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Abstract—Cerebral small vessel disease is a common condition
that can lead to stroke and dementia, which cause disability in
different cognitive domains. Lesion-Symptom Mapping (LSM)
techniques aim to find correlations between the affected locations
of the brain and cognition decline. Voxel-based and Support Vec-
tor Regression LSM are the current golden standards, but they
have limitations in terms of model complexity and interpretabil-
ity. Deep Learning (DL) methods have the potential of building
complex models, which can be useful to tackle this challenge.
This study proposes a DL pipeline that can predict multiple
artificial cognition scores from lesion MR images and correctly
identify the brain locations that are most relevant to make specific
score predictions using explainable Artificial Intelligence (xAI)
methods. The study analyzes the performance of single and multi-
output models and explores different xAI methods (Integrated
Gradients, Gradient Shap and Occlusion) to understand the
information each can provide. Overall, this project demonstrates
that DL techniques can satisfactorily predict multiple regression
outputs from segmented lesion MR images and identify the key
regions that affect each score, which could be used in the field
of LSM to understand the underlying brain mechanisms that
contribute to various neurological and psychiatric disorders.

Index Terms—Vascular Cognitive Impairment, Lesion-
symptom mapping, Deep Learning, Explainable AI,
Neuroimaging, MRI

1. INTRODUCTION

Cerebral small vessel disease (SVD) is the major cause of
stroke and dementia, most commonly present in community-
dwelling individuals [1]. Stroke is a leading cause of Vascular
Cognitive Impairment (VCI), causing long-term disabilities
and poor quality of life in over half of the patients [2]. VCI
can occur immediately after a stroke, or it can develop over
time as a result of ongoing complications with blood flow to
the brain. It can bring a range of cognitive and behavioural
problems in the domains of memory, attention, language, and
executive function [3].

Predicting cognitive decline associated with SVD can be
difficult, as it manifests as WMH, infarcts, microbleeds and
other lesions in Magnetic Resonance Imaging (MRI) scans
[2]. Several studies have shown that cortical involvement,
presence of multiple acute infarcts, total infarct volume, and
left cerebral hemispheric location (vs right) are associated
with VCI [4], [5], [6]. Recent studies on Lesion-Symptom
Mapping (LSM) have shown that the locations of these lesions
are more correlated to cognition than the total lesion volume,

highlighting the importance of studying this relation [7], [8].
LSM is a neuroimaging technique used to identify the lesioned
brain regions and determine the relationship between the
locations of these regions and specific symptoms or behaviours
[9], [3], [10]. This information can be useful not only in
developing targeted therapies or rehabilitation strategies to
help the patient recover cognitive and functional abilities, but
also for understanding the underlying brain mechanisms that
contribute to various neurological and psychiatric disorders.

Studies that evaluated lesion location at the voxel level-
have shown various correlations between lesion locations and
cognitive deficits [11], [12], [13]. However, these studies had
an incomplete brain coverage (less than 20% of total brain
volume), leaving most of the brain unexplored [13]. With
the objective of overcoming this limitation and collect data
to increase lesion coverage, the Meta-analyses on Strategic
Lesion Locations for Vascular Cognitive Impairment using
Lesion-Symptom Mapping (Meta VCI Map) [9] consortium
was initiated. Different studies have been carried out using
Support Vector Regression with this dataset, which have iden-
tified significant associations between total Montreal Cognitive
Assessment scores and certain locations of the brain [13][14].

Most studies have focused on tackling LSM challenges
using statistical and Machine Learning methods [9], [15],
[16], [17], [18], which have limitations in terms of model
complexity, interpretability and generalization power. Very
little research has been done with a Deep Learning (DL)
approach. Convolutional Neural Networks (CNNs) have the
potential of building complex models and extracting features
from any kind of image data, and have been demonstrated
to be a very suitable tool for medical image analysis [19].
First attempts for predicting language disorders from MRI
data have outperformed the already existing Machine Learning
techniques [20]. However, no study has been carried out for
the prediction of multiple outcomes or for mapping these to
lesion locations using DL. In actual fact, the research in multi-
class regression is still very limited, and there are barely any
examples of use in neuroimaging [21].

The drawback of DL-based systems is usually the ”black
box” concept since the interpretability of the model is com-
promised by its complexity. Accessing the procedures that led
to a particular output in predictive algorithms is challenging,



so new explainability techniques have emerged to show which
features of the input contribute most, and they have proven to
have many applications in medical image analysis [22], [23].

This project aims to research how DL techniques can be
used to extend the current methods used to research LSM,
exploring the advantages and limitations of using CNNs
to find lesion-symptom correlations. More specifically, this
project proposes a DL model that is not only capable of
predicting multiple simulated cognitive scores from lesion
MRI images of patients caused by SVD, but can also identify
the locations in the brain that have been used to compute the
artificial scores using explainability methods. Multi-output
models will be analyzed to see if their performance is suitable
for this task, and different explainability approaches will
be implemented to understand which information each can
provide.

2. MATERIALS & METHODS

This study consists of two main parts. The first part aims
to explore the existing explainability methods and apply them
to multi-output prediction models with a simple open-source
dataset consisting of 2D images of faces and the corresponding
labels for age, sex, and ethnicity. The overall objective of
this part is to prove that all the explored techniques work
for multiple-output models and to have an insight into the
expected output for the different explainability methods.
In the second part, a model was trained to predict multiple
scores from a single 3D binary image. Several explainability
methods were implemented to identify which locations of the
image are most relevant for decision-making. The model was
trained with artificial cognition scores calculated for images
in the TRACE-VCI dataset, to validate that it is capable of
identifying which locations of the lesions are responsible for
specific outcomes.

All code was written in Python using Pytorch for the DL
part.

2.1 UTKFace dataset

For this analysis, UTKFace dataset from GitHub [24] was
used. The dataset consists of over 20,000 face images with
annotations of biological age, sex, and ethnicity. Images were
pre-processed to the same size (200x200) and the faces were
aligned and centred, from which a subset of 9000 was selected
for the experiments.

2.1.1 Single-output VS multi-output
To predict multiple scores from a single image, different

single-output models that make separate predictions can be
used for each output. However, this method does not take into
account possible intercorrelations between data and is very
inefficient. A multiple-output model can learn to predict each
output independently, while also considering the interdepen-
dence between the outputs. The performances of three single-
output models were compared to the one of a multi-output
model, using a pre-trained ResNet18 as architecture [25], as

Label Age Sex Ethnicity

Output Type Regression Binary classification Multi-class classification

Values [0:120] Male/Female Black/White/Asian/Indian

Activation Function Leaky ReLU Sigmoid SoftMax

Loss function Mean Squared Error Binary CrossEntropy CrossEntropy

TABLE I: Specification on optimization problem type, values, last
activation function and loss function used for each label

it has shown to have an optimal performance in similar tasks
[26].

The specific parameters of the model were established
after tuning different combinations of hyperparameters using
wandb.ai library [27], choosing 9000 samples for training,
with a batch size of 16, Adam as optimizer and Mean Squared
Error (MSE) as loss function in ResNet18 architecture, and
applying linear normalization as pre-processing to set the
image values between [0,1]. Table II is a summary of the
parameters used to train the models.

Model parameters
Training size 9000

Pretrain imagenet
Preprocessing Image normalization [0:1]
Architecture ResNet18
Batch Size 16
Optimizer Adam

TABLE II: Model parameters for age, sex and ethnicity prediction

Parameters were the same for all models, except for a
modification in the last layer of the architecture. In the multi-
output model, the last layer was split into three branches of
the same characteristics as the single-output ones, outputting
three different values, and each one gets optimized using a
different loss function: MSE for age, Binary Cross-Entropy
for sex and Categorical Cross-Entropy for ethnicity. Figure 1
shows a representation of the multi-output model and Table
I shows the specifications for the last layer for each of the
predictions.

2.1.2 Explanations on predictions
It is challenging to understand why such complex models

make specific predictions. Explainable AI algorithms can be
applied to CNNs to create saliency maps that highlight the
critical regions in the image for making a specific prediction,
and these maps can be visually inspected to see if they
correspond to the real features that contribute to decisions,
or if they are incorrect and the good predictions were
obtained because of dataset bias. In this part, Gradient SHAP,
Integrated Gradients and Occlusion explainability techniques
were implemented to analyze the visual saliency maps they
provide for single-output and multi-output models [28].



Fig. 1: Representation of the last linear layers of the ResNet18
architecture with their corresponding activation function. The
last feature map is flattened into a linear layer with output
size 512 and then branched in 3 outputs.

The basic idea of Integrated Gradients is to approximate the
contribution of each input feature to the model’s prediction by
integrating the gradients of the model’s output with respect
to the inputs. The approximation starts from a baseline image
and is computed by taking the average of the gradients over
a path and multiplying it by the difference between the actual
and baseline inputs. The end result is an attribution score for
each input feature [29].

GradientSHAP is based on the concept of Shapley values
from cooperative game theory. The basic idea is to calculate
the contribution of each feature to a prediction by averaging
the gradient of the model’s output with respect to that feature
over all possible combinations of the remaining features. The
contribution of each feature is then calculated as the difference
between the prediction made using the full set of features and
the prediction made using all features except the feature of
interest [30].

The Occlusion method is based on selecting windows of
interest in the input, replacing them with a baseline value
and recalculating the model’s prediction, to see how it affects
the model output. This process is repeated by sliding the
windows through the whole input and the change in the
model’s prediction is used to compute an attribution score for
each region [31].

The three explainability methods were implemented for
every output using captum.ai library [32]. In order to select
which specific output we wanted the explanations for, a
wrapped model for each class had to be defined. In the cases
of Gradient Shap and Integrated Gradients, Gaussian noise
was added with Noise Tunnel to each input in the batch, with
smoothgrad sq as smoothing type, n samples = 10, and all
zeros image as baseline. In the case of Occlusion, the sliding
window was of size = (3,15, 15) and stride = (3, 8, 8).

2.2 TRACE-VCI dataset
For this analysis, the dataset was obtained from a study

on memory clinic patients. The TRACE-VCI dataset is a
collection of data from 861 patients with possible VCI that was
performed between 2009 and 2013 by three Dutch outpatient
clinics at two university hospitals; the outpatient clinic of

the VU University Medical Centre (VUMC) registered in
the Amsterdam Dementia Cohort (N=665) [33] and the two
outpatient memory clinics of the University Medical Centre
Utrecht (UMCU) (N=196). The dataset includes every patient
that showed cognitive complaints or signs of VCI on MRI
scans. Each patient received a standardized extensive 1-day
memory clinic evaluation including an interview, physical
and neurological examination, laboratory testing, extensive
neuropsychological testing, and an MRI scan of the brain [34].
The brain MR images obtained were processed to generate
lesion maps using the RegLSM image-processing pipeline
(publicly available at www.metavcimap.org) [9]. Then, all
lesion maps were transformed into the T1 1-mm MNI-152
(Montreal Neurological Institute) brain template [35] using
Elastix toolbox [36] to apply a linear registration followed by
nonlinear registration. Then, the images were segmented using
the k-nearest neighbour automatic classification with tissue
type priors method, as described in [14].

The overall size of the dataset was 822 after excluding
patients with dementia, divided into 60% for training, 20%
for validation and 20% for testing. Due to GPU limitations,
images we downsized to have shape: (109, 131, 109).

Previous studies addressing the weakness of the correlations
within the combined lesion locations and scores suggest an
initial study on a simulated dataset, where the lesion-symptom
mapping can be properly validated [16].

2.2.1 Simulations
The model was trained and evaluated with simulations of

lesion-score relations calculated from three cubic Regions of
Interest (ROIs) associated with the TRACE-VCI lesion maps.

First, the images were cropped to fit the edges of the brain
in the MNI space, obtaining a final lesion-map size of (822,
91, 107, 86). Then, the ROIs were selected with the following
procedure to ensure that enough patients cover the area of
interest, based on the simulation described in the paper by
Zhang et. Al [16]:

• Create a lesion mask by summing the occurrence of
lesions in every voxel.

• Define the three cubic ROI of size 8x8x8 mm3.
• Erode the areas with a Structuring Element of the diam-

eter of the ROI.
• Threshold the areas where at least ten patients have

lesions.
• Select a centre and remove the ROI area from the

possibilities for the next selection.
• Repeat the last step until getting three ROI centres.

Figure 2 shows two slices of the lesion-matrix, generated by
the overlap of the lesioned voxels of all patients and the three
ROIs, with the following centres:

• ROI 1: [37, 58, 54]
• ROI 2: [68, 57, 53]
• ROI 3: [35, 78, 44]
Being i the number of patients and n the number of ROIs,

the scores were calculated with the following procedure: 1



Fig. 2: Choice of slices 54 (left), 53 (center) and 44 (right) of the
coronal view of the lesion matrix (white) overlapping with
three ROIs (green)

Algorithm 1 Calculus of scores

for patient do
for ROI do

overlapi,n ← LMi ∩ROIn
scorei,n ← overlapi,n/sum(ROIn(:))

end for
end for

Obtaining as an output a matrix of size (number of patients,
3) with the score for each ROI for each patient. The computed
scores have the following occurrence, displayed in Figure 3.

Fig. 3: Distribution of scores for the simulations

The overlap between the lesion map of an example patient
and the three ROIs is displayed in Fig 4, with the annotations
of the corresponding scores.

Fig. 4: Choice of slices 54 (left), 53 (center) and 44 (right) of the
coronal view of an example patient with the overlaps of the
lesioned voxels with the three ROIs and annotations of the
artificial scores

2.2.2 Model
After running experiments with different combinations of

optimizers, learning rates, architectures and loss functions,
the parameters to train the final model were chosen for the
ones giving the best learning curve and validation metrics.
After performing parameter tuning with wandb.ai, a 3D
adaptation of ResNet10 developed by [37] was trained using
Adam optimizer and MSE as loss function, using a batch size
of 4. The last layers were modified from the flattening layer
to a Linear layer of 512 parameters with ReLU activation,
and a last Linear layer with an output of size 1 with Sigmoid
activation to clip the output value between 0 and 1. The
learning rate showed to work best with 10−5 for the first
100 epochs and descending to 10−6 after as a regularization
technique to avoid noise. MSE was chosen as loss function
because of the weight it gives to outliers so that even if most
scores have very small values, the biggest ones are correctly
predicted. One multi-output and three single-output models
were trained on the different scores with this configuration. In
the case of the multi-output model, the architecture branches
into three equal last linear layers, so that different weights
are associated with the different outputs.
The weight configuration was automatically chosen for
the epoch with the lowest loss for the validation set. The
trained model was then analyzed using MSE metric for the
predictions and the ground truth. The square of the Pearson
correlation coefficient was also computed.

2.2.3 Explainability
The features of trained models were then analyzed using

Gradient Shap, Integrated Gradients and Occlusion techniques,
with blank (all zeros) images as baselines. For the occlusion
method, the sliding window was a cube of size = 8 with
a sliding window with stride = 4. The so called saliency
maps were computed for an independent test set, and all
the obtained maps were summed pixel-wise to obtain a total
map. The only processing applied to the obtained images was
filtering only the values indicating a positive contribution in
the cases of Gradient Shap and Integrated Gradients, and linear
normalization to values between [0,1].
The obtained probabilistic saliency maps were then analyzed
by comparing them to a binary image of the corresponding
ROI. Precision-Recall (P-R) curves were computed by bina-



rizing the saliency maps with a thousand different thresholds
going from the maximum to the minimum image value. At
each threshold, Precision and Recall metrics were calculated.
The P-R curves were obtained by plotting the Precision against
the Recall for all possible thresholds for each saliency map. P-
R curve was chosen over the Receiver-Operating Characteristic
analysis due to its sensibility for imbalanced data, given
the prevalence of negative values over positive ones [38]. A
continuous Dice Coefficient (cDC) was also calculated for
each method as described in the paper by Shamir et al. [39],
a metric that does not threshold the image and is based on
the classic Dice Score but for probabilistic images. Precision,
Recall and cDC equations are described in Equations 1, 2
and 3, where TP corresponds to True Positives, TN to True
Negatives and FN to False Negatives

Precision =
TP

TP + FN
(1)

Recall =
TP

TP + TN
(2)

cDc =
2 sum(A(:). ∗ (:)B)

c sum(A(:)) + sum(B(:))
(3)

where .* denotes elementwise multiplication of matrices and
c is described by 4

c =
sum(A(:). ∗B(:))

sum(A(:). ∗ sign(B(:)))
(4)

where

sign(x) =


−1 if x<0
0 if x=0
1 if x>0

(5)

Last, the Area Under the Curve (AUC) was computed for
every P-R curve.

3. RESULTS

3.1 UTKFace dataset

An example of the Ground Truth and prediction is displayed
in Figure 5, in which sex is correctly predicted for all models,
but ethnicity is misclassified for the single-output model. The
absolute error for age is higher in the multi-output model.

Fig. 5: Example of a pre-processed image from UTKFace dataset
with the corresponding labels for predicted and Ground Truth
age, sex, and ethnicity.

Table III shows the metrics calculated for an independent
test set for the models trained with the characteristics described
in section 2.1.1.

Metrics
Single-output Multi-output

Age
(Mean squared error)

100.28 236.79

Sex
(Accuracy)

78.05% 94.18%

Ethnicity
(Balanced accuracy)

56.55% 87.32%

TABLE III: Metrics for the single-output and multi-output models
in terms of MSE, Accuracy, and Balanced Accuracy for
UTKFace dataset

Sex and ethnicity classification show better accuracy for the
multi-output model, but age is better predicted for the single-
output model.

Figure 6 displays the explanation maps computed for Im-
age 5 for every model with Occlusion, Gradient Shap and
Integrated Gradients techniques for each score.

3.2 TRACE-VCI dataset
The learning curves for training and validation sets for

all models with the parameters of the models described in
subsection 2.2.2 can be found in A.1, and figures in A.2 show
the correlation between the prediction and the Ground Truth.

Table IV shows the Mean Squared Error of the predictions
and the ground truth calculated for an independent test set. The
multi-output model appears to outperform the single-output
models in terms of predicting Score 1 and Score 2, while the
single-output model has a slightly better performance for Score
3.

Mean Squared Error
Single-output Multi-output

Score 1 0.0079 0.0061
Score 2 0.0064 0.0034
Score 3 0.0050 0.0066

TABLE IV: MSE metrics for the single-output and multi-output
models for TRACE-VCI dataset predicted scores and
ground truth

Table V shows the square of the Pearson correlation coeffi-
cient and the p-value for the predicted scores and the ground
truth.

Squared Pearson correlation (p-value)
Single-output Multi-output

Score 1 0.93 (<0.001) 0.94 (<0.001)
Score 2 0.84 (<0.001) 0.94 (<0.001)
Score 3 0.93 (<0.001) 0.97 (<0.001)

TABLE V: Square of the Pearson correlation coefficient and p-
value of the ground truth and predicted scores for the
single-output and multi-output models for the TRACE-
VCI dataset.

Figure 7 shows the ROI origin slice of the explanation maps
computed with the methods described in 2.2.3: Gradient Shap,
Integrated Gradients and Occlusion for all the scores with the



Fig. 7: Choice of slices 54 (left), 53 (center) and 44 (right) of the coronal view of the overlap between the corresponding ROI and the
explanation maps for the single-output and multi-output models

Fig. 8: Correlation of the AUC of the P-R curves of the single and
multi-output models

an example, so it is not representative of the whole dataset,
but several images have been visually analyzed and similar
conclusions have been extracted. The features that indicate a
person’s age, sex, or ethnicity are not well defined and there
is not a specific ground truth to be compared with, so from
this experiment, we can only obtain qualitative arguments to
decide on the methods that work best for this task. In general,
this experiment is an example that demonstrates that multi-
output models have the potential of performing similarly
to multiple single-output models and that explainability

methods can be computed for each output. However, the
accuracy of the obtained saliency maps could not be evaluated.

As for the second part, a simulation study was performed on
WMH segmentations from MR brain images of VCI affected
patients by calculating artificial scores associated with specific
ROIs. Three single-output and one multi-output 3D ResNet10
architectures were trained, and results from the computed
metrics on an independent test set indicate that the single and
multi-output models are performing well in predicting scores,
as all MSE values are relatively low. However, as indicated in
Figure 3, most scores have values close to 0, so low MSE
does not necessarily mean good performance. The square
Pearson correlation coefficient is independent of the dataset
distribution, TableV indicates the following results for scores
1, 2 and 3: 0.94 0.94 and 0.97 for the multi-output model and
0.93 0.84 0.93 for the single-output models. All values are
close to 1, which indicates a very high correlation between
the predicted and the real scores (p < 0.001). However,
although these values are in agreement with literature, they
can not be directly compared as they use real cognitive scores
or simulations that are more complexly dependent on lesion
location. To further validate these results and analyze which
factors are affecting the predictions, the saliency maps were
computed and voxel-wise summed for all images in the test
set. Visually, the images in Figure 7 suggest that there is an



Fig. 9: P-R curves for single-output, multi-output and baseline models for all scores and explainability methods

Fig. 10: Correlation of the cDC of the obtained total explanation
maps and the ROIs of the single and multi-output models

accurate overlap between the model’s choices of important
regions and the actual ROIs, showing a great ability to spot if a
lesion location is directly related to an outcome. It is important
to mention the ability of the models to distinguish the locations
that affect Scores 1 and 2, as the ROIs are in parallel areas

of the brain, for which the lesions are often symmetrical (as
it is for example in Fig 4), and the scores are to an extent
correlated. From the total maps, we can see that Gradient Shap
and Integrated Gradients give more noisy images, as these
methods are sensitive to small variations in the input image.
While occlusion output is clearer, the computational time was
considerably longer.

From the quantitative analysis performed to the explanation
maps by comparison to binary images of the ROIs, we can see
that P-R curves in Figure 9 show a performance that apparently
does not correspond to the overlap observed visually. However,
the prevalence (which refers to the ratio of voxels inside the
ROI and outside) directly affects the performance of what a
baseline classifier would look like. In this case prevalence =
0.0018 is very low, and the baseline performance is indicated
by a dashed line in 9, which has an AUC = 0.0009, lower
than any of the AUC obtained for the P-R curves as observed
in Table VI. The performance comparison of the P-R curves
is better analyzed by looking at the correlation Figure 8,
which shows that all models have similar predictive abilities,
except for score 3, in which the multi-output model shows
to outperform the single-output one when using Integrated



Gradients and Gradient Shap. The computed cDC presented
in Table VII shows values that correspond to what is visually
observed, taking into account that we are comparing 3D
volumes. The correlation graph displayed in Figure 10 shows
consistency between all models, despite a slightly better metric
for score 3 for the multi-output model in the cases of Occlusion
and IG. Visually analyzing these cases in 3D, the explanation
maps show highlights in central slices of the images for
the single-output model, whereas, in the multi-output one,
explanations are better focused on the ROI. This could indicate
that explainability methods have a better ability to identify key
regions when applied in multi-output models.

The predicted saliency maps are highly dependent on the
chosen parameters since it was observed that changing, for
example, baseline image and sliding window size affects
considerably the look of the computed image. It was observed
that the difference in the calculated metrics for the saliency
maps in single and multi-output models is not concluding.
This indicates that for this use case, a visual analysis gives
enough information to indicate whether the explored methods
are suitable to detect ROIs. If a more complex generation of
artificial scores were to be implemented and therefore, the
performance of single and multiple output models were to
be significantly different, then quantitative analyses on the
saliency maps would be a more concluding approach for
deciding which model is performing better.

Previous studies have only explored simpler models based
on statistical and ML analysis to tackle the challenges of
LSM, but DL and explainable AI has the potential to yield
further discoveries in neuroscience. Overall, this research has
demonstrated satisfactorily that DL algorithms and explain-
ability techniques are suitable for the task of identifying key
regions for multiple score predictions in 3D lesion MR images
of patients affected by VCI. Multi-output models have been
shown to have a similar performance to single-output ones in
this simulation study, which indicates that, in combination with
the explored explainability techniques, they could be useful in
the research of LSM. However, more research needs to be
done before taking clinical conclusions from real cognitive
scores. A more complex simulation study could be performed
to test the suitability of multi-output models, in which the
ROIs affect the calculus of multiple scores with a different
associated weight to resemble more the hypothesis of how
brain lesions and cognitive sores are related. In order to
apply these methods to real data, the poor correlation between
clinical findings and WMH locations discussed in previous
studies [40] should also be considered, suggesting the need to
develop a very sensitive model, or use images of a different
type of lesion segmentation map that is more directly related to
a neurological outcome, such as infarcts. Future work should
take all the commented limitations into account, especially
the need for a robust enough server that can handle the big
amount of 3D data and the complex architectures needed to
train the CNN, as it was a very limiting issue throughout
the whole research process. Lastly, saliency maps can provide

valuable insights into the model’s behaviour, but they can also
be misleading if they are not properly validated.

5. CONCLUSION

This project presents a 3D multiple-output Deep Learning
based pipeline capable of predicting scores associated with
lesions in specific regions of the brain from MRI images,
and that identifies which regions they are associated to. The
first part of the project tests the desired methods on a simpler
dataset and proves that multi-output models are suitable for the
task of predicting multiple outcomes and that explainability
methods can be applied to these models.

The second part proposes a model that has been
demonstrated to work satisfactorily for predicting simulated
scores and correctly identifying the locations of interest to
make such decisions. This method, if used for real cognitive
scores of after-stoke patients, has the potential of finding
correlations between the location of the lesions in the
brain and the different neurological outcomes that VCI can
cause, which can help doctors get a better understanding of
the underlying brain mechanisms that lead to neurological
dysfunction.

This is only a first step towards the use of Deep Learning
for Lesion-Symptom Mapping, as many limitations still need
to be addressed.
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APPENDIX

Fig. A.1: Loss function for the train and validation set for the single and multi-output models for each epoch

Fig. A.2: Prediction VS Ground truth for all the scores in the single and multi-output models

Area Uunder the Curve
Gradient SHAP Integrated Gadients Occlusion

Score 1
Single-output 0.1568 0.1526 0.3439
Multi-output 0.1241 0.1597 0.3651

Score 2
Single-output 0.089 0.0709 0.3854
Multi-output 0.0620 0.1043 0.4028

Score 3
Single-output 0.0236 0.1042 0.6457
Multi-output 0.2811 0.3893 0.5835

TABLE VI: AUC for the Precision-Recall curve of the saliency maps for single and multi-output models for all scores using GS, IG and
Occlusion



continuous Dice Coefficient
Gradient SHAP Integrated Gradients Occlusion

Score 1
Single-output 0.0938 0.0857 0.2039
Multi-output 0.0798 0.0944 0.1984

Score 2
Single-output 0.0712 0.0682 0.1481
Multi-output 0.0602 0.0727 0.1656

Score 3
Single-output 0.0384 0.0667 0.2724
Multi-output 0.1059 0.1499 0.2772

TABLE VII: cDC of the saliency maps and ROIs for single and multi-output models for all scores using GS, IG and Occlusion


