
Utrecht University Arria Data2Text Ltd

Master Thesis Project

Worth more than gold
A deep-dive model diagnostic on the mT5 in an attempt to uncover

the origin of errors

Author: Simon van de Fliert (5708656)

1st Supervisor: Dr. Albert Gatt Utrecht University

1st Daily Supervisor: Dr. Yaji Sripada Arria Data2Text Ltd

2nd Daily Supervisor: Dr. Ross Turner Arria Data2Text Ltd

2nd Reader: Dr. Guanyi Chen Utrecht University

A thesis submitted in fulfillment of the requirements for the
Utrecht University Master of Science degree in Artificial Intelligence

March 23, 2023

Abstract

Research within Natural Language Generation is evolving rapidly as new mod-

els are consistently reported to outperform previous works based on popular

metrics, such as n-gram-based BLEU and ROUGE or model-based, such as

BLUERT and BERTScore. Nonetheless, it is still unclear why state-of-the-art

models make errors, thus making it difficult to identify a viable solution. This

project aims to help fill this gap by performing model diagnostics on the mT5

transformer and attempting to uncover the origin of errors within Transformers.

The mT5-base, T5-base, Yeb Havinga’s T5-base Dutch-case, and BART mod-

els are fine-tuned on the RDF-to-text dataset called CACAPO. Following this,

the mT5-base’s generations are manually and automatically reviewed using

evaluation metrics BLEU, METEOR, ROUGE, BERTScore, BARTScore, and

PARENT. Additional experiments are conducted where CACAPO’s training

set is augmented, and underspecified input is provided with additional contex-

tual information. These experiments led to several insights. First, observations

are made involving CACAPO, where the reverse engineering nature highlighted

the difficulties of capturing all contextually relevant data in the input. Further-

more, CACAPO often leaves relevant information from the reference text out

of the input, as no attribute could be connected to the corresponding value.

However, experimentation showed that this is too restricted and that CACAPO

could be extended using inter-subject attributes. Furthermore, data augmen-

tation experiments highlighted the need for a structured augmentation method

for multilingual use cases. Following this, experimentation showed it to be

more beneficial to add contextual data to underspecified inputs compared to

augmenting the data. This also highlights the need for an improved content

selection process, so that all contextually relevant information in the reference

text is captured in the input data. Another observation was made where a

model trained on improved input data performs better during the inference

stage, even when the input data during inference was underspecified. This

indicates that purely improving the specificity of the training set could lower

the number of errors made by the model. Moreover, comparisons between

Dutch and English records showed that Dutch records improved more due to

the additional input data, which could be caused by the amount of training

data the model has seen during both pre-training and fine-tuning. This could

highlight a correlation between improved contextual input data and the neces-

sary training set size, where smaller data set sizes might be usable if the input

data had all contextually relevant information. Another possible reason could

be the difference in sentence complexity, where the majority of Dutch records

are relatively simple, whereas a large part of English records is complex. This

could indicate that an improved specification of input data could be more im-

pactful for relatively simple texts, highlighted by the increase in performance

for Dutch records, but lacking increase of BARTScore performance for the En-

glish records. Furthermore, analysis between languages showed no difference

in error counts, showing that error types are consistent between English and

Dutch records. However, the severity of these errors was not captured in this

project. Finally, each model showed difficulty capturing the correct order of

attributes, thereby generating incorrect conclusions. This is likely due to the

lacking relational information in the CACAPO dataset for end-to-end models.

Acknowledgements

I would like to express my gratitude to my professor and supervisors Dr. Albert

Gatt, Dr. Yaji Sripada, and Dr. Ross Turner for their support, patience, and

guidance, which was integral to the completion of this project. I would also like

to thank Dr. Guanyi Chen for his time and feedback supporting this research

as second supervisor.

Lastly, I would like to thank my family for providing essential feedback and

support during this project.

CONTENTS

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Problem Definition . 2

1.2 Thesis Outline . 2

2 Related Work 3

2.1 NLG . 3

2.2 State of the Art of NLG . 4

2.3 Transformers . 5

2.4 Limitations of Transformers . 7

2.5 Known Research Directions . 7

2.5.1 Encoder Investigation . 8

2.5.2 Decoder Investigation . 9

2.6 Potential Datasets . 11

2.7 Evaluation Methods . 18

3 Methodology 20

3.1 Models . 20

3.1.1 T5-base . 21

3.1.2 Yeb Havinga’s T5-base-dutch-cased 21

3.1.3 mT5-base . 21

3.1.4 BART-base . 22

iv

CONTENTS

3.2 Dataset . 22

3.3 Model Training . 26

3.4 Evaluation Methods . 28

4 Experiments and Results 30

4.1 Manual Analysis . 30

4.2 Augmented Data Experiment . 33

4.3 Elongated Data Experiment . 36

4.3.1 Bilingualism . 39

4.4 PARENT Experiment . 41

4.4.1 Qualitative Evaluation . 45

5 Discussion and Limitations 47

5.1 Insights . 47

5.2 Limitations . 49

5.2.1 Manual Analysis . 49

5.2.2 Augmented Experiments . 49

5.2.3 Elongated Experiments . 50

5.2.4 PARENT Experiments . 50

5.2.5 Bilingualism Analysis . 50

5.3 Relevance to the field of AI . 50

6 Conclusion and Future Works 52

References 55

A Model Training Graphs 63

B CACAPO Attribute Overview 70

C Contrastive Search Experiment 72

D Continuous Learning Experiment 74

E Model Performance Overview 77

v

LIST OF FIGURES

2.1 Transformer architecture proposed by Vaswani et al.(1) 5

3.1 Entry example in CACAPO dataset (2) . 25

3.2 Train, validation, and test distributions of CACAPO 26

4.1 Example of BertViz model view . 30

4.2 BertViz example of hallucinated content quickly focusing on the separator

and attribute present in the input. 32

4.3 Overview of BartScore performances for each experiment based on the orig-

inal test set . 37

4.4 Overview of BartScore performances for each experiment on the original test

set of CACAPO . 40

A.1 Training overview of T5-dutch model of Yeb Havinga trained on the original

CACAPO dataset . 63

A.2 Training overview of mT5-base model trained on the original CACAPO dataset 64

A.3 Training overview of Bart-base model trained on the original CACAPO dataset 65

A.4 Training overview of the mT5-base model trained on the original CACAPO

dataset trained for the continuous learning experiment, in order of Sport,

Stock, Weather, and then Incidents. 66

A.5 Training overview of the mT5-base model trained on the original CACAPO

dataset trained for the continuous learning experiment, in order of Stock,

Sport, Weather, and then Incidents. 67

vi

LIST OF FIGURES

A.6 Training overview of the mT5-base model trained on the elongated training

set of CACAPO, used for the elongated experiment 68

A.7 Training overview of the mT5-base model trained on an augmented training

set of CACAPO, used for the augmentation experiment 69

C.1 Overview of BartScore performances for the Contrastive Search experiment 73

D.1 Overview of BartScore performances for the Continuous Learning experi-

ment . 75

D.2 Rouge score comparisons for the Continuous Learning experiment 76

vii

LIST OF TABLES

2.1 A brief, non-exhaustive overview of available datasets for NLG. 17

3.1 An overview of CACAPO . 23

3.2 Size and Meaning Representation comparison between CACAPO and WebNLG

(2) . 24

3.3 Lexical diversity comparison between CACAPO and WebNLG, where LS

refers to Lexical Sophistication, TTR refers to type-token ratio, and MSTTR

refers to mean segmental TTR (2) . 24

3.4 Content complexity comparison between CACAPO and WebNLG (2) 25

3.5 An overview of training parameters . 27

3.6 Example of Underspecified Input Data . 28

3.7 Example of Mistaken Attributes . 29

4.1 Example of Subject Specific Attribute Addition 31

4.2 Example of Inter-Subject Attribute Addition 32

4.3 Example of Unknown Attribute Addition . 33

4.4 Example of Input Order Experiment . 33

4.5 Comparison of models on the 200 worst performing generations from the

original test set (N = 200). Lower values are best. 35

4.6 Example of improvement in swapped attributes, likely due to the Augmen-

tation . 35

4.7 Example of a mistaken attribute, even after augmentation 36

4.8 Example of Severe Hallucinations . 36

4.9 Example of Elongated Input Data . 37

viii

LIST OF TABLES

4.10 Comparison of models on the 200 worst-performing generations from the

original test set (N = 200). Lower values are best. 38

4.11 Results of PARENT Experiment (n=380) on the three different models. A

good model has generated on the test subset with elongated input data,

whilst the poor model has generated on the original records. A higher value

is best. 43

4.12 Results of the PARENT Experiment on the three different models using

the altered PARENT variant. A good model has generated on the test

subset with elongated input data, whilst the poor model has generated on

the original records. A higher value is best. 44

4.13 Results of a manual review conducted on 64 English and 65 Dutch records

(n=129). The records were taken from the improved test subset created in

the PARENT experiment. A higher value is best. 45

4.14 Example of a Severe Hallucination . 45

4.15 Example of Incorrect Conclusions within Generations 46

B.1 Overview of attributes in the CACAPO dataset 71

D.1 Subject-specific dataset sizes . 74

E.1 First Half Results of the different models trained in this project on the

original CACAPO test set, which has been split per language (NEnglish =

1566, NDutch = 1462). A higher value is best. 78

E.2 Second Half Results of the different models trained in this project on the

original CACAPO test set, which has been split per language (NEnglish =

1566, NDutch = 1462). A higher value is best. 80

ix

CHAPTER 1

INTRODUCTION

“... is the new gold!”. A common phrase that countless have uttered and many more

will, as the availability and usefulness of products has and will keep fluctuating over our

lifetime. Where it used to be steel, diamonds, and oil, over the recent decades a new

commodity has risen above all else; Information (3). As our society benefits from the

incredible advancements in technology, more and more information is becoming available,

and in turn, is required to conduct operations. Take for example the advancements in

journalism, where dozens of credible organizations need to quickly report on occurrences

around the globe, or the vast world of entertainment, from sport to film, where hundreds

of organizations write articles on their favourite celebrity, trend, genre, or game. With the

rising need for documentation, organizations and researchers have looked towards Artificial

Intelligence to support their endeavours, namely in the well-researched field of Natural

Language Generation (NLG), which focuses on automatically generating information from

a given input. This input can be based on text or data and depending on the goal and

generation focus, a different output can be requested (4, 5). Advancements in technology

and business requirements thus gave a new rise to the commercial use of NLG (6).

Within this rise is a continuous pursuit to improve the research and capabilities of the

technology. This thesis, which was carried out in collaboration with Arria NLG - a leading

company in the NLG field, intends to contribute to the efforts to improve the understanding

and research in the NLG field.

1

1. INTRODUCTION

1.1 Problem Definition

Within the field of NLG, the majority of research has focused on optimizing the genera-

tion quality of models, such as described in Puduppuly et al.’s paper (7), through tuning

hyperparameters and modifying models with modules that seemed to work in the past, for

example, the addition of a content selection module (8). Moreover, with the abundance of

data, it was common to provide models with as much data as possible in the hopes of it

generating relevant and high-quality texts, as data-to-text generation models have to take

relevant data from the input data to focus on the generated sentences (9). Whilst these

research paths are fruitful, they do not fully answer why NLG models make mistakes, thus

rarely helping others better understand the workings of neural models themselves. With

this in mind, this project diverges from the popular path and investigates the nature of

state-of-the-art models, to better understand the actions of these models. Instead of opti-

mizing the model with slight increments, a deeper understanding of the origin of errors is

sought. As such, the research goal for this project is as follows:

To gain insights into the workings of state-of-the-art models and attempt to

uncover the origin of generation errors.

To achieve this goal, the state-of-the-art, pre-trained end-to-end neural models T5, mT5,

and BART are fine-tuned on the data-to-text, bilingual dataset called CACAPO, after

which they are evaluated with a combination of automatic metrics and manual evaluation.

Following this, hypotheses will be set and tested through various experiments.

1.2 Thesis Outline

The paper continues with a literature review in Chapter 2, where the current state of

the field of Natural Language Generation is described, alongside two current research

directions, popular models, datasets, and evaluation methods. Then, Chapter 3 details

the project setup, describing implemented models, the CACAPO dataset, the fine-tuning

setup, and baseline evaluation results. Following this, Chapter 4 delves deeper into the

executed experiments and their results, after which Chapter 5 describes the insights gained

from and the limitations of the executed experiments. Lastly, this project will end with

a conclusion and potential future works. The Appendix describes additional information,

such as individual model performances and additional executed experiments.

2

CHAPTER 2

RELATED WORK

2.1 NLG

As described by Reiter et al., NLG is “the subfield of artificial intelligence and computa-

tional linguistics that is concerned with the construction of computer systems that can

produce understandable texts in English or other human languages from some underlying

non-linguistic representation of information”(10). Where Reiter et al. focused on the gen-

eration of linguistic texts through the use of non-linguistic data, a large body of research

has also been conducted on deriving linguistic generations from linguistic texts. For ex-

ample, focusing on text-to-text models, tasks such as machine translation, summarization,

automatic generation of peer reviews for scientific papers (4), and text expansions (5) are

widely researched. As the name suggests, a text-to-text model is trained to generate a lin-

guistic text based on linguistic input (4). For example, a summarization model is trained

on a dataset containing pairings of larger documents and corresponding summarizations,

with which the model can learn to perform the intended task. Redirecting the focus to

data-to-text models, tasks such as automatically creating weather (11) and financial re-

ports (12), patient information summaries (13), and automatic news and sports coverage

(14) have been researched.

In contrast to text-to-text models, a data-to-text model takes as input non-linguistic

data and generates from that a linguistic text (4). The creation of a data-to-text model is

the focus of this project.

3

2. RELATED WORK

After identifying what type of task to investigate, the focus then changes to how to trans-

form the input data into a linguistic generation. Traditionally this task was separated into

six smaller tasks. The first task, content determination, was to decide which information

should be included in the generation (4). Each domain differs in this aspect. For exam-

ple, the financial domain often has different priorities compared to the medical domain,

thus different information would be needed to be shown in the generation. Following this,

the creator had to determine the text structuring and, if possible, combine sentences to

improve fluency, also called sentence aggregation. The next task would be to choose the

right words, thereby determining the correct lexicalisation and then how to refer to the

domain objects within the generation, called referring expression generation. Finally, the

creator combines all previous tasks to create a fluent generation, called linguistic realisation

(4). With the advancement of neural networks and deep learning in Artificial Intelligence,

several previously mentioned tasks are combined, showing impressive results (15). These

recent advancements have pushed the entire NLG research field in the direction of neu-

ral networks. For a more in-depth description of this advancement, refer to the following

surveys (4, 5, 16).

2.2 State of the Art of NLG

To conduct data-to-text generation, researchers often build upon the best or state-of-the-

art models. A wide variety of models have been proposed by previous works, as highlighted

by Li et al. (17). Many of these models have been tested in a variety of domains and many

have shown promising results, especially end-to-end models based on the Transformer ar-

chitecture, an encoder-decoder model, which have become increasingly adept at combining

content selection, the identification of what content from the input data is contextually

relevant and required for the generation, and surface realization, the act of generating a

text based on the selected content (15). Within this, the transformer models T5 and Bart

showed promising results based on metrics such as ROUGE, METEOR, and BERTScore,

and shown through manual evaluation to be able to generate realistic texts. (18, 19, 20).

Furthermore, other researchers have adapted these models to their specific domain, result-

ing in more promising results, where the authors could generate more precise, informative,

and factually consistent texts (21, 22, 23).

4

2.3 Transformers

2.3 Transformers

But how do transformers work? The transformer architecture was first proposed by

Vaswani et al. (1) in their paper Attention is all you need, where they built upon the

encoder-decoder architecture, an architectural overview of which can be found in Figure

2.1. Their transformer consisted of both six encoder- and six decoder layers, where each of

the six layers in the encoder module consists of an attention sub-layer and a feed-forward

sub-layer, whilst each of the six layers in the decoder consists of two separate attention

sub-layers and a feed-forward sub-layer. The size and amount of these layers are not fixed,

and previous works often change the number of layers in each module, for example in (24).

Figure 2.1: Transformer architecture proposed by Vaswani et al.(1)

Let’s focus on the encoder, the left-hand block in Figure 2.1. First, words from the input

are changed into embeddings, after which a positional encoding is given to each embedding.

5

2. RELATED WORK

This encoding lets the model keep track of the position of the token in the sentence. Then,

the embedding is given to the multi-head attention layer. This layer is the breakthrough of

Vaswani et al.’s paper, where the model gains the ability to calculate how much attention

each word needs to receive in the context of the words around it. This layer performs

multiple calculations. First, three vectors are calculated using the embeddings given to

the layer, those being the Query, Key, and Value vectors. The query is the word or token

the model has under consideration, whereas the Key metric refers to potential words to

compare the query with, in this case, other words in the sentence. The value matrix can

be thought of as the best matches returned from the comparison.

Following their calculation, the dot product is taken between the Query of the word in

focus and the Key vector of each word in the sentence. Then, these values are divided by

the square root of d, which stabilizes the gradients, after which the softmax of each value

is taken. This results in all scores adding up to one, and when multiplied with the Value

vector, will result in low-scoring words being drowned out, whilst high-scoring words that

the model would want to focus on are pronounced even more. Finally, the sum of the

weighted value vectors is taken, resulting in one value. This results in formula 2.1.

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2.1)

However, by using a softmax in the formula, the likelihood that a single token obtains

most of the focus is high, which is not ideal, as it can be useful to keep track of other tokens

in the sentence. The solution Vaswani et al. found was to not have a single head calculate

the attention but to have several heads running simultaneously, thus allowing the model

to place attention at different points in the sentence. However, formula 2.1 generates a

single matrix, and if this is done with multiple heads, it would mean multiple matrices are

stored. This is an issue, as the Feed Forward Neural Network only accepts a single matrix,

which corresponds with the vectors of each word in the input. Thus the attention scores

need to be concatenated into a single matrix and then multiplied with a weight matrix to

obtain a single attention matrix. This is shown in the formula 2.2 below.

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O (2.2)

This attention score is then given to the feed-forward layer, thereby letting it learn from

the attention score. Finally, the encoder ends with the three Q, K, and V matrices. The

K and V matrices are given to the decoder, which uses them to focus on the correct words

6

2.4 Limitations of Transformers

in the sentence. The decoder works similarly to the encoder, but where the encoder only

takes in the words from the input sentence, the decoder also takes previously generated

words. However, these inputs are not used at the same time. First, the decoder takes in the

most recent, previously outputted word and gives it to the Masked Multi-Head Attention

layer. This layer then calculates the attention score of the outputted word, similarly to

the encoder. Then the word with the attention score is given to the second attention layer,

alongside the output of the encoder. This second attention layer calculates the attention

with both inputs, combining the knowledge of the already outputted sentence alongside

the knowledge of the encoder, thereby giving the decoder more information regarding the

token in question. This updated attention score is then given to a feed-forward layer (1).

Finally, the decoder passes its information to the linear layer. This layer transforms the

matrices into a logit layer, after which the following softmax layer transforms each logit

value, such that the sum of all values is one. This once again drowns out poor choices,

and the cell with the highest value is chosen. This cell is connected with a word out of the

model’s vocabulary, and the chosen cell is translated into said word.

2.4 Limitations of Transformers

Whilst transformers show great results, these models are not perfect. First, transformers

still struggle with hallucinated content, thus providing generated text with information

that does not exist in the given input (25, 26). Furthermore, transformer-generated texts

can also suffer from both missing information (25, 26) and duplicate information (26).

Lastly, transformers occasionally struggle with providing fluent generations, which could

cause users to misinterpret the information provided (25, 26). All these issues result in

the model generating less relevant data from the input data, thus lowering the quality of

the generated texts. These limitations are the driving force for the research goal described

in section 1.1. By getting a better understanding of the origin of these errors, effective

measures can be taken to counteract these pitfalls.

2.5 Known Research Directions

Ever since these limitations have been known, researchers have been investigating ways to

enhance the performance of transformers for generation tasks. Within this, two research

focus areas have emerged. Some researchers focus on the input of the transformer and the

7

2. RELATED WORK

encoder, whilst others turned their attention toward the decoder in an attempt to facilitate

better and more fluent generations. Each direction of focus will be briefly discussed below.

2.5.1 Encoder Investigation

As shown before, transformers proved to be a great advancement in text generation, how-

ever where they succeeded in verbalizing a structured text, they struggle with the ordering

and structuring of data (27) and often consider too much noisy data. This struggle led

some researchers to look into the past, where they questioned whether the transition from

pipelines of specific modules to end-to-end models generates better text. For example, Fer-

reira et al. (27) created several models from both an end-to-end and pipeline architecture.

Some models were fully divided where each aspect of the pipeline had its own module,

other models had a combination of separated models feeding into an end-to-end system,

and finally, they also included a stand-alone end-to-end model. They then trained the

models on RDFs (Resource Description Frameworks) extracted from the WebNLG corpus

(28) and compared the models. They found that their neural pipeline approaches per-

formed better than fully end-to-end models, where the difference is most clear in unseen

domains, as the performance of the end-to-end model drops off significantly (27). Similar

to Ferreira, Puduppuly et al. wanted to explicitly define the content structure and ordering

steps before giving it to an end-to-end model. With the addition of a content planner, the

authors argue that the decoder will only have to deal with sentence planning and surface

realization, which are easier tasks to conduct. Furthermore, as the content plan is less likely

to contain redundant information, the output will be of higher quality (8). The authors

implement an LSTM model to encode the input and a bidirectional LSTM as the decoder.

Introducing a plan isn’t unique to Pudupully et al.’s paper, as several other researchers

have proposed to introduce a plan to facilitate the ordering of inputs and enrich the input

data (29).

Harkous et al. (30) attempted to circumvent the transformers’ weakness of producing

lower quality generations when used on out-of-domain data by combining a full end-to-end

system with a semantic fidelity classifier, which facilitates the end-to-end system by remov-

ing poor generations, such as hallucinations. The first aspect of this 2-stage approach, the

generator, is based on the pre-trained OpenAI GPT-2 model, whilst the latter reranker im-

plements RoBERTa as a classifier. The addition of the classifier proves to improve semantic

evaluation significantly (30).

8

2.5 Known Research Directions

However, where previous results show good performance, Puduppuly et al. found that

generations proved imprecise at document level (7). To remedy this the authors propose

to add a content planner on a macro level, structuring the content for multi-paragraph

documents. Such a macro plan would consist of a sequence of paragraphs split by a

discourse marker < P >. Once the plan is created, the authors encode the plan with a

BiLSTM and decode using an LSTM (7).

Continuing the trend of pipeline modules, Kasner et al. (31) identify the costly re-

quirements of collecting domain data and the decreasing performance of transformers in

out-of-domain situations. Due to this, they proposed to create a pipeline where pre-trained

language models are used as modules. Each module would consist of a separate language

model that was trained on specific lexical operations corresponding with its module. The

authors argue that this pipeline allows users to produce more semantically consistent out-

put with fewer input data (31).

Taking a different approach, Yang et al. (32) focus on the transformers themselves.

They propose to improve the generations of transformers by first improving the model’s

ability to learn the semantic representations of the input. They then add the field and

position information from the input into the target text, thus allowing the model to copy

the contents of the input into the output. The authors show that these advancements

prove an advancement of previous analysed models (32). Like Yang et al., Rebuffel et

al. focused their work on the transformer itself (33). The authors argue that by forcing

the input into a fixed-size vector representation by encoding it sequentially, the encoding

loses important information that could help the transformer in its content selection. The

authors propose adding another encoder module to the transformer. This addition allows

the low-level encoder to focus on record embeddings and the high-level encoder to encode

the data structure of the input. The authors show through experimentation that this

addition shows improvement, especially regarding content selection, however, it does not

unequivalently outperform all tested models (33).

2.5.2 Decoder Investigation

A different focus within research is to enhance the decoder’s ability to transform embed-

dings into generated text. With the advancements in language models, the initial decoders

focused on generating the most probable sequence of words, which is referred to as the

maximum a posteriori (MAP) decoding (34, 35). This task is also called a search problem

9

2. RELATED WORK

(35), as the decoder has to search over the entire search space, defined by the vocabulary

size, to find a suitable candidate token to generate. As this search space often proved to

be too large to practically search (36), researchers developed several heuristics to make

the task practical. The first heuristic is called Greedy Search, where the decoder always

chooses the token with the highest probability (34, 35, 36). However, this quickly proved

inadequate, as it would produce repetitive sentences (35). To remedy this issue, researchers

created a second heuristic, called Beam Search. This extension takes several tokens into

account, where the parameter k allows the researcher to extend the number of tokens the

model is allowed to consider (34, 35, 36). Nevertheless, once the parameter k has been

set, it will remain constant. This rigidness proved to be problematic for certain tasks that

require more dynamic token choices. Due to this, many variations have been proposed,

such as Group diverse Beam Search (GroupBS) (36), Diverse Beam Search (DBS) (34), or

other variations in the stopping criteria, coverage, and pruning thresholds referenced by

Zarrieß et al. (35).

Whilst these heuristics proved to be an improvement, the resulting generations often

lacked diversity (36) because the search only returns the top k tokens, thereby only al-

lowing the model to consider these. To add diversity to this search problem, researchers

proposed sampling tokens from the search space and adding these to the tokens under

consideration. However, by randomly selecting tokens for diversity, researchers found that

the model’s generations drastically decreased in logic and fluency (34). This was caused

by infrequent words replacing words with significantly higher probabilities. To remedy this

issue, researchers proposed the top-k sampling method, (34, 35) where the sampling was

conducted in a truncated search space, thus increasing diversity without adding infrequent

words into the selection. However, this still showed issues, as some cases require a larger

search space to choose tokens from, whilst other cases require fewer tokens. The top-k

sampling method fixed the search space from which a token could be sampled, which in

some cases caused redundant sampling (34, 35, 37). To remedy this issue, the top-p (or

nucleus) sampling method was proposed, which allowed the model to dynamically alter the

sampling space (34, 35, 37). This quickly became the default choice for many researchers,

however, whilst a sampling method improves the diversity in a text, it does lower the

verifiability (factuality or correctness) of texts, as a less-frequent token might be sampled

that changes the conclusion of the generation (36). For example, if a token is sampled

in the place of a Named Entity, then the correctness of the generation would suffer. To

remedy this trade-off, researchers often combine search and sampling in their models. For

10

2.6 Potential Datasets

example, Massarelli et al. proposed a hybrid where they first sample a set of tokens and

use Beam Search on the tokens to select tokens. The smaller the sample set, the closer it

is to Beam Search (36).

Due to these advancements, the default choice in research often fell to choose a variation

of Beam Search in combination with top-p sampling (35). However, Wiher et al. (34) argue

that this should not be the case. They argue that whilst Beam Search and Nucleus Sam-

pling proved fruitful, these methods only outperform on specific tasks, thus they caution

taking such methods across different tasks without testing. Moreover, whilst methods such

as Beam Search are often used in research, a worrying trend has risen where parameters

are under-reported (35). This results in a lower degree of reproducibility, which makes it

more difficult to find the best sampling and search methods for the designated task.

Furthermore, whilst the main focus for decoders was on search and sampling methods,

Welleck et al. (38) argue that the actual use of any search method results in degenerate

sentences full of mistakes, repetitions, and hallucinations because these methods are not

constrained enough. The authors propose a new training method, called Unlikelihood

training, where instead of focusing on the highest probability tokens, the focus is changed to

decrease the model’s probability of certain tokens called negative candidates. The authors

argue that by minimizing the unlikelihood loss it will become less likely to see both incorrect

repeating tokens and frequent tokens. This method should prove an advancement on both

the token and sequence level (38).

2.6 Potential Datasets

After choosing a research direction and model for experimentation the creator will need to

carefully choose the data with which the model will be trained.

First, the choice needs to be made whether to pre-train a new model or fine-tune an

already pre-trained model on a downstream task. Pre-training a model generally requires

a lot of data and can require a lot of resources to train, whereas creators can also choose

to take an existing pre-trained model, take advantage of its knowledge, and fine-tune it

on a specific downstream task, thereby attempting to specialize the model. The latter is

more resource-efficient, but it limits the creator to a specific architecture and model type,

as these models need to have been pre-trained by someone else beforehand.

11

2. RELATED WORK

These considerations might push the creator to start from scratch, thus pre-training a

model. However, in the case of NLG, many variations have already been created, including

the models mentioned in section 2.2. Thus this project can leverage these models to fine-

tune them on a specific downstream task.

Depending on the task at hand, a different dataset will be required. For example, if the

model will need to summarize large documents, then it will need to be trained on a dataset

containing a combination of large documents and corresponding summaries. On the other

hand, if the model’s goal is to produce a linguistic description of non-linguistic patterns

(e.g. a description of statistical patterns), then the dataset will need to contain both

the non-linguistic data as input and its corresponding linguistic description as requested

output, thereby giving the model a goal to learn (2, 4, 5). However, do these datasets

exist? Several datasets are described below and a summarization is shown in table 2.1.

When looking at publicly available financial datasets, numerous datasets can be found.

Take for example the linguistic-based dataset of financial news articles of (39), which

contains the daily financial news of over 6000 companies between 2009 and 2020. This

source also contains a ready-to-use scraper which was used to collect the articles. Another

example also comes from Kaggle (40), which contains both news and opinion articles

alongside their release dates, which have been initially collected to analyse the relationship

between price movements and stock news.

Other datasets have a combination of both numerical and financial news from stocks.

Take, for example, the Kaggle dataset of (41), which contains large sets of scraped news

articles and sets of non-linguistic data describing the stock at the time, such as its price

at its opening, closing, high, and lows.

Another promising dataset is the FinQA dataset of Chen et al. (42), which contains

8,281 financial QA pairs extracted from annual reports, where each QA pair contains

information important enough that readers look for it. Abdaljalil et al. (43) published

their paper which uses a public dataset of annual reports retrieved from UK firms listed on

The London Stock Exchange (LSE). These annual reports are paired with 3 to 4 human

written summaries that serve as the gold standard, thus making the dataset fantastic for

summarization tasks. Another dataset widely used in many research papers was introduced

by Vargas et al. (44), which contained 106.494 news articles from the Reuters news website,

focussing on financial news published between 20 October 2006 and 21 November 2013.

However, due to copyright, this dataset cannot be used anymore.

12

2.6 Potential Datasets

Extending the search for datasets outside financial data, several other widely used

datasets come to the forefront. For example, several datasets have leveraged Wikipedia

for its collection of information in a variety of domains. Of these, the most popular are

ToTTo (45), which crowdsourced thousands of tables from Wikipedia and provides gener-

ated sentences describing the contents of said tables, and the enriched WebNLG (46), in

which Ferreira et al. transformed contents from Wikipedia into triples of resource descrip-

tion format (RDFs) and added these to the original WebNLG dataset (47), thus combining

data from both DBpedia and Wikipedia into one dataset. Models trained on crowdsourced

datasets tend to suffer less from noise and inaccuracies, as the data is a direct verbaliza-

tion of the aligned data (2). However, crowdsourcing also comes with its own style, which

differs substantially from the writing style of professionals. For example, a reporter has

to keep their text interesting and varied, with the goal to capture and keep the interest of

the reader, whilst a crowdsourced writer will lack this desire. This has resulted in these

datasets receiving critique for lacking real-world representativity (2).

Due to these concerns, researchers have attempted different sourcing methods, such

as scraping and crawling information from websites. For example, Kantharaj et al., the

authors of Chart2Text (48), extracted thousands of tables and their descriptions from

Statista and Pew, whilst Cheng et al. extracted complex hierarchal tables from Statistics

Canada and National Science Foundation (49), both to create a dataset for chart to text

generation tasks. Looking further, sites such as Yelp provide a wealth of human-written

reviews, for example on restaurants. Datasets such as YelpNLG (50) and E2E (51) leverage

this vast source of information to create datasets that challenge neural and end-to-end

generation systems with syntactically diverse and lexical rich texts and with extracting

meaning representations, which force the users of these datasets to think about scalability,

content selection and dealing with human-like, diverse texts (50, 51). Going further, one

widely used domain in research both due to its complexity and general availability is

the domain of sports. With millions of avid and passionate followers around the globe,

thousands of articles and statistics are kept on sports and are stored in articles, tables,

and images. Take for example the RotoWire dataset (52), which contains thousands of

articles and statistics on basketball games, or the MLB dataset (53), where Puduppully et

al. collected thousands of MLB statistics and paired them with human written summaries.

Both datasets highlight the variety in which data is stored and how they can be used for

a wide variety of tasks, such table to text generation and summarization tasks.

13

2. RELATED WORK

However, whilst scraping and web crawling offers a better variety of texts, it does have

their limitations. First, many of the currently available datasets that are built through

scraping contain document-level texts (2). This forcibly excludes generation tasks that

require short sentences or phrase-level texts. For example, a chatbot model will likely

have more success training on short sentences and phrases than long document-level texts.

Second, many datasets also cover a single domain, such as restaurants (YelpNLG), basket-

ball (RotoWire), and baseball (MLB), thereby decreasing the generalizability of the model

across different domains. Third, the majority of datasets contain a single language, that

being English (2).

To remedy these limitations, authors have taken different approaches. One such ap-

proach is to combine several known datasets into one. For example, Nan et al. (54)

created DART, an open domain structured DAta Record to Text generation dataset, by

combining records from a cleaned E2E, WebNLG, WikiSQL and WikiTables. The authors

argue that their framework allows for the creation of more challenging datasets whilst

maintaining the ontology of the original datasets. Another approach is to start with varied

texts and ensure that previously mentioned limitations are less prevalent. For example, van

der Lee et al. create a dataset called CACAPO, short for Combinations of Aligned Data-

Sentences from Naturally Produced Texts (2). Van der Lee et al. reverse-engineered the

dataset, extracting non-linguistic information from articles describing finance, incidents,

weather, and sports and transformed these articles into sentence-level texts. By doing so,

the authors claim to have created one of the first scraped sentence-level, bilingual, mul-

tidomain datasets that is viable for both pipeline and end-to-end systems and thus fills the

gap between the previously mentioned datasets. The dataset contains the chosen articles,

a set of tokenized words corresponding with the article, and a set of annotated words.

Some example annotated words are amountNumber, companyName, moneyAmount, and

stockChangePercentage (the full list can be found in Appendix B), and the full version can

be found on Dataverse (2).

If none of the previously mentioned datasets are deemed fit for the task and no other

existing and fitting dataset can be found, then it is also possible to create a new dataset,

which is a time-consuming task. A new dataset can be created by developing or using

an already existing scraping algorithm that scrapes information. For example, financial

articles can easily be collected from popular financial news websites such as Financial

Times, Wall Street Journal, MarketWatch and Morning Star. Following this, non-linguistic

14

2.6 Potential Datasets

data must be paired with the target text, thus creating an input-output pairing, where the

non-linguistic data would be the input and the linguistic data would be the output. Several

methods can be used when extracting numerical data. For example, following Lee et al.

(2) example, the numerical data can be extracted directly from the article and manually

annotated. Another method, although susceptible to incorrectness and biases, is to scrape

the non-linguistic data from other websites, such as Yahoo Finance, and manually pair

this data with the articles. Finally, it is also possible to combine different datasets, for

example, a linguistic dataset with a non-linguistic dataset. Here the creator could filter

the data based on date and create pairings on non-linguistic data as input and financial

texts as output. Combining different datasets also increases the risk of introducing faulty

pairings, which can negatively impact the model’s performance.

Note that the majority of datasets mentioned here purely contain English records, whilst

only a few mentioned above are bilingual or even multilingual. This highlights a significant

bottleneck in current research, where a majority of papers published only evaluate English

texts. For example, Ruder et al. evaluated 461 of the 779 ACL papers published in

2021 and found that roughly 70 per cent of the 461 papers only evaluate English texts

(55). Moreover, the authors found that a majority of research in multilingualism only

considers accuracy metrics, whilst leaving out metrics such as fairness or interpretability.

Ruder et al.’s results highlight a focus on English texts and datasets, which in turn shows

that less common languages are underrepresented within research. Moreover, there lies

an opportunity to test different metrics on underrepresented languages. Furthermore, as

researchers for this project know both English and Dutch, it offers an opportunity to

leverage a bilingual or multilingual dataset for this project, which could contribute to the

lacking representation of languages and use of metrics outside of accuracy.

Dataset Contains Size Multi-
domain

Lang Availability Location

Daily Finan-
cial News
for 6000+

Stocks (39)

Stock ticker, News head-
line, News article, Pub-
lisher for 6000 stocks from
2009-2020

4m N EN Public Kaggle

15

2. RELATED WORK

Historical fi-
nancial news
archive (40)

the historical news archive
for the last 12 years of
the US equities publicly
traded on NYSE/NAS-
DAQ which still has a
price higher than 10$ per
share.

222k N EN Public Kaggle

Financial
Markets
DataSet-
Prices and
News (41)

Stock Highs, Lows, Start
and End, Financial News

5k N EN Public Kaggle

CACAPO
(2)

News on Dutch and
English sport, stocks,
weather, and incident,
contains annotated non-
linguistic data retrieved
from aforementioned news

20K Y EN, NL Public Dataverse

FinQA (42) QA pairs based on the
earnings reports of S&P
500 companies

8.3k N EN Public Github

RotoWire
(52)

Articles describing basket-
ball games, paired with
box and line score tables

4.9k N EN Public Github

MLB (53) MLB statistics paired
with human written
summaries

26.3K N EN Public Github

2020 FNS
Shared task
Dataset (43)

UK annual reports pub-
lished in PDF file format,
with documents around 80
pages on average, some
annual reports could span
over more than 250 pages,
while the summary length
should not exceed 1000
words

3.8k N EN Public Unknown

16

2.6 Potential Datasets

YelpNLG
(50)

The corpus consists of
300,000 MR-to-NL (mean-
ing representation to nat-
ural language reference)
created using freely avail-
able restaurant reviews
from Yelp.

300k N EN Public NLDS
Corpora

E2E (51) Texts and dialogue-act-
based MR regarding
restaurants

50k N EN Public Github
and
Website

ToTTo (45) Wikipedia tables and cor-
responding generated sen-
tences of these tables

120K Y EN Public Github

Chart2Text
(48)

Charts with correspond-
ing textual descriptions
and summaries covering a
broad range of topics and
a variety of chart types.

44k Y EN Public Github

WebNLG
(46)

Sets of Resource Descrip-
tion Framework (RDF)
triples in 15 domains,
in which, each one of
them is formed by a
Subject, Predicate and
Object. The Subject
and Object are constants
or Wikipedia entities,
whereas predicates rep-
resent a binary relation
between these two ele-
ments in the triple.

25k Y EN, RU,
DE

Public Github

HiTab (49) A set of complex hierar-
chal tables with annotated
QA pairs that simulate
natural language usage

3.5k Y EN Public Github

DART (54) an open domain struc-
tured DAta Record to
Text generation datase

82k Y EN Public Github

Table 2.1: A brief, non-exhaustive overview of available datasets for NLG.

17

2. RELATED WORK

2.7 Evaluation Methods

The act of evaluating a generated text has seen a lot of research and a wide variety of
methods have been proposed. The main cause for this is the information these generation
models deal with. First, there is no standardised input type or format for generation
systems. Depending on the chosen input, some proposed evaluation methods would need
significant changes to extract the necessary information, which would require a lot of effort.
Second, there can be an enormous amount of variation in the format of open-ended texts.
Evaluating such texts is difficult: a generation which is good but which differs too much
from the template might be incorrectly deemed a bad generation - an undesirable outcome
(4)

The cause for variation does not end there though, as depending on how a system
is evaluated, a different set of evaluation metrics could be considered. A system can be
evaluated intrinsically, where a focus is placed on measuring the performance of the system
whilst ignoring other aspects, or it can be evaluated extrinsically, where the focus is placed
on whether the system achieves its goal or purpose (4, 56).

Looking further, intrinsic evaluation methods can be separated into human evaluation
and using automatic metrics. With human evaluation, both experts and non-experts can
be consulted and asked to evaluate the system through common metrics. Several metrics
are used in the literature, such as fluency, accuracy, and relevance (4), however many
metrics are often mentioned under different names. For example, some works (like Harkous
et al. (30)) describe semantic fidelity, whilst others refer to the metric as factuality and
consistency (57). In the present work, the term fluency refers to whether the generated text
is readable, grammatical, and coherent (57). Furthermore, when speaking of faithfulness,
it refers to how accurately the generation matches with the information from the input
data (30, 57). For example, mistakes such as hallucinations lower the faithfulness of the
generations. Moreover, the metric informativeness is often described under different terms.
In this paper, informativeness refers to how diverse and specific the generated text is whilst
also considering how little redundant, general, or meaningless text it contains. The less
redundant information the generation contains, the more informative the generation would
be considered (57).

Besides testing the generations, it is also possible to test the evaluators with the use
of metrics such as per cent agreement, Cohen’s k, Fleiss’ κ, and Krippendorff’s α, which
measure how well the evaluators agree with each other. Having a high inter-evaluator
agreement indicates that the task is well-defined and the points of interest are consistently
noticed. However, it is not necessarily the best idea to maximize this metric due to the
possible variations in natural language (56). Whilst human evaluation is seen as the gold

18

2.7 Evaluation Methods

standard, it is not an all-encompassing evaluation method. First, finding evaluators can be
expensive and the evaluations time-consuming to run, even with websites such as Amazon’s
Mechanical Turk (56). Second, whilst humans are reliable at identifying certain metrics,
such as fluency, they are often unable to detect diversity (56, 58). To alleviate this issue,
Hashimoto et al. designed a metric combining human evaluation and statistics to capture
both fluency through human evaluation and diversity through statistics using the model’s
sampling probabilities. This metric is called Human Unified with Statistical Evaluation,
HUSE for short (58).

To support human evaluation and offer more cost-effective evaluation methods, re-
searchers looked into providing automatic metrics. Some metrics are specialized in evalu-
ating a model on one metric, whilst others have been created as a general evaluator. Other
metrics often use n-grams to measure how well the output contains information obtained
from the given input (4). Examples of these methods are BLEU (59) and ROUGE (24),
which have been widely used in research, such as in (20, 21, 22, 23). However, metrics us-
ing n-grams have recently received critique, as the results of these metrics can differ from
human evaluation, especially when the generated text is of higher quality (60). Further-
more, they struggle to evaluate longer sentences, as the longer the sentence, the less likely
there will be a precise match of words (4, 60). This can lead to cases where the automatic
metric evaluates a good generation as bad, whilst human evaluators could evaluate the
same generation as good. Moreover, Novikova et al. (60) analysed why these automatic
metrics can perform so poorly, and they found that these metrics perform far better when
human evaluation deemed informativeness and naturalness of the generated text as low,
compared to when the human evaluation deemed a generated text to be of high quality.
Following their findings, a shift is slowly set in motion, where more neural-based evaluation
metrics are used, such as in Yermakov et al. (18). However, it is important to note that
n-gram metrics could still prove useful when evaluating poorly generated texts, as argued
by Novikova et al. (60).

When performing an extrinsic evaluation, a focus is placed on studies that are questionnaire-
based or performed by user volition. These often rely on an earlier set goal. Whilst these
studies often proved useful, they also come with a significant time- and cost commitment,
whilst they also need excellent supervision to control for confounding and intervening vari-
ables (4).

19

CHAPTER 3

METHODOLOGY

As described in section 2.5.1, the majority of existing research focuses on improving large
language models (LLM) by altering model architectures, creating model pipelines, or
adding modules to existing models. Whilst this could result in improved performance,
the origin of errors made by LLMs often remains unknown. Uncovering these origins
can help add focus to research seeking to resolve specific generation errors. This project
attempts to uncover some possible origins of common errors in LLM output.

3.1 Models

First, a model is chosen which will be used for testing purposes. As described in 2, the
T5 and BART models performed as state-of-the-art models. These models are available in
several sizes and also in multilingual versions, offering a wide flexibility for this research
project. However, the BART family is less available than the T5 model, where BART is
only available in its base and large versions, whilst mBART, the multilingual version, is
only available in a large format. The T5 family is available from small to XXL, for both the
original and the multilingual variants. Given that neither model consistently outperforms
the other, the choice was made to focus on the T5 family, as this would offer consistent
size comparisons within the project’s limited resources.

Meta’s BART base model (3.1.4) was trained as a cross-reference comparison to the T5
family. These models are retrieved from Hugging Face (61) and are described in more
detail below. The training results for each model are shown in Appendix A.

20

3.1 Models

3.1.1 T5-base

The T5 model, created by Raffel et al. (62) closely follows the original transformer designed
by Vaswani et al. (1). The authors slightly adapted the architecture, as they changed the
original sinusoidal position signal and use a simplified position embedding where a scalar
is added to the logit of the corresponding word. This positional embedding is shared
across all layers for efficiency, however, each attention head has a different learned position
embedding.

The data on which the model has been pre-trained is taken from Common Crawl, a public
website that offers web-extracted texts which have been cleaned from any impurities, such
as HTML and non-text content. This results in 20TB of data, but much of this data is made
up of less interesting content, such as restaurant menus and duplicate texts, or unwanted
content, such as offensive language (62). The authors, therefore, took the extracted content
from April 2019 and applied several additional cleaning methods, such as the removal of
content with too little textual data, content with offensive language, content without proper
terminal punctuation, any content containing filler phrase "lorem ipsum", and any content
that was not mostly English. This resulted in 750GB of data dubbed Colossal Clean
Crawled Corpus, or C4 for short.

The authors then fine-tuned the T5 model on several downstream tasks, including text
summarization and machine translation. For these tasks, the authors used the datasets
described by the GLUE and SUPERGLUE benchmarks. Due to this fine-tuning, the T5
model can recognize English, French, Romanian, and German texts (62).

3.1.2 Yeb Havinga’s T5-base-dutch-cased

To test the multilingualism in this project, a focus was set on adding a purely monolingual
model. For this, a variation to the T5 model was found, namely, the yhavinga/t5-v1.1-base-
dutch-cased retrieved from Hugging Face. This model has a slightly different architecture
from the base, where instead of a ReLU activation function, it uses a Gated-ReLU. Fur-
thermore, instead of the original C4 training set, the creator has filtered the C4 dataset for
Dutch texts instead of English texts, thus resulting in a C4-Dutch variant. This resulted in
the largest Dutch Dataset available, consisting of 151 GB of data (63). Unlike the original
T5, this model has not been fine-tuned on downstream tasks, which is left as future work
by the creators.

3.1.3 mT5-base

Another variant on the T5 model is Google’s mT5 model, where the authors attempted to
create a multilingual version of the T5 whilst keeping the recipe as close as possible to the

21

3. METHODOLOGY

original. This model also changes the activation function into a Gated-ReLU instead of the
original ReLU function. Moreover, instead of being pre-trained on a single language such
as Havinga’s model, the mT5 model is trained on 101 languages, including English and
Dutch. Similar to Havinga’s model, this model has also not been fine-tuned on downstream
tasks (64).

3.1.4 BART-base

BART, short for Bidirectional and Auto-Regressive Transformers, is a denoising autoen-
coder that is pre-trained on masked, or corrupted, texts and given the task to reconstruct
this text using a sequence-to-sequence model. The base version contains six different lay-
ers of encoders and decoders. Similar to T5, BART is based on the standard Transformer
architecture proposed by Vaswani et al. (1), except the ReLU activation functions are
changed to GeLU activation functions (65).

3.2 Dataset

As mentioned in section 2.6, van der Lee et al. created CACAPO to fill current gaps in the
literature, where CACAPO is one of the first scraped sentence-level, bilingual, multidomain
datasets. Taking a deeper look into this dataset, it was created by scraping news articles
from a multitude of domain-specific websites. The dataset covers four different domains in
both English and Dutch, those being weather, sports, stocks and incidents (such as traffic
accidents and gun violence). Whilst the domains are the same for both languages, the
scraped texts differ in their events and topics. For example, due to the (general) absence
of guns in the Netherlands, Dutch articles are about traffic-related incidents, whilst the
English incident section contains more gun-related articles. After the initial scraping, the
dataset contained 51, 575 texts.

Following the first collection phase, the authors purged any text with more than 325

words, as previous research showed that basic news reports normally do not exceed that
amount, resulting in the original 51, 575 being reduced to 20, 630 texts. The authors then
randomly selected 200 texts per domain and language to obtain a representative number of
sentences in the dataset. The resulting 1600 texts were then split into individual sentences,
resulting in the final version of CACAPO containing 20, 149 sentences. A full dataset
overview is shown in table 3.1.

22

3.2 Dataset

Domains Contains Sentences
#

Dutch Sports Soccer match reports from the 2015/2016 and 2016/2017
seasons of the Dutch Eredivisie, the highest professional
soccer league in The Netherlands.

2,559

Dutch Stocks Daily reports on stock exchanges, company stock list-
ings, (crypto)currency exchange rates, and oil prices.

3,022

Dutch Weather Several daily short-term weather forecasts for The
Netherlands from the Royal Netherlands Meteorologi-
cal Institute (KNMI)

2,668

Dutch Incidents News articles about traffic incidents 1,468

English Sports Baseball reports from the American MLB League, the
top league in American professional baseball

4,411

English Stocks Daily reports on stock exchanges, company stock list-
ings, (crypto)currency exchange rates, and oil prices

2,197

English Weather Weather forecasts for several countries (e.g., Canada,
United States, India, Ireland).

2,443

English Incidents Gun violence incidents from the Gun Violence Archive 1,381

Total All domains 20,149

Table 3.1: An overview of CACAPO

Following this, the sentences were tokenized and manually annotated by two experts who
reached an agreement level of 70.92%. As the dataset only contained journalistic texts,
the choice was made to create the labels and attributes that follow the 5W, 1H rule, that
being the Who, What, When, Where, Why, and How (2). A full overview of the chosen
attributes for each domain can be found in Appendix B.

To highlight the advantage of this dataset, the authors also compared it to the existing
Enriched WebNLG dataset, as this dataset is also multilingual, multidomain, and built
with different architectures in mind. However, they differ in collection method, as the
Enriched WebNLG dataset was crowdsourced, whilst CACAPO has been scraped (2).
First, the size of both datasets was compared, where the CACAPO dataset is slightly
bigger than the Enriched WebNLG dataset in size in terms of instances and unique meaning
representations, however in turn the Enriched WebNLG dataset contained more references
to the meaning representations, shown in table 3.2.

23

3. METHODOLOGY

No. of in-
stances

No. of
unique
MRs

Refs/MR Slots/MR W/Inst W/Sent Sents/Int

CACAPO
(Dutch)

10,486 8,883 1.19
(1-285)

2.74 15.19 15.19 1 (1-1)

CACAPO
(English)

10,566 9,352 1.17
(1-290)

2.83 18.52 18.52 1 (1-1)

WebNLG
(English)

9,674 9,604 2.63
(1-12)

2.95 20.03 14.26 1.4 (1-6)

WebNLG
(German)

7,812 7,753 2.63
(1-12)

2.96 19.22 13.64 1.4 (1-6)

Table 3.2: Size and Meaning Representation comparison between CACAPO and WebNLG
(2)

The increase in reference to meaning representation, shown in column 3 of table 3.2
allows data-to-text systems to have an easier time learning alignments between meaning
representations and text when trained on the Enriched WebNLG dataset (2). Second,
whilst CACAPO contained more sentences than WebNLG, the sentences themselves are
smaller in size. However, the authors found that CACAPO is more lexically diverse than
the WebNLG dataset, as shown in figure 3.3.

Tokens Types LS TTR MSTTR

CACAPO (Dutch) 147,770 10,152 0.87 0.07 0.87

CACAPO (English) 175,860 11,485 0.87 0.07 0.89

WebNLG (English) 491,731 5,521 0.84 0.01 0.75

WebNLG (German) 376,184 6,433 0.86 0.02 0.78

Table 3.3: Lexical diversity comparison between CACAPO and WebNLG, where LS refers to
Lexical Sophistication, TTR refers to type-token ratio, and MSTTR refers to mean segmental
TTR (2)

Furthermore, the authors also compared the sentence complexity by calculating the
revised Developmental Level scale. This scale consists of eight different levels, zero being
the simplest and seven being the most complex, where complexity is influenced by complex
syntactic structures and referring expressions. The comparison between CACAPO and the
Enriched WebNLG resulted in the Dutch texts in CACAPO being the simplest, then the
English texts of WebNLG and finally the English texts of CACAPO (2). This is also

24

3.2 Dataset

shown in table 3.4, where each column sums up to 100%, thus representing each split in
their corresponding complexity level.

CACAPO (Dutch) CACAPO (English) WebNLG (English)

0 49.3% 37.31% 49.27%

1 4.38% 2.57% 0.11%

2 28.13% 10.44% 20.24%

3 6.45% 9.14% 9.62%

4 0.4% 2.12% 0.22%

5 5.89% 9.22% 4.66%

6 3.21% 1.13% 3.94%

7 2.24% 28.08% 11.93%

Table 3.4: Content complexity comparison between CACAPO and WebNLG (2)

With the previously mentioned advantages that CACAPO offers, it was chosen as the
preferred dataset to use for the experiments described in this paper. CACAPO was re-
trieved from Dataverse (66), where the data was downloaded in XML format, of which an
example entry is shown in figure 3.1.

Figure 3.1: Entry example in CACAPO dataset (2)

In the preparation of this data, the appropriate information needed to be extracted
into a usable format. As the dataset was modelled after WebNLG, it was possible to use
and adapt the code used in these challenges. The WebNLG challenge provides an XML

25

3. METHODOLOGY

Converter, named WebNLG_xmlReader. Furthermore, as this research focused on end-
to-end applications, only select pieces of each CACAPO entry were required for training.
The XML reader was used to extract original triples and corresponding articles, after which
these were saved into a CSV document. Following the data storage, the data was examined
to confirm the creators’ claims that the dataset does not contain any noise. This analysis
showed this claim to be true and all values from the attribute value pairs in the input are
represented in the output. For a quick overview of subject distributions, refer to 3.2.

Figure 3.2: Train, validation, and test distributions of CACAPO

3.3 Model Training

Having chosen the models (T5-base, mT5-base, Bart-base) and dataset (CACAPO), the
model can be fine-tuned. This was done with Hugging Face’s AutoModelForSeq2SeqLM
and AutoTokenizer, which selected the appropriate model and FastTokenizer as the ap-
propriate default tokenizer for said models. Following this, the data was preprocessed into
tensors. For this, the maximum token length for both input and output was set to 256
tokens, as no sentence would surpass 256 tokens. Moreover, the input data was prepared
with ast’s literal_eval before being tokenized, as loading through CSV a list of inputs to

26

3.3 Model Training

one continuous string. Using literal_eval returns the input to its original form. Follow-
ing preparation, the training arguments were set such that the model would be evaluated
per epoch with a learning rate of 5e− 5 and using the optimizer adafactor, following Yeb
Havinga’s experimentation (67). Moreover, gradient accumulation was set to 2 steps, gra-
dient accumulation was set to True, and the batch size was set to 16 to optimize for memory
usage. The model was tasked to generate using Beam Search and Nucleus Sampling, where
the total number of beams was set to 5 and the generation length set to 100. Moreover,
the sampling space of top_p was set to 0.7 and a repetition penalty was set to 1.3. Finally,
the model was given an early stopping criteria of 3, evaluated on the validation loss during
training. These parameters are shown in table 3.5.

Parameter Value

Model AutoModelForSeq2SeqLM

Tokenizer AutoTokenizer

Max padding length 256

Learning Rate 5e− 5

Optimizer Adafactor

Gradient Accumulation Steps 2

Gradient Checkpointing True

Batch Size 16

Early Stopping 3

Decoding Strategy Beam Search and Nucleus Sampling

Beam Count 5

Maximum token generation length 100

Top p 0.7

Repetition Penalty 1.3

Table 3.5: An overview of training parameters

Before training, a clean model was loaded in to ensure no accidental continuous learning
occurs. Furthermore, each epoch was evaluated using popular metrics, n-gram methods
BLUE, ROUGE, METEOR, and model-based methods such as BertScore and BartScore.
After completion of the model’s training, the model was tested on an unseen test set. The
best model was loaded in and tasked to generate texts based on test set inputs. These
generations were then decoded and evaluated by earlier mentioned metrics.

27

3. METHODOLOGY

3.4 Evaluation Methods

Following model training and automatic evaluation, it was evident that the models were not
perfect and making numerous errors. This called for additional analysis or model diagnos-
tics. The results of each model’s test run were therefore gathered and sorted based on the
corresponding BARTScore, following Yuan et al.’s (68) observation that a model-based
metric outperforms n-gram evaluation models on several perspectives, such as fluency,
coherency, and factuality. After ordering these values, the worst 200 generations were
gathered for analysis, as logically these records would contain the most amount of errors.

Following this, several evaluation buckets were created, taking inspiration from Thomson
and Reiters’ paper "A Gold Standard Methodology for Evaluating Accuracy in Data-To-
Text Systems" (69), those being No Generations, Incorrect Named Entity, Incorrect Word.
The manual analysis can be found in this project’s Github repository1.

After analysing the records, several patterns emerged. First, generations often contained
both completely hallucinated content and omitted input data. This was highlighted by
input records having very few attribute value pairings, whilst the reference text contained
more contextual information that could have been captured in the input data, which would
pose a challenge for any generation method, such as rule-based generation. An example is
shown in Table 3.6.

Input Generation

’locationPlayed | Baltimore’ The game was closed to fans out of concern for their safety
following recent rioting in Baltimore after Freddie Gray, a
25-year-old black man, died in police custody.

Table 3.6: Example of Underspecified Input Data

Additionally, the generation contained different attributes than those mentioned in the
input data and it even occasionally seemed that the model ignored certain attributes.

A significant portion of the recorded errors came from the ’Dutch Sports’ subject. Anal-
ysis showed that the mistaken attributes were often attributes that occurred less often in
the dataset and that these attributes were switched with attributes that occur more often.
An example of such a switch is shown in Table 3.7 below:

1https://github.com/SimonvdFliert/MscThesis

28

https://github.com/SimonvdFliert/MscThesis

3.4 Evaluation Methods

Input Generation

’redCardName | Linssen’ Linssen scoorde voor het eerst in de Eredivisie.

Table 3.7: Example of Mistaken Attributes

This observation sparked the question of whether augmenting the dataset such that
attributes always occur at least a few hundred times could resolve this issue.

29

CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Manual Analysis

Taking the transformer models into account, two possible places were identified that could
be the cause for the previously mentioned errors, that being the model and at its core the
attention mechanism, or the dataset. The previously made observations sparked hypothe-
ses regarding the dataset, however, it is useful to test proposed changes in a small setting,
so that the resources at hand are not wasted. Hence pilot experiments were devised to test
several possible changes. Additional Learning Interpretability Tools, such as Ecco (70) and
BertViz (71), of which an example is shown in figure 4.1 below, were used as supporting
visualisations. Note that all following experimentations were conducted on the mT5-base
model.

Figure 4.1: Example of BertViz model view

30

4.1 Manual Analysis

The first experiment focused on the initial observation where input data was missing
contextual data that was present in the reference text. To test how models would react
to additional data, records were manually reviewed to decide whether the reference texts
contained contextually relevant information that was not present in the input data. Several
instances were then selected for this analysis. Each additional attribute value pair was
created with subject-specific attributes known in the dataset, of which an example is
shown in Table 4.1 below.

Input Type Generation

Original Input Data ’victimNumber | five’

Manually Elongated Input Data ’victimNumber | five’, ’victimNumber | three’, ’victimGen-
der | women’, ’victimGender | men’

Reference Text The victims include five women and three men.

Table 4.1: Example of Subject Specific Attribute Addition

These additions resulted in a decrease in hallucinations and generations matching the
target text better than the original generation. Furthermore, it was observed that many
target texts had contextual information that was either difficult or impossible to connect
to an attribute, thereby still leaving gaps in context. BertViz analysis showed that the
distribution of attention scores was similar in few and many input RDF records. However,
it was observed that records with hallucinated content had the hallucinated content focused
on attributes or separators, whilst non-hallucinated content often focused on the values.
This indicates that hallucinated content does come from the attributes and that the model
does not derive any hallucinations from seen values.

Following these results, a similar question arose regarding contextual input data but now
focused on removing attributes from well-performing generations and analysing how the
model reacts. It was observed that removing a bit of context could quickly result in the
model generating hallucinated content, thereby drastically changing the usability of the
generation. The addition of hallucinated content was not consistent across all subjects and
instances, but when it occurred, it often had a significant effect on the conclusion of the
text. Moreover, it was observed that some subjects still generated the same texts, even
with removed input rdfs. After analysing the dataset representations, it was found that this
was due to the lack of diversity for these cases. For example, if the model sees "zonnige", it
will also always output "perioden", as this is always occurring together, 38 out of 38 times.
BertViz analysis showed similar results as experiment one, where hallucinated content is
focused on the attribute and separator tokens, as shown in Figure 4.2.

31

4. EXPERIMENTS AND RESULTS

Figure 4.2: BertViz example of hallucinated content quickly focusing on the separator and
attribute present in the input.

After this, another experiment was conducted similar to the first, where additional at-
tribute value pairs were added. However, where the first experiment focused on attributes
known within the subject, this experiment focused on inter-subject attributes, as shown
in Table 4.2. For example, if a Sports record was manually elongated, the new attribute
might have been from the Incidents subject. The evaluation showed that these additions
worked well, given that the attribute is shown often enough within the dataset. For less
occurring attributes, the model still had issues generating the target text. Furthermore,
the model had trouble ordering the values, thus making mistakes and connecting attributes
that should not be related.

Input Type Generation

Original Input Data temperatureCelsius | above average, timePoint | this sum-
mer

Manually Elongated Input Data temperatureCelsius | above average, timePoint | this sum-
mer , ORG | the department, weatherArea | the province

Reference Text The department said the temperature will remain above
average this summer, according to the department.

Table 4.2: Example of Inter-Subject Attribute Addition

In the fourth experiment, new attribute-value pairs were added to those lacking input
records, however, the attributes were unseen in the CACAPO dataset, as shown in Table
4.3 below. The new attributes resulted in generations containing numerous mistakes, where
the model had no previous recollection of the attributes and had trouble placing them in

32

4.2 Augmented Data Experiment

the right context.

Input Type Generation

Original Input Data LOC | Qatar, timePoint | public holiday

Manually Elongated Input Data LOC | Qatar, event | closed, timePoint | public holiday

Reference Text Qatar, where the public holiday closed, said a statement.

Table 4.3: Example of Unknown Attribute Addition

Finally, an experiment was conducted whereby records have their input data reordered,
which showed that a different order of input data has no effect on the generation. An
example is shown in Table 4.4 below.

Input Type Generation

Original Input Data temperatureCelsius | above average, timePoint | this sum-
mer , ORG | the department, weatherArea | the province

Switched Input Data ORG | the department, weatherArea | the province, temperatureCel-
sius | above average, timePoint | this summer

First Generation The department said the temperatures will be above average this sum-
mer, according to the department.

Second Generation The department said the temperature will remain above average this
summer, according to the department.

Table 4.4: Example of Input Order Experiment

These experiments highlighted that changes made to the dataset would need to be well-
considered, as incorrect changes could lead to an increase in errors. From these experi-
ments, it became clear that input data could easily be elongated with inter-subject attribute
value pairings and that little attention needed to be placed on the order of these pairings.
This laid the groundwork for the next experiments.

4.2 Augmented Data Experiment

Returning to the manual review, observations were made that attributes were often changed
to different attributes or even left out altogether. Analysis showed that several of these
changed attributes were rare within the dataset. This sparked the hypothesis that the
infrequency of these attributes caused the model to gravitate to more frequent attributes,

33

4. EXPERIMENTS AND RESULTS

as these attributes are similar in semantics, thus the model will naturally prefer to choose
a token it has seen often enough. To test this hypothesis an experiment was devised to
ensure that each attribute within the dataset would have the opportunity to be learned.
One way to do this is by decreasing the relative difference of occurrences between frequent
and infrequent attributes, however, this would require either the augmentation of very few
records, which would decrease variety and increase the chance of duplications, or it would
require to create entirely new records, which would be time-consuming and come with new
considerations a creator would have to decide over. Another method is by focusing on the
absolute occurrence of attributes, which was more applicable to the CACAPO dataset.

The topic of data augmentation has been considered widely in existing literature, not only
in the domain of natural language generation. Due to the advancements in deep learning
and model performance, other languages have been getting attention from researchers,
however, many languages often lacked the required data to train a model on. This has
sparked several variations on how to properly augment a dataset for training purposes, such
as Ribeiro et al.’s checklist (72). This method was taken as inspiration for the augmentation
script in this project.

The first step was to extract the current attribute count within the dataset and identify
attributes that occur less often than 250 times. The cap of 250 attributes was set to avoid
the dataset from quickly exploding to far greater sizes. Then, for each stored attribute, the
dataset would be filtered on records containing said attribute and the corresponding values
of these attributes were extracted and stored. Following this, the number of augmented
records would be calculated to hit the cap of 250 attributes. Then for each filtered record,
an augmented variant would be created where the value of the desired attribute would be
changed with one of the earlier stored values. If all values were used for this record, then
a second record would be taken, such that no duplicated values would occur for a specific
record. Once the cap of 250 records was reached, the next attribute would be chosen and
augmented.

After creating the augmented dataset, a new mT5-base model was created similarly to
the baseline, but this time with the augmented training set instead of the baseline training
set. All other factors remained consistent. After training, the augmented variant was
compared to the baseline variant. Focusing on the automatic metrics, the augmentation
did not improve the performance of the model, in fact, it performed worse compared to the
baseline, as more records received lower BARTScores. Moreover, the model’s performance
was manually compared with the baseline by looking at the worst 200 generations from
the manual review. The augmented version showed an increase in hallucinations and
duplications, whilst omitting fewer data from the input, as shown in table 4.5.

34

4.2 Augmented Data Experiment

Models Baseline (% of total) Augmented (% of total)

Hallucinations 141 (70.5%) 163 (81.5%)

Ommissions 21 (10.5%) 10 (5%)

Duplications 30 (15%) 35 (17.5%)

No Generation 14 (7%) 7 (3.5%)

Incorrect Number 1 (0.5%) 0

Incorrect Named Entity 21 (10.5%) 5 (2.5%)

Incorrect Word 31 (15.5%) 33 (16.5%)

Incorrect Addition 112 (56%) 126 (63%)

Other 2 (1%) 7 (3.5%)

Table 4.5: Comparison of models on the 200 worst performing generations from the original
test set (N = 200). Lower values are best.

However, whilst this makes it seem that the augmentation results in no improvements
based on BARTScore and minor improvements in the manual review, the augmentation
was done to lower the chances of the model switching out attributes with different, more
frequent attributes, and the model has been able to do so. Take the example shown in Table
4.6 below, where both the generation of the baseline and the generation of the augmented
model is shown.

Input Generation

tackleRecipientName | Kamohelo
Mokotjo

Kamohelo Mokotjo scoorde.

tackleRecipientName | Kamohelo
Mokotjo

De bal was op de stip beland nadat hij Kamohelo Mokotjo
neerhaalde.

Table 4.6: Example of improvement in swapped attributes, likely due to the Augmentation

However, the augmentation has not completely eradicated the problem, where even the
augmented model still mistakes attributes for different attributes, as shown in Table 4.7
below.

35

4. EXPERIMENTS AND RESULTS

Input Generation

chanceForName | Christian Santos Christian Santos scoorde met een enorme kans.

chanceForName | Christian Santos De ploeg van Christian Santos kreeg een enorme kans.

Table 4.7: Example of a mistaken attribute, even after augmentation

Another observation is the increase in hallucinations, mainly in the bucket of Incorrect
Additions. This highlighted that when the augmented model hallucinates, it hallucinates
severely, where half of the generation is often hallucinated. An example of a particularly
egregious hallucination is shown in Table 4.8 below:

Input Generation

shootingType | shooting , incidentType
| asked to contact , ORG | Violent
Crimes Tip Line at (912) 525-3124

Additionally, officers responded to a report of violations of
the auto laws, firearm related offenses, and the shooting
may be gang-related and retaliatory based on previous acts
of violence.

Table 4.8: Example of Severe Hallucinations

4.3 Elongated Data Experiment

Another observation made in the manual review was that input data often lacked contextual
information, even though this information is represented in the reference texts, for example
shown in table 4.1. This would give the model the sheer impossible task of generating a
text close to the reference with too few attribute value pairings, which often resulted in
the model either not generating anything and only returning the values in the input, a No
Generation, or that the model widely hallucinated. This led to the hypothesis that many
hallucinations were caused by the lack of contextually relevant input data.

To test this hypothesis, it was decided to manually review the dataset and elongate the
input data of records with relevant attribute value pairings, thereby taking earlier analysis
into consideration, where all additional attributes are known within the dataset, not limited
to the subject itself, and the order these attribute-value pairs are placed in did not matter.

With this in mind, the original training set was manually reviewed up to 10, 000 records
and 1, 504 records were deemed to have underspecified input data compared to their cor-
responding reference text. These records were highlighted and manually elongated. An

36

4.3 Elongated Data Experiment

example of such elongation is shown in Table 4.9 below, where additional pairings are
highlighted in red.

Input Type Generation

Original Input
Data

’shootingType | shooting’, ’suspectAge | 21-year-old’, ’suspectName |
Alvin_Bell’

Manually Elon-
gated Input Data

’shootingType | shooting’, ’suspectAge | 21-year-old’, ’suspectName |
Alvin_Bell’, ’suspectStatus | arrested’, ’datetime | Thursday’

Reference Text Police said Thursday they arrested 21-year-old Alvin Bell, identified by
mul- tiple witnesses as the gunman in the shooting, without incident.

Table 4.9: Example of Elongated Input Data

After the elongation of the training set, a new, clean, mT5-base model was fine-tuned on
this altered training set, whilst keeping the validation-, test set, and hyperparameters the
same as both the baseline and augmented models. After training, the model was compared
to both the baseline and the augmented model, where the elongated model outperformed
all others based on their BARTScores, as visible in Figure 4.3 below.

Figure 4.3: Overview of BartScore performances for each experiment based on the original
test set

37

4. EXPERIMENTS AND RESULTS

Furthermore, the model was compared with the other models based on the records of
the manual review, and whilst the elongated model did not significantly improve over
the baseline, the model still showed lower errors despite being confronted with records
containing lacking input data. This entails that even only elongating records in the training
set could improve the performance of the model during inference time. The results of this
manual review are shown in Table 4.10 below.

Models Baseline (%
of total)

Augmented
(% of total)

Elongated
(% of total)

Hallucinations 141 (70.5%) 163 (81.5%) 135 (67.5%)

Ommissions 21 (10.5%) 10 (5%) 15 (7.5%)

Duplications 30 (15%) 35 (17.5%) 24 (12%)

No Generation 14 (7%) 7 (3.5%) 14 (7%)

Incorrect Number 1 (0.5%) 0 0

Incorrect Named Entity 21 (10.5%) 5 (2.5%) 5 (2.5%)

Incorrect Word 31 (15.5%) 33 (16.5%) 26 (13%)

Incorrect Addition 112 (56%) 126 (63%) 104 (52%)

Other 2 (1%) 7 (3.5%) 10 (5%)

Table 4.10: Comparison of models on the 200 worst-performing generations from the original
test set (N = 200). Lower values are best.

38

4.3 Elongated Data Experiment

4.3.1 Bilingualism

Moreover, as CACAPO contains both Dutch and English records, the question quickly
arose if these experiments have differing effects dependent upon language. Thus, the
original test set was split into both Dutch and English records and their corresponding
BARTScores are plotted separately, one graph per experiment per language, as shown in
Figure 4.4. Focusing on the top row, it is visible that the model trained on elongated data
(far right) slightly outperforms the baseline, and that the model trained on augmented
data (middle) has more generations with lower BARTScores. This is in line with previous
mentions. However, compared to the Dutch generations, shown in the bottom row, the
improvement of BARTScores for the elongated model is substantially more noticeable,
where more generations have a near-perfect BARTScore and fewer generations have a
BARTScore around −6.

Possible reasons for the difference between Dutch and English records could be that
the pre-training data contains more English records compared to Dutch records, thus
the models see more English during pre-training and fine-tuning. It is more likely that
the model has seen more English records compared to Dutch records, as the internet
is predominantly English and the dataset used for pre-training is the mC4 dataset, a
multilingual dataset of cleaned, web-scraped data. For example, as explained in section
3.1.2, the Dutch C4 contains 151 GB of data, compared to the 750 GB of English data
from the same data set.

Another possible reason could be the complexity of sentences. As table 3.4 shows, the
majority of Dutch records are relatively simple, whilst there are significantly more complex
English records, 28 per cent compared to the 2 per cent Dutch complex sentences. This is
also likely the reason for the difference in model performance shown in Appendix E, where
Dutch records slightly outperform English records.

These results might indicate that properly managed input data could allow users to
use smaller datasets, as the higher quality of input data allows the model to learn as
much as possible from underspecified data. Moreover, these results might also indicate
that an improved specification of input data could be more impactful for relatively simple
texts, highlighted by the increase in performance for Dutch records, but lacking increase
of BARTScore performance for the English records. This might be caused by the higher
amount of simple sentences for the Dutch sentences, ranging from level 0 to 2.

39

4. EXPERIMENTS AND RESULTS

Figure 4.4: Overview of BartScore performances for each experiment on the original test set
of CACAPO

40

4.4 PARENT Experiment

4.4 PARENT Experiment

Even though BARTScores and manual evaluation give us an indication of how the model
reacts to additional input data, it would be good to quantify how much the input data is
taken into consideration for the models. An automatic metric that offers this is PARENT,
which considers both the reference and the input data when calculating the Precision,
Recall and F-1 score of a model’s generations. Whilst it is created for table-to-text datasets,
the metric is viable for RDF triples and usable for this project. The code for the PARENT
metric was taken from this GitHub (73).

The PARENT metric first collects the number of n-grams in the generations and refer-
ences and compares both the generations and references to the input values. Overlapping
n-grams found between generation and input or reference and input are counted and stored,
after which they are used to calculate the Precision, Recall, and F-1 score.

First, precision is calculated by taking each n-gram in the generation and comparing
its occurrence in the reference, called the probability of occurring in the reference, shown
in 4.1a. However, occasionally the values are not present in the reference but could be
entailed from the input. Then, the probability of the n-gram not being in the reference is
multiplied by the possibility of the value being entailed from the table, as shown in 4.1b.

Pr(g ∈ Ri
n), (4.1a)

Pr(g /∈ Ri
n)w(g) (4.1b)

Where g refers to the n-gram in question, Ri
n refers to the reference text, and w refers

to the probability the n-gram could be entailed from the input.

These two values are added, after which it is divided by the total amount of n-grams,
thus giving the precision for that order of n-gram, as shown in formula 4.2, where g ∈ Gi

n

refers to the n-gram in the generation. This calculation is done for several orders, after
which the geometric average is taken to get one final value.

En
p =

∑
g∈G

i
n[Pr(g ∈ Ri

n) + Pr(g /∈ Ri
n)w(g)]#G

i
n(g)∑

g∈G
i
n#G

i
n(g)

(4.2)

The recall metric is separated into two different values, that being the reference recall and
the input recall. shown as Er(R

i) and Er(T
i) in formula 4.3 below. The reference recall is

calculated similarly to the precision, but instead of looking at all n-grams in the generation
and comparing it to the reference, the n-grams are taken from the reference and analysed
for overlap with the generation. This probability of overlap is multiplied by the count of

41

4. EXPERIMENTS AND RESULTS

n-gram occurrence in the reference and the value which the n-gram could be entailed from
the input data. This final value, the numerator, is divided by the denominator, which is
the count of n-gram occurrence multiplied by the entailment possibility.

In contrast, the input recall is calculated by first analysing the overlap between input
values and the generation, summing the overlap and dividing by total input values. The
geometric average of the recall values is taken once again to receive a single value. However,
depending on the overlap between reference and input, it might be necessary to have
the metric weigh the recall values differently. The intuition here is that if the overlap
between reference and input data is high, it indicates that the reference already captures
the majority of the information and it would be unnecessary to have these values influence
the metric twice. This overlap is calculated and stored in the variable λ. As the CACAPO
dataset was created with a reverse engineering method, where the input values were exactly
extracted from the reference text, most records in the dataset would have a λ of 0, which
would set the input recall to a value of 1, thus ignoring it.

Er = Er(R
i)(1−λ)Er(T

i)(λ) (4.3)

To compare the impact of additional data in underspecified records, it was decided to
create a subset of manually selected data to elongate with additional data, as described
in section 4.3. To test each trained model fairly, it was not possible to use the already
elongated training records, as the elongated model would have seen these records during
training and thus have an advantage. As no models were saved before having seen the
test set, it was possible to create a subset of elongated data from the test set without
giving a model an advantage. For each addition, it was ensured that the attributes were
known, not subject-specific, and the values were contextual information from the target
text. This resulted in a test set size of 380 (n = 380). Furthermore, for each elongated
record in the test set, its original record was stored as well, to compare an improved version
with the original records. The original set is called "poor" and the improved version is
called "good". Then the best models from the baseline run, the augmented run, and the
elongated run were tasked to generate texts using both the poor and the good test subsets.
This resulted in six sets of generations, which were evaluated on the PARENT metric.
Table 4.11 shows the results of this experiment.

42

4.4 PARENT Experiment

Model Base good Base poor Augmented
good

Augmented
poor

Elongated
good

Elongated
poor

Sum Prec 165.589 67.642 152.142 65.0455 178.393 74.932

Sum Recall 54.968 30.506 52.962 28.212 59.522 37.704

Sum F score 64.542 15.996 59.487 15.133 70.384 20.102

PARENT
Precision

0.436 0.178 0.400 0.171 0.469 0.197

PARENT
Recall

0.145 0.080 0.139 0.074 0.157 0.099

PARENT F
score

0.170 0.042 0.157 0.040 0.185 0.053

Mean
BERTScore

0.941 0.887 0.935 0.884 0.945 0.888

Mean
BARTScore

-3.014 -4.621 -3.155 -4.666 -2.943 -4.739

BLEU 0.317 0.067 0.301 0.064 0.328 0.052

Meteor 0.644 0.280 0.621 0.278 0.647 0.257

Rouge1 0.701 0.354 0.667 0.343 0.720 0.344

Rouge2 0.487 0.165 0.450 0.151 0.511 0.158

RougeL 0.595 0.317 0.570 0.304 0.626 0.311

RougeLsum 0.595 0.317 0.568 0.304 0.626 0.311

Table 4.11: Results of PARENT Experiment (n=380) on the three different models. A good
model has generated on the test subset with elongated input data, whilst the poor model has
generated on the original records. A higher value is best.

The results show that the model trained on the elongated training set performed the best.
However, the increase in performance compared to the base model was not as strong as
expected. Furthermore, compared to other works, the PARENT results are low, especially
the recall. For example, in the paper by Parikh et al.(45), the authors show the results of
different experiments done with three different models, one Bert model and two Seq2Seq
models. Here the authors show PARENT results ranging between 22.2 and 52.6. One
important note is that the size of the models is not stated (45). Another reference is the
paper of Kale and Rastogi, who study the pre-train and fine-tune strategy for data-to-text
tasks. One experiment shows the PARENT results over all T5-sizes on the ToTTo dataset
and shows PARENT metrics ranging from 55.9 to 57.8. (74) A third reference is a paper

43

4. EXPERIMENTS AND RESULTS

by Nan et al., who introduce the open-source DART dataset. In their paper, they tested
their, and other datasets, with a range of models, including the T5 model. The T5 was
shown in 3 different sizes, those being small, base, and large, which return PARENT ranges
of 0.56, 0.57, and 0.58 respectively (54). Another example is the paper by Wang et al.(75),
who propose a Transformer-based generation framework to achieve faithfulness between
the generation and the original input data. They test their framework on the Wikiperson
dataset using four different models. They state a recall and precision performance of
48.83 and 62.86 respectively (75). These papers highlight that the PARENT results of the
previous experiment are low regardless of the model. However, these models have all been
trained on different datasets, and taking CACAPOs creation method described in section
3.2, could explain this discrepancy.

Moreover, another potential reason could be the changeable parameters offered by the
metric. Ideally, the same method is used as previous works have used, however, several
previous works have not been clear on which changes have been made to make the PARENT
metric work. Thus, a second experiment was executed after several changes were made to
the PARENT code to make it more suitable for the CACAPO data, thereby leaving the
actual calculation of values untouched, thus keeping the PARENT metric intact. These
changes include the removal of punctuation, excluding punctuations such as a.m., changing
True booleans to the values seen in the reference text, the addition of both Dutch and
English NLTK stopwords, and finally the separation of multiple token values into a group
of single values, for example, [critically_wounded] to [critically], [wounded]. The resulting
improvements are shown in table 4.12

Model Sum Prec Sum Recall Sum F score PARENT
Precision

PARENT
Recall

PARENT
F score

Base good 339.393 119.877 149.591 0.8931 0.3155 0.3937

Base poor 248.089 22.978 28.730 0.6529 0.0605 0.0756

Aug good 328.191 109.252 136.493 0.8637 0.2875 0.3592

Aug poor 245.358 20.963 26.199 0.6457 0.0552 0.0689

Elon good 347.412 125.288 154.617 0.9142 0.3297 0.4069

Elon poor 251.085 19.356 24.252 0.6608 0.0509 0.0638

Table 4.12: Results of the PARENT Experiment on the three different models using the
altered PARENT variant. A good model has generated on the test subset with elongated
input data, whilst the poor model has generated on the original records. A higher value is
best.

44

4.4 PARENT Experiment

4.4.1 Qualitative Evaluation

Besides considering the PARENT metric, the set of good input records gave another op-
portunity to compare the models for a manual review. A subset of 64 English and Dutch
records was taken and reviewed for each model, of which the results are shown in table
4.13.

Model Baseline (% of total) Augmented (% of total) Elongated (% of total)

Hallucinations 64 (49.6%) 80 (62%) 59 (45.7%)

Omissions 27 (20.9%) 27 (20.9%) 38 (29.5%)

Duplications 27 (20.9%) 29 (22.5%) 15 (11.6%)

No Generation 7 (5.4%) 1 (0.77%) 5 (3.9%)

Incorrect Number 0 6 (4.6%) 1 (0.77%)

Incorrect Named Entity 4 (3.1%) 3 (2.3%) 4 (3.1%)

Incorrect Word 40 (31%) 49 (38%) 37 (28.7%)

Incorrect Addition 15 (11.6%) 31 (24%) 8 (6.2%)

Other 18 (13.9%) 19 (14.7%) 19 (14.7%)

Table 4.13: Results of a manual review conducted on 64 English and 65 Dutch records
(n=129). The records were taken from the improved test subset created in the PARENT
experiment. A higher value is best.

Comparing these results with earlier manual reviews shows a similar pattern, where
the model trained on an augmented training set hallucinates more often. An interesting
side effect that is not immediately shown in the numerical values is the severity of these
hallucinations. Compared to the baseline, the augmented hallucinations are more severe,
where the hallucination could be made of eight or more tokens. An example of this is
shown in Table 4.14 below.

Data Type Generation

Input Data victimName | Adrian Potts, ORG | Police, datetime| Saturday night

Generation Police said Adrian Petts, a senior at Roosevelt Senior High School, was
arrested Saturday night for violations of the auto laws, according to
police spokeswoman Sonya M. Toler.

Reference Text Police on Saturday night identified him as Adrian Potts.

Table 4.14: Example of a Severe Hallucination

45

4. EXPERIMENTS AND RESULTS

Another observation is the increase of omissions for the model trained on improved input
records, where it now omits more data than comparable models, whilst originally it omitted
fewer data.

One possible reason for this increase in omissions could occur due to more records with
more RDFs in the input, however, no evidence was found in the manual review to support
this hypothesis.

A second reason could be that the omitted RDFs were seen as not important by the
model and as such the model would omit them from the generation. If this were to be the
case, an argument could be made that the omitted RDFs are not contextually relevant.
Further research could train a model to generate input from reference texts to get a better
understanding of how a model reviews contextually relevant information.

Another observation was made where the quality of generations differed drastically be-
tween models. The baseline and augmented model hallucinated more often and the fluency
of its generations was often not great, however the elongated often generated a fluent sen-
tence, even though it occasionally omitted input data.

However, even though the fluency was decent, once the generation was compared with
the reference text, it often became apparent that the order of tokens was not correctly
captured, which is likely due to the lack of relational information between attributes in
the input data. This often led to the generation containing different conclusions than the
reference text, for example in Table 4.15 below.

Data Type Generation

Input Data batterName | Dukes, batterName | Josh Willingham, incidentType | one-
upped in that department

Generation Dukes and Josh Willingham were one-upped in that department.

Reference Text Teammate Josh Willingham one-upped Dukes in that department.

Table 4.15: Example of Incorrect Conclusions within Generations

46

CHAPTER 5

DISCUSSION AND LIMITATIONS

5.1 Insights

The executed experiments provide interesting insights for the field of NLG. First, as high-
lighted in section 3.2, the act of reverse engineering a dataset comes with difficult challenges,
where attributes need to be created that are unique enough to be informative, whilst still
being general enough to be connected to values in the reference text. The manual analysis
in section 4.1 highlighted that CACAPO could benefit from more contextual data in the
input, which could be enhanced with inter-subject attributes, which was later confirmed in
the elongation experiment described in section 4.3. Reverse engineering thus does offer a
good opportunity to fill the gap left by scraped and crowdsourced datasets, as described in
section 2.6, however, it would be advised to have more general attributes than those used
in CACAPO, as contextually relevant information, such as events or quotes, could not be
captured with the attributes used in CACAPO. Generalizing certain attributes will also
make it easier to apply them across domains, which could improve the frequency of these
attributes in the dataset. This could reduce Incorrect Word Hallucinations as shown by
the augmentation experiment in section 4.2.

Furthermore, the augmentation experiment highlights the potential for data augmenta-
tion, however simultaneously showed that this process needs to be done carefully, such that
as many duplicated records can be avoided and as much variety can be introduced. The
field of NLG would benefit from a standardized augmentation method that crosses multiple
languages, such that datasets could easily be expanded with underrepresented languages
and would simultaneously suffer less from duplicated records. The method used in this
project is limited, as it is unavoidable to generate duplicate attribute value pairings, due
to infrequent pairings often being in the same record as frequent pairings. As this method

47

5. DISCUSSION AND LIMITATIONS

only changed the value of the infrequent pairing, it resulted in many duplicated frequent
pairings and near-duplicate reference texts. Moreover, this duplication of frequent pairings
could be the reason for the observation made in section 4.4, where hallucinations made by
the augmented model were often more severe than comparison models, as shown in the
example in table 4.14.

Going further, during previous experimentation it was observed that the order of at-
tribute value pairings often was mistaken, thus resulting in incorrect conclusions. This is
likely caused due to the lacking relational information between pairings in the input. This
indicates that CACAPO is less suitable for base end-to-end models and highlights the need
for an improved content selection process or module within end-to-end systems, such that
the required information can be properly captured. Moreover, an interesting observation
was made in section 4.3, where the elongated model performed better on underspecified
input data compared to the base transformer and augmented variant. This could indicate
that purely training a model on better-specified input data results in improved performance
during inference, regardless of the specificity of the input data at that time.

Moreover, analysis between Dutch and English records in section 4.3.1 showed that
the Dutch records improved noticeably for the elongated model, whilst English records
stayed rather consistent between model variants. This could be caused by the difference
in training set sizes between languages, as the models have seen more English records
during pre-training and fine-tuning compared to Dutch records. This could highlight a
correlation between improved contextual input data and the necessary training set size,
where smaller data set sizes might be usable if the input data had all contextually relevant
information. Another possible explanation could be the relative difference in sentence
complexity highlighted by table 3.4, where Dutch records are simpler compared to English
records. This could indicate that an improved specification of input data could be more
impactful for relatively simple texts, highlighted by the increase in performance for Dutch
records, but lacking increase of BARTScore performance for the English records. Future
works would need to prove these possibilities. Furthermore, a manual review was conducted
on a subset in section 4.4, where 64 English and 65 Dutch records were analysed. This
review showed that the types and amount of errors are similar between languages, which
could indicate that the origin of errors is consistent between the languages for this dataset.
Future works would need to prove that this is the case for other languages as well.

48

5.2 Limitations

5.2 Limitations

Although the experiments in this project showed interesting results, no experiment is
without its limitations, which will be discussed in more detail below.

5.2.1 Manual Analysis

The manual analysis of the original T5 and mT5 models’ generations provides the backbone
for the experimental choices made in this project, however, this analysis is limited. First,
the manual review was conducted by one individual, thus increasing the risk of unknown
biases or errors seeping into the review process. Furthermore, only the worst 200 records
were evaluated from the total 3028 and these records are not evenly weighted between
languages and subjects. This could result in the findings of this review not translating well
to other domains. Moreover, the review focused on whether a mistake was made, not the
severity of the mistake made. This distinction is not only lacking in this current project
but also in the field of NLG as a whole.

Other limitations arise for the pilot experiments on the input data. First, the experiments
were conducted with hand-picked records, which introduces the risk of randomly choosing
records that the model generates well. Moreover, due to the hand-picking of these records,
a limited sample size is used to test each scenario, again increasing the risk of missing
difficult records for the model to generate.

5.2.2 Augmented Experiments

Another limitation is found in the augmentation script used in this project. Taking in-
spiration from Ribeiro et al.’s checklist method (72), a script was created to switch the
value of corresponding attributes with other known values in the dataset. This had the
effect of creating more records, however, these records were almost identical in nature,
thus increasing repetitiveness and increasing the chance of generations containing similar
phrases, reducing the variety. Moreover, whilst this method increased the absolute number
of attributes and ensured each attribute is seen at least 250 times, more frequent attributes
would likely be augmented as well, as infrequently occurring attributes would be in the
same record as more frequent occurring attributes. The latter attributes would not be aug-
mented, and thus each additional record would contain duplicated values for the attributes
that are not changed. This could be the reason for additional hallucinations, where the
likelihood of certain values being generated is increased as these are seen more frequently
in the training set.

49

5. DISCUSSION AND LIMITATIONS

5.2.3 Elongated Experiments

The elongation experiment is limited in its creation, where records were manually selected
for elongation. This introduces selection biases, where records might not have been selected
in favour of other records. Moreover, the measure of required contextual data was not
corroborated with a second annotator, which introduces the risk of differences between
the original dataset annotators and current additions. This might create confusion during
training time, as considerations during the creation of the dataset, such as the 5Ws and 1H
questions, might not be taken in the elongation of input records. Moreover, the elongation
of input records was done with inter-subject attributes, and these attributes might not
be able to capture all necessary information. For example, articles often contain quotes,
however, CACAPO lacks a proper attribute to capture quotes. This results in records
containing more contextual information, but not all, which could lead to the model still
generating incorrect conclusions. The more data is left out of the input, the farther the
model is from its original task, that being template-filling the input data into a good
generation.

5.2.4 PARENT Experiments

Several changes were made to the PARENT code to make CACAPO more applicable to
the metric, which is described in more detail in section 4.4. A limitation of these changes
is located in other works, where decisions made by other researchers are often not clearly
captured. This makes it difficult to know which changes have been made, for example,
whether researchers use or leave out stopword overlaps, which makes it complicated to
compare the results of this project with previous works. However, each decision made in
this project is discussed to counteract this issue for future researchers.

5.2.5 Bilingualism Analysis

The analysis of bilingualism conducted in section 4.4 also holds several limitations, similar
to the elongation experiment, where potential record selection bias, a lack of corroboration
with a second annotator, and the dichotomy of capturing as much contextual information
using known attributes could impact the results. Moreover, these limitations could have a
stronger effect, as the subset of records analysed is small.

5.3 Relevance to the field of AI

The goal of this project was to gain a better understanding of Transformers and to at-
tempt to uncover the origin of generation errors. Current research places a lot of focus

50

5.3 Relevance to the field of AI

on improving the performance of models based on automatic metrics, by tuning hyperpa-
rameters or introducing modules in line with historic model improvements. This results in
research focusing on improving the "What", where incremental improvements are chased.
However, this leaves a gap in understanding how state-of-the-art models currently work
and why certain activities result in fewer errors. Whilst this project has not been able to
give a definitive answer to the research goal, it does give insights into the origin of certain
errors in the curation and use of data, whilst also offering insights into bilingualism, which
remains a focused research topic as the field of AI develops towards the foreground. More-
over, several additional questions and future works are raised, which are described in more
detail in section 6.

51

CHAPTER 6

CONCLUSION AND FUTURE WORKS

This research has sought to uncover the origin of generation errors in state-of-the-art
transformer models. The T5, mT5, and BART models were trained on the CACAPO
dataset (2) and experimentations regarding the quality and quantity of the dataset were
executed, alongside manual reviews.

Manual reviews highlighted that the creation of a dataset by reverse engineering input
data from the reference texts is a difficult task and that a significant amount of records in
the CACAPO dataset lack appropriate contextual data for the required task of template-
filling a generation close to the reference text.

Furthermore, CACAPO contains many unique attributes, whilst containing a relatively
low number of records compared to other popular datasets. This results in several at-
tributes occurring infrequently in the dataset and thus lowering the chances of the model
learning these attributes appropriately. This dichotomy of unique attributes and captur-
ing all contextual data gives dataset creators the difficult task of having attributes unique
enough to be informative, whilst still plentiful enough to capture contextual information
from varied human speech patterns. The pilot analysis showed the possibility of using
inter-subject attributes to partially alleviate this issue.

Moreover, the experiments highlighted that end-to-end systems have difficulties correctly
structuring generations. The CACAPO dataset for end-to-end models lacks relational
information between attributes, which resulted in several ordering errors, thus leading to
incorrect conclusions. This highlights the need for an improved content selection process
or module within end-to-end systems so that the required information can be properly
captured.

The elongation experiment highlighted the need for improved specification of input data,
where the overal BARTScore performance during inference on underspecified input data

52

was better compared to the baseline and augmented variants. This could indicate that the
addition of input specification could prove beneficial, even when input specification quality
cannot be guaranteed during inference.

Furthermore, Dutch records’ performance improved the most from the additional specifi-
cations, which could be caused by the relatively simple sentence complexity of these records
compared to English records, which might show that improved specification has a greater
impact on simple sentences compared to complex sentences. Another possible reason is the
amount of Dutch records seen by the model during pre-training and fine-tuning, as this
naturally would be lower than English records. This could highlight a correlation between
improved contextual input data and the necessary training set size, where smaller data set
sizes might be usable if the input data had all contextually relevant information.

Manual analysis of Dutch and English records highlighted that the amount and type of
errors were consistent between languages, indicating that the origin does not differ between
languages. However, the severity of these errors was not captured.

Finally, experimentation showed the usefulness of data augmentation, but simultaneously
highlighted the need for a careful curation process, so that duplicated records can be
avoided where possible, and as much variety as possible can be introduced.

Following this project, future works could focus their research in different directions.
First, this project has highlighted that CACAPO contains many records that lack con-
textual input data. An attempt was made to improve this, but there is room to enhance
the dataset further and thus develop a fully contextual dataset with reverse-engineered
qualities. Another dataset-focused follow-up work could be to take the creation methods
described by van der Lee et al. (2) and reverse engineer a new dataset. Whilst this will be
more costly, it would prove beneficial for the field of NLG to detail the difficulties of this
process, from the collection of data to the detailed choices that are required to be made
when creating annotations.

Another direction is a focus on data augmentation. Previous works such as Riberio et
al. (72) attempted to create an easy-to-use script to quickly augment English datasets.
However, this method was shown to have only limited applicability to languages other than
English, such as the Dutch language used in this project, but also proved limited in the
types of augmentation that could be conducted. Future works could focus on enhancing
the checklist method for the English language, whilst also making it more applicable to
other languages. Especially the latter would be beneficial to the field, as several languages
currently lack representation and are costly to gather.

Moreover, researchers could also focus on the standardization of manual reviews. This
project took inspiration from Thomson and Reiter’s paper (69) and whilst insightful, no

53

6. CONCLUSION AND FUTURE WORKS

method was found to distinguish between the severity of mistakes. This distinction would
be insightful for the field, where big reoccurring errors could take priority in research.

A fourth direction would be to delve deeper into the performance of the previously dis-
cussed models to gain a better understanding of why the results of the discussed metrics
are as they are. For example, the PARENT recall metrics for the models used during this
research were lower than in previous works, however, a definitive cause for this discrep-
ancy was not identified in this project. Such understanding could benefit the field in the
application and the understanding of these metrics when comparing different works with
each other.

Moreover, future works could focus on the project observations regarding omissions,
especially the observation where an increase in contextual data in the input led to an
increase in omissions. Initial hypotheses were made where the length of the input could
have impacted the chance of omissions, however, no evidence for this was found in this
project. Nonetheless, whilst this was not observed in the limited sample sets, further
research is required to definitively conclude whether or not the length of an input can
affect the chance of omissions. Moreover, the witnessed increase in omissions raised the
question of whether the omitted data was required to generate good generations, or whether
it was omittable. Future works could highlight when input data is required contextually,
which could support research in content selection.

Looking back to the research directions discussed in section 2.5, several previous works
have adapted Transformers with additional modules. The results of this project indicate
that this is a good direction to focus on. Observations such as the underspecification
of input data, omission of context-relevant Named Entities, and incorrect generation of
relations between entities indicate that end-to-end models struggle with content selection
and content determination. Additional modules and models could be added to enhance
this aspect. One possible method is to train a model to create an input from target
texts, the reverse of what this project focused on. Once this is trained, inputs could be
automatically created, after which a content selection module could tailor the created input
to remove redundant information and then a content determination module could ensure
that each required value is in the generation. Moreover, observations in this project have
highlighted that the end-to-end model has difficulties capturing the correct relationship
between entities, as this relation is not shown in the input. Thus the model would often
generate an incorrect relationship between entities. Such relational data could be captured
by the model that creates input from reference texts, thus removing this burden from
end-to-end models. The modules would then return a seemingly optimal input to the
transformer to generate a text with.

54

REFERENCES

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30, 2017. vi, 5,
7, 21, 22

[2] Chris van der Lee, Chris Emmery, Sander Wubben, and Emiel Krahmer.
The CACAPO dataset: A multilingual, multi-domain dataset for neural
pipeline and end-to-end data-to-text generation. In Proceedings of the 13th
International Conference on Natural Language Generation, pages 68–79, 2020. vi,
viii, 12, 13, 14, 15, 16, 23, 24, 25, 52, 53

[3] Khofiz Shakhidi. Council post: Information is the new gold. Forbes, Jun
2020. 1

[4] Albert Gatt and Emiel Krahmer. Survey of the state of the art in natural
language generation: Core tasks, applications and evaluation. Journal of
Artificial Intelligence Research, 61:65–170, 2018. 1, 3, 4, 12, 18, 19

[5] Chenhe Dong, Yinghui Li, Haifan Gong, Miaoxin Chen, Junxin Li, Ying

Shen, and Min Yang. A Survey of Natural Language Generation. arXiv
preprint arXiv:2112.11739, 2021. 1, 3, 4, 12

[6] Robert Dale. Natural language generation: The commercial state of the
art in 2020. Natural Language Engineering, 26(4):481–487, 2020. 1

[7] Ratish Puduppully and Mirella Lapata. Data-to-text generation with
macro planning. Transactions of the Association for Computational Linguistics,
9:510–527, 2021. 2, 9

55

https://www.forbes.com/sites/forbesfinancecouncil/2020/06/18/information-is-the-new-gold/?sh=22e96daf531a

REFERENCES

[8] Ratish Puduppully, Li Dong, and Mirella Lapata. Data-to-text generation
with content selection and planning. In Proceedings of the AAAI conference on
artificial intelligence, 33, pages 6908–6915, 2019. 2, 8

[9] Li Gong, Josep M Crego, and Jean Senellart. Enhanced transformer
model for data-to-text generation. In Proceedings of the 3rd Workshop on Neural
Generation and Translation, pages 148–156, 2019. 2

[10] Ehud Reiter and Robert Dale. Building applied natural language gener-
ation systems. Natural Language Engineering, 3(1):57–87, 1997. 3

[11] Somayajulu Sripada, Neil Burnett, Ross Turner, John Mastin, and Dave

Evans. A case study: NLG meeting weather industry demand for quality
and quantity of textual weather forecasts. In Proceedings of the 8th International
Natural Language Generation Conference (INLG), pages 1–5, 2014. 3

[12] Yi Yang, Mark Christopher Siy Uy, and Allen Huang. Finbert: A
pretrained language model for financial communications. arXiv preprint
arXiv:2006.08097, 2020. 3

[13] Albert Gatt, Francois Portet, Ehud Reiter, Jim Hunter, Saad Ma-

hamood, Wendy Moncur, and Somayajulu Sripada. From data to text in
the neonatal intensive care unit: Using NLG technology for decision sup-
port and information management. Ai Communications, 22(3):153–186, 2009.
3

[14] João Pinto Barbosa Machado Aires. Automatic generation of sports news.
2016. 3

[15] Shuang Chen, Jinpeng Wang, Xiaocheng Feng, Feng Jiang, Bing Qin, and

Chin-Yew Lin. Enhancing neural data-to-text generation models with ex-
ternal background knowledge. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 3022–3032, 2019. 4

[16] Erkut Erdem, Menekse Kuyu, Semih Yagcioglu, Anette Frank, Leti-

tia Parcalabescu, Barbara Plank, Andrii Babii, Oleksii Turuta, Aykut

Erdem, Iacer Calixto, et al. Neural Natural Language Generation: A
Survey on Multilinguality, Multimodality, Controllability and Learning.
Journal of Artificial Intelligence Research, 73:1131–1207, 2022. 4

56

REFERENCES

[17] Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen.
A survey of pretrained language models based text generation. arXiv preprint
arXiv:2201.05273, 2022. 4

[18] Ruslan Yermakov, Nicholas Drago, and Angelo Ziletti. Biomedical
Data-to-Text Generation via Fine-Tuning Transformers. arXiv preprint
arXiv:2109.01518, 2021. 4, 19

[19] Katikapalli Subramanyam Kalyan, Ajit Rajasekharan, and Sivanesan

Sangeetha. Ammus: A survey of transformer-based pretrained models
in natural language processing. arXiv preprint arXiv:2108.05542, 2021. 4

[20] Zdeněk Kasner and Ondřej Dušek. Data-to-text generation with iterative
text editing. arXiv preprint arXiv:2011.01694, 2020. 4, 19

[21] Abhishek Singh. PoinT-5: Pointer Network and T-5 based Financial Nar-
rativeSummarisation. arXiv preprint arXiv:2010.04191, 2020. 4, 19

[22] Ramakanth Pasunuru, Mengwen Liu, Mohit Bansal, Sujith Ravi, and

Markus Dreyer. Efficiently summarizing text and graph encodings of
multi-document clusters. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 4768–4779, 2021. 4, 19

[23] Hong Chen, Hiroya Takamura, and Hideki Nakayama. SciXGen: A Sci-
entific Paper Dataset for Context-Aware Text Generation. arXiv preprint
arXiv:2110.10774, 2021. 4, 19

[24] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out, pages 74–81, 2004. 5, 19

[25] Moniba Keymanesh, Adrian Benton, and Mark Dredze. What Makes
Data-to-Text Generation Hard for Pretrained Language Models? arXiv
preprint arXiv:2205.11505, 2022. 7

[26] Ethan Joseph, Julian Lioanag, and Mei Si. Improving Data-to-Text Gen-
eration via Preserving High-Frequency Phrases and Fact-Checking. IJCoL.
Italian Journal of Computational Linguistics, 7(7-1, 2):223–244, 2021. 7

[27] Thiago Castro Ferreira, Chris van der Lee, Emiel Van Miltenburg, and

Emiel Krahmer. Neural data-to-text generation: A comparison between
pipeline and end-to-end architectures. arXiv preprint arXiv:1908.09022, 2019.
8

57

REFERENCES

[28] Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura

Perez-Beltrachini. The WebNLG challenge: Generating text from RDF
data. In Proceedings of the 10th International Conference on Natural Language Gen-
eration, pages 124–133, 2017. 8

[29] Juliette Faille, Albert Gatt, and Claire Gardent. The Natural Lan-
guage Generation Pipeline, Neural Text Generation and Explainability. In
2nd Workshop on Interactive Natural Language Technology for Explainable Artificial
Intelligence, 2020. 8

[30] Hamza Harkous, Isabel Groves, and Amir Saffari. Have your text and
use it too! end-to-end neural data-to-text generation with semantic fidelity.
arXiv preprint arXiv:2004.06577, 2020. 8, 18

[31] Zdeněk Kasner and Ondřej Dušek. Neural Pipeline for Zero-Shot Data-
to-Text Generation. arXiv preprint arXiv:2203.16279, 2022. 9

[32] Yang Yang, Juan Cao, Yujun Wen, and Pengzhou Zhang. Table to text
generation with accurate content copying. Scientific reports, 11(1):1–12, 2021.
9

[33] Clément Rebuffel, Laure Soulier, Geoffrey Scoutheeten, and Patrick

Gallinari. A hierarchical model for data-to-text generation. In European
Conference on Information Retrieval, pages 65–80. Springer, 2020. 9

[34] Gian Wiher, Clara Meister, and Ryan Cotterell. On decoding strategies
for neural text generators. arXiv preprint arXiv:2203.15721, 2022. 9, 10, 11

[35] Sina Zarrieß, Henrik Voigt, and Simeon Schüz. Decoding methods in
neural language generation: a survey. Information, 12(9):355, 2021. 9, 10, 11

[36] Luca Massarelli, Fabio Petroni, Aleksandra Piktus, Myle Ott, Tim

Rocktäschel, Vassilis Plachouras, Fabrizio Silvestri, and Sebastian

Riedel. How decoding strategies affect the verifiability of generated text.
arXiv preprint arXiv:1911.03587, 2019. 10, 11

[37] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The
curious case of neural text degeneration. arXiv preprint arXiv:1904.09751, 2019.
10

[38] Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun

Cho, and Jason Weston. Neural text generation with unlikelihood training.
arXiv preprint arXiv:1908.04319, 2019. 11

58

REFERENCES

[39] bot_developer. Daily Financial News for 6000+ stocks. Kaggle, Jul 2020.
12, 15

[40] GennadiyR. Historical Financial News Archive. Kaggle, Feb 2020. 12, 16

[41] Nevil Dsouza. Financial Markets dataset- prices & news. Kaggle, May 2019.
12, 16

[42] Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, Iana Borova,

Dylan Langdon, Reema Moussa, Matt Beane, Ting-Hao Huang, Bryan

Routledge, et al. Finqa: A dataset of numerical reasoning over financial
data. arXiv preprint arXiv:2109.00122, 2021. 12, 16

[43] Samir Abdaljalil and Houda Bouamor. An Exploration of Automatic Text
Summarization of Financial Reports. In Proceedings of the Third Workshop on
Financial Technology and Natural Language Processing, pages 1–7, 2021. 12, 16

[44] Manuel R Vargas, Beatriz SLP De Lima, and Alexandre G Evsukoff.
Deep learning for stock market prediction from financial news articles.
In 2017 IEEE international conference on computational intelligence and virtual envi-
ronments for measurement systems and applications (CIVEMSA), pages 60–65. IEEE,
2017. 12

[45] Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui,

Bhuwan Dhingra, Diyi Yang, and Dipanjan Das. ToTTo: A controlled
table-to-text generation dataset. arXiv preprint arXiv:2004.14373, 2020. 13, 17,
43

[46] Thiago Castro Ferreira, Diego Moussallem, Emiel Krahmer, and

Sander Wubben. Enriching the WebNLG corpus. In Proceedings of the 11th
International Conference on Natural Language Generation, pages 171–176, 2018. 13,
17

[47] Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura

Perez-Beltrachini. Creating training corpora for nlg micro-planning. In
55th annual meeting of the Association for Computational Linguistics (ACL), 2017.
13

[48] Shankar Kanthara, Rixie Tiffany Ko Leong, Xiang Lin, Ahmed Masry,

Megh Thakkar, Enamul Hoque, and Shafiq Joty. Chart-to-Text: A Large-
Scale Benchmark for Chart Summarization. arXiv preprint arXiv:2203.06486,
2022. 13, 17

59

https://www.kaggle.com/datasets/miguelaenlle/massive-stock-news-analysis-db-for-nlpbacktests
https://www.kaggle.com/datasets/gennadiyr/us-equities-news-data
https://www.kaggle.com/datasets/znevzz/the-news-dataset

REFERENCES

[49] Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia, Jiaqi Guo, Yan Gao,

Shi Han, Jian-Guang Lou, and Dongmei Zhang. Hitab: A hierarchical
table dataset for question answering and natural language generation. arXiv
preprint arXiv:2108.06712, 2021. 13, 17

[50] Shereen Oraby, Vrindavan Harrison, Abteen Ebrahimi, and Marilyn

Walker. Curate and generate: A corpus and method for joint control
of semantics and style in neural nlg. arXiv preprint arXiv:1906.01334, 2019. 13,
17

[51] Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The E2E
dataset: New challenges for end-to-end generation. arXiv preprint
arXiv:1706.09254, 2017. 13, 17

[52] Sam Wiseman, Stuart M Shieber, and Alexander M Rush. Challenges in
data-to-document generation. arXiv preprint arXiv:1707.08052, 2017. 13, 16

[53] Ratish Puduppully, Li Dong, and Mirella Lapata. Data-to-text generation
with entity modeling. arXiv preprint arXiv:1906.03221, 2019. 13, 16

[54] Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand

Sivaprasad, Chiachun Hsieh, Xiangru Tang, Aadit Vyas, Neha Verma,

Pranav Krishna, et al. Dart: Open-domain structured data record to
text generation. arXiv preprint arXiv:2007.02871, 2020. 14, 17, 44

[55] Sebastian Ruder, Ivan Vulić, and Anders Søgaard. Square One Bias in
NLP: Towards a Multi-Dimensional Exploration of the Research Manifold.
In Findings of the Association for Computational Linguistics: ACL 2022, pages 2340–
2354, Dublin, Ireland, May 2022. Association for Computational Linguistics. 15

[56] Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. Evaluation of text
generation: A survey. arXiv preprint arXiv:2006.14799, 2020. 18, 19

[57] Wei Li, Wenhao Wu, Moye Chen, Jiachen Liu, Xinyan Xiao, and Hua

Wu. Faithfulness in Natural Language Generation: A Systematic Sur-
vey of Analysis, Evaluation and Optimization Methods. arXiv preprint
arXiv:2203.05227, 2022. 18

[58] Tatsunori B Hashimoto, Hugh Zhang, and Percy Liang. Unifying human
and statistical evaluation for natural language generation. arXiv preprint
arXiv:1904.02792, 2019. 19

60

https://aclanthology.org/2022.findings-acl.184
https://aclanthology.org/2022.findings-acl.184

REFERENCES

[59] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics, pages 311–318,
2002. 19

[60] Jekaterina Novikova, Ondřej Dušek, Amanda Cercas Curry, and Ver-

ena Rieser. Why we need new evaluation metrics for NLG. arXiv preprint
arXiv:1707.06875, 2017. 19

[61] Transformers. Hugging Face. 20

[62] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan

Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Explor-
ing the limits of transfer learning with a unified text-to-text transformer.
The Journal of Machine Learning Research, 21(1):5485–5551, 2020. 21

[63] Yeb Havinga. Yhavinga/T5-V1.1-base-dutch-cased · hugging face. Hugging
Face. 21

[64] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou,

Aditya Siddhant, Aditya Barua, and Colin Raffel. mT5: A Massively
Multilingual Pre-trained Text-to-Text Transformer. In Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 483–498, Online, June 2021. Associa-
tion for Computational Linguistics. 22

[65] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdel-

rahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer.
Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. arXiv preprint arXiv:1910.13461,
2019. 22

[66] Chris van der Lee, Chris Emmery, Sander Wubben, and Emiel Krahmer.
CACAPO dataset, 2022. 25

[67] Yeb Havinga. Pre-training Dutch T5 and UL2 models, evaluation and
model lists - a hugging face space by Yhavinga. Hugging Face Space. 27

[68] Weizhe Yuan, Graham Neubig, and Pengfei Liu. Bartscore: Evaluating
generated text as text generation. Advances in Neural Information Processing
Systems, 34:27263–27277, 2021. 28

61

https://huggingface.co/docs/transformers/index
https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased
https://aclanthology.org/2021.naacl-main.41
https://aclanthology.org/2021.naacl-main.41
https://doi.org/10.34894/LIBYHP
https://huggingface.co/spaces/yhavinga/pre-training-dutch-t5-models
https://huggingface.co/spaces/yhavinga/pre-training-dutch-t5-models

REFERENCES

[69] Craig Thomson and Ehud Reiter. A gold standard methodology for evalu-
ating accuracy in data-to-text systems. arXiv preprint arXiv:2011.03992, 2020.
28, 53

[70] J Alammar. Ecco: An Open Source Library for the Explainability of Trans-
former Language Models. In Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing: System Demonstrations, pages 249–257, Online, August
2021. Association for Computational Linguistics. 30

[71] Jesse Vig. BertViz: A tool for visualizing multihead self-attention in the
BERT model. In ICLR workshop: Debugging machine learning models, 2019. 30

[72] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer

Singh. Beyond accuracy: Behavioral testing of NLP models with CheckList.
arXiv preprint arXiv:2005.04118, 2020. 34, 49, 53

[73] Google-Research. Language/language/table_text_eval at master ·
google-research/language. GitHub. 41

[74] Mihir Kale and Abhinav Rastogi. Text-to-text pre-training for data-to-
text tasks. arXiv preprint arXiv:2005.10433, 2020. 43

[75] Zhenyi Wang, Xiaoyang Wang, Bang An, Dong Yu, and Changyou Chen.
Towards faithful neural table-to-text generation with content-matching
constraints. arXiv preprint arXiv:2005.00969, 2020. 44

[76] Tian Lan. Generating human-level text with contrastive search in Trans-
formers . Hugging Face. 72

[77] Yixuan Su and Nigel Collier. Contrastive search is what you need for
neural text generation. arXiv preprint arXiv:2210.14140, 2022. 73

62

https://aclanthology.org/2021.acl-demo.30
https://aclanthology.org/2021.acl-demo.30
https://github.com/google-research/language/tree/master/language/table_text_eval
https://github.com/google-research/language/tree/master/language/table_text_eval
https://huggingface.co/blog/introducing-csearch
https://huggingface.co/blog/introducing-csearch

APPENDIX A

MODEL TRAINING GRAPHS

Figure A.1: Training overview of T5-dutch model of Yeb Havinga trained on the original
CACAPO dataset

63

A. MODEL TRAINING GRAPHS

Figure A.2: Training overview of mT5-base model trained on the original CACAPO dataset

64

Figure A.3: Training overview of Bart-base model trained on the original CACAPO dataset

65

A. MODEL TRAINING GRAPHS

Figure A.4: Training overview of the mT5-base model trained on the original CACAPO
dataset trained for the continuous learning experiment, in order of Sport, Stock, Weather,
and then Incidents.

66

Figure A.5: Training overview of the mT5-base model trained on the original CACAPO
dataset trained for the continuous learning experiment, in order of Stock, Sport, Weather,
and then Incidents.

67

A. MODEL TRAINING GRAPHS

Figure A.6: Training overview of the mT5-base model trained on the elongated training set
of CACAPO, used for the elongated experiment

68

Figure A.7: Training overview of the mT5-base model trained on an augmented training set
of CACAPO, used for the augmentation experiment

69

APPENDIX B

CACAPO ATTRIBUTE OVERVIEW

Subdomain Attributes

Dutch Stocks companyName, stockChange, locationName, stockChangePercentage, time-
Point, exchangeName, moneyAmount, stockPoints

English Stocks ORG, DATE, stockChange, PERCENT, exchangeName, LOC, stockPoints,
MONEY, TICKER, ORDINAL

Dutch Weather locationArea, weatherType, timePoint, windAmount, windDirection,
cloudAmount, weatherIntensity, weatherFrequency, weatherArea, mini-
mumTemperature, weatherOccurringChance, compassDirection, windChange,
cloudType, cloudChange, weatherChange, windSpeedBft, gustAmount,
gustVelocity, temperatureChange, temperatureHotCold, precipitationAmount,
gustChange, windType, windTurning, snowAmount

English Weather weatherType, timePoint, locationArea, weatherIntensity, temperatureCel-
sius, temperatureHotCold, windAmount, weatherOccurringChance, max-
imumTemperature, cloudAmount, weatherFrequency, temperatureChange,
minimumTemperature, windDirection, weatherChange, windSpeedBft, com-
passDirection, snowAmount, windChange, gustAmount, precipitationAmount,
cloudChange, weatherArea, gustVelocity, gustChange, cloudType, sunSet-
Time, sunRiseTime

70

Dutch sports teamName, matchTime, goalName, goalScore, chanceForName, positionOf-
Player, goalType, goalkeeperName, hasWonTeam, finalScore, hasLostTeam,
matchDate, assistName, chanceForType, coachName, teamStandings, as-
sistType, playerName, stadiumPlayed, numberOfPoints, homeAway, match-
StreakNumber, hasTiedTeam, matchStreakType, hasScored, playerNational-
ity, numberOfSeasonGoals, numberOfMatchesPlayed, numberOfMatchGoals,
tackleRecipientName, tackleGiverName, substituteName, chanceForNumber,
twiceYellowName, nextMatchTeam, redCardName, refereeName, injured-
Name, playerAge, disallowedGoalType, injuryType, halfTimeScore, disallowed-
GoalName, nextMatchHomeAway, suspendedName, nextMatchDate, chance-
ForNationality, defendedName, formationTeam

English sports batterName, teamName, pitchResult, pitcherName, inningNumber, runNum-
ber, winLossType, matchDate, hitNumber, pitcherRecord, gameNumber, strik-
ingType, fielderPosition, inningsPitched, strikeTrajectory, scoreTally, winLoss-
Record, fielderName, RBI, hasWonTeam, finalScore, outNumber, hasLost-
Team, homeRunNumber, baseNumber, strikeOutNumber, startsNumber,
pitchResultNumber, competitionName, walkNumber, locationPlayed, man-
agerName, scoreNumber, onBaseNumber, pitchType, batterHitsTries, pitch-
erSaveRecord, ERA, teamStandings, injuryType, homeAway, pitchNumber,
standingsGames, hasScored, battingAverage, teamRecord, earnedRunsNum-
ber, throwDirection, pitchCount, battersFacedNumber, pitchesTotalThrown,
atBatNumber, gameTally, matchStreakNumber, battingLineupNumber, um-
pireName, catchType, winningPercentage, matchStreakType, umpireType,
unearnedRunsNumber, baseStolen, strikeNumber, retireNumber, stealNum-
ber, baseReachedNumber, leftOnBase, basesRan, catcherName, isOut, error-
Number, numberOfStarts, presidentName, runAverage, inningScore, batter-
ScoreNumber

Dutch incidents victimStatus, victimGender, victimVehicle, incidentType, location, datetime,
suspectVehicle, victimAge, victimAddress, cause, victimDescription, victi-
mAmount, suspectGender, suspectStatus, suspectAge, suspectAddress, sus-
pectDescription, suspectAmount, victimName

English incidents victimNumber, victimStatus, accidentAddress, shootingType, accidentDate,
victimGender, victimAge, takenToHospital, victimName, suspectName, hos-
pitalName, suspectStatus, suspectGender, suspectAge, suspectNumber, vic-
timBased, victimAgeGroup, victimOccupation, numberOfRoundsFired, sus-
pectWeapon, suspectVehicle, suspectBased, personnelArrivedTime, shoot-
ingNumber, prisonName, suspectAgeGroup, victimRace, suspectRace, suspect-
Description, suspectHeight, suspectOccupation, victimVehicle, suspectWeight

Table B.1: Overview of attributes in the CACAPO dataset

71

APPENDIX C

CONTRASTIVE SEARCH EXPERIMENT

During the creation of the baseline models for this project, models, datasets, and hyperpa-
rameters were convened from previous works. One such decision is the choice of decoding
strategy for the model to use. Several previous works apply both Beam Search in combi-
nation with Nucleus Sampling, however, other decoding strategies have been proposed and
argued for increased performance. One such decoding strategy is the use of Contrastive
Search instead of Beam Search.

In short, Beam Search chooses the word with the highest likelihood to follow up on the
previously generated words. This score is calculated by the model, however, certain words
occur more frequently in natural language, thus these words will have a higher likelihood of
being generated by the model. This results in model degeneration, which means that the
generated text feels unnatural. To solve this issue, a sampling method is used to increase
variety, however, in its nature, it also introduces randomness, which could increase the
occurrence of out-of-context generations.

To combat the problem of text degeneration, the strategy of Contrastive Search intro-
duces a degeneration penalty. First, the model calculates the probability of a candidate
token to be predicted, similar to Beam Search. Then, the candidate token is compared to
previously generated tokens and the cosine similarity between these tokens is calculated.
The idea behind this additional calculation is that more similar tokens will increase the
likelihood of model degeneration, and thus the likelihood the model will choose said can-
didate token will decrease with a higher cosine similarity. The user can change the impact
of this co-similarity by changing the value of α (76).

Su and Collier found that Contrastive Search could be applied to pre-trained models
during inference and the users could then achieve better performance on at least four

72

different tasks compared to Beam Search and Nucleus Sampling, those being open-ended
text generation, summarization, machine translation, and code generation. (77) To test
the authors’ claim on the task of data-to-text, an experiment was conducted using the
already fine-tuned T5-base and mT5 models. These models were saved before seeing the
test set, and thus by loading them they will have not seen the test set before, thus avoiding
contamination. The code was slightly adjusted to change the decoder strategy from Nucleus
Sampling and Beam Search to Contrastive Search. After generating the test set, the
previously used automatic metrics are used to evaluate the performance, after which the
results are compared with the results of the baseline.

Figure C.1: Overview of BartScore performances for the Contrastive Search experiment

As figure C.1 highlights, the Contrastive Search model’s performance was worse than the
performance of the baseline. These results highlight that, based on the automatic metrics,
using Contrastive Search decoding methods after the model has already been fine-tuned
using Beam Search and Nucleus Sampling does not result in better performance in this
case. Thus further experiments were implemented on the baseline models using Beam
Search in combination with Nucleus Sampling.

73

APPENDIX D

CONTINUOUS LEARNING EXPERIMENT

During the manual review of the baseline model’s generations, an observation was made
that attributes were changed for other attributes, as described in section 3.4. A majority
of these cases were found in the Dutch subject of Sports and after analysis, it was identified
that this subject had the highest amount of unique attributes whilst also having close to
the fewest records in the dataset. This sparked the hypothesis that the model might not
see enough Dutch sports records at the same time during training, as other subjects and
languages could dominate the batches during training.

To test this hypothesis, an experiment was conducted where a clean mT5-base model
would be trained on one subject at a time. To set this experiment up, the dataset splits
were split once more, such that each subject would have its own training, validation, and
test splits. These splits would contain both Dutch and English records, thus splitting the
original dataset into four smaller datasets. The overview of these datasets can be found in
table D.1.

Domains Train (Dutch/English) Validation
(Dutch/English)

Test (Dutch/English)

Sports 5360 (1945, 3415) 611 (250, 361) 999 (364, 635)

Stocks 3941 (2292, 1649) 488 (271, 217) 790 (459, 331)

Weather 3848 (2014, 1834) 471 (244, 227) 792 (410, 382)

Incidents 2141 (1116, 1025) 261 (123, 138) 447 (229, 218)

Table D.1: Subject-specific dataset sizes

74

To test this hypothesis, two different runs were created. First, a clean mT5 base model
would be trained on each subject separately, starting with the largest subject and gradually
moving to the smallest subject. This meant that the model would be first trained on Sports,
then Stocks, then Weather, and lastly Incidents. The second run would have a different
order of subjects, that being first Stocks, then Sports, Weather, and finally Incidents. Each
model would be trained on one subject at a time, after which the best checkpoint would
be used to train on the next subject. This results in four different checkpoints per run,
thus eight different models. The results of these runs are visible in figures D.1 and D.2.

Figure D.1: Overview of BartScore performances for the Continuous Learning experiment

The performance of these models was slightly worse than the baseline run, even though
the model of this run trained for significantly more epochs, that being 97 compared to the
29 of the baseline model. Interestingly, the baseline model’s performance had more close
to perfect BartScores, whilst the models from this experiment has more occurrences across
the distribution.

After analysing the BartScore and Rouge performance of the two continuous learning
runs it can be concluded that this experiment has not resolved the issue of too many unique
attributes and too high a variety of records. These models still make mistakes by forgetting

75

D. CONTINUOUS LEARNING EXPERIMENT

or switching out attributes with different attributes.

Figure D.2: Rouge score comparisons for the Continuous Learning experiment

76

APPENDIX E

MODEL PERFORMANCE OVERVIEW

Model BLEU-4 Meteor Rouge1 Rouge2 RougeL RougeLsum Mean
BERTScore

T5-base En-
glish

0.173 0.474 0.544 0.349 0.456 0.457 0.911

T5-base
Dutch

0.280 0.522 0.592 0.412 0.535 0.536 0.911

Yhavinga
T5-base
English

0.133 0.421 0.500 0.298 0.421 0.421 0.899

Yhavinga
T5-base
Dutch

0.285 0.541 0.602 0.429 0.545 0.545 0.911

mT5-base
English

0.189 0.512 0.591 0.383 0.488 0.488 0.920

mT5-base
Dutch

0.331 0.574 0.641 0.466 0.574 0.575 0.920

mT5-base
Augmented
English

0.186 0.504 0.574 0.363 0.472 0.472 0.917

mT5-base
Augmented
Dutch

0.332 0.576 0.640 0.466 0.575 0.576 0.919

77

E. MODEL PERFORMANCE OVERVIEW

mT5-base
Elongated
English

0.181 0.502 0.595 0.387 0.494 0.494 0.921

mT5-base
Elongated
Dutch

0.334 0.577 0.651 0.478 0.591 0.592 0.923

mT5-base
StockFirst
Continuous
English

0.151 0.475 0.548 0.321 0.433 0.433 0.907

mT5-base
StockFirst
Continuous
Dutch

0.232 0.518 0.587 0.392 0.507 0.508 0.907

mT5-base
SportFirst
Continuous
English

0.154 0.473 0.554 0.332 0.442 0.441 0.909

mT5-base
SportFirst
Continuous
Dutch

0.273 0.543 0.611 0.428 0.540 0.541 0.913

Bart-base
English

0.213 0.544 0.620 0.415 0.516 0.516 0.928

Bart-base
Dutch

0.320 0.577 0.656 0.479 0.590 0.590 0.924

Table E.1: First Half Results of the different models trained in this project on the original
CACAPO test set, which has been split per language (NEnglish = 1566, NDutch = 1462). A
higher value is best.

78

Model Mean
BARTScore

Sum Prec Sum Re-
call

Sum F
score

PARENT
Precision

PARENT
Recall

PARENT
F score

T5-base En-
glish

-7.462 1215.213 310.520 381.660 0.776 0.198 0.244

T5-base
Dutch

-5.685 1235.074 378.086 460.124 0.845 0.259 0.342

Yhavinga
T5-base
English

-7.301 1236.474 224.860 291.444 0.790 0.144 0.186

Yhavinga
T5-base
Dutch

-5.759 1189.972 421.723 500.847 0.814 0.289 0.343

mT5-base
English

-7.324 1231.549 340.077 417.288 0.786 0.217 0.267

mT5-base
Dutch

-5.588 1208.850 471.472 551.924 0.827 0.326 0.378

mT5-base
Augmented
English

-7.378 1216.670 323.365 404.035 0.777 0.207 0.259

mT5-base
Augmented
Dutch

-5.570 1216.636 471.115 554.068 0.832 0.322 0.379

mT5-base
Elongated
English

-7.303 1249.526 339.635 419.855 0.798 0.217 0.268

mT5-base
Elongated
Dutch

-5.481 1220.293 447.416 557.824 0.835 0.327 0.382

mT5-base
StockFirst
Continuous
English

-7.460 1236.815 252.014 327.414 0.790 0.161 0.209

mT5-base
StockFirst
Continuous
Dutch

-5.984 1218.906 352.713 434.511 0.834 0.241 0.297

79

E. MODEL PERFORMANCE OVERVIEW

mT5-base
SportFirst
Continuous
English

-7.441 1245.640 266.608 336.771 0.795 0.170 0.215

mT5-base
SportFirst
Continuous
Dutch

-5.759 1225.431 404.259 486.373 0.838 0.277 0.333

Bart-base
English

-7.288 1202.468 388.164 462.340 0.768 0.248 0.295

Bart-base
Dutch

-5.512 1237.911 459.551 541.423 0.847 0.314 0.370

Table E.2: Second Half Results of the different models trained in this project on the original
CACAPO test set, which has been split per language (NEnglish = 1566, NDutch = 1462). A
higher value is best.

80

	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Definition
	1.2 Thesis Outline

	2 Related Work
	2.1 NLG
	2.2 State of the Art of NLG
	2.3 Transformers
	2.4 Limitations of Transformers
	2.5 Known Research Directions
	2.5.1 Encoder Investigation
	2.5.2 Decoder Investigation

	2.6 Potential Datasets
	2.7 Evaluation Methods

	3 Methodology
	3.1 Models
	3.1.1 T5-base
	3.1.2 Yeb Havinga's T5-base-dutch-cased
	3.1.3 mT5-base
	3.1.4 BART-base

	3.2 Dataset
	3.3 Model Training
	3.4 Evaluation Methods

	4 Experiments and Results
	4.1 Manual Analysis
	4.2 Augmented Data Experiment
	4.3 Elongated Data Experiment
	4.3.1 Bilingualism

	4.4 PARENT Experiment
	4.4.1 Qualitative Evaluation

	5 Discussion and Limitations
	5.1 Insights
	5.2 Limitations
	5.2.1 Manual Analysis
	5.2.2 Augmented Experiments
	5.2.3 Elongated Experiments
	5.2.4 PARENT Experiments
	5.2.5 Bilingualism Analysis

	5.3 Relevance to the field of AI

	6 Conclusion and Future Works
	References
	A Model Training Graphs
	B CACAPO Attribute Overview
	C Contrastive Search Experiment
	D Continuous Learning Experiment
	E Model Performance Overview

