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Abstract

Contrastive and abductive explanations are types of explanations that can be used to explain a
classification by a classifier. An abductive explanation is a minimal subset of input variables that
guarantees the observed classification. A contrastive explanation is a minimal subset of input
variables that, when changed, could lead to another predicted class. We show that computing
these types of explanations for Bayesian network classifiers (Bayesian networks used as classifiers)
is NP-hard for contrastive explanations and co-NP-hard for abductive explanations. We define a
number of subproblem for finding contrastive and abductive explanations. For contrastive expla-
nations, we find that the problems of computing any contrastive explanation is already NP-hard
for Bayesian networks where inference can be applied in polynomial time. We propose a number
of simple algorithms that are able to solve the different subproblems by computing inference for
multiple subsets of evidence. Lastly we propose an algorithm that can compute abductive and
contrastive explanations more efficiently and reduces redundant calculations by looking at the in-
ternal structure and values of the Bayesian network. The algorithm solves a more general problem:
finding all assignments to a given set of evidence nodes that satisfy a constraint on a hypothesis
node. Finding contrastive and abductive explanations is a special case of the algorithm.
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Chapter 1

Introduction

With the increasing use of computer-based decision making in daily life, such as in self driving cars
or image recognition, comes an increasing need to explain why specific choices have been made by
the computer. One of many methods for computer-based decision making is the use of Bayesian
networks (BNs) [20].

Bayesian networks are representations of joint probabilities that use independencies between
variables to structure probabilities in a space-efficient and somewhat intuitive manner using a
directed graph. Using this structure we can compute conditional probabilities, which is called
inference. An example of such a conditional probability could be: the probability that a person
has the flu given they have a fever of 39 degrees Celsius, a cough, and a stuffed nose but no other
symptoms. In this case the conditions are the fever, the cough, and the stuffed nose. Inference
calculates the probabilities for all states of a variable (so "flu" or "not flu" in the example) given the
conditions. One of the things inference allows us to do is use a Bayesian network as a classifier, e.g.
by predicting the state with the highest probability. As such a BN can be considered an alternative
to well-known machine learning techniques. In fact, BNs can be automatically constructed from
data, but as a result of their interpretability, manual construction is also possible [4].

Bayesian networks are often used in critical situations [36] where transparency is required in
the reasoning of a model: consider a medical domain similar to the example with the flu, where
a doctor inputs symptoms and a classifier predicts a disease. In this situation, predictions from
the classifier may have significant consequences for the patient. It is important that a doctor
can look into the reasoning of the classifier, determine whether he agrees with the system and
overrule it if the classifier made a wrong prediction (e.g. because certain edge cases were not
included in the model). In this sense Bayesian networks already have a benefit over other types
of classifiers such as neural networks, since the internal structure of a BN has a much more well-
defined meaning: nodes contain the conditional probabilities for a variable given the possible values
of its parents in the graph. However, while one could think Bayesian networks are so simple that
they do not require any explanation, this has been argued to be false [§]. In combination with the
increased interest in and new insights into explainable AT [34] this leads to a renewed interest in
explaining Bayesian networks and BN-based classifiers. However, while many types of classifiers
can classify in an amount of time that scales polynomially with their size (the number of input and
output variables), applying inference to Bayesian networks is NP-complete [6]. This means that
known (and likely all possible) algorithms that compute inference take an amount of time that
scales exponentially with the size of the Bayesian network. This in turn means that it becomes
increasingly costly to compute inference for larger Bayesian networks. A similar problem arises
when we want to explain Bayesian networks: some types of explanations rely on inference and have
complexities that make them costly to compute for larger Bayesian networks. For example, some
types of explanations proposed for classifiers are model-agnostic and can be used for any type of
classifier, but require a lot of classifications (such as LIME [37], SHAP [32], and finding contrastive
and abductive explanations [I0][21]). In the case of BN-based classifiers, this may take a long time
due to the complexity of inference underlying the classification itself.

In this thesis we focus on explanation of Bayesian networks. More specifically we focus on the
computational complexity of finding contrastive and abductive explanations in Bayesian networks



and on the design of more efficient algorithms to this end.

The results of this thesis should help in determining whether abductive and contrastive expla-
nations are a relevant and feasible type of explanation for specific situations, and reduce the time
in which these explanations can be found. This is important because Bayesian networks are often
used in critical situations [36] where it is crucial that predictions can be double-checked and under-
stood by domain experts. If faster algorithms will be found, this may allow types of explanations to
become feasible in situations they are currently not. Especially with new laws (such as the GDPR
in the European Union) giving people rights to explanations, computing insightful explanations is
an important requirement for the application of Artificial Intelligence and classification in practice.

This thesis is the final project for two master’s degrees: Computing Science and Artificial
Intelligence. The Computing Science aspects that are prominent in this thesis are algorithms
and complexity, while Artificial Intelligence provides insight into explainability. The concepts of
classification and Bayesian networks themselves are positioned on the overlap between the two
subjects.

This thesis is structured as follows. In chapters [2 and [3] we will further explain the concept
of Bayesian networks and briefly discuss which explanations exist that can be used for Bayesian
networks in general and BN-based classifiers. Chapter [4] specifies and formalises inference and
classification. Chapters[5|and[6]focus on abductive and contrastive explanations and the complexity
of finding those in different situations. Chapter [7] proposes an algorithm that is often able to find
the abductive and contrastive explanations more efficiently. Lastly, the conclusion will summarise
the relevant findings.



Chapter 2

Existing work

This chapter is split into two parts, beginning with some related work about Bayesian networks and
their time complexity. The second part will mention different explanations for Bayesian networks
that have been considered. In this chapter we will introduce and use specific notation that will be
used throughout this thesis. The notation is also listed in Chapter [3]

2.1 Complexity classes

This thesis will focus on the complexity and complexity classes of several problems. We will
describe the complexity of several algorithms using big-O notation, which we will assume the
reader is familiar with. Additionally, we will use complexity classes such as P, NP, co-NP, and
PP. These classes (except P) provide a lower bound for the complexity of a problem, as they show
that no currently known algorithm can solve the problem without for example taking an amount
of time that scales exponentially with the input. We assume that the reader is familiar with these
complexity classes. Additionally, we will use the concept of fixed-parameter tractability, which
means that, while the general problem is, for example, NP-hard, as long as some specific parameter
is fixed (or bound by some constant), the problem can be solved in polynomial time respective to the
other parameters. If the reader wants more information about any of these concepts, information
about big-O notation, P and NP can be found in "Introduction to Algorithms" by Cormen et
al. [7]. P, NP and other complexity classes are also explained in "Computers and Intractability:
A Guide to the Theory of NP-Completeness" [I6] and "Computational Complexity - A Modern
Approach" [2].

2.2 Bayesian Networks

Bayesian networks can be formalized as follows: a Bayesian network B is a model for a joint
probability distribution that consists of a directed acyclic graph G = (Vg, Ag) containing nodes
Ve = V;...V,, representing discrete variables Vg = V;...V,,. Note that we use the same name for
both the node and the variable. ¥YV;,V; € Vi : if there is an arc from V; to V; in Ag, V; is said to
be the parent of V;, and V; contains probabilities for V; conditioned on all possible combinations
of V; and the values of the other parents of V; in its conditional probability table (CPT). For all
pairs of nodes VV,,,V, : if V,, and V,, are not directly connected with an arc, the model considers
V., and V,, conditionally independent (for some condition). The direction of the arcs does not have
to correspond with the direction of causality.

When using Bayesian networks we often assign evidence nodes E and often one hypothesis
node Vj,. Nodes in E get assigned observed values e, on the basis of which the probabilities in V},
get calculated with the use of inference. Prior probabilities Pr(V},) are the probabilities without
any observed variables (so without any assignment to the evidence), and posterior probabilities
are the conditional probabilities Pr(V}|e) after the state of E has been observed.

An example of a Bayesian network as visualized in GeNie is shown in Figure
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Figure 2.1: A simple Bayesian network known as the Asia-network as visualized in GeNie. The
nodes "asia" and "xray" have been given evidence, and the node "lung" has been selected as
target /hypothesis node.



A path through the graph not necessarily following the direction of the arcs, i.e. a sequence of
adjacent nodes, is called a chain. The probabilities for a variable in a Bayesian network can only
be influenced by another variable if there is a chain between the variables. However, chains can
also be blocked. A chain is blocked iff either:

1. the chain passes a node V, through two incoming arcs (so both arcs point towards V,,) and
V. nor any of its descendants have been assigned evidence.

2. the chain passes a node V, through at least one outgoing arc, and V, has been assigned
evidence.

If the chain is blocked, the variables cannot affect each other through this chain. If all chains
that connect two variables are blocked they are d-separated and they are independent given the
evidence.

In a Bayesian network-based classifier, the evidence nodes are the input features and the most
probable value of the hypothesis node is often used as the predicted class. Classification can then
easily be done using inference.

One of the ways to do exact inference is known as the Lauritzen and Spiegelhalter [30] algorithm,
which is based on join tree propagation [20]. This algorithm has a running time that generally
scales exponentially with the size of the Bayesian network. Assuming P # NP, this cannot be
prevented, as exact inference has been proven to be NP-hard [6]. An exception to this is when the
treewidth of the moralization (see below) of the graph is bound by some constant, in which case
the problem becomes tractable [25].

2.2.1 Treewidth

To explain the measure of treewidth, it is necessary to discuss some other definitions: moralization,
triangulation and tree decomposition.

The moralization of a directed graph is the undirected graph that is obtained when we apply
the following steps to a directed graph:

e For every node, we connect all parents of the node.

e We drop all directions: the arcs become edges.

A triangulation of the moralized graph G is a graph that has G as subtree and does not include
loops of more than three variables without any pair being adjacent.
A tree decomposition of this triangulated graph Gr is a tree T such that

e each node X; in T is a bag of nodes which constitute a clique (subgraph where every node is
connected to every other node) in G

o for every i,j,k, if X; lies on the path from X; to X in T then X; N X; C X;

Treewidth [1I] is essentially a measure of how tree-like a graph is. Graphs with a treewidth of
1 are trees. The treewidth of a graph is equal to the minimum of treewidths of all possible tree
decompositions. The treewidth of a tree decomposition is one less than the size of its largest clique
[25]. Tt is NP-complete to find the tree decomposition with the smallest treewidth [20]. Finding
the treewidth of a graph is also NP-complete [I], though a lot of approximation algorithms exist.
There are a number of other ways to compute the treewidth of a graph (i.e. other algorithms for
finding the same value), such as the maximum order of a so-called bramble [11].

2.3 Explanation

There are numerous ways a Bayesian network can be explained. Existing research distinguishes 4
types of explanations for Bayesian networks [9]:

e Explanation of evidence



e Explanation of reasoning
e Explanation of the model
e Explanation of decisions

Additionally, common ways to distinguish explanations of classifiers are the distinction be-
tween local and global explanations and between model-based and model-agnostic [37] explanations.
Global explanations explain the model as a whole, while local (also known as instance-dependent)
explanations explain a specific classified instance. Model-agnostic explanations can be applied to
any classification model but inherently suffer the drawback that they can have no knowledge about
the inner workings of the classifier and thus are limited to explaining its input-output behaviour
instead of its reasoning. In contrast, model-based explanations only work for a specific model, and
could therefore use information about the reasoning of the model.

Recently, it was proposed to use more insights from the social sciences in explainable Al [34].
Specifically, in social sciences research has been done on how humans explain things and what we
expect from an explanation. The main proposals are to pay more attention to four aspects:

e Explanations are contrastive. This means that people generally want to know why something
was the case instead of another option.

e Explanations are selected. Humans do not explain everything, we select a few reasons (out
of possibly very many) which we consider the main reasons, which we give as reasons.

e Probabilities do not matter. Giving reasons is much more important than the probability of
something happening (as an explanation).

e Explanations are social. Explanations are relative to the explainer’s beliefs about the ex-
plainee’s beliefs.

In the following sections some existing explanations for Bayesian networks are discussed and
categorized given the aforementioned categories.

2.3.1 Explanation of evidence

In explanation of evidence, an explanation is seen as the configuration of a subset of variables
present in the Bayesian network, given evidence [9]. This type of explanation is also known as
abduction.

Abduction deals with the problem of finding the most probable values for a number of nodes
[23]. This problem is known as MPE (most probable explanation) or (partial) MAP (maximum a
posteriori hypothesis) depending on whether we have full or partial evidence.

Definition 2.3.1. MPE

Instance: A Bayesian network B including a directed acyclic graph G = (V¢g, Ag), where the
nodes are split between evidence nodes E C Vi with an evidence assignment e € Q(E) and
explanation variables M = VG \E.

Output: argmax(Pr(mle)) Le. the most probable assignment m to the nodes in M given
meQ(M)
evidence e.

Definition 2.3.2. (Partial) MAP

Instance: A Bayesian network B including a directed acyclic graph G = (Vg, Ag), where the
nodes are split between evidence nodes E C V¢ with an evidence assignment e € Q(FE), a set of
explanation variables M C (V\e) and intermediate variables I = Vg \(E U M).

Output: argmax(Pr(mle)) Le. the most probable assignment m to the nodes in M given
meQ(M)
evidence e.



The difference between abduction and inference is caused by states with the highest probabilities
for a set of nodes not necessarily being the most likely joint value assignment of those nodes. We
will provide an example of the difference between Partial MAP and inference. Consider three
binary variables A, B and C. The internal structure of the network is not important for this
example. The joint distribution can be described as follows: there is always one variable false
while two are true but the probabilities for the three possible configurations {{A=T,B=T,C =
F{A=T,B=F,C=T}{A=F,B=T,C =T}} are equal. In this case the probability for each
node to be true (the result of inference without any evidence nodes) is % but the most likely joint
value assignment (similar to the result of Partial MAP without evidence nodes) is definitely not
{True, True, True}. MPE and most similar problems are NP-complete but often fixed parameter
tractable [23]. Efficient ways to calculate MPE have been researched [1I7][43].

A related concept is that of MAP-independence [24]. MAP-independence is a notion that builds
on the definition of conditional independence as suggested by Pearl [35]. Given variables A, B and
C, A is MAP-independent from B given C' if B could not influence the explanation for A if it
were observed. In this case the explanation refers to the most likely value for variables as discussed
before. This measure tries to capture to what extent a variable is relevant for an explanation. MAP-
independence is co-N PPP-complete and is fixed parameter tractable given bounded treewidth. A
basic algorithm to calculate MAP-independence is given that calculates MAP-independence from
a set of variables R in O(2/%l) times the time required for the MAP-computation.

2.3.2 Explanation of reasoning

Explanation of reasoning attempts to justify the conclusion of the model and how it was obtained
[9]. There are many different types of explanations of reasoning, some of which we will discuss
in this section. In this section, explanations will be grouped by the explanation they provide,
which means that some frameworks that provide multiple types of explanations will be discussed
in several different paragraphs.

Elvira is a software package that was developed by several Spanish universities in a joint research
project, and contains multiple types of explanations [28]. It will therefore be mentioned throughout
the following paragraphs.

Abductive and contrastive explanations In the case of Bayesian network classifiers, proposed
local explanations include abductive/sufficient/PI- explanations [39] and contrastive explanations
[21][22]]19]. Abductive, sufficient or PI-explanations are different names for a minimal subset of
the observations that would be sufficient to conclude the obtained predicted class. In this thesis the
term abductive explanation will be used. While they are related concepts, abductive explanations
are not to be confused with abduction which was described in Section 2311 Both contrastive and
abductive explanations will be described, defined and discussed in more depth in their respective
chapters later in this thesis. As an illustration of abductive explanations, consider the following
first order logic (FOL) model. The model classifies a variable E to be true or false depending on the
observations A, B, C, D, where e.g. the literal A denotes that observation A had value True and - A
denotes that observation A had value FALSE: [(AAB)V-CVD = E|A[-((AAB)V-CVD) =
—FE]. An observation (A, B,C,—D) would lead to prediction E. The only abductive explanation
for this observation would be the pair (A4, B) as the prediction would remain the same as long as
these observations keep their value.

An efficient way to calculate abductive explanations is discussed in [39] where the authors find
the explanations by converting Bayesian networks to a so-called OBDD and recursively calculating
the explanations. This approach does, however, not work for all Bayesian networks.

Contrastive explanations are the minimal subset of observations that would have to change to
get another prediction [I9]. If we consider the example from before, valid contrastive explanations
would be the sets {A} and {B}. There are two types of this explanation: one could only specify
the observations that would have to change to get another prediction [19], or one could include the
values that these observations would have to take [22]. Both versions are used. In case of binary
variables, there is of course no difference. Contrastive explanations can be calculated from just the
input and output pairs, but the proposed algorithms by Koopman (2020) require a large number
of classifications as they classify for a significant portion of the possible sets of evidence [22]. If any



monotonicity relations are known these may help with speeding up the calculation of the sufficient
and contrastive explanations [2I]. Abductive and contrastive explanations can also be viewed as
Minimal Unsatisfiable Subsets (MUS) and Minimal Correction Subsets (MCS) [I9]. This allows
for applying known algorithms to find abductive and contrastive explanations as long as there is
a FOL representation of the classifier, and allows for using an established relationship between
MUSs and MCSs, the minimal hitting set relationship (this will be described in Chapter, to find
abductive explanations if we have contrastive explanations and vice versa. Though algorithms are
proposed to find contrastive explanations, their complexity has not been discussed.

Chains of reasoning Elvira [28] uses chains of reasoning originally proposed in INSITE [40].
First, influential evidence nodes are determined by looking at the change in value for the hypothesis
node when the observation is omitted. To find the chains of reasoning, all chains between influential
observations and the hypothesis node are determined. Using cross-entropy, a distinction is made
between significant and insignificant chains. Lastly it is determined whether a chain ¢ is conflicting
or consistent with the evidence, by determining if ¢ has the same or the opposite effect on the
hypothesis node as the total evidence. BANTER [I8] uses a similar concept, though the computa-
tions are different. Instead of using the cross-entropy to see how large the difference is, BANTER
uses the mutual information. The mutual information is defined as I(a;; b;) = log(P(a;]b;)/P(a;)).
Another similar approach uses the Hellinger distance instead of the cross-entropy or mutual infor-
mation [26].

Important internal nodes. Some explanations include an indication of which nodes are most
important. As seen in the previous paragraphs, there are a number of ways to determine which
evidence nodes are most relevant (the influential evidence nodes in Elvira and INSITE for example).
Research has also attempted to determine which internal nodes are most relevant to present to the
user.

One of the proposed methods converts the Bayesian network to a flow network and then uses
the Edmonds-Karp algorithm to calculate the minimum cut [3I]. The nodes connected to the
minimum cut are proposed to be the most important nodes as they contain many paths from the
evidence to the hypothesis node. This is part of a larger explanation that also includes clusters of
internal nodes determined using the mutual information that are then converted to explanations.
The Edmonds-Karp algorithm has a running time of O(V - E?) where V is the number of vertices
and E the number of edges [15].

Another proposed approach for finding important internal nodes is to consider the Markov
blanket of the hypothesis node important and present it to the user [27]. This approach is part
of a three level progressive explanation: the first level calculates the important evidence nodes
similarly to the approach by INSITE. The second level consists of the internal nodes that are part
of the Markov blanket of the evidence node. The third level includes a measure of the effect of
evidence nodes on the hypothesis node. Finding the Markov blanket is trivial and does not take a
significant amount of time.

Local model-agnostic explanations Local model-agnostic explanations such as LIME[37] and
SHAP|32] are also explanations of reasoning, as they attempt to explain the connection between
the input and output of a classification. Both SHAP and LIME are explanations that have been
proposed as a model-agnostic explanation for black-box classifiers.

LIME creates a local model by training a new classifier on the output of the existing classifier.
Given output O as a result of input I it makes small changes to I resulting in I;...I,,. This data is
then used as input for the original classifier resulting in output O;...0O,,. The input-output pairs
(I1,01)...(In, Oy) are then used to train a new classifier. Often for the new classifier a type of
classifier is chosen that is easy to understand (e.g. a linear classifier or naive Bayes).

SHAP uses Shapley values for each input variable to explain the model. To find the Shapley
values for a classifier with n input variables, 2™ different models are required, one for every subset
of the input variables. For each of these subsets the outcome is then computed with the input filled
in. Every input variable then occurs in half (2"~!) of the predictions. Given an input variable x,
for every prediction with input variables = € V, V' I- p, the outcome is compared to the result with
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the same input variables except I: L/l F g. These differences are then weighted to calculate the
effect of variable [. The weights are defined such that every subset size contributes equally (1/n)
to the total Shapley value. Within these subset sizes every result has the same weight. As an
example consider input assignment v, = a,v, = b, v, = ¢ that predicts a value v for some class p.
Assume the following predictions:

Labels Prediction
[] 0.5
a 0.1
b 0.4
c 0.6
a,b 0.3
a,c 0.9
b,c 0.7
a,b, c 0.8

Let us calculate the Shapley value for assignment v, = a. There is one subset of size 1 that includes
a, namely {a}. The difference with the set without a (&) is —0.4. There are two subsets of size 2
that include a, namely {a,b} and {a,c}. These have values —0.1 and 0.3. There is one subset of
size 3 that includes a, namely {a,b,c}. Its value is 0.1. The total Shapley value of v, = a is then
3-—044¢-—01+5-03+5-01=—4%.

Interestingly, we can calculate something similar to a Shapley value using Bayesian networks
without having to construct multiple networks. BN classifiers can still make predictions when
removing nodes from the evidence set, so one can use the same Bayesian network to make pre-
dictions with fewer input variables. However, this can result in a different values than when we
would create new BN classifiers, for example when using machine learning to create the Bayesian
network. Calculating exact Shapley values for Bayesian networks is NP-hard even with limited
treewidth [41].

2.3.3 Explanation of the model

Explanation of the model is also called static explanation [28] and explains the model to a user
unfamiliar with Bayesian networks. These explanations are by definition global and model-based,
as they explain a Bayesian network without considering a specific classification.

Explanation of nodes Elvira describes nodes by giving their name, states, parents, children,
prior and posterior odds, in addition to a purpose and importance factor that are defined by the
creator of the network [2§].

Another proposed approach is to generate textual descriptions that include information about
the conditional probability table of the node, using words such as "unlikely", "fairly unlikely" or
"very likely" to describe different probabilities [I2]. This results in explanations such as "Cold
very commonly (p=0.9) causes sneezing."

Explanation of links In Elvira, links between nodes representing ordinal variables (where the
states have an ordering, often FALSE < TRUE is used for example) are explained by checking
whether all higher values of the parent nodes result in distinctly higher values of the child node
(called positive), result in distinctly lower values of the child node (called negative), do not have
any influence (null) or none of the above (undefined) [28]. Elvira is also able to change the thickness
of the arcs to indicate the strength of the influence [29].

Explanation of the network Elvira offers additional verbal explanations of the network, and
allows the user to select thresholds of the aforementioned importance factor to only show a smaller
network that is easier to understand for the user [2§].

Other systems that visualize Bayesian networks in some way are HUGIN [33], GeNie [13] and
DIAVAL [I4]. HUGIN and GeNie are tools that allow the user to create, modify and use Bayesian
networks similar to Elvira. DIAVAL is a system that uses a Bayesian network to diagnose heart
disease. These systems mostly display the graph structure of the network and sometimes visualize
the CPTs of the nodes.

11



2.3.4 Explanation of Decisions

Explanation of decisions consists of techniques that describe whether the user is ready to make a
decision. This includes for example sensitivity analysis. This type of explanations was recently
defined by Derks and De Waal [9]. One of the explanations that falls into this category of expla-
nations is the same-decision probability [5]. This is the probability that the same decision would
have been made if the true state of unobserved variables was known and is related to the afore-
mentioned concept of MAP-independence. The problem of finding the same-decision probability
is PPPP_complete. An algorithm that is fixed-parameter tractable with respect to treewidth has
been proposed that gives a bound on the same-decision probability. The same-decision probability
is a measure of how certain an outcome is, and can for example be used to determine whether more
tests should be done. Explanation of decisions is a newly proposed category of explanations, and
is in a sense different from the other categories: while the other categories directly explain some
aspect of a model or its classification, this category "explains" whether a user can safely make a
decision based on the output of the model. We could consider this type of explanation an expansion
of the model to include a measure of uncertainty, rather than a conventional "explanation".

12



Chapter 3

Notation

13



In the notation of Bayesian networks we will use the following symbols:

G = (Vg,Ag) | The directed graph G containing the structure of the Bayesian network.
It consists of nodes Vi, and arcs Ag.
Vi e Vg Node V; in the directed graph.
This also represents random variable V; in a Bayesian network.
(V;,V;) € Ag | The arc from node V; to node V; in the directed graph.
Py, The parents of node V;. All nodes V; for which arc (V}, V;) exists.
Py, The ancestors of node V;.
Recursively defined as the parents of V; and all ancestors of these parents.
ov, The children of node V;. All nodes V; for which arc (V;,V}) exists.
0'}*,1, The descendants of node V;.
Recursively defined as the children of V; and all descendants of these children.
14 A set of random variables {V;...V},}.
Vi A value assignment of node V; of the Bayesian network.
s A value assignment for a set of nodes S € V.
c[n] The nth assignment in a collection n.
Pr(vp) The probability of hypothesis v;, without any given evidence e.
Also known as the prior probablity of vy,.
Pr(vple) The probability for hypothesis v, given evidence e.
Also known as the posterior probablity of vy,.
et All evidence in the upper graph of the current node.
e~ All evidence in the lower graph of the current node.
eVe/Vy All evidence in both the descendants and ancestors of V,
except the evidence that would become disconnected
if we remove the arc between V, and V.
AEB Semantic consequence; given A, B always holds.
In this thesis mostly used to state that given input A a model
such as a Bayesian classifier predicts B regardless of the observed
values for all evidence nodes that are not in A.
A¥E B A E B does not hold.
A=b The variables from b.
Q(V,) The set of all assignments of states to V.
Also known as the statespace of V.
Q(X) The set of all combinations of assignments of states to X.
Ve e QX):z=X.
QX y) The set of all combinations of assignments of states to X
where no assignment is the same as in y.
a=>b/C The assignments from b without the variables in C.
a=Bec The subset of ¢ that corresponds to the variables in B. a C ¢, a € Q(B).
T Abbreviation for the state TRUE for Boolean variables.
F Abbreviation for the state FALSE for Boolean variables.

To be able to reason about the complexity of explanations in Bayesian networks, some additional
notations will be used:

N The number of nodes in the Bayesian network.

M The number of arcs in the Bayesian network. M < w

D The maximum degree in the Bayesian network. % <D<LN-1.
TW | (An upper bound on) the treewidth of the Bayesian network.

|z| | The number of elements in a collection x.

T The size of the probability table of variable V;. 7; = (|]V;| — 1) - HVJGpGi [V;l.

S An upper bound/maximum of the number of states any variable has.
Pmaz | An upper bound/maximum of the number of parents any variable has. p,a. < D.
O maz | An upper bound/maximum of the number of children any variable has. o4 < D.
Tmaz | An upper bound /maximum of largest probability table in the network. 7,,q, < SPmast1L,

I The runtime of inference.
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= True True False False

= True False True False

Pr(x=True|P1AP2) 0.3 0.6 0.2 0.7

Pr(x=False|P1/AP2) 0.7 0.4 0.8 0.3

Figure 3.1: A simplified and non-simplified CPT containing the same conditional probabilities.

We will use a simplified version of conditional probability tables (CPTs). A simplified and non-
simplified CPT are shown in Figure In the simplified CPT only the conditional probabilities
for X = True are shown. The top of the table corresponds to the left parent having value TRUE,
while the bottom corresponds with the left parent having value FALSE. The left side of the table
corresponds to the right parent having value TRUE, and the right side of the table corresponds
with the right parent having value FALSE. This will only be used for binary nodes having up to
two binary parents.

In this thesis we will use NP-hardness and NP-completeness proofs. For information on how
these proofs work we refer to [7]. In short, an NP-hardness proof of problem P1 contains a
polynomial-time reduction (with respect to the input) from another NP-hard problem P2 to P1,
and proves that a solution for P1 corresponds to a solution of problem P2 and vice versa. For a
problem to be NP-complete, it must be an NP-hard decision problem, and it must be in NP. IL.e.
a solution (yes-instance) must be verifiable in polynomial time (again with respect to the original
input size) using a certificate that contains evidence of the yes-instance.

A decision problem is a problem where the possible answers are yes and no (e.g. "is x € Z
prime?").
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Chapter 4

Inference & Classification

Since these will be used throughout this thesis, we will give a formal definition of inference and
classification and discuss the complexity of both.

4.1 Inference

Inference is the process of computing prior or posterior probabilities for assignments to variables
in a Bayesian network. There are multiple ways to achieve this, such as Pearls algorithm [35] and
the Lauritzen and Spiegelhalter algorithm [30]. Inference has been shown to be #P-hard [3§].

Definition 4.1.1. Inference

Instance (B, e, v, V;): A Bayesian network B including a directed acyclic graph G = (Vg, Ag),
evidence e € Q(FE) where E C V¢, and a hypothesis vy, € Q(V3,) where Vj, € V.

Output: The probability Pr(vy|e)

We can also define a related decision problem:

Definition 4.1.2. Inference decision problem

Instance (B, e, vy, x,V;): A Bayesian network B including a directed acyclic graph G = (Vg, Ag),
evidence e € Q(E) where E C Vi, a hypothesis v, € Q(V},) where V}, € Vg and a constant z for
which 0 <z < 1.

Question: Is the probability Pr(v,|e) equal to z?

This problem is at least NP-hard [6]

4.2 Classification

For classification the result of a hypothesis node is converted to a predicted class. A common
method is to take the state of the hypothesis variable with the highest probability, but other
options are possible. We will henceforth assume this method is used. We can then define this form
of classification as follows:

Definition 4.2.1. Bayesian network classification decision problem
Instance (B,e,V},m): A Bayesian network B including a directed acyclic graph G = (Vg, Ag),
evidence e € Q(F) where E C Vi (input), a hypothesis node V}, € V¢, a state 7 € Q(V4,).

Output: TRUE if 7 = argmax Pr(v,|e), FALSE otherwise.
vr €Q(Vh)

From inference as defined in Definition we can easily get a classification in polynomial
time by comparing the probabilities of the states of V},. We will demonstrate that we can solve
the inference decision problem as defined in Definition in polynomial time given the results
of classification on a slightly modified Bayesian network. This means that classification has a
complexity that is at least as hard as the inference decision problem and at most as hard as
inference.
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Theorem 1. Bayesian network classification is at least as hard as the inference decision problem
and therefore NP-hard.

Proof.

Transformation: Suppose we are given an instance (B,e,vy,xz,V}) of the inference decision
problem. We now build two instances of the classification problem as follows. For the first instance,
we transform the Bayesian network to a network B’y by adding a node V}/1 as a child of V}, that
is the new hypothesis node. We create its CPT as described below such that the network predicts
class TRUE if and only if Pr(v,|e) is at least 2. For the second instance, we transform the Bayesian
network to a network B’s by adding a node Vj,2 as a child of Vj, that is the new hypothesis node.
We create its CPT as described below such that the network predicts class TRUE if and only if
Pr(vple) is at most . An example is given in Figure We can then classify for both of these
networks, and if both of them predict TRUE we know that this probability in the original network
was equal to . We assume that this classifier predicts TRUE if the probabilities for both TRUE
and FALSE are 0.5 (so in case of ties).

To get the required output, we will use the following CPTs for Vj.q; and V5. When x = 0 or
x = 1, some of these formulas are undefined, and we assume the min and max functions then take
the other (defined) value. Note that these CPTs only depend on x and are normal numerical CPTs
once x is filled in.
version 1: Vj
PI‘(Vhll = Tth = ’Uh) = min(l, L)
Pr(Vipr =TV, £ op) = maX(O,%zii;I) for any other state than vy, of V},.
version 2: Vjo
Pr(Viyy = T|Vi, = vp) = max(0, =23H2)
Pr(Vi1 = T|Vi, # vp,) = min(1 ) or any other state than v, of V.

_1
) 2—2x

This describes a CPT such as the one in Figure but for any number of states for Vj. Us-
ing this transformation we get two networks B’y and B’ that still use evidence e. The difference
between the networks is in the two new hypothesis nodes V,/; and Vjso. If both predict TRUE
the probability of vy is equal to z. We can use this to solve the inference decision problem using
classification.

Polynomial: The size of the altered Bayesian network is only proportional to the size of the
original network, and we need to apply classification a constant number of times, making this
reduction easily possible in polynomial time.

Correctness: The correctness of this reduction follows directly from two lemmas:

Lemma 1.1. If (B'y,e,Vj1,™ = TRUE) and (B's, e, V2, m = TRUE) are positive instances of the
classification problem, (B, e, vy, x,V},) is a positive instance of the inference problem.

Le. in every situation where both classifiers predict TRUE, x must be equal to Pr(vy|e).

Proof. A solution for the classification problems means that our two versions both predict TRUE.
Using the definition of our CPT, this means that

PI‘(Vhll = T|e) Z 0.5

<= Pr(Viy1 =T|vy) - Pr(vple) + Pr(Viyy = T'|—wp) - Pr(—wple) > 0.5

X

1 _
<= min(1, %) - Pr(vp|e) + max(0, 0 5_ . ) (1 —Pr(uv,le)) > 0.5

and
PI‘(Vh/Q = T|e) Z 05
<= Pr(Viya =T|vy) - Pr(vple) + Pr(Viya = T|—wy) - Pr(—wple) > 0.5
—05+x

1
— 0,——)-P in(1
max(0, " ) - Pr(vy|e) + min(1, 5 om

)+ (1 =Pr(vp)) > 0.5

We must now prove that this is only true when & = Pr(v,|e) Let us distinguish the situations
where x < 0.5 and x > 0.5:
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Case 1: z < 0.5: in this case min(l, ) = 1, max(0, %2=2) = &3=2  max(0, =23E2) = 0
and min(1, ;2-) = . We get the formulas Pr(vy|e ) 05-2 . (1 — Pr(vple)) > 0.5 and
5= (1 —Pr(usle)) > 0.5.
Pr(ule) + 0'5_*;’ (1= Pr(vale)) > 0.5
<= Pr(vyle)- (1 —z)+ (0.5 —x) - (1 —Pr(uvple)) > 0.5- (1 —xz)
<= Pr(vy|e) — zPr(vyle) + (0.5 — 0.5Pr(v,|e)) — (x — 2 Pr(vgle)) > 0.5 — 0.5x
<= Pr(uvyle) — zPr(vyle) + 0.5 — 0.5Pr(vyle) — z + z Pr(vple) > 0.5 — 0.5z
<= 0.5Pr(vple) > 0.5z
<= Pr(vyle) >z
and 1
5 on (1 —Pr(vple)) > 0.5

< 1—Pr(ule) >1—=z
<~ —Pr(vple) > —x
<= Pr(ule) <

Together this means that Pr(v,|e) = ¢ must hold.

Case 2: z > 0.5: in this case min(1, 5-) = 5, max(0, £2=2) = 0, max(0, =%:2+2) = =0542 4pq
min(1, 575-) = 1. We get the formulas 5- - Pr(vy|e) > 0.5 and =22+ . Pr(v,|e) + (1 — Pr(vsle)) >
0.5.

2i Pr(vple) > 0.5

<= Pr(vyle) >z
and

“I2EE Pr(ule) + (1 - Pr(ule) > 05
< (—0.5+z) - Pr(vyle) + x — z Pr(vy|e) > 0.5x
<= —0.5Pr(vy|e) + zPr(vple) + x — z Pr(vyle) > 0.5z
<= —0.5Pr(v;le) > —0.5z
<= Pr(vyle) <z

Together this means that Pr(vy,|e) = z must again hold.
]

Lemma 1.2. If (B, e, vy, x) is a positive instance of the inference problem, (5’1, e, Vj9, 1 = TRUE)
and (B'9, e, Vo, m = TRUE) are positive instances of the classification problem. Le.

if Pr(vy) = =, both classifiers must predict TRUE.

Proof. From Pr(v;,) = x we know that Pr(vj,) < z and Pr(vp) > 2 both hold. Since the inequalities
above are derived using bi-implications, we can use them to determine that min(1, 3-) - Pr(v) +
max(0, %2=2) . (1 — Pr(vy,)) > 0.5 and max(0, =%5+2) . Pr(v;,) + min(1, 3=5-) - (1 — Pr(v,)) > 0.5
hold, so the classifier will predict TRUE in both cases, since both values are greater than or equal

to 0.5. |

From the above, we can see that there is a polynomial transformation from the inference problem
to the classification problem. As inference is NP-hard [6], it follows that classification is NP-hard
under Turing-reductions. O
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-

max(1,
(0.5-x)/
(1-x))

min(1,
1/(2x))

max(0, max(1,
(-0.5+x)/x)| 1/(2-2x))

Figure 4.1: The described transformation for a Bayesian network where the hypothesis node is
binary. The arrows and question-mark box indicate a unknown Bayesian network that can have
any connections to H. Both networks are shown at the same time in this figure, the dotted line
indicates that only one of those situations occurs in one network. V3.1 and Vo are called 1 and 2
respectively for the two new networks.

4.2.1 Static evidence nodes

In classification it is commonly the case that every classification uses a different combination of
observed states for the same variables. In Bayesian networks and classifiers however, variables do
not require an observation. This means classifications using the same Bayesian classifier can differ
not only in the assignment of different states to evidence nodes, but the evidence nodes can also
change, and even increase or decrease in number. In this thesis however, we will be assuming that
the evidence nodes are static. By static we mean that the evidence nodes do not change and are
a property of the Bayesian network: no evidence nodes can remain unobserved, and no evidence
nodes can be added for specific classifications.

Assumption 1. e is constant within the Bayesian network. i.e. every classification or inference
will use the same evidence variables.

Note that this affects the use of F and ¥: e F 7 means that given assignments e, prediction
7 is always predicted by the Bayesian classifier. The statement s F m where s C e also means
that given assignments s, prediction 7 is always predicted by the Bayesian classifier. However, in
this case not all evidence variables have been assigned a state. In this case the notation means
that 7 is predicted using any combination of evidence assignments that contains s: s F 7 <—
Vs’ € Q(e\s): sUs F .

However, in some situations we could work around this assumption: one could allow the evidence
nodes to have an extra option "no assignment". This would transform a Bayesian classifier to a
(not ordinary Bayesian) classifier with static evidence without losing classification options. This
would then allow us to use the definitions of contrastive and abductive explanations (which will
be introduced later in this thesis) for these classifiers. However, this does not work for some
of the algorithms later in this thesis that need a normal Bayesian network with static evidence.
Specifically, d-separation does not work the same anymore: whether information can pass through
evidence nodes now depends on the evidence assignment.
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Chapter 5

Contrastive Explanations

5.1 Defining the problems

Firstly, there are several definitions for contrastive explanations, but we will adhere to the definition
as defined by Ignatiev et al. [I9] i.e. a contrastive explanation of any classifier is a minimal set of
input variables for which the observed value would have to change to alter the predicted class of
the classifier. This definition can be used for any type of classifier, but in this thesis we will mostly
consider Bayesian networks used as classifiers. The algorithms that are proposed in this chapter
also work for different classifiers, as they only interact with the Bayesian network classifier through
classification (from inference). The hardness proofs discussed in this section are specifically for
Bayesian network classifiers, though that means it also works for the general problem given an
unknown classifier, as that could be a Bayesian network classifier. Note that this definition of
contrastive explanations does not specify which class the classifier should predict with the altered
input, as long as it is a different class.

Definition 5.1.1. Contrastive explanation

Instance (B,(e,m)): A Bayesian network classifier B and a pair (e,7) where e € Q(FE) and
E C Vg for which e Fg 7.

Contrastive explanation: Any set S € Q(E) for which (1) e\S ¥z 7 and (2) for which no
subset is a contrastive explanation: V(S’ C S) : e\S’ kg 7.

We will illustrate the definition of a contrastive explanation using an example: consider Figure
In this figure we can see a Bayesian network consisting of three evidence nodes labeled "E1"
through "E3", a single hypothesis node, and no other nodes. We use this Bayesian network as
a classifier that predicts the class with the highest posterior probability. For example consider
the case where F1 = T, E2 = T, E3 = F, in this case the predicted value for Pr(H = Tle) is
higher than Pr(H = F'|e) which means the predicted class is T. A contrastive explanation for the
set {Fl1 =T,E2 =1T,E3 = F},T) would be a set of evidence variables which, when changed,
could change the classification. In this situation the set { £3} would suffice, as changing E3 would
change the classification to F. The set {E2, E3} would not be a valid contrastive explanation, as
its subset is already a contrastive explanation. As another example, a contrastive explanation for
({E1=F,E2 = F,E3 = F},T) consists of two variables, as changing a single variable does not
change the outcome. The valid contrastive explanations in this case are {F1, E3} and {E2, E3}.
While {F1, E2, E3} results in a different classification, two of its subsets are already contrastive
explanations.
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E1 E2 E3  |P(H=TIE)
T T T 0.1
T T F 0.7
T F T 0.2
T F F 0.6
F T T 0.2
F T F 0.8
F F T 0.9
F F F 0.6

Figure 5.1: A simple Bayesian network with 3 evidence nodes, a single hypothesis node, and no
other nodes.

With this definition, it is possible to distinguish multiple problems that might have different diffi-
culties. We can:

1. Check whether a given input is a contrastive explanation of a given input-output pair.
2. Find any contrastive explanation for a given input-output pair.

3. Find the smallest possible contrastive explanation for a given input-output pair.

4. Calculate all contrastive explanations for a given input-output pair.

5. Calculate how many contrastive explanations there are for a given input-output pair.

The difficulty of these problems also depends on the information we have beforehand: do
we know any inputs that result in another predicted class? Similarly, do we already know any
abductive explanations (these will be introduced and explained in Section @? Known inputs that
predict another class may limit the possible contrastive explanations we have to consider. In the
next sections, we will discuss the abovementioned problems, possible ways to solve them, and their
computational complexity.

It is of course also possible, and often more interesting, to consider a contrastive explanation
for a specific alternative class, such as done by Koopman [2I]: which inputs would have to change
to give us class X instead of the currently predicted class? This is relevant, for instance, when a
user wants to gain understanding about the workings of a classifier, and wonders why the classifier
did not predict the class the user expected. In such a case we could slightly modify the classifier
to use our earlier definition while still solving this problem: when the classifier predicts anything
that is not class X, it will predict the original class instead. This way, we have a binary classifier
that only classifies X or the original class. Sadly, this modification is not easy to implement using
purely a Bayesian network. For example, let us assume we have a hypothesis node with classes a,
b and c that can be predicted. Input 1 results in the prediction of probabilities 0.4 for class a and
0.3 for classes b and c. Input 2 results in a prediction of 0.1 for class a and b and 0.8 for class c.
If we would want a contrastive explanation for input 2 that would result in class a, input 1 would
be a valid option. We cannot simply modify the Bayesian network by adding the probabilities for
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all other classes, as this would predict ¢ for input 1 instead of a. Because this change can easily
be implemented outside the Bayesian network, all methods of finding contrastive explanations
that purely use input-output pairs of the classifier can be used to get both types of contrastive
explanations. However, without a way to implement this in a Bayesian network (which might be
possible but is not trivial) the methods that specifically use Bayesian networks might not work.
In short, we can slightly alter classifiers in such a way that our existing definition of a contrastive
explanation corresponds to another existing definition of contrastive explanations which allows us
to use the same methods to solve it. However, we cannot easily alter a Bayesian classifier in such
a way while keeping it a Bayesian classifier, so some ways of finding contrastive explanations that
will be introduced will not work.

5.2 Confirmation

Before discussing how to find contrastive explanations, let us first consider the confirmation of
a contrastive explanation. To check whether something is a contrastive explanation we have to
determine whether a given set of variables S C e is a contrastive explanation of a given input-
output pair (e, ).

To determine this, two things have to be checked:

1. e\S ¥ 7: there is an assignment x € (S) that results in « U (e\S) F —.

2. No subset of S is a contrastive explanation.

5.2.1 Complexity

Even if the first condition above is met (a specific input « is given), the second condition is at
least as hard as classification in a Bayesian network. In this case we have the following decision
problem:

Definition 5.2.1. Confirmation decision problem

Instance (B,e,w,x): A Bayesian network classifier B including a directed acyclic graph G =
(Va, Ag), a set of evidence e € Q(FE) where E C Vi and a prediction 7 for which e Fg 7, and a
set of variables S C E with an assignment @« € Q(S) for which xz U (e\S) Fg .

Question: Do all sets S’ C S predict e\S’ Fp 77

Note that this question is identical to the question whether S is a contrastive explanation of
(e, m).

5.2.1.1 Bounded explanation size

It seems intuitive that when the explanation size grows, the explanation becomes harder to confirm.
This is because the number of subsets grows exponentially. However, in this section we will prove
that this problem is NP-hard even when we have a bound on the size of the explanation: by using
a reduction to a contrastive confirmation decision problem with an explanation of constant size,
we both show that the problem is NP-hard, and that it is not fixed-parameter tractable using its
explanation size.

"And" and "Or" nodes Before explaining the proof we will introduce specific types of nodes
that will be used in the proof and other proofs later in this thesis. We call these types of nodes
"And" and "Or" nodes. These nodes act similarly to AND- and OR gates but are generalised to
handle one non-Boolean variable. The "And" and "Or" nodes have conditional probability tables
as described in Tables and The "And" and "Or" nodes use a variable state called
s’ and s respectively. This state will be given a value when the nodes are used in a proof. Given
the following situation the nodes will function as the respective gates with the same name:

e The nodes have two binary parents

e s is set to TRUE, and s’ is set to FALSE.
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Under these circumstances, the "And" and "Or" node will have a state that is the AND or OR of
the states of its parents respectively. For example, consider a scenario where we have an "And"-
node with two independent parents of which the first parent P1 has a distribution of {Pr(P1 =
T) = 0.3,Pr(P1 = F) = 0.7} and the second parent P2 has a distribution of {Pr(P2 = T) =
0.6,Pr(P1 = F) = 0.4}. In this case the "And"-node will have a distribution of {Pr(P2 =T) =
0.18,Pr(P1 = F) = 0.82}. When both parent nodes only have a single distribution (a degenerate
distribution), the nodes emulate AND or OR-gates even more: in this case the distribution of the
"And" or "Or"-node will also be a degenerate distribution and will have the state that is the logical
AND or OR of its parents with probability 1.

v, = X
Vo=T | X
Vo=F | &

Table 5.1: The "And" node, a simplified truth table of a node with two parents V, and Vj;: V,, can
take Boolean states and V,, can have any states. If V, is TRUE, the state of this node is equal to
the state of V;, with probability 1, if V, is FALSE, the state of this node is state s’ with probability
1. Note that this node works as an AND-gate if V}, has Boolean states and s’ is set to FALSE.

/
Pr(vand = Uand|vr A Vy) ‘ Vand = Q Vand = b Vand = C Vand = S

V,=T,V,=a 1 0 0 0
V,=T,V,=b 0 1 0 0
V,=T,V,=c 0 0 1 0
V,=F,V,=a 0 0 0 1
V,=F,V,=b 0 0 0 1
V,=F,V,=c 0 0 0 1

Table 5.2: An example of the conditional probability table of an "And" node where variable V,,
can take states a, b and ¢, and s’ is not equal to one of these states.

V, =X
Vo=T | s
V,.=F | X

Table 5.3: The "Or"-node, a simplified truth table of a node with two parents V, and Vj: V, can
take Boolean states and V} can have any states. If V,, is TRUE, the state of this node is equal to s
with probability 1, if V,, is FALSE, the state of this node is equal to the state of V;, with probability
1. Note that this node works as an OR-gate if V,, has Boolean states and s is set to TRUE.

Proof Using these "And" and "Or"-nodes, we will now show that confirming a contrastive ex-
planation is NP-hard.

Theorem 2. The contrastive confirmation decision problem (Definition [5.2.1)) with bounded |S]|
is at least as hard as the Bayesian network classification decision problem (Definition 4.2.1)) and
therefore NP-hard.

We can provide insight into the complexity of this problem using a reduction from the classifi-
cation problem as defined in we will show that for any classification in a Bayesian network
classifier B, we can create another Bayesian network classifier B, such that by finding a contrastive
explanation for B’ we can find any classification for B. This would mean that finding contrastive
explanations is at least as hard as classification as defined in Definition since we can do clas-
sification by finding a contrastive explanation. We will now give an example of how to transform
any Bayesian network classifier B to the correct B'.
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Pr(Vor = vor|[Va A V3) \ Vor = @ \ Vor = b \ Vor = C \ Vor = §
=T, Vy=a
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Table 5.4: An example of the conditional probability table of an "Or"-node where variable V,, can
take states a b and ¢, and s is not equal to one of these states

Proof.

Transformation: Suppose we are given an instance (B, ey, V3, 7) of the Bayesian network classi-
fication decision problem. We now build an instance (B, e, m, ) of the contrastive confirmation
decision problem as follows: we transform B to B’ which corresponds to Figure [5.2} we add two
evidence nodes, A and B, and nodes labeled "And" and "Or" to B. These nodes act as the "And"
and "Or"-nodes described above. The "And"-node takes as input the Boolean node A and the
BN hypothesis node V},. It "returns" with probability 1 one of the values in Q(V},) U {s’}, where
Q(V,) N {s'} = 0. This set of values is then the possible input to the "Or"-node, together with the
Boolean node V. The "Or"-node "returns" with probability 1 one of the values in Q(V}) U {s, s'}.
s in the CPT of the "And"-node will be chosen to be m while s’ can have any arbitrary value
that is not m. We define the evidence from the contrastive confirmation decision problem to be
es = eg U{A =T,B = T}). The hypothetical contrastive explanation we want to confirm is
S={A,B} and x = {A=F,B=F}. Notethat esFmand {A=F,B=F}Ue; F s’
polynomial: We add four nodes with a polynomial CPT, making this reduction polynomial.

correctness:

Lemma 2.1. If (B, ey, V3, ) is a positive instance of the classification problem, (B, es, 7, x) is a
positive instance of the contrastive confirmation decision problem.

Le. all sets S’ C {A, B} predict es\S’ E 7 in the modified network.

Proof. {A, B} has three subsets:
1. 8"={}: (A=T), (B=T). In this case we have already seen that es F s =

2. 8" ={B}: case lor (A=T), (B =F). In this case the "Or"-node still predicts s = 7 by
definition.

3. 8 ={A}: case lor (A=F), (B=T). In this case the "Or"-node takes the value of "And"
and "And" takes the value of the original Bayesian network. Since the original Bayesian
network predicts 7, the "Or"-node will predict .

Lemma 2.2. If (B, es, 7, x) is a positive instance of the contrastive confirmation decision problem,
(B, ey, Vp,m) is a positive instance of the classification problem.

Le. if for all sets 8’ C {A, B}, e2\S’ F 7 is predicted in the modified network, e; E 7 in the
original network.

Proof. For S” = {A}, ex\S’ E 7 implies e; £ m: we know that e; U{(A = F) (B = T)} predicts
m, and in this case the "Or"-node has the same probability Pr(OR = w|es\A U (A = F)) as the
"And"-node Pr(AND = w|ex\A U (A = F)) which has the same distribution as the hypothesis
node of the original network Pr(V;, = m|les\AU (A = F)) = Pr(V}, = 7|ey). The only way for B’
to predict 7 is if B predicts 7 given evidence e;. |

From the above, we can see that there is a polynomial transformation from the classification
decision problem to the contrastive confirmation decision problem. As classification is NP-hard
[6], it follows that confirmation is NP-hard. O
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5.2.2 A naive confirmation algorithm

We can create a simple naive algorithm that checks whether S is a contrastive explanation. This
algorithm has a running time of O(|S|?-I-S(5D). Note that S here refers to the maximum number
of states a variable can have, while S is a set of variables. This gives us an upper bound on the
complexity of the problem, since it is at least solvable in that amount of time. The algorithm
simply checks both conditions: an assignment of the set S results in another prediction than
and no subset of S is a contrastive explanation. The function Classify gives the classification of
the Bayesian network classifier when given evidence e.

Algorithm 1 Contr_check(S)

m = Classify(e)
if Vo € Q(S; e)(classify(x U (e\S)) == 7) then
return FALSE
end if
for S’ ¢ S do
for x € Q(S’;e) do
if —classify(x U (€\S’)) == 7 then
return FALSE
end if
end for
: end for
return TRUE

— e
M2

Hypothesis
node of any
BN

Figure 5.2: A visualization of the transformation in the proof of Theorem
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5.2.3 Confirmation with known abductive explanations

Ignatiev et al. [19] have shown that, when all abductive explanations A are known, every con-
trastive explanation is a minimal hitting set of A.

Definition 5.2.2. Hitting set

Instance (S): A set of sets S
Hitting set: A hitting set m of S is a set that contains at least one of the elements of every set
inS.VseS:mns#(.

A minimal hitting set (MHS) is simply a hitting set of which no subset is a hitting set.

As an example, consider § = {{4, B,C},{A,C,D},{C, E}}. Possible minimal hitting sets are
now: {C}, {A,E} and {B,D,E}. Sets such as {A4,C} are a hitting set but not an MHS, as a
subset ({C}) is already a hitting set.

This means that if all abductive explanations are known, we can easily confirm a contrastive
explanation: we simply check if removing any variable from a contrastive explanation S would no
longer make it a hitting set for A. For every variable in S, we check if every set A € A is still hit
when it is removed. Confirming a contrastive explanation can be done this way in O(|E|-|.A| - |S|?)
time, where |E| - |S]| is the time it takes to trivially check whether S without one variable hits
another set (as all sets in A have at most | E| variables).

5.3 Finding any contrastive explanation

Another problem is finding a contrastive explanation. This problem is defined in Definition [5.3.1

Definition 5.3.1. Any contrastive explanation

Instance (B,e,n): A Bayesian network classifier B including a directed acyclic graph G =
(Va, Ag), a set of evidence e € Q(E) where E C V¢ and a prediction 7 for which e Fg 7.
Output: any set S C E for which (1) e\S ¥ 7 and (2) for which no subset is a contrastive
explanation: V(S C S): e\S’ Fg 7.

5.3.1 Complexity

A prediction has a contrastive explanation if and only if there is any input for which the classifier
predicts another class. While most useful classifiers are able to predict multiple classes, one can
trivially create a Bayesian network for which only one hypothesis will ever get the highest probabil-
ity. We will show that even determining whether any contrastive explanation exists is not always
possible in a polynomial number of classifications (assuming P # NP). This means there is no
hope of always finding a contrastive explanation in polynomial time, as finding one would also tell
us whether one exists. We can show this by proving that it is NP-complete to determine whether
there exists a classification with a class other than some specified class m even when classification
can be done in polynomial time. We will give a reduction from CNFSAT (satisfiability where the
formula is in CNF) that gives us an instance of the multiple classification decision problem as
defined in Definition [5.3.3] for which a yes-instance corresponds to a yes-instance of satisfiability.

Definition 5.3.2. CNFSAT Instance (F): A formula F in conjunctive normal form using the
variables F'.
Question: Is there an assignment f € Q(F') such that F evaluates to TRUE?

Definition 5.3.3. Alternative classifications decision problem Instance (B,e,n): A Bayesian
network classifier B including a directed acyclic graph G = (Vg, Ag), a set of evidence e € Q(E)
where E C Vi and a prediction 7 for which e Fg .

Question: Is there a different set of evidence a € Q(E) for which a Fg —7?

Theorem 3. The alternative classifications decision problem for Bayesian networks on which
inference takes polynomial time is NP-complete.

Proof.
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Lemma 3.1. The alternative classifications decision problem for Bayesian networks on which
inference takes polynomial time is NP-hard.

Lemma 3.2. The alternative classifications decision problem for Bayesian networks on which
inference takes polynomial time is in NP. L.e. a solution to the problem can be verified in polynomial
time.

O
The proof for Lemma [3.1}
Proof.

Transformation: Suppose we are given an instance of CNFSAT with logical formula F containing
variables E. We now build an instance (B, e, 7) of the alternative classifications decision problem:
as we have seen in paragraph [5.2.1.1] we can create BN-nodes that act similarly to AND- or OR
gates. If we only use Booleans, probabilities of 1 or 0, define s’ as FALSE and s as TRUE, and only
use degenerate distributions, they function exactly the same. This means that we can also create
a network that represents any logical formula containing only AND and OR. If we (partially) invert
the probability table, we can also use negations. Using such a network, we can represent F and E
as a Bayesian network B = (G, Pr), as pictured in Figure for an example formula. The network
has the following properties:

1. Each variable in FE is represented as a binary root node in G.

2. All binary logical operators in F are represented by nodes that have two parents, capturing
the two logical expressions the operator takes as input. The negation of an input is included
in the node for the binary operator.

3. The hypothesis node is the leaf node representing the "outermost" logical operator: the
operator that is used last when computing the value of the formula.

(AVBV-C)A (-AV C)

Figure 5.3: A Bayesian classifier representing a logical formula

As all nodes in E are evidence nodes, classification can be done very efficiently in this Bayesian
network: by applying evidence absorption [42], we can, in polynomial time, remove the outgoing
arrows from the evidence nodes by including the evidence in the CPTs. We now have a simple
singly connected graph which allows us to calculate inference in polynomial time, using for example
Pearls algorithm.

This way, we can create a Bayesian network classifier corresponding to any CNFSAT instance that
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can classify in polynomial time. We can easily create an assignment e where the class FALSE is
predicted by using evidence where one of the CNFSAT clauses is FALSE. This can be done assigning
the inverse of every literal in the clause to the variables (i.e. (mA, =B, C) for the example in Figure
. A situation where evidence a makes the prediction TRUE, however, would correspond to
a solution of the CNFSAT problem, which is NP-complete. A contrastive explanation to any
assignment where m = FALSE would predict TRUE and prove a yes-instance of SAT. This means
if we can determine whether there is a contrastive explanation using a polynomial number of
inferences, we can solve CNFSAT in polynomial time.

polynomial: To convert the CNFSAT instance to a Bayesian network we add exactly one node for
every variable and one node for every A and V. The number of parents is at most two, bounding
the size of the probability tables. This means the reduction can be done in polynomial time.

correctness:

Lemma 3.3. If (F) is a positive instance of CNFSAT, (B,e, ) is a positive instance of the
alternative classifications decision problem.

Proof. Because the internal nodes function exactly the same as logical operators, the Bayesian
network predicts TRUE with a probability of 1 for any a that satisfies /. This answers the
alternative classifications decision problem: we now know there exists a set of evidence a that
results in a different prediction than m = FALSE, so there exists an alternative classification. |

Lemma 3.4. If (B, e, ) is a positive instance of the alternative classifications decision problem,
(F) is a positive instance of SAT.

Proof. A positive instance of the alternative classifications decision problem predicts —-w = T for
Bayesian network. Because the internal nodes function exactly the same as logical operators, a
prediction of TRUE means the evidence a evaluates F to TRUE and solves this instance of SAT. W

From the above, we can see that there is a polynomial transformation from CNFSAT decision
problem to the alternative classifications decision problem. As CNFSAT is NP-hard, it follows
that the alternative classifications decision problem and therefore the any contrastive explanation
problem is NP-hard. O

The proof for Lemma [3.2}

Proof. By definition, classification can in this case be done in polynomial time. By defining our cer-
tificate as an evidence assignment a € Q(E) for which a Fg —7, we can confirm this in polynomial
time using inference. O

5.3.2 Algorithm

Again we will give a naive algorithm that finds a contrastive explanation for any classifier by
applying inference a lot of times. Note that such an approach is guaranteed to take an exponential
number of inferences:

Theorem 4. It is not possible to create an algorithm that finds a contrastive explanation with
a worst-case time that is less than exponential while only interacting with the Bayesian network
through inference.

Proof. Since a Bayesian network can represent any distribution, it might be possible that only a
single combination of evidence predicts another class, which can be any arbitrary combination of
evidence (for example by using the "And"-nodes discussed earlier). This means the only combi-
nation of evidence that predicts another class might be the last classification we do regardless of
the order in which we do inference, so we know that worst-case we need to do inference for all
combinations of evidence to find our contrastive explanation. O
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Algorithm 2 Potential _contrastive(c)

1. for V, € (¢) do
2:if classify((c\V,) U (a\(c\V,))) # 7 then

3: return Potential _contrastive(c\V,)
4:  end if
5: end for

6: return c

To make things slightly less trivial, we also consider the situation where we know a classification
(a,—7) where a € Q(FE) that predicts another class. In this case we will first compute a potential
contrastive explanation in a polynomial number of inferences using Algorithm[2} Assume ¢ initially
contains all evidence assignments in a that are different in e.

This does not always result in a valid contrastive explanation, just a prediction for which
you cannot change one more variable towards the original prediction while still getting another
predicted class. If any combination of evidence for which a subset of ¢ is different to e predicts
anything other than 7, this is not a contrastive explanation.

However, we now have a smaller subset of variables we have to consider to get at least one
contrastive explanation. If ¢ is not a contrastive explanation, there must be at least one contrastive
explanation as a subset of ¢ since ¢ can have an assignment ¢ that predicts another class, which
means it is only not a contrastive explanation if a subset of ¢ is a contrastive explanation.

We can now determine all possible combinations of values for S = ¢ using Algorithm [3] starting
from the smallest subsets to find out which is the smallest number of changes that results in a
different prediction.

Algorithm 3 Any contrastive(S)

: for s € Q(S) do
if classify(s) # m then
return s
end if
end for
return Error: No contrastive explanation exists

Note that the order in which the assignments to evidence are considered matters: the algorithm
only works if we consider any assignment that has variables V' that are different than in e before
all assignments for which a superset V/ D V are different than in e. For clarity of the algorithm
this is not shown to be enforced in the pseudocode. The reason this is necessary is that then the
second requirement for contrastive explanations is enforced by the order: if a set is a contrastive
explanation, it would have terminated the algorithm before testing its superset. Algorithm [] is
identical but includes a way to enforce this order.

The algorithm creates all possible subsets of E, and tries all combinations where the variables
in the subset have a different assignment than in e. These subsets are created by passing over all
variables in F/, and adding them to all subsets, starting with the empty set. When the algorithm
creates a subset S, a specific node V,, has just been added to the subset. S has, by definition, been
created after S\V,,. S has also been created after S\V,, for any V,.: V,, has also been added to
S\V,r, but S\(V,, A V,,») is earlier in the list than S\V,,, because when V,,» was added, the version
without V), already existed. This means the order in which the subsets are created guarantees that
an assignment to evidence is tested before all assignments where a superset of evidence is different
than in e.

Algorithm runs in O(I - S!S ‘) time, where S again refers to the maximum number of states
a variable can have. We have seen that, if are unable to interact with a classifier except through
classification (i.e. we cannot use any information about CPTs or the structure of the network
directly) and we did not have a potential contrastive explanation, this is an optimal algorithm.
This is due to the fact that worst-case, it is always necessary to try every combination of evidence,
as we saw in Theorem [l
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Algorithm 4 Any contrastive(S)

1: List<Set> sets = {0}
2: for inputltem € F do
3: for set € sets do

4: newSet = set U inputltem

5: for s € Q(newSet; e) do

6: if ((e\newSet) U s) F -7 then
7 return newSet

8: end if

9: end for

10: temp.add(newSet)

11:  end for

12: end for

If we did have a potential contrastive explanation however, the time required may be much
less: every time we were able to remove a state from S, the worst-case time to find a contrastive
explanation gets divided by the number of states this node can have.

5.3.3 Known abductive explantions

Just like we saw in Section [5.2.3] we can use the minimal hitting set relationship to easily solve the
problem from definition when all abductive explanations A are known: given a set V' that is
initially equal to E, for each node V,, € E we can check if V\V,, still hits all sets in A. If it does,
we can remove V. from V and continue. We only have to make a single pass over the variables,
as it will never be possible to remove a variable from V,, that we could not remove before. This
can easily be done with a running time of O(|A| - | E|?) where |E|? is the time it takes to trivially
check whether any set hits another set (as all sets have at most | E| variables).

5.4 Other problems about finding contrastive explanations

As discussed earlier in Section we can distinguish many other problems that deal with finding
contrastive explanations. In this section we will discuss those and what we know about their
complexity.

5.4.1 Finding the smallest contrastive explanation

While something can only be a contrastive explanation if no subsets are a contrastive explana-
tions, there can still be multiple contrastive explanations of different sizes. A smaller contrastive
explanation may be easier to interpret for the user, and therefore more suitable as an explanation.
We can define the problem as in Definition [5.4.1]

Definition 5.4.1. Smallest contrastive explanation Instance (B, em): A Bayesian network classi-
fier B including a directed acyclic graph G = (V¢g, Ag), a set of evidence e € Q(E) where E C Vi
and a prediction 7 for which e Fg .

Output: any set S C E for which (1) e\S g 7 and (2) for which no smaller set is a contrastive
explanation: VS’ C E : |S’| < |S| = e\S'Eg .

Trivially, this problem is at least as hard as the problem of finding any contrastive explanation
(Definition , as the smallest contrastive explanation is by definition a contrastive explanation
and therefore a solution to that problem. This means the problem is NP-hard even when inference
can be performed in polynomial time.

30



5.4.2 Finding the number of contrastive explanations

We can also define the problem of finding the number of contrastive explanations:

Definition 5.4.2. Number of contrastive explanations Instance (B, e,m): A Bayesian network
classifier B including a directed acyclic graph G = (Vg, Ag), a set of evidence e € Q(E) where
E C Vg and a prediction 7 for which e Fg .
Output: The number of sets S C E for which (1) e\S ¥ 7 and (2) for which no subset is a
contrastive explanation: VS’ C S : e\S’ Fg 7.

Again, we already have a more general problem for which we have a lower bound on the
complexity: finding the number of contrastive explanations immediately tells us whether any
contrastive explanations exist, and as we have seen this is equivalent to the question whether any
other class than 7 can be predicted using the Bayesian network. Trivially, this means finding the
number of contrastive explanations (Definition [5.4.2)) is at least as hard as finding out whether any
other prediction than 7 can occur (Definition and is therefore NP-hard even when inference
can be done in polynomial time.

5.4.3 Finding all contrastive explanations
We can also define the problem of finding all contrastive explanations:

Definition 5.4.3. All contrastive explanations Instance (B, e, 7): A Bayesian network classifier
B including a directed acyclic graph G = (Vg, Ag), a set of evidence e € Q(E) where E C Vg
and a prediction 7w for which e Fg .

Output: All sets S C E for which (1) e\S ¥z 7 and (2) for which no subset is a contrastive
explanation: VS’ C S : e\S’ kg 7.

Again, obtaining the answer to this problem would immediately solve the problem of finding
out whether any other prediction can occur as defined in Definition This means the problem
is again NP-hard even when inference can be done in polynomial time.

As solving this problem immediately answers all problems related to contrastive explanations
before this point, we will provide a trivial algorithm that serves as an upper bound for the time-
complexity of any problems for which we have not yet provided an algorithm. The pseudocode
can be found in Algorithm The majority of the code makes sure no set is tested twice, and
that sets only get tested for a contrastive explanation when their subsets have already been tested
and were not a contrastive explanation. This means we only have to test for evidence where all
variables in the contrastive explanation get assigned a different variable than in E. This is because
all combinations of evidence where at least one of those variables has an assignment in E has
already been tested and must have predicted 7. Line[17] determines whether a configuration of the
potential contrastive explanation S predicts another class. The algorithm takes O(I - SIF |) time:
worst-case it visits all possible configurations of evidence, and classifies once for all of them.

The order of creating the subsets is the same as in the algorithm in Section [5.3] however, this
time we have to make sure that we do not consider sets for which a subset has already predicted
another class.

Smarter algorithms have been proposed by Koopman [2I] and Ignatiev et al. [19]. The algo-
rithm by Koopman is effectively an improvement to the algorithm that classifies a lot of times,
while the algorithm by Ignatiev et al. is able to convert some Bayesian networks to a more efficient
representation and find explanations from there.

Chapter [7] also introduces an algorithm that utilises the structure of a Bayesian network to
reduce the computations required.
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Algorithm 5 All_contrastive(E)

1: List<Set> sets = {0}
2: List<Set> retSets = ()
3: for inputltem € E do
4: for set € sets do

5: any = FALSE

6: newSet = set U inputltem
7 for var € set do

8: if newSet\var¢sets then
9: any = TRUE

10: break

11: end if

12: end for

13: if any then

14: continue

15: end if

16: for s € Q(newSet; e) do
17: if ((e\newSet) U s) F =7 then
18: retSets.add(newSet)
19: any = TRUE

20: found = TRUE

21: break

22: end if

23: end for

24: if —any then

25: sets.add(newSet)

26: end if

27:  end for

28: end for

29: return retSets

5.5 An overview of complexities

In this section we will give an overview of the discussed complexities and point out which complex-
ities have not been discussed and might be interesting for further research. Consider Table
Note that a cell in column A always represents a problem that is at least as hard as its neighbour
in column B. This is because column B has strictly more information.

No information For cell Al and A2 the NP-hardness has been proven in Sections [5.2] and
respectively. A3-A5 are at least as hard as one of these problems as discussed in Section

Counterexample Column B is added as we have a better known algorithm for confirming or
finding a contrastive explanation when a counterexample is known. There might be more efficient
algorithms for some of the other problems as well, but the complexities shown in the table are just
a bound on the runtime of one of the simple algorithms we discussed.

All abductive explanations known C5 has been shown to be solvable by finding all MHSs
of all abductive explanations [19]. The method Ignatiev et al. proposed to find all contrastive
explanations is likely faster than the naive algorithms we discussed before, as it does not depend
on inference. This means it is probably a better way to solve C3-C5. The runtime of this algorithm
was not explicitly mentioned and may depend on the fastest known algorithms to solve the MHS or
vertex cover problem. C1 and C2 can be solved in polynomial time and have been briefly discussed
at the end of their respective sections.
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A: Nothing B: Counterexample | C: All abductive
C explanations A

O(|S]?-I- SUSh)

1. confirmation of
S (Def[5.2.1)

2. any (Def[5.3.1)
3. smallest

(Def[5.4.1)

4. number

(Def [5.4.9)

5. all

(Def [5.4.3)

Table 5.5: An overview of discussed complexities: the rows represent the problem definitions and
the columns represent the known information. The cell colours indicate a known NP-hardness
proof, while the text contains the worst-case runtime of the discussed algorithms. An orange cell
indicates that the problem is NP-hard, a red cell indicates that the problem is NP-hard even when
inference is guaranteed to be possible in polynomial time. A green cell indicates that a polynomial
time algorithm is known. White means no NP-hardness was discussed for this problem. The rows
and columns are named to easily refer to individual cells.

O(I - S'€Ty
O(I - STETy

O(I - S'F)

O - STENy 9]

5.6 Discussion

Ignatiev et al. [19] have shown that finding all contrastive explanations given all abductive expla-
nations (see next chapter) can be solved by determining all MHSs. If these problems are equivalent,
the known NP-hardness of MHS problems gives us additional information about the NP-hardness
of some of the discussed problems. Specifically, we then know that calculating the smallest ab-
ductive explanation and calculating all explanations are still NP-hard when given all abductive
explanations. This would colour B3, B5, C3 and C5 orange in Table However, we would have
to prove that the problems are equivalent, which we decided not to include in this thesis.

The runtime of the polynomial algorithms discussed in [5.2.3] and [5.3.3] can be significantly re-
duced by using a hashset or similar datastructure to store the hypothetical contrastive explanation,
and more efficiently calculate the intersections with the known abductive explanations. We expect
that this would remove an |E| term from the running time for both algorithms.
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Chapter 6

Abductive explanations

In this chapter, we will discuss what abductive explanations are. We will also distinguish between
different problems, just as we did for contrastive explanations, and discuss the complexity of these
problems. Let us first define abductive explanations:

Definition 6.0.1. Abductive explanation

Instance (B, (e,n)): A Bayesian network classifier B including a directed acyclic graph G =
(Va, Ag), and a pair (e, 7) where e € Q(FE) and E C V¢ for which e Fp ,

Abductive explanation: Any set S C E for which (1) (S € e) Fg 7 and (2) no subset is an
abductive explanation: V(S’ C S) : 8’ € e ¥ 7.

This means that an abductive explanation is a minimal subset of the evidence nodes for which
the current assignments guarantee the observed prediction 7, regardless of the assignment to the
other evidence variables.

As an example, consider Figure [5.1] again. Just like for the contrastive example, we will take
a look at the prediction with evidence-classification pair ({E1 =T,E2 =T,E3 = F}, T). {E3}
would be a valid abductive explanation, as all sets where E3 = F' predict TRUE. In this case,
this is the only abductive explanation. Also note how the fact that this is the only abductive
explanation is an example of the MHS (see Section relationship between the contrastive and
abductive explanations: as seen in Chapter [5 the only contrastive explanation in this case is also
{E3}, which is the only MHS of itself.

Consider the other example from Chapter Given the evidence-classification pair ({F1 =
F,E2 = F,E3 = F},T), we have seen that the contrastive explanations are {F1, E3} and
{E2,E3}. Again, {E3} is an abductive explanation, as all sets where E3 = F predict TRUE.
This time, however, {E1, E2} is also an abductive explanation, as all combinations of evidence
where 1 = F and E2 = F predict TRUE, while not all sets where £1 = F do, and not all sets
where E2 = F predict TRUE either. Again, we can also look at the MHS relations:

o {E3} is an MHS of {{E1, E3},{E2, E3}}
o {E1,E2} is an MHS of {{E1, E3}, {E2, E3}}
e {E1,E3} is an MHS of {{E3}, {E1, E2}}
o {E2, E3} is an MHS of {{E3}, {E1, E2}}

There do not exist any other MHSs of {{F1, E3},{E2, E3}} or {{E3},{E1, E2}}.

6.1 Defining the problems

We can mostly make the same distinctions as with contrastive explanations: we can distinguish
the problem of verifying an abductive explanation, finding any abductive explanation, finding
the smallest abductive explanation, finding the number of abductive explanations, and finding all
abductive explanations. Just like for contrastive explanations, these definitions and the algorithms
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in this chapter are model-agnostic and can be used for any classifier, though they are only discussed
for Bayesian network classifiers.

Again, we can also distinguish what other information we have: if we know all contrastive
explanations, the problem might become easier due to the MHS relation.

Below we will define the problems we will discuss for abductive explanations. For the abductive
confirmation decision problem, we assume that we already know that the potential abductive ex-
planation predicts 7, as otherwise, it would also include the classification problem. The hardness
we will show for this problem also holds if we do not yet know whether the potential abductive ex-
planation predicts 7, while that would not work the other way around. The abductive confirmation
decision problem only deals with the minimality constraint of the potential abductive explanation.

Definition 6.1.1. Abductive confirmation decision problem

Instance (B,e,m,x): A Bayesian network classifier B including a directed acyclic graph G =
(Vg, Ag), a set of evidence e € Q(E) where E C Vi, a prediction 7 for which e Fg 7, and a set
of variables § C E with corresponding assignment & = S € e for which x Fg .

Question: Do no sets S’ C S exist such that (S’ € e) Fg w7

Note that this question is identical to the question of whether S is an abductive explanation
of (e, ).

Definition 6.1.2. Any abductive explanation

Instance (B,e,m) : A Bayesian network classifier B including a directed acyclic graph G =
(Va,Ag), a set of evidence e € Q(E) where E C Vi, and a prediction 7 for which e Fg 7.
Output: Any set S C E for which (1) (S € e) Fg 7 and (2) for which no subset is an abductive
explanation: V(S C S): (S’ € e) ¥ .

Definition 6.1.3. Smallest abductive explanation

Instance (B,e,m): A Bayesian network classifier B including a directed acyclic graph G =
(Va, Ag), a set of evidence e € Q(E) where E C V¢ and a prediction 7 for which e Fg 7.
Output: any set S C E for which (1) (S € e) Fg 7 and (2) for which no smaller set is an
abductive explanation: VS’ C E : |S’| < |S| = (S’ €e) Ep .

Definition 6.1.4. Number of abductive explanations

Instance (B,e,m): A Bayesian network classifier B including a directed acyclic graph G =
(Va, Ag), a set of evidence e € Q(E) where E C V¢ and a prediction 7 for which e Fg 7.
Output: The number of sets S C E for which (1) (S € e) Fg m and (2) for which no subset is an
abductive explanation: VS’ C S : (S’ € e) ¥ .

Definition 6.1.5. All abductive explanations

Instance (B,e,m): A Bayesian network classifier B including a directed acyclic graph G =
(Va, Ag), a set of evidence e € Q(E) where E C V¢ and a prediction 7 for which e Fg 7.
Output: The set of all sets S C E for which (1) (S € e) Fp 7 and (2) for which no subset is an
abductive explanation: VS’ C S : (S’ € e) ¥ .

6.2 NP-hardness

In this section, we will discuss the NP-hardness bounds we found for the problems in the previous
section.

We will prove that the abductive confirmation decision problem is co-NP-hard. To do this, we
will again use a reduction from the classification problem. To prove co-NP hardness, we will show
that the inverse problem of the abductive confirmation decision problem is NP-hard. The inverse
of a problem P is the problem of determining whether a given input is not a solution to P. We
can define the inverse abductive confirmation decision problem as follows:

Definition 6.2.1. Inverse abductive confirmation decision problem
Instance (B,e,m,x): A Bayesian network classifier B including a directed acyclic graph G =
(Va,Ag), a set of evidence e € Q(E) where E C Vi, a prediction 7 for which e Fg 7, and a set
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of variables S C E with corresponding assignment & = S € e for which x Fg .
Question: Does any set S’ C S satisfy (S’ € e) Fp w7

Note that this question is identical to the question whether S is not an abductive explanation
of (e, ).

Evidence
nodes of
network B

Aex,Bex | Aex,Béx | Agx,Bex | Agx,Béx
Pr(And=T|A&B) 1 0 0 0

Pr(And=F|A&B) 0 1 1 1
Y=T Y=F&And=F
And=T,H=1 | And=T,H#1T | And=F,H=11 | And=F,H#™ H=m H#m
Pr(H2=T|And&Y&H) 1 1 0 0 1 0
Pr(H2=F|And&Y&H) 0 0 1 1 0 1

Figure 6.1: A visualisation of the transformation used in the NP-hardness proof of the inverse
abductive confirmation decision problem. The original network is abstractly represented using two
nodes to denote all evidence nodes and the hypothesis node. A number of nodes are added to the
original network. Node Y is an evidence node. The figure contains a description of the CPT of
"And*"-nodes and H2. Note that in the tables shown, multiple cells of the CPT are merged. For
example, H # 7 might have multiple options depending on the number of states of H, but they
have the same distribution in their CPT as described in the table. Note that the combination of
Y = F and And = T cannot occur as Y is one of the ancestors of the bottom "And"-node. This
combination is therefore not shown in the table.

Proof.

Transformation: Suppose we are given an instance (B, e1, Vj,,m) of the Bayesian network clas-
sification decision problem. We now build an instance (B, e, m3 = TRUE, & = e5) of the inverse
abductive confirmation decision problem as follows: we transform B to B’ which corresponds to
Figure 6.1

We add one evidence node Y and a hypothesis node H2. We connect Y and the evidence
nodes of B to H2 using "And" and "And*" nodes as shown in the figure. Every "And" or "And*"
node is connected in such a way that it predicts TRUE iff its ancestor evidence nodes all have the
assignment they have in @ = e; U{Y = T}. "And"-nodes have been discussed in Section
the CPT of "And*"-nodes is specified in Figure [6.11 The H2 node is specified in the figure too
and is the new hypothesis node of B’. H2 is also connected to the original hypothesis node H and
to Y directly. The evidence es is equal to eo = = e; U{Y = T'}. The hypothetical abductive
explanation we want to disprove is S = es.

To show that & F m (which is a requirement for (B’,es, 71, = TRUE, & = e3) to be a valid
instance of the inverse abductive confirmation decision problem), we must look at the definitions
of the "And" and "And*" nodes. By definition, the "And*"-nodes predict TRUE if and only if
both of their parents have the same value as they do in . This means that they will all have state
TRUE with a probability of 1. As the "And"-nodes function identically to a logical and-gate, they
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will also predict TRUE with probability 1 since both of their parents predict TRUE with probability
1. Regardless of the value of H, the H2 node will have state TRUE when the bottom "And"-node
has state TRUE and Y = TRUE. This means that the network predicts TRUE with evidence x = e»
due to the CPT of H2.

Polynomial: We add |E| + 2 nodes with polynomial CPTs, making this reduction polynomial.
We need the |E| "And" or "And*" nodes to avoid an exponential increase in the CPT size with
respect to the number of evidence nodes if we were to use a single CPT connected to all evidence
nodes.

Correctness:

Lemma 4.1. If (B,e;,V},m) is a positive instance of the classification problem, then
(B', e2, TRUE, e3) is a positive instance of the inverse abductive confirmation decision problem.

Proof. In this case, we can disprove the potential abductive explanation ey as there is a subset
e1 C ey that predicts TRUE regardless of the value of ex\e1 =Y. In B’, Pr(H|e;) will still have
the same distribution as Pr(H|e;) in B, as Y is d-separated from the original network, because all
chains are blocked by e; and the fact that H2 is a head-to-head node without any evidence nodes
in its descendants. If B originally predicted 1, this will make B’ predict Pr(H2 = TRUE|e3) > 0.5
when Y = FALSE (and the bottom "And"-node is also FALSE as a result) by definition of its CPT.
This means B’ will predict TRUE regardless of the state of Y, which means e; or one of its subsets

must be an abductive explanation. Therefore, e5 cannot be one. |

Lemma 4.2. If (B’ ey, TRUE, e2) is a positive instance of the inverse abductive confirmation
decision problem, (B, e, V), m ) is a positive instance of the classification problem.

Proof. In other words, we will prove that if « is not an abductive explanation, the original network
B must predict w. The only way for & to not be an abductive explanation is if it has a subset
that is an abductive explanation. If a subset of x is an abductive explanation, for at least one of
the variables V; in @ the network must predict TRUE for all assignments of V;. For the values of
V; that is not in x, the lowermost "And"-node will have state FALSE with probability 1. This is
because one of the "And*" nodes will have state FALSE with probability 1 as one of its parents,
V;, does not have the same value as in x.

This further means that the only way for B’ to predict TRUE regardless of the value of V; is
if H2 predicts TRUE while the bottom "And"-node has state FALSE with probability 1. The only
way for that to happen with the CPT of H2 is if Y = FALSE and H = 7. This means that V; must
be Y, as it is the only way to get Y to be false whenever V; does not take the value it has in x. It
furthermore means that the original network must predict # whenever the value of V; is not equal
to its value in @, as that is the only other way for H2 to predict TRUE. As V; =Y, it does not
affect H, and H must predict state 7 when using evidence e; (regardless of whether it is in B or
B). |

From the above, we can see that there is a polynomial transformation from classification decision
problem to the inverse abductive confirmation decision problem. As classification is NP-hard [6],
it follows that inverse abductive confirmation is NP-hard and therefore abductive confirmation is
co-NP-hard. O

6.3 Algorithms

Algorithms for finding abductive explanations efficiently have been proposed by Ignatiev et al. [19]
and Koopman [2I]. To compare the complexities of the different problems, we will again describe
a few simple naive algorithms that provide an upper bound on the running time.

Algorithm [f] is capable of finding all abductive explanations and serves as an upper bound for
all introduced problems, as it can solve all of them.

Algorithm [f] visits all subsets of E to check for the first property of abductive explanations
(S € e E m). After it has found all sets for which this property holds, it finds the minimal ones
(Line . The algorithm has a number of ways to improve its efficiency.
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Algorithm 6 All abductive(E)

1: List<Set> retSets = ()

2: subsets = List({E})

3: for input_item € E do
4:  for subset € subsets do

5: any = FALSE

6: for var € (E\ subset) do

7: if (subset U var) ¢ subsets then
8: any = TRUE

9: break

10: end if

11: end for

12: if any then

13: continue

14: end if

15: new_potential = subset \ input_item
16: for s € Q(E\new_potential; e) do
17: if new potentialus F -7 then
18: any = TRUE

19: break
20: end if
21: end for
22: if —any then
23: subsets.add(new_ potential)
24: end if

25:  end for
26:  for subsetl € subsets do

27: minimal = TRUE

28: for subset2 € subsets do
29: if subset2 C subsetl then
30: minimal = FALSE
31: break

32: end if

33: end for

34: if minimal then

35: ret _sets.add(subsetl)
36: end if

37:  end for

38: end for

39: return ret_ sets

e The (sub)sets are checked from large to small (i.e. a set is always checked after all its
supersets). If for any set X, X E 7 does not hold, all subsets X’ C X can also never be
an abductive explanation, as the same variable assignment invalidates both of these sets.
This means we do not have to visit the subsets of sets we already ruled out as abductive
explanations, acting as a manner of early-stop. This is checked in Line [6] To enforce that
every set is checked after its supersets, the sets are generated as follows: we visit all variables
in E in order (Line [3]), and create new subsets by removing this variable from every existing
subset in the order in which we created them (Line [15)). This means that after removing a
variable V;, from a set Y, we know that Y'\V, has been created later than Y. Because we
remove new nodes from sets in the order in which the sets were created, this also works for
all subsets of Y and Y'\Vj,: the version with Vj, is always created before the version without
Vy. As this works for all nodes, we know that any set is created after all its supersets. Using
induction we can also easily see that this way of generating sets also does not create duplicate
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sets: when removing a node from all sets, this does not create duplicates or sets that already
exist as long as all existing sets do not contain duplicates. As we do not start out with any
duplicate sets, no duplicate sets can ever exist.

e When checking if a set X can be an abductive explanation, we know that all of its supersets
already satisfy the first condition of abductive explanations, as explained in the previous
point. To check whether X could be an abductive explanation, we have to check if there is any
combination of assignments to E\X that predicts any other class than 7. We have already
checked all combinations where at least one variable V,, in E\X has the same assignment
as in e (in that case, we already checked this combination when checking whether X UV,
could be an abductive explanation). This means we only need to check the combinations
where none of these variables have the same value as in e. If the variables are binary, we
only need to test one assignment per subset, as there are only two possible assignments for
each variable. In the pseudocode, this is handled in Line [I7]

The algorithm runs in O(I - S!E!) time, as, in the worst case, it has to apply inference for all
subsets of evidence. Here, S is a bound on the number of states a variable can have.

To find any abductive explanation and confirm an abductive explanation, we can also create
other algorithms that might be more efficient:

Algorithm [7] finds an abductive explanation by passing over all nodes in S = E once, and
checking if 7 still gets predicted when the node is removed for all assignments (S € e) U Q(e\S)
(i.e., all assignments where nodes in S take their values in e, and all other nodes can take any
value). If it does, the node will be removed from S permantently. This results in a valid abductive
explanation, as it is a minimal set that is still guaranteed to predict w. Calculating this takes
O(|E|-I-S®l) time. This means that worst-case, Algorithm@for finding all abductive explanations
needs less time while still giving the correct results. However, Algorithm [7] also takes at most
O(|E|- I - 8™ |EI*+1) time when the abductive explanation we find is of size n. This is because the
algorithm only loops over all assignments of the nodes that are not in the explanation (and one
node for which we are testing whether it is in the explanation). This means that this algorithm
might be useful if it is known that most abductive explanations are relatively large.

Algorithm 7 Any abductive(S)
1: for V; € S do

2:  Bool any = FALSE

3:  for s € Q(e\(S\V;)) do

4: if neg(((S\Vi) € e) Us ) then
5: any = TRUE

6: end if

7. end for

8 if —any then

9: S = S\VZ

10:  end if

11: end for

12: return S

Algorithm [§] works similarly, but given a potential abductive explanation S it checks for every
variable V; in S whether S\V; is still guaranteed to predict = without it (if so, a subset of S, is an
abductive explanation, so § cannot be one). The runtime of this algorithm is O(SUE!=ISI+1).|§|.T)
time: for every element in S, we apply inference for every possible combination of Q(E\S).
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Algorithm 8 Confirm_abductive(S)
1: for V; € S do

2:  Bool any = FALSE

3:  for s € Q(e\(S\V;)) do

4: if neg(((S\V;) € e) Us k m) then
5: any = TRUE

6: end if

7. end for

8  if —any then

9: return FALSE

10:  end if

11: end for

12: return TRUE

6.4 An overview of complexities

Just like with contrastive explanations, we can visualize the bounds we have found to the complexity
of the problems using a table (see Table . Column B is identical to the problems for contrastive
explanations, because we can use the same MHS property to compute abductive explanations from
contrastive ones that we used to compute contrastive explanations from abductive ones. We have
seen that the problem from Definition is co-NP-complete, which explains the colour of cell
Al. We will now show that all problems in column A, except A4, are at least as hard as the
abductive confirmation problem.

Specifically, they are at least as hard as the abductive confirmation decision problem, where the
potential abductive explanation is the entire evidence set E. This is a specific case of the general
abductive confirmation decision problem. However, as our reduction from the classification problem
in Section always results in an abductive confirmation decision problem with this property, we
know that this special case is also co-NP-hard.

We have seen that all problems can be solved by the same algorithm that, in the worst case,
computes inference for all possible combinations of evidence.

Let us see how the results of problem A2, A3 and A5 answer problem A1l:

e A2: When we find any abductive explanation, E can only be an abductive explanation if it
is the one found, as all other sets are a subset of it. If it is an abductive explanation, it is
the only one for the same reasons, and therefore it will be found.

e A3: The smallest abductive explanation is still an abductive explanation, so the same rea-
soning as in A2 works.

e A5: We can simply check if F is in the list of abductive explanations, though if it is, it must
be the only one.
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A: Nothing B: all abductive
explanations A

1. confirmation of
S (Def[6.1.1))

2. any (Def|6.1.2)
3. smallest

(Def[513)

4. number

(Det L)

5. all

(Def[6.1.5)

Table 6.1: An overview of discussed complexities: the rows represent the problem definitions and
the columns represent the known information. The cell colours indicate a known hardness proof,
while the text contains the worst-case runtime of the discussed algorithms. A purple cell indicates
that the problem is co-NP-hard, and a green cell indicates that a polynomial time algorithm is
known. White means no NP-hardness was discussed for this problem. The rows and columns are

named to easily refer to individual cells.
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Chapter 7

Constraint propagation algorithm

In this section, an algorithm will be introduced: the constraint propagation algorithm. This
algorithm will help us find abductive and contrastive explanations by answering a more general
query: which combinations of assignments to the evidence variables would satisfy a constraint on
a probability of interest?

More formally, given a set of evidence variables E and a constraint of the form Pr(v,le) < «
for some v, and «, the algorithm produces all variable assignments x for which: (z € Q(E)) A
(Pr(ve|x) < @). The name we will use for this algorithm refers to these constraints that form
the backbone of the algorithm. This is unrelated to other constraint-related algorithms such as
algorithms that deal with constraint satisfaction problems.

Let us assume that we have a Bayesian network classifier with a binary hypothesis variable V.
We then know that any combination of evidence that predicts V;, = T must satisfy the constraint
Pr(V}, = Fle) < 0.5.

We can now use the algorithm to find all combinations of evidence that result in a specific
prediction from the Bayesian network classifier. Both abductive and contrastive explanations can
now be found relatively easily from the set of evidence assignments that result in the required
prediction. Keep in mind that the evidence assignments are the output of this algorithm, and by
definition, the assignment of evidence is not known at many points in the algorithm. Counterin-
tuitively, the notation Pr(v,|e) for some assignment v,, to some node V, does not have a set value
but is a variable that can take different values depending on the assignments to the evidence nodes.
However, the nodes that contain evidence are known and will not change during the algorithm. In
this Section, V, will often refer to the node that the algorithm is currently looking at.

Later in this section, we will discuss more in-depth how to use the algorithm to find abductive
and contrastive explanations, and which alterations we could make to do so more efficiently.

To explain the algorithm, we will first introduce a simpler version that only works for networks
with a specific tree-like structure, including an example that illustrates how it is able to find the
correct results. After this, we will generalise the algorithm to work in a larger subset of singly
connected graphs with binary variables. We will also prove discuss the running times, uses, and
possible alterations to the algorithm.

7.0.1 Intuition behind the algorithm

The algorithm traverses the Bayesian network similarly to Pearl’s belief propagation algorithm
[35]. Roughly speaking, Pearl’s algorithm obtains probability Pr(v,|e) for a node v,, and uses
this information to update Pr(v,|e) for all states v, in its neighbours by traversing the network.
Each node propagates sufficient information to allow its neighbours to update their probabilities
accordingly. Similarly, the constraint propagation algorithm also intends to propagate probabilities
but only has a constraint on this probability and not its exact value. Therefore, the algorithm
uses the constraint on the probabilities for a node to update the constraints on the probabilities
of the neighbouring nodes. To illustrate the workings of the algorithm, consider Figure [7.1] We
will describe how the algorithm acts in this specific Situation. The reasoning of the algorithm
will be explained later in this chapter. The algorithm starts with a constraint for the hypothesis
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node H of Pr(H = Fle) < 0.5. Using the CPT of node H, we cannot determine whether and
how the constraint can be satisfied yet: Pr(H = T|I = T) = 0.7 would satisfy the constraint
while Pr(H = T|I = F) = 0.4 would not satisfy the constraint. Whether the constraint will be
satisfied depends on Pr(I|e). We need information about other nodes to continue. The algorithm
can determine what this constraint means for the parent of H. Pr(H = Fle) < 0.5 is equivalent to
Pr(I = Fle) < 0.67 (the equations to determine this will be introduced and explained later). Again
the algorithm will determine whether we can easily answer whether the constraint is satisfied. Since
we can again not do this right now, the algorithm will transform the constraint to a constraint
about E: Pr(E =Tle) < 0.92. As E is an evidence node we can easily see when this constraint is
satisfied - when we have evidence F = F, since Pr(E =T|E = F) = 0.

[os [or | [o7 [ o]

Figure 7.1: A simple Bayesian network with three nodes. E is an evidence node.

A notable difference between Pearl’s algorithm and the constraint propagation algorithm is
that Pearl’s algorithm deals with actual changes to the (belief about) probabilities of nodes: a
change in the probabilities of a node changes our knowledge/belief about other adjacent nodes.
However, the constraint propagation algorithm deals with a hypothetical Situation: we have no
actual knowledge about a node, but we wish to know which knowledge would result in a specific
(constraint on a) probability. In essence, we reverse Pearl’s algorithm to find the inputs that
correspond to the observed output. In other words, the constraints do not contain knowledge that
is used in the model, but rather specify our search range: we do not assume the constraint can
be satisfied in the rest of the algorithm, but instead, we only consider the cases where it is. To
make this distinction a bit clearer, consider the trivial Bayesian network in Figure If we are
applying inference and observe B = T, this results in knowledge about A: the posterior probability
gets updated to Pr(A|B = T'). In this case, we assume our observation is true, and then inference
determines the probabilities for the other nodes given this knowledge. However, if we are applying
the constraint propagation algorithm and want to know all observations a for A that would result
in Pr(B = T|a) > 0.5, we would have to conclude that there is no such observation. In this case,
our search space has become empty.

The problem that this algorithm solves can be calculated by simply computing Pr(vy|e) for
every possible e using inference, and then checking whether the resulting value satisfies the con-
straint. However, our algorithm offers several advantages over this naive approach and existing
algorithms for calculating explanations, such as Koopman and Renooij’s algorithm [2I] [22], which
rely on multiple classifications. The following points outline the benefits of our algorithm, which
is designed to be more efficient than existing methods. The implementation of the algorithm will
be discussed later in this thesis, but these benefits are presented here to illustrate the purpose of
the algorithm.

e Parts of the network that do not affect the outcome are not calculated. Sometimes, creating
a new constraint for a neighboring node is unnecessary as we can determine that there are no
evidence assignments that satisfy a constraint. Conversely, we can also find situations where
all evidence assignments satisfy a constraint. In both cases, the algorithm will terminate if
possible.

e Parts of the network that do not change (i.e., for which the posterior probabilities are not
affected by a change in evidence) are not calculated multiple times. If we repeatedly classify
with different assignments to the evidence nodes, much of the network will be identical for
multiple input sets. The algorithm will attempt to reuse these calculations when possible.

So while the algorithm will definitely still have a running time that scales exponentially with
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0.5

0.2 0.4

Figure 7.2: A simple Bayesian network with two nodes.

the number of evidence nodes, its aim is to reduce computation time by looking at the network
itself as opposed to using inference to classify for a lot of different inputs.

7.1 The algorithm for upside-down binary trees

In this section, the constraint propagation algorithm will be explained in the scenario where we
have a specific tree-like structure for our Bayesian network classifier. In Section Pseudocode
Algorithm [9] can be found, which will be referred to throughout this section.

7.1.1 Assumptions

We will start with a number of simplifying assumptions. Some of the implications of these assump-
tions are immediately stated, while others are discussed in Section [7.4}

Assumption 2. There is one binary hypothesis node.

Assumption 3. The original constraint that is used as input for the algorithm is of the form
Pr(vgle) < « for some value 0 < a < 1 and some assignment vy, to Vj.

Assumption 4. The ezact value « in the constraint will not occur: < and < are, for all purposes,
identical in the constraints of this algorithm.

For any evidence assignment that satisfies the constraint Pr(—w,|e) < 0.5, we will also say that
e predicts v,.

Assumption [f] serves to simplify the maths in this chapter. While the algorithm is, in principle,
fully capable of dealing with both inclusive and exclusive inequalities, we would have to repeat a
lot of the equations for both of these cases. Using this Assumption, we only have to use <.

Assumption 5. All nodes use a conditional probability table (CPT) to determine their probabili-
ties.

We also have some temporary assumptions about the shape of the network:
Assumption 6. The graph G is singly connected.

Assumption 7. All nodes in Vg are binary.
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Note that Assumptions |z|, and [4] also allow us to have constraints of the form Pr(v,|e) > «
for some value 0 < o < 1 and some assignment v, to V3, by rewriting it to Pr(-w,le) < (1 — ).

Assumption 8. Every node in G has one child with the exception of the hypothesis node that has
no children, and the evidence nodes that have no parents.

Note that Assumptions [6] and [§] together severely constrain the graph of our network. An
example of such a graph can be seen in Figure[7.4 We can interpret our constrained network as an
upside-down tree with our hypothesis node as the root and our evidence nodes as leaves. This tree
is upside-down in the sense that where normal trees have arcs from the root towards the leaves,
the arcs in this network are reversed. Every node has multiple parents instead of multiple children
as is usually the case. This notion of an upside-down tree serves the purpose of conveying the
strength of the adopted assumptions and providing a way to easily specify this type of graph.

7.1.2 The backbone of the algorithm

At the start of the algorithm, we are given an hypothesis node and a constraint. For this constraint,
and all constraints we calculate for other nodes, the constraint can be in one of four Situations.
These Situations assume a constraint on the hypothesis node of form Pr(v,|e) < a. In the pseu-
docode, this distinction is determined on line [7] We will keep refering to these possible properties
of a constraint as numbered Situations throughout this chapter. These Situations use the CPT
of the current node of interest to distinguish what we know about the constraint without using
any information about the evidence or other CPTs.

1. All combinations of the parents fulfill the constraint: Vp € Q(p,, ) : Pr(v,|p) < a

2. Any state for any parent can fulfill the constraint as long as the other parents have an
appropriate probability. Vv, € Q(p;,)3p € Q(p,\vp1) : Pr(vn|p A vy) < a. This is the case if
no other Situations apply. o

3. At least one of the parents has a state that would make it impossible to satisfy the constraint.
Le. in a simplified CPT with two parents, at least one row or column in the CPT has only
values that do not fulfill the constraint. Jv, € Q(p),)Vp € Qp,\vp) : Pr(valp Avy) > .

4. No combination of states for parents would fulfill the constraint, i.e., in the simplified (and
possibly inverted) CPT, all values in the probability table are larger than a. Vp € Q(p},) :
Pr(vn|p) > a.

Examples of when these Situations occur are visualised in Figure [7.3]

07106 07106
0.8 108 02108
(a) (b)
0.7 ]0.1 02103
02103 01102

(c) (d)

Table 7.1: CPTs corresponding to Figure The CPTs are shown using the simplified notation
we have introduced. The first parent determines the row, while the second parent determines the
column.

These four Situations determine which action the algorithm will take: they describe how easily
this constraint can be satisfied. We will now discuss what each of the Situations mean and how
the algorithm can efficiently continue. This corresponds to the contents of the outer if-statements
between Lines 8] and [40] in the pseudocode of Algorithm [9]

In Situations 1 (Lines|§| to and 4 (Lines [38] to [40)), we are essentially done: we know which
evidence assignments fulfill the constraint. In the case of Situation 1, this includes all assignments,
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(a) Situation 1 (b) Situation 2

0.5 0.5

015 1 0!5 1

(c) Situation 3 (d) Situation 4

Figure 7.3: Visualisations of Constraints. The axes in these graphs correspond to the possible
probabilities of the value TRUE of the binary parents {Vpg, Vp1} of a binary node V,. V, has no other
neighbours. The x-axis ranges from 0 to 1 corresponding to the probability Pr(V, = T'|e), while
the y-axis also ranges from 0 to 1 and corresponding to Pr(V,; = T'|e). The red area corresponds
to the combinations of parent probabilities that would violate the constraint Pr(V,, = Fle) < 0.5.
Each of the subfigures corresponds to a different CPT of V,,. These are listed in Table @
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whereas in Situation 4, no evidence assignment would fulfill the constraint. The pseudocode shows
that Situation 4 simply ends there, but Situation 1 does not, which will be explained in Section
In Situation 2 (Lines [15| to , we need additional information. We are unable to create
a useful constraint for any of the parents, and the algorithm cannot continue by creating a new
constraint. In Situation 2, by definition, constraining a single node cannot work: for any value
of that node, there is a combination of values of the other parents that still satisfies the original
constraint. The solution is to temporarily fall back to our original naive plan: inference for all
possible combinations of evidence. However, doing this for only a portion of the graph may allow
us to continue more effectively again, so we will only do this for one of our parents V,, (any parent
would work, but some options are faster, see Section . For any assignment of evidence for the
evidence nodes in py, , we calculate the distribution Pr(V,|e). This can be done relatively easily
given our current assumptions: we have to apply inference in the subgraph containing V), and its
ancestors for every combination of evidence. When inference is complete, we can sum out V), from
the CPT of our original node. However, we can do this for any combination of assignments to the
evidence-ancestors of V,,, and for each of these we must continue the algorithm. In the pseudocode,
this is the body of the "for" on Line 17 and the recursive call on line 20. In Situation 3 (Lines
to , we can recursively apply this algorithm to at least one of the parent nodes V,. For
all nodes that have a state that makes satisfying the existing constraint impossible regardless of
the other parents, we can create a new constraint. We can determine the constraint for V, from
our existing constraint and the values in the CPT. If there are multiple parents that satisfy this
criterion, the algorithm can again continue in multiple different ways. The exact calculation for the
new constraint will be discussed in Section @ Recursively applying this algorithm to V}, should
give us all combinations of evidence that satisfy our new constraint on V,. However, for all of
these combinations of evidence we will also need the resulting distribution for Pr(V,|e), to tighten
the constraint on our original node (see Section [7.1.4). This means that the algorithm does not
only have to return all combinations of evidence that satisfy our original constraint, but also the
corresponding distribution for our current node. Why this is required and how this distribution is
obtained is explained and discussed in Section[7.1.4} Just like in Situation 2 we now eliminated one
parent from the CPT and have to continue for a number of combinations of evidence. Contrary to
Situation 2, we do not necessarily have all combinations of evidence above V), for which we have
to continue the algorithm, but just the combinations that fulfill our new constraint and thus get
returned by a recursive call of our algorithm.

In Situations 2 and 3 we now continue the algorithm with one less parent but multiple parallel
calls or branches: we no longer have one situation, but a number of possible CPTs that may all
result in different outcomes. Each of these CPTs is the result of a combination of assignments to
evidence we have already visited, which will be explained more in-depth in Section Note
that these calls are not necessarily computed in parallel, though this should definitely be possible.
We call them parallel calls because they are different calls that all traverse the same tree. In
Section [7.4] we will discuss possible ways to deal with this but essentially we have to continue
the algorithm for each of these CPTs. Continuing with the next parent will most likely result in
multiple parallel calls again, which means we potentially have a parallel call for every combination
of evidence assignments in the ancestors of the original node. When we have ended up in Situation
1 or 4, the algorithm is done with this branch and will return the results of all parallel calls it
started, together with the distribution of V}, they result in. Note that the algorithm always ends
in Situation 1 or 4 since a node needs to have parents to end up in Situation 2 or 3, both of which
sum out parents. All branches that contribute to the output have ended in Situation 1, which we
will also called completed branches or parallel calls.

7.1.3 Calculating new constraints

In this section we will discuss how to use a given constraint Pr(v,|e) < « for a node to calculate
a new constraint for one of its parents.

Using the definition of our conditional probability table and the knowledge that Assumptions
[6] and [8] do not allow any descendants to be evidence nodes, we can rewrite the constraint to:
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Pr(vzle) < a <=
Z Z (Pr(vpole) - ... - Pr(vpnle) - Pr(vg|vpo A ... Avpy)) <

vpo€Py, (0]  vpn€py,[n]

(7.1)

Using the fact that all nodes are binary valued (Assumption @, we can write out one of the
summations for our first parent vpo.

Pr(vyle) < a <=

Z Z Pr(Vyo =Tle) - Pr(vpile) - ... - Pr(vpnle) - Pr(vg[Vpo =T Avpt A oo A vp)+
Up1 EPVm[l] Vpn€PYV,, [n]
Z Z Pr(Vyo = Fle) - Pr(vpile) - ... - Pr(vpnle) - Pr(vg| Voo = F Avpt Ao Avpy) < @
vp1€py, (1] vpn€py, [n]
(7.2)
Pr(vyle) < a <
Pr(Vyo=Tle) - Z Z Pr(vpile) - ... - Pr(vpnle) - Pr(vg[Vpo =T Avpt A oo A vp )+
vp1EPY, (1] Vpn €EPy, [n]
Pr(Vyo = Fle) - Z Z Pr(vpile) - ... Pr(vpnle) - Pr(vg| Voo = F Avpt Ao Avpy) < @

vp1€Py, (1] vpn€py,[n]

(7.3)
At this point we will rename parts of the formula to keep the formulas clear while we reorder them.

flle) =Pr(X|Vyo =T Ne) =
Z Z Pr(vpile) - ...  Pr(vpple) - Pr(vg| Voo =T Avpr A oo A vpy,)

vp1€py, (1] vpn€Epy,[n]

(7.4)
and

f2(e) =Pr(X|Vyo=F Ae) =
Z Z Pr(vpile) - ... - Pr(vpn|e) - Pr(vg|Vpo = F Avpt Ao A Upy)

vp1€py, (1] vpn€py, [n]

(7.5)

Using the fact that the nodes are binary (Assumption @ and rewriting the formulas gives us the
following results:

Pr(v,le) < a <= Pr(Vyo = Tle) - f1(e) + Pr(Vyo = Fle) - f2(e) < a
Pr(v,le) < o <= Pr(Vyo =Tle) - fl(e) + (1 — Pr(Vyo = Tle)) - f2(e) < o
Pr(v,le) < o <= Pr(Vyo =Tle) - fl(e) + f2(e) — Pr(Vyo = Tle) - f2(e) < a
Pr(v.le) <a <= Pr(Vy =Tle)- fl(e) — Pr(Vpo = Tle) - f2(e) < a — f2(e)
Pr(v.]e) <a <= Pr(Vyo =Tle)- (fl(e) — f2(e)) < a— f2(e)
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Pr(vle) < o <= [Pr(Vpo = Tle) < wiztrsl] when fl(e) — f2(e) > 0 or Pr(v,le) <

a = [Pr(Vyo = Tle) > +1525515] when fl(e) - f2(e) < 0.

Note that dividing by a value with an unknown sign gives us different inequalities depending
on whether the value is positive or negative. The first inequality has the same form as described in
Assumption [3] while the second inequality does not. Rewriting the second inequality and using the
lack of difference between < and < due to Assumption [4] gives us our two possible constraints for

Vpo of the form specified in Assumption Pr(vzle) < a <= [Pr(Vyo =Tle) < #ﬁﬁ;ge)] when

fl(e)—f2(e) > 0 or Pr(vzle) < a <= [Pr(Vyo = Fle) < 1-— %] when f1(e)— f2(e) < 0.
f1(e) and f2(e) now have unknown values that depend on the known CPT of V,, but also on the
CPTs and evidence in py, \p{‘/po. f1(e) and f2(e) get their value depending on the distribution of
Pr(Ple) where P = py, \V,0. We want to create a constraint that V0 needs to fulfill in order to
satisfy the original constraint on node V, regardless of the evidence and CPTs in pj, .

As fl(e) and f2(e) are not exactly known, we cannot directly determine a usable « for our
constraint yet. Our new constraint for node V},o must follow from the original constraint regardless
of the value of the other parents of Vo, so we must find the least restrictive bound on « that any
possible combination of f1(e) and f2(e) can give. Note that while e is not known, it is always

the same for f1 and f2. This means we must maximise %ﬂ(gge) or 1 — #2;326) over e

respectively depending on whether f1(e) — f2(e) is positive or negative. Note that we can only
create a viable constraint if f1(e) — f2(e) is either always positive or always negative (and never
zero) for all possible combinations of values for f1(e) and f2(e). If they are not always positive
or always negative we are unable to create a viable constraint and we are in Situation 2 instead of
3: if we can have a positive and a negative value for f1(e) — f2(e), this means that depending on
the probabilities of py, \V,0, we can have a constraint that limits Pr(V,o = T'|e) or Pr(V,o = Fle).
Since we cannot take the least restrictive of those constraints, no constraint of the correct form is
possible.

We could achieve a viable upper bound for %2;;26) orl— %ﬁ&;ge) respectively by finding
a lower bound for f1(e) and an upper bound for f2(e) or vice versa. However, since f1l(e)
and f2(e) are not independent, this value might never be reachable with any probabilities of the
parents: fl(e) and f2(e) might be able to take certain values, but this does not mean they can
take these values with the same distribution for the parent nodes because e cannot take different
values for f1 and f2. As an alternative to this naive approach observe that f1(e) and f2(e) can
be interpreted as weighted sums that use the same weights: inside the summations we have terms
of Pr(vpile)-...-Pr(vp,|e) - Pr(vy Voo = T Avpr A... Avpy,). Here Pr(vpile) ... Pr(vp,le) is a weight
for value Pr(vg|Vpo =T A vp1 A ... Avpy,) from the CPT of node V. All these weights sum to one,
since they are probabilities for mutually exclusive and collectively exhaustive events. We will call

the weights w; and the values from f1(e) x1;. Similarly for f2(e) we call the values x2;. We can
a—f2(e) to S wi-(a—x2;)
fl(e)—f2(e) 2w (xl;—x2;) "
Using the properties of the generalized mediant [3] we know that the following property holds
for fractions: given a fraction for which the denominator and numerator are both weighted sums

with the same weights %7 7:’}1‘;1,

now rewrite the formula

the value of the fraction lies between the largest and smallest
values of %

[e3%

Wﬁg;ge) is always between the extreme values of %

Note that this property of the mediant also means that equations such as %
between the minimum and maximum value that pairs of values from the CPT of V,, can reach, as
this is also a weighted sum.

a—f2(e)

So to determine the maximum or minimum value Fi(e)=fa(e) Can take over all ¢ possible con-

figurations of py, \Vy0, we calculate % when substituting x1; and x2; with every possible
pair of Pr(vgy|Vyo = T Avp1 A ... Avpy,) and Pr(vy|Vieo = F Avpr A ... A vpy), which are the values

that are in the CPT of node V.

This means that the value of

are bound
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7.1.4 Returning probabilities

When the algorithm arrives at a node V, (for example because this is the start node or the algo-
rithm has just calculated a new constraint for this node), it creates a new constraint for one of the
parents V0 = py, [0] when possible based on the constraint for V, by determining the Situation.
Assuming we have Situation 3 and are able to create a new constraint C, the algorithm is then
able to find all combinations of evidence in the ancestors of Vo that satisfy C' using a recursive
application of the algorithm. The next intuitive step would be to continue to the next parent
Vp1 = py,[1] and again recursively apply the algorithm. However, we now have a problem: if we
keep the existing constraint for V,, the evidence in the ancestors of Vo and V,; may satisfy the
constraint individually while not satisfying our original constraint when combined. This is because
this approach does not take the effect of the evidence in the ancestors of Vp into account when
determining a bound for V,;. We will now explain an approach that does.

If we would know which probabilities Vo would have given the evidence assignments we obtained
from the recursive call, we could use this to sum it out of the probability table. We would then
end up with a Situation where V, effectively has one less parent and we can attempt to calculate
a constraint for V1 without having uncertainty about V. In short, the algorithm will get these

probabilities as return values from the recursive call on its parent and use them to change the
CPT.

As an example of how this approach works compared to the prior flawed approach consider a
node V,, with parents V},9 and V,1 as described above. We have an original constraint for this node of
Pr(V, = Fle) < 0.5. Vo has a (C)PT that only contains the probability Pr(V,o = T) = 0.45. This
means that regardless of its parents the nodes have the same distribution, which is not a situation
that would normally occur as there are no dependencies between the node and its parents, but
simpler for this example. The (C)PT of V) only contains the probability Pr(V,y =T) = 0.5. V,
has a CPT as can be seen in Table

Pr(V, = T|’Up0 N ’Up1) Upl = (‘/pl =T) Up1 = (‘/;)1 =F)
Upo = (VpO = T) 0.3 0.2
Upo = (Vpo = F) 0.7 0.4

Table 7.2: Initial CPT for V,

When the algorithm starts, it determines that we are in Situation 3. We have two possible
constraints that we can currently create using the method described in Section Pr(Vyo =
Tle) < 0.5 or Pr(V,; = Fle) < 0.67:

e For the constraint on Vj,, we calculate all possible values of (Sﬁ_fjé)) Eg:g:g:;; = 0.5 and
(0.5—0.2) _

(0i-03) = —1.5 Since f1(e)— f2(e) is always positive, the maximum value of those formulas
becomes our new a.

e For the constraint on Vg all values of (g(;;_ffé)) are: Egg:g;g =3 and Eg:?:g:jg = 0.33333
Since f1(e) — f2(e) is always negative, the maximum value of (1 — 3) and (1 — 0.33333)

becomes our new a.

We can fulfill both constraints individually: both constraints are always satisfied. However,
the original constraint is not fulfilled: since evidence does not influence the values of Vg and V1,
regardless of evidence we have Pr(V, = Tle) = 0.5-0.45-0.3 +0.5-0.45- 0.2+ 0.5-0.55 - 0.7 +
0.5-0.55 0.4 = 0.415 so the constraint is not satisfied. However, if we would first determine the
bound on Vg, recursively apply the algorithm, and return the Pr(V,o = T'|e) = 0.45, we could
simplify the probability table to Table The new constraint (still calculated using the original

«) becomes Pr(vy, =Tle) < (1 — % = 0.095238) which cannot be satisfied.
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Pr(Vo=Tvp1) | vpu =T | vp1 = F
0.52 0.31

Table 7.3: CPT for V,, with V) summed out.

This means that after determining all combinations of evidence that satisfy a constraint C' on
a node V., the algorithm has to return the probabilities for V, to its child for every combination
of evidence in pj, . This again works differently depending on the Situation.

e In Situation 1 we know that all possible combinations of evidence in pj, satisfy C. However,
as we need Pr(V,|e), we will calculate them using standard inference, for example using
Pearl’s algorithm, for every possible combination of evidence. Note that it is possible to get
to Situation 4 when all parents have been removed due to Situation 2 or 3, in this case there
are no combinations of evidence, and Pearl’s algorithm will simply read the probabilities
from the CPT and return those.

e In Situation 2 the algorithm removes a parent from V, after which it is again applied to
Vz. This means we are not done with V, yet and Situation 2 is never the last Situation
encountered for a node. This means that Pr(V,|e) does not have to be returned yet.

e Situation 3 has the same property: it is never the last Situation encountered for a node, so
nothing needs to be returned here. For obtaining the value of Pr(py, [0]|e) to sum out py, [0],
instead of using the algorithm itself like in Situation 2 it uses inference to do so.

e In Situation 4 there are no combinations of evidence that satisfy the constraint, so Pr(V,|e)
is not required.

A call of the algorithm with constraint C' on node V,, thus returns the following information:

1. A set of evidence assignments that each assign a state to all evidence nodes in pj, that
satisfy C: e = {e; € Q(e)| Pr(vyle;) < a}.

2. For every evidence assignment in the set: the probability distribution for V, given the evi-
dence: Pr(V,|e;)Ve; € e“.

When a constraint is created for an evidence node, there is only one assignment to the evidence
that will satisfy the constraint: assume we have a constraint of Pr(v.|e) < « for v, € Q(V;), we
know that v, will not satisfy the constraint, but —w, will. The algorithm will return the following
information: the assignment —w., and distribution Pr(—v.|e) = 1 (if the evidence is set to —w,, V,
will have state Pr(—w.|e) with probability 1 by definition of being an evidence node).

7.1.5 Example

To explain further how the algorithm works we will give an example using the network in Figure
4

In this network we can see 6 evidence nodes labeled E1 to E6. We have a single hypothesis
node H and the network adheres to the assumptions mentioned before. The CPTs are shown in
the simplified way as discussed before where the rows indicate the value of the left parent (the top
row indicates TRUE, the bottom row indicates FALSE), and the columns indicate the value of the
right parent (left column indicates TRUE, right column indicates FALSE). The values inside the
tables indicate the conditional probability for this variable to be TRUE.

Consider the situation where we have a prediction FALSE. To find all contrastive explanations
we want to know all combinations of evidence that predict H = T. This gives us the constraint
Pr(H = Fle) < 0.5. We will now manually apply the algorithm starting in node H.
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H: The algorithms starts in the hypothesis node. In this case, we have Situation 3: there are
values a parent can take that immediately violate the constraint. Jv, € Q(p,)Vp € Q(p,\vp) :
Pr(up|p A vp) > . To fill in the formula: Vp € Q(py,\v,) : Pr(H = F|I1 = T Ap) > 0.5. If I1
would be TRUE, this would result in a probability of at most 0.1 for Pr(H = T|e), so a probability
of at least 0.9 for Pr(H = Fle).

Since we have determined Situation 3, we can now create a new constraint for I1: our way
a—f2(e) .
fie-rae) i

f1(e) = f2(e) > 0 or [Pr(vpo = Fle) < 1— 57528051 if f1(e) — f2(e) < 0 where f1(e) and f2(e)
are defined in Equations [7.4] and

We want a constraint for 11, which means that V0 = I1. As determined in Section [7.1.3} we
will substitute f1(e) and f2(e) with the combinations of x1 and 22 in the CPT where V0 = T
(21 =0.9,22 =0.8) and V0 = F (21 = 1,22 = 0.2) respectively. This gives us the following two
equations:

of determining this constraint is to use the following formula: [Pr(vy,y = Tle) <

a—x2; 05-08

zly—a2;  09-08

a—1x23 05-02

zly—22,  1-02

The first formula would result in the constraint Pr(I1 = T|e) < —3 which cannot be satisfied

as probabilities are by definition 0 or higher. The second formula results in the constraint Pr(I1 =
Tle) < 0.375, which is a meaningful constraint. As discussed in Section all combinations

of probabilities will result in a constraint between these two bounds, and we can take the loosest
constraint by taking the highest a. This means our new constraint is Pr(/1 = T|e) < 0.375.

-3

=0.375

I1: For node I1 We have Situation 3 again, as F2 = F' would not allow us to fulfill the condition.
This means we can create a new constraint for V0 = E2. The formulas give us the following
results:

a—2x2;  0.375-0.9
zly—x2;  0.3-0.9
a—x2  0.375-0.6
xly — 229  0.4—0.6
This gives us the constraints Pr(E2 = Fle) < 1 — 0.875 and Pr(E2 = Fle) < 1 — 1.125. We
again take the maximum which gives us a new constraint of Pr(E2 = F|e) < 0.125.

=0.875

=1.125

E2: We continue to node E2, but since this is an evidence node, we can fulfill the constraint by
making the evidence TRUE. This branch of the algorithm is now complete. We have a set of one ev-
idence assignment that does not violate the original constraint, with the corresponding probability
of Pr(E2|e). The evidence-distribution pair currently looks like this: {({E2 =T},1.0)}.

I1: Back in node I1 we continue the algorithm for every evidence-distribution pair that was
returned, though there is only a single pair in this case. For each of the pairs we simplify the
conditional probability table by summing out using the distribution that was obtained. In this
case we reduce the table using value 1 for Pr(E2 = T'). This results in a table that gives 0.3 when
E1 =T and 0.4 when E1 = F. Since we still have the constraint Pr(/1 = T'le) < 0.375, E1 = F
would violate the constraint, which means we have once again a case of Situation 3. Using the
formulas, we obtain:

a—f2e)  0.375-04
fl(e) — f2(e)  0.3-0.4
which results in a constraint of Pr(E1 = Fle) < 1 — 0.25 so Pr(E1 = Fle) < 0.75.

=0.25

E1: Just like with E2 we can easily satisfy the constraint by setting the evidence for E'1 to TRUE.
This gives us the following return value: {({E2=T,E1 =1T1},1.0)}.
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I1: When again returning to /1 we can use the new information to simplify the CPT as we did
before: by using Pr(I1 =T) = 1, we get a (C)PT of Pr(I1 = T|0) = 0.3. This results in a trivial
case of Situation 1 and we can now return with the following set: {({E2=T,E1=1T},0.3)}.

H: As we now return to H, we can fill in Pr(I1|e) = 0.3. This gives us the new conditional
probabilities Pr(H = T|I2=T) =03-0.14+0.7-02=0.17 and Pr(H =T|I2=F) =0.3-0+
0.7-0.8 = 0.56.

This means we are now done with I1 and its ancestors and we will continue to I2.

We have once again arrived in Situation 3 as our constraint Pr(H = F|e) < 0.5 cannot be fulfilled
if 12 would have value TRUE. Using the formulas gives us: ffg;)f_ 2}5;‘26) = 25041 — 0.15. This
gives us the constraint Pr(72 = T'|e) < 0.15.

I2: Arriving at 12, we see that we are in Situation 2: there is no single parent that could take a
value that always ensures the constraint is violated, and it is not the case that the constraint is
always satisfied. In this case the algorithm will calculate the result of one of the parent trees for
every combination of evidence in the tree. A simple way to choose for which parent we do this
would be to take the parent with the lowest number of evidence-ancestors.

In this case we will use standard inference to calculate the distribution of I2 for all possible
sets of evidence in the subgraph in the direction of F3. However, this is only one node, so we will
obtain Pr(I2|E3 =T) and Pr(I2|E3 = F).

E3: Calculating the possible probabilities of E3 is trivial: it is either 0 or 1 depending on the
evidence. This is then also the return value of this node. It returns the set {({E2 = T, E1 =
T,E3=T},1.0),{E2=T,E1=T,E3 =F},0)}.

I2: Since the return set from E3 contains two elements, the algorithm will split into two: for
both of these elements we will have to run the entire algorithm.

Let us start with ({E2 =T, FE1 =T, E3 =T}, 1.0). In this case Pr(E3 = T'|e) returns a value of 1,
which means we can reduce our CPT to Pr(I2=T|I3=T)=0.1 and Pr(I2=T|I3=F) = 0.3.
Since we still have the constraint Pr(72 = T'|e) < 0.15 we are again in Situation 3. Filling in the
formula gives us: flo(‘;)]: 2};26) = %_115:00_'33 = 0.73 which results in the constraint Pr(I3 = Fle) <
(1 -0.73) so Pr(I3 = Fle) < 0.27.

The other return value from I3 is 0, which results in a CPT containing Pr(12 = T|I3 =T) = 0.8

and Pr(/2 = T|I3 = F) = 0.1. Filling this in in the formula gives us flo(‘;)ff;;ze) = 0501 — 0.077
which gives us the constraint Pr(I3 = T|e) < 0.077.

I3: We now still have two calls of the algorithm with two different constraints. If the constraints
would be in the same "direction" we are able to do something more efficient (see Section |7.4)), but
as they are not we will have to resolve both calls separately.

The first constraint was Pr(I3 = F|e) < 0.2692. Since every conditional probability in the CPT
satisfies this constraint we are in Situation 1. Situation 1 means that all combinations of evidence
in the ancestors of this node would satisfy the constraint. We could determine the probabilities for
all the parents for all possible evidence assignments, but as there are no more unvisited branches
in the Bayesian network that is not necessary. If we just need the combinations of evidence that
satisfy the original constraint returning back to H does not provide any benefits, so we add the
following combinations of evidence to the set of return values of the algorithm:

e {F2=T,F1=T,E3=T,EA=T,E5=T,E6 =T}
e {F2=T,F1=T,E3=T,EA=T,E5=T,E6 = F}
e {F2=T,F1=T,E3=T,EA=T,E5=F,E6 =T}
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{E2=T,E1=T,E3=T,EA=T,E5 = F,E6 = F}

{E2=T,E1=T,E3=T,EA=F,E5 =T,E6 =T}
e {E2=T,E1=T,E3=T,FEA=F,E5="T,E6 = F}
e {E2=T,E1=T,E3=T,FE4=F,E5=F,E6 =T}
e« {E2=T,E1=T,E3=T,FA=F,E5=F,E6 = F}

If we would care about the resulting probabilities for the hypothesis node, we could continue
the algorithm until we are back at H.

The other constraint was Pr(I3 = T|e) < 0.077. As none of the conditional probabilities in
the CPT could satisfy this constraint, we are in Situation 4 and the algorithm ends this branch
without adding anything to the output. This means the output of the total algorithm consists of
the combinations of evidence added before.

Figure 7.4: A Bayesian network used for the example in Section
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7.1.6 Pseudocode

Algorithm 9 ConstraintPropagationSimpleTree(Node V;,, constraint «)

1: returnSet = (;

2: if V,, == evidenceNode then
3:  value = V,,.valueThatSatisfies(«);
4:  returnSet.add(V,, = value, Pr(value) = 1);
5:  return returnSet;
6: end if

7: situation = checkSituation(V,,, «);

8: if situation == 1 then

9:  for evidence in AllAncestorEvidenceCombinations(V;,) do
10: probabilities = DetermineProbabilities(V,,, evidence);
11: returnSet.add(evidence, probabilities);

12:  end for

13:  return returnSet;

14: end if

15: if situation == 2 then

16:  V, = V,,.Parents|0];

17:  for evidence in AllAncestorEvidenceCombinations(V,) do

18: probability = DetermineProbabilities(V},, evidence);

19: V., .SimplifyCPT(V,, probability);

20: recursiveResults = ConstraintPropagationSimpleTree(V,,, a);
21: for (evs, prob) in recursiveResults do

22: returnSet.add(evs+evidence, prob);

23: end for

24:  end for

25:  return returnSet;

26: end if

27: if situation == 3 then

28:  (V},, B) = CalculateNewConstraint(c);

29:  parentResults = ConstraintPropagationSimpleTree(V},, 5);
30:  for (evidence, probability) in parentResults do

31: Vy,.Simplify CPT(V,, probability);

32: recursiveResults = ConstraintPropagationSimpleTree(V,,, a);
33: for (evs, prob) in recursiveResults do

34: returnSet.add(evs+evidence, prob);

35: end for

36: end for

37: end if

38: if situation == 4 then

39: return (;

40: end if

7.2 Less constrained networks

To actually be able to use the algorithm proposed above, we should generalize it to work for more
types of graphs, so in this section we will change Assumption [§] (enforcing the tree-like structure)
into Assumption[d] The challenge that this introduces is that evidence can also be in descendants of
nodes instead of only in their ancestors. This means the algorithm will have to be able to propagate
constraints "down", and the calculation of the constraints will become more complicated.

Assumption 9. FEvery node in G has at most one parent if it has any evidence nodes in its
descendants.
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The idea behind the constraints remains the same: given a constraint, the algorithm determines
the Situation by trying all combinations of neighbouring nodes. If the algorithm can then create
a constraint for a neighbouring node, it does so by transforming the existing constraint to a new
one using the extreme values the other neighbours can take.

We introduce the notion of upper graph and lower graph: an upper graph of a node V,, is
a part of the graph that becomes disconnected when the arc between V, and one of its parents is
removed from the graph. Similarly, a lower graph is the part of the graph that becomes disconnected
when the arc between V, and one of its children is removed from the graph. Because the graph is
singly connected, all parents and children have an upper or lower graph, and they all have distinct
upper or lower graphs.

7.2.1 A new type of constraint

For constraints on children we will use a different equation than for constraints on parents. Just like
the original constraint is based on the causal parameter in Pearl’s algorithm [35], the new constraint
is based on the diagnostic parameter. However, in Pearl’s algorithm we could (eventually) calculate
the exact values and then normalise them. In our case, we only know a bound on the value after
normalization. I.e. our constraint is on the relative size of the diagnostic parameters.therefore,
The new constraints will have the following form:

Pr(eVI\VPO [vpo)
Pr(eV=\Vro|=wy)

<p (7.6)

where v, is any assignment to Vg and V,, is a child of Vj,g. Vjg is the parent from which we
created the constraint, so we transformed a constraint for Vo into a constraint for V,. For the
notation used to describe groups of evidence, see Figure We will call constraints of the type
described in Assumption [3| parent constraints, and the new ones child constraints. Note that in
contrast to « in the parent constraint, 5 does not have to be between 0 and 1 but can take any
positive value. All nodes will only have a single constraint, where the type of constraint depends
on whether the constraint was created by a parent or child of the node (a parent constraint is
created by a child for its parent, and a child constraint is created by a parent for its child). We
will derive child constraints in Section [7.2.3]

7.2.2 Determining the Situation

In this section we will redefine the situations discussed in Section[Z.1.2land discuss how to determine
the Situation for both parent and child constraints. We will first rewrite both types of constraints
to a combination of the "effects" of the neighbours of the node we have a constraint for, and then
we will try any combination of those neighbours and use the rewritten constraints to determine
the Situation.

7.2.2.1 Rewriting formulas

Parent constraint The parent constraint still has the same form as in the previous chapter:
Pr(v;le) < « (7.7)
Using Assumption [7] we can rewrite this as:

Pr(v,|e) <o
Pr(-v.le) 1—«

(7.8)

We will now separate the evidence into e~ and e, where et is all evidence that is connected
to the node through one of its parents (so in an upper graph), and e~ is connected to the node
through one of its children (so in a lower graph). This is also illustrated in Figure

Pr(v.le” Ae™) a
Pr(-uzle- Aet) 1—a

(7.9)
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Using Bayes’ rule gives us:

Pr(e” Aet|v,) - Pr(vy) Pr(e” Aet) . @ (7.10)
Pr(e— Aet) Pr(e= Aet|-w,) - Pr(-w;) 1-—« '
Rewriting and using the independency between et and e~ given z.
Pr(e|v,) - Pr(e*|v,) - P
r(e”|vg) - Pr(eT|u,) - Pr(vs) . @ (7.11)
Pr(e~|-w,) - Pr(et|—w,) - Pr(-w,) 1-—«
Using Bayes’ rule again:
Pr(e”|v;) - Pr(e™|vg) - Pr(v,) - Pr(e™) S (7.12)
Pr(e=|-w,) - Pr(et|-v,) - Pr(—w,) - Pr(et) 1—«
Pr(ia’|vz) - Pr(v;|et) a (713)
Pr(e=|-w,) - Pr(-uglet) 1—«a
Pr(e"|vs)  Pr(vile’) a (7.14)

Pr(e=|—w,) Pr(-wvlet) 1-—a
We have now rewritten the parent constraint to a combination of effects from neighbours,
meaning in terms of either Pr(V,|e™) or Pr(e™|V,). We will do the same with the child constraint

before continuing. After that we will use local information to determine limits to the effects all
neighbours can have on whether the constraint is satisfied or not.

Child constraint

Let us start with the child constraint as defined in Equation [7.6}

Pr(e¥=\V%0 |v,)

<
Pr(eVm\Vpo|ﬁUp0) ﬂ
(7.15)
We will split the evidence between evidence above V,. and evidence below V.:
Pr(e™ Aet\Vio
rlfe” Ne [vpo) <5
Pr(e= A et\Vro|=wy)
(7.16)
Conditioning on the values of V. gives us the following:
Yo, cav, [Pr(e™ Aet\Veolug Avy) - Pr(velup)] <3
ZuzeQVz [Pr(e_ A e+ \Vro |_‘va A Ua:) : PI’(’U$|_\UPQ)]
(7.17)
Since e~ and e™\V?0 are independent given Vj:
>u,cav, [Pr(e” v Avg) - Pr(e™\V0luyg A vg) - Pr(vg|vgo)] <5
vaeﬂvx [Pr(e*|—|vp0 A vg) - Pr(eJr\Vpo |_‘Up0 A vg) - Pr(vxl_‘vzﬂ)]
(7.18)
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Figure 7.5: An illustration for the meaning of different notations for groups of evidence. e~ or
eV>~ is all evidence in the lower graphs of V,, while e* or "= refers to all evidence in the upper
graphs of V. e¥=\V= refers to all evidence that affects V,, except the evidence that would be in a
disconnected part of the graph if we remove V,. In a similar way, we can also have et\Ve, which
would refer to all evidence above V,, excluding the evidence in the upper graph of V.
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Using the conditional independence of e~ and vy given v, and Bayes’ rule:

Yopeav, [Pr(e”[vs) - Pr(ve|e™\V0 A wgyo) - Pr(e™\Vee o))

<
Y. cav, [Pr(e”|vs) - Pr(v,|et\Veo A =wy0) - Pr(et\Veo | -w,0)] h
(7.19)
>v,cov, [Pr(e”|vs) - Pr(v,[et\Vr0 Awy)] - Pr(et\Ve) 3
= = <
Yv.eqv, [Pr(e[ve) - Pr(va|et\Veo A —wyo)] - Pr(ef\Vro)
(7.20)
vaeﬂvm [Pr(e”|v;) - Pr(vx|e+\VpO A vpo)] <3
Y.cav, [Pr(e[ve) - Pr(valet\Veo A —vy)]
(7.21)
Using Assumption [7] we can write out the summation:
Pr(e” |V, =T) - Pr(V, = T|et\V»0 Awy) + Pr(e” |V, = F) - Pr(V, = Flet\Ve0 A wy) iy
Pr(e= |V, =T) Pr(V, = T|et\Veo A —wpg) + Pr(e~ |V, = F) - Pr(V, = Flet\V»0 A =)
(7.22)
. Pr(e”|V,=T)
We will define X as m.
X -Pr(e” |V, = F)-Pr(V, = T|et\V2 Avy) + Pr(e” |V = F) - Pr(V, = Flet\V»0 Aw,g) oy
X -Pr(e= |V, = F)-Pr(V, = T|et\Voo A —wy0) + Pr(e= |V, = F) - Pr(V, = Flet\Veo A =)
(7.23)
X - Pr(Vy = T)et\Veo Awyg) + Pr(V, = Flet\Vro Awy) <5
X - Pr(V, = T|et\Veo A —v,0) + Pr(V, = Flet\Veo A —wy)
(7.24)
X - Pr(V, =T|et\Veo Avpg) + (1 — Pr(Vy, = Tlet\Veo Awyg)) <3
X Pr(V, =T|et\Vro A —wy) + (1 — Pr(V, = Tlet\Veo A =)
(7.25)

7.2.2.2 Trying combinations

Equations and are similar: they only depend on X and (a part of) Pr(v;|et). Let us
revisit the Situations used in the previous section and their meaning given a constraint:

o If all parent probabilities satisfy the constraint, we are in Situation 1.

e If no probability assignment to parents exists that satisfies the constraint, we are in Situation
4.

e If we are not in Situation 4, but for some assignment of one parent, we always violate the
constraint, we are in Situation 3 and can create a new constraint for this parent.

e If none of these apply, we are in Situation 2.

These Situations will essentially remain the same, except we will not only consider parents, but
also children. For Situation 3, the new definition is as follows:

e We are in Situation 1 if all combinations of distributions of neighbours satisfy the constraint.

e We are in Situation 3 if some extreme point of a neighbour would lead to a violation of the
constraint of the current node and we are not in Situation 4.

e We are in Situation 4 if all combinations of distributions of neighbours violate the constraint.
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e If none of these apply, we are in Situation 2.

With extreme points we mean the minimum and maximum "effect" that the neighbour has on
the left-hand side of the constraint given unknown distributions of its other neighbours: in case
of parents, the extreme points are the degenerate distributions of Pr(V, = T leVs\V») = 1 and
Pr(V, = T|e"=\"») = 0. In case of child constraints, they are limited by the CPT of the child
V. which will be discussed in Section For now, assume we computed the maximum and

%m can take. Situation 3 means that there is some extreme point
that a neighbour cannot take without violating the constraint for V., while there are also values
it can take. From this, we also know that there must be a maximum/minimum value it can take,
and therefore a constraint for this neighbour must be possible.

Using Equations and we can now determine the Situations: essentially we will try to
find Situation 3 by setting one neighbour to an extreme point, and testing whether it is possible
to satisfy the constraint. If we cannot do this for all degenerate distributions of a neighbour, we
are in Situation 4. To check for Situation 1, we test whether it is possible to violate the constraint
at all given any possible combination of probabilities of the neighbours. To find whether we can
satisfy or violate a constraint we must minimise (for satisfying) or maximise (for violating) the
left-hand side of the formula and check whether the inequality holds.

As mentioned before, we will assume we can create the maximum and minimum for formulas
Pr(e¥e\Ve|u,)
Pr(eVC\V.T, ‘ﬁvz)
and maximum for the second formula can be found in the CPT of node V,, and we will discuss

how to find the minimum or maximum of the first formula in Section [T.2.4l

We can now find the minimum and maximum of Equations [7.14] and [7:25}

minimum value that

and Pr(V,|et) assuming the neighbours can take any distribution. The minimum

Minimising or maximising Equation [7.14}

Pr(e”|vy)  Pr(vilet) !
Pr(e=|—-v;) Pr(-wzlet) 1-—«
Pr(eVC\“m [vg)
Pr(eVe\ve |-v,)
how to get the minimum or maximum of these terms, we can easily get the minimum or maximum
of the product by using the respective minimum or maximum for each term. For determining
Situation 3, we can exclude one of the terms from minimisation, and set it to its maximum instead.

% we can just check the CPT of V. If we take the

extreme point for one of the parents, we just have to look at a part of the CPT (the part that
corresponds to the degenerate distribution of this parent).
Pr(e” |vg

Pr(e” |vg)

Prie—T-v) Can be expanded to [[y. cov, . As all terms are positive and we know

For minimizing or maximizing

Let us consider an example. Let us assume we know 5. e—lﬁvm)) lies between 0.5 and 2 (again,
how to determine these values will be explained in Section . Vi a=0.5, V, has two parents
named Vpo and V,1, and the CPT of V, contains the following values: Pr(vy|Vpo =T, Vo1 =T) =
0.87 PI’('U:E“/pO = T, Vpl = F) = 07, Pr(vm\Vpo = _F7 V;;l = T) = 04, PT(UI‘VPO = F, V};l = F) =0.3

If we start by checking whether we are in Situation 1, we must maximise the left-hand side

of the equation, and check whether this still satisfies the constraint (if not, there is no way to
violate the constraint). For this we take the maximum we found for PPrr(E:;im, which is 2. We
also find the entry in the CPT for which % is highest. In this case, this is the first entry:

Pr(vg|Vpo =T, Vp =T) = 0.8. This gives us the following equation:

0.8 0.5

202105

which is not satisfied.

We can then check whether we are in Situation 3 and can create a bound for Vj,o: we will
minimise the left-hand side of the equation, while V,o has both of its degenerate distributions. If
we cannot satisfy the constraint for one of them, we are in Situation 3. If we cannot satisfy the
constraint for both of them, we are in Situation 4.
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Let us start with Pr(V,y = T|e"»\"=) = 1: in this case, only two of our CPT entries are
relevant, namely those that contain V,p = 7T". minimising the left-hand side of the equation now
gives:

0.7 0.5

0503 < 1-05

As this does not satisfy the constraint, we are either in Situation 3 or 4.
If we now try to do the same for the degenerate distribution Pr(V,o = F|e'»0\V=) = 1, the
minimised left-hand side of the equation becomes:

0.3 0.5
05— <
0.7 1-05
As this does satisfy the constraint, we are in Situation 3 and can create a new constraint for

Vo

Minimising or maximising Equation

X - Pr(V, = T|et\Vro Avyg) + (1 — Pr(V, = T|et\Veo Avy))

<
X - Pr(V, = T|et\Veo A —wpg) + (1 — Pr(Vy = Tlet\Veo A —w,0)) b

In this case, both the numerator and denominator of the fraction are positive, which means that to
maximise the left-hand side of the equation we must maximise the top and minimise the bottom
of the fraction, and vice versa for minimising. However, X occurs in both the top and bottom of
the fraction, and the other parts of the fraction depend on each other, which makes determining
the maximum or minimum more complex. Note that if X is equal to 0, the left-hand side of the
1—Pr(V,=T|e"\VP0 Av,0)

1—Pr(V,=T|e"\VP0 A—vp0)
Pr(V,=T|et\VP0 Av,0)

Pr(Vz:T\eJr\VPO/\ﬂ'upo) ’
This means the maximum of the left-hand side of the constraint is either determined by:

equation reduces to if X becomes larger, the left-hand side of the equation

moves to

The value of X determines the value between those two points.

e the maximum of X and the maximum ratio between Pr(V, = T|eT\V»0 A v,0) and Pr(V, =
T|et\Veo A =wy0).

e the minimum of X and the minimum ratio between Pr(V, = T|e*t\V»0 A v,9) and Pr(V, =
T|et\Veo A —wy0).

While the minimum of the left-hand side of the constraint is either

e the maximum of X and the minimum ratio between Pr(V, = T|e*\V»0 A v,9) and Pr(V, =
T|et\Veo A =wy0).

e the minimum of X and the maximum ratio between Pr(V, = T|e™\V»o A v,0) and Pr(V, =
T|et\Veo A —wy0).

Note that we minimise or maximise the ratio between two values in the CPT, as a certain combi-
nation of parent distributions determines both values.

Again, to determine whether we are in Situation 3, we can set one term of X to its other extreme
point, or consider part of the CPT of node V, corresponding to an extreme point (degenerate
distribution) of a parent.

Let us again consider an example. This example has the same values as the one in the previous
paragraph. Here, V)¢ in the constraint is equal to V},o from the previous example. X is still bound
between 0.5 and 2. [ is 1.

We will again first determine whether we are in Situation 1 by maximising the left-hand side
and testing whether we violate the constraint. As we have just seen, to maximise the left-hand
side we have two options:
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e the maximum of X and the maximum ratio between Pr(V, = T|eT\V»0 A v,0) and Pr(V, =
Tlet\Veo A —wyp).

In this case, X is 2, and the maximum ratio of Pr(V, = T|e™\V»0 A v,9) and Pr(V, =

. . Pr(V,=T|et\Ve0 Av,0) 0.7
T|et\V»o A —w,0) occurs when et\Veo = (V; = F): in this case Z p0) — 0.7 —
| - PO) ( pl ) ) Pr(VT:T\eJr\VPU/\ﬁq)pO) 0.3

2.33. The entire equation now becomes:

2-07+03 1.7

b N L |
2.03+07 15 °

e the minimum of X and the minimum ratio between Pr(V, = T|e*\V»0 A v,9) and Pr(V, =
Tlet\Vro A —wyp).

In this case, X = 0.5, and the minimum ratio of Pr(V, = T|e"\V»0 A v,0) and Pr(V, =

. . Pr(V,=T|et\Vp0 A
T|et\Veo A=) occurs when et\Vo0 = (V,; = T): in this case, ~oce=Tle__ P0Av0) _ 1
Pr(Vo=T|e™\"POA=wpo) .

0

IS

2. The entire equation now becomes:

&508+Q279§<1
0.5-044+06 0.8

In this case, the first option results in the largest left-hand side of the constraint. This does
not satisfy the constraint, so we are not in Situation 1.

We should now continue by testing whether are in Situation 3 by testing whether V},; or the
children of V, can take an extreme point that makes it impossible to satisfy the constraint. This
is not included in this example, but is done in the examples in Section [7.2.8]

In total, the number of calculations needed to determine the Situation takes O(2°v= - py, +
2Pvs . oy, ) calculations: worst-case we have to check for Situation 3 for all parents, where we have
to compare O(2Pv=) values in the CPT of V,. We also have to compute the bounds that will
be discussed in Section once for each child, which takes O(2°Pvs) time per child V;. When
checking for Situation 3 for children, we only have to change a single value in the equation.

7.2.3 Transforming constraints

In this section we will work out how to create new constraints from existing constraints. Using
Assumption [0] we have to consider 3 cases:

1. We have a parent constraint on V, and we will create another parent constraint for one of
its parents.

2. We have a parent constraint on V,, and we will create a child constraint for one of its children.

3. We have a child constraint on V,, and we will create another child constraint for one of its
children.

Because of Assumption 9} we do not have to consider the case where we have a child constraint
on node V, and create a parent constraint. For this situation to occur, a node would need to have
two parents, while the only path from the node to the starting node of the algorithm is through
one of its parents. In this case, Assumption [J] means that there cannot be any evidence in the
descendants of V. This means that all chains between the parents of V, are blocked, and it is
meaningless to create a constraint for one of its parents, as this does not affect the result of the
algorithm. In that case, we already know that the left-hand side of the constraint on V, will always
have value 1 (there is no evidence in this lower graphs of Vjothat is affected by the probability of
Vpo)-
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Propagating a parent constraint to parents (case 1)

Continuing from Equation [7.14] we can rewrite our formula to:

Pr(v,|e™) a  Prle|-wvy)
Pr(—vzlet) " 1—a Pr(e |v,)

(7.26)

Pr(e™ |-vg)
Pr(e—|vg)
possible constraint. We will rename this constant to ~:

If we use an upper bound for , the right-hand side of the formula is now the loosest

Pr(vz|e™)

Pr(—w;let) =7 (r27)

r(vy|et
e < (7.28)
Pr(v.]e’) <v- (1 — Pr(v.|e')) (7.29)
Pr(v.|eT) <y —~-Pr(v.|e™) (7.30)
Pr(v.le™) + - Pr(v.le’) <~ (7.31)
(4+1) - Pr(ugle?) < 7 (7.32)
Pr(vglet) < # (7.33)

We now have the same starting formula as in Section with a = ﬁ, which means we can
follow the same reasoning which gives us Equation Recall that fl(e) and f2(e) are the
weighted sum of CPT values where V0 = T and V,y = F respectively, which we minimise or
maximise to maximise the right-hand side of the equations.

o — f2(eVro\Ve)
FieVo=) — Fa(e%)

[Pr(Vyo = T|e"\V+) < ]if f1(e¥0\V=) — f2(e¥0\V=) > 0

or
o — f2(eVro\Ve)

J— VpO\Va; —
[PI’(VpO = F|€ ) <1 fl(evpo\vz) — f2(eVpo\Vz)

] if f1(e¥70\Ve) — f2(eV0\Ve) < 0
(7.34)

With « filled in:

- f2(eVr\Ve)

_ Vpo\Va
[Pr(Vpo = Tle ) < FL(eVoo\Ve) — f2(eVo\Va)

] if f1(e"?0\V=) — f2(e"?0\V=) > 0

or
T - A
F1(e¥ V=) = f2(eVnVs)

[Pr(Vpo = Fle"»\V*) <1 - ]if f1(e¥e0\Ve) — f2(e¥0\V=) < 0
(7.35)

Note that because we only considered evidence in the upper graphs of V,, this became e"»0\V=
as this is the same evidence but from the perspective of V.

Propagating a parent constraint to children (case 2)

Again starting from Equation [7.14] and using the independence between children given their com-
mon parent:

[[ Frei) | Prwdet) o (7.36)

Vei€ov, Pr(eVer\Ve|=w,)  Pr(-vglet) I-a
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We will name the child we want to calculate a constraint for V. and rewrite:

Pr(eVe\V|v,) . H Pr(eVei\V=|v,) - Pr(vgle?) a (737)
Pr(eVe\Ve|—w,) Vorlor V. Pr(eVei\Ve|-w,) Pr(-w;let) ~1—a« '
ci€ovy \Ve
Vo\Va —o-let Vei\Va |
Pr(e |vs) X Pr(-wzle™) H Pr(e |—v,) (7.38)

Pr(eV\V=[-v,) " 1—a  Pr(vle?) Pr(eteVelu;)

Vcieo'vim\vc

If we again take the upper bounds we established for neighbours except V., we have a constraint for

c\z
% which we will call 3, as it corresponds to the 5 for the new child constraint. Note that

because of the property of mediants mentioned in Section this means we have to determine
the pair of values Pr(—w,|e") and Pr(v,|e") in the CPT of V, for which this value is maximised,
to create the loosest possible bound.

Pr(e¥e\V=|v,)

Pr(e ) < i

Propagating a child constraint to children (case 3)

Continuing rewriting Equation [7.25] gives us:

X - Pr(Vy = T|eT\V70 Avyg) + (1 — Pr(V, = Tlet\V0 Awyg)) <
B-X-Pr(Vy =Tlet\Veo A =) + - (1 — Pr(Vy, = T|e™\Ve0 A =) (7.40)

X - Pr(Vy = T|e™\V%0 Avyg) < B- X - Pr(V, = T]e\V0 A —w,0)+
B-(1—Pr(V, =Tlet\V»0 A —wy)) — (1 — Pr(Vi = T|e™\V70 A vy)) (7.41)

X - (Pr(Vy, = T|e"\V?0 Avyg) — 8- Pr(Vy, = T|e\Vo A =) <
B-(1=Pr(V, =T|et\Vo0 A —wy)) — (1 = Pr(Vi = T|eT\V70 A vy)) (7.42)

Expanding X again gives us:

Pr(e |V, =T)

il S A o) — Tlet\Vro —B3-P = Tlet\Veo A -

Prie|V, = F) (Pr(V, le Avpo) — B+ Pr(Vy le A —up0)) <
B-(1=Pr(V, =Tlet\V»0 A —wy)) — (1 — Pr(Vi = T|e™\V70 A vy)) (7.43)

Using the independence between children and extracting the child V. we want to create a constraint
for:

H Pr(eVei\V+|V, =T) Pr(e"\"» |V, =T)

Pr(eVei\V=|V, = F) Pr(ev\V=|V, = F)

Vei€ov,=1\Ve
(Pr(V, = T|e\V%° Awyg) — - Pr(Vy = T|e™\V0 A —wy)) <
B-(1=Pr(V, =T|et\V A —wy)) — (1 = Pr(V, = Tlet\Veo Avy)) (7.44)

So if (Pr(V, = T|et\V»o Awyg) — B - Pr(V, = T|eT\V»o A —w,0)) is positive, this results in the
constraint:

Pr(e"\Veo|V, = T) I Pr(e"=\V=|V, = F)

<
Pr(eVWelVe = F) ) ooy, PHEVY Ve =T)
ci€OVy=T\Ve

B (1= Pr(Vy = T|e™\Vr0 A=) = (1= Pr(Ve = T|em\70 Ay))
(Pr(Vy =T|et\Veo Avyg) — B+ Pr(V,, = Tlet\Veo A =)

(7.45)
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and if it is negative the constraint will be:

Pr(eV\V» |V, = T) I Pr(eVe\Vs|V, = F)

>
Pr(eV\Ve|V, = F) = . W Pr(eVei\V=|V, =T)
ci€ovy,=7\Ve

B-(1—Pr(V, =Tlet\Vro A —wy)) — (1 — Pr(V, = T|et\Veo Awy))

7.46
(Pr(Vy =T|et\Veo Avyg) — B+ Pr(V,, = Tlet\Veo A =) (7.46)
which is equal to:
Pr(eVe\V=|V, = F) I Pr(e¥ei\V=|V, = T)
Pr(eVe\Veo|V, = T) Voo \Ve Pr(eVei\Vz|V, = F)
(Pr(V, = T|et\Veo Avyg) — B-Pr(V, = T|eT\Veo A =) (7.47)

B (1=Pr(V, =T|et\Veo A o)) — (1 = Pr(V, = T|et\Veo A wy))

Both of these constraints can be transformed to the constraint in Equation by taking the
right-hand side of Equation[7.45]or [7.47] as de new /8 and assigning v, to V; = TRUE or V,, = FALSE
respectively. To determine the constraint that will be passed on we will take the loosest possible
bound by maximising the right-hand side of the equation by trying all possible extreme points
of neighbours of V,, other than Vo and V., as was described in Section B will get the
maximum value that can be reached in this manner. If not all constraints are in the same direction
we should have ended up in Situation 2.

7.2.4 Lower and upper bounds for children

There have been multiple occasions where we assumed we could create minima and maxima for
Pr(eVe ™ |v.) Pr(eVa\Ve|v,)
Pr(eVe—[-v.) Pr(eVd\VC\ﬁvc)

We want to have an upper or lower bound that can be found while only looking at the local
nodes. This means we have no information about the evidence nodes, and must assume they can
take any value. We will only consider the CPTs of V. and V;. This means that, for example,
Pr(eV¢~|vg) can take any value from 0 to 1, and Pr(v.|e"?") can take any weighted sum of the
values in the CPT of node V..

the equation

for some node V, with assignment v, and child V; € ov,,.

Pr(evd\c‘”c)
Pr(eVa\¢|-w,)
Pr(Vy=TRUE|v.Ae"dt\®)  Pr(V =FaLse|v.Ae"at\¢)
Pr(Vy=TRUE|~v.AeVdT\¢)? Pr(Vy=FALSE|-v.AeVdT\¢)
imise those values and
max [ Pr(Vg=TRruelv.Ae¥dat\®)  Pr(Vy=FaLse|v.Ae dT\¢)
Pr(Vy=TRUE|~v.AeVdt\¢)? Pr(Vy=FALSE|-v.AeVdT\¢)
imise those values.

Lemma 4.3. for any V4 € oy, is bound between

min | | for the combination of parent states that min-

| for the combination of parent states that max-

Proof. Pr(eVd\c|vc) is also called the diagnostic parameter in Pearl’s algorithm so we know we can
calculate it using the following formula:

Pr(e"\|v.) = a - Z [Pr(e"e~|vg) - Pr(vglve A e¥at\¢)]
va €QVy

where a is some normalization constant. We know > oy Pr(valve A eV4t\?) is equal to 1.

We can see that the difference between Pr(e"@\°|v.) and Pr(e"+\¢|-wv,) is bound by the difference
between Pr(e'~|vy) and Pr(eVe~|-wy) (i.e. if Pr(e¥*~|vg) and Pr(eV¢~|-v4) would be the same,

Pr(eVa\e Ve
Pr((T\qLUC)) would be 1).

Let us assume the difference between Pr(e"?~|vg) and Pr(e"?~|-wy) is as high as possible: one
of them is 0 and one of them is 1.

If Pr(eV*~|vg) = 1 this would mean the highest possible value of Pr(e"\°|v,) is equal to the
highest possible value of o - Pr(vg|ve A €¥41\¢). Similarly, the lowest possible value of Pr(e"a\¢|v,)
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is equal to the lowest possible value of o - Pr(vg|v, A €V4+\¢),

The highest possible value of Pr(e"?\¢jv,) — Pr(e"*\¢|—w.) occurs when Pr(e"#\¢|v.) is as high
as possible and Pr(e"*\¢|-w,) is as low as possible. This means we can rewrite the maximum of
Pr(e"d\°|v,) a-Pr(vg|v.AeVdt\e)
Pr(eVa\¢|-w,) a-Pr(vg|-ve.AeVath\e)

eVd+\C) is minimised. The alphas cancel out which gives us part of the statement in the lemma.

where a - Pr(vglv. A €¥4\¢) is maximised and o - Pr(vg|—v, A

¢ Prie¥a\ o)

If we would instead assume Pr(e"#~|-vy) to be 1, the highest value o Pr(eVa\e o)

would similarly

a-Pr(—wg|v.AeVaT\¢)
a-Pr(—wg|-v.AeVaT\e)

is minimised.

become

where - Pr(—vg|ve. AeV4t\) is maximised and o Pr(—wg|—wv.Ae¥at\)

For the minimum values we just have to swap the minimization and maximization. For example,
Pr(e"d\°|v,) a-Pr(vg|v.AeVdt\¢)
Pr(eVa\¢|-v,) a-Pr(vg|~v.AeVdt\c)

€"4+\¢) is minimised and o - Pr(vg|-v. A €41\ is maximised. O

if Pr(e"*~|vg) = 1, the minimum of becomes

where « - Pr(vg|ve A

To find a numerical bound we can again use the property of the mediant we used in and
simply compare numbers in the CPT to find the combination of degenerate parent states that

would give the maximal or minimal value of the equations in the lemma.
Pr(e"d\|v.)
Pr(eVd\¢|-w,)

Ve—
For example, if we want an upper bound for Ppr(e lve)

r(eVe=[-we)?
\e
% for all children of V,,, as they are always larger than 0.

Using this lemma we can take the product of for all children of V. to calculate

Pr(eVe " |v.)

Pr(eVe vy we can take the product of

all upper bounds for

7.2.5 Evidence nodes with child constraints

The removal of Assumption [§] also means that the algorithm can now encounter children that are
evidenge nodes. As we have seen propagating downwards means that we have a different constraint:
Pr(e'=\Vpo |y
Pr((evw\Vpo \L:;J))
may have. Because Assumption [ enforces that V,, then only has one parent, it is easy to determine
from the CPT which states would satisfy our constraint: the only evidence in the lower graphs is
in V,, so the left-hand side of the constraint corresponds directly to values in the CPT for both
possible assignments to V.

< B. If V,, is an evidence node, the result depends on any additional parents V,

7.2.6 Backtracking with child constraints

Just like with the original constraints, we need to return a value to simplify the equation in the
previous node, as this means it has more information when trying to determine the situation.
Recall Section where we did this for parent constraints. In the case of the child constraints

we need the value of a - Pr(e"*\°|v,) and o - Pr(e"*\¢|—w,) for some constant «, as this allows us
Pr(e"d\°|v,.)
Pr(eVa\¢|-w,)’

to calculate which we need to simplify equations [7.25(and |7.14] Given

1
Pr(e¥e\°|v,) = o Z [Pr(eV* ™ |vg) - Pr(vg|ve A e¥at\0)]
va €QVy

which we saw before in Section [7.2.4] we can calculate these values using the values we would
get from all our neighbours: the product of the values from the children and the probabilities for
the parents can be filled in in the formula and in combination with the CPT of node V; we can
strengthen the constraint on our parent node by filling in % for the child we are at. The
separate values may later be used to recursively calculate the child constraint return value just as
we did here. In Situations 1 and 2 Pearl’s algorithm is also able to return those values, as they

correspond to its diagnostic parameter.
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7.2.7 The updated algorithm

As we can see, the basis of the algorithm essentially does not change. The difference now is that
determining the Situations and calculating the new constraints has become much more complex.
Additionally, there are different return values depending on the nature of the constraint: for a par-
ent constraint, we return Pr(v,|eY ), while for child constraints, we return both « - Pr(

and o - Pr(eV=\Veo|—w,0).

7.2.8 Example

In this section we will give two examples of how the algorithm deals with graphs. Example 1 will
show how to deal with the new child constraints, while Example 2 will also show how to determine

abductive and contrastive explanations using this algorithm.

7.2.8.1 Example 1

Let us start with a simple example of how the algorithm propagates constraints to its children.
Consider the example in Figure Suppose that we have an initial constraint of Pr(V},

FALSE|e) < 0.4.

0.5

0.8

0.9

0.1

0.8

Figure 7.6: The Bayesian network used in Example 1.

H To start we will determine the Situation. Since we have a parent constraint we will use
Equation [7.14] We now need to create a lower and upper bound for the effects of all children, and
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the effects of all combinations of parents. Since we only have a single child, we will now calculate
Pr(eV1\Vr|V}, = FALSE)

Pr(eVr\Ve|V}, = TRUE) |

Let us define vy, as Vj, = FALSE

Using Lemma [£3] we know that the lower bound is equal to the lowest possible
Pr(Vg=Truk|v,Ae¥dt\®)  Pr(Vy=FaLse|v, AeVdT\¢) }
Pr(Vy=TRUE|~v,AeVdt\¢)? Pr(V ;=FaLsE| v, AeVdt\e)

a lower and upper bound for

In this case V; = Vj1 so

value of min|

Pr(Va=TruglvyneYdt\e) g9 Pr(Vg=FaLse|vpAeVdt\e) g1 ..
Pr(VamTrus| o, AVaTYe) = 0.8 and Br(Va—FaLse|n AeVaThe) — 0.2° The minimum of those two values
is 8% = 0.5. The upper bound is the maximum of the same values, which means it is % =1.25.

To find the Situation, we will determine whether the constraint is satisfied given the lower
Pr(e"11\V2|V}, = FALSE)
Pr(eV1:\Va |V}, = TRUE)
is based on Equation and using the independency between children when conditioned on their
parent:

bound and upper bound of . The equation to calculate the new constraint

H Pr(e¥e\Vr|uy,) Pr(vy|e™) .«
Ve€oy, (Pr(ch\Vh |=vn))  Pr(-wplet) l-a
Filling in this formula for the lower bound gives

0.4
0.5- % < 06 which is equal to 0.5 < 0.67 and satisfies the constraint. The upper bound gives

us 2 < 0.67, in which case the constraint is clearly violated.

This means we are in Situation 3: it is not the case that all combinations of variables violate the
constraint or satsify it, but when assigning the lower bound to one of the children, the constraint
is no longer satisfiable regardless of the values of the other neighbours of V}, (which do not exist).
This means we can create a new constraint for V,;. We will now convert a parent constraint into
a child constraint, which uses Equation [7.38

Our new constraint value  is defined as the highest possible value of T & Pr(ouslel)

Pr(vz|et)

HVCiEO'VI\le Pr(evci\l"ym) 0.6
Pr(eV11\Vh |V, —=F

r(ev \vl n=FALSE) < 0.67
Pr(e'11\Vr |V}, =TRUE)

Pr(e¥ei\?|—w,) 0.4 0.5 _
o3 - 1=0.67

So our constraint for Vi is

I1 To determine the Situation we will use Equation [7.25}

X - Pr(Vy; = TrUE|eV* T \Ve AV}, = FALSE) + (1 — Pr(Vy; = TRUE|e"1H\Ve AV}, = FALSE))
X - Pr(V;; = Trug|eYi1t\Va AV, = TRUE) + (1 — Pr(Vy; = TRUE|eV1+\Ve AV}, = TRUE))

<B

We can determine in which Situation we are. Since Vj; does not have parents beside V},, the
conditional probabilities can directly be found in the CPT and we can fill them in: X:0:940:1 (7.

X-0.840.2
Vi
To fill in the possible values of X = W, we must expand this formula to the product

of effects from children and calculate the lower and upper bounds on the values from all children.
PI’(EVEl\VIl |VIl:Tm:H)

PT(EVEl\VIl |V11:FA1.SH) ’
to calculate an upper bound and a lower bound results in values of 4.5 and 0.125.

4.5.0.940.1 0.125-0.9+40.1 . . .
Toost0z < 0.67 and 55255705 < 0.67 both do not fulfill the constraint, meaning we are in

Situation 4 and there are no solutions to the original constraint. The algorithm ends here.

Since there is only one child this results in Using the same method as in V},

7.2.8.2 Example 2

For this example, we are going to find a minimum abductive explanation for a specific input-
output pair for a Bayesian network. Consider Figure with input-output pair (e = {F1 =
T,E2=T,E3=T,E4=T},m=T}. In section we will discuss how to use the algorithm to
find abductive and contrastive explanations, which will be done in this example (so it might be
beneficial to read that first to understand why the algorithm makes certain choices). When having
multiple parallel calls, we first consider the parallel call(s) with the least evidence assignments in
e for which no parallel call exists with the opposite assignment. As discussed in Section if all
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Figure 7.7: The Bayesian network used in Example 2. Note that the CPTs of the evidence nodes
without parents are irrelevant as the nodes are guaranteed to be evidence. The CPTs are therefore
not included in the figure.
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parallel calls with the same subset in e end up in Situation 1, we have found the smallest abductive
explanation.

H We start in node V}, with parent constraint Pr(H = Fle) < 0.5. We will first determine the
Situation, using Equation [7.14 Pir((ee:‘f’;’j) . PP;r((:zzlle;)) <7 fa' Here, v, = H = F and o = 0.5.
To first test whether we are in Situation 1, we will try to violate the constraint by maximising

the left-hand side of the equation. We can do this by getting an upper bound for and

4
% independently Using Lemma and looking at the CPT of node H, we get an upper
bound of 8 ‘21 8 g = 1 which violates the constraint. This means we are not in Situation
1.

We will now check whether we are in Situation 3. We will first check whether we can make a
constraint for F4: can we satisfy the constraint if F£4 is maximised while the rest of the right-hand
side of the equation is minimised? Again using Lemma we get 8‘21 % =0.5< = 0 = = 1 which
still satisfies the constraint. This means we are not in Situation 4 as we found a way to satisfy the
constraint and we can currently not create a constraint for E4.

We will now check whether we can create a constraint for £3 by checking if the constraint can
be satisfied using all degenerate distributions for E3: if V.3 is FALSE with probability 1, equation
4] becomes: Q = =075 < = 1 which also satisfies the constraint.

1— O 5
If E3 is TRUE w1th probability 1, the equation becomes % . Q = 0.125 < = 0 = = 1 which
also satisfies the constraint. This means we cannot currently create a constraint for E3.
Checking whether we can create a constraint for 11 gives equations 8?1 8 g 0.125 < 1=5= 0 = =1

and 83 . M =0.75 < 1= 0 = = 1 both of which satisfy the constraint. This means we are not in
Situation 3 as we also cannot create a constraint for I1 currently.

Since we are not in Situation 1, 3 or 4, we must be in Situation 2. This means we should use
Pearl’s algorithm to get the return values from one of the subgraphs that would be disconnected
when we remove an arc to one of our neighbours. As it is generally beneficial to do this for small
subgraphs, we will do this for F4.

E4 Pearl’s algorithm returns two diagnostic parameters for each of two combinations of evi-
dence (so we have to run Pearl’s algorithm once for every possible combination of evidence in this

subgraph).

Assuming evidence {E4 = T} Pearl’s algorithm returns o - Pr(e?*\#|v,) = 0.6 and « -
Pr(e?"\H |-w;,) = 0.8.

Assuming evidence {E4 = F} Pearl’s algorithm returns a - Pr(e®\#|v,) = 0.4 and « -

Pr(e?\ |—v;,) = 0.2.

We now return these two parallel calls back to H. Note that we are still considering abductive
explanations of size 0: if both of these parallel calls would end up in Situation 1, we would have an
abductive explanation of the empty set (i.e. only 7 can be predicted by this Bayesian network).

H call 1/2 The first of these parallel calls with evidence {F4 = T} simplifies Equation

+ «

to 95 . PP;?(ﬁU;EJTe +)) <1 To check whether we are in Situation 1, we will try to violate the
0.5

constraint by maximising the left-hand side of the equation: % . % =3< 105 — 1 violates

the constraint, so we are not in Situation 1.

To determine whether we are in Situation 3 we will test if we can make a new constraint for £3
by checking if there exists a degenerate distribution for V.3 that makes it impossible to satisfy the
constraint: we will minimise the left-hand side of the equation for all combinations of degenerate
distributions for E3. If E3 = T with probability 1, the minimised left-hand side of Equation [7.14]
b : 26, Q = 0.1875

ecomes: g < 1-05

If £3 = F with probability 1, the minimised left-hand side of Equationmbecomes 8— % =

1.125 <
1-— O 5

can create a parent constraint for F3.

= 1 which satisfies the constraint.

80
= 1 which does not satisfy the constraint. This means we are in Situation 3 and
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For creating a parent constraint, we will use Equation In this case v = % = 1.33, which
gives us an « of 332 = 0.57. As Pr(H = T|E3 =T) < Pr(H = T|E3 = F), we must maximise
1-— %2;;26) This results in 1 — %57=9% and our new constraint becomes Pr(E3 = Fle) < 0.62.

E3 call 1/2 As E3 is an evidence node, there is only one combination of evidence that satisfies
the constraint: {E3 = T'}. The evidence set {E4 = T, E3 = T'} in combination with probability
Pr(E3 = T|e) = 1 will be returned to node H. However, this set of evidence considers an abductive
explanation of at least size 1: the abductive explanation E3, as there is an unterminated call that
includes E3 =T and F4 = F. We will therefore first consider the other parallel call.

H call 2/2 The other parallel call from F4 contains evidence {E4 = F'} and diagnostic param-

eters from Pearl’s algorithm that fill in Equation |7.14 to become 21 - Pljr?(:};if:% <7 f ~ We will
again test if we are in Situation 1, by maximising the left-hand side of the equation and seeing if

we can violate the constraint. This results in equation 24 . 98 —g§ <

0.2 0.2 1-05

= 1 which violates

the constraint, meaning we are not in Situation 1.

To determine whether we are in Situation 3 we will first try to create a constraint for node E'3
by checking if there exists a distribution for F3 that makes it impossible to satisfy the constraint.
We will minimise the left-hand side of the equation for all degenerate distributions of E3: if
E?E) ? T with probability 1, the minimised left-hand side of Equation |7.14|becomes §5 - 82 = 0.5 <
1-0.5

If 1835: F with probability 1, the minimised left-hand side of Equation becomes % . % =

1-0.5
for £3 and are in Situation 3.
Filling in Equation again with mostly the same values as in call 1, a becomes %2 = 0.33,

: : 0.33-0.8 15
meaning we get a constraint of Pr(E3 = Fle) < 1 — T35 = 0.22.

= 1 which satisfies the constraint. This means we are not in Situation 4.

3 < = 1 which does not satisfy the constraint. This means we can again create a constraint

E3 call 2/2 As E3 is an evidence node, there is only one combination of evidence that satisfies
the constraint: {E3 = T'}. The evidence set {E4 = F, E3 = T} in combination with probability
Pr(E3 =T|e) = 1 will be returned to node H.

We now know that there cannot be an abductive explanation of size 0, as none of the parallel
calls consider £3 = F anymore, meaning no combination of evidence that includes F3 = F' can
predict 7, so all abductive explanations must include £3 = T.

H call 1/2 We again arrive at node H with new return values that simplify the equation. The
return value from E3 reduces F3 from the CPT of H and leaves a CPT containing the following
conditional probabilities (and by definition the conditional probability of the inverse assignment to
H): Pr(H=T|I1=T)=0.8and Pr(H =T|I1 = F) = 0.4. We still have the following equation:

0.6 . Pr(vw\e+) «
.8 Pr(ﬁ’U:r,|e+) —

0
We will again determine the Situation, starting by testing for Situation 1. To test for Situation
1 we again test whether it is possible to violate the constraint, by maximising the left-hand side

. . s 0.6 0.6 _ :
of the constraint. This results in g - 57 = 1.125 < 105

= 1. As this violates the constraint,

we are not in Situation 1.

We will again test whether we are in Situation 3 by trying to make constraints for the neigh-
bouring variables. There is only a single neighbour left, /1. We will minimise the left-hand side of
the equation for all degenerate distributions of Il and try to violate the constraint. If I1 = T with

0.5
probability 1, the minimised left-hand side of the formula becomes % . % =0.1875 < 105 = 1

which satisfies the constraint.
If I1 = F with probability 1, the minimised left-hand side of Equation becomes: 2:6.06 —

0. 4
1.125 <
1-0.5

can create a parent constraint for I1.

8 0.
= 1 which does not satisfy the constraint. This means we are in Situation 3 and
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For creating a parent constraint, we will use Equation [7.35] In this case v = % = 1.33, which
gives us an v of $33 = 0.57. As Pr(H = T|I1 = T) < Pr(H = T|I1 = F), we must maximise
(1) ;2% This results in 1 — %3=06 and our new constraint becomes Pr(/1 = Fle/"\#) <

H call 2/2 We apply the same summing-out as in the first parallel call, which gives us a CPT

containing H): Pr(H = T|I1 = T) = 0.8. We still have the equation 33 - Pprz(fglle:ﬁ) T .
Testing if we are in Situation 1 by maximising the left-hand side of this equation gives us 8%21 . 8:—2 =

0.5
1-0.5
We will again test whether we are in Situation 3 by trying to make constraints for the neigh-
bouring variables. There is only a single neighbour left, /1. We minimise the left-hand side for all
degenerate distributions of /1 and try to violate the constraint. If I1 = T with probability 1, the

minimised left-hand side of the formula becomes 24 . 0—'5 =05< = 1 which satisfies the

0.2 0.

3 < = 1. As this violates the constraint we are not in Situation 1.

1-0.5

constraint.
If I1 = F with probability 1, the minimised left-hand side of Equation becomes:
0.5
<105
create a parent constraint for I1.
For creating a parent constraint, we will use Equation In this case v = % = 0.5, which
gives us an o of %2 = 0.33. As Pr(H = T|I1 =T) < Pr(H = T|I1 = F), we must maximise

1 _a—f2e) 0.33-0.6
f1(e)—f2(e)” 0.2—0.6
0.325.

04 06 __
. 4

0.2

0.
= 1 which does not satisfy the constraint. This means we are in Situation 3 and can

This results in 1 — and our new constraint becomes Pr(I1 = F|e!'\H) <

I1 call 1/2 Parallel call 1 has constraint Pr(I1 = F|e/"\') < 0.925. Equation gives us

Pr(ef\H|vz) . Pr(v,|e™) 0.925 —-123

Pr(e=\M[-vg) - Pr(zvzle®) =1 _ 925 7
Again, we first test for Situation 1 by maximising the left-hand side of the constraint and

checking whether this violates the constraint. As I1 only has a single child, we can ignore the

term e~ \ in the equation. Looking at the CPT of I1 we find an upper bound of % = 2.33 for
0.925
7;;?(:)5"8;)). Filling in the Equation [7.14| gives us 2.33 < 10925 — 12.3. As this does not violate

the constraint, we are in Situation 1.

This means all combinations of evidence that contain {E4 = T, E3 = T} will predict 7. This
tells us that there exists an abductive explanation of size at most 2. However, there might still
exist an abductive explanation of {E3 = T}, depending on whether the other parallel call also
ends up in Situation 1 with all its branching calls. This is the end of this parallel call, as we do
not need any return value.

I1 call 2/2 Parallel call 2 has constraint Pr(I1 = F|e!"\) < 0.325. Equation gives us
Pre \jo,)  Pr(vale’) _ 0.325 0.48
Pr(e=M[ove) - Pr(zvzle™) =1 0325 7
Again, we first test for Situation 1 by maximising the left-hand side of the constraint and
checking whether this violates the constraint. Looking at the CPT of I1 gives us an upper bound
r(vg e e . . 0.325 .
of % = 2.33 for %. Filling in Equation |7.14 gives us 2.33 < 10325 — 0.48. As this
violates the constraint, we are not in Situation 1. .

We will now try to create a constraint for £2 to help determine whether we are in Situation 3.
We minimise the left-hand side for the degenerate distributions of F2. If 12 = T with probability

0.325
1, Equation |7.14] becomes 2 - % =15< 1T—03% — 0.48 which does not satisfy the constraint.
' 0.325
If 12 = F with probability 1, Equation |7.14] becomes 2 - % = 0.66 < 10325 — 0.48 which

does not satisfy the constraint. This means we are in Situation 4: no combination of evidence that
includes {E4 = T, E3 = F'} will satisfy the constraint. This parallel call ends here.
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The minimum abductive explanation we found was {E4 = T, E3 = T'}, as it is the smallest
subset of e for which all assignments occur a completed parallel call, without the parallel call
containing assignments that invalidate the abductive explanation (see Sectio. In this case,
the abductive explanation is equal to the assignments of the only call that ended in Situation 1.

7.3 Running time

In this section we will analyze the running time of the algorithm. We will also compare it to
running Pearl’s algorithm for every combination of evidence, as that is the most straightforward
alternative way to get the solution.

7.3.1 Time per node

Let us start by determining the computation per node per (parallel) call. The main computations
in every node consist of finding the Situation and possibly calculating a new constraint. This
takes O(2Pv= - py, + 2PVva - ay,) = O(2Pme= - D) calculations as we saw in Section where
D is a bound on the degree all nodes, and P4, is @ bound on the number of parents a node
has. In contrast, Pearl’s algorithm combines values for every combination of parent assignments,
but only calculates two values per child. It also has to create messages for all its parents, giving
it a computation time of O(2°v= - py, ) per call per node. Note that while the weakest-bound
calculations (see Section are able to limit the number of constraints for each CPT to two,
more parallel calls can still mean that we visit a node multiple times. This means each node can be
visited for each combination of evidence in its relevant subgraph (the entire graph minus the lower
graph or upper graph of the neighbour that created the constraint for V). We call the number
of relevant evidence nodes |er|. For every recursive call, we have to find situations and calculate
a new constraint. In total, the computations for a single node take O(2!¢"l . 2°maz . D) time. For
reference, combining the computation time of Pearl’s algorithm for a single node would result in
O(2lel-2Pva . py, - py, ) (once for each combination of evidence).

7.3.2 Total computation time

However, this computation per node only works if we actually use the algorithm for this node. In
Situations 1 and 2 we apply Pearl’s algorithm to a portion of the graph instead. This means this
portion of the graph takes O(2!¢"l . 2Pmaz . p ..} time per node, where |er| is again the number
of relevant evidence nodes. If we would be able to run the entire algorithm without encountering
Situation 1 or 2, the total worst-case computation time would be O(N - 2Pme=tletl . D). When
encountering Situation 1 or 2, we use Pearl’s algorithm for a part of the graph, which does not
change the complexity. Note that the worst-case time complexity of running Pearl’s algorithm for
all combinations of evidence (O(N - 2/l . 2Pmaz . p . 1) is slightly faster than the worst-case time
complexity for the constraint propagation algorithm. However, determining the state of a single
variable halves the total computation time (the number of possible combinations of evidence gets
halved). Additionally, the time it takes per node in the constraint propagation algorithm depends
on the number of relevant evidence nodes, while Pearl’s algorithm is run for all combinations of
evidence for all nodes. We expect that in practice the algorithm is much faster than running Pearl’s
algorithm 2/Z! times, especially if the size of the result is small (few combinations of evidence will
actually satisfy the constraint, so there will be relatively few parallel calls). Consider the example
from Section here we can manually run the algorithm, where running Pearl’s algorithm
26 = 64 times would take much more time. Of course this example is not necessarily representative
for the structure of Bayesian networks in practice, but it illustrates the improvement in calculation
time that is possible using this algorithm. It would be interesting to implement the algorithm and
experimentally compare its speed against alternative calculation methods such as multiple calls of
Pearl’s algorithm or the Lauritzen and Spiegelhalter [30] algorithm.
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7.4 Possible extensions

There are two different types of extensions to the algorithm we will discuss here: simple changes
to the algorithm that may reduce computation time or make the algorithm applicable in different
situations, and generalisations of the algorithm to more general networks, but are not discussed in
this thesis and might be interesting for further research.

7.4.1 Alterations

Weakest-bound calculations As the algorithm propagates its constraints through the graph,
it splits into more and more parallel calls. All of these calls have a constraint and will return
all combinations of evidence that satisfy it, combined with the return value(s) obtained with this
combination of evidence. This means that the result of a stronger constraint will always be a
subset of the combinations of evidence that were obtained with the original (weaker) bound. This
means we only have to calculate all results for the loosest constraint on a node, after which we can
check for each of the resulting values whether it also satisfies the other constraints. In this case,
we want to continue all parallel calls until they have created constraints for the same node, instead
of completing one call entirely before moving on to the next one.

Search around known evidence In many practical applications one might not want to know
all possible combinations of evidence that satisfy a constraint, but all combinations of evidence
that have fewer than x changes from a certain combination of evidence E. An example for this
would be if we want to know whether there exists a contrastive explanation of size at most .
This can be done by keeping track of how many assignments to evidence have changed compared
to E inside each parallel call of the algorithm. If the parallel call would return a combination
of evidence that has more than z assignments that are different than in F, these are removed
from the return set. When in Situation 1 or 2, we also do not have to try all combinations of
evidence, but merely the combinations that have less changes than are still allowed given the
current changes. This alteration does not combine well with the weakest-bound calculations, as
a stronger constraint may have fewer variables that differ from e and may therefore have results
that the weaker constraint does not have. If multiple constraints on a node have the same number
of changeable evidence nodes left, we can still calculate the result for the weakest constraint.

Early-stop In Situation 1 the algorithm normally has to return the resulting values of the
node for all combinations of evidence. This information will be used to remove nodes from the
calculations. However, if this is the last branch of the algorithm we do not need this information
and can immediately return the evidence combinations. If the actual values for the hypothesis node
that satisfy the constraint are also requested, this is of course not possible: in some situations it
may be useful to not only know which combinations of evidence would satisfy the constraint, but
also which result all of these combinations of evidence have on the probabilities of the hypothesis
node, though this is, for example, not required for finding abductive or contrastive explanations.

Heuristic propagation The algorithm often has to choose to which neighbour to continue: in
Situations 2 and 3, there are often multiple directions in which it can continue. We can create
heuristics that can help determine how the algorithm could continue to need as little computation
time as possible. For example in Situation 2 it is generally beneficial to continue to the tree with
the fewest evidence nodes. This costs the least amount of time while hopefully giving us enough
information to change the Situation in the node. In Situation 3 it is also beneficial to visit small
subgraphs first, as this tightens the constraint for the larger subgraph, which hopefully lowers the
number of parallel calls in the larger subgraph, thus improving the chances to get to Situation 1 or
4. The time it takes to calculate the size of subraphs is negligible compared to the total running
time of the algorithm, so we expect that this heuristic will improve the total running time. We
will leave more complex heuristics as a subject for further research.
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Problem flipping The algorithm can find all possible combinations of evidence that satisfy the
constraint much faster if there are fewer results. If we want to know all combinations of evidence
that satisfy a constraint Pr(v,le) < a which we know is satisfied by the large majority of all
possible combinations of evidence, we may use the constraint Pr(—wvple) < 1 — « instead. This
gives us the set of all combinations of evidence that do not satisfy the constraint, which we can
easily convert to the solution of the original problem by subtracting the result from the set of all
possible combinations of evidence.

7.4.2 Suggestions

All singly connected graphs The most obvious limitation of the constraint propagation algo-
rithm in its current form is that it only works for some highly constrained graphs. For at least
generalizing the algorithm to work in all singly connected graphs, the algorithm would need to be
able to transform existing child constraints to new parent constraints. Though the algorithm is in
its current state not applicable to many Bayesian networks that are used in practice, it should be
able to serve as a proof of concept for an algorithm that is able to effectively find combinations of
assignments to nodes that satisfy a condition of some node.

Non-binary networks The current algorithm only works for Bayesian networks with only bi-
nary nodes. We can convert Bayesian networks with nodes with any number of states to binary
Bayesian networks by representing any n-ary node by a chain of n — 1 binary nodes, that each have
the original parents and children. However, it may be more efficient to generalize the algorithm to
work with non-binary nodes and thus get rid of Assumption [7}

Non-singly-connected graphs The current algorithm only works for singly connected graphs.
It would be very useful to generalise the algorithm so that it does not need Assumption [6] and
works with graphs that are not singly-connected. For example, Pearl’s algorithm can be used to
approximate probabilities in any Bayesian network by essentially propagating messages around un-
til the network converges (which does not always happen) [35]. There might be a similar thing that
can be done for the constraint propagation algorithm, where the algorithm has constraints that
converge to a certain point until we know whether we can satisfy them. However, this might have
edge-cases where it continues indefinitely. Additionally, we no longer have the same disconnected
upper and lower graphs that are used in the algorithm, so some alterations will be required.

Another way would be to convert the network to a singly connected graph by removing loops
using loop cutsets. However, this is also hard to do in combination with the constraint propaga-
tion algorithm, as the algorithm would then find possible allocations of loop cutset evidence that
would satisfy the constraint. However, this evidence is meaningless and does not help us with
finding possible assignments of the original evidence in any obvious way.

Other types of constraints Similarly we could remove Assumption [3} if the algorithm could
be generalized to accept constraints that have a different form, the algorithm could be used for
other interesting applications. For example, if the algorithm would accept multiple constraints at
the same time, we could look for evidence assignments that have almost the same prediction as our
current prediction of Pr(v,) = y, by having the constraints Pr(v,) < y 4+ € and Pr(v,) < y — € for
some small €. As this would likely produce a small output, the expected calculation time is also
much lower. We expect that this addition to the algorithm would be relatively simple to create.
We could also attempt to work with constraints of any form, though that is likely to be harder if at
all possible. It would also be interesting to see if the algorithm can be altered to allow simultaneous
constraints on multiple evidence nodes (removing Assumption .

Reverse Pearl’s While this algorithm propagates constraints, it works very similarly to directly
reversing inference (i.e. finding a combination of evidence that results in an exact distribution of
the hypothesis node). By using almost the same formulas but equalities instead of inequalities,
it should be possible to change the algorithm to find out which combination(s) of evidence could
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have been entered to result in this specific prediction. However, this has little real-world meaning
as this only works for the exact predictions of Pr(vy|e) that the Bayesian network can output. For
explainability reasons however, this might be useful to do.

7.5 Applications

In this section we will discuss the possible applications of the algorithm.

7.5.1 Contrastive and abductive explanations

The original intention behind the constraint propagation algorithm is to be able to calculate con-
trastive and abductive explanations more efficiently. A straightforward method would be to find
all combinations of evidence that predict m, and determining the abductive and contrastive expla-
nations from there. However, by slightly modifying the algorithm we can do this more efficiently.
Note that a parallel call including assignment to evidence a that is completed guarantees that
a E x where z is the starting constraint of the algorithm. However, the reverse is not true. If a F x
(i.e. all combinations of evidence that include a satisfy constraint x), all assignments in a end in
Situation 1, but not necessarily in the same parallel call. We might for example have the following
completed parallel calls: {aANA =T}, {aNA=FAB=T},{aNA=FAB=F}. Together, this
still means that a E x, but this information is only contained in the total set of completed calls.

Minimum contrastive explanations Finding a minimum contrastive explanation is straight-
forward: if we run the constraint propagation algorithm with the constraint that —r is predicted
and a parallel call is completed (reaches Situation 1) with a set of assignments to evidence p,
this means that p F —7. The assignments that are different from e correspond to a potential
contrastive explanation: there exists an assignment to those variables that is different from e and
guarantees the prediction of —7. As all potential contrastive explanations occur in some branch of
the algorithm, we are only interested in the parallel calls where this set is minimal.

The parallel call that reaches Situation 1 with fewest evidence-assignments that are different
from e corresponds to a contrastive explanation that includes all evidence-assignments in that
parallel call that are different from e. To find these parallel calls efficiently, we can pause all
parallel calls that do not have the fewest evidence assignments that are different from e and end
the algorithm when the first parallel call is completed.

All contrastive explanations Conversely, for finding all contrastive explanations we can pause
all parallel calls which have the following properties:

1. Given the set C' of variables for which the evidence assignment in this parallel call is different
from e, there exists another parallel call where variables C’ C C have a different assignment
than in e.

2. The parallel call with C’ has either not terminated or ended in Situation 1.

If all parallel calls are paused, the algorithm can terminate.

Minimum abductive explanations Abductive explanations are slightly more complex: we
now want the minimal set for which p E 7. If we run the constraint propagation algorithm with the
constraint that 7 is predicted and a branch completes with a set of assignments p, this corresponds
to an abductive explanation A iff all variables in A occur in p with the same assignment as in e
and all other variables either

e do not occur in e

e occur in e, but also occur in another completed parallel call with opposite assignment, that
also contains all variables in A, and for which this same property holds.
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See also the examples earlier in this subsection.

To find a minimum abductive explanation, for each parallel call we keep track of the minimal size
of abductive explanation for which these properties hold or could hold depending on unterminated
calls, and pause all parallel calls for which this size is larger than the minimum one. We return
the first abductive explanation that we confirm, and terminate the algorithm.

All abductive explanations Finding all abductive explanations works extremely similar, but
we terminate all parallel calls that only correspond to abductive explanations for which a subset
is already a confirmed abductive explanation, and do not stop the algorithm after finding the first
abductive explanation. See also example 2 in Section

7.5.2 Improve understanding of Bayesian networks

Another use of this algorithm is to be able to examine a Bayesian network if it produces unexpected
results. It is likely able to get a lot of evidence-output pairs much faster than Pearl’s algorithm
is able to, which is beneficial if there is ever a reason to turn a Bayesian network inside-out to
determine what went wrong.
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Algorithm 10 CounstraintPropagationSCG(Node V;,, constraint «)

1: returnSet = (J;

2: if V,, == evidenceNode and constraint.type == Parent then
3:  value = V,,.valueThatSatisfies(«);
4:  returnSet.add(V;, = value, Pr(value) = 1);
5. return returnSet;
6: end if

7. if V,, == evidenceNode and constraint.type == Child then
8 for State vy € V,, do

9 if vs.satisfies(a) then

10: retVal = calculateReturnValue(c, vy)

11: returnSet.add(V;, = v,, retVal);

12: return returnSet;

13: end if

14:  end for

15: end if

16: situation = checkSituation(V;,, a);

17: if situation == 1 then

18:  for evidence in AllSubgraphEvidenceCombinations(V;,) do
19: returnValues = DetermineReturnValues(V,,, evidence);
20: returnSet.add(evidence, returnValues);

21:  end for

22: return returnSet;

23: end if

24: if situation == 2 then

25:  V,, = V,,.Parents|0];

26:  for evidence in AllSubgraphEvidenceCombinations(V,) do

27: returnValues = DetermineReturnValues(V),, evidence);
28: Vi, .SimplifyCalculation(V,, returnValues);

29: recursiveResults = ConstraintPropagationSCG(V,,, a);
30: for (evs, val) in recursiveResults do

31: returnSet.add(evs+evidence, val);

32: end for

33:  end for

34: return returnSet;

35: end if

36: if situation == 3 then

37 (Vp, B) = CalculateNewConstraint(c);

38:  neighbourResults = ConstraintPropagationSCG(V,, 5);
39:  for (evidence, value) in neighbourResults do

40: V., -SimplifyCalculation(V,, value);

41: recursiveResults = ConstraintPropagationSCG(V,,, «);
42: for (evs, val) in recursiveResults do

43: returnSet.add(evs+evidence, val);

44: end for

45:  end for

46: end if

47: if situation == 4 then

48: return (;

49: end if
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Chapter 8

Conclusion

In Chapter [2| we saw that there are several types of explanations that can easily be computed for
Bayesian networks and Bayesian classifiers, such as chains of reasoning, some measures of important
internal nodes, and explanations of nodes and links. However, certain types of explanations are
extremely expensive to compute for Bayesian networks of larger size, such as abduction, Shapley
values, or MAP-independence. Two of these types of explanations that are expensive to compute
are abductive and contrastive explanations. We proved in Chapters [5] and [6] that it is likely not
possible (impossible assuming P # N P) to compute abductive or contrasive explanations in poly-
nomial time relative to the size of the Bayesian network. However, finding these explanations has
a different complexity depending on which subproblem you want to solve: for example whether
you want to check whether something is a contrastive explanation or if you want to find a mini-
mal contrastive explanation. Additionally, knowing all abductive explanations greatly helps with
finding all contrastive explanations and vice versa. The complexities found in Chapters [5] and [6]
are not exhaustive: for some subproblems we have not determined whether they can be solved in
polynomial time, and for many subproblems we have only shown hardness and not completeness
for a complexity class, which means they may be in an even harder complexity class. In these
chapters we have also introduced some simple algorithms that solve the introduced subproblems.
These simple algorithms can be used for any type of classifier, and do not look at the internal
structure of the (Bayesian) classifier, but use inference to obtain individual predictions from the
Bayesian classifier. These algorithms provide upper bounds for the running time needed to solve
these problems, but it is likely possible to create algorithms that take less time to solve the sub-
problems. In Chapter [7] we introduced a more complicated algorithm to find all abductive or
contrastive explanations. This algorithm is tailored to Bayesian classifiers specifically and uses a
branch-and-bound-like strategy of traversing the network to minimise the computations required
to find all abductive or contrastive explanations. The proposed algorithm solves a more general
query of finding all evidence assignments that would satisfy a specific type of constraint, which can
then be used to compute abductive or contrastive explanations. The algorithm should in practice
take less time than existing alternatives, because it is designed to minimise calculating the same
partial results multiple times. Additionally, it only takes the parts of the network into account
that could influence the result of the algorithm. The (constraint propagation) algorithm so far
works for specific types of graphs only: it is constrained to a singly connected binary Bayesian
network, where some nodes may have at most one parent. The most prohibitive limitation of the
algorithm currently is that it only works for these specific networks. In Section [7.4.2] we have
suggested numerous additions to the algorithm to make it run faster or able to deal with more
types of graphs, some of which are left as subject for further research.
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