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Abstract

Zipping and traversal are two of the best-known list operations. Con-
trary to what one might expect, these operations are in no way limited
to lists. In this thesis, we generalize the zip function to all polynomial
functors and the traverse function to all finitary polynomial functors.
Polynomial functors include essentially all data types with a single type
parameter. We implement a zip bijection for polynomial functors in the
Coq proof assistant. Such a bijection consists of a zip function, an unzip
function and a proof that they are mutually inverse. We also implement
a traverse function for finitary polynomial functors and prove that it has
the expected properties.
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Chapter 1

Introduction

Zipping is arguably one of the best-known list operations, especially in the field
of functional programming. The zip function combines two lists of equal length
into a single list of pairs. Informally, it is given by

zip((a1, a2, . . . , an), (b1, b2, . . . , bn)) := ((a1, b1), (a2, b2), . . . , (an, bn)),

where lists are thought of as finite sequences and n is the length of the input
lists. In a sense, this is just matrix transposition. Like matrix transposition,
zipping is an invertible operation. The inverse operation is known as unzipping.

The type List(A) of lists of elements of a type A may be defined as the
inductive type whose constructors are nil : List(A) and cons : A → List(A) →
List(A). In practice, the zip function is usually defined recursively as follows:

zip(nil, nil) := nil,

zip(nil, cons( )( )) := nil,

zip(cons( )( ), nil) := nil,

zip(cons(a)(`), cons(b)(`′)) := cons(a, b)(zip(`, `′)).

Note that this function is not injective and therefore not bijective, unlike the
previous one. For example, it sends both (nil, nil) and (nil, cons(4)(nil)) to nil.

One should not get the idea that zipping is specific to lists. Consider, for
example, the inductive type Tree(A) of binary trees labelled with elements of
a type A, whose constructors are leaf : Tree(A) and node : Tree(A) → A →
Tree(A)→ Tree(A). A function that zips binary trees is defined as follows:

zip(leaf, leaf) := leaf,

zip(leaf, node( )( )( )) := leaf,

zip(node( )( )( ), leaf) := leaf,

zip(node(t1)(a)(t2), node(t′1)(b)(t′2)) := node(zip(t1, t
′
1))(a, b)(zip(t2, t

′
2)).

Zipping is, without a doubt, a useful operation for any kind of data struc-
ture. However, defining a separate zip function for each data structure is a
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CHAPTER 1. INTRODUCTION 5

repetitive and time-consuming task. Ideally, we would like a single zip func-
tion that works for all data structures, or more precisely, all inductive types
with a single type parameter. Hereafter, we refer to these as polymorphic data
types.

The process of writing functions that work for a variety of data types is
commonly known as generic programming. A standard reference on the subject
is [5]. Morris [23] provides a comprehensive overview of different approaches
to generic programming. We use the approach described in the fifth chapter of
[23], which is based on the concept of polynomial functors. Polynomial functors,
also called container functors, are discussed in Chapter 4.

As we shall see in Chapter 4, polymorphic data types are polynomial func-
tors. Abbott et al. [2] were the first to show that ’strictly positive types in one
variable’, which include polymorphic data types, are polynomial functors. To
obtain a zip function for polymorphic data types, it is therefore sufficient to
define one for polynomial functors.

In Chapter 3, we formally define the standard zip bijection briefly described
in the opening paragraph. The standard zip bijection is generalized to all
polynomial functors in Chapter 5. As Jay and Cockett [14] noted, the existence
of a zip bijection for polynomial functors follows from the categorical fact that
polynomial functors preserve pullbacks. Pullbacks, along with other relevant
theoretical concepts, are introduced in Chapter 2. The papers [11] and [22] are
noteworthy for generalizing the standard zip bijection in ways that are different
from ours.

As Moggi et al. [22] point out, the zip function is conceptually similar to
the traverse function. Jaskelioff and Rypáček [13], among others, have exam-
ined traversability of functors. In brief, a traversable functor is one for which
there is a traverse function that satisfies certain conditions. Chapter 6 firstly
shows that List is traversable. It turns out that not all polymorphic data types
are traversable: only finitary ones are. After explaining the concept of fini-
tary (polynomial) functors, we will prove that finitary polynomial functors are
traversable.

To date, little attention has been paid to the formalization of these results
using a proof assistant, such as Coq. Our contributions include the formaliza-
tion of the results in homotopy type theory and their implementation in Coq.
The Coq code, which builds on the HoTT library, is available here.

https://github.com/HoTT/Coq-HoTT
https://github.com/DanielKamphorst/generic-programming


Chapter 2

Theoretical Background

This chapter presents the theoretical background. Much of the information
presented here comes from standard textbooks on homotopy type theory [27,
28] and category theory [17, 18].

2.1 Dependent Types

A dependent type, or type family, is a function A from a type I to the type
Type of all (small) types. If i is an element of I, then A(i) is a type.

2.2 Basic Types

Functions

If A and B are types, the function type A → B is the type of functions from
A to B. More generally, given a type A and a dependent type B : A → Type,
the dependent function type

∏
a:AB(a) is the type of functions sending each

element a : A to an element of B(a). Such a function is called a dependent
function because its codomain depends on its argument. If B is a constant
family, then the dependent function type

∏
a:AB is simply the function type

A→ B.

Natural Numbers

The type N of natural numbers is the inductive type whose constructors are
0 : N and succ : N → N. Natural numbers are conventionally written as
decimals. For example, succ(succ(0)) is written 2.

A natural number is either zero or the successor of another natural number.
This means that we can show that a given statement is true for all natural
numbers by first proving it for 0, and then for succ(n), assuming the statement
is true for n.

6
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Given a type X, an element x1 : X and a function x2 : X → X, there is a
function f : N→ X, given by

f(0) := x1,

f(succ(n)) := x2(f(n)).

This is the recursion principle for N, represented by a function

recN :
∏

X:Type

(X → (X → X)→ (N→ X)).

The recursion principle for N is a special case of the induction principle for N,
which states: given a dependent type X : N → Type, an element x1 : X(0)
and a dependent function x2 :

∏
n:N(X(n)→ X(succ(n))), there is a dependent

function f :
∏
n:NX(n), given by

f(0) := x1,

f(succ(n)) := x2(n)(f(n)).

The corresponding function is denoted by indN. The recursion principle for N
can be derived directly from the induction principle for N:

recNX(x1)(x2) := indN
n7→X(x1)(n 7→ x2).

We can use the recursion principle for N to obtain, for example, a function
add : N→ N→ N that adds two natural numbers:

add := recNN→N(idN)(succ ◦ −).

Here, id :
∏
A:Type(A → A) is the polymorphic identity function, given by

idA(a) := a. Subscripts, such as A, will often be omitted for readability. The
sum add(m)(n) of two natural numbers m and n is usually written m+ n.

Clearly, deriving a recursion principle from an induction principle is a trivial
task. When specifying an inductive type, we shall henceforth give only the
induction principle.

Lists

If A is a type, the type List(A) of lists of elements of A is the inductive type
whose constructors are nil : List(A) and cons : A → List(A) → List(A). The
induction principle for List(A) says that, given a family X : List(A) → Type,
an element x1 : X(nil) and a function

x2 :
∏
a:A

∏
`:List(A)

(X(`)→ X(cons(a)(`))),

there is a function f :
∏
`:List(A)X(`), given by

f(nil) := x1,

f(cons(a)(`)) := x2(a)(`)(f(`)).
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The polymorphic data type List : Type → Type is a functor. It sends a
function f : A→ B to the function List(f) : List(A)→ List(B) given by

List(f)(nil) := nil,

List(f)(cons(a)(`)) := cons(f(a))(List(f)(`)).

Binary Trees

If A is a type, the type Tree(A) of binary trees in which each node is labelled
with an element of A is the inductive type whose constructors are leaf : Tree(A)
and node : Tree(A) → A → Tree(A) → Tree(A). The induction principle for
Tree(A) states: given a family X : Tree(A) → Type, an element x1 : X(leaf)
and a function∏

t1:Tree(A)

(
X(t1)→

∏
a:A

∏
t2:Tree(A)

(X(t2)→ X(node(t1)(a)(t2)))
)
,

there is a function f :
∏
t:Tree(A)X(t), given by

f(leaf) := x1,

f(node(t1)(a)(t2)) := x2(t1)(f(t1))(a)(t2)(f(t2)).

Like List, the polymorphic data type Tree : Type → Type is a functor. It
sends a function f : A→ B to the function Tree(f) : Tree(A)→ Tree(B) given
by

Tree(f)(leaf) := leaf,

Tree(f)(node(t1)(a)(t2)) := node(Tree(f)(t1))(f(a))(Tree(f)(t2)).

Pairs

If A and B are types, the product type A×B is the type of pairs consisting of
an element of A and an element of B. The induction principle for A×B says:
given a family X : A× B → Type and a function x :

∏
a:A

∏
b:B X(a, b), there

is a function f :
∏

(a,b):A×B X(a, b), given by f(a, b) := x(a)(b). Applying the
induction principle for A×B is referred to as uncurrying.

Product types are essentially special cases of dependent pair types. Given
a type A and a dependent type B : A → Type, the dependent pair type∑
a:AB(a) is the type of pairs consisting of an element a : A and an element

of B(a). Not surprisingly, such pairs are called dependent pairs. The induction
principle for

∑
a:AB(a) states that, given a familyX :

∑
a:AB(a)→ Type and a

function x :
∏
a:A

∏
b:B(a)X(a, b), there is a function f :

∏
(a,b):

∑
a:A B(a)X(a, b),

given by f(a, b) := x(a)(b).
Product types and dependent pair types will be discussed further after we

introduce equivalences.
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2.3 Equality

We distinguish two kinds of equality: judgmental equality and typal equality.
Two terms a and a′ of the same type are said to be judgmentally equal—

written a ≡ a′—if they reduce to the same canonical form [31]. For example,
the natural numbers id(2) and (n 7→ succ(n))(1) are judgmentally equal because
they both reduce to 2. In contrast, the sum 2 +n of 2 and a natural number n
is not judgmentally equal to n+ 2. They are, rather, typally equal, which can
be proved by induction on n.

Two elements a and a′ of a type A are said to be typally equal if the identity
type a =A a′ (usually written simply a = a′) is inhabited. The identity type
a = a′ is the type of identifications of a with a′. The type a = a′ itself is not
inductively defined. Instead, the family (a = −) : A → Type is, whose only
constructor is refla : a = a. The induction principle for a = − says that, given
a function X :

∏
a′:A((a = a′)→ Type) and an element x : X(a)(refla), there is

a function f :
∏
a′:A

∏
w:a=a′ X(a′)(w), given by f(a)(refla) := x.

Two judgmentally equal terms are necessarily also typally equal. If a ≡ a′,
then (a = a) ≡ (a = a′), which means that refla is not only an element of a = a
but also of a = a′ [31].

Let A be a type, and let P : A → Type be a dependent type. For each
identification w : a =A a′, there is a transport function w∗ : P (a) → P (a′),
thought of as transporting elements of P (a) along w.

Identifications can be composed: for any two identifications w : a =A a′

and w′ : a′ =A a′′, there is an identification w · w′ : a =A a′′. Furthermore,
every identification w : a =A a

′ has an inverse w−1 : a′ =A a. This reflects the
well-known fact that equality is an equivalence relation.

A function f : A→ B can be seen as a functor in the sense that there is a
function

apf :
∏
a:A

∏
a′:A

((a =A a
′)→ (f(a) =B f(a′)))

with the property that apf (refla) ≡ reflf(a) and apf (w ·w′) = apf (w) · apf (w′).

2.4 Homotopies

In most cases, it is more difficult to show that two functions are equal than
it is to prove that they are pointwise equal. In fact, it is often impossible to
show that two functions are equal without the function extensionality axiom,
discussed in Section 2.9. This is why pointwise equality is, in general, to be
preferred. Equality implies pointwise equality, but not vice versa. The function
extensionality axiom serves to remedy the problem.

Let f, g :
∏
a:AB(a) be two dependent functions. A homotopy from f to g

is an element of the type

(f ∼ g) :=
∏
a:A

(f(a) = g(a)).
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Like regular equality, pointwise equality is an equivalence relation. The
identity homotopy f ∼ f is the function a 7→ reflf(a), the composite f ∼ h of
two homotopies α : f ∼ g and β : g ∼ h is the function a 7→ α(a) · β(a), and
the inverse g ∼ f of a homotopy α : f ∼ g is the function a 7→ α(a)−1.

Finally, the horizontal composite g ◦ f ∼ g ◦ f ′ of a homotopy α : f ∼ f ′

and a function g is the function a 7→ apg(α(a)), and the horizontal composite
g ◦ f ∼ g′ ◦ f of a function f and a homotopy β : g ∼ g′ is the function
a 7→ β(f(a)).

2.5 Contractibility

A type is said to be contractible if it contains exactly one element, or more
precisely, if it contains an element (called the centre of contraction) to which
all others are equal. In other words, a type A is contractible if the type∑

a:A

∏
a′:A

(a = a′)

is inhabited.
The unit type, discussed in Section 2.7, is the most obvious example of

a contractible type. A further example is the type
∑
a′:A(a = a′), given an

element a : A. For this type, the centre of contraction is (a, refla). A function∏
(a′,w):

∑
a′:A(a=a′)

((a, refla) = (a′, w))

is obtained using the induction principles for
∑
a′:A(a = a′) and a = −.

2.6 Equivalences

An equivalence between two types is analogous to a bijection between two sets.
A function is said to be an equivalence if it is bi-invertible, that is, if it

has both a retraction and a section. A retraction of a function f : A → B is
a function r : B → A with the property that r ◦ f ∼ idA, and a section of
a function f : A → B is a function s : B → A such that f ◦ s ∼ idB . Put
differently, a function f : A→ B is an equivalence if the type

IsEquivalence(f) :=
∑

r:B→A
(r ◦ f ∼ idA)×

∑
s:B→A

(f ◦ s ∼ idB)

is inhabited. An equivalence from a type A to a type B is an element of the
type

(A ' B) :=
∑

f :A→B

IsEquivalence(f).

A function is an equivalence if and only if it has an inverse. An inverse of
a function f : A→ B is an element of the type

Inverse(f) :=
∑

g:B→A
((g ◦ f ∼ idA)× (f ◦ g ∼ idB)).
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If ((r, η), (s, ε)) is an element of IsEquivalence(f), then (r, η, ε′) is in Inverse(f),
where ε′ is given by

ε′(b) : f(r(b))
apf◦r(ε(b)−1)

========== f(r(f(s(b))))
apf (η(s(b)))

========= f(s(b))
ε(b)

==== b.

Conversely, if (g, η, ε) is an element of Inverse(f), then ((g, η), (g, ε)) is in
IsEquivalence(f).

A type is said to be a (mere) proposition if any two of its elements are equal.
Such a type contains either exactly one element or none, indicating respectively
the truth or falsity of the fact it states. The type of equivalences from a type
A to a type B is not defined as

∑
f :A→B Inverse(f) because Inverse(f) is not a

proposition, unlike IsEquivalence(f) [31]. Nevertheless, showing that a function
has an inverse is sufficient to prove that is an equivalence, as explained above.

Type equivalence, as the name implies, is an equivalence relation. For any
type A, the identity function idA : A → A is an equivalence. Furthermore,
equivalences are closed under composition, and the inverse of an equivalence is
itself an equivalence.

2.7 Limits and Colimits

Several limits and colimits in the category Type and in the category of functors
from Type to Type are described in this section.

Initial Object

The initial object of the category Type is the empty type 0, which, as the name
suggests, has no constructors and therefore contains no elements. There is a
unique dependent function ind0

X :
∏
i:0 X(i) for any dependent type X : 0 →

Type. As a result, there is a unique function rec0
X : 0→ X for any type X.

Terminal Object

The terminal object of the category Type is the unit type 1, whose only con-
structor is ? : 1. The unit type is, by definition, contractible. For any type X,
the constant function x 7→ ? is clearly the only function from X to 1.

The induction principle for 1 states: given a family X : 1 → Type and an
element x : X(?), there is a function f :

∏
i:1 X(i), given by f(?) := x. The

function ind1
X : X(?)→

∏
i:1 X(i) is an equivalence; its inverse is the function

f 7→ f(?).

Products

The product of two types A and B is the product type A×B. The projections
π1 : A×B → A and π2 : A×B → B are defined as follows:

π1(a, b) := a,

π2(a, b) := b.
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Given a type X and two functions f : X → A and g : X → B, the unique
function 〈f, g〉 : X → A×B making the diagram

X

A A×B B

〈f,g〉f g

π1 π2

commute is given by 〈f, g〉(x) := (f(x), g(x)). The function

((f, g) 7→ 〈f, g〉) : (X → A)× (X → B)→ (X → A×B)

is an equivalence; its inverse is the function h 7→ (π1 ◦ h, π2 ◦ h).
The operation × : Type × Type → Type is a functor. It sends a pair of

functions f : A→ A′ and g : B → B′ to the function

f × g := 〈f ◦ π1, g ◦ π2〉 : A×B → A′ ×B′.

More generally, given a function f : A → A′ and a dependent function
g :
∏
a:A(B(a)→ B′(f(a))), there is a function∑

f

g :
∑
a:A

B(a)→
∑
a′:A′

B′(a′),

defined as (
∑
f g)(a, b) := (f(a), g(a)(b)). This function is an equivalence if f

is one and, for every a : A, the function g(a) is an equivalence. The inverse of∑
f g is

∑
f−1 g′, where g′ is given by

g′(a′) : B′(a′)
(ε(a′)−1)∗−−−−−−→ B′(f(f−1(a′)))

g(f−1(a′))−1

−−−−−−−−→ B(f−1(a′)).

Here, ε is the homotopy f ◦ f−1 ∼ idA′ .
Limits and colimits in functor categories are computed pointwise [17, 18].

The product of two functors F : Type → Type and G : Type → Type is the
functor F ×G : Type→ Type that sends each type A to the type F (A)×G(A)
and each function f : A→ B to the function F (f)×G(f).

Coproducts

Binary Coproducts

The coproduct of two types A and B is the coproduct type A + B, whose
constructors are inl : A→ A+B and inr : B → A+B. The induction principle
for A + B says that, given a family X : A + B → Type and two functions f :∏
a:AX(inl(a)) and g :

∏
b:B X(inr(b)), there is a function [f, g] :

∏
i:A+B X(i),

given by

[f, g](inl(a)) := f(a),

[f, g](inr(b)) := g(b).
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The function

((f, g) 7→ [f, g]) :
∏
a:A

X(inl(a))×
∏
b:B

X(inr(b))→
∏

i:A+B

X(i)

is an equivalence; its inverse is the function h 7→ (h ◦ inl, h ◦ inr).
Given a type X and two functions f : A→ X and g : B → X, the function

[f, g] : A+B → X is the only one making the following diagram commute:

A A+B B

X
f

inl

[f,g]
g

inr

Arbitrary Coproducts

Let I be a type. The coproduct of a family A : I → Type of types is the
dependent pair type

∑
i:I A(i). It is for this reason that dependent pair types

are also called dependent sum types. For each i : I, the inclusion A(i) →∑
i:I A(i) is the function (i,−). Given a type X and a dependent function

f :
∏
i:I(A(i)→ X), the function

[f ] := rec
∑

i:I A(i)
X (f) :

∑
i:I

A(i)→ X

is the only one with the property that [f ] ◦ (i,−) = f(i) for every i : I.
The coproduct of a family F : I → (Type→ Type) of functors from Type to

Type is the functor
∑
i:I F (i) : Type→ Type that sends each type A to the type∑

i:I F (i)(A) and each function f : A→ B to the function [i 7→ (i,−)◦F (i)(f)].

Pullbacks

The pullback of two morphisms f : a → c and g : b → c of a category C is
an object a ×c b ∈ C together with a pair of morphisms π1 : a ×c b → a and
π2 : a×c b→ b having the property that f ◦π1 = g ◦π2, such that for any other
object x ∈ C together with a pair of morphisms s : x→ a and t : x→ b having
the property that f ◦ s = g ◦ t, there is a unique morphism 〈s, t〉 : x → a ×c b
making the following diagram commute:

x

a×c b b

a c

s

〈s,t〉

t

π1

y
π2

g

f

Although similar, pullbacks in type theory are slightly more complex. The
(homotopy) pullback of two functions f : A → C and g : B → C is a type
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A×C B together with two functions
y
π1 : A×C B → A and

y
π2 : A×C B → B

and a homotopy
y
π3 : f ◦ y

π1 ∼ g ◦ y
π2, such that for any other type X together

with two functions s : X → A and t : X → B and a homotopy α : f ◦ s ∼ g ◦ t,
there is a unique function 〈s, t, α〉 : X → A×C B having the property that

(
y
π1 ◦ 〈s, t, α〉,

y
π2 ◦ 〈s, t, α〉,

y
π3 ◦ 〈s, t, α〉) = (s, t, α).

The pullback of two functions f : A→ C and g : B → C is the type

A×C B :=
∑
a:A

∑
b:B

(f(a) = g(b)).

The projections
y
π1,

y
π2 and

y
π3 are defined as follows:

y
π1(a, b, w) := a
y
π2(a, b, w) := b
y
π3(a, b, w) := w.

Let X be a type. Given two functions s : X → A and t : X → B and a
homotopy α : f ◦ s ∼ g ◦ t, the function 〈s, t, α〉 : X → A×C B is given by

〈s, t, α〉(x) := (s(x), t(x), α(x)).

Every type A is equivalent to the pullback

A×A A ≡
∑
a:A

∑
a′:A

(a = a′)

of the identity function idA and itself. The projection
y
π1 : A ×A A → A is an

equivalence because the type
∑
a′:A(a = a′) is contractible for every a : A (see

Section 2.5). Its inverse is the function a 7→ (a, a, refla).

2.8 Representable Functors

The type family (A → −) : Type → Type is a functor. It sends a function
h : B → B′ to the function (h ◦ −) : (A → B) → (A → B′). The functor
A→ − is denoted by yA, as the notation A→ h is potentially confusing. The
symbol y stands for Yoneda [18, 34].

A representable functor is one that is naturally equivalent to the functor yA

for some type A. The functor yA itself is referred to as the functor represented
by A.

2.9 Equality of Structures

As mentioned earlier, giving a homotopy between two functions tends to be
easier than giving an identification between them. In the same way, giving
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two identifications a = a′ and b = b′ is generally easier than giving a single
identification (a, b) = (a′, b′). It is often possible to provide a simpler yet
equivalent characterization of a given identity type. More concretely, we can
often show that a given identity type is equivalent to a type that is more
convenient to work with. Two important examples are given below.

Functions

Traditionally, two functions f, g :
∏
a:AB(a) are considered equal if and only

if they are pointwise equal. This suggests that there is an equivalence

(f = g) ' (f ∼ g),

but this is not the case. Although it is easy to define a function happlyf,g from
f = g to f ∼ g, it is impossible to prove that it is an equivalence. We therefore
have no choice but to assume the existence of an inverse. The axiom stating
that happlyf,g is an equivalence is called function extensionality.

Natural Numbers

We can determine whether two natural numbers are equal by taking a closer
look at them. The successor of a natural number m is equal to the successor
of a natural number n if and only if m and n are equal. On the other hand,
0 is equal only to itself. For any two natural numbers m and n, there is an
equivalence

(m = n) ' EqualsN(m)(n),

where EqualsN : N→ N→ Type is given by

EqualsN(0)(0) := 1,

EqualsN(0)(succ( )) := 0,

EqualsN(succ( ))(0) := 0,

EqualsN(succ(m))(succ(n)) := EqualsN(m)(n).

The Equals relation is referred to as observational equality and is also denoted by
’Eq’ [28] or ’code’ [27]. The construction of the above equivalence is described
in detail in [27] and [28].



Chapter 3

Standard Zip

We are now ready to formally define the standard zip equivalence, which is an
equivalence between the type of pairs of lists of equal length and the type of lists
of pairs. To specify the domain, we need a function length :

∏
A:Type(List(A)→

N) that sends any list to its length. Such a function is defined as follows:

lengthA(nil) := 0,

lengthA(cons( )(`)) := succ(lengthA(`)).

A pair of lists `1 : List(A) and `2 : List(B) of equal length is precisely an element
of the pullback

List(A)×N List(B) ≡
∑

`1:List(A)

∑
`2:List(B)

(length(`1) = length(`2))

of lengthA and lengthB . Thus, the standard zip equivalence is a polymorphic
equivalence

zip :
∏

A:Type

∏
B:Type

(List(A)×N List(B) ' List(A×B)).

For any two types A and B, the equivalence zipA,B can be defined as the
composite

List(A)×N List(B)

≡
∑

`1:List(A)

∑
`2:List(B)

(length(`1) = length(`2))

'
∑

`1:List(A)

∑
`2:List(B)

EqualsN(length(`1))(length(`2))

' List(A×B).

The first equivalence follows from the fact that (m =N n) ' EqualsN(m)(n) for
any two natural numbers m and n (see Section 2.9), and the second arises from

16
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the fact that the type

List′(A,B) :=
∑

`1:List(A)

∑
`2:List(B)

EqualsN(length(`1))(length(`2))

satisfies the same induction principle as List(A × B) (see below). As stated
in [27], a type is equivalent to a given inductive type if it satisfies the same
induction principle.

The constructor nil : List(A×B) corresponds to the triple

nil′ := (nil, nil, ?) : List′(A,B),

and the constructor node : A×B → List(A×B)→ List(A×B) corresponds to
the function node′ : A×B → List′(A,B)→ List′(A,B) given by

node′(a, b)(`1, `2, c) := (cons(a)(`1), cons(b)(`2), c).

The type List′(A,B) contains exactly those elements that can be constructed
using nil′ and cons′. We can prove that List′(A,B), together with nil′ and
cons′, satisfies the same induction principle as List(A × B). Given a family
X : List′(A,B)→ Type, an element x1 : X(nil′) and a function

x2 :
∏

(a,b):A×B

∏
`′:List′(A,B)

(X(`′)→ X(cons′(a, b)(`′))),

there is a function f :
∏
`′:List′(A,B)X(`′), given by

f(nil, nil, ?) := x1,

f(nil, cons( )( ), c) := rec0(c),

f(cons( )( ), nil, c) := rec0(c),

f(cons(a)(`1), cons(b)(`2), c) := x2(a, b)(`1, `2, c)(f(`1, `2, c)).

The recursion principle

recList′(A,B) :
∏

X:Type

(X → (A×B → X → X)→ (List′(A,B)→ X))

can be derived in the usual way. We can use the recursion principles for
List′(A,B) and List(A×B) to obtain functions

asListA,B : List′(A,B)→ List(A×B),

asList′A,B : List(A×B)→ List′(A,B)

respectively:

asListA,B := rec
List′(A,B)
List(A×B)(nil)(cons),

asList′A,B := rec
List(A×B)
List′(A,B) (nil′)(cons′).
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The induction principles are used to prove that asList′ is the inverse of asList
(see StandardZip.v).

We conclude this chapter with a brief demonstration of the standard zip
equivalence just constructed. Consider the lists

cons(2)(cons(4)(nil)) : List(N),

cons(inl(?))(cons(inr(?))(nil)) : List(1 + 1).

Since

length(cons(2)(cons(4)(nil))) ≡ 2

≡ length(cons(inl(?))(cons(inr(?))(nil))),

the identification refl2 is in the identity type

length(cons(2)(cons(4)(nil))) = length(cons(inl(?))(cons(inr(?))(nil))).

The function zipN,1+1 sends the triple

(cons(2)(cons(4)(nil)), cons(inl(?))(cons(inr(?))(nil)), refl2)

to the list cons(2, inl(?))(cons(4, inr(?))(nil)). On the other hand, the function
unzipN,1+1 := zip−1

N,1+1 sends, for example, the list

cons(0, inr(?))(cons(1, inl(?))(nil)) : List(N× (1 + 1))

to the triple (cons(0)(cons(1)(nil)), cons(inr(?))(cons(inl(?))(nil)), refl2).
An implementation of the standard zip equivalence in Coq can be found

here.
The next chapter explains that polymorphic data types, such as List, are

polynomial functors. This fact is used in Chapter 5 to define a zip equivalence
that works for all polymorphic data types.

https://github.com/DanielKamphorst/generic-programming/blob/main/StandardZip.v
https://github.com/DanielKamphorst/generic-programming/blob/main/StandardZip.v


Chapter 4

Polynomial Functors

Objects like lists and binary trees are essentially containers, used for storing
data. They can be separated into two parts: shape and contents. For example,
the shape of a list is its length n, and its contents are n data items. More
formally, a list of elements of a type A is the same thing as a pair consisting
of a natural number n and a function from Fin(n) to A. As will soon become
apparent, this is a simple way of saying that List is a polynomial functor.
Perhaps unsurprisingly, polynomial functors are also called container functors.
Such functors are frequently used for generic programming [2, 23]. Polynomial
functors are precisely those that preserve connected limits, including pullbacks
[8]. There is a zip equivalence for any such functor [14]. Moreover, traversable
functors are exactly finitary polynomial functors [12]. This is why we opted
for an approach to generic programming based on polynomial functors.

4.1 Polynomials

A polynomial functor is the ’categorification’ of a polynomial function [19].
A polynomial (in one variable) is an element p of the type∑

I:Type

(I → Type).

Elements of the type
•
p := π1(p) are referred to as positions in p. The dependent

type
→
p := π2(p) sends each position i :

•
p to the type

→
p (i), whose elements are

called directions at i. Polynomials are defined in Coq as follows:

Record Polynomial :=

{ Position : Type

; Direction : Position -> Type

}.

19
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The extension of a polynomial p is the coproduct∑
i:
•
p

y
→
p (i) : Type→ Type

of the family i 7→ y
→
p (i) of representable functors. It sends a type X to the type∑

i:
•
p
(
→
p (i) → X) and a function f : X → Y to the function (i, x) 7→ (i, f ◦ x).

For the sake of simplicity, a polynomial and its extension are denoted by the
same letter or expression. It should always be clear from the context which
meaning is intended.

A polynomial functor (in one variable) is one that is naturally equivalent
to the extension of a polynomial:

Class IsPolynomialFunctor (F : Type -> Type) `{Is0Functor F} :=

{ polynomial : Polynomial

; equivalenceToExtension : NatEquiv F (Extension polynomial)

}.

Historical Remarks

During the last two decades, polynomial functors have become an important
research topic in several academic fields, including computer science. Gambino
and Kock [8, 15] provide a comprehensive survey of the history of the subject.
Over time, many different definitions of the concept of polynomial functors have
been proposed. An overview of these definitions and the relationships between
them can be found in [8] and [9]. We have adopted the definition given in
[34]. Researchers in computer science generally use the same definition but a
different notation and terminology [1, 2]. Polynomials are commonly known
as containers in the computer science literature. Furthermore, positions and
directions are often referred to as shapes and positions respectively. Although
heavily influenced by the work of Spivak and Niu, our notation differs slightly
from theirs. They use the notation p(1) for the type π1(p) of positions in a

polynomial p. We, however, use the notation
•
p to emphasize that, despite being

equivalent, p(1) and π1(p) are distinct types. The notation
→
p is used instead

of p[−] for the sake of consistency.

4.2 Polymorphic Data Types

As suggested earlier, List is a polynomial functor. It is naturally equivalent to
the extension of the polynomial List′ := (N,Fin) (see PolynomialFunctors.v).
For example, the list

cons(2)(cons(4)(nil)) : List(N)

corresponds to the pair

(2, [[rec0, x 7→ 4], x 7→ 2]) : List′(N).

https://github.com/DanielKamphorst/generic-programming/blob/main/PolynomialFunctors.v


CHAPTER 4. POLYNOMIAL FUNCTORS 21

A further example of a polynomial functor is Tree. The shape of a tree is the
tree with the labels removed [4], or more precisely, with every label replaced
by the element ? : 1. For any type A, the shape of a tree t : Tree(A) is thus the
tree Tree(a 7→ ?)(t) : Tree(1) [14, 23]. The functor Tree is naturally equivalent
to the extension of the polynomial Tree′ given by

•
Tree′ := Tree(1),

→
Tree′(leaf) := 0,

→
Tree′(node(t1)( )(t2)) :=

→
Tree′(t1) + 1 +

→
Tree′(t2).

A proof of

Instance TreeIsPolynomialFunctor : IsPolynomialFunctor Tree

can be found here. The tree

node(leaf)(2)(node(leaf)(4)(leaf)) : Tree(N),

to take one example, corresponds to the pair

(node(leaf)(?)(node(leaf)(?)(leaf)), [[rec0, x 7→ 2], [[rec0, x 7→ 4], rec0]])

in Tree′(N).
It has been shown that all polymorphic data types are polynomial functors

[2, 4]. What follows is a brief sketch of the proof. Let T be a polymorphic
data type. There is a polynomial functor F in two variables such that T (A) is
equivalent to the least fixed point of the polynomial functor F (A,−) for every
type A. This equivalence is natural in A. The functor that sends each type A
to the least fixed point of F (A,−) is itself a polynomial functor, which in turn
makes T a polynomial functor.

The proof has been fully formalized in the Lean proof assistant [4], which
is similar to Coq in many respects. It does not seem particularly valuable to
formalize the very same result in Coq. Doing so would only complicate matters
and distract attention from our main contributions. It is for this reason that
we only showed that List and Tree are polynomial functors.

https://github.com/DanielKamphorst/generic-programming/blob/main/PolynomialFunctors.v


Chapter 5

Generic Zip

In the previous chapter, we established that polymorphic data types are poly-
nomial functors. The next step is to generalize the standard zip equivalence
defined in Chapter 3 to all polynomial functors. We will begin by defining a zip
equivalence for extensions of polynomials. This zip equivalence is used to define
one for all polynomial functors. The chapter concludes with a demonstration
of the generic zip equivalence.

5.1 Extensions of Polynomials

As mentioned earlier, the length of a list can be regarded as its shape. The
standard zip equivalence can therefore be described as an equivalence between
the type of pairs of lists of the same shape and the type of lists of pairs.

Let p be a polynomial. For any type A, a pair in p(A) consists of a position

i :
•
p and a function from

→
p (i) to A. Such a pair should be thought of as an

object whose shape is i and whose contents are represented by the function.
The zip equivalence for the extension of p is given by the composite

p(A)×•
p
p(B)

≡
∑

(i,a):p(A)

∑
(i′,b):p(B)

(i = i′)

'
∑

(i,i′,w):
•
p×•

p

•
p

((
→
p (i)→ A)× (

→
p (i′)→ B))

'
∑
i:
•
p

((
→
p (i)→ A)× (

→
p (i)→ B))

'
∑
i:
•
p

(
→
p (i)→ A×B)

≡ p(A×B).

22



CHAPTER 5. GENERIC ZIP 23

The first equivalence simply rearranges the input data, and the third follows
from the universal property of the product (see Section 2.7). Now let us clarify

the second equivalence. The projection
y
π1 :

•
p ×•

p

•
p → •

p is an equivalence (see

Section 2.7), and so is its inverse. Furthermore, for every position i :
•
p, the

identity function id
(
→
p (i)→A)×(

→
p (i)→B)

is an equivalence

(i 7→ (
→
p (i)→ A)× (

→
p (i)→ B))(i)

' ((i, i′, w) 7→ (
→
p (i)→ A)× (

→
p (i′)→ B))(

y
π
−1

1 (i))

because

(i 7→ (
→
p (i)→ A)× (

→
p (i)→ B))(i)

≡ (
→
p (i)→ A)× (

→
p (i)→ B)

≡ ((i, i′, w) 7→ (
→
p (i)→ A)× (

→
p (i′)→ B))(i, i, refli)

≡ ((i, i′, w) 7→ (
→
p (i)→ A)× (

→
p (i′)→ B))(

y
π
−1

1 (i)).

As described in Section 2.7, it follows that the function∑
y
π
−1

1

(i 7→ id
(
→
p (i)→A)×(

→
p (i)→B)

)

is an equivalence∑
i:
•
p

((
→
p (i)→ A)× (

→
p (i)→ B)) '

∑
(i,i′,w):

•
p×•

p

•
p

((
→
p (i)→ A)× (

→
p (i′)→ B)).

The unzip function for the extension of p sends a pair (i, x) to the triple
((i, π1◦x), (i, π2◦x), refli). On the other hand, the zip function for the extension
of p sends a triple ((i, a), (i′, b), w) to the pair (i, 〈π1(w′∗(a, b)), π2(w′∗(a, b))〉),
where w′ is the identification (i, i′, w) =

y
π
−1

1 (
y
π1(i, i′, w)). Computationally,

the involvement of the transport function w′∗ may seem problematic. However,
this is impossible to avoid if i and i′ are typally rather than judgmentally
equal. Fortunately, (i, 〈π1(w′∗(a, b)), π2(w′∗(a, b))〉) reduces to (i, 〈a, b〉) as long
as i ≡ i′ and w ≡ refli, since

w′∗ ≡ (ap(i,−)(contr(i,refli))
−1)∗

≡ (ap(i,−)(refl(i,refli))
−1)∗

≡ ((refl(i,i,refli))
−1)∗

≡ (refl(i,i,refli))∗

≡ id.

As we shall see later, it is relatively easy to ensure that this condition is always
satisfied.
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5.2 Polynomial Functors

Let F be a polynomial functor, meaning that there is a natural equivalence α
from F to the extension of some polynomial p. For any type A, the shape of
an element x : F (A) is the first component of the pair αA(x) : p(A).

The zip equivalence for F is given by the composite

F (A)×•
p
F (B)

' p(A)×•
p
p(B)

' p(A×B)

' F (A×B).

Contrary to what one might expect, the first equivalence, which is an equiva-
lence from

F (A)×•
p
F (B) ≡

∑
x:F (A)

∑
y:F (B)

(π1(αA(x)) = π1(αB(y)))

to
p(A)×•

p
p(B) ≡

∑
x′:p(A)

∑
y′:p(B)

(π1(x′) = π1(y′)),

is not defined as ∑
αA

(
x 7→

∑
αB

(y 7→ idπ1(αA(x))=π1(αB(y)))
)
.

Given a triple (x′, y′, w) : p(A) ×•
p
p(B), the inverse of this equivalence trans-

ports the whole pair (y′, w) along the identification x′ = αA(α−1
A (x′)) even

though only the type of w depends on x′. So that it transports just w, the first
equivalence is defined as the composite∑

x:F (A)

∑
y:F (B)

(π1(αA(x)) = π1(αB(y)))

'
∑

(x,y):F (A)×F (B)

(π1(αA(x)) = π1(αB(y)))

'
∑

(x′,y′):p(A)×p(B)

(π1(x′) = π1(y′))

'
∑

x′:p(A)

∑
y′:p(B)

(π1(x′) = π1(y′)).

The second of these equivalences is∑
αA×αB

((x, y) 7→ idπ1(αA(x))=π1(αB(y))).

The zip equivalence for polynomial functors is declared in Coq as follows:
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Definition zip (F : Type -> Type) `{IsPolynomialFunctor F}

{A B : Type}

: Pullback

(pr1 o equivalenceToExtension F A)

(pr1 o equivalenceToExtension F B)

<~> F (A * B).

5.3 Polymorphic Data Types

Since polymorphic data types are polynomial functors, the zip equivalence
defined in the previous section works for any polymorphic data type.

Having given a proof of IsPolynomialFunctor Tree in Section 4.2, we
obtain a polymorphic zip equivalence

zip Tree

: forall (A : Type) (B : Type)

, Pullback

(pr1 o equivalenceToExtension Tree A)

(pr1 o equivalenceToExtension Tree B)

<~> Tree (A * B).

This means that, for any two types A and B, we have a zip function

zip Tree A B

: Pullback

(pr1 o equivalenceToExtension Tree A)

(pr1 o equivalenceToExtension Tree B)

-> Tree (A * B),

an unzip function

(zip Tree A B)^-1

: Tree (A * B)

-> Pullback

(pr1 o equivalenceToExtension Tree A)

(pr1 o equivalenceToExtension Tree B)

and two proofs

eissect (zip Tree A B)

: (zip Tree A B)^-1 o zip Tree A B == idmap

and

eisretr (zip Tree A B)

: zip Tree A B o (zip Tree A B)^-1 == idmap.

Consider, for example, the trees
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node leaf 2 (node leaf 4 leaf) : Tree NaturalNumber,

node leaf true (node leaf false leaf) : Tree Boolean,

which have the same shape

node leaf tt (node leaf tt leaf) : Tree NaturalNumber.

The command

Eval compute in

zip Tree NaturalNumber Boolean

( node leaf 2 (node leaf 4 leaf)

, node leaf true (node leaf false leaf)

, idpath

)

returns the tree

node leaf (2, true) (node leaf (4, false) leaf).

On the other hand, the command

Eval compute in

(zip Tree NaturalNumber Boolean)^-1

(node leaf (0, false) (node leaf (1, true) leaf))

returns the triple

( node leaf 0 (node leaf 1 leaf)

, node leaf false (node leaf true leaf)

, ...

).

The proof is omitted for brevity.
The complete implementation can be accessed here.

https://github.com/DanielKamphorst/generic-programming/blob/main/GenericZip.v


Chapter 6

Traverse

The traverse function performs each of a given list of computations in sequence
and collects the results in a list. The function is also known as ’dist’ [20] or ’se-
quence’ [29]. The traverse function is generally considered to be a polymorphic
function

τF,A : List(F (A))→ F (List(A)),

where A is a type and F is a lax monoidal functor from the cartesian monoidal
category Type to itself.

The idea of modelling computational effects as monads was originally de-
veloped by Moggi [21]. McBride and Paterson [20] demonstrated that many
computational effects can be modelled as lax monoidal functors, which are
more general than monads. Lax monoidal functors are commonly known as
applicative functors in the functional programming literature. Unlike monads,
they possess the desirable quality of being closed under composition.

The following section introduces lax monoidal functors and morphisms be-
tween them. The traverse function for List is formally defined in Section 6.2,
and it is generalized to all finitary polynomial functors in Section 6.3.

6.1 Lax Monoidal Functors

Lax monoidal functors are the morphisms between monoidal categories. For our
purposes, it is sufficient to consider only lax monoidal functors from the carte-
sian monoidal category Type to itself. A more detailed treatment of monoidal
functors can be found in [3], and the relationship between lax monoidal and
applicative functors is explored in [25].

A lax monoidal functor from Type to Type is a functor F : Type → Type
together with a function ηF : 1→ F (1) and a natural transformation

µFA,B : F (A)× F (B)→ F (A×B)

that satisfy the unitality and associativity conditions [17]. We do not elaborate
on these conditions for the simple reason that we will not need them. The
conditions are also omitted from the definition in Coq.

27
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The identity functor id : Type→ Type is a lax monoidal functor:

ηid : 1
id−→ 1,

µid
A,B : A×B id−→ A×B.

In addition, the composite G ◦ F : Type → Type of two lax monoidal functors
F,G : Type→ Type is itself a lax monoidal functor [3]:

ηG◦F : 1
ηG−−→ G(1)

G(ηF )−−−−→ G(F (1)),

µG◦FA,B : G(F (A))×G(F (B))
µG

−−→ G(F (A)× F (B))
G(µF )−−−−→ G(F (A×B)).

A morphism α : F → G between two lax monoidal functors from Type to
Type, called a monoidal natural transformation, is a natural transformation
α : F → G that makes the following diagrams commute:

1

F (1) G(1)

ηF ηG

α1

F (A)× F (B) G(A)×G(B)

F (A×B) G(A×B)

µF
A,B

αA×αB

µG
A,B

αA×B

Lax monoidal functors from Type to Type will henceforth be referred to
simply as lax monoidal functors.

Example Perhaps the best-known example of a lax monoidal functor is the
Maybe monad. If A is a type, the inductive type Maybe(A) is the one whose
constructors are some : A → Maybe(A) and none : Maybe(A), indicating the
presence and lack of a value, respectively. The functor Maybe : Type → Type
sends a function f : A→ B to the function Maybe(f) : Maybe(A)→ Maybe(B)
given by

Maybe(f)(some(a)) := some(f(a)),

Maybe(f)(none) := none.

The function ηMaybe is simply the constructor some : 1 → Maybe(1). For any
two types A and B, the component

µMaybe
A,B : Maybe(A)×Maybe(B)→ Maybe(A×B)

sends a pair of the form (some(a), some(b)) to some(a, b) and everything else to
none.

6.2 Standard Traverse

The traverse function τF,A : List(F (A))→ F (List(A)) is given by

τF,A(nil) := F (nil′)(ηF (?)),

τF,A(cons(a′)(`)) := F (cons′)(µF (a′, τF,A(`))),
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where nil′ : 1→ List(A) and cons′ : A×List(A)→ List(A) are defined as follows:

nil′( ) := nil,

cons′(a, `) := cons(a)(`).

Before going on to generalize this function, we demonstrate it. Consider
the list

cons(some(1))(cons(none)(cons(some(3))(nil))) : List(Maybe(N)),

thought of as containing the results of three computations that may fail. In this
case, the first and last computations succeeded and the second failed. Because
one of the computations failed, the traverse function sends the list to none,
indicating the failure of the entire chain of computations. Now consider the
list

cons(some(1))(cons(some(2))(cons(some(3))(nil))) : List(Maybe(N)).

The traverse function sends this list to some(cons(1)(cons(2)(cons(3)(nil)))),
indicating that the chain of computations succeeded and yielded the list

cons(1)(cons(2)(cons(3)(nil)))

of all the computed values.

6.3 Generic Traverse

Fokkinga [6] was the first to generalize the traverse function for List to all ’reg-
ular’ functors. Over time, several definitions of traversability of functors have
been proposed [22, 20, 10, 13]. We adopt the definition proposed by Jaskelioff
and Rypáček [13], which is the most precise and up to date. According to them,
a functor T : Type → Type is said to be traversable if there is a polymorphic
function

τTF,A : T (F (A))→ F (T (A))

that is natural in F and A and makes the following diagrams commute:

T (A) T (A)

τT
id,A

id

Unitarity

T (G(F (A)))

G(T (F (A))) G(F (T (A)))

τT
G,F (A)

τT
G◦F,A

G(τT
F,A)

Linearity

The corresponding Coq definition is as follows:
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Class Traversable (T : Type -> Type) `{!Is0Functor T} :=

{ τ (F : LaxMonoidalFunctor) (A : Type) : T (F A) -> F (T A)

; naturality1 (A : Type)

: Is1Natural

(T o ApplyLaxMonoidalFunctorTo A)

(ApplyLaxMonoidalFunctorTo (T A))

(fun F => τ F A)

; naturality2 (F : LaxMonoidalFunctor)

: Is1Natural (T o F) (F o T) (τ F)

; unitarity (A : Type)

: τ IdentityLaxMonoidalFunctor A == idmap

; linearity (F G : LaxMonoidalFunctor) (A : Type)

: τ (CompositeOfTwoLaxMonoidalFunctors G F) A

== fmap G (τ F A) o τ G (F A)

}.

Here, ApplyLaxMonoidalFunctorTo A denotes the functor that sends each lax
monoidal functor F to the type F (A) and each monoidal natural transformation
α : F → G to the function αA : F (A)→ G(A).

It turns out that every finitary polynomial functor is traversable. This was
first proved by Jaskelioff and Rypáček [13]. However, they did not provide an
implementation, nor does their work directly translate into one. To begin with,
they do not define finitary polynomial functors in terms of regular polynomial
functors. Using the definition given by them would mean that the generic
zip function defined earlier cannot be used for finitary polynomial functors.
Secondly, they do not differentiate between a function type A → B and the
|A|-fold product B|A|. What is more, they blur the distinction between natural
equivalence and equality. In conclusion, numerous proofs are missing and their
paper is generally lacking in detail.

Using more precise definitions, we will systematically formalize the results
presented in [13]. This requires us to prove several additional results.

We will begin by defining finite types and finitary functors. Some important
examples of finite types are given, and we describe the conditions under which a
polynomial functor is finitary. Next, we formally prove that finitary polynomial
functors are traversable. We conclude by demonstrating the generic traverse
function.

Finite Types

A finite type is one that contains a finite number of elements. Classically,
a set is said to be finite if it is isomorphic to the set {k ∈ N | k < n} for
some natural number n [33]. Finite types are defined in a similar way. The
set {k ∈ N | k < n} corresponds to the standard finite type Fin(n), where
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Fin : N→ Type is given by

Fin(0) := 0,

Fin(succ(n)) := Fin(n) + 1.

A type is said to be finite if it is equivalent to Fin(n) for some natural number
n:

Class IsFiniteType (A : Type) :=

{ cardinality : NaturalNumber

; equivalenceToStandardFiniteType : A <~> Fin cardinality

}.

Standard Finite Types

Obviously, every standard finite type is finite because it is equivalent to itself.
This includes the empty type 0 ≡ Fin(0).

Types Equivalent to a Finite Type

Every type A that is equivalent to a finite type B is itself finite. If B ' Fin(n),
then A ' B ' Fin(n).

Unit Type

The unit type 1 is finite because 1 ' 0 + 1 ≡ Fin(1).

Binary Coproducts of Finite Types

The coproduct A+B of two finite types A and B is itself finite. If A ' Fin(m)
and B ' Fin(n), then

A+B ' Fin(m) + Fin(n) ' Fin(m+ n).

We prove that Fin(m) + Fin(n) ' Fin(m + n) for any two natural numbers m
and n by induction on m. If m ≡ 0, then

Fin(0) + Fin(n) ≡ 0 + Fin(n) ' Fin(n).

If m ≡ succ(m′), on the other hand, then

Fin(succ(m′)) + Fin(n)

≡ (Fin(m′) + 1) + Fin(n)

' Fin(m′) + (1 + Fin(n))

' Fin(m′) + (Fin(n) + 1)

' (Fin(m′) + Fin(n)) + 1

' Fin(m′ + n) + 1

≡ Fin(succ(m′ + n))

≡ Fin(succ(m′) + n).
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Finitary Functors

Strictly speaking, functors are said to be finitary if they preserve all ’filtered
colimits’. Fortunately, it is much easier to define when a polynomial functor is
finitary. A polynomial functor is finitary if and only if it is naturally equivalent
to the extension of a finite polynomial [8]. A polynomial p is said to be finite

if the type
→
p (i) is finite for every position i :

•
p [8, 32]:

Class IsFinitePolynomial (p : Polynomial) :=

DirectionIsFiniteType i :> IsFiniteType (Direction p i).

It is important to recall that polymorphic data types are simply inductive
types with a single type parameter. A polymorphic data type is a finitary
polynomial functor if it is a finitary inductive type, as defined by Kraus and
Sattler [16, 30]. Finitary inductive types are often referred to as ’regular’
functors in the computer science literature [22].

A good example of a finitary polynomial functor is Tree. As mentioned
in Section 4.2, Tree is naturally equivalent to the extension of the polynomial

Tree′. It is easy to show that
→

Tree′(t) is finite for every tree t : Tree(1) by
induction on t:

Instance TreePolynomialIsFinitePolynomial

: IsFinitePolynomial Tree'.

Proof.

intro t; induction t; exact _.

Defined.

Coq is clever enough to infer the proofs.

Traversability

We are now ready to prove that finitary polynomial functors are traversable. As
shown below, any functor that is naturally equivalent to a traversable functor
is itself traversable. A finitary polynomial functor is, by definition, naturally

equivalent to the extension
∑
i:
•
p
y
→
p (i) of a finite polynomial p. Since traversable

functors are closed under coproducts (see below), it suffices to show that y
→
p (i) is

traversable for every position i :
•
p. The representable functor y

→
p (i) is naturally

equivalent to yFin(|→p (i)|) because p is a finite polynomial. We can prove by
induction that yFin(n) is traversable for every natural number n. The functor
yFin(0) ≡ y0 is naturally equivalent to the constant functor A 7→ 1, denoted
by ∆(1). This is explained by the fact that there is exactly one function
from the empty type to a given type. We will show below that the constant
functor at the unit type is traversable. According to the universal property
of the coproduct, the functor yFin(succ(n)) ≡ yFin(n)+1 is naturally equivalent
to the product yFin(n) × y1. Traversable functors are also closed under binary
products (see below). By induction, yFin(n) is traversable. The functor y1 is
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naturally equivalent to the identity functor: a function from the unit type to
a type is the same thing as an element of that type. Below, we will show that
the identity functor is traversable.

After proving the necessary results mentioned above, the generic traverse
function is demonstrated.

Functors Naturally Equivalent to a Traversable Functor

Let φ :
∏
A:Type(S(A) ' T (A)) be a natural equivalence between two functors

S, T : Type→ Type. If T is traversable, then so is S.
The traverse function for S is the composite

τSF,A : S(F (A))
φF (A)−−−−→ T (F (A))

τT
F,A−−−→ F (T (A))

F (φ−1
A )

−−−−−→ F (S(A)).

It is natural in F because the following diagram commutes for every monoidal
natural transformation α : F → G:

S(F (A)) T (F (A)) F (T (A)) F (S(A))

S(G(A)) T (G(A)) G(T (A)) G(S(A))

S(αA)

φF (A)

T (αA)

τT
F,A

αT (A)

F (φ−1
A )

αS(A)

φG(A) τT
G,A G(φ−1

A )

The diagram below, which commutes for every function f : A→ B, shows
that τSF,A is also natural in A.

S(F (A)) T (F (A)) F (T (A)) F (S(A))

S(F (B)) T (F (B)) F (T (B)) F (S(B))

S(F (f))

φF (A)

T (F (f))

τT
F,A

F (T (f))

F (φ−1
A )

F (S(f))

φF (B) τT
F,B F (φ−1

B )

The traverse function for S is unitary because

τSid,A ≡ φ−1
A ◦ τ

T
id,A ◦ φA

∼ φ−1
A ◦ id ◦ φA

≡ φ−1
A ◦ φA

∼ id.

The linearity of the traverse function for S is illustrated by the following
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commutative diagram:

S(G(F (A)))

T (G(F (A)))

G(T (F (A))) G(F (T (A)))

G(S(F (A))) G(F (S(A)))

τS
G,F (A)

φG(F (A))

τT
G,F (A)

τT
G◦F,A

G(φ−1
F (A)

)
G(τT

F,A)
G(F (φ−1

A ))

G(τS
F,A)

G(φF (A))

Identity Functor

The identity functor id : Type→ Type is traversable. The traverse function for
it is simply the identity

τ id
F,A : id(F (A)) ≡ F (A)

id−→ F (A) ≡ F (id(A)).

It is clear that this function is natural in both F and A. The traverse function
for id is, by definition, unitary, and it is linear because

τ id
G◦F,A ≡ id

∼ G(id)

≡ G(id) ◦ id

≡ G(τ id
F,A) ◦ τ id

G◦F,A.

Constant Functor at the Unit Type

The constant functor ∆(1) : Type→ Type is traversable. The traverse function
for it is simply the function

τ
∆(1)
F,A : ∆(1)(F (A)) ≡ 1

ηF−−→ F (1) ≡ F (∆(1)(A)).

This function is trivially natural in A, and it is natural in F by the definition
of a monoidal natural transformation (see Section 6.1). The traverse function
for ∆(1) is unitary because

τ
∆(1)
id,A ≡ η

id ≡ id,

and it is linear because

τ
∆(1)
G◦F,A ≡ η

G◦F

≡ G(ηF ) ◦ ηG

≡ G(τ
∆(1)
F,A ) ◦ τ∆(1)

G◦F,A.
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Binary Products of Traversable Functors

The product S × T of two traversable functors S and T is itself traversable.
The traverse function for S × T is the composite

τS×TF,A : S(F (A))×T (F (A))
τS
F,A×τ

T
F,A−−−−−−−→ F (S(A))×F (T (A))

µF

−−→ F (S(A)×T (A)).

It is natural in F because the diagram below commutes for every monoidal
natural transformation α : F → G.

S(F (A))× T (F (A)) F (S(A))× F (T (A)) F (S(A)× T (A))

S(G(A))× T (G(A)) G(S(A))×G(T (A)) G(S(A)× T (A))

S(αA)×T (αA)

τS
F,A×τ

T
F,A

αS(A)×αT (A)

µF

αS(A)×T (A)

τS
G,A×τ

T
G,A µG

The right-hand square commutes by the definition of a monoidal natural trans-
formation (see Section 6.1).

The function is also natural in A, since the following diagram commutes for
every function f : A→ B:

S(F (A))× T (F (A)) F (S(A))× F (T (A)) F (S(A)× T (A))

S(F (B))× T (F (B)) F (S(B))× F (T (B)) F (S(B)× T (B))

S(F (f))×T (F (f))

τS
F,A×τ

T
F,A

F (S(f))×F (T (f))

µF

F (S(f)×T (f))

τS
F,B×τ

T
F,B µF

The traverse function for S × T is unitary because

τS×Tid,A ≡ µ
id ◦ (τSid,A × τTid,A)

≡ id ◦ (τSid,A × τTid,A)

≡ τSid,A × τTid,A
∼ id× id

≡ id.

The commutative diagram below illustrates the linearity of the traverse
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function for S × T .

S(G(F (A)))× T (G(F (A)))

G(S(F (A)))×G(T (F (A))) G(F (S(A)))×G(F (T (A)))

G(S(F (A))× T (F (A))) G(F (S(A))× F (T (A))) G(F (S(A)× T (A)))

τS
G,F (A)×τ

T
G,F (A)

τS
G◦F,A×τ

T
G◦F,A

µG

G(τS
F,A)×G(τT

F,A)

µG

µG◦F

G(τS
F,A×τ

T
F,A)

G(τS×T
F,A )

G(µF )

Coproducts of Traversable Functors

The coproduct
∑
i:I T (i) of a family T : I → (Type → Type) of traversable

functors is itself traversable.
For every i : I, there is a function

T (i)(F (A))
τ
T (i)
F,A−−−→ F (T (i)(A))

F ((i,−))−−−−−→ F
(∑
i:I

T (i)(A)
)
,

so the traverse function for
∑
i:I T (i) can be defined as the induced function

τ
∑

i:I T (i)
F,A :

∑
i:I

T (i)(F (A))
[i 7→F ((i,−))◦τT (i)

F,A ]
−−−−−−−−−−−−→ F

(∑
i:I

T (i)(A)
)
.

This function is natural in F if

α∑
i:I T (i)(A) ◦ τ

∑
i:I T (i)

F,A ∼ τ
∑

i:I T (i)
G,A ◦

∑
i:I

T (i)(αA)

for every monoidal natural transformation α : F → G. As described in Sec-
tion 2.7, it suffices to show that

α∑
i:I T (i)(A) ◦ τ

∑
i:I T (i)

F,A ◦ (i,−) ∼ τ
∑

i:I T (i)
G,A ◦

∑
i:I

T (i)(αA) ◦ (i,−)
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for every i : I. A proof is given below.

α∑
i:I T (i)(A) ◦ τ

∑
i:I T (i)

F,A ◦ (i,−)

≡ α∑
i:I T (i)(A) ◦ [i 7→ F ((i,−)) ◦ τT (i)

F,A ] ◦ (i,−)

≡ α∑
i:I T (i)(A) ◦ F ((i,−)) ◦ τT (i)

F,A

∼ G((i,−)) ◦ αT (i)(A) ◦ τ
T (i)
F,A

∼ G((i,−)) ◦ τT (i)
G,A ◦ T (i)(αA)

≡ [i 7→ G((i,−)) ◦ τT (i)
G,A ] ◦ (i,−) ◦ T (i)(αA)

≡ [i 7→ G((i,−)) ◦ τT (i)
G,A ] ◦

∑
i:I

T (i)(αA) ◦ (i,−)

≡ τ
∑

i:I T (i)
G,A ◦

∑
i:I

T (i)(αA) ◦ (i,−).

The function τ
∑

i:I T (i)
F,A is also natural in A, since

F
(∑
i:I

T (i)(f)
)
◦ τ

∑
i:I T (i)

F,A ◦ (i,−)

≡ F
(∑
i:I

T (i)(f)
)
◦ [i 7→ F ((i,−)) ◦ τT (i)

F,A ] ◦ (i,−)

≡ F
(∑
i:I

T (i)(f)
)
◦ F ((i,−)) ◦ τT (i)

F,A

∼ F
(∑
i:I

T (i)(f) ◦ (i,−)
)
◦ τT (i)

F,A

≡ F ((i,−) ◦ T (i)(f)) ◦ τT (i)
F,A

∼ F ((i,−)) ◦ F (T (i)(f)) ◦ τT (i)
F,A

∼ F ((i,−)) ◦ τT (i)
F,B ◦ T (i)(F (f))

≡ [i 7→ F ((i,−)) ◦ τT (i)
F,B ] ◦ (i,−) ◦ T (i)(F (f))

≡ [i 7→ F ((i,−)) ◦ τT (i)
F,B ] ◦

∑
i:I

T (i)(F (f)) ◦ (i,−)

≡ τ
∑

i:I T (i)
F,B ◦

∑
i:I

T (i)(F (f)) ◦ (i,−)

for every f : A→ B and i : I.
The traverse function for

∑
i:I T (i) is unitary because

τ
∑

i:I T (i)
id,A ◦ (i,−) ≡ [i 7→ (i,−) ◦ τT (i)

id,A ] ◦ (i,−)

≡ (i,−) ◦ τT (i)
id,A

∼ (i,−) ◦ id

≡ id ◦ (i,−)
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for every i : I, and it is linear because

τ
∑

i:I T (i)
G◦F,A ◦ (i,−)

≡ [i 7→ G(F ((i,−))) ◦ τT (i)
G◦F,A] ◦ (i,−)

≡ G(F ((i,−))) ◦ τT (i)
G◦F,A

∼ G(F ((i,−))) ◦G(τ
T (i)
F,A ) ◦ τT (i)

G,F (A)

∼ G(F ((i,−)) ◦ τT (i)
F,A ) ◦ τT (i)

G,F (A)

≡ G([i 7→ F ((i,−)) ◦ τT (i)
F,A ] ◦ (i,−)) ◦ τT (i)

G,F (A)

∼ G([i 7→ F ((i,−)) ◦ τT (i)
F,A ]) ◦G((i,−)) ◦ τT (i)

G,F (A)

≡ G([i 7→ F ((i,−)) ◦ τT (i)
F,A ]) ◦ [i 7→ G((i,−)) ◦ τT (i)

G,F (A)] ◦ (i,−)

≡ G(τ
∑

i:I T (i)
F,A ) ◦ τ

∑
i:I T (i)

G,F (A) ◦ (i,−)

for every i : I.

Finitary Polymorphic Data Types

Let T be a finitary polymorphic data type. To obtain an element of

Traversable T,

one has to specify an element of IsPolynomialFunctor T and an element of
IsFinitePolynomial (polynomial T). Consider, for example, the finitary
polymorphic data type Tree. Having given an element of

IsPolynomialFunctor Tree

in Section 4.2 and an element of IsFinitePolynomial Tree' in Section 6.3,
we obtain a traverse function

τ Tree

: forall (F : LaxMonoidalFunctor) (A : Type)

, Tree (F A) -> F (Tree A),

along with the following proofs:

naturality1 Tree

: forall A : Type

, Is1Natural

(Tree o ApplyLaxMonoidalFunctorTo A)

(ApplyLaxMonoidalFunctorTo (Tree A))

(fun F => τ Tree F A),

naturality2 Tree

: forall F : LaxMonoidalFunctor

, Is1Natural (Tree o F) (F o Tree) (τ Tree F),
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unitarity Tree

: forall A : Type

, τ Tree IdentityLaxMonoidalFunctor A == idmap,

linearity Tree

: forall (F G : LaxMonoidalFunctor) (A : Type)

, τ Tree (CompositeOfTwoLaxMonoidalFunctors G F) A

== fmap G (τ Tree F A) o τ Tree G (F A).

The command

Eval compute in

τ Tree MaybeLaxMonoidalFunctor NaturalNumber (

node

(node leaf (some 1) (node leaf (some 2) leaf))

(some 3)

leaf

),

to take one example, returns the value

some (node (node leaf 1 (node leaf 2 leaf)) 3 leaf).

On the other hand,

Eval compute in

τ Tree MaybeLaxMonoidalFunctor NaturalNumber (

node

(node leaf (some 1) (node leaf none leaf))

(some 3)

leaf

)

returns none.
See GenericTraverse.v for the complete implementation.

https://github.com/DanielKamphorst/generic-programming/blob/main/GenericTraverse.v


Chapter 7

Discussion

We successfully implemented a zip equivalence for polynomial functors. Such
an equivalence consists of a zip function, an unzip function and a proof that they
are mutually inverse. We also proved in Coq that finitary polynomial functors,
such as List and Tree, are traversable. This involved defining a traverse function
and proving its naturality, unitarity and linearity. As far as we are aware, these
implementations are the first of their kind.

Hoogendijk and Backhouse [11] took a relational approach to generalizing
the zip equivalence. In stark contrast to ours, their results are very theoretical
in nature and are therefore difficult, if not impossible, to implement.

The use of a proof assistant such as Coq enabled us not only to define a
generic zip function and a generic traverse function but also to prove that they
possess the expected properties. Surprisingly, it seems that very few researchers
prove the correctness of the generic functions they define. A notable exception
is [26].

The function extensionality axiom is required to prove that List is a poly-
nomial functor. On the other hand, the zip equivalence for List defined in
Chapter 3 works perfectly well without it. Moreover, the corresponding unzip
function is guaranteed to return refl as part of the output, unlike the generic
one. This suggests that there may be a way to define a generic zip equivalence
that works without the function extensionality axiom and whose inverse always
returns refl. Future research should explore this possibility. That said, using
two different approaches to generic programming is less than ideal.

We should be able to fully automate the process of giving a proof of
IsPolynomialFunctor T by drawing on the work of Avigad et al. [4]. If
T is a finitary inductive type, the type of directions at a given position in
polynomial T is an inductively defined sum in which any term is either the
empty type or the unit type (see, for example, Section 4.2). Having given
proofs of IsFiniteType Empty, IsFiniteType Unit and

forall A B : Type

, IsFiniteType A -> IsFiniteType B -> IsFiniteType (A + B)

40
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in Section 6.3, it follows by induction that polynomial T is finite:

Instance TPolynomialIsFinitePolynomial

: IsFinitePolynomial (polynomial T).

Proof.

intro t; induction t; exact _.

Defined.

Although certainly possible, automating this further is a low priority.
There is ample opportunity to generalize the generic zip equivalence even

further. The zip function can be seen as an instance of the ’zipWith’ function,
described in [7]. However, a quick look reveals that a generic zipWith function
can easily be defined in terms of the generic zip function. Weirich and Casingh-
ino [35] discuss yet another generalization of the zip equivalence: the n-ary zip
equivalence. For any natural number n, there is an equivalence between the
type of n-tuples of lists of equal length and the type of lists of n-tuples, not just
for n ≡ 2. Like the regular one, the n-ary zip equivalence can be generalized
to all polynomial functors. This claim, though reasonable in itself, can be jus-
tified mathematically. Polynomial functors preserve not just pullbacks but all
connected limits [8, 34]. In particular, they preserve wide pullbacks, of which
ordinary pullbacks are special cases. A wide pullback is the limit of a family
of morphisms with the same codomain (considered as a diagram) [24]. Binary
wide pullbacks are the same as ordinary pullbacks. Let (Ai)i∈I be a family of
sets indexed by a set I. The wide pullback of the family (Ai → 1)i∈I of func-
tions to the terminal object is simply the product

∏
i∈I Ai. For any polynomial

functor F : Set → Set, there is an isomorphism between F (
∏
i∈I Ai) and the

wide pullback of (F (Ai) → F (1))i∈I , since F preserves the wide pullback of
(Ai → 1)i∈I . An element of the wide pullback of (F (Ai)→ F (1))i∈I is a tuple
(xi)i∈I ∈

∏
i∈I F (Ai) such that F (a 7→ ?)(xi) = F (a 7→ ?)(xj) for any two

indices i, j ∈ I. In other words, all components of (xi)i∈I have the same shape.
Theoretically, both the generic zip equivalence and the generic traverse

function can be generalized to polynomial functors in many variables, although
the benefits of doing so are not immediately clear.
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