
Graduate School of Natural Sciences

Algorithms for generating random graphs
Applied to Dutch company networks

Master Thesis

Niels Scholte

Mathematical sciences

Supervisors:

Dr. Ivan Kryven

University Utrecht

Prof. Dr. Frank Pijpers

Statistics Netherlands

Dr. Palina Salanevich

University Utrecht

April 14, 2023

Abstract

Uniformly generating weighted graphs that follow a degree sequences and of which the edge weights
follow a target distribution has been studied in [Kryven, 2022]. However, an efficient implementation
is missing. Here, we develop methods that implement their algorithm. On the one hand, we develop
a method that implement the general case, where no structure of the edge weights is known and
hence they have to be stored. This is also done for the binary case, where edges are either allowed
or disallowed. These methods are expensive due to them requiring at least O(n2) storage and
O(n2), simply, due to storing the edge weights. On the other hand, we focus on the case where
the edge weights are distances and instead implement a method where the edge weights do not
have to be stored. This implementation requires O(m) storage. Whereas the run time is unclear,

it is estimated to be O(m
9
8 dmax). In the process of developing these methods, the expected run

time of the case without edge weights is improved from O(mdmax) to O(m). Next, we explore
an alternative way of sampling the edges, namely such that all vertices have an equal chance of
being sampled. This gives more control over the edge weight distributions of individual vertices,
while still outputting a graph with the desired target distribution. Lastly, we develop a method for
reconstructing the Dutch company network as an internship at Statistics Netherlands.

Contents

1 Introduction; literature review 3
1.1 Generating random graphs given a degree sequence 3

1.1.1 Regular graphs . 3
1.1.2 Non-regular graphs . 5

1.2 Distributions over edge weights . 5

2 Designing fast implementations for existing methods 7
2.1 Without edge weights . 7

2.1.1 Hash tables . 7
2.1.2 AVL trees . 9

2.2 With edge weights; the binary case . 12
2.2.1 Sampling vertices . 12
2.2.2 Managing the neighbours . 13
2.2.3 Die rolls . 13
2.2.4 Heuristics and intuition . 14
2.2.5 An alternative implementation . 15

2.3 With edge weights; the continuous case . 15
2.3.1 The die roll . 15
2.3.2 Omitting neighbours . 17
2.3.3 An alternative implementation . 17

2.4 An efficient pipeline . 18
2.4.1 Polar coordinate subsetting . 18
2.4.2 An implementation without storing edge weights 19
2.4.3 Using the binary method for increased speed 21

3 Empirical behaviour 22
3.1 Experimental setup . 22

3.1.1 Various limits . 22
3.1.2 Vertex distribution . 23
3.1.3 Target distributions . 23
3.1.4 Uniformity . 24
3.1.5 Evaluated methods and parameters . 25

3.2 Results . 26
3.2.1 A denser population with constant dmax . 26

1

3.2.2 A denser population with increasing dmax . 31
3.2.3 A changing distribution with constant dmax 36

3.3 Summary . 42
3.3.1 Without initial subset . 42
3.3.2 With initial subset . 42
3.3.3 Uniformity . 42

4 Vertexwise sampling 43
4.1 Introduction . 43
4.2 Designing the new method . 45

4.2.1 Formulating a solution . 46
4.2.2 The binary case . 47

4.3 The continuous case . 47
4.3.1 Practical problems . 48
4.3.2 Implementation . 49
4.3.3 Pipelines; polar coordinate subsetting . 50

5 Empirical behaviour of vertexwise sampling 52
5.1 Results . 52

5.1.1 A denser population with constant dmax . 52
5.1.2 A denser population with increasing dmax . 55
5.1.3 A changing distribution with constant dmax 58

5.2 Summary . 61
5.2.1 Run time . 61
5.2.2 Uniformity . 62
5.2.3 Convergence to the target distributions . 62

6 Dutch company network 63
6.1 Available data . 63
6.2 Implementation . 64

7 Discussion and conclusions 65
7.1 Existing methods . 65
7.2 Vertexwise sampling . 66
7.3 Dutch company network . 66

2

Chapter 1

Introduction; literature review

In the Netherlands, not everyone knows each other. Some people have many colleagues and friends,
and others have fewer. Some people are part of clubs where everyone knows each other, and some
people are not. This structure can be captured in a graph. A graph is a collection of vertices V , in
this case the vertices represent people, and edges E, the connections between pairs of vertices. In
this case, they answer the question: do these two people know each other, yes or no? If the answer
is yes, there is an edge between the two people, if the answer is no, there is not.

In this thesis, we focus on generating graphs given some constraints. More concretely, we take some
properties of the real world, and generate graphs that also satisfy these properties. The graphs are
like the real networks in terms of the selected properties.

One of these properties is the degree sequence. Continuing with the example of people in the
Netherlands, this is a list of how many people each person knows. It is the degree of each vertex,
how many edges each vertex has.

If we want to learn something from these generated graphs, it is also important that we produce
a great variety of graphs, as opposed to producing the same ones over and over again. Because
of this, uniformity is an important constraint. It means that we output every graph with the
same probability. If there are 1000 graphs (where the order of the edges matters) that satisfy the
constraints, and we can produce all of them, then each time we generate a graph, ideally they
should all have a chance of 1

1000 of being generated.

1.1 Generating random graphs given a degree sequence

1.1.1 Regular graphs

[Steger and Wormald, 1999] describes how to efficiently generate uniformly random graphs for large
h-regular graphs. In other words, when every vertex has the same degree h, hence the degree
sequence d is just a list containing the value h as many times as there are vertices. More concretely,
let Vn = {1, . . . , n} be the set of n vertices, and let d = (di)i∈Vn

be a given degree sequence,
such that the number of edges m = 1

2

∑
i di. Then in this particular case we have that di = h

3

for all i ∈ Vn and m = nh
2 . They also require that dmax = maxi di < m

1
4 , i.e. that h < m

1
4 .

Although seemingly convoluted, we use dmax instead of h to indicate that the used logic can easily
be generalized, and because we will be moving to the general case shortly.

They generate random graphs by adding one edge at a time. Let d̂ = (d̂i)i∈Vn be the sequence
of remaining degrees, i.e. the degrees that have yet to be satisfied before we obtain a graph with
degree sequence d. Then, by repeatedly sampling vertices i, j ∈ Vn with probabilities proportional
to

d̂id̂j ,

among all pairs i, j with i ̸= j and (i, j) /∈ E, where E is the list in which we store sampled edges,
we can obtain a uniformly sampled graph. This approach sometimes fails to generate a graph
that satisfies the degree sequence, but this probability goes to zero as n → ∞. Their efficient
implementation consists of three phases.

Phase 1

In phase 1, we keep a list L in which every vertex i occurs di(= h) times. L is partitioned into
two segments, an active segment that we will sample from, and an inactive segment consisting of
entries that were successfully sampled before. Phase 1 stops when the number of entries in the
active segment falls below 2dmax

2. The inactive segment is positioned at the front of the list.

We iterate by uniformly sampling two vertices i, j from the active segment of L, and we accept
them if i ̸= j and (i, j) /∈ E. If (i, j) is rejected, we simply sample again, but if it is accepted the
edge (i, j) is added to E, and the sampled vertices i and j are swapped to the inactive segment
at the front of L where they will not be sampled again. Because of this, every time an edge is
sampled, the active segment shrinks and the inactive segment grows. As a consequence, sampling
a vertex i occurs with a probability proportional to d̂i, since i occurs exactly d̂i times in the active
segment of L, for all i ∈ Vn. Therefore, we sample every edge (i, j) with probability proportional

to d̂id̂j .

In this loop, checking if an edge (i, j) should be accepted takes at most O(dmax) operations. This
is because every vertex has at most dmax edges, which means it takes at most O(dmax) operations
to check all edges of a vertex i to see if there is an edge with the vertex j. In other words, the
running time of phase 1 is O(dmax) times the number of edges checked for suitability.

In the worst case, a vertex i in the active segment of L already has dmax − 1 edges, and all of those
connected vertices still have an unsatisfied degree of dmax − 1. In other words, every entry of the
active segment of L has at most (dmax − 1)2 entries it cannot form a suitable pair with. So for
k > 2dmax

2, the expected number of trials before a suitable pair is found is at most 2. Since this
is always the case in phase 1 due to the stopping condition, phase 1 is expected to take at most
O(dmaxm) time.

Phase 2

Phase 2 begins when phase 1 ends, and ends when the number of vertices with remaining degree,
i.e. the number of vertices k for which d̂k > 0, drops below 2dmax. Instead of sampling from L,
we now uniformly sample vertices i and j directly from the set of vertices that still have remaining

degree. If i ̸= j and (i, j) /∈ E, roll a die that succeeds with probability
d̂id̂j

dmax
2 . If it does, add

4

(i, j) to E, otherwise sample again. Because of this we are still sampling edges with probability

proportional to d̂id̂j .

Note that Throughout phase 2, the number of vertices with remaining degree is at least 2dmax. Also
note that, every vertex with remaining degree can have at most dmax − 1 degrees that are already
satisfied. This means that after sampling vertex i at least half of the vertices that can be sampled
yield an edge (i, j) for which i ̸= j and (i, j) /∈ E. Since the die roll succeeds with a probability of
at least 1

dmax
2 , the number of repetitions is therefore expected to be at most O(dmax

2). Because at

most dmax
2 edges are added in phase 2, and because the check if (i, j) ∈ E can be moved to after

rolling the die, the expected runtime of phase 2 is at most O(dmax
4), which is also O(m).

Phase 3

Phase 3 begins when phase 2 ends, and ends when there are no more edges to be added. Because
there are only 2dmax vertices k left for which d̂k > 0, we only have O(dmax

2) edges left that have

yet to be added. Therefore we construct a list H of all possible pairs (i, j) with d̂i, d̂j > 0, i ̸= j
and (i, j) /∈ Ē, which we can do in O(dmax

3). Like L, this list is again partitioned into an active
segment, from which we sample edges, and an inactive segment, where we store away edges that

should no longer be sampled. We then sample from the active segment of H and roll the same
d̂id̂j

dmax
2

die as in phase 2. By still checking if d̂i, d̂j > 0 before the die roll, we can maintain H in constant
time by lazily removing edges in H that should no longer be there. Therefore, the expected runtime
is, again O(dmax

4). In total, the expected runtime is at most O(dmaxm) because of phase 1.

At the end, we return E if all degrees are satisfied, i.e. if |E| = m, and we report failure other-
wise.

1.1.2 Non-regular graphs

[Bayati et al., 2010] improves the previous algorithm by making their version also applicable to non-
regular graphs. The key difference is that now, we are sampling vertices i, j ∈ Vn with probabilities
proportional to

d̂id̂j

(
1− didj

4m

)
, (1.1)

among all pairs i, j with i ̸= j and (i, j) /∈ E, instead. Practically, this means that before accepting

an edge, we now also roll a die that succeeds with probability 1− didj

4m . Recall that by assumption

dmax < m
1
4 . Because didj ≤ dmax

2 < m
1
2 < 2m we see that 1

2 < 1− didj

4m , hence there is no overhead
in terms of algorithmic complexity, and the runtime remains O(dmaxm).

1.2 Distributions over edge weights

[Kryven, 2022] extends [Bayati et al., 2010] to solve a slightly different problem. They study graphs
with weighted edges. Instead of uniformly sampling any graph, the goal is now to sample graphs
in such a way that the edges are sampled according to some given target distribution f : R+ → R+

5

over the weights, such that
∫
R+

f(x) dx = 1∗.

All weights rij of edges (i, j) are assumed to be non-negative. They are also assumed to be pair-
wise independent and identically distributed. In other words, we assume that in the graphs that
are processed with this method, there is some underlying random process that produces these
weights.

For example, if one has vertices i that randomly get assigned a location li from the same distribution,
and the weights are the distances between locations rij = ∥li−lj∥, then the weights are non-negative
and identically distributed. They are also pairwise independent. If i, j, i′, j′ are all different it is
clear rij and ri′j′ are independent. But even when i′ = i, and j′, j, i are all different, rij and
ri′j′ are still independent (and identically distributed) since lj and lj′ are still independently being
sampled.

Their proposed method stays with the iterative approach of [Steger and Wormald, 1999], where one
edge is added to E at a time. To achieve sampling the edges according to some target distribution
f , they introduce the distribution g : R+ → R+ which is the empirical distribution of edge weights,
of the edges that can be sampled. In other words, g is the empirical distribution of edge weights rij ,

of the edges (i, j) such that i ̸= j, (i, j) /∈ E, and f(rij), d̂i, d̂j , ̸= 0. As a consequence, g chances
every iteration.

Their proposed method is repeatedly sampling edges with probability proportional to

f(rij)

g(rij)
d̂id̂j

(
1− didj

4m

)
, (1.2)

still among all pairs i, j with i ̸= j and (i, j) /∈ E.

Intuitively, it is not too difficult to understand what is going on; we sample edges proportional to
f , and balance out the distribution we are sampling from with g. Roughly, they prove that this
way we can generate random graphs with a degree sequence close to some given degree sequence d,
and that the edges are sampled according to f . Although they do sketch the outline of a workable
algorithm by providing the above sampling strategy, they do not provide an efficient implementation.
Providing this implementation is a core focus of this thesis.

∗Strictly speaking, they define f as fn and g as gn, and both as being continuous on their domain. However,
due to the focus on an efficient algorithm and not on the exact mathematical statements, we will keep using the
notation f and g, and ignore this continuity since it is not practically useful given that the available edge weights
for any particular graph are inherently discrete.

6

Chapter 2

Designing fast implementations for
existing methods

The main focus of this chapter is providing an efficient implementation for the algorithm proposed
in [Kryven, 2022]. Working towards this goal, we first look to improve the algorithmic complexity
of the algorithm proposed by [Bayati et al., 2010], the non-weighted non-regular case. This is
discussed in section 2.1. We then move on to the case with weighted edges in sections 2.2 and 2.3.
There, we first provide an algorithm for the special case where the edge weights are binary. After
that, we extend this algorithm to accept any edge weights.

2.1 Without edge weights

We improved the algorithm of [Bayati et al., 2010] in two ways. The first is the use of hash tables
to look up if an edge (i, j) ∈ E in constant time. This improved the expected time complexity from
O(dmaxm) to O(m).

The second is the use of an AVL tree (a self-balancing binary tree, named after Adelson-Velsky

and Landis) in phases 2 and 3 to roll a die that succeeds with probability
d̂id̂j

(maxk d̂k)
2 rather than

d̂id̂j

dmax
2 . This greatly speeds up these phases, which is useful if one wishes to violate the dmax < m

1
4

assumption; these phases have an expected run time of at most O(dmax
4).

2.1.1 Hash tables

In essence, a hash table (or hash map) is a clever way of storing and looking up data in an array
using keys. These keys can be any immutable object. It works in such a way that the expected
time per call to the table is O(1).

This approach consists of two main parts. The first is mapping keys to array indexes. The second
is collision resolution, which is dealing with multiple keys being mapped to the same array index.
Ideally, when storing data we do not want to run into array slots where data is already stored,

7

and when retrieving data we only want to run into the data stored with the key we are looking up
with.

Because beforehand we have no way of knowing exactly which keys will be used, the method used
for mapping keys to indexes should spread the indexes out across the array. It should not have a
bias towards some indexes over others because this increases the chance of getting collisions. In
other words, this mapping function should be deterministic, since we need to end up at the same
array index again when retrieving the data again with the same key, but its behaviour should also
look somewhat random, since the indexes should be spread out and there should be no biases. Of
course, this also depends heavily on the keys that are used. In the worst case, all keys are mapped
to the same index, in which case the method loops over all stored data every time. However, this
is highly unlikely, hence an expected lookup time of O(1).

Common algorithms

When mapping a key to an index, it is common practise to take the bit string of the key, treat it
as a binary number, and then take the modules with the length of the array to obtain the array
index. As a consequence, any change in the key has the potential to change the index the key maps
to.

There are many ways in which one can perform collision resolution. Here we choose to stick to the
same principles mention before, namely that we should choose indices that are deterministic, but
also look somewhat random. In other words, when we run into a collision, we will be recomputing
the index in the array. The scheme we use for this is random probing. It recomputes the index k
as knew = kprev · p mod l, where p is some prime number greater than 2, and l is the length of the
array, and this length is also a power of 2. In particular, we use p = 5, following the implementation
of the built-in hash maps of the programming language Python.

Edges and indexes

In this section, we will only be using a hash table to speed up checking if an edge (i, j) ∈ E as a
means to improve the expected run time from O(dmaxm) to O(m). Within the context of looking
up data with a key in an array, this means that the key should be the edge, and the data is a
boolean indicating if the edge is part of E. This boolean is redundant, and we can use a hash set
instead. This way, membership of the set is implied by being able to retrieve the key.

The required hash set is special as well. It only needs to support storing and looking up entries. For
example, deleting and sampling from the entries are not required. Furthermore, the keys follow a
pattern as well. Namely, all keys are tuples (i, j) with i, j being integer entries such that 0 ≤ i, j < n.
In other words, after sorting all individual edges such that i < j, we can assign a unique identifier
Ti,j to each edge as j · n + i. We then define Ti,j mod l, with l being the length of the array, as
the array indexes.

Explicit routines

Because of the hash set, edges are now effectively stored twice. Once in an array E of shape
(m, 2), and once in an array Ē of length 22+⌈log2 m⌉ that only stores their identifiers Tij , and −1
otherwise.

8

More explicitly, if we accept an edge (i, j) and we wish to store it in Ē, we sort the edge such that
i < j, we compute Tij = j ·n+ i and check if

(
Ēk = −1 or Ēk = Tij

)
, for k = Tij mod 22+⌈log2 m⌉.

If it is, we set Ēk = Tij . Otherwise, we repeat with k = k · 5 mod 22+⌈log2 m⌉, until we find an
empty or correctly filled slot.

Checking if an edge is in E works similarly. If Ēk = −1 we conclude that the edge is not in Ē and
therefore not in E, and if Ēk = Tij we conclude that the edge is in E.

2.1.2 AVL trees

Although we already generate m edges in O(m) operations, it is important for extensions of this
algorithm that all the phases only take as much time as they need to. Because of this, we take the
time to improve the speed of phases 2 and 3. Both of these phases have an expected run time of at
most O(dmax

4). Because of this, it is also important to improve their run time if someone wishes

to violate the dmax < m
1
4 assumption.

The main idea is that when rolling a die that succeeds with probability
d̂id̂j

dmax
2 , the denominator

is only there such that we can sample proportional to the numerator. Replacing the denominator

with
(
maxk d̂k

)2
should be much more efficient, given there is no overhead in computing maxk d̂k.

It turns out that when using an AVL tree, this overhead only costs O(dmax
2 log2(dmax)) in total

and is therefore negligible.

Binary search trees

If you’re lucky, and you look out of the window at the nearest tree, you might notice that it has
many leaves. If you were tasked with finding a very specific leaf, it would probably take quite a
while. However, if you were to move from the stem up (the root), and every time the leaves branched
(at a vertex) you would have instructions on which branch (or edge) to follow, you would find the
correct leaf much faster. The latter is exactly what binary search trees do. A slight difference is
that whereas nature grows however it pleases, binary search trees stick to only branching in at most
2 directions at every vertex, and the leaves are those vertices that do not branch any further.

In other words, leaves are also vertices. When using binary search trees, we are interested in finding
vertices, not just leaves, and the data they store. Lookups again happen with a key, and it is this
key that determines the location of the vertex in the tree. Since every vertex has a key, we can
move across the tree - starting from the root - repeatedly asking, is this my key, and if not is the
key I have greater than the key of this vertex? If the answer is yes, we go right, if the answer is no,
we go left.

Because of this, the minimum and maximum values are very easy to obtain. To obtain them, simply
traverse the tree all the way to the left or right, respectively.

Self-balancing binary search trees

This approach of looking for leaves generally works well, but sometimes trees like to have some
leaves on the stem too. These are much easier to reach than leaves high up in the canopy. If all
leaves were equally difficult to reach, we could formulate some guarantee on how long it would take
to reach any vertex given how many vertices there are in total.

9

A solution to this problem is having the tree balance itself whenever it is altered. For a sufficiently
balanced tree, all leaves are at almost the same number of edges away from the root, with the
allowed difference being at most 1. A sufficiently balanced tree is called an AVL tree. It turns out
that rebalancing a tree takes as much time as finding the position of the vertex that has to be added
or deleted. In return, this ensures that the calls to the tree only require O(log2 h) operations, with
h being the total number of vertices in the tree.

Rebalancing AVL trees

Let the height of a binary search tree be the length of the longest path from the root node. Saying
a binary search tree is an AVL tree is equivalent to saying that for all vertices of that tree, the
heights of the right and left subtrees differ by at most 1. The main idea is that when inserting or
deleting a vertex, the heights of almost all vertices are unaffected, and we only need to rebalance
the tree along the path from the root to the added or deleted vertex.

Rebalancing happens from the changed vertex to the root. In other words, we traverse the path
twice. First we find the correct location, and then we go back, shuffling the vertices around to
correct the heights. This way, every time we rebalance a vertex, the right and left subtrees have
already been rebalanced, and their heights are known.

Rotations

Rebalancing a tree, whose subtrees already have been rebalanced, comes down to re-rooting the
tree. In other words, if the heights of the right and left subtrees differ by more than 1, we rotate
the tree to the shortest side such that the new root is a vertex from the longest side.

In figure 2.1 we illustrate what it means to rotate a tree. Going from figure 2.1a to 2.1b shows
a right rotation, whereas the other way around shows a left rotation. Notice that X,Y are single
vertices, but A,B,C can be subtrees. Knowing this, also notice that in both 2.1a and 2.1b, for all
keys kD of a set of vertices D, we have that kB < kX < kA < kY < kC . In other words, after a
rotation, all vertices are still in the correct location such that they can be efficiently found from the
root.

Rebalancing a vertex requires at most 2 rotations. If there is no height difference greater than 1
between the left and right subtrees, no action is required. If B (in figure 2.1a) or C (in figure 2.1a)
is part of the longest path, then a single right or left rotation suffices, respectively.

However, if A is part of the longest path, 2 rotations are required. This is because A has to be
rotated to become the new root. To do this, A first has to take the place to X in figure 2.1a, and
Y in figure 2.1b. Focussing on figure 2.1a, the first rotation is a left rotation at X (making A the
root of the left subtree), and the second is a right rotation at Y (making A the root).

Inserting and Deleting

Inserting a new vertex is straight forward. A new vertex (with the corresponding new key) always
becomes a new leaf. One can then rebalance back to the root to obtain the new tree. Similarly,
deleting a leaf is also straight forward.

Deleting entries is slightly trickier when they are not leaves. Then we have to distinguish 2 cases.
If the vertex does not have a right subtree, replace it by its left subtree. However, if it does, replace

10

Y

X

AB

C

(a) A tree rooted at Y .

X

Y

A

B

C

(b) A tree rooted at X.

Figure 2.1: An illustration of how to reroot a tree with rotations to the right (from figure 2.1a to
2.1b) and left (from figure 2.1b to 2.1a).

the vertex by the vertex with the lowest key from this right subtree. In either case, rebalances back
to the root from the change furthest in the tree to obtain the new tree.

Alternatively, if we really want to make sure that we never move the maximum node for technical
reasons, deletions can also be implemented by checking if the left subtree is empty.

Integer keys

In the case of integer keys, adjacent integers always occur in the same path from the root. Because
of this, we can increment the keys by 1 faster than it is to delete and insert in sequence. This is
because otherwise you traverse the same path twice times.

Because the remaining degrees are integers, we can apply this here. The tree uses the remaining
degrees d̂k as keys, and stores the number of occurrences as data on the vertices. I.e. if 7 nodes
have a remaining degree of 5, the node with key 5 stores the value 7. This means inserting and
deleting can be as simple as incrementing or decrementing the number of occurrences by 1.

After sampling an edge (i, j), we decrement d̂i and d̂j in the tree. Following this, we check if the

vertex that used to contain the maxk d̂k still has a number of occurrences ≥ 1 (and that the vertex
has not been deleting if using the delete implementation that checks the left subtree to be empty).
If it does, we do not need to do anything, because remaining degrees can only go down, so its key
is still maxk d̂k. If it does not, we reobtain the vertex with the maximum key.

Run time

To improve the run time, we maintain an AVL tree of the entries of d̂. The tree has to be updated
dmax

2 times (there are dmax
2 edges left to be added in phases 2 and 3 combined), and the pointer

to the node with the maximum value has to be updated dmax times (the tree contains dmax keys,

with the data being the number of occurrences of this key as d̂). Therefore, the additional cost is
only O(dmax

2 log2(dmax)).

This improves the run time because edges (i, j) are mostly sampled proportional to d̂id̂j , the
remaining degrees of the vertices. In other words, edges containing maximum remaining degree
maxk d̂k vertices i or j have a high chance of being sampled.

11

Looking more closely, consider the case that maxk d̂k is still dmax. When moving from dmax
2 edges

left to be sampled to (dmax − 1)2 edges left to be sampled, we sample 2dmax − 1 times. For every
time we sample, the probability of sampling an edge containing a particular node with maximum
degree dmax, is at least maximum remaining degree

total remaining degree = dmax

dmax
2 = 1

dmax
. Combining this with sampling

2dmax − 1 times, for every individual node with maximum degree, we expect to sample that node
at least once. This should reduce maxk d̂k to dmax − 1 or lower when having reached (dmax − 1)2

edges left to be sampled.

Iterating this logic, we can separate phases 2 and 3 into dmax sub-phases. In each sub-phase t,

the expected number of repetitions per edge is then roughly
(

Ek[d̂k|d̂k>0]
dmax−t

)2
. This is some constant

if Ek[d̂k|d̂k > 0] in sub-phase t is proportional to dmax − t, potentially leading to an O(dmax
2)

speed-up.

2.2 With edge weights; the binary case

We now move on to finding an implementation of the algorithm proposed by [Kryven, 2022]. We
first focus on the case that f(rij) = rij , with rij being either 0 or 1. In other words, f is implied by
the edge weights. As a consequence, every edge that can be sampled, is sampled with a probability

proportional to 1
g(1) d̂id̂j

(
1− didj

4m

)
. Since 1

g(1) is a constant, g does not need to be kept track of

and can be disregarded for now. Effectively, we tackle the problem in its simplest form.

Because we do not assume any structure in the edge weights rij , we have to store the edge weights
of the edges individually. Because of this, the implementation will only be fast if there are few edge
weights with rij = 1; edges for which rij = 0 do not have to be stored.

This means we have 2 graphs. One that describes the edges that are samplable, these edges all
have rij = 1, d̂i, d̂j > 0 and (i, j) /∈ E, and one that is sampled from the first graph given a
degree sequence d. Both graphs change during the algorithm, but the first is the input, and the
second is the output of the algorithm. If we refer to the number of neighbours Ni of a vertex i,
we specifically refer to the number of neighbours in the first graph for which f(rij) ̸= 0. This first
graph contains the edges that are samplable. By Nmax, we refer to maxk Nk on the input, which is
also the maximum throughout the algorithm.

2.2.1 Sampling vertices

The main idea of the implementation is to take phase 1 from [Bayati et al., 2010], but instead of
sampling both i and j from L, we only sample i from L, and sample j from the neighbours of i. This
sampling of j is done by explicitly keeping track of all neighbours of each vertex in a designated
array for each vertex.

Before, we could ensure that every vertex i was sampled proportional to d̂i from L, because after
sampling an edge, we could remove the two sampled entries from the active segment. However,
because j is no longer sampled from L, we have no way of knowing where to find an entry indicating
vertex j. Therefore, we cannot update L immediately after accepting an edge, and we cannot
guarantee that every vertex directly sampled from the active segment is sampled proportional to
d̂i.

12

What we can do is update L retroactively, removing entries that should no longer samplable as
they are sampled. To achieve this, L is expanded from being a 1-dimensional array of length that
only stores the vertex numbers, to being a 2-dimensional array that also stores an index within
each vertex. More concretely, if the first vertex, vertex 0, has a degree of di = 3, L contains the
distinct entries (0, 0), (0, 1), (0, 2) at the start of the algorithm, all referring to vertex 0. Because of

this, we can then say we only accept a sampled vertex i if the index is less than d̂i. For example,
if (i, 0), (i, 1) and (i, 7) are still in the samplable segment of L, but d̂i = 2, then if (i, 1) is sampled
it is accepted because 1 < 2, but if (i, 7) is sampled it is rejected and removed from the samplable

segment. This way, vertices i are still accepted with probability proportional to d̂i, even though
they are not directly sampled as such. Because every entry only needs to be removed once, this
adds no significant cost.

2.2.2 Managing the neighbours

The arrays used to store the neighbours are structurally similar to L. They also have an active
segment that is maintained through swapping entries, and they are also 2-dimensional, with the
second dimension consisting of only two entries. The first of these two entries in the array of i is
the neighbour j. The second entry stores the index of i in the array of j. This way, if we sample j
from the neighbours of i, we can still delete (i, j) from both arrays.

When all degrees of vertex i are satisfied (i.e. when d̂i = 0), i must be deleted as a neighbour from
all remaining neighbours of i. Because of this, it can happen that neighbours run out before all
remaining degrees are satisfied. If this is the case for a vertex i sampled from L, the number of
edges left to be placed needs to be decremented by d̂i and d̂i needs to be set to 0.

2.2.3 Die rolls

Combined, vertices i and j are sampled proportional to d̂i

Ni
. The next step is to correct for the

remaining bias with three die rolls. These are made efficient by two AVL trees, one that stores
the number of neighbours Nk, and one that stored all remaining degrees d̂k, both for all vertices
k.

The first die succeeds with probability Ni

maxk Nk
and corrects for 1

Ni
. The second die succeeds with

probability
d̂j

maxk d̂k
, making the accepting probability proportional to d̂id̂j . Lastly, we again toss a

die that succeeds with probability 1− didj

4m .

Given that AVL trees need to be maintained to use maxk d̂k and maxk Nk in the dice rolls, they
only provides a speed-up when these denominators change significantly throughout the iterations.
As will be discussed in sections 2.2.4, maxk d̂k and maxk Nk do not change very much at the start
of the algorithm. Because of this, the AVL trees are the main cost at the start of the algorithm.
Therefore, this modified phase 1 is then again split into two parts. The first one without AVL trees

(where we roll the dice that succeed with probabilities Ni

Nmax
and

d̂j

dmax
instead), and the second one

with AVL trees. The transition happens when m

log(Nmax)
1
2
edges are left to be processed.

Since the AVL trees require O(log(Nmax)) operations per edge to maintain, this results in the best

case cost of O(m log(Nmax)
1
2) operations for sampling edges and updating the AVL tree. Whether

13

this is indeed the realized cost of the algorithm depends on the average number of repetitions per
edge, over the entire algorithm. Empirically, it turns out this average number of repetition is indeed
O(log(Nmax)

1
2), making the best case also the most likely candidate. Emptying the graph of neigh-

bours takes O(nNmax) operations, resulting in a total run time of O(nNmax+m log(Nmax)
1
2).

2.2.4 Heuristics and intuition

We will now provide some insight as to why this run time also makes intuitive sense, and why the
AVL trees are only needed later on. We have previously looked at d̂, so now we will be focussing
on the number of neighbours.

Given that we have to satisfy dmax degrees for some vertex, it is necessary that dmax ≤ Nmax.
Going a step further, assume that dmax ≪ Nmax and that, initially,

∑
i rij is roughly the same for

all vertices j. In other words, Nmax

Nmin
:=

maxi
∑

j ̸=i rij

mini
∑

j ̸=i rij
is initially some small constant, with Nmin the

minimum number of neighbours at the start of the algorithm, i.e. Nmin := mini
∑

j ̸=i rij .

Because dmax ≪ Nmax, we have that Nmax ≈ Nmax − dmax ≈ mink Nk − dmax at the start of the
algorithm. In other words, satisfying the degrees of a vertex, which is at most dmax, has hardly any
impact on the die roll that succeeds with probability Ni

Nmax
. After all, maxk Nk

Nmax
≈ mink Nk−dmax

Nmax
, at

the start of the algorithm.

The only way to make Nmax deviate very far from mink Nk, which in turn increases the run time,
is to have vertices frequently hit a remaining degree of 0, which in turn causes the number of
neighbours of many other vertices to decrease, likely also decreasing mink Nk.

Because we are more likely to sample edges between vertices i, j for which the remaining degrees d̂i
and d̂j are high, it seems plausible that the remaining degree of the vertices should be distributed
around some decreasing mean. For most iterations, this mean should be away from 0. In other
words, the rate at which vertices i hit d̂i = 0 should increase with the number of placed edges.
Therefore, it seems likely that mink Nk also decreases most significantly at the end of the algorithm,
hence increasing the need for an AVL tree of maxk Nk as more edges are placed.

Special case example

To make this more concrete, we study the special case for which dmax = 1 (and therefore m = n
2),

and where all vertices i have Ni = Nmax neighbours at the start of the algorithm. In this example,
we make no use of an AVL tree, and the die rolls are scaled with Nmax. The goal is to compute the
expected total number of repetitions, and to observe that it is much less than O(Nmaxm), which is
the worst case expected number of repetitions per edge, times the number of edges that have to be
sampled.

Because dmax = 1, we have that at every iteration t, we remove 2 vertices. The expected number
of neighbours at iteration t is N̄t = Et[Nj |d̂j > 0 : j ∈ Vn]. It is related to the value at iteration
t − 1 as N̄t = N̄t−1 − 2

n−2(t−1)N̄t−1, since n − 2t is the number of vertices left at iteration t, and
1

n−2(t−1)N̄t−1 is the expected number of neighbours of a single vertex at iteration t− 1. These all

have to be removed from the remaining vertices, since they are no longer potential edges.

In other words, we have that N̄t−N̄t−1

t−(t−1) = − 2
n−2(t−1)N̄t−1. Through integration, we then find that

14

N̄t =
N̄0

n (n− 2t).

After all, N̄0 = N̄0

n (n− 2 · 0). Let N̄t−1 = N̄0

n (n− 2(t− 1)), then

N̄t = N̄t−1 −
2

n− 2(t− 1)
N̄t−1 = N̄t−1

n− 2t

n− 2(t− 1)
=

N̄0

n
(n− 2t).

Since we assumed that N̄0 = Nmax, the expected number of repetitions at iteration t is given by
Nmax

N̄t
= n

n−2t . Because we have to sample an edge according to some probability n−2
2 times, the

total number of repetitions is expected to be
∑n−2

2
t=0

n
n−2t ≈ −n

2 log |n− 2t||
n−2
2

t=0 = O(n log n).

In conclusion, only for very few edges, we expect a high number of repetitions. This is because N̄t

decreases very slowly at the start relative to its value, but very quickly towards the end. In fact,
half way, at t = m

2 = n
4 , we find that N̄n

4
= N̄0

2 . This means that after half the edges, the expected
number of repetitions per edge only doubled. In other words, by starting the AVL tree late we
exploit that early on, we expect very few repetitions, while still avoiding the high costs that are
expected later on.

2.2.5 An alternative implementation

Seeing this implementation, one might notice that the sampling of an edge is structured in three

parts. First we sample from an array to avoid a die roll, namely that we avoid d̂i

maxk d̂k
, then we

sample from another array to ensure we sample an edge for which f(rij) ̸= 0. This gains us the die
roll Ni

maxk Nk
. Finally, we fix the remaining biases with die rolls.

Because rolling
Nid̂j

maxk Nk maxv d̂v
turns out to be cheaper than rolling

d̂id̂j

(maxk d̂k)2
, this turns out to be

a good implementation. However, it is important to notice that we might as well have enumerated
all possible edges for which f(rij) ̸= 0, sampled uniformly from those, and then rolled the above die
instead. This array of edges can be maintained in various ways, but the simplest is removing edges
that have been sampled, and retroactively checking if both d̂i, d̂j ̸= 0. Although this approach is
not as efficient, it will provide insight in chapter 4.

2.3 With edge weights; the continuous case

We now extend the binary case by allowing rij ∈ R+. This means that f , the target distribution
over edge weights that we want the output graph to have, and g, the distribution over edge weights
that we are sampling from, must both play a role. In summary, we gain a die roll (involving f and
g) before we can accept an edge, and an AVL tree that aids in this. In contrast to the binary case,
the algorithm is no longer split into two parts.

2.3.1 The die roll

Recall that the probability of selecting an edge needs to be proportional to

f(rij)

g(rij)
d̂id̂j

(
1− didj

4m

)
.

15

In other words, we only need to add a die roll to the binary algorithm that succeeds with a

probability proportional to
f(rij)
g(rij)

, to achieve this. To perform this roll, we need to store the edge

weights, make calls to f and g, and have a scaling constant.

Edge weights

Because the edge weights are part of potential edges, and potential edges are stored as neighbours,
edge weights are also stored as neighbours. This means that every 2-dimensional array that stored
the neighbours of a vertex, now gets a 1-dimensional counterpart that stores the edge weight. This
counterpart is maintained in the same way. The second dimension of the neighbour array was not
expanded to include these weights, since the data types are different. The neighbour array stores
integers, whereas the edge weights are in R+.

Histograms

The calls to f and g are handled by storing them as histograms. This means both are represented by
1-dimensional arrays, where the indexes (i.e. the bins) represent weight ranges, and the entries (not
necessarily integers) are proportional to the height of the distributions in those ranges. Although
the distributions formally have an area of 1, there is no need for these histograms to sum to 1 since
they are scaled by a constant before the die roll.

Since f is an input of the algorithm, the resolution (or bin size), the size of the weight ranges
represented by single indexes, is chosen by the one providing f . For g, the resolution is chosen such
that on average, there are as many bins as there are edge weights per bin. This means the number

of bins is chosen to be
(
1
2

∑
i Ni

) 1
2 .

Scaling constant

Whereas, f remains the same throughout the algorithm, g does not, and needs to be maintained.
After all, every time a neighbour is removed, a potential edge and its accompanying edge weight
leaves the distribution we are sampling from.

This has consequences for the way we scale
f(rij)
g(rij)

. Namely, maxrij
f(rij)
g(rij)

can now increase as the

algorithm progresses. Before, all our die rolls could be scaled by a constant because the scaled
values could only decrease. Namely, for all vertices i, d̂i and Ni can only decrease with the number
of iterations. This enabled us to split the modified algorithm into 2 parts, where in the first part
we would scale by an upper bound. Now this is no longer feasible, and we must maintain an AVL

tree of
f(rij)
g(rij)

for all edge weights rij from the start.

It also has consequences for the availability of edges. At some iteration, bins of g become empty
as not enough edges are still samplable. As a consequence, we can then no longer sample edges
according to f . Possible strategies that can be deployed in this case are changing the bin size of
g or simply early termination. Neither are currently implemented in this variant of the algorithm,
but for both this is a straightforward process.

16

2.3.2 Omitting neighbours

Still, we assume no structure in the edge weights, meaning we still have to store all weights. Because
of this, we continue to allow edges to be missing from the samplable graph. Before this was possible
because rij = 0 implied f(rij) = 0. For the sake of maintaining f : R+ → R+, we say that we can
shift the given edge weights by 1, and adjust the given target distribution f accordingly. We then
still define f(0) = 0.

This enables preprocessing strategies, where one can obtain a subset of edges through some other
means, and then feed this subset to this algorithm to obtain the final graph. For example, one
could use the structure of the edge weights to construct the subset to be roughly according to f .
The implementation of the continuous case can then be used both as a refinement step for the
distribution, and as a way to sample according to a given degree sequence.

2.3.3 An alternative implementation

When sampling edges, the main implementation we just discussed still follows the same approach
as the main implementation of the binary case, just with an additional die roll. If f is very close to
g, this additional die roll hardly has any overhead. It will almost always succeed with a probability
close to 1.

However, if f and g are very different, one should first ask if there are enough edges to sample a
graph with edge weights according f to begin with. If this is the case, one could argue that they
are probably not so different after all, and that this overhead is not too high.

Still, if one insists that this overhead is significant, we can eliminate the cost of this die roll, along
with that of Ni

maxk Nk
, in the first step where we sample from an array. In return, we then gain the

die roll d̂i

maxk d̂k
.

Eliminating
f(rij)
g(rij)

In the binary case, we simply enumerated all edges for which f(rij) = 1, and we sampled from that
array uniformly. This is a special case of the two-step process we use here. First, notice that f does
not change throughout the algorithm. This means we can convert the histogram, which represents
the probability density function, into a cumulative distribution with a single loop over the array.
We can then invert this cumulative distribution in another single loop over the array. We can then
sample from f in constant time by sampling from the indices of this inverted cumulative distribution.

Sampling a bin from f is the first step in selecting an edge with probability
f(rij)
g(rij)

.

Now bin g and f in the same way. In other words, have them share the same start and end point,
the same number of bins, and ensure that each bin has the same size as their counterpart. In short,
for every bin in f , there is a corresponding bin in g. Instead of storing the number of samplable
edges in each bin, store the edges themselves. In the first step, we sampled a bin b according to
f , in the second step, we uniformly select an edge from this bin. Because there are g(b) edges in
this bin, and bins are a proxy for the edge weights, this edge (i, j) is sampled with probability

approximately
f(rij)
g(rij)

, which gets more accurate the more bins there are.

As an aside, notice that as long as all die rolls are independent, the resulting output will always

17

have edges sampled according to f . In other words, the scaling factor 1
g(rij)

is just a consequence of

uniformly sampling from each bin, which is not necessary for obtaining a graph of which the edge
weight distribution is f .

2.4 An efficient pipeline

We have now discussed a method to sample a graph according to a degree sequence, and with the
edge weights following a target distribution. Note that if we were to use all edges in the generation
of a graph, then Ni would be n at the start of the algorithm for all vertices i. As a result, the
proposed method would require O(n2) storage and operations. This is too much and something we
would like to avoid.

Because of this, we suggest creating a random subset of the edges first, by sampling some number

of edges from all edges with probability
f(rij)
g(rij)

. Then from this subset we build a random graph.

This is likely not the same as generating a random graph directly, but for a reasonable run time it
seems a necessity.

2.4.1 Polar coordinate subsetting

We will now discuss how to obtain such a subset, if all edge weights are distances, and all vertices
have 2-dimensional locations. Polar coordinate subsetting takes as main inputs an array of locations
of the vertices and a target distribution f , and it outputs a subset of edges with the distances

distributed according to f , obtained by sampling edges according to
f(rij)
g(rij)

.

The main idea of the algorithm is to sample a length according to f as many times as we require
edges in the subset, and for every length, loop until an edge is found such that the length of the edge
sufficiently matches the sampled length. This is similar to what we did in section 2.3.3. There,
we sampled uniformly from all edges with a matching length because we had a list of all edges
with a matching length. This time we obtain the uniform sample by looping continually until an
edge is found. It works because every edge with a matching length is roughly equally likely to be
sampled.

Storing the locations

Before we can do any of that, however, we must first store the locations in a way that facilitates
sampling edges, and that captures the nature of the edge weights we are trying to exploit. In
other words, because we have 2-dimensional locations, the locations are stored in a 2-dimensional
grid.

Storing the edges is done in two steps. We first store the number of edges per grid cell in a square
n

1
2 × n

1
2 grid such, such that on average, there is approximately only 1 vertex per cell. Then we

observe the maximum number of vertices that coincide in one cell, and store the locations as a
3-dimensional array. Note that the method can easily be adapted to use a rectangular grid as well.
Optionally, we can also observe how many cells n′ are actually filled, and store the vertices in a
n′ 12 ×n′ 12 grid instead. This resolves issues with many vertices having very similar locations.

18

Sampling an edge

The sampling of edges is done by first sampling a distance from f in constant time. Again, this
can be done by computing the cumulative distribution, and then inverting it once, at the start
of the algorithm. Then, we uniformly sample a vertex from Vn and an angle from [0, 2π). From
the location of the vertex, we move in that direction with the sampled distance, and find the
corresponding cell.

We then uniformly sample an index in the cell (in the depth dimension). If this entry contains a
vertex, we have not sampled this edge before hence (i, j) /∈ E and f(rij) > 0, we add the edge to
the output E. Note that if we sampled an index from the number of available vertices in the cell,
there would be a bias towards vertices that are alone in their cell, which we want to avoid.

If we cannot add the edge to the output, we sample a new vertex, direction and cell index. We
only resample the distance f if an edge is accepted. By not resampling the distance from f , the
distribution of edge weights is close to f . This is because all distances are accepted, even though it
might take a longer time to find an edge for some distances.

Note the similarity with sampling uniformly from all edges in a bin. For a given sampled distance,
we can construct a bin by walking over the circle around each vertex, and adding all possible edges
for each grid location we come across. Although the probabilities of obtaining different edges vary
depending on the length of the curve going through the grid cells, these variations should not
affect some edges more than others over many iterations. This is because these variations are an
artefact of the way the locations are stored, and the distances are constantly being resampled from
a continuous distribution, and measured from the vertex locations, which are also random.

Dealing with f(rij) = 0

In other words, every iteration, we sample from a distribution of edge weights centred around the
distance we sampled from f . This means the probability of sampling an edge comes from sampling
nearby distances from f . As a consequence, if the f is suddenly set to 0 after some distance, edges
close to this cut-off point are undersampled compared to edges with a weight further away. These
closer edges are then missing up to half of their source of probability of being selected. Another
consequence of this is that distances selected close to this cut-off point can only be sampled in one
direction, causing a slight bump in probability at a medium distance from the cut-off point.

To counteract this to some extent, we check if the distance we are about to sample has probability
zero. If it does, we set the desired sampled distance from f to be the closest cut-off point and we
try again. Because of this, there being no anomalies near 1

2

√
2 in figure 3.2, that would otherwise

be there.

2.4.2 An implementation without storing edge weights

Having this way of sampling edges according to
f(rij)
g(rij)

without storing edge weights enables us to

implement the alternative implementation of section 2.3.3, without the hurdle of storing O(n2) edge
weights. Still, there are two main differences in the way edges are sampled.

19

Grid resizing

The first is that as the degrees of vertices are satisfied, they no longer need to be present in the
grid. If the algorithm fails to find an edge for a sampled distance by exceeding some number of
attempts, this can now also be because the grid is too large for the number of available vertices

present in it. This is much like the problem where we eliminate
f(rij)
g(rij)

by sampling a bin according

to f , but then the corresponding bin in g turns out to be empty.

Before, rather than rescaling f and g to have a larger bin size, it could be tempting to simply
terminate if that happened and accept the error. However, now this sparsity also affects the run
time since it makes finding edges much slower. Because of this, we opt to do the equivalent of
rescaling f and g, which is recomputing the grid whenever the number of vertices that still have
remaining degree, halves.

This means we remove all vertices which had their degrees satisfied, and we fill a new grid such that
again, every grid location has 1 vertex on average. If the algorithm then still fails to find a suitable
edge in 1

2m iterations, the grid is recomputed one last time, before the algorithm is terminated at
m iterations, as it is no longer possible to sample vertices according to f . Generally, this step does
not occur, which means the total run time for maintaining the grid is generally O(n), since the
grid halves in size every time it is recomputed. Regardless, the algorithm dictates that we continue
sampling even if it is no longer possible to sample edges according to f .

Finishing up

Because of this, the algorithm is continued with the subset method, where in this case, the subset
of edges that can be sampled are all edges (i.j) that have not been sampled yet, for vertices i, j

that do not yet have their degrees satisfied hence d̂i, d̂i > 0, and for which f(rij) > 0.

If we terminate the method without subset when there are fewer than
√
m vertices with some

remaining degree left, since this only means storing O(m) potential edges. This is relevant because
it can occur that there are few remaining edges of high demand lengths, while there are also many
vertices left with remaining degree. This makes the grid unsuitable for sampling according to the
desired distribution, increasing the run time.

By not waiting for edges to run out, and by instead terminating early, we try avoiding this issue.
Still, we do not want to terminate too early either, since it results in storing too many potential
edges. The same strategy is applied to the subset method, where we instead terminate early based
on the number of edges in the subset, rather than m.

Run time

Regardless of this issue near the end of termination, this implementation without storing edge
weights is possible because, on average, there is one vertex per grid location. Ignoring the probability
of finding an edge that is already present in the graph, this makes the probability of finding a suitable
edge only dependent on the depth of the grid, which in turn is only dependent on the distribution
of the vertices. In other words, the probability of failure is very low.

This allows us to increase the threshold, of how many consecutive failures to sample a candidate edge
from the grid constitutes a definitive failure, with m, without it affecting the run time much.

20

2.4.3 Using the binary method for increased speed

The method that uses an initial subset now consists of three phases. Namely, first we build the
subset. Then we run the method that takes in this subset, and we terminate early. Lastly, we finish
up by running the method again on all edges that are left over. Because we build the first subset
such that the edges are distributed according to f , we do not necessarily need to run the continuous
implementation, and we can instead use the faster binary implementation, since the edge weight
distribution does not need to be corrected. Still, in the last stage we then need to revert to using
the continuous implementation because the leftover edges can have any edge weight distribution
again.

In total, this yields 3 implementations of the algorithm, one without an initial subset, and two
without. In the next chapter, we will empirically evaluate these methods.

21

Chapter 3

Empirical behaviour

Having discussed the implementations, we now investigate the empirical behaviour of these methods.
On the one hand, the goal of this chapter is to show what the algorithm proposed by [Kryven, 2022]
is good at in practical experiments. On the other hand, the goal is to show that the implementation
for distances does indeed perform as expected. The properties we are interested in are the run time,
converge to f , and uniformity, and mainly for large graphs.

3.1 Experimental setup

3.1.1 Various limits

However, what constitutes a large graph is vague. Think of the vertices as random locations
according to some distribution, for example, home addresses of people. There are many ways in
which the population n in the graph can increase while f remains the same.

For example, there could be more and more people in the same area because we are sampling more
and more locations from the same distribution. This is the simplest case.

The area where people are located could also increase with the number of people, meaning the
total distribution changes from which we sample locations as there are more people. For example,
instead of modelling just a city, we might want to model an increasingly large area such as a country
instead, even if not all regions are densely populated. Similarly, the target distribution f could also
change with n, as people find their connections closer to home.

It could also be that the people get to know more people as n increases, hence dmax should increase
along with m, following the requirement that dmax < m

1
4 , where m increases O(n

4
3). If we want to

use the method at its full capacity, we do not want to be stuck choosing dmax very small for the
sake of uniformity, run time or the accuracy of f .

22

3.1.2 Vertex distribution

To perform these experiments, we need a distribution for the vertex locations. To keep the results
as general as possible, we decided on sampling both the x and y coordinates from the product of two
uniform U(−1, 1) distributions for its great heterogeneity in density. This is the same as sampling
x and y from the probability density function − log(z) for z ∈ [0, 1] and choosing the signs of x and
y uniformly at random. The blue dots in figure 3.1 are vertex locations sampled according to this
distribution.

Figure 3.1: Vertex distribution. The distribution of vertices as described in section 3.1.2. The blue
dots show the sampled vertices, the orange dots show the vertices left with remaining degree after
termination of a run of the algorithm. The degrees of the vertices could not be satisfied due to the
distance being more than 1

2 , or because they are already connected.

3.1.3 Target distributions

For this distribution, we then measured the edge weight distribution for a vertex situated at (0, 0)
and at (12 ,

1
2) by sampling 108 vertices from this distribution and measuring the distances. We

smooth these distributions and call them f0 and f 1
2
. From this we construct the two distributions

we use as target distributions.

First, we choose fclose to be f0
f 1

2

, for rij <
1
2 , and 0 otherwise, since it favours short edges. Second,

23

we choose ffar to be
f 1

2

f0
, for rij < 1

2 , and 0 otherwise, since it favours long edges. Both have the

probability of selecting an edge set to zero for edges longer than 1
2 , because this way we still have

enough edges to match the target distribution (to some extent). These density functions are shown
as the orange lines in figure 3.2.

The point of selecting the target distributions like this is that the order in which the degrees of
vertices are satisfied is different. Most short edges are located near (0, 0), so if fclose is used, that
is where most edges are first sampled. In other words, the graph is constructed from the center
outwards. If ffar is used, the graph is constructed from the locations (± 1

2 ,±
1
2) towards (0, 0) instead.

Because most vertices are located near (0, 0), this can leave a large portion of the vertices stranded,
since it is no longer possible to sample the desired edge lengths when the degrees of further away
vertices are already satisfied. In turn, this can have an effect of the convergence towards the target
distribution.

(a) close (b) far

Figure 3.2: Target distribution. The target distribution of edge weights as described in section
3.1.3 (in orange), and as sampled in a run of the algorithm (in blue).

Convergence to the target distributions

The convergence of the distribution of the sampled edge weights to f , is measured as the convergence
of the unsigned area between the cumulative distribution of f , and the empirical edge weight
distribution, as if the cumulative distribution runs from (0, 0) to (1, 1) in a square. This is done
such that if the domain of the target distribution changes, the distance measure would be unaffected.
The cumulative target distributions are shown in figure 3.3.

3.1.4 Uniformity

Whereas the run time and the edge weight distribution are easy to directly measure, uniformity is
complicated since the method does not compute the probability of the generated graph.

A difference between the methods proposed by [Kryven, 2022] and [Bayati et al., 2010] is that

24

(a) close (b) far

Figure 3.3: Cumulative distribution. The cumulative distributions of the distributions shown in
figure 3.2.

the latter produces an output with degree sequence d with high probability, whereas the former
will frequently terminate without having satisfied all degrees. Because of this, the probability
of obtaining each graph varies. This is because graphs with more edges generally have a lower
probability of being obtained.

What we can do is report the number of degrees that were failed to be satisfied, the error. If the
variance of the error increases with m, and we assume the average log probability per edge to be
the same for each graph, then we can assume the graphs do not become uniform. In such a case, it
is entirely possible that for the particular combination of edge weights and target distribution, it is
simply not possible to sample such a graph, but this is unknown.

3.1.5 Evaluated methods and parameters

We evaluate both the method that samples edges from the grid directly, and the methods that
build a subset before starting. This number of edges in the subset is set to be 4dmax

n
n′n

1
3 , where

n′ is chosen to be the largest constant such that we always have at least 4dmaxn edges in the
subset.

This subset is kept the same where possible due to it being prohibitively expensive to generate.
As a consequence, the cost of generating this subset is not included in the recorded metrics. The
degree sequence is always renewed for every generated graph. Each experimental configuration is
repeated 30 times.

25

3.2 Results

3.2.1 A denser population with constant dmax

The first limit we are interested in is when we fix dmax to be a constant, namely 8, and uniformly
sample degrees from [1, dmax] for each vertex, while increasing the number of vertices n that are
sampled from the fixed distribution of locations.

Run time

Without the use of a subset, the average number of attempts to sample an edge, and hence the run
time per edge, appears to be O(m

1
8), as can be seen in figure 3.4.

(a) close (b) far

Figure 3.4: Average number of repetitions per edge without the use of an initial subset.

With the use of a subset, the average run time per edge greatly differs between the two target
distributions. It is the difference between O(1) for fclose and roughly O(m

3
8) for ffar, as can be

seen in figures 3.5a and 3.5b. Still, we know the run time should be at least O(m
1
3) per edge by

the design of the experiment.

Adding the use of the binary method reduces the run time roughly by a factor 5. The run time
per edge appears to be close to the desired O(m

1
3) for both ffar and fclose, as can be seen in figures

3.6a and 3.6b.

26

(a) close (b) far

Figure 3.5: Average run time per edge with the use of an initial subset.

(a) close (b) far

Figure 3.6: Average run time per edge with the use of an initial subset and the binary method.

Uniformity

It turns out in all cases, the error does not increase with m, but instead stays O(1), as can be seen in
figures 3.7, 3.8, and 3.9. In other words, no evidence is found against some form of uniformity.

27

(a) close (b) far

Figure 3.7: The number of unsatisfied degrees without the use of an initial subset.

(a) close (b) far

Figure 3.8: The number of unsatisfied degrees with the use of an initial subset.

28

(a) close (b) far

Figure 3.9: The number of unsatisfied degrees with the use of an initial subset and the binary
method.

29

Convergence to the target distributions

The empirical edge weight distribution appears to converge to the target distributions in all cases,
except when the target distribution is ffar and we apply the method that uses an initial subset of
the edges. This can be seen in figures 3.11b and 3.12b.

(a) close (b) far

Figure 3.10: The unsigned area between the cumulative target distribution and the empirical edge
weight distribution, without the use of an initial subset.

(a) close (b) far

Figure 3.11: The unsigned area between the cumulative target distribution and the empirical edge
weight distribution, with the use of an initial subset.

30

(a) close (b) far

Figure 3.12: The unsigned area between the cumulative target distribution and the empirical edge
weight distribution, with the use of an initial subset and the binary method.

3.2.2 A denser population with increasing dmax

The second limit we are interested in is when we let dmax and n increase together. Such a process
can be interesting when wanting to use the method at its full potential, namely whenever dmax ≈
m

1
4 .

We investigate this by incrementing dmax, and then defining n such that m is on average dmax
4.

We are still sampling the degrees uniformly from [1, dmax], hence we define n as 4dmax
4

dmax+1 rounded

to the nearest multiple of 2. We resample a sequence if dmax ≥ m
1
4 . dmax is increased from 10 to

22.

Run time

Without the use of a subset, the average number of attempts to sample an edge, and hence the run
time per edge, appears to be O(m

1
8 dmax), as can be seen in figure 3.13, and from the observation

earlier that the run time appears to be O(m
1
8) per edge when fixing dmax to be a constant. Although

we roll two dice that are scaled with maxk d̂k, we only obtain dmax as an additional term in the run
time, and not dmax

2. This was already discussed in section 2.1.2, and is why the binary method

effectively trading the die roll of d̂i

maxk d̂k
for Ni

maxk Nk
is a good idea.

With the use of a subset, the run time again appears to hover around the desired O(m
1
3), as can

be seen in figures 3.14 and 3.15, with the binary method causing a factor 5 speed up.

31

(a) close (b) far

Figure 3.13: Average number of repetitions per edge without the use of an initial subset.

(a) close (b) far

Figure 3.14: Average run time per edge with the use of an initial subset.

32

(a) close (b) far

Figure 3.15: Average run time per edge with the use of an initial subset and the binary method.

33

Uniformity

Again, it turns out in all cases, the error does not increase with m, but instead stays O(1), as can
be seen in figure 3.17. In other words, no evidence is found against some form of uniformity.

(a) close (b) far

Figure 3.16: The number of unsatisfied degrees without the use of an initial subset.

(a) close (b) far

Figure 3.17: The number of unsatisfied degrees with the use of an initial subset.

34

(a) close (b) far

Figure 3.18: The number of unsatisfied degrees with the use of an initial subset and the binary
method.

Convergence to the target distributions

The empirical edge weight distribution appears to converge to the target distributions in all cases,
except when the target distribution is ffar and we apply the method that uses an initial subset of
the edges. This can be seen in figure 3.20b.

(a) close (b) far

Figure 3.19: The unsigned area between the cumulative target distribution and the empirical edge
weight distribution, without the use of an initial subset.

35

(a) close (b) far

Figure 3.20: The unsigned area between the cumulative target distribution and the empirical edge
weight distribution, with the use of an initial subset.

(a) close (b) far

Figure 3.21: The unsigned area between the cumulative target distribution and the empirical edge
weight distribution, with the use of an initial subset and the binary method.

3.2.3 A changing distribution with constant dmax

Finally, we are interested in what happens if the number of available edges does not grow as quickly
as the number of edges. For fclose, we shrink the radius of the disk in which the probability of
sampling an edge is not zero. For ffar, we sample from an annulus instead, by increasing the
minimum distance and decreasing the maximum distance, both at the same rate towards 1

4 .

The radius of the disk and the width of the annulus are chosen to be 1
2

(
n′

n

) 1
3

, with n′ being the

36

constant, such that the radius is 1
2 for the lowest n. In other words, the number of potential edges

now grows as O(n
4
3), instead of O(n2).

Run time

Without the use of a subset, the average number of attempts to sample an edge, and hence the run
time per edge, appears to again be O(m

1
8), but only when the error remains near 0, as can be seen

in figure 3.22.

(a) close (b) far

Figure 3.22: Average number of repetitions per edge without the use of an initial subset.

With the use of a subset, the run time again appears to be close to the desired O(m
1
3) per edge,

and the use of the binary method again appears to reduce the run time by a factor 5, as can be
seen in figures 3.23 and 3.24.

37

(a) close (b) far

Figure 3.23: Average run time per edge with the use of an initial subset.

(a) close (b) far

Figure 3.24: Average run time per edge with the use of an initial subset.

Uniformity

This time, it turns out in all cases, the error does increase with m. For ffar, this increase is much
larger than for fclose. Since the variance of the error also appears to increase with m in all cases, it
seems unlikely uniformity holds here.

38

(a) close (b) far

Figure 3.25: The number of unsatisfied degrees without the use of an initial subset.

(a) close (b) far

Figure 3.26: The number of unsatisfied degrees with the use of an initial subset.

39

(a) close (b) far

Figure 3.27: The number of unsatisfied degrees with the use of an initial subset.

40

Convergence to the target distributions

Again, the empirical edge weight distribution appears to converge to the target distributions in
all cases, except when the target distribution is ffar and we apply the method that uses an initial
subset of the edges. This can be seen in figures 3.29b and 3.30b.

(a) close (b) far

Figure 3.28: The unsigned area between the cumulative target distribution and the empirical edge
weight distribution, without the use of an initial subset.

(a) close (b) far

Figure 3.29: The unsigned area between the cumulative target distribution and the empirical edge
weight distribution, with the use of an initial subset.

41

(a) close (b) far

Figure 3.30: The unsigned area between the cumulative target distribution and the empirical edge
weight distribution, with the use of an initial subset.

3.3 Summary

3.3.1 Without initial subset

Depending on the limit and the target distribution, the run time of the method without an initial
subset varied, and appeared to be O(m1 1

8) as long as the degree error stayed near 0. The empirical
distribution of sampled edge weights always appeared to converge to the target distribution.

3.3.2 With initial subset

The way the run time scaled was often unclear, most likely because it was computationally infeasible
to resample a subset every time a graph was generated. On face value, the run time did not appear
to deviate significantly from the desired O(m1 3

8), for both the continuous and binary approaches,
although the binary approach was consistently around 5 times faster. The empirical edge weight
distribution produced by this method always appeared to converge for the target distribution fclose,
but never for ffar.

3.3.3 Uniformity

We found no evidence against uniformity in the first two limits, i.e. when n was increased individ-
ually, and when dmax was increased and n was kept at the bare minimum. We only found evidence
against uniformity in the last limit, where we shrunk the range of distances in which we allowed
edges. This also means it is unlikely uniformity will persist when an increase in vertices coincides
with a broader distribution of locations, if the target distribution is quite limited in its range of
allowed edge weights.

42

Chapter 4

Vertexwise sampling

4.1 Introduction

Up until this point, the goal was to sample graphs for which the edge weight distribution followed
some target distribution, and such that every sampled graph roughly had the same probability
of being sampled. Now we try to do something slightly different. Namely, we still try to sample
graphs where the edge weight distributions follows some target distribution, but now we also want
control over how this distribution comes to be by also controlling the edge weight distributions
of edges connected to individual vertices. More precisely, we want to have the edge weights of
individual vertices to follow the target distribution, such that in total, all edges together also follow
this distribution.

In the previous chapter, we have seen that if we shrink the allowed range of distances in the graph,
the error increases. We have also seen that for ffar, this increase is much more drastic than for
fclose. However, we have not yet looked at how this error manifests itself. In figure 4.1 we show on
which vertices the error accumulates, for large graphs, for both fclose and ffar. The pattern caused
by fclose can be explained as there simply not being enough edges locally within the permitted
range. This is the desired pattern.

The pattern caused by ffar can be explained as the high density regions causing the surrounding
area to be depleted first, creating large error in lower density regions. This is because the number of
edges in a region increases quadratically with the number of vertices. Since the algorithm proposed
by [Kryven, 2022] is based on sampling edges with the same probability, there is a bias towards
regions where many vertices are located.

In this chapter, we propose an alternative algorithm that samples vertices with the same probability
instead, while still converging to f in all the same ways we were used to earlier, and while main-
taining the same style of approach and implementation. The goal is to remove this quadratic bias,
and have the error be evenly spread across all vertices whenever possible. In practical applications,
this is valuable, since the vertices are the entities of interest. If the error consistently accumulates
on the same vertices every run of the algorithm, this can make the results be dominated by this
artefact and therefore unusable. To contrast figure 4.1, figure 4.2 shows the identical experiment,

43

(a) close (b) far

Figure 4.1: The accumulation of error on vertices within the graph for the method proposed by
[Kryven, 2022]. The blue dots show the sampled vertices, the orange dots show the vertices left
with remaining degree after termination of a run of the algorithm.

but while using the alternative method instead.

The driving narrative will be about how a method was conceived that implements this idea. There
will be no proofs, because we do not have proofs. The only validation will be the experimental
results at the end in chapter 5. As a consequence, the argumentation will often be questionable,
but we still hope to be able to convince the reader that this is a step in the right direction.

44

(a) close (b) far

Figure 4.2: The accumulation of error on vertices within the graph for the method proposed here.
The blue dots show the sampled vertices, the orange dots show the vertices left with remaining
degree after termination of a run of the algorithm.

4.2 Designing the new method

A binary perspective

As a starting point, we first turn to the binary case for answers, since it is the simplest case; we
only have to deal with edges that are allowed or that are not allowed. We attempt to isolate the

effect of
f(rij)
g(rij)

by performing experiments with a degree sequence of all ones∗. Without showing

the specific experiments, we noticed that the error is greatly dependent on:

1. The variance in the of number of neighbours {Nk|k ∈ V }. A greater variance leads to more
error.

2. The fraction of possible neighbours over the number of actual neighbours n2∑
k Nk

.

In other words, the number of neighbours of vertices has an effect on the error. We have seen some
of this pattern already, since we concluded that when decreasing the range of allowed distance with
n, the error increases with n. It is not unthinkable that the number of neighbours could have an
effect either. After all, for [Bayati et al., 2010], the number of neighbours is always Nk = n for any
vertex k, making this a parameter unique to this problem involving edge weights. In conclusion,
the number of neighbours is an important parameter that should be kept in mind.

∗This turns the problem into finding maximum matchings if the goal is to find an output with an error of 0.

45

An algorithmic perspective

In section 2.3.3 we looked at what sampling according to
f(rij)
g(rij)

looks like from an algorithmic

standpoint. Let g′(b) be the total number of edges within bin b. As a recap, if we were to choose an
edge uniformly at random from the bin, this edge would be sampled from the bin with probability
proportional to 1

g′(b) . Since we first sampled a bin with probability proportional to the f(b)†, we have

sampled an edge with probability proportional to f(b)
g′(b) . In other words, this is an implementation

of sampling with probability proportional to
f(rij)
g(rij)

.

Assume all vertices have at least 1 edge in every bin. Then some vertices may have many edges in
this sampled bin b, and some have fewer, but all vertices can be sampled. Let g′i(b) be the total
number of edges within bin b containing vertex i. Then the bias that this binned implementation of
f(rij)
g(rij)

introduces towards a single vertex i is
g′
i(b)

g′(b) , where b is the bin sampled according to f .

4.2.1 Formulating a solution

Because bin b is simply a proxy for the edge weight rij , redefine g′i(rij) = gi(rij)Ni, where gi is the
distribution of edge weights of edges containing vertex i, for which f(rij) ̸= 0. Similarly, redefine

g′(rij) = g(rij)
1
2

∑
i Ni. The observed bias towards a single vertex i is then

g′
i(rij)

g′(rij)
, which makes

the bias towards both vertices i and j for an edge (i, j)

g′i(rij)g
′
j(rij)

g′(rij)2
.

This bias can be cancelled out by sampling edges with a probability proportional to

f(rij)

g(rij)

g′(rij)
2

g′i(rij)g
′
j(rij)

=
f(rij)g(rij)

(
1
2

∑
i Ni

)2
Nigi(rij)Njgj(rij)

instead, rather than
f(rij)
g(rij)

. Since 1
2

∑
i Ni is just a constant per iteration, the final probability that

edges should be sampled proportional to is

f(rij)g(rij)

Nigi(rij)Njgj(rij)
d̂id̂j

(
1− didj

4m

)
. (4.1)

Interpreting this solution

The original way of reasoning that lead to this solution is a much vaguer one, but also insightful.

Notice that when sampling proportional to
f(rij)
g(rij)

, we are simply compensating for sampling from

g. Every vertex i also has a distribution gi of edge weights for edges containing vertex i. If we can
sample according to f

1
2 per vertex, we automatically also sample according to f per two vertices, i.e.

per edge. Because we see that some vertices are favoured over others, this should be done. In other
words, the distribution we should be sampling proportional to should look something like

f(rij)
1
2

gi(rij)

f(rij)
1
2

gj(rij)
=

f(rij)

gi(rij)gj(rij)
.

†Technically, b is an index of f , and not an edge weight, but since indexes are proxies for edge weights, we abuse
notation like this.

46

However, when g = gi for all vertices i, the method should be identical to sampling proportional to
f(rij)
g(rij)

, hence the solution is most likely more like

f(rij)g(rij)

gi(rij)gj(rij)
.

But now, we still have the problem that if vertex i has many more neighbours than j, we still
sample i more, hence the solution should be more like

f(rij)g(rij)

Nigi(rij)Njgj(rij)
.

This is insightful because it makes clearer that we are sampling proportional to f(rij)
1
2 per vertex,

which then turns out to sample proportional to f(rij) per edge. This insight is useful, because
the assumption that every vertex is present in every bin is false, and this has consequences for the
resolution of the histograms used to represent g′i. We solve this problem in section 4.3 using this
insight. Still, for in the binary case, there are no such problems.

4.2.2 The binary case

The implementation of the binary case is very similar to the one discussed in section 2.2. This
is because gi(rij) = 1 for all vertices i, since gi is the distribution over edge weights for which
f(rij) ̸= 0. In other words, from the edges for which f(rij) ̸= 0, we only to have to sample edges
with probability proportional to

1

NiNj
d̂id̂j

(
1− didj

4m

)
.

Before the step where we compensate with Ni

maxk Nk
, we already sampled with probability propor-

tional to
1

Ni
d̂id̂j

(
1− didj

4m

)
.

This means that all we need to do, is to replace this die roll with one that succeeds with probability
mink Nk

Nj
. The minimum is obtained using the same AVL tree from which we obtained the maximum,

and the implementation is no longer split into two phases.

4.3 The continuous case

We now run into the problem that if we split the samplable edges over the n different vertices, and
bin these edges in the same way we bin f and g, either the bin size will be impractically large, or the
not every vertex will be present in an edge in every bin. These problems are not mutually exclusive,
either. As the algorithm progresses, more and more samplable edges are removed, leading to not
every vertex being present in every bin anyway. Because of this, we aim to use small bins, and to
deal with the zeros by somehow compensating for them. We will not be able to find a solution to
this problem entirely, but we will solve it approximately.

47

4.3.1 Practical problems

Recall that we are attempting to sample according to f
1
2 per vertex. This means the problem

is actually that we are not able to sample edges according to f
1
2 at all, because we lack edges.

Instead, we are only sampling according to f
1
2 for the bins where we have edges, and according to 0

elsewhere. This means we are undersampling bins if many vertices lack edges in these bins.

Because of this, we change the target distribution that the edges of individual vertices are sampling
according to. We do so such that in total, the distribution of all edge weights is still f . Think
of the algorithm as if we were to pick a vertex at random, because they should all have the same
probability of being chosen, and then for this vertex, select an edge weight roughly according to
f

1
2 , deviating in its own way due to missing edges.

Then the probability that a bin is chosen is proportional to the number of vertices for which there
is an edge in this bin. If f

1
2 assigns the same probability to 2 bins, but one occurs among twice as

many vertices, this bin will be chosen twice as many times.

Practical solutions

Now assume that this is somewhat representative of what is happening when sampling in our
algorithm. Let h(b) count the number of vertices for which there are edges in bin b. Then the
claim is there is a bias of h2(b), squared because we are sampling 2 vertices. Or in other words,
proportional to how many vertices are capable of sampling that bin, squared.

Therefore, instead of sampling according to f
1
2 , we sample according to f(b)

1
2

h(b) . In other words, we

scale the bins such that bins with few vertices that contain edges in this bin, are more likely to be
sampled.

After scaling with h, the vertices are no longer sampled with the same probability. They are now

sampled with probability proportional to qi =
∑

b
f(b)

1
2

h(b) 1vertex i has an edge in bin b. This makes our

best attempt sampling with probability proportional to

f(rij)

h(rij)2qiqj

g(rij)

Nigi(rij)Njgj(rij)
d̂id̂j

(
1− didj

4m

)
. (4.2)

Imperfections of the solution

The biggest problem with the above equation is that scaling with qi does not actually fully correct
for the bias towards vertices introduced by not having edges in all bins. Imagine having only 2 bins
while comparing 2 vertices. Imagine that one vertex has edges in both bins, but that the other
vertex only has edges in one bin. The only thing we can then do is scale the probabilities in the
one bin where they both occur to the best of our ability, but this still will not make both vertices
equally likely to be sampled.

Another problem is that qi changes for many vertices every time h changes. As such, qi is not
maintainable in a reasonable time as it can take O(n3) operations. Because of this, we will propose
an approximation to qi that only adds constant time overhead, compared to the cost of the rest of
the algorithm.

48

The third problem is that given this approximation of qi, it would cost another multiplicative cost
of O(log(m)) to maintain an AVL tree of q, and the minimum and maximum would not be very
accurate. This is again resolved using an approximation.

4.3.2 Implementation

The implementation of equation 4.2 is structured in the same way as that of the one described
in section 2.3. We still sample a vertex i from an array according to d̂i, then sample from its
neighbours to obtain j, and then roll a die to compensate for the remaining biases. The difference
is that this die roll now looks like this:

Ni

maxk Nk

d̂j

maxk′ d̂k′

(
1− didj

4m

)
g′(brij)

maxb g′(b)

1

g′i(brij)g
′
j(brij)

f(brij)s
2u2

h(brij)
2q̃iq̃j

We will unpack this slowly. The first term, Ni

maxk Nk
, compensates for sampling from the neighbours

of i. This might seem counterintuitive because we need Ni in the denominator. However, for this
die roll to work, we also need g′i in the denominator, which also contains Ni implicitly.

Next, we encounter the familiar
d̂j

maxk′ d̂k′

(
1− didj

4m

)
, which we have also seen in most other imple-

mentations. After that comes
g′(brij)

maxb g′(b) . Here, the bin brij corresponding to the edge weight rij , is

used as an input to g′ to emphasize that this is how we approximate g. Recall that g′(b) counts the
number of edges that have an edge weight that gets mapped to bin b. Because g and g′ only differ
by a constant per iteration, it does not matter which we use for the die roll. Since g′ is slightly
easier to maintain, g′ is used.

Second to last, we find 1
g′
i(brij)g

′
j(brij)

. Because g′i(b) and g′j(b) count the number of edges in bin b, we

have that g′i(brij), g
′
j(brij) ≥ 1 for every sampled edge. Because of this, 0 < 1

g′
i(brij)g

′
j(brij)

≤ 1.

Bin compensation

The last term is
f(brij)s

2u2

h(brij)
2q̃iq̃j

. We have seen f and h before. f(brij) and h(brij) are the height of the

target distribution, and number of vertices that have an edge in bin brij , respectively. q̃i, q̃j , s and
u are new. The goal of q̃i, q̃j and s is that, together, these approximate qi and qj . The goal of u is
that the entire term remains below 1.

We define s as the number of vertices that still have samplable edges. We then also define
q̃i = sqi =

∑
b f(b)

1
2

s
h(b)1vertex i has an edge in bin b. The added benefit of this is that s

h(b) stays

closer to 1 compared to just 1
h(b) , which allows us to poorly maintain q̃, without having terms of

the sums becoming destructively dominant. We use s over maxb h(b) since s is much cheaper to
maintain.

We maintain q̃ by updating q̃i and q̃j every time an edge (i, j) is processed in a major way, and we
then only update the term involving bin brij . We do not loop over all bins, and we only partially
correct q̃i and q̃j . More specifically, an update occurs after sampling a vertex j from the neighbours
of i, and every time a neighbour gets deleted and is therefore no longer samplable. Since the
algorithm finishes in much less time than the O(n3) operations that are required to fully maintain
q, the kind of robustness q̃ provides is a must.

49

To illustrate this, consider what would happen if we did not use q̃. Then, the terms of q would
increase in amplitude as the algorithm progressed, meaning that terms in the sum that have not
been updated in a while would be drowned out and these sums would quickly be very inaccurate.
Also note that if h(b) = s and both decrease by 1, the terms of the sums in q̃ do not need to be
updated, but in q they do.

Lastly, we use u in an attempt to keep this term below 1. This sounds much worse than it turns

out to be. Notice that we can ensure that the term stays below 1 by scaling by maxb
f(b)
h(b)2 and by

maxk

(
s
q̃k

)2
. However, since q̃ is updated very frequently, maintaining an AVL tree adds a lot of

overhead. Instead, we can also bound the entries of q̃ itself using the worse (lower) bound(
min
b

f(b)
1
2

s

h(b)

)(
min
k

∑
b

1vertex k has an edge in bin b

)
,

which is the minimum a term in the sum can be, times the minimum number of non-zero entries
in the sum. However, this is such a gross underestimation, that one is left wondering if we can do
better.

Notice that if we went the route of scaling by upper bounds, we would be multiplying by

s2
minb

f(b)
h(b)2

maxb
f(b)
h(b)2

(
min
k

∑
b

1vertex k has an edge in bin b

)2

,

and we would define s2u2 as such.

However, what we can also do is define u2 to be just 1
c (mink

∑
b 1vertex k has an edge in bin b)

2
, where c

is some integer, initially set to 2, and roll all dice together as one, relying on the accumulation of all
overestimations. If the accepting probability never reaches above 1, we conclude that, apparently,
this works. If it does not, we increment c and rerun the entire algorithm with a higher constant.
However, we have yet to see this fail, with the required constant peaking at 1.5.

4.3.3 Pipelines; polar coordinate subsetting

We now have an implementation that uses an initial subset, but we still need to generate this

subset. In section 2.4 we sampled from edges according to
f(rij)
g(rij)

. However, this time, we also

require sufficiently many edges per vertex to be able to sample according to the target distribution
per vertex. Luckily, it is only a small change to make this happen.

Before we sampled edges by sampling a distance from f and then iterating by repeatedly sampling
a random vertex, rotation and grid depth until an edge is found. Now we instead loop over all
vertices for a fixed number of edges for vertex, and only then sample edges by sampling a distance
from f , after which we iterate by repeatedly sampling rotations and grid depths until an edge is
found.

This ensures we have enough edges per vertex to sample according to the desired distribution when
we run the algorithm with this subset. However, as we have seen in section 4.3.2, the desired
distribution of equation 4.2 does not actually implement the desired idea because if an edge is

50

simply not present in a bin, no amount of scaling can fix this imbalance. Because of this, it is
also important to not just sample edges according to the target distribution, but also according
to the uniform distribution to make sure all bins are somewhat evenly filled, which avoids bin
compensation as much as possible.

Lastly, we should take into consideration how to choose an adequate bin size for discretizing f , g
and gk for k ∈ Vn. Here, we advocate using the same number of bins as the average number of
edges per vertex. This way we expect there to be one edge per bin, per vertex, at the start of
the algorithm. This means that if we wish that the output distribution converges to the target
distribution, we have to increase the number of edges per vertex over the iterations. If we do not,
the resolution of f , g and gk for k ∈ Vn, remains the same.

Binary method

Again, we can also implement this method using the binary method. This approach is questionable
because we know that per vertex, on average half of the edges are sampled according to f , but
we have to assume that this also holds for the other half. After all, we loop over the vertices and
sampled a set number of edges according to f for each of them, but these edges also get added to
the other vertex in the edge and this will still create some imbalance.

If the imbalance is limited to the quantity of edges between vertices, then this is fine because this
is corrected for in the binary method. If it also affects the distribution of the edges per vertex, we
might not be able to tell from the convergence to f , since the overall edge weight distribution is
unaffected.

The subset is also constructed differently from when using the continuous method. There, we
want edges in most bins for every vertex, hence we also sample edges according to the uniform
distribution. If we use the binary method, we do not sample these additional edges, as we will not
be keeping track of these distributions to begin with. We want the distribution of the edge weights
in the subset to be the same as those in the output graph.

51

Chapter 5

Empirical behaviour of vertexwise
sampling

We now investigate the empirical behaviour of this vertexwise approach in the same way we have
done before in chapter 3. However, this time, we only have a subset based implementation.

5.1 Results

5.1.1 A denser population with constant dmax

Again, the first limit we are interested in is when we fix dmax to be a constant, namely 8, and
uniformly sample degrees from [1, dmax] for each vertex, while increasing the number of vertices n
that are sampled from the fixed distribution of locations.

Run time

When using the continuous method exclusively, the results are inconclusive due to the high variance
of the run time, as can be seen in figure 5.1. When using the binary method, the run time again does
not significantly deviate from O(m

1
3) per edge, as can be seen in figure 5.2. The binary approach

does appear to be roughly a factor 10 faster.

52

(a) close (b) far

Figure 5.1: Average run time per edge with the use of an initial subset.

(a) close (b) far

Figure 5.2: Average run time per edge with the use of an initial subset and the binary method.

Uniformity

It turns out in all cases, the error does not increase with m, but instead stays O(1), as can be seen
in figures 5.3 and 5.4. In other words, no evidence is found against some form of uniformity.

53

(a) close (b) far

Figure 5.3: The number of unsatisfied degrees with the use of an initial subset.

(a) close (b) far

Figure 5.4: The number of unsatisfied degrees with the use of an initial subset and the binary
method.

Convergence to the target distributions

Like before, the empirical edge weight distribution appears to converge to the target distributions
when using fclose. Although the error does decrease as we increase m when using ffar, it appears the
error is not headed to 0, and stagnates like before. This can be seen in figures 5.5b and 5.6b.

54

(a) close (b) far

Figure 5.5: The unsigned area between the cumulative target distribution and the empirical edge
weight distribution, with the use of an initial subset.

(a) close (b) far

Figure 5.6: The unsigned area between the cumulative target distribution and the empirical edge
weight distribution, with the use of an initial subset and the binary method.

5.1.2 A denser population with increasing dmax

The second limit we are interested in is, again, when we let dmax and n increase together. The
experimental setup is the same as in section 3.2.2.

Run time

When exclusively using the continuous method, the results are again inconclusive due to the high
variance of the run time, as can be seen in figure 5.7. When using the binary method, the run time

55

again does not significantly deviate from O(m
1
3) per edge, as can be seen in figure 5.8. The binary

approach still appears to be roughly a factor 10 faster.

(a) close (b) far

Figure 5.7: Average run time per edge with the use of an initial subset.

(a) close (b) far

Figure 5.8: Average run time per edge with the use of an initial subset and the binary method.

Uniformity

Again, it turns out in all cases, the error does not increase with m, but instead stays O(1), as
can be seen in figures 5.9 and 5.10. In other words, no evidence is found against some form of
uniformity.

56

(a) close (b) far

Figure 5.9: The number of unsatisfied degrees with the use of an initial subset.

(a) close (b) far

Figure 5.10: The number of unsatisfied degrees with the use of an initial subset and the binary
method.

Convergence to the target distributions

Like before, the empirical edge weight distribution still appears to converge to the target distribu-
tions when using fclose, but when using ffar, it appears the error is not headed to 0. This can be
seen in figures 5.11b and 5.12b.

57

(a) close (b) far

Figure 5.11: The unsigned area between the cumulative target distribution and the empirical edge
weight distribution, with the use of an initial subset.

(a) close (b) far

Figure 5.12: The unsigned area between the cumulative target distribution and the empirical edge
weight distribution, with the use of an initial subset and the binary method.

5.1.3 A changing distribution with constant dmax

Finally, we are again interested in what happens if the number of available edges does not grow as
quickly as the number of edges. The experimental setup is the same as in section 3.2.3.

Run time

Here, the results are inconclusive for all runs, as the variance is too large.

58

(a) close (b) far

Figure 5.13: Average run time per edge with the use of an initial subset.

(a) close (b) far

Figure 5.14: Average run time per edge with the use of an initial subset and the binary method.

Uniformity

We again find the same pattern as in section 3.2.3, where in all cases, the error does increase with
m, but more so for ffar than for fclose. Although the error does appear to be roughly a factor 4
lower than in section 3.2.3, the variance of the error still appears to increase with m in all cases,
hence it seems unlikely uniformity holds here.

59

(a) close (b) far

Figure 5.15: The number of unsatisfied degrees with the use of an initial subset.

(a) close (b) far

Figure 5.16: The number of unsatisfied degrees with the use of an initial subset and the binary
method.

Convergence to the target distributions

Remarkably, this time we do appear to obtain convergens of the empirical edge weight distribution
to the target distribution in all cases, even though we did not in section 3.2.3. This can be seen in
figures 5.17 and 5.18.

60

(a) close (b) far

Figure 5.17: The unsigned area between the cumulative target distribution and the empirical edge
weight distribution, with the use of an initial subset.

(a) close (b) far

Figure 5.18: The unsigned area between the cumulative target distribution and the empirical edge
weight distribution, with the use of an initial subset and the binary method.

5.2 Summary

5.2.1 Run time

The way the run time scaled was unclear when exclusively using the continuous method. When
using the binary method, the run time was consistently roughly 10 times faster compared to using
the continuous method exclusively. Then, the run time did not notably differ from O(m

1
3) per edge,

although sometimes it did appear to be O(1) for fclose, of which we know this cannot hold true for
very large n.

61

5.2.2 Uniformity

Identical dynamics are found as in chapter 3, although here, the error does appear to be some
constant factor lower, with this constant ranging from 3 to 10 depending on the experiment. Again,
we found no evidence against uniformity in the first two limits, i.e. when n was increased individu-
ally, and when dmax was increased and n was kept at the bare minimum. We only found evidence
against uniformity in the last limit, where we shrunk the range of distances in which we allowed
edges. Because of this, uniformity is unlikely to persist when an increase in vertices coincides with
a broader distribution of locations, if the target distribution is quite limited in its range of allowed
edge weights.

5.2.3 Convergence to the target distributions

We again found that for fclose the empirical edge weight distribution converged to the target dis-
tribution every time. Before, the edge weight distribution diverged when using an initial subset for
ffar. This time, however we found that in the first two limits convergence was plausible. Conver-
gence was too slow to be able to tell if the error was headed to 0 or not. Surprisingly, in the last
limit, the empirical distribution did appear to converge to the target distribution.

62

Chapter 6

Dutch company network

We now apply these network generating algorithms to real data. Namely, we attempt to reconstruct
the network of companies in the Netherlands, at Statistics Netherlands. Because reconstructing this
network is an active project, data is already readily available in the right format. This data was
previously used by a deterministic method that produced a single guess of this network. Since
relying on a single network is undesirable, the probabilistic approach of the algorithms in this
thesis is favourable.

6.1 Available data

The available data contained the locations of companies, and their estimated number of connections
per product group for both supply and use∗. Because of this, we split the data per product group,
where every vertex has a location, an in-degree and an out-degree. The edge weights are again the
distances.

What is not provided is a target distribution. It was decided that the suppliers and users should be
more likely to connect if they are closer. This relation, is set to be 1

(rij+C)t
, for t ∈ {0, 1

2 , 1, 2}, for
distances rij and constant C. This constant C should be thought of as setting the smallest distance
from where we are interested in the dynamics, and was set to be 100 meters in the project. The
probability of sampling a company located 2 meters away should not be half of the probability of
selecting one that is only 1 meter away. It is also decided that the output distribution should not
be independent of the locations of the companies. After all, we are trying to model how companies
connect.

For example, imagine there are two large clusters of companies at some distance. We then ex-
pect that most trade occurs within the clusters, but we also expect the real network to contain a
substantial amount of trade between the clusters. In other words, using a predefined target distri-
bution without considering the vertex distribution is undesirable. Instead, the desired algorithm is

∗Incomplete data entries were excluded.

63

sampling edges with weights proportional to

f(rij)d̂id̂j

(
1− didj

4m

)
,

where consequently the empirical edge weight distribution no longer converges to f .

The directedness of the graph is implemented by treating every company as two vertices, while
excluding connections between these pairs, and also excluding connections between vertices when
they are either both suppliers or users.

6.2 Implementation

For this new variant, we can yield an efficient algorithm by adjusting the implementation without
subset discussed in section 2.4.2. There we repeatedly resampled the vertex, rotation, and grid
depth while keeping the distance the same. This made sure we would find an edge with the desired
edge weight, regardless of how likely it would be to find an edge with this weight.

Now we also resample the distance every loop, making it dependent on this probability we tried to
avoid earlier. If there are twice as many edges at one distance compared to another, the probability
of selecting the former should now be twice as high. However, due to the circle of a given distance
covering twice as many grid cells as the distance doubles, we also have to include multiplying f(x) by
x to account for this bias. In practise, however, we simply choose t ∈ {−1,− 1

2 , 0, 1} instead.

The last change is that we need to maintain two grids, one for the users and one for the suppliers.
We sample a random vertex from either the users or the suppliers, with a 50% chance. The grids
are independently resized whenever the number of vertices in a particular grid halves. We also
maintain two AVL trees for tracking d̂.

64

Chapter 7

Discussion and conclusions

7.1 Existing methods

We have discussed different ideas and implementations, all related to sampling graphs. First, there
was the method that did involve edge weights, as proposed by [Bayati et al., 2010]. We improved
the time complexity of this method from O(mdmax) to O(m).

Then there was the method proposed by [Kryven, 2022] where we sample a graph according to
some output. For 2D distances, we implemented this method faithfully, with a time complexity of
roughly O(m

9
8 dmax), where it is unclear what the exact complexity is. For this method, we found

that the empirical edge weight distribution converged nicely to the target distribution in all cases,
and that we error was O(1) when increasing n, and when increasing dmax while keeping n at a
bare minimum. However, the error rapidly increased when decreasing the range in which edges
were allowed. The speed of this increase was dependent on the specific target distribution, but in
either case, uniformity seemed unlikely to hold because due to the variance of the error increasing
as well.

We also implemented this method without assuming any structure of the edge weights. As a
consequence, this means storing all edge weights, resulting in at least O(n2) storage and run time if
all edges are used. However, this method also allows cutting down on the edges that are considered
by only using a subset of all possible edges instead.

The main struggle for this approach then becomes selecting the edges that are used in such a manner
that the edge weights of these edges follow the desired target distribution already, otherwise the
method will run out of appropriate edges. Even for 2D distances, the time required for creating such
a subset turns out to be prohibitively expensive. As a consequence, using this method is ill-advised
from a run time perspective.

Regardless, the approach was tested without building a new subset every repetition, and the run
time did not appear to deviate much from O(m

4
3), when setting the number of edges in the subset

to be O(m
4
3). In other words, handling the subset appeared to be the limiting factor. More

damning than the runtime is that this implementation did not converge to the target distribution

65

as n increased. This is likely caused by the fact that the implementation is not faithful to the
intended method due to the use of a subset.

This idea was also implemented in the binary case, where edge weights get reduced to allowing
the edge or not allowing the edge. Because the subsets are build to already follow the target
distribution, the results turn out to be identical to those of the continuous implementation, except
that it speeds up the run time by a factor 5.

7.2 Vertexwise sampling

We then moved on to another way of sampling the edges. Namely, the goal is to sample edges
such that vertices are sampled with the same probability, and to have the edge weight distribution
each vertex is sampling from be such that the edge weight distributions of the output graphs still
converges to the target distribution. This turned out to be difficult to implement, and outright
impossible if too many bins of individual vertices were empty.

Regardless, the empirical edge weight distribution converged to fclose in all limits. Before, the
empirical edge weight distribution did not at all converge to ffar when using a subset method.
However, when using vertexwise sampling, convergence is plausible for the first two limits, and
evident for the last limit.

As for uniformity, the same patterns persisted as without vertexwise sampling. The only difference
was that the error was significantly lower, but this difference was only a constant, estimated to be
somewhere between 3 and 10. Regardless, it is entirely unclear if this produces graphs with equal
probability, since looking at the error can only provide an argument against uniformity. A precise
mathematical analysis is still required to make further claims.

The run time was difficult to estimate due to very large variances. Still, it was reduced by a
factor 10 through the use of a binary implementation, making it just as fast as the binary approach
without vertexwise sampling. Future work could investigate ways of maintaining a constant number
of available vertices throughout the algorithm, instead of depleting the provided subset.

7.3 Dutch company network

Lastly, we applied these methods to reconstruct the Dutch company network as a project at Statis-
tics Netherlands. For this project, we implemented a final method, which is an adaptation of the
faithful implementation that does not use a subset. This method now produces a directed graph,
where the edges are no longer sampled to match a target distribution, but rather to simulate how
companies connect.

66

Bibliography

[Bayati et al., 2010] Bayati, M., Kim, J. H., and Saberi, A. (2010). A sequential algorithm for
generating random graphs. Algorithmica, 58(4):860–910.

[Kryven, 2022] Kryven, V. (2022). Unbiased sampling of geometric graphs with degree constraints.

[Steger and Wormald, 1999] Steger, A. and Wormald, N. C. (1999). Generating random regular
graphs quickly. Combinatorics, Probability and Computing, 8(4):377–396.

67

	Introduction; literature review
	Generating random graphs given a degree sequence
	Regular graphs
	Non-regular graphs

	Distributions over edge weights

	Designing fast implementations for existing methods
	Without edge weights
	Hash tables
	AVL trees

	With edge weights; the binary case
	Sampling vertices
	Managing the neighbours
	Die rolls
	Heuristics and intuition
	An alternative implementation

	With edge weights; the continuous case
	The die roll
	Omitting neighbours
	An alternative implementation

	An efficient pipeline
	Polar coordinate subsetting
	An implementation without storing edge weights
	Using the binary method for increased speed

	Empirical behaviour
	Experimental setup
	Various limits
	Vertex distribution
	Target distributions
	Uniformity
	Evaluated methods and parameters

	Results
	A denser population with constant dmax
	A denser population with increasing dmax
	A changing distribution with constant dmax

	Summary
	Without initial subset
	With initial subset
	Uniformity

	Vertexwise sampling
	Introduction
	Designing the new method
	Formulating a solution
	The binary case

	The continuous case
	Practical problems
	Implementation
	Pipelines; polar coordinate subsetting

	Empirical behaviour of vertexwise sampling
	Results
	A denser population with constant dmax
	A denser population with increasing dmax
	A changing distribution with constant dmax

	Summary
	Run time
	Uniformity
	Convergence to the target distributions

	Dutch company network
	Available data
	Implementation

	Discussion and conclusions
	Existing methods
	Vertexwise sampling
	Dutch company network

