence of the charge density ρe is given by the
Poisson equation

∇2ψ = −e
ϵ
ρe. (2.43)

Finally, Eq. (2.44) represents the continuity equation, which accounts for the local conservation of
the ions,

∇ · j± = −∂ρ±
∂t

. (2.44)

These equations together are the PNPS-equations, that describe the dynamics in electrolyte systems,
and we will apply these equations in our calculations to investigate the dynamics in nanopores.
When a steady-state system is considered, the time derivatives in the PNPS-equations are set to
zero.
Two important properties related to transport phenomena described by the PNPS-equations, are
the salt concentration ρs and the ionic electric charge density ρe. These properties are written as

ρs = ρ+ + ρ−, (2.45)

ρe = ρ+ − ρ−. (2.46)

The salt concentration is the total ion concentration at a certain location and the ionic charge
density is the negative ion concentration subtracted from the positive ion concentration. These
properties will be used in the rest of this thesis.
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2.5 Onsager Relations

The Poisson-Nernst-Planck and the Navier-Stokes equations can be applied to study the transport
behaviour in a given geometry, under the influence of driving forces over this geometry. The relation
between these driving forces and the transport phenomena are the Onsager reciprocal relations [54,
55]. The linear response of transport phenomena to a small applied driving force are described in
these relations.
In this thesis we are interested in transport through nanochannels as a result of an applied voltage
drop, which is the relevant driving force in our investigations. We are interested in the resulting
transport of ions, electric charge and fluid through the channel; these are the salt, electric charge
and fluid flux, respectively. In an axially symmetric system these fluxes are given by

J(x) = 2π

∫ R(x)

0
r (j+,x(r, x) + j−,x(r, x)) dr, (2.47)

I(x) = 2πe

∫ R(x)

0
r (j+,x(r, x)− j−,x(r, x)) dr, (2.48)

Q(x) = 2π

∫ R(x)

0
rux(r, x)dr, (2.49)

where j±,x are the lateral components of the ion fluxes as given in Eq. (2.42) and ux(r, x) the lateral
fluid velocity. The upper integral limit R(x) is the radius of the channel at coordinate x.

2.5.1 Transport in a Cylinder

We derive the elements of the Onsager matrix for transport phenomena in a cylinder, as this is
the simplest axially symmetric system and the elements are therefore the easiest to derive. We will
largely follow the derivation of a 2020 paper by Werkhoven et al. [56]. In these derivations we
consider a cylindrical pore in the long channel limit. This allows us to ignore entrance effect of the
channel and assume that properties of the channel only depend on its radius. Charge density, salt
concentration, and fluid velocity are thus given by ρe(r), ρs(r) and u(r).
To determine the fluid flux steady Q through a channel as a result of an applied potential, we
first need the fluid velocity u(r) through the channel. As the only driving force we apply over the
channel in the potential difference, Stokes equation in Eq. (2.40) reduces to

η∇2u− eρe∇ψ = 0, (2.50)

from which we can derive the lateral velocity ux(r). In the long channel limit the field in the x-
direction depends on the potential difference over the channel and is given by −∂xψ = V

l = E, with
l the total length of the channel and V the potential difference. The electric field is constant in the
channel in this limit. Substituting the Poisson equation in Eq. (2.43) and only taking into account
the x-component gives

∂2rux = ∂2rψ
ϵ

η
E. (2.51)

With the no-slip boundary condition ux(r = R) = 0, this equation can easily be solved through
integrating twice, which gives

ux(r) =
ϵ

η
(ψ(r)− ψ0)E, (2.52)

with ψ0 = ψ (R) the potential at the boundary of the cylinder at r = R. We can now find fluid flux
Q by integrating over ux(r), which gives

Q = 2π

∫ R

0
drrux(r) = Eπ

ϵ

η

∫ R

0
drr (ψ(r)− ψ0) . (2.53)
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We again use the dimensionless electric potential ϕ(z) = βeψ(z), which we substitute in to find

Q =
e

4λBη
E

∫ R

0
drr (ϕ(r)− ϕ0) =

e

4λBη
Eπ

∫ R

0
ds (R− s) (ϕ(s)− ϕ0)

≈ e

4λBη
Eπ

(
−ϕ0R2 +R

∫ R

0
dsϕ(s)

)
, (2.54)

where we implemented the coordinate s = R − r and assumed that R ≫ κ−1. As the potential is
only non-zero near the cylinder wall in the EDL and because we assume that R ≫ κ−1, we can
assume that

∫ R
0 ϕ(s)ds ≈

∫∞
0 ϕ(s)ds. The expression for the the electric potential in a cylinder is

given in Eq. (2.38) for as a function of s. We can numerically integrate this expression and find

1

λD

∫ ∞

0
dsϕ(s) ≡ P1. (2.55)

In terms of this dimensionless number the electro-osmotic fluid flux in a cylinder, caused by a
potential drop V , is given by

QEO = −π e

4λBη
R2E

(
ϕ0 −

λD
R
P1

)
= −π e

4λBη
R2E

(
ϕ0 +O

[
λD
R

])
. (2.56)

In Appendix A an expression for the electric charge flux response I is derived, using the same
techniques as were applied above.
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3 Memristor Model and Model System

In this section the general analytic model for memristors applied in this thesis is introduced, which
we do by stating the equations that govern the memristive system’s behaviour and showing its
equivalent circuit. Following this, we introduce the ionic nanopore system, on which the memris-
tor model is applied. Afterwards, we explain how we perform finite-element calculations on ionic
nanopore systems.

3.1 General Memristive Model

The type of memristor considered in this thesis is voltage dominated, which means that a voltage is
applied over the memristor as input, resulting in a current as output. The relation between current
I and applied voltage V , which has already been given in Eq. (2.9), is the following

I(t) = g(t)V (t),

with g(t) the memductance of the system. A characteristic of a memristive system is that its
memductance depends on the input applied over it in the past, which is the potential difference
V . We assume that when a static potential difference is applied over the memristor for a very
long time, the memductance will revert to the steady-state conductance g∞ [V (t)] for this voltage.
This steady-state conductance depends on the specific situation in the memristive system being
considered.
We propose the use of an Ansatz to predict how the memductance responds to a changes in potential
difference. We assume that the derivative of the memductance depends linearly on the difference be-
tween the steady state conductance g∞[V ] and the memductance of the memristor at that moment.
This Ansatz can be written as

τ
∂g(t)

∂t
= g∞ [V (t)]− g(t). (3.1)

The constant τ in this equation is some characteristic timescale of the memristor, that determines
how fast the memductance responds to changing voltages. This Ansatz ensures that the memduc-
tance will revert to the steady-state conductance g∞ [V (t)] if the potential difference is held constant
for a long time. The conductance of the system always strives towards g∞[V ].
Solving the differential equation in Eq. (3.1) we find the following solution

g(t) = e−
t
τ

(∫ t

0
dθg∞ [V (θ)] e

θ
τ +A

)
, (3.2)

with A a constant of integration, which can be determined using the fact that in the case of a steady
state potential difference the conductivity must be constant. This allows us to extract A from the
expression above.
The steady-state conductance depends on the potential difference applied over the memristor. We
can expand this steady-state conductance in terms of even powers and odd powers of V ,

g∞(V ) = g0

1 +
∞∑
i=1

αiV
2i−1 +

∞∑
j=1

βjV
2j

 , (3.3)

with g0 the conductance if no potential difference is applied. To find memductance g(t) we can
insert g∞ into Eq. (3.2) and solve the integral, either analytically or numerically.
It is possible to relate the expansion in Eq. (3.3) to the similar expansion in Eq. (2.15). In section
2.2 we discussed how this expansion can influence the hysteresis behaviour. As in section 2.2 we
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predict that when the odd-powered α-terms dominate in g∞ [V (θ)], we will most likely find type-I
memristive behaviour, and if the even β-terms dominate we expect to encounter type-II behaviour.
The symmetry arguments made in section 2.2 are also valid for the memristor described in this
section.

When a potential is applied over a memristor, it can exhibit capacitive behaviour besides memristive
behaviour, which is something many memristive system do [48]. This capacitive behaviour has an
influence on the current measured over the memristive system. To include this capacitive element
in the analytic model, we introduce a capacitor to the system, whose current contribution is given
by

IC(t) = C
∂VC(t)

∂t
, (3.4)

with C its capacitance and VC the potential difference applied over the capacitor. We place this
capacitor parallel to the memristor, which results in the circuit as given in Fig. 4.

V(t) g(t) C

Figure 4: The circuit diagram of a memristor with memductance g(t) and a capacitive element
under a time-dependent potential difference V (t). A capacitive element is included in the model by
putting a capacitor with capacitance C parallel to the memristor.

In the circuit in Fig. 4 the potential difference over the memristor is the same as the potential
difference over the capacitor, namely V (t). Hence, the total current through the system, consisting
of a memristive element and a capacitive element, is given by

I(t) = g(t)V (t) + C
∂V (t)

∂t
, (3.5)

which we found using Kirchhoff’s current law. The total current I(t) over the memristive system is
the memristive current and the capacitive current added up.
In Appendix B a different type of circuit is analysed, which contains an extra resistor in series with
the capacitor. We defend the use of capacitive model as given in Fig. 4 in this appendix, based on
the low RC-times we encounter in the systems studied in this thesis.
The model described in this section is very similar to the model used to describe memristors in Ref.
[49]. The authors of Ref. [49] applied their model to describe the memristive behaviour of plant
tissue. In this article they considered only the first three terms in the expansion given in Eq. (3.3)
separately.
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3.2 Model Ionic Channel

The model described in the previous section will be applied to ionic nanochannels in this thesis, as
this is a system which has memristive properties. Its conductive properties come from charged ions
moving through the pore, under the influence of an applied potential difference.
The geometry of the pores we study in this project is indicated in Fig. 5. It consists of two reservoirs
filled with an aqueous electrolyte, connected to each other through a channel. The electrolyte in the
device is a 1:1 electrolyte, so the bulk ion concentrations are ρ+ = ρ− = ρb. The diffusion constant
of the positive and negative ions are D+ = D− = D. The electrolyte has viscosity η, mass density
ρ and relative permittivity ϵr. As can be seen in Fig. 5, the two reservoirs are connected to each
other by a channel with a charged wall. The radius of the channel is given by:

R(x) =

{
R1(x) = Rt − x

L1
(Rb −Rt) for − L1 ≤ x ≤ 0

R2(x) = Rt +
x
L2

(Rb −Rt) for 0 ≤ x ≤ L2.
(3.6)

x

r
}

}Rt Rb

L1 L2
ρ+ = ρ- = ρb ρ+ = ρ- = ρb 

-
-
- -

- - -
- - -

-
-

-
-
------

--
-
-

Ψ=Ψ0 + V(t) Ψ=Ψ0 

Figure 5: Schematic of the azimuthally symmetric channel of interest of this thesis. This channel
consists of two coaxial cones with identical base radius Rb and tip radius Rt < Rb. The two
cones have two different lengths L1 (at x < 0) and L2 (at x > 0), where x is the Cartesian axial
coordinate such that at x = 0 the tips of the two cones connect. The distance to the negatively
charged channel walls from the central axis is denoted by radial coordinate r. The channel connects
two bulk reservoirs, filled with an aqueous 1:1 electrolyte with identical ion concentrations, identical
pressure, but with time-dependent potential difference V (t).

We define the difference between the radius at the opening and the radius at the center of the
channel as ∆R = Rb −Rt. The lengths L1 and L2 are defined such that the total channel length is
constant at 2L, which gives that L1 + L2 = 2L. The individual lengths L1 and L2 are defined in
terms of the ratio δ as

L1 = (1 + δ)L and L2 = (1− δ)L, (3.7)

where the range of the ratio is δ ∈ [0, 1]. By varying L1 and L2 through δ we can change the
geometry of the channel. If L1 = L2, so if δ = 0, the channel is a symmetric hourglass channel, but
for any non-zero value of δ the channel is no longer symmetric, as in this case L1 > L2. If δ = 1, the
two lengths are L1 = 2L and L2 = 0, which means that the channel is purely conical. By changing
the ratio δ we can control the geometry of the channel and its symmetricity.
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We implement some boundary conditions on this channel. In the reservoirs at large distance from
the channel, the pressure is P0, the salt concentration is ρs = 2ρb and the electric charge density
is ρe = 0. At large distance from the channel in the reservoir at x < 0 the electric potential is
Ψ0 + V (t), while it is Ψ0 in the reservoir at x > 0. We apply no-slip and blocking boundary
conditions on the walls. At the walls we thus find that the fluid velocity is zero, so u = 0, and that
the ion transport normal to the wall vanishes, so n · j± = 0, where n is the vector normal to the
wall.
The channel surface has a charge density of eσ, which causes a potential ψ0 to form at the wall.
Gauss’s law also applies at the wall, so n · ∇ψ = eσ/ϵ holds. This potential leads to changes in
the particle concentration ρ±(x, r, t) and can also cause a fluid velocity u(x, r, t) and ionic fluxes
j±(x, r, t) to form.

3.3 Finite-Element Calculations

We study the conductive and memristive properties of the ionic nanochannels by performing finite-
element calculations (FE-calculations). Through FE-calculations with appropriate boundary con-
ditions, we can solve the PNPS-equations numerically for a given geometry. These FE-calculations
include steady state calculations, with a constant potential difference applied over the channel, and
time-dependent calculations, with the applied voltage periodically varying in time.
The FE-calculations are performed using the software program Comsol Multiphysics. This
program allows one to construct the geometry of a system, which is then divided up into a mesh
of individual cells. Each of these cells possesses a distinct set of the relevant values, describing
the state of this cell. The geometries used in this thesis are 3D-axially symmetric channels, which
allows us to treat the channel as a quasi-2D geometry in the FE-calculations, as the result will not
depend on the angular θ coordinate. Examples of these 3D-axially symmetric grids for the channel,
as described in Fig. 5, are shown in Appendix C.
In this thesis we will study the channel for a fixed set of standard parameters. These parameters
are used in the FE-calculations and in calculations with an analytic model. The parameters, which
represent water at room temperature, are given in Tab. 1.

ρ 998.2 kg/m3

η 10−3 Pa · s
T 293.15 K
ρb 1 mol/m3

eσ −3.2044 mC/m2

ϵr 80.2
Rb 450 nm
Rt 100 nm
2L 10 µm
D 10−9 m2/s

Table 1: The parameters used in the finite-element calculations and analytical calculations in this
thesis, representative of an aqueous 1:1 electrolyte at room temperature.

The bulk concentration of both the positive and negative ions is set at ρb = 1.0 mM, so the bulk salt
concentration is ρs = 2.0 mM. The bulk conditions are achieved by setting the ion concentrations
ρ± at the far boundaries of the reservoirs equal to ρb. The surface charge eσ = −0.0032044 C/m2 is
equivalent to two elementary charges per 100 nm2. The diffusion coefficient D of both the co-ions
and counter-ions is set to D = 10−9 m2/s.
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The current I through the channel is the most important information found through the FE-
calculations. It is extracted from the FE-calculations by measuring the total charge flux at the
narrowest part of the channel. We integrate over the channel slice at x = 0 to find the total positive
and negative ion-flux, and we find the total charge flux by subtracting these from each other. We
can in turn find the current by multiplying this total charge flux by the elementary charge e. We
can, however, also find the total fluid flux Q by integrating the fluid velocity ux over the same
channel slice. We have found that I and Q largely stay the same, as we change the x-coordinate
where we integrate over the fluxes, such that they do not depend on the x-coordinate.



4 MODEL SYSTEM: IONIC CHANNEL 20

4 Model System: Ionic Channel

In this section we analyse the ionic channel, which we use as a realisation of a memristive system.
The expressions for the salt concentration, charge density, electric current and capacitance in the
channel are derived. An estimate for the characteristic timescale at which the channel responds to
voltage changes is also made.
From Eq. (2.42) we can find expressions for the electric and salt flux. These are, respectively,

je = j+ − j− = −D
(
∇ρe + ρs

e∇ψ
kBT

)
+ uρe, (4.1)

js = j+ + j− = −D
(
∇ρs + ρe

e∇ψ
kBT

)
+ uρs, (4.2)

where we assume that D+ = D− = D. The three terms in these equations describe the diffusive,
conductive and advective flux, in that order. Similarly we can find a continuity equation for these
fluxes from Eq. (2.44), which gives

∇ · je = −∂ρe
∂t

, (4.3)

∇ · js = −∂ρs
∂t

. (4.4)

The total lateral current and lateral salt flux in the channel can be found by integrating the lateral
components of the fluxes in Eq. (4.1) and Eq. (4.2) over the cross section of the channel, so

I(x, t) = 2πe
∫ R(x)
0 je,x(x, r, t)rdr and J(x, t) = 2π

∫ R(x)
0 js,x(x, r, t)rdr.

4.1 Steady State Salt Concentration

To get insight in how a potential drop over the channel affects the salt concentration in the channel,
we first inspect the total lateral salt flux J in the channel. The derivations in this subsection are
largely based on the derivations from a preprint by Boon et al. [41].
In deriving an expression for the total flux J we consider the channel to be in the long channel
limit, so we assume the length of the channel is much larger than its radius, which means L≫ Rb.
We can therefore neglect the entrance effects that can have an influence on J . In this limit the
lateral components of the fluxes and gradients are much larger than their radial components, which
we from here on out neglect. This allows us to work with a radially averaged salt concentration
cR(x), as in this limit ρx(r, x) ≈ cR(x), for all values of r outside the EDL. We also assume that
the electric field does not depend on the radial coordinate r, so ∂xψ(x, r) ≈ ∂xψ(x).
A second assumption we make in this derivation is that the EDL is much thinner than the radius
of the channel, so λD ≪ Rt. This indicates that the charge density is negligible outside the EDL,
which allows us to assume ρe(r ≪ Rt − λD) ≈ 0. Hence, the charge density ρe outside the EDL
has minimal effect on the salt flux. The assumption λD ≪ Rt also allows us to ignore the effect of
wall-curvature on the EDL, which means that we can apply the EDL-expressions of a flat-plate in
our derivations, as given in Eq. (2.38) and Eq. (2.39).
Under these assumptions, the total salt flux becomes

J(x) = 2π

∫ R(x)

0
js,x(x, r)rdr = 2π

∫ R(x)

0

[
−D

(
∂xcR(x) + ρe

e∂xψ(x)

kBT

)
+ uxcR(x)

]
rdr

= −D
(
πR2(x)∂xcR(x)− 2πR(x)σ

e∂xψ(x)

kBT

)
+QcR(x), (4.5)
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where Q is the total volume flux, defined as

Q (x) = 2π

∫ R(x)

0
ux(r)rdr. (4.6)

By assuming that the only space charge contribution in the channel comes from the EDL and that
the total charge is conserved in the system, we can use

2πR(x)σ = −
∫ R(x)

0
ρe(r)rdr, (4.7)

which allows us to insert the surface charge density σ in the expression for the salt flux.

Equation (4.4) shows that the salt current is divergence free in the steady state solution, hence we
impose ∂xJ = 0, using Eq. (4.5) for J(x). In the long channel limit, this results in the following
differential equation:

∂xJ = D∂x

(
πR2(x)∂xcR − 2πR(x)σ

e∂xψ

kBT

)
−Q∂xcR = 0. (4.8)

By solving this equation we can find an expression for the steady state salt concentration cR(x).
However, it is still necessary to obtain expressions for ∂xψ and Q to find cR.

The electric field ∂xψ in the channel can be determined using Gauss’s law and by neglecting any
space charge outside of the EDL. We assume that the total system is charge neutral and the only
significant charge contribution in the fluid lies in the EDL. The total charge within a slice of the
channel and channel wall must therefore be zero, so the divergence of the electric field is zero
∇ · ∇ψ = 0. The electric field cannot penetrate through the channel wall, hence we find that
πR2(x)∂xψ = constant, as we ignore the radial field components. The electric field must increase
as the channel radius decreases and is given by

∂xψ =
constant

πR2(x)
.

We apply a total potential drop of V over the channel, so if we integrate ∂xψ laterally we must find

V = −
∫ L2

−L1

∂xψdx = −
∫ L2

−L1

constant

πR2(x)
dx. (4.9)

Solving this integral allows us to specify the constant, which leads to an expression for the electric
field,

∂xψ = − V

2L

RbRt
R2(x)

. (4.10)

In Fig. 6 the electric field from finite-element calculations and from Eq. (4.10) are compared. The
channel being considered in Fig. 6 has the dimensions and the system parameters as given in Tab.
1. As these results closely match, we are confident that we can use Eq. (4.10) in combination with
Eq. (4.5) for J(x) to determine the salt concentration cR(x) in the channel.

The volume flux Q is completely electro-osmotic, as there is no pressure difference or chemical
potential difference over the channel. We do not have an exact expression for the electric-osmotic
flow over an hourglass channel or a conical channel. However, we do have an expression for the
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Figure 6: Electric field ∂xψ at the centre line of a channel with δ = 0.0, at radius r = 0. The results
from the theory of Eq. (4.10) are denoted by the lines, the results from finite-element calculations
are denoted by the circles.

electro-osmotic flow Qeo through a cylindrical channel, which we found in Eq. (2.56). If we use this
expression in the limit λD ≪ R the fluid flux through the channel reduces to

Qeo =
eψ0

η
πR2(x)∂xψ = − V

2L
πRtRb

eψ0

η
. (4.11)

We inserted the electric field ∂xψ from Eq. (4.10) into this expression, which cancels out the R(x)
dependence. We have found an approximate expression for Q, which does not depend on coordinate
x, which is to be expected for the transport of an incompressible fluid through a nanopore.
To determine if this expression accurately predicts the fluid flux through a channel as described in
Fig. 5, we compare its results to the results from finite-element calculations.
The channel being considered has the dimensions and system parameters as given in Tab. 1. The
flux in the finite-element calculations and from the theoretical model follow the same general trend,
as can be seen in Fig. 7, but the flux-values are not identical. At a voltage of V = 1.0 V the
difference between the theoretical result and the FE-result is 13 %. At a voltage of V = 0.1 V this
difference is 37 %. At negative voltages, the difference between theory and FE-calculations is a bit
larger for the channel with δ = 0.95; at V = −1.0 V the difference is 20 %.
There is some difference between the theory and the finite-element calculations for fluid flux, but
it is not so substantial that we cannot use the expression for Qeo for our analytic model. We will
use it in our calculations from now on.

With Eq. (4.10) and Eq. (4.11) we have determined all unknowns of Eq. (4.8), which results in the
following differential equation:

D∂x

(
πR2(x)∂xcR(x) + πσ

eV

LkBT

RbRt
R(x)

)
−Qeo∂xcR(x) = 0. (4.12)
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Figure 7: Fluid flow Q through a channel as a result of applying a static potential difference V .
Finite-element calculations of channels with different δ are compared with a theoretical approxima-
tion, as given in Eq. (4.11).

We solve this equation to find the radially averaged salt concentration in the channel for a given
channel geometry. To specify this pore the geometry studied in this thesis, we insert R(x) from
Eq. (3.6). To solve the differential equation for the geometry described by radius R(x), we need to
implement a boundary condition on the concentration cR, which is

cR (−L1) = cR (L2) = 2ρb, (4.13)

such that the salt concentration reverts to bulk concentration at the entrances to the channel. This
boundary condition allows us to solve the differential equation, which gives

cR,∞(x) =



2ρb +
∆ρ
Pe

[(
1 + x

L1

)
Rt
R(x) +

1
Pe

4L2

L1L2

Rb
Rt

1

1−exp
[
Pe

Rt
Rb

]
(
1− exp

[
PeRt

Rb

L2
L1+L2

]
− exp

[
Pe
(
1 + x

L1

)(
L1

L1+L2

R2
t

RbR(x)

)]
+ exp

[
PeRt(L1Rt(1+x/L1)+L2R(x))

(L1+L2)RbR(x)

])]
for − L1 ≤ x ≤ 0

2ρb +
∆ρ
Pe

[(
1− x

L2

)
Rt
R(x) −

1
Pe

4L2

L1L2

Rb
Rt

1

1−exp
[
−Pe

Rt
Rb

]
(
1− exp

[
−PeRt

Rb

L1
L1+L2

]
− exp

[
−Pe

(
1− x

L2

)(
L2

L1+L2

R2
t

RbR(x)

)]
+ exp

[
−PeRt(L2Rt(1−x/L2)+L1R(x))

(L1+L2)RbR(x)

])]
for 0 ≤ x ≤ L2,

(4.14)
where we used subscripts R and ∞ to indicate that this is the radially averaged, steady state
concentration. Included in this expression are the Péclet number at the narrowest part of the
channel

Pe =
2LQ [V ]

πDR2
t

, (4.15)

which indicates the ratio of the advective transport rate, divided by the diffusive transport rate.
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Also included is a measure for the concentration inhomogeneity in the channel

∆ρ =
2σ∆R

R2
t

eV

kBT
, (4.16)

which shows that if ∆R = 0 there will be no lateral salt concentration gradient in the channel.

Equation (4.14) is quite involved, but it is consistent with results for similar channels. When we take
the limit L1 ≫ L2, in which one cone in the channel is much longer than the other, the concentration
cL reduces to the expression Boon et al. [41] found for a conical channel. If we take L1 = L2, we
retrieve the following laterally averaged concentration for a symmetric hourglass channel

cR,∞(x) =


2ρb +

∆ρ
Pe

 Rt
R(x)(1 +

x
L) +

4Rb
PeRt

1−exp

[
Pe
2 (1+

x
L)

R2
t

RbR(x)

]
1+exp

[
Pe
2

Rt
Rb

]
 for − L1 ≤ x ≤ 0

2ρb +
∆ρ
Pe

 Rt
R(x)(1−

x
L)−

4Rb
PeRt

1−exp

[
−Pe

2 (1−
x
l )

R2
t

RbR(x)

]
1+exp

[
−Pe

2
Rt
Rb

]
 for 0 ≤ x ≤ L2.

(4.17)

We can test the accuracy of the salt concentration cR,∞ from Eq. (4.14) by comparing it to results
from finite-element calculations, with parameters and system parameters as given in Tab. 1.
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Figure 8: The analytic radially averaged salt concentration cR(x) from Eq. (4.14), are compared to
the concentration in the centre of the channel of finite-element numerical calculations, denoted by
the circles. The channels considered have (a) a ratio δ = 0.0 and (b) a ratio δ = 0.9, over which a
static potential difference V is applied.

In Fig. 8 the concentration cR from Eq. (4.14) is compared to the concentration in the central
channel axis from FE-calculations. The analytic expression generally accurately mimics the salt
concentration encountered in the numerical FE-calculations. The theory predicts the general be-
haviour of the concentration in a channel under an applied voltage, but it underestimates the change
in concentration for higher voltages, which can be seen for V = −0.5 V and V = 0.5 V in Fig. 8(a)
and Fig. 8(b).
From Fig. 8 it becomes clear that both the geometry of the channel and the applied potential
difference determine the salt concentration in the channel. Especially the sign of the applied po-
tential difference determines if there is a general concentration increase or decrease in the channel,
especially for more asymmetric channels with high δ.
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By integrating Eq. (4.14) over the length of the channel we can find the laterally averaged salt
concentration, which results in the following expression

cL,∞ [V ] =
1

L1 + L2

∫ L2

−L1

cR,∞[V, x]dx

= 2ρ +
∆ρ

Pe

1

∆R2

[
Rt

(
Rb log

[
Rb
Rt

]
−∆R

)
(4.18)

+
Rb

Pe

(
e
Pe

Rt
Rb − 1

)( 4∆R

1− δ2

(
1 + e

Pe
Rt
Rb − e

Pe
(1+δ)Rt

2Rb − e
Pe

(1−δ)Rt
2Rb

)

+
1 + δ

1− δ
PeRte

−Pe
(1+δ)R2

t
2Rb∆R

(
1− e

Pe
(1−δ)Rt

2Rb

)(
Ei

[
Pe

(1 + δ)Rt
2∆R

]
− Ei

[
Pe

(1 + δ)R2
t

2Rb∆R

])
+

1− δ

1 + δ
PeRte

Pe
(1−δ)Rt

2∆R

(
1− e

Pe
(1+δ)Rt

2Rb

)(
Ei

[
−Pe

(1− δ)Rt
2∆R

]
− Ei

[
−Pe

(1− δ)R2
t

2Rb∆R

]))]
.

(4.19)

This expression includes the exponential integral function Ei(z), which is defined as

Ei(z) =

∫ z

−∞

et

t
dt. (4.20)

The potential difference dependence of the laterally averaged concentration cL,∞ lies in the Péclet
number Pe and in the factor ∆ρ.
In Fig. 9 the salt concentration from Eq. (4.19) is compared to the concentration from FE-
calculations, performed using the parameters of Tab. 1. The general concentration is described well
by Eq. (4.19), as it accurately predicts that a positive potential difference in general leads to a con-
centration decrease, whereas a negative potential difference can lead to an increase in concentration.
This increase mostly occurs for larger values of δ; the difference between the concentration in the
case of a negative voltage and of a positive voltage is greater for higher values of δ. In comparison,
for δ = 0.0 the sign of the applied potential does not have an influence on the concentration in the
channel.
The analytic expression, however, fails in predicting the magnitude of the concentration. It generally
underestimates the change from the bulk concentration cL = 2ρb as a potential difference is applied,
which is the case for both increases as decreases in concentration. However, in describing the
memristive behaviour we are mostly interested in the general behaviour of the channel and we
therefore will continue to use Eq. (4.19) for the calculations in this thesis.

We can expand the concentration in Eq. (4.19) in powers of V , which gives

cL,∞ [V ] = 2ρb
(
1 + αV + βV 2 +O

[
V 3
])
, (4.21)

where the factors α and β are given by

α = −eσ
2∆R+ (Rb +Rt) log

[
Rt
Rb

]
2ρbkBT∆R2

δ (4.22)

β =
1

2ρb

eϵ0ϵrσψ0

24DkBTRb∆R3η

[
−∆R

(
2R2

b + 5RbRt −R2
t

)
− 6 log

[
Rb
Rt

]
R2
bRt

+

(
−∆R

(
10R2

b + 7RbRt +R2
t

)
+ 2 log

[
Rb
Rt

]
Rb
(
2R2

b + 5RbRt + 2R2
t

))
δ2
]
. (4.23)
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Figure 9: The laterally averaged concentration cL in channels with various geometries, characterised
by δ, over a range of steady state potential differences V . The results from FE-calculations, indicated
by circles, are compared to the theoretical expression of 4.19, indicated by lines.

We can see from Eq. (4.22) that α is linear in terms of geometry parameter δ. From Eq. (4.23) we
find that β has two terms: a constant term and a term quadratic in δ. In a perfectly symmetric
channel, which has a ratio δ = 0, there is clearly no linear V -contribution to the concentration
cL,∞, because in this case the factor α = 0. There is, however, always a quadratic contribution to
the concentration, as β possesses a constant term, which does not depend on δ. Only as δ becomes
non-zero, the concentration gains a linear voltage contribution that increases in significance when
δ gets larger, as α also increases.
The concentration cL,∞ in general does not depend on odd powers of V if the channel is symmetric,
since the sign of the applied voltage cannot have an influence on the concentration in the symmetric
case, as a change of sign amounts to a change of direction in which the potential difference is
applied. In a symmetric channel this change of direction makes no difference for the laterally
averaged concentration.

4.2 Ionic Current

We can find an expression for the current I through the channel by radially integrating Eq. (4.1)
for the electric flux. In determining the salt flux we worked in the long channel limit, which
allowed us to ignore the radial coordinate r and to use the radially averaged salt concentration
ρs(r, x) ≈ cR(x). The other assumption we made was that the charge is negligible outside the EDL,
so ρe(r ≪ R − λD) ≈ 0. We make the same approximations in determining the total current I
through the channel. Under these assumptions only the conductive part of the charge flux in Eq.
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(4.1) remains, as we neglect the terms which contain charge density ρe, which results in

Ic(x) = 2π

∫ R(x)

0
eje,x(x, r, t)rdr = −2π

∫ R(x)

0
eDcR(x)

e∂xψ(x)

kBT
rdr

= −eDe∂xψ
kBT

πR2(x)cR(x) = eD
eV

2LkBT
πRbRtcR(x), (4.24)

where we have substituted the electric field of Eq. (4.10) into the expression for I(x). The conductive
current now depends on the coordinate x, which is problematic if we want to determine the current
of the channel, if we treat it like a circuit element, as a circuit element can only give a single current
output from its applied input. We can instead use the laterally averaged channel conductivity to
cancel out this x-coordinate dependence, which gives

Ic,L = eD
eV

2LkBT
πRbRt

∫ L2

−L1

dx
cR(x)

2L
= eD

eV

2LkBT
πRbRtcL. (4.25)

In Section 4.1 we found an expression for the laterally averaged steady state salt concentration
cL,∞. We are therefore now able to predict the conductive current in the steady state. From this
expression above we can also define the conductivity of the channel if no potential difference is
applied, which is

G0 = 2ρbeD
e

2LkBT
πRbRt =

2ρbe
2D

kBT

πRbRt
2L

, (4.26)

where the bulk salt concentration cL = 2ρb was inserted and we divided the expression into a
geometric term and a related to the charged ions.

For the time-dependent concentration we use the following Ansatz. We assume that the time
derivative of the laterally averaged current in the channel is proportional to the difference between
the actual concentration and the steady state concentration of the applied potential difference,
which gives

τ∂tcL(t) = cL(t)− cL,∞ [V (t)] , (4.27)

where τ is some appropriate timescale of the system that indicates in what time the concentration
changes, when a potential difference is applied over the channel. We can use the expression for cL,∞
from Eq. (4.19) in the equation above. This Ansatz is very similar to the one made in Eq. (3.1) for
the conductivity of a memristor. To adapt this differential equation to the general Ansatz of Eq.
(3.1) all densities cL need to be multiplied as follows

g(t) =
πRbRt
L

e2DcL(t)

kBT
(4.28)

in order to find the memductance of the channel.

4.2.1 Timescale τ

To solve the differential equation in Eq. (4.27) it is necessary to find an appropriate timescale τ of
the nanopore. We can find an approximate expression for time constant τ using the salt current
J(x, t) and the steady state salt concentration cR,∞(x), which can be related to each other by
continuity Eq. (4.4). By integrating this equation radially the continuity equation condenses to

∂t
(
πR2(x)cR(x)

)
= −∂xJ(x), (4.29)
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where cR(x) is the radially averaged salt concentration.
If we in turn integrate cR(x)πR

2 laterally over entire length of the channel, we find the total ion
number N in the channel: ∫ L2

−L1

dxπR2(x)cR(x) = N (4.30)

Integrating the right-hand side of Eq. (4.29) gives∫ L2

−L1

dx∂xJ(x) = J (L2)− J (−L1) . (4.31)

Combining these results with Eq. (4.29) we find ∂tN = − (J (L2)− J (−L1)), which we use to find
an approximate timescale τ by taking

τ =
N

∂tN
=

∫ L2

−L1
dxπR2(x)cR(x)

− (J (L2)− J (−L1))
, (4.32)

where we insert the concentration cR(x) = cR,∞(x) from Eq. (4.14). This timescale follows from
the amount of salt added to the channel, divided by the rate at which this occurs. However, we
derived cR,∞(x) using the equation ∂xJ = 0, so under this concentration J (L2) − J (−L1) = 0,
which we cannot use in determining timescale τ .

We can instead consider a channel with constant concentration, so ∂xcR = 0, and determine the
salt flux when we apply a potential difference V ; this is the salt flux caused by a sudden change
from V = 0 to V = ∆V . From Eq. (4.5) and Eq. (4.10) we find that the flux in this case is

J∂xcR=0 = −πDσ e∆V
LkBT

RbRt
R(x)

. (4.33)

As R(−L1) = R(L2) = Rb, we again find that J (L2) − J (−L1) = 0, which results in the same
problem as before. However, if we only consider the channel section from x = −L1 to x = 0, which
amounts the cone with length L1, we get

∂tN(x<0,∂xcR=0) = − [J (0)− J (−L1)] = πDσ
eV

LkBT
∆R, (4.34)

so the change in the ion number in the lower cone has a linear V -dependence.
We now determine the total ion-number of the cone with length L1 and expand it in powers of V ,
to find

N∞[V ] =

∫ 0

−L1

πR2(x)cR,∞(x) = 2N0 +∆N1 [V ] +O
[
V 2
]
, (4.35)

where N0 = ρbπL1(R
2
t +∆R2/3 +Rt∆R) and the first order term ∆N1 is

∆N1 =
eσπL2

1∆R

12LkBT
V =

eσ(1 + δ)2L2π∆R

12LkBT
V. (4.36)

Using the first order expansion-term ∆N1 and the flux term from Eq. (4.34) we find the following
estimate for τ ,

τ =
∆N1

∂tN(x<0,∂xcR=0)
=

(1 + δ)2L2

12D
, (4.37)

which increases as δ increases.
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4.3 Capacitance

The main characteristic which determines the current running through an ionic nanochannel, is its
conductance. However, the channel can also possess a capacitive element, leading to charge buildup
in the channel as a voltage is applied; non-zero charge densities of opposite sign can form in areas on
opposite sides of the centre of the channel. This capacitive element influences the current measured
in this channel. We can add a capacitive effect to the theoretical model by putting a capacitor
parallel to the memristor, which results in the circuit element as illustrated in Fig. 4.
From Eq. (3.4) we find that the current over a capacitor is IC = C ∂VC(t)

∂t . To find the total current
over the memristive pore we need to add the capacitive current to the current we found using the
techniques discussed in Section 4.2, such that the total current is given by

Itot(t) = eD
eV (t)

2LkBT
πRbRtcL(t) + C

∂V (t)

∂t
. (4.38)

In this thesis a periodic voltage V (t) = V0sin [ωt] is applied over the memristor. In the case of this
periodic voltage the capacitive current becomes

IC = V0ωcos [ωt] . (4.39)

The capacitive current contribution get larger as angular frequency ω increases and therefore the
capacitive element dominates at large frequencies in this model.

James Hall gave a relation between the capacitance C and the resitance R of a circular nanopore
with a given geometry in a 1975 letter [57], which is

C =
ϵρm
R

, (4.40)

where ϵ is the permittivity and ρm the resistivity of the medium present in the pore. We can extract
an estimate for the resistance R of the channel from Eq. (4.26), which describes the steady state
conductance G0 of the channel, by taking R = 1/G0. Combining Eq. (4.25) and Eq. (4.40) we find
the following estimate for the capacitive current over the channel

IC(t) = ϵ0ϵrρm
ρbe

2D

kBT

πRbRt
L

∂V (t)

∂t
. (4.41)
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5 Results

In this section we inspect the conductive properties of ionic channels under the application of
steady state voltages and periodically oscillating voltages, which we both extract from finite-element
calculations. The results from these calculations will then be compared to the results from the model
developed in Sections 3 and 4.

5.1 Finite-Element Calculations

In Fig. 10(a) the current response of a symmetric hourglass channel and a conical channel under
a stationary current are shown. In both the completely symmetric channel, indicated by δ = 0,
and the conical channel, indicated by δ = 0.95, we find that the linear Ohmic resistance dominates,
but if we subtract the Ohmic current from the total current, as we do in Fig. 10(b), the difference
between the current responses of the two channels becomes clear. For δ = 0.95, we find diodic
behaviour; if the potential difference is negative, the conductivity is larger than if it is positive. For
δ = 0.0 this diodic behaviour is not present, but there is a slight sigmoidal shape to its curve in
Fig. 10(b), which indicates a difference in behaviour between the low potential difference and high
potential difference regime.
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Figure 10: (a) The total current I and (b) the non-Ohmic current I − IOhmic in channels with
δ = 0.0 and δ = 0.95, as the result of the application of a static potential difference V . The results
come from FE-calculations.

We can also apply a periodic potential difference V (t) = V0sin [2πft] over the ionic channels instead
of a stationary voltage. In Fig. 11(a) the result is plotted for a calculation, in which we used a
frequency f = 75 Hz and an amplitude V0 = 0.5 V.
The current as plotted in Fig. 11(a) is again dominated by the linear resistance component of
the channel, but if we again subtract the linear current from the total current, as we do in Fig.
11(b), we can more clearly see the memristive behaviour. Subtracting the Ohmic current from the
total current will be common practice for the rest of this thesis, as we are interested in the type of
memristive behaviour nanopores exhibit.
For both δ = 0.0 and δ = 0.95 the current response to an applied voltage results in a pinched
hysteresis loop in the IV -diagram. The curve for δ = 0.95 crosses itself once, at the origin, which
indicates that this channel behaves as a type-I memristor. The curve for δ = 0.0 does not cross
itself, but the two ends of the curve do approach each other at the origin, which is indicative of a
type-II memristor with an additional capacitive element.
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Figure 11: (a) The total current I and (b) the non-Ohmic current I − IOhmic in channels with
δ = 0.0 (blue) and δ = 0.95 (orange), as the result of the application of a periodic potential
difference V (t) = V0sin [2πft] with frequency f = 75 Hz, extracted from FE-calculations. The loop
for δ = 0.0 shows type-II behaviour and the loop for δ = 0.95 type-I behaviour.

If we increase δ from δ = 0.0 to δ = 0.95 we encounter a change from a type-II memristor to a
type-I memristor, characterised by a change in the number of crossings of their respective hysteresis
loops. As δ increases and we move from a symmetric channel to a conical one, the hysteresis-type
clearly changes. However, as we increase δ and move from type-II behaviour to type-I memristive
behaviour, there is an intermediate type of hysteresis behaviour, in which the hysteresis loop has
two crossings. We denote this type of hysteresis behaviour as belonging to a type-c memristor ;
the letter c refers to the two crossings in a type-c hysteresis loop. In Fig. 12 one can see this
intermediate crossing behaviour in the hysteresis loop for a channel with δ = 0.6, in which the two
crossings are present in the third quadrant of the IV -diagram, with one positioned close to the
origin and the other positioned farther in the lower left corner.

0.4 0.2 0.0 0.2 0.4

V (V)

0.002

0.001

0.000

0.001

0.002

0.003

I-
I O
hm
ic

(n
A
)

f = 75 Hz, =  0.0
f = 75 Hz, =  0.6

Figure 12: Current-voltage hysteresis loop for ionic nanochannels with δ = 0.0 and δ = 0.6, as
the result of the application of a periodic potential difference V (t) = V0sin [2πft] with frequency
f = 75 Hz, extracted from FE-calculations. The loop for δ = 0.0 shows type-II behaviour and the
loop for δ = 0.6 type-c behaviour.
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5.1.1 Frequency Dependence

In the previous section the effect of changing the channel geometry through the ratio δ was in-
vestigated at a single frequency of f = 75 Hz. Changing the frequency also has an effect on the
current-voltage hysteresis behaviour of a memristor. In Fig. 13 the hysteresis loops for a range of
frequencies are shown for a ratio of δ = 0.0, from which two general features can be found. At
very low frequencies the total enclosed loop area is small, but this area increases as the frequency
becomes higher, yet at even higher frequencies this area decreases again. The second feature is
that the specific non-linear resistive features of the channel become less pronounced and eventually
disappear, as the frequency increases. At f = 1.0 Hz the conductivity is smaller at higher potential
differences than at low potential differences, which is the result of a lower salt concentration in the
channel. At f = 1000 Hz the conductivity of the channel is almost linear and the hysteresis loop
closes. This is behaviour associated with volatile memristors, as discussed in Section 2.1. At low
frequencies a memristor behaves like a non-linear resistor, while it behaves like a linear-resistor at
high frequencies.
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Figure 13: The non-Ohmic current in channels with δ = 0.0, as the result of the application of
a periodic potential difference V (t) = V0sin [2πft], extracted from FE-calculations. The driving
frequency f in the figures is (a) f = 1 Hz, (b) f = 10 Hz, (c) f = 100 Hz and (d) f = 1000 Hz

All hysteresis loops in Fig. 13 are indicative of type-II memristive behaviour; changing the frequency
does not alter the memristor-type for a symmetric ionic channel. However, changing the frequency
can have an effect on the memristive behaviour of a channel, which can be seen in Fig. 14, in which
the hysteresis loops of a channel with δ = 0.5 are plotted for various potential difference frequencies
f . Similar to the channel with δ = 0.0, one can see that the non-linear resistive effects of the channel
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decrease with higher frequencies and that the loop area first increases and then decreases as the
frequency increases. A different feature is that the hysteresis-type changes: for f = 1, 10, 100 Hz
the loops have 2 crossings, but for f = 1000 Hz there are none, which constitutes a change from
type-c behaviour to type-II memristive behaviour.
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Figure 14: The non-Ohmic current in channels with δ = 0.5, as the result of the application of
a periodic potential difference V (t) = V0sin [2πft], extracted from FE-calculations. The driving
frequency f in the figures is (a) f = 1 Hz, (b) f = 10 Hz, (c) f = 100 Hz and (d) f = 1000 Hz

5.1.2 Hysteresis Loop Area

In Fig. 13 and Fig. 14 one can see that the enclosed hysteresis loop area changes as the frequency
of the applied voltage changes; altering the factor δ can also change this area. We can find the loop
area by integrating the current over the voltage,

S =

∫
I(t)dV =

∫
I(t)

∂V

∂t
dt =

∫
I(t)ωV0cos [ωt] dt, (5.1)

with ω = 2πf the angular frequency. The area S has a power dimension and therefore has the unit
Watt (W). We introduce a dimensionless parameter Ŝ for the area of the hysteresis loop, which
considers a single period T of voltage oscillations,

Ŝ =
1

V 2
0 G0

∫ nT+T

nT
I(t)ωV0cos [ωt] dt, (5.2)
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which covers the entire hysteresis loop, with n ∈ Z an integer. In this equation G0 is the rest
conductivity over the channel as defined in Eq. (4.26) and V0 the amplitude of the potential
difference oscillation.
In Fig. 14 we saw that the hysteresis loop can cross itself, which results in a negative contribution
to the integral S; these crossings occur in the second half of the voltage oscillation period, when
potential difference V is negative. By integrating over the time t ∈ [nT, nT + T/2], with n ∈ Z, we
only consider positive contribution to the area S, which allows us to better compare the hysteresis
area of channels with different geometries. For this purpose we define the following dimensionless
parameter

Ŝ1 =
1

V 2
0 G0

∫ nT+T/2

nT
I(t)ωV0cos [ωt] dt, (5.3)

In Fig. 15(a) the area Ŝ1 is plotted for a range of frequencies f , for a set of channels with different
values of δ. All channels have the largest loop area for intermediate frequencies, of around f = 50 Hz.
It is interesting to see that there are large differences in area Ŝ1 between various geometries, indicated
by δ. The smallest values are found for the symmetric hourglass channel with δ = 0.0, but when δ
increases and the channel becomes more conical, the area Ŝ1 increases as well. This increase of the
peak value occurs at a linear pace with δ and the frequency at which this peak occurs decreases as
δ increases.
In Fig. 15(b) the area Ŝ is plotted for various values of δ over a range of frequencies f . From
this figure we find that the value of Ŝ decreases in general as δ increases, which is the opposite of
what we saw for Ŝ1. This is a consequence of the hysteresis loops possessing crossings for higher
values of δ, which means that the negative contribution to Ŝ, discussed in this section above, is
larger for these larger δ-values. However, we again find that the peak value frequency of Ŝ is around
f = 50 Hz and that this peak area frequency decreases with δ.
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Figure 15: Hysteresis area (a) Ŝ1, as defined in Eq. (5.3), and (b) Ŝ, as defined in Eq. (5.2)
over a range of potential difference frequencies f for channels with various ratio’s δ, extracted from
FE-calculations. Here Ŝ = 1 corresponds to S = 1.3 pW.

5.1.3 Capacitive Element

We have encountered that when a voltage is applied over a nanochannel an ionic current forms.
A second effect we encountered is a buildup of charges in the channel, as a result of a capacitive
element in the system. This charge buildup, however, is quite minor and can easily be confused
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with the charge density associated with the EDL. The effect of the EDL on the charge density in a
cylindrical channel is given in Eq. (2.35) and we can use this equation to derive an expression for
the charge density through the centre of the channel (r = 0)

ρe [V ] = 2cL [V ] sinh

[
−4πλBσ

κ [V ] I1 (κ [V ]R[x])

]
, (5.4)

where the V -dependence of the concentration is now also considered. The Debye length κ−1, defined
in Eq. (2.25), now also depends on V through cL as follows,

κ−1 =

√
2cL(V )e2β

ϵ0ϵr
.

In Fig. 16(a) the charge density in the centre of a channel extracted from numerical calculations,
is compared to the charge density from Eq. (5.4), for the case that no voltage is applied over the
channel. In both results the effect of the geometry is obvious, as we find the largest density at the
location with the smallest radius, at x = 0, since the influence of the EDL is largest at this point.
The numerical and analytic results agree largely, except for the width of the charge density peak,
which is slightly larger for the numerical results.
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Figure 16: Ionic charge density through the centre of a ionic channel with δ = 0.0 under a potential
difference of (a) V = 0.0 V and (b) V = 0.5 V. Results from FE-calculations and analytic calcula-
tions using the EDL thickness are compared. The charge density ρe = ρ+ − ρ− is given in terms of
the surface charge density per tip-radius σ/Rt.

In Fig. 16(b) the effect of applying a potential difference of V = 0.5 V over the channel is shown.
From the finite-element results calculations we find that the symmetric peak is now asymmetric,
with the charge density increasing for x < 0 and decreasing for x > 0, with respect to the calculation
for V = 0.0 V. This can be a result of two effects; the first one is the change in salt concentration cL
in the channel resulting in a change of the thickness of the EDL, which can explain the change in ρe,
but not the negative ρe encountered in Fig. 16(b). Although the overall increase in ρe is predicted
well by the analytic model, the charge asymmetry in the channel is not found in the model. The
second possible cause for this charge density change is the capacitive element present in the channel.
Indicative for this capacitive element would be a positive charge buildup in one area of the channel
and a negative charge buildup in another area, which is what we encounter in the channel when a
potential difference is applied. The negative charge density in Fig. 16(b) can also be explained by
capacitance.
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Figure 17: Charge density through the centre of a ionic channel with different values of δ under po-
tential difference V = 0.5 V. Results from FE-calculations and analytic calculations are compared.
The charge density ρe = ρ+−ρ− is given in terms of the surface charge density per tip-radius σ/Rt.

In Fig. 17 we compare the charge density for channels with different values of δ. The expression
for ρe in Eq. (5.4) accurately predicts that at larger δ the peak charge density is larger and that
it spreads out asymmetrically, but it again cannot predict the negative charge density associated
with the capacitive element of the channel. In the FE-results for a channel with δ = 0.8 we now
encounter a larger negative charge density than for a channel with δ = 0.0, but the negative charge
density is spread out over shorter length.
To quantify the charge buildup we integrate the charge density over the negatively charged areas
as follows,

qneg =

∫
ρe<0

dxeρe (x)πR
2(x), (5.5)

where we have included the channel cross section area term πR2(x) in the integration, to account
for the change in radius in determining the total charge. The charge qneg can give an indication of
the total charge buildup on one end of the capacitor.
To find an estimate of the capacitance in the channel we treat the capacitive element in the channel
as a standard parallel-plate capacitor, with the charge-voltage relation given by V = q

C . We thus

find the capacitance by taking C =
−qneg
V .

In Fig. 18 the charge qneg is shown over a range of potential differences. It is given as a ratio of
σLRt, which is an indicator of the total EDL-charge in one half of the channel. Like we expected,
the the absolute value of the total charge increases as the potential difference over the channel
increases, which is a regular response for a capacitor to a voltage. However, the increase does not
occur linearly, as would be expected from a capacitor, but occurs at a higher rate for larger V ,
although from V = 0.4 V on this increase does seem to occur linearly. The charge buildup in
channels with different δ is similar, so it seems that the parameter δ has little influence on the
capacitance of a certain pore.
By taking the charge buildup at V = 1.0 V for a channel with δ = 0.0, we find an estimate for the
capacitance, namely

C =
−qneg
V

=
0.0027 · 10−15

1.0
F = 2.7 · 10−18 F, (5.6)
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Figure 18: Total negative electric charge buildup in the channel qneg, as defined in Eq. (5.5), ex-
tracted from FE-calculations. The negative charge is evaluated over a range of potential differences
V and for multiple values of the geometry parameter δ.

which is a small capacitance. We can compare this to the Hall-capacitance estimate of Eq. (4.40),
which is C = ϵrϵ0ρm

R . We take the resistivity of water to be ρm = 68 Ωm [58] and the resistance of
the pore to be R = 1/G0, with conductivity G0 as given in Eq. (4.26). This gives the capacitance

CHall = ϵ0ϵrρm
ρbe

2D

kBT

πRbRt
L

= 5.1 · 10−18 F, (5.7)

which is of the same order as the capacitance we found through the derivation of qneg from the
numerical calculations. This estimate seems fairly accurate for the systems studied. We can also
determine the RC-time of the channel from the Hall-estimate, which is given by

τRC,Hall = ϵrϵ0ρm = 4.8 · 10−8 s. (5.8)

Comparing this time to the characteristic timescale of the channel, as given in Eq. (4.37), we see
that this time is much smaller than the characteristic timescale of the ionic channels, studied in
this thesis. The RC-time is most probably not the characteristic time of the system.
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5.2 Analytic Model: Zero Capacitance

Using the results from Section 4.2 we can try to reconstruct the results of the numerical simula-
tions. The conductivity can be found by solving the differential equation in Eq. (4.27) for the salt
concentration, in which we insert the potential difference V (t) = V0sin [2πft], the timescale τ from
Eq. (4.37) and the laterally averaged steady state concentration cL,∞ from Eq. (4.19). To find the
resulting current from the potential difference and concentration we use

I(t) =
De2cL(t)

kBT

πRbRt
2L

V (t),

from Eq. (4.25).
We first compare the results from the analytic model to the stationary FE-calculation. The current
I as a result of an applied stationary voltage V is plotted in Fig. 19(a), which includes the current
from the FE-calculations and the current as described by Eq. (4.25). The Ohmic linear current
dominates, so we subtract it from the total current to obtain Fig. 19(b).
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Figure 19: (a) The total current I and (b) the non-Ohmic current I − IOhmic in channels with
δ = 0.0 and δ = 0.95, as the result of the application of a static potential difference V . The current
from finite-element calculations is indicated by the individual rings and the analytic current from
Eq. (4.25) is indicated by the lines.

In Fig. 19(b) we can see that the analytically obtained current is very similar to the current from the
FE-results. For δ = 0.0 the current response shape is slightly sigmoidal, although not as much as the
FE-calculations current. The current rectifying behaviour encountered in the pore with δ = 0.95
is well predicted by Eq. (4.25); the conductivity is larger when a negative potential difference
is applied than when a positive one is applied. This is a consequence of the salt concentration cL
decreasing with respect to its bulk value when a positive potential difference is applied for a channel
with δ = 0.95, while a negative potential difference in turn leads to an increase in concentration, as
can be seen in Fig. 9. The conductivity linearly depends on the salt concentration, so this causes
the pore to behave as a diode.

5.2.1 Symmetric Channel

We now apply the theory on the symmetric hourglass channel with δ = 0.0 and inspect what occurs
when an oscillating voltage is applied over the pore.
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The following linear and quadratic V -dependence constants α and β, that come from Eq. (4.22)
and Eq. (4.23), are associated with this channel,

α = 0.0 V−1; β = −1.34 V−2; τ = 2.1 ms.

with timescale τ coming from Eq. (4.37). Because α = 0, there is no linear potential difference
contribution to the laterally averaged salt concentration in the channel. If we use the salt concen-
tration cL,∞ from Eq. (4.19) in determining the concentration cL(t), using differential equation Eq.
(4.27), for a channel with δ = 0.0, we end up with the results in Fig. 20.
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Figure 20: Laterally average salt concentration cL against time for a channel with δ = 0.0. A
periodic voltage of V (t) = V0sin [2πft] is applied over the channel, with V0 = 0.5 V and frequency
f = 75 Hz. The voltage is plotted in orange. The numerical and analytic results are compared.
The numerical value for cL is found by averaging the concentration through the centre line of the
channel.

The numerical results and the analytic results in Fig. 20 are largely in agreement, qualitatively
and quantitatively. Both the numerical and analytic laterally averaged concentration follow the
same oscillating pattern, with oscillations having twice the driving frequency, though the peak
concentration is observed to occur a bit later in the numerical calculations than in the analytic
calculations. The numerical results and the analytic results have a similar oscillation amplitude
and average value for cL, but the amplitude of the numerical results is a bit larger.
The frequency of cL is twice that of V (t), which indicates that cL largely depends on even terms of
V (t). The linear V (t)-dependence term in cL,∞ also dropped out for δ = 0.0, as we found α = 0.0.
In symmetric systems, like the one being considered, we do not expect to find odd-powered terms
in the expression for the conductivity.
We observe in Fig. 20 that the peak values for cL occur a short time after the potential difference
V (t) reaches its peak, or after it reaches V (t) = 0. This makes it clear that the concentration does
not immediately adapt to the applied potential difference and that the concentration also depends
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on the voltage input in the past. This is the memory element present in the channel, which is
associated with memristors.
The best fit for the timestep τ , where the analytic model is fitted against the numerical data, is
τ ≈ 2.2 ms, which is almost the same as the timestep that was derived analytically in Eq. (4.37).
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Figure 21: (a) Total current I and (b) non-Ohmic current I − IOhmic responses, plotted against
periodic potential difference V (t) = V0sin [2πft] with frequency f = 75 Hz for a channel with
δ = 0.0. Numerical and analytic results are plotted.

In Fig. 21 the current as a result of the applied periodic voltage V (t) is plotted. This current is
largely Ohmic; subtracting this Ohmic current gives us a clearer image of the memristive behaviour
of the channel. The hysteresis loops of both the analytic and numerical result are indicative of a
type-II memristor. The difference between the two loops is that the hysteresis loop of the analytic
result touches itself at the pinch, whereas the hysteresis loop of the numerical results does not
touch itself. This is a consequence of a capacitive element present in the channel, which induces a
capacitive current.

5.2.2 Asymmetric Channel

Applying the same techniques on a system with δ = 0.9 gives the following results. The constants
are now

α = −0.62 V −1; β = 0.48 V −2; τ = 7.5 ms.

The linear constant α is now larger in the absolute sense than the quadratic constant β. The linear
potential difference contribution to the salt concentration now plays a part, which it did not for
δ = 0.0. Solving the differential equation for cL with steady state concentration cL,∞ of Eq. (4.19)
for δ = 0.9, leads to the results in Fig. 22.
In Fig. 22 we compare the analytic results with the numerical results. We see in Fig. 22(a) that
the results for the salt concentration cL(t) agree qualitatively. The concentrations of both the
numerical and analytic calculations oscillate at the same frequency, namely the frequency of the
applied voltage, which is half the frequency we observed for δ = 0.0. This indicates that for δ = 0.9
the concentration depends mostly on odd powers of voltage V (t), whereas for δ = 0.0 the even
terms dominated. We again see that the peaks in concentration lag behind the peak values of the
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Figure 22: Comparison between the numerical and analytic calculations for a channel with δ = 0.9,
over which a periodic potential difference V (t) = V0sin [2πft] is applied frequency f = 75 Hz. In
this figure (a) the laterally averaged concentration cL is plotted against time and (b) the non-Ohmic
I − IOhmic current is plotted against the potential difference.

potential difference. The concentration in the channel does not immediately adapt to the applied
voltage and therefore possesses a memory element.
The results are, however, not completely in quantitative agreement, as the amplitude of the con-
centration fluctuations is larger in the numerical case than in the analytic case, but the average
concentration on the other hand is approximately the same in both cases. If we take a best of fit of
the analytic result with fit parameter τ , we find almost perfect correspondence between the analytic
and numerical results. The best fit of the timescale is τ = 3.8 ms, which is approximately half the
timescale found with the analytic theory. This indicates that the timescale found using Eq. (4.37)
is not completely accurate, but it is of the same order of magnitude as the best fit τ .
In Fig 22(b) we plot the IV -hysteresis loops of the numerical and analytic results, where the linear
Ohmic current contribution has been removed from both IV -loops. These loops are similar and both
indicative of a type-I memristor, but there are two major difference between them. The first one
is the difference in slope, which corresponds to a difference in conductivity. Looking at Fig. 22(b)
this difference looks substantial, but the Ohmic current has been subtracted from both currents,
which makes the difference seem larger.
The second difference is the location of the crossing. In the analytic result this crossing lies at the
origin of the IV -diagram, which is the pinch in the hysteresis loop associated with memristors. In
the numerical result this crossing lies in the third quadrant instead of the centre, which is a result
of a capacitive element present in the system, which is not yet included in the analytic model.

5.2.3 Number of Crossings

To compare the overall behaviour of the IV -loops from the numerical and analytic results, we
inspect the number of crossings over a range of values of δ. The number of crossings is indicative
for the memristor-type: a type-I memristor has one crossing, a type-II memristor has zero and the
intermediate type-c memristor has two. We can see in Fig. 23 that the analytic and numerical
calculations follow the same general pattern as δ increases: first zero crossings, then two and finally
one. The numerical results, however, lag behind the analytic results: in the analytic results there
are two crossings as soon the channel becomes asymmetric, so if δ is non-zero, whereas in the
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numerical results we only find two crossings from δ = 0.4 onward. The switch from two crossings
to one crossing also occurs at higher δ in the numerical case.

Numerical Result

Analytic Result
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Figure 23: Number of crossings in the hysteresis loop for values of δ at a potential difference
frequency of f = 75 Hz. The results from numerical and analytic calculations are plotted. The
analytic results were generated in calculations with zero capacitance, so C

G0τ
= 0.
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5.3 Analytic Model: Finite Capacitance

From the comparison between the analytic and numerical results in Section 5.2 we found that a
capacitive element should be added to the model to mimic certain features encountered in the
numerical calculations. The current in the analytic model will now be given by Eq. (4.38), which
under a periodic voltage of V (t) = V0sin (ωt) becomes

Itot(t) = eD
eV (t)

2LkBT
πRbRtcL(t) + Cωcos (ωt) .

Applying this model on channels with δ = 0.0 and δ = 0.9 with a capacitance of C = 5.1 · 10−18 F,
as given by the Hall estimate of Eq. (5.7), gives the current-voltage diagrams of Fig. 24. The
effect of this added capacitive element, however, is so small that it cannot be observed. In the
numerical results non-zero crossing behaviour occurs when δ = 0.9, as the crossing does not occur
at the pinch, and if δ = 0.0 we find that the two ends of the hysteresis loop do not touch at the
pinch. These capacitance related effects do not noticeably appear in the analytic calculations with
the Hall capacitance.
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Figure 24: Comparison of the current response I − IOhmic to the application of a periodic voltage
V (t) = V0sin[2πft] between the numerical and analytic calculations for a channel with (a) δ = 0.0
and for a channel with (b) δ = 0.9. The frequency of the applied voltage is f = 75 Hz. The analytic
calculations include capacitive element of CHall as given in Eq. (5.7).

When we compare the number of crossings for IV -loops from numerical calculations and from
analytic calculations with the Hall capacitance estimate, we find that the Hall-capacitance has very
little influence on the crossing behaviour. In Fig. 25 we find very similar crossing behaviour as we
did in Fig. 23. To find a better predictor of the crossing behaviour, a larger capacitance must be
implemented.



5 RESULTS 44

Numerical Result
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Figure 25: Number of crossings in the hysteresis loop for a range of values of δ at a potential
difference frequency of f = 75 Hz. The results from numerical and analytic calculations are plotted.
The analytic results are performed with the Hall estimate capacitance of Eq. (5.7).

If we instead take the capacitance estimate C = 5.4 · 10−16 F, amounting to a dimensionless
capacitance of C

G0τ
= 0.002 with τ = 5 ms, and implement it in the analytic model, we get the

results in Fig. 26, that we compare to results from numerical FE-calculations. The capacitive effect
now has a noticeable effect, as some features of the hysteresis loops from the numerical results are
reproduced. In Fig. 26(a) the hysteresis loop does not touch itself at the origin, which is also the
case in the numerical calculation. For a channel with δ = 0.9 the pinch of the analytic hysteresis
loop in Fig. 26(b) does not lie at the origin anymore, but in the third quadrant of the IV -diagram,
similar to what occurs in the numerical result.
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Figure 26: Comparison of the current response I − IOhmic to the application of a periodic voltage
V (t) = V0sin[2πft] between the numerical and analytic calculations for a channel with (a) δ = 0.0
and for a channel with (b) δ = 0.9. The frequency of the applied voltage is f = 75 Hz. The analytic
calculations include a capacitive element of C = 5.4 · 10−16 F, equivalent to C

G0τ
= 0.002.
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The crossing behaviour associated with this capacitance is given in Fig. 27. It follows a pattern
that is closer to the numerical results, than the zero-capacitance result plotted in Fig. 23. There
is a region with low values of δ in which there are 0 crossings in the hysteresis loop, as is also the
case for the numerical result, whereas in Fig. 23 the hysteresis loop already gained two crossings
as δ became non-zero. The switch from 2 crossings to 1 crossing also occurs later as a result of the
capacitive element in the system and is closer to the switch observed in the numerical calculations.
However, the pattern is not completely in agreement with the numerical calculations: the switch
from 2 crossings to 1 crossing occurs at higher values for the numerical results (at around δ = 0.7)
than for the analytic results (at around δ = 0.5). All things considered, adding a capacitive element
to the analytic model improves its mimicking power significantly.
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Figure 27: Number of crossings in the hysteresis loop for a range of values of δ at a potential
difference frequency of f = 75 Hz. The results from numerical and analytic calculations are plotted.
The analytic results are performed with a capacitive element of C = 5.4 · 10−16 F, equivalent to
C
G0τ

= 0.002.
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5.4 State Diagrams: Frequency and Geometry

Up until now we have only inspected the crossing behaviour of the hysteresis loops at a frequency
of f = 75 Hz, but frequency has an important role in the memristive behaviour, as we already
encountered in Section 5.1.1. To give a full indication of the efficacy of the analytic model, we
construct a state diagram where the number of crossings indicates the type of memristor. We can
identify the type of memristive system for a certain configuration of parameters using the number of
crossings of the hysteresis loop in the current-voltage diagram. We differentiate between three types
of memristors: type-I memristors, type-II memristors and type-c memristors, which have hysteresis
loops with one, zero and two crossings, respectively.
The state diagram is shown in Fig. 28, in which the memristive behaviour for the analytic model
with no capacitance is plotted, together with the memristive behaviour from FE-calculations. The
results from FE-calculations are plotted in this figure as individual circles, the analytic results are
the hues in the background.
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Figure 28: Diagram of memristor-types for various geometries, given by δ, and various dimension-
less potential difference frequencies ωτ . Results from finite-element calculations, as indicated by
the coloured dots, are compared to results from the analytic model, indicated by the hues in the
background. The analytic model contains no capacitive element, so C

G0τ
= 0. The crossed dots are

discussed in Appendix D.

The analytic model has some areas in which it accurately mimics the memristor-type from the FE-
calculations, such as in the areas with low ωτ , where the memristor-type results from FE-simulations
overlap with the results from the analytic model. The model predicts the observed change from
type-c memristive behaviour to type-I memristive behaviour for larger values of δ as the frequency
increases.
However, at higher frequencies the predictions becomes less accurate, as the model largely fails to
predict the type-II memristive behaviour that occurs at low δ. It only accurately predicts that this
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behaviour occurs at δ = 0.0, but not that it also occurs for higher values of δ if the frequency ωτ
is large. Type-II memristive crossing behaviour for a large part depends on a capacitive element
present in the system. Another issue with the model is that it does not predict the extra crossings
that are observed at lower frequencies ωτ in the FE-calculations. These extra crossings observed in
FE-calculations are denoted by a cross through the coloured dots. In Appendix D this feature of
the hysteresis loops is discussed in more detail.

In Fig. 29 a state diagram of the hysteresis behaviour is shown for the case that a capacitive element
is included in the model and it is clear that the analytic model now more accurately mimics the
results found through finite-element calculations. The analytic model predicts type-II behaviour
for low values of δ over the entire range of frequencies, as well as the type-II crossing behaviour at
high frequencies ωτ , which we both also find in the FE-calculations. Only at large values of δ and
large frequencies the model fails to mimic the FE-behaviour, with the analytic model predicting
type-II behaviour and the FE-calculations indicating type-I behaviour. This is a result of the
capacitive element being too dominant in this range; the contribution of the capacitive element
to the total current increases with the frequency, such that at large frequencies we only encounter
non-crossing behaviour. The current response of a capacitor to a periodic voltage is non-crossing,
hence a dominant capacitor will lead to non-crossing behaviour.
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Figure 29: Diagram of memristor-types for various geometries, given by δ, and various dimension-
less potential difference frequencies ωτ . Results from finite-element calculations, as indicated by
the coloured dots, are compared to results from the analytic model, indicated by the hues in the
background. The analytic model contains a capacitive element, with a magnitude of C

G0τ
= 0.002.
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5.5 Hysteresis Area

In Eq. (5.3) we introduced a parameter Ŝ1, which indicates the size of the area enclosed by one half
of the hysteresis loop in an IV -diagram. In Fig. 15(a) it was shown that this area is different for
various values of δ and at various potentential difference frequencies f . In Fig. 30 we compare the
results from the analytic model to the results from finite-element calculations. The results from Fig.
15(a), in which Ŝ1 was given as a function of frequency f , was adapted to Fig. 30(a) by changing
f into ωτ = 2πfτ , where we take the timescale τ from Eq. (4.37).
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Figure 30: The area Ŝ1, as defined in Eq. (5.3) over a range of dimensionless frequencies ωτ , for
various values of geometry parameter δ. In this figure we show (a) results from finite-element calcu-
lations and (b) results from the analytic model. The analytic results were generated in calculations
with zero capacitance, so C

G0τ
= 0. Here Ŝ1 = 1 corresponds to S1 = 1.3 pW.

The analytic model and the FE-calculations are in qualitative agreement with each other. For both
results the total hysteresis area increases as δ increases and the peak of this hysteresis area is around
ωτ = 1.0 in both cases, with the frequency of this peak value increasing slightly when δ becomes
larger. The values of Ŝ1 in both results are of the same order, but they are in general twice as large
in the FE-calculations as in the results from the analytic model.

In Fig. 31 a comparison is made of between the area Ŝ for the hysteresis loops of the analytic
calculations and Ŝ for the FE-calculations loops, with Ŝ introduced in Eq. (5.2). We can see that Ŝ
in general decreases as δ becomes greater, which is a consequence of the crossing behaviour changing
from type-II behaviour to type-I behaviour as δ increases; the negative contribution to Ŝ, associated
with the crossings present in type-c and type-I memristive loops, increases in this case. We also find
that in the analytic result Ŝ becomes negative for large values of δ, indicating that the hysteresis
loop lobe in the third quadrant has a larger area than the lobe in the first quadrant, which does
not occur in the FE-results.
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Figure 31: The area Ŝ, as defined in Eq. (5.2) over a range of dimensionless potential difference
frequencies ωτ , for various values of geometry parameter δ. In this figure we show (a) results
from finite-element calculations and (b) results from the analytic model. The analytic results were
generated in calculations with zero capacitance, so C

G0τ
= 0. Here Ŝ = 1 corresponds to S = 1.3 pW.

In the analytic result, plotted in Fig. 31(b), we observe that the peak value of Ŝ occurs at the same
frequency of around ωτ = 0.5 for all values of δ, except for δ = 0.95, because it has its lowest value
at ωτ = 0.5. This is not the case for the FE-calculations; the frequency of the peak value increases
with δ, although it is constant from δ = 0.5 on. This is possibly related to the expression for τ
from Eq. (4.37) not being accurate enough, which means that the frequencies ωτ are not accurate
as well in the FE-calculations.
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5.6 General Model

We analysed the hysteresis loop crossing behaviour of ionic nanopores, which possess memristive
properties. It is possible to apply the same analysis to the general memristive model, as described
in Eq. (3.1), Eq. (3.3) and Eq. (3.5). These equations describe a system’s changing conductivity,
the steady state conductivity of a specific system and the current through this general memristor,
in that order. This is described by these equations:

g∞ [V ] = g0
(
1 + αV + βV 2

)
(5.9)

τ∂tg(t) = g∞ [V (t)]− g(t) (5.10)

I(t) = g(t)V (t) + C
∂V (t)

∂t
, (5.11)

where g(t) indicates the conductivity of the memristor, g∞ [V ] its steady state conductivity, of which
we now only consider its first three expansion terms, and the factor τ is a characteristic timescale of
the system. We can solve these first two equations numerically under a periodic potential difference
V = V0 sin [ωt]. In this voltage expression we have ω = 2πf , with f the frequency of the periodic
potential difference. As in the nanochannel model, we model the capacitive element of the memristor
with a capacitor, as done in Fig 4, with C the capacitance of this capacitor.
To generalise this model, we make that it depends on a series of dimensionless parameters. To
determine on which dimensionless parameters this model depends, we can perform a Buckingham-π
analysis, in which we condense the parameters present in our model to a smaller number of essential
dimensionless parameters. The parameters and their fundamental SI-units are given in Tab. 2.

Parameter Fundamental Units

g0 A2 s3 kg−1 m−2

α A1 s3 kg−1 m−2

β A2 s6 kg−2 m−4

C A2 s4 kg−1 m−2

V0 A−1 s−3 kg1 m2

ω s−1

τ s1

Table 2: Parameters of the general model, as described in Eq. (5.9), Eq. (5.10) and Eq. (5.11),
with their respective fundamental units.

To find the relevant dimensionless parameters we form the dimensional matrix of the parameters
in Tab. 2. In this dimensional matrix the rows correspond to the fundamental dimensions of the
parameters and the columns correspond to the parameters themselves, which results in the matrix
as given in Tab. 3.

M =

g0 α β C V0 ω τ

A 2 1 2 2 -1 0 0
s 3 3 6 4 -3 -1 1
kg -1 -1 -2 -2 1 0 0
m -2 -2 -4 -1 2 0 0

Table 3: Dimensional matrix of the parameters in the general model.

In the dimensional matrix in Tab. 3 the units of a parameter are positioned in a single column, so the
unit of the zero-potential conductivity, [g0] = A2 s3 kg−1 m−2, is given by the vector (2, 3,−1,−2)T .
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The dimensionless parameters can be obtained by finding the subspace of vectors a that obey
Ma = 0; when the vector is multiplied with the dimensional matrix, it results in a null-vector.
This vector subspace for the matrix in Tab. 3, which is called its nullspace, is given in Eq. (5.12)

a1 =



0
1
0
0
1
0
0


, a2 =



1
0
0
−1
0
0
1


, a3 =



−1
0
0
1
0
1
0


, a4 =



0
−2
1
0
0
0
0


. (5.12)

The nullspace-vectors in Eq. (5.12) indicate what the relevant dimensionless parameters are for the
memristor-capacitor model. Each value in the vector corresponds to the order to which a parameter,
as given in the top row of Tab. 3, is present in a dimensionless parameter. For example, vector
α1 has a non-zero value of 1 in its second and fifth row, corresponding to the parameters α and
V0, respectively, and thus the dimensionless parameter of vector α1 is α1V 1

0 . All dimensionless
parameters are given in Eq. (5.13)

d1 = αV0, d2 =
g0τ

C
, d3 =

Cω

g0
, d4 =

β

α2
. (5.13)

The dimensionless parameter d1 indicates the ratio between the potential difference amplitude V0
and the linear potential difference response of the memristor-conductivity, indicated by α. The
parameters d2 and d3 give the ratio between the RC-time C

g0
of the system and the timescale τ and

frequency ω, respectively. For convenience we also introduce parameter

d5 = d2d3 = ωτ,

indicating the ratio between the potential difference frequency and the system’s timescale. Because
for a particular system τ is predetermined, a change in d5 indicates a change in the frequency of
the voltage. The parameter d3 can in turn be used to indicate the strength of the capacitive effect
in the memristor.
The parameter d4 shows the ratio between the linear and quadratic potential difference dependence
of the conductivity of the memristor. The factors α and β in d4 are used in the expression of the
memristor conductivity g∞ in Eq. (5.9).
For a given capacitance we can make a state diagram of the type of memristor we find for a certain
configuration of parameters, which we do for a system with zero capacitance in Fig. 32. This state
diagram is symmetric in the x-axis; we find the same type of memristor at positive values of α2

β

as we find at negative values of equal size. Only at α2

β = 0 do we find type-II memristors, since

when α2

β becomes non-zero, we find type-c memristors and at even higher absolute values of α
2

β we
encounter type-I memristors. As we increase the driving frequency of the potential difference, given
by the dimensionless ωτ , a change from type-c to type-I memristors occurs for some values of α

2

β .
Adding a capacitance to the model changes the crossing behaviour, as is shown in Fig. 33. For
low frequencies the crossing behaviour is almost identical to the capacitance-free model. At higher
frequencies we find that the capacitance becomes more dominant, which results in non-crossing
hysteresis loops. The sign of the parameter α2

β now has an influence on the crossing behaviour,
which it did not in the capacitance-free model of Fig. 32. We find, for example, that at high
frequencies we encounter type-I memristors for certain positive values of α2

β , while we find type-II

memristors for negative values of α
2

β of the same magnitude.
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Figure 32: State diagram of memristor-types for the general memristor model with a dimensionless
capacitance of Cωg0 = 0.0. The memristor-type for varying α2

β and frequencies ωτ is shown.
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Figure 33: State diagram of memristor-types for the general memristor model with a dimensionless
capacitance of Cωg0 = 0.001. The memristor-type for varying α2

β and frequencies ωτ is shown.

The lower half of Fig. 29 strongly reflects the results from the memristor state diagram for the
ionic channel, given in Fig. 29, although the diagram results are vertically mirrored. This is to be
expected, as β is negative for most values of δ for the ionic channel, which results in a negative
value of α2

β . In an ionic channel α2 increases with δ, thus an increase in δ can be associated with

an decrease in the factor α2

β , if the factor α2

β is negative.
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6 Discussion

For this master thesis research project we set out to develop a model that is able to mimic the
hysteresis behaviour of volatile memristive systems that contain a capacitive element. The model
we developed was based on a simple Ansatz and a simple expansion of the conductivity of the
memristor, in powers of the applied potential difference V . We tested this model on an ionic
nanopore, which is a realisation of a volatile memristor.

In Section 4.2 an expression for the conductivity of the ionic nanopores was derived analytically,
which required a large number of assumptions to be made that did not always reflect the physical
situation in the channel. For example, we assumed that the salt concentration does not depend on
the radial coordinate r of the channel, which neglects the effect of the EDL, and the entrance effects
of the channel were completely neglected. Despite these approximations, the derived expressions
are fairly accurate in mimicking the voltage-response of the concentration profiles in channels with
various geometries. Although the change in concentration as a result of an applied voltage, is
underestimated, the processes that govern the behaviour are included in the expressions, which is
surprising considering the number of assumptions made in deriving them. The differences between
the analytic equations and the FE-calculations are probably a result of these approximations.

Much attention in this thesis was given to the crossing behaviour of memristor hysteresis loops, with
most attention being given to their number of crossings. The model was fairly accurate in repro-
ducing the number of crossings encountered in FE-calculations on nanopore systems. Comparing
the model to the nanopore FE-calculations revealed the large role that the capacitive element of a
memristive system plays in determining the number of crossings. Type-II behaviour, in which the
loop does not cross itself, is associated with symmetric systems and correspondingly, in analytic
calculations with zero capacitance this behaviour was only found for completely symmetric systems,
for which δ = 0.0; any asymmetry would result in two crossings in the hysteresis loop. However, in
the FE-calculations we encountered zero-crossing behaviour for asymmetric systems with non-zero
values of δ.
Implementing a very minor capacitive element in the model allowed us to more accurately reproduce
the results from FE-calculations; type-II memristive behaviour now was observed for non-zero values
of δ in the analytic model as well. Compared to the conductive element of the memristive system, the
capacitive element is small. Nevertheless, it has an important influence on the hysteresis behaviour,
as a very minor capacitance protects type-II crossing behaviour from turning into type-c and type-
I behaviour if asymmetry is introduced into a memristive system. When studying the crossing
behaviour of physical systems, one should not neglect this capacitance.

Although the capacitive element required to accurately mimic the finite-element memristive crossing
behaviour was small, it was larger than the capacitance we expected to find in a nanopore, as
predicted by Hall [57]. There are multiple causes for the discrepancy between the Hall-estimate
and the capacitance, which was eventually implemented. The first one is that we might have
underestimated the specific resistivity of the electrolyte, which in turn decreases the capacitance of
the Hall-estimate. The second option is that the geometry causes an increase in the capacitance of
the pore. The narrowing of the pore might lead to more charge building up, than one would expect
in a cylindrical nanopore. However, we also found that changing the channel geometry, through
changing the factor δ, has little effect on the capacitance of a channel. It is therefore not likely that
this is the cause of the discrepancy
The model also failed to predict the larger number of crossings in the hysteresis loops, observed in
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FE-calculations at low frequencies, which we discus in Appendix D. The reason for this discrepancy
probably lies in the fact that the Ansatz, which describes how the conductivity in the channel
changes under the application of a time dependent voltage, is not accurate enough. There might be a
second, more complex process, not described by the Ansatz, that also plays a part in determining the
channel’s changing conductivity. This process must have a larger timescale than the one described
through the Ansatz, as the effect of this process only becomes clear at low frequencies.

A difficulty encountered in adapting the ionic nanochannel to the analytic model was generating an
appropriate timescale τ to use in the model. The timescale we generated, as given in Eq. (4.37),
depended on the total ion-number in a single cone of the channel, even though the conductivity of
the channel depends on the laterally averaged salt concentration in the entire channel. Generating
a timescale based on these last properties gave some difficulties, even though the timescale we found
seems to possess some general characteristics of the actual timescale of the system. The best-fit
timescales are of the same order as the analytically derived timescale and both the best-fit and
analytic timescale increase as δ increases. However, at large values of δ the two timescales diverge,
as, to give an illustration, at δ = 0.95 the analytic timescale is twice as large as the best-fit timescale.
The inaccurate timescale leads to some problems in comparing results from FE-calculations and
analytic calculations. When comparing the area S between these two calculations, as we did in
Section 5.5, we converted the frequencies f for the FE-calculations to dimensionless frequencies
ωτ , by multiplying f by timescale 2πτ . This might explain the discrepancy between numerics and
analytics we encountered in this section, which concerned the frequency at which the maximum
value of S was found.
From the analytic results of Fig. 31(b) we find the peak value of S is reached at at a standard
frequency ωτmax. This would indicate that the dimensionless ωτ is the relevant frequency parameter
for predicting hysteresis behaviour of memristors, which is supported by its presence in the set of
relevant dimensionless parameters we found through Buckingham-π analysis. One could use this
property to determine the timescale τ of a specific system, by determining the frequency fmax at
which the area S is maximal. Using this method a fundamental property of a memristor can be
extracted through experiments.
A mathematical analysis of the hysteresis crossing behaviour is necessary to determine how this
maximum area frequency ωτmax arises. There are still some open questions regarding this frequency,
such as why it occurs at ωτ = 0.5 and why the maximum area is the same for all geometries. This
analysis can limit itself to a simple expression of g∞, as given in Eq. (2.15).

We strongly encourage experimental research to be performed on the memristive behaviour of the
pores described in this thesis. Although some experiments have been performed on the memristive
behaviour of nanopores, very little attention has been given to the effect of changing the geometry
of the channels; most research has been focused on conical nanopores [42, 44]. Attention was given
to the effect of changing the voltage scanning rate, equivalent to the frequency, but the frequencies
at which the experiments were performed did not cover the range of frequencies studied in this
thesis. These experiments were performed at relatively low frequencies and crossing behaviour
besides type-I behaviour was not observed in these experiments on nanopores. However, non-zero
crossing behaviour, an effect of capacitance in the system, was observed.
The hourglass-shaped pores should be relatively simple to construct. Experiments on this symmetric
channel alone and comparing it to experiments on conical nanopores should give new insights into
the effect of system symmetry on memristive behaviour. We also expect to observe the effect of
the capacitive element more clearly, as this is easier to observe in type-II memristors than type-I
memristors.
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7 Conclusion

In this thesis we have developed an analytic model for volatile memristors that possess a capacitive
element. This model was used to mimic the memristive behaviour of ionic nanopores which connect
two electrolyte reservoirs, as a periodic voltage is applied over the pore-system.

We found that the conductivity of the pores largely depends on their salt concentration, which is
affected by the potential difference applied over the channel. The channel possesses the memory-
characteristic of a memristor, due to the concentration not immediately adapting to the changing
voltage. Determining the salt concentration progression in time allowed us to mimic the memristive
properties of the pore.
Our analysis showed that the geometry of the memristive system strongly determines its type
of hysteresis behaviour. A symmetric system exhibits non-crossing type-II memristive behaviour,
whereas an asymmetric system in general exhibits single crossing type-I behaviour or double crossing
type-c behaviour, in the case of slight deviations from the symmetric geometry. However, type-II
behaviour can also be encountered in systems that slightly deviate from a symmetric geometry, as
a result of a minor capacitive element in the system. The frequency of the potential difference also
has an influence on the crossing behaviour, with type-II memristors becoming more prevalent at
higher frequencies, as the capacitive element becomes more dominant.
The total area enclosed by the memristor hysteresis loop depends on both the voltage frequency
and the geometry of the memristor. There are indications that the maximum enclosed area is found
at a set dimensionless frequency ωτmax, with τ the characteristic timescale of a system.

Further research on memristors is necessary to gain more insight into their hysteresis behaviour.
A thorough mathematical analysis of crossing behaviour and the area enclosed by hysteresis loops
is therefore encouraged. We also recommend for more experimental research into the memristive
properties of ionic nanopores to be performed, which would allow for further testing of the memristor
model developed in this thesis.
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A Appendix: Current Cylinder

In Section 2.5 an expression for the fluid flux Qeo through a cylinder of infinite length with radius
R was derived, as a potential difference V is applied over it. We can also determine the electric
current response I to a potential difference V applied over a cylindrical channel, where we only take
into account the linear V -dependence of I. This electro-osmotic current IEO has a conductive part
and an advective part, as the potential difference induces a fluid flow through the channel. The
conductive part is given by

IEO,con =

∫ 2π

0
dθ

∫ R

0
drre (j+,x,con − j−,x,con)

= 2πD
e2

kBT
E

∫ R

0
drr (ρ+(r, x) + ρ−(r, x))

= 4πDρ0
e2

kBT
E

∫ R

0
drr cosh [ϕ(r)] , (A.1)

where we have taken the long channel limit, which gives that the electric field is given by −∂xψ =
V
l = E and that the potential ϕ(r) does not depend on the lateral coordinate x. We also used the
Boltzmann weight to determine the ion-densities ρ± and we extracted the conductive contribution
to the ion flux j+,x,con from Eq. (2.42). The only place where the salt concentration is not equal
to the bulk concentration, is in the EDL. We can therefore split the integral into a bulk term and
surface term

IEO,con = 4πDρ0
e2

kBT
E

(∫ R

0
drr +

∫ R

0
drr (cosh [ϕ(r)]− 1)

)
. (A.2)

We have found an approximation for the field in the channel in Eq. (2.38); hence, we can solve the
integral of the surface term in Eq. (A.2) using coordinate s = R− r∫ R

0
drr (cosh [ϕ(r)]− 1) =

∫ R

0
ds (R− s) (cosh [ϕ(s)]− 1)

≈ R

∫ R

0
ds (cosh [ϕ(s)]− 1) , (A.3)

where we have assumed that κ−1 ≪ R. The potential ϕ(s) vanishes at large s, so the term
cosh [ϕ(s)]−1 vanishes as well. Because we assume that κ−1 ≪ R, we can extend the upper integral
limit from R to ∞, which allows us to introduce the integral

1

λD

∫ ∞

0
ds (cosh [ϕ(s)]− 1) = 2 (cosh [ϕ0/2]− 1) ≡ P2. (A.4)

This expression can be used to determine the conductive current through the channel

IEO,con = 4πDρ0R
2 e2

kBT
E

(
1

2
+
λD
R
P2

)
. (A.5)

To find the advective current IEO,adv induced by the potential difference over the channel, we use
the fluid velocity of Eq. (2.52). The advective current is given by

IEO,adv = 2π

∫ R

0
dr rux(r) (ρ+(r)− ρ−(r)) e

≈ 2πEReρ0
ϵ

η

∫ R

0
ds (ρ+(s)− ρ−(s)) (ψ(s)− ψ0) , (A.6)



A APPENDIX: CURRENT CYLINDER VII

where we have inserted Eq. (2.52) and again introduced coordinate s = R− r. Using conservation
of charge given by

σ = −
∫ R

0
ds (ρ+(s)− ρ−(s)) = 2ρ0

∫ R

0
ds sinh [ϕ(r)] , (A.7)

we can solve this integral. We evaluate a part of Eq. (A.6), which results in

1

2
e

∫ R

0
ds (ρ+ − ρ−)ψ = −1

2
eσψ0 −

kBT

4πλBλD
P2, (A.8)

where we used P2 from Eq. (A.4). The remainder of the integral can easily be evaluated to find

IEO,adv = 2πRρ0E
ϵ

η

[
− kBT

2πλBλD
P2 + 0

]
= −Rρ0E

ϵ

η

kBT

λBλD
P2 = −4πRE

e2

(4πλB)2λD
. (A.9)

The total linear electric current response resulting from an applied potential difference is therefore

IEO = IEO,adv + IEO,con

= 2ρ0DπR
2e2 (−∂xψ)

(
1 +

2λD
R

P2

(
1 +

1

2πλBDη

))
, (A.10)

where we have re-inserted the electric field E = −∂xψ.
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V(t) g(t)

C

R0 

Figure 34: The circuit diagram of a memristor with memductance g(t) with parasitic capacitance
C under a periodic potential V (t). The capacitor is in series with a resistor R0.

B Appendix: Capacitance Model

An equivalent circuit of a memristor with a capacitive element is given in Fig. 34. In this circuit,
the capacitive element comes from a capacitor C and a resistor R0 in series, attached parallel to the
memristor with memductance g(t). The derivation of the resulting current over the entire system
follows the derivation as found in an article by Markin et al. [49], in which the same circuit is used.
The potential difference of the AC-voltage source V (t) is periodic with angular frequency ω = 2πf .
The current through the capacitor is given by

IC(t) = C
dVC(t)

dt
, (B.1)

with C the capacitance and VC(t) the current over the capacitor. The resistor R0 is an Ohmic
resistor, so its current is given by

IR =
VR
R0

, (B.2)

with VR the voltage over the resistor. From Fig. 34 we can deduce that the voltage over the
memristor is the voltage of the source V (t) and the voltage over the capacitor is VC(t) = V (t)−VR.
The current through the capacitor is the same as the current through the resistor R0, which means

VR
R0

= C
dVC(t)

dt
. (B.3)

Combining these equations gives

C
dVC(t)

dt
=
V (t)− VC(t)

R0
, (B.4)

and when we introduce the RC-time parameter

ξ = R0C, (B.5)

this equation becomes
dVC(t)

dt
+

1

ξ
VC(t) =

1

ξ
V (t). (B.6)
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The solution of this differential equation is

VC(t) = e
− t

ξ

(
1

ξ

∫ t

0
V (k)e

k
ξ dk +B

)
, (B.7)

with B a constant that can be determined using the boundary conditions. If we take the periodic
potential difference to be

V (t) = V0sin (ωt) , (B.8)

we can further specify the solution. In the steady state solution, VC must be constant, so VC(t) =
VC(t+ T ) for every time T . Taking t = 0 results in the following equation

e
− 0

ξ

(
1

ξ

∫ 0

0
V (k)e

k
ξ dk +B

)
= e

−T
ξ

(
1

ξ

∫ T

0
V (k)e

k
ξ dk +B

)
B = e

−T
ξ

(
1

ξ

∫ T

0
V (k)e

k
ξ dk +B

)
, (B.9)

which in turn gives

B =

1
ξ

∫ T
0 V (k)e

k
ξ dk

e
T
ξ − 1

= − ξωV0
1 + (ξω)2

, (B.10)

where we again inserted V (k) = V0sin (ωk). We were able to solve this integral by integrating
by parts twice. Now that we have this constant of integration, we can find the voltage over the
capacitor

VC(t) = e
− t

ξ

(
1

ξ

∫ t

0
V (k)e

k
ξ dk − ξωV0

1 + (ξω)2

)
= V0

sin (ωt)− ξωcos (ωt)

1 + (ξω)2
.

Taking its derivative gives us the current that runs through the capacitor

IC(t) = C
dVC(t)

dt
= CV0ω

cos (ωt) + ξωsin (ωt)

1 + (ξω)2
. (B.11)

The total current through the device, composed of the memristor and the capacitor, is therefore
given by

I(t) = IM (t) + IC(t) = V (t)g(t) + CV0ω
cos (ωt) + ξωsin (ωt)

1 + (ξω)2
, (B.12)

where g(t) is the memductance of the memristor. In the case that the RC-time is much smaller
than the period of the potential, so if ξω ≪ 1, we find that the current reduces to

I(t) ≈ V (t)G(t) + CV0ωcos (ωt) . (B.13)

This is the current as described by the circuit in Fig. 4.
The RC-times of the systems considered in this thesis are generally a lot smaller than the frequencies
at which we drive these systems and smaller than the characteristic timescale τ of these systems.
To give an illustration, in Eq. (4.37) we found that the timescale τ is of the order of 10−6 s, whereas
we found in Eq. (5.8) that the RC-time of these systems is of the order 10−8 s. We are justified in
using the circuit as given in Fig. 4 in studying nanopore systems, as for these systems ξω ≪ 1.
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C Appendix: COMSOL Meshes

(a) (b)

Figure 35: Mesh of finite-element calculation cells in Comsol Multiphysics for nanopore geome-
tries with (a) δ = 0.0 and (b) δ = 0.99.
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D Appendix: Extra Crossings Finite-Element Calculations

In Section 5 a set of state diagrams was shown indicating the memristor type for a range of dimen-
sionless frequencies ωτ and geometry ratios δ, for example in Fig. 28. The memristive behaviour
results from finite-element calculations were indicated with indivudual dots. Some of these dots
were crossed, to indicate that the number of crossings in these hysteresis loops was larger than the
number of crossings associated with their memristive behaviour classification. In Fig. 36 the same
state diagram is shown, but it indicates the number of crossings a hysteresis loop possesses for a set
of parameters δ and ωτ , instead of its the hysteresis type.

0 crossings

1 crossing

2 crossings

3 crossings

0.01 0.10 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

ωτ

δ

Figure 36: Diagram of the number of hysteresis loop crossings for various geometries, given by δ,
and various dimensionless frequencies ωτ . Results from finite-element calculations, as indicated by
the coloured dots, are compared to results from the analytic model, indicated by the hues in the
background. The analytic model possesses no capacitive element, so C

G0τ
= 0.

In Fig. 36 we observe that for low frequencies the total number of crossings is larger in the finite-
element results than in the analytic results. The hysteresis loops from the FE-calculations possess
an extra crossing that the analytic loops do not possess, for almost all geometries for dimensionless
frequencies lower than approximately ωτ = 0.3. This includes hysteresis loops with three crossings,
which the analytic model does not predict for any combination of parameters.
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Figure 37: Current-voltage diagram with the hysteresis loop of a channel with δ = 0.5 from finite-
element calculations. A periodic voltage V = V0sin [2πft] is applied over the channel, with V0 =
0.5 V and f = 5.0 Hz. Attention is given to a crossing at large positive voltage, which is shown in
the inset figure.

In Fig. 37 attention is given to this extra crossing, which occurs at large values of V and is not
reproduced in the analytic model. It is however quite minor: the general behaviour of a type-c
memristor, as plotted in Fig. 37, or of a type-I memristor remains intact.
It is not clear how this extra crossing originates, but since this extra crossing only appears for positive
potential differences, it is probable that it is caused by some odd-powered voltage dependence in
the conductivity of the channel. Because it only turns up at low frequencies, it is likely that this
extra crossing is the result of a process that has a large timescale. This process is not described by
the differential equation in Eq. (4.27), which only contains a single timescale τ , because we would
have otherwise encountered hysteresis loops with three crossings in our analytic calculations. The
model fails in taking into account the process that causes these extra crossings.
In most reporting in this thesis we ignore this extra crossing in determining memristive behaviour,
as it seems to originate from some minor effect that is yet unknown. However, we acknowledge its
presence by adding a cross through the finite-element data points that possess this extra crossing.
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