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Abstract
Software architecture can describe software systems: it is a com-
position of viewpoints to describe the system. This paper focuses
on the interaction between components in a system. These can
be modeled as a choreography, a BPMN-like model capturing
all possible interaction scenarios between two components. In
this paper, we show that it is feasible to analyze a composed set
of these choreographies: a tree of choreographies in which each
member may refer to another. The two major components of the
analysis are 1) the correctness by structure: a choreography fol-
lows strict grammar and assumptions and is therefore guaran-
teed sound and 2) the choreography is transformed to a Petri net
which is checked by an external state explosion tool for proper
completion. This paper shows the theoretical techniques to ver-
ify a composed choreography, and implements the solutions into
a single educational modeler tool: INORA2.
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Chapter 1

Introduction

This chapter briefly introduces the research field, basic concepts and defines the problems this thesis
aims to solve.

1.1 General

One of the most important aspects of the software industry is describing a system as a whole. A descrip-
tion covering all relevant perspectives is called the Software architecture. “The software architecture of a
system is the set of structures needed to reason about the system, which comprises software elements,
relations among them, and properties of both.” [1]. As it is impossible to capture the essence and detail
of a system architecture in a single model, the system is considered in terms of multiple viewpoints.
Within the research field of “interaction-oriented software architecture”, the most important viewpoints
are the functional and concurrency viewpoints. [2]. These will be elaborated in chapter 2.

In [2] the author proposes to connect these two viewpoints and to describe them using a specific set of
models. This approach is called INORA, which depicts a functional view of a system with a model com-
posed of containers containing functions called the interaction model. These functions can communicate
with each other using protocols, which is an aggregated model depicting a set of all possible interaction
scenarios between the participants. We describe the contents of such a protocol using a choreography.
This is modeled in the concurrency viewpoint of a software architecture using a modified version of the
BPMN Choreography notation.

Function A

Function B

Function A

says something to

Function B

Function B

responds to

Function A

Functional view Choreography

Figure 1.1: Relation between the interaction model and choreography.

The framework for working with protocols and their relation to the interaction model is a result of a
thesis [2]. In this research the framework is taken as a basis, and extended upon. At the moment IN-
ORA has a very basic implementation written as a plugin for the Eclipse modeler, using the theory as
explained in [2]. The theory describes in-depth all the aspects of the interaction mode and the chore-
ographies that are proposed and suggests that it is possible to perform model-checking in INORA using
Petri nets. This would result in not only a notation for architects to depict the functional system and
how each component communicates but also provide an extensive and formal analysis of the behavior
of the interactions, resulting in useful feedback on the to-be system.

[2] only scratches the surface of the translation, possibilities for analysis, and a way to implement this in
a tool. This research aims to fill these shortcomings by formalizing and implementing solutions to the
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analysis problems. The resulting tool is an addition to the software architecture field, as it provides the
ability to model and check INORA models.

1.2 Problem Statement

For any system modeled with INORA this thesis aims to give feedback on the quality of the models,
and therefore the system. Although notation and an initial semantics of INORA are provided in [2],
the current proof-of-concept tool only supports simple modeling capabilities. In this thesis, we want to
extend the tool to define formal semantics to be able to provide feedback on the quality of the model.

At this moment, literature shows that there is no method to automatically check the quality of protocols
in INORA. The protocols in INORA are modeled with a modified and more strict version of the BPMN
Choreography. Literature shows it is possible to translate such models to more formal models, such as
Petri nets. The papers [2] and [3] already define a mapping for translating a single BPMN Choreogra-
phy model to a Petri net. Petri nets have properties that can be checked for to infer the correctness of a
model. However, current INORA choreographies may have references to other protocols, as a system
is often a composition of multiple components that work together. [4] states that if all components are
considered correct, the composition will also be correct. This is, however, an assumption that does not
always hold. INORA currently lacks the proper analysis tools to verify whether a composition of com-
ponents, communicating via protocols, is correct. The major problem is, therefore, the lack of methods
and tools to guarantee correctness of INORA models.

Problem statement
This research aims to provide formal semantics and tool support in order to give architects feed-
back to create sound INORA models, such that the quality of software architecture is improved.

When a formal translation is proposed it needs to be implemented in a tool itself to provide automation.
The current INORA tool has no support for translation and verification. The translation needs to support
mapping to pseudo-code so that it can be implemented. Through the tool constructed Petri nets need
to be checked for certain properties and the quality of the model needs to be determined and feedback
must be given back to the user. The result of this thesis is a formal translation method and verification
method, implemented in an updated tool: INORA2.

1.3 Research Questions

The problem statement raises one main goal for this thesis. The goal is to give software architects au-
tomated formal feedback on software design. For this goal to be achieved, a (set of) tool(s) needs to be
created which can be used to model both the interaction model and choreographies for any software
system, run analysis, and display feedback.

To solve the problem at hand, a research question needs to be stated. It is divided into five sub-questions
which will be answered in the same order throughout the thesis.

RQ: How can software architects best be provided with automated feedback on the quality of an Interaction
Oriented Software Architecture?

To answer this main research question a couple of sub-questions need to be answered.

SQ1 How is a formal translation of a composed choreography to Petri nets defined, so
that allows for verification?

A method needs to be defined that can make the translation from a
(composed) choreography to a formal Petri net. This translation needs
to be non-redundant, well defined, should not introduce livelocks and
deadlocks , and should be easily implemented with any programming
language.
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SQ2 What techniques can be used to check for the soundness of a Petri net?

Petri nets can be tested on common properties such as deadlocks,
livelocks, and soundness. How does a combination of these imply
“correctness”, or more formally “soundness” and which methods can be
used to check this?

SQ3 How can the formal translation method and the verification techniques best be
implemented in a tool so that it returns feedback?

A tool is required to make use of the translation proposed by SQ1.
Furthermore, it will use verification techniques to generate feedback on
the model. How will this tool work and what functions will it need to
support to make optimal use of the findings of SQ1 and SQ2?

1.4 Research Method

The three sub-research-questions stated in section 1.3 are answered following a formal research method.
The Design Cycle as described by Wieringa [5] is used as a handlebar, as all sub-questions can be cate-
gorized by each phase in the cycle. Note that the design cycle is used instead of the engineering cycle
as there will be no Treatment implementation. The term “implementation” is used extensively throughout
the thesis, yet our definition differs from the one given by Wieringa. Wieringa defines a Treatment im-
plementation as using the validated and evaluated artifact in its original social problem context [5]. The
term in the context of this thesis, however, is defined as an algorithm and (a set of) tools that translate
the theoretical framework to a digital prototype. This discrepancy in terminology is also extensively
mentioned in Wieringa’s book.

The design cycle consists of three phases: (i) the problem investigation (ii) the treatment design and (iii) the
treatment validation. As the name implies, these can be performed in an cyclic manner. In the time span
of this thesis there is only time to perform on iteration of the cycle. The sub-questions can be divided
into the three phases with the following distribution:

SQ1 SQ2 SQ3
(Phase 1) Problem Investigation ✓
(Phase 2) Treatment design ✓ ✓
(Phase 3) Treatment validation ✓

In the first phase Problem investigation the gap in the literature and the reason for this thesis are discussed.
It also uses the existing literature to answer SQ2 as Petri net verification and feedback are covered in a
wide range of research. The second phase Treatment design solves the problems found in the literature
by defining a formal translation and developing a (set of) tool(s) to implement the translation and auto-
mated feedback. This answers SQ1 and SQ3. Finally, the third phase Treatment validation will bring see
whether the design is feasible by creating a tool implementation.

After answering each sub-question the main research question will be answered: how software architects
can best be provided with feedback, and what this feedback consists of.

1.5 Running Example

Although the concepts in the thesis can be quite abstract, the goal is to eventually apply them in the
software architecture field. Therefore examples and theorems that are found will be brought back into
a generic context. This will be done with a running example, which is described below. The running
example is a fictional and simplified system that could, for example, be found in a check-in travel envi-
ronment.
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To service a public transportation company (PTC), a check-in-like system is used. It consists of four
different types of devices:

• PTC System - This is the main server for authorizing travels, storing trips, and keeping track of
balance.

• Trip Terminal - This is a terminal from which a traveler can check in and check out with a badge.

• Service Terminal - This provides service functionalities such as viewing past trips and current
balance. For simplification reasons, the function to deposit money onto the badge has not been
added to the FV.

• Employee Terminal - This terminal provides employees from PTC to check whether a badge is
checked in and show the trip information.

A usual interaction would be a passenger (referred to as “user”) that wants to travel by train. The user
checks in with his/her card at the Trip Terminal, which sends an authorization request to the PTC sys-
tem, checks for sufficient balance, and sets a non-finished trip. Once the user checks out at his/her final
location, the Trip Terminal finds the latest trip, marks it finished by setting the final destination and
deducts money from the credit. Another common interaction would be the railway personnel checking
whether a passenger has checked in. Such an interaction would start by scanning the card from the Em-
ployee Terminal, which asks the PTC system to check whether the given card has an active trip. This
will result in an answer displayed on the screen of the Employee Terminal.

1.6 Thesis roadmap

The concepts in this thesis are related to each other in the domain of Interaction-Oriented Sofware Archi-
tecture. As a guide, this section provides a textual roadmap and a visual representation of the relations
between the concepts.

Interaction-Oriented Software Architecture

Tools

INORA2

DAME

Analysis / Feedback INORA Approach

Interaction model

Choreography
(Protocol)

1

1..*
refers to

Constraints

Choreography composition
  

1..*

1..*
contains

Hierarchy (references)

conforms to

Formal construct

translated to

Petri net

Choreo tree
modeled in

Result
(is sound?)

uses

dispays

verifies
Chapter 4

Chapter 2

Chapter 1,2,3

Chapter 4

Chapter 6

Chapter 5 & 7

Figure 1.2: Conceptual overview of concepts in this thesis.

In Chapter 1 we cover the basic introduction to the topic and basic concepts. Furthermore, the problem
is identified and research questions are formed. We also describe the research method and provide a
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brief description of the running example. In Chapter 2 the concepts used in the research are covered ex-
tensively. It provides formal definitions for software architecture and its viewpoints, explains the crucial
concept of choreographies and their compositions, discusses possible modeling languages described in
literature, and introduces the interaction model. Another major topic discussed in this chapter is Petri
nets, which is a crucial concept in this thesis. If gives formal definitions, conditions, assumptions, and
properties of Petri net constructs. Chapter 3 puts a focus on related work concerning BPMN to Petri net
translation, (tool-based) verification, and feedback visualization.

The following chapters are concrete solutions to the problems stated in the introduction. Chapter 4
covers all the aspects of the needed formalization. It provides strict constraints to choreographies and
describes the procedures to generate a Petri net and (conditionally) a computationally cheaper chore-
ography tree. Chapter 5 then follows this theory up by describing the implementation called INORA2.
It describes the application, and shows how the procedures described in chapter 4 are implemented
and their results are combined to derive an analysis outcome. Chapter 6 introduces another tool called
DAME, which describes the support software for Petri net validation called LoLA 2.0 and INORA2 inter-
actions with it. Chapter 7 shows a walk-through for INORA2. A common interaction between INORA2
and end-users is described and depicted in this chapter.

Lastly, Chapter 8 draws the conclusions, answers the research questions, and discusses the research.
Additionally, future work is provided.

The appendices cover: (A) the meta-model for INORA models (B) choreography tree generation algo-
rithm (C) Petri net generation algorithm (D) Petri net translation segments (E) extensive description of
the DAME tool.



Chapter 2

Basic Notions

This chapter introduces the basic concepts surrounding software architecture and introduces crucial
definitions and the context.

2.1 Software Architecture & Views

The software architecture of a system describes software elements, (externally visible) properties of those
elements and their relationships [6, 1]. It can be used to model out a system and is useful in design, de-
velopment, and during extension and maintenance as its purpose is to help understand the system [7].
As it is impossible to capture the essence detail of a system architecture in a single model, the system is
considered in terms of multiple viewpoints. A viewpoint is collection of patterns, templates and conven-
tions to create a view [2]. Each viewpoint has its own purpose and can be used by certain stakeholders
in the context [7, 8]. Together all viewpoints give a holistic view of the system. Although [7] introduces
seven different viewpoints, the focus within this thesis is on the functional and concurrency viewpoints.

The functional viewpoint (FV) describes the functional elements and their interfaces and primary inter-
actions within the system. The shapes of other viewpoints highly depend on the FV and it is, therefore,
one of the most important viewpoints [7]. The functional viewpoint contains components that may
contain other components and/or functions. Functions are coupled by dependencies (within the same
parent component) or protocols (between functions in different components). In line with the title of
this thesis, the aim of Interaction Oriented Architecture is to model the interactions between these com-
ponents.

The concurrency viewpoint maps functional elements to concurrency units and shows its coordination.
This entails the creation of models that show the process and thread structures that the system will use
and the interprocess communication mechanisms used to coordinate their operation [7]. These inter-
actions are captured in the concurrency viewpoint models, which may exist out of user scenarios and
choreographies. These will be extensively covered in section 2.2.

According to [7], several pitfalls exist when modeling in the concurrency viewpoint. These should be
avoided to achieve a high-quality model. Examples of these pitfalls are (i) excessive complexity (ii) pro-
cess deadlocks (iii) process livelocks (iv) race conditions. The concurrency viewpoint should not cover
very detailed interactions (e.g. a full TCP handshake should not be modeled), but rather give a high-
level overview of the interactions between components in the system.

The aim of this thesis, therefore, is to automatically test whether these concurrency models are free of
semantic errors.
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2.2 Choreographies & User Scenarios

The concept of a choreography is already mentioned in section 2.1. According to [7], choreographies are
modeled in the concurrency viewpoint (Definition 2.1) of a software architecture. This section will elab-
orate further on the concept.

Definition 2.1: Concurrency viewpoint [7]

Describes the concurrency structure of the system and maps functional
elements to concurrency units to clearly identify the parts of the sys-
tem that can execute concurrently and how this is coordinated and con-
trolled. This entails the creation of models that show the process and
thread structures that the system will use and the interprocess commu-
nication mechanisms used to coordinate their operation.

Thus, the concurrency viewpoint maps the components defined in the functional viewpoint to a view
that shows the interactions between those components. In contrast to historic system designs, almost
any system nowadays makes use of concurrency. Systems are event-driven and need to react to “things”
happening on the system. The concurrency viewpoint typically consists of three parts [7] (i) a process
model describing the inter-process (components) communication structure (ii) a state model describing
the possible state for each component during run-time and the possible transitions and (iii) a number of
analysis techniques to confirm that the model is sound. In this context, a system is sound when it has
the possibility to terminate [9].

As software components commonly work concurrently and often use message-based communication,
asynchronous communication is implied [10]. Asynchrony, however, introduces a certain complexity
[11] which is inherent to the concurrency viewpoint. This asynchronous property of these models often
makes it difficult for humans to quickly spot and correct errors. Deadlocks, for example, usually arise
as the final state of a complex sequence of operations on jobs flowing concurrently through the system
and are thus generally difficult to predict [12].

The models in the concurrency viewpoint can be modeled in a wide variety of languages. For process
modeling, architects could use an extended version of UML, formal concurrency modeling languages
such as LOTOS [13], CSP [14] and CCS [15], or an informal model created by the architect itself. For
state models, an architect could look into graphical notations such as UML, Petri nets [16] and SDL or
non-graphical notations such as the Finite State Process language [17].

Several modeling techniques exist and they can be indexed on the concurrency concerns listed by [7].
Such an indexation is made by [2] and is found in table 2.1. This indexation gives an overview to help
decide which techniques can be used for modeling interaction between components. In [2] is stated,
however, that “All interaction-modeling methods (..) have in common that they cannot express the
communication of a set of models. Therefore it is not possible to show consistency between a set of
choreographies.”.
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Pi-Calculus ✓ × F ✓ + A ✓ ✓
Petri Nets ✓ ✓ F ✓ ++ S ✓ ✓
WS-CDL ✓ × S × 0 A ✓ ×
BPEL4Chor ✓ × S × 0 A ✓ ×
BPMN ✓ ✓ S × ++ A ✓ ✓
Let’s Dance ✓ ✓ S ✓ ++ A ✓ ✓
Interface automata ✓ ✓ F ✓ × S × ✓

Table 2.1: A comparison of possible techniques to model the concurrency
viewpoint. The ✓and × show whether they address the concern. In the “For-
mality” column, the F and S translate to Formal and Semi-form respectively. In
the column “State- vs Action-based” the A and S translate to Action and State
respectively [2].

To address most aspects and still keep a clear and simple model, INORA is proposed in [2]. INORA
models the components and their functions with a visual notation in the functional viewpoint (named
the Interaction Model) and uses a combination of two techniques for modeling the concurrency view-
point (named the Protocol definition). The interaction model is a theoretical framework that maps con-
tainers, functions, and protocols between them. A meta-model of INORA can be found in Appendix A.
It is extensively covered in Klijs’ thesis and although it is a crucial part of INORA and forms the basis
for choreographies, the full explanation is left out of the scope of this thesis.

A major component of INORA are the choreography i.e. protocol definitions. Table 2.1 shows that both
Business Process Model and Notation (BPMN) and Petri nets [16] comply with most concerns. The
major differences between the two are Formality and their State- vs. Action-base. As these two can
complement each other, both can be used in modeling concurrency. Previous studies [2, 18, 3] propose
that non-formal visual notations of processes such as BPMN can be translated to a formal notation such
as a Petri net.

The Business Process Model and Notation (BPMN) is a standard notation for capturing business pro-
cesses, especially at the level of domain analysis and high-level systems design. The notation inherits
and combines elements from a number of previously proposed notations for business process modeling,
including the XML Process Definition Language (XPDL) and the Activity Diagrams component of the
Unified Modelling Notation (UML) [18, 19, 20]. Such models are often created in the early phases of
system development. Making sure such a model is correct avoids the pitfalls listed in [7], will result in
a better system, and avoids hard and costly corrections [18].

A creator of a choreography models all user scenarios (possible actions of a user and their consequential
indirect actions within the system) in BPMN Choreography notation which has a visual representation,
is semi-formal, and is action based. Such a semi-formal notation can then be translated to a formal one:
a Petri net [3]. This yields many advantages, which will be discussed in section 2.5. An example with
an explanation of a BPMN notation of the choreography is given in Figure 2.1.

Another formal language that a Petri net can be translated to, is Pi-Calculus. This mostly addresses the
same concerns as Petri nets and is a mature language. A study [21] names three advantages to use Petri
nets over Pi-Calculus:

1. Despite their graphical nature, Petri nets have strict and formal semantics. This makes it a solid
basis, without ambiguities that may exist in a process algebra such as Pi-Calculus.
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2. Petri nets are state-based rather than action-based (event-based). This means that states are noted
explicitly and are not inferred and are often suppressed as can be the case with process algebras.
This may seem a subtle difference, yet this is of the utmost importance for workflow modeling.

3. There is an abundance of analysis techniques for Petri nets. Petri nets can therefore be checked on
correctness using one or more of the many methods available.

Another advantage that can be spotted in table 2.1 is the availability of tools to work with Petri net. Al-
though both techniques have support tools, Petri nets are covered by wider assortment of tools, which
is a clear advantage as this thesis aims to design a new tool that uses Petri nets. [21] also lists some
disadvantages for using Petri nets. It might be more complicated to implement three types of patterns:
(i) multiple instance patterns, the burden of joining and splitting is carried by the modeler (ii) advanced
synchronization patterns, because the firing rule only supports two types of joins: the AND-join (transi-
tion) or the XOR-join (place) and (iii) cancellation pattern, as the firing of a transition is always local there
can be no global token adjustments resulting from an error for example. These disadvantages, however,
are subtle and not especially relevant for the problem in this thesis, and therefore do not outweigh the
advantages.

Message M1

Participant A

Message MAB1

Participant B Protocol x

Participant B

Message MBA1

Participant A

Participant B

Message MBA2

Participant A

Participant A

Message MAC1

Participant A

Message MAB2

Participant B

BPMN Start event

XOR (Descision)
Gateway

AND (Parallel)
Gateway

BPMN End event

Participant A sends message MAB1 to Participant B

Figure 2.1: Example BPMN Choreography, adapted from [2].

Choreographies can thus be translated to Petri nets but are initially modelled in BPMN Choreographies.
To adapt the default BPMN 2.0 Choreography notation to display interaction between software compo-
nents (protocol definition), [2] proposes three changes

1. A message Mx has a sender, represented at the top of an activity, and a receiver which is repre-
sented at the bottom. The default BPMN uses an envelope icon to depict messages, whereas [2]
has chosen to name the “activity” itself with the message.

2. The INORA choreography only supports AND-gateways and XOR-gateways as opposed to sup-
porting all possible BPMN gateways.

3. Intermediate events are used to reference other protocols. These can be read as “substitute full
protocol x here”, but for the readability and re-usability, they are displayed by a single node.

With these changes, a strictly limited semi-formal method of describing protocols (interactions) within
the concurrency viewpoint is given. This can then be used to formalize and verify the protocol.

2.3 Interaction Model

Choreographies thus represent all possible scenarios of interaction between components. These inter-
actions, however, should somehow be placed in an overview of the system to see how they relate and
when they are executed. To map these choreographies to a context view, we use the functional view-
point. Arcs between functions are directly linked to choreographies. We call this view the Interaction
Model.

This system in the running example can be modeled in this way. Figure 2.2 shows all (simplified) func-
tionalities of PTC, and their communication channels. These channels are labeled, and for each of these
arcs we can create an INORA protocol. The legend defines the four distinct types of elements in IN-
ORA. Contrary to [2], in this thesis there is no semantic difference between internal and external pro-
tocols. Originally, it was assumed that interactions between components could be asynchronous, and
interactions within components are synchronous. We drop this assumption, as it might not always apply
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in real-life systems, and this assumption has no effect once we start checking on composed choreogra-
phies.

  PTC Running Example

  PTC System

  Service Terminal

  Authentication Service   User interface service

  Trip Service

  Trip Terminal

  Authentication Service   User interface service

  Employee Terminal

  User interface service

Set
Trip

Get
Trip

  Support Service

  Authentication Service

Check
Trip

A

Request
Session

Handle
Session

System
Auth

Handle
Trip

System
Auth

Register
Trip

Handle
Trip

Handle
Service
Session

Handle
Auth

List
Trips

Calc
Balance

C D

G

E

H

F

B

  Container

Func.

Α

Container
A software component.
May contain functions
or other containers

Function
Functional activity. May
be called by protocols
and other functions,
and initiate calls

Protocol (external)
Interaction between
components (external),
initialised by functions,
named with a single
letter.

Write
TicketI

J

K

L

M

N

O

Α

Protocol (internal)
Interaction between two
functions within the same
component. Semantically
there is no difference
between internal and
external protocols.

Figure 2.2: Running example for this thesis: PTC.

Figure 2.3 displays the INORA representation of the choreography in protocol D. This is an intermediate
protocol as it can never be initialized without protocol E. The start event is triggered by the “System
Auth” function in the Trip Terminal’s Authentication Service. It also references protocol B and uses
the “Handle Auth” function in the PTC System’s Authentication Service. Note that this is a simplified
version for demonstration purposes. It is up to the modeler to decide the level of granularity of the
model. The modeler could decide to model all possible error messages, or simply return an “generic
error” as the interaction of handling, receiving, and displaying an error might be the same for a set of
different errors.

Message M1

Trip Terminal - Auth

M : Request Check-in

PTC System - Auth Handle Auth 

PTC System - Auth

M: OK

Trip Terminal - Auth

PTC System - Auth

M :  Error message

Trip Terminal - Auth

Protocol D Start Protocol D End

Trip Terminal - Auth requests check-in from PTC System - Auth

Protocol B
PTC System - Auth

M: Insuff. Balance

Trip Terminal - Auth

Authorized

Unauthorised

Can
Check-in

Cannot

Check-in

Figure 2.3: INORA Choreography of protocol D from running example.
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2.4 Composed Choreographies

In the previous sections, we discussed choreographies and their relation to the interaction model. In
a choreography, it is possible to reference one or more protocols, which themselves can then reference
protocols, etc. This recursive tree of referencing is called a composed choreography. Figure 2.4 shows
an example of such a reference and its substitution: Protocol D is referring to protocol B.

Message M1

Trip Terminal - Auth

M : Request Check-in

PTC System - Auth Handle Auth 

PTC System - Auth

M: OK

Trip Terminal - Auth

PTC System - Auth

M :  Error message

Trip Terminal - Auth

Protocol D Start Protocol D End

Trip Terminal - Auth requests check-in from PTC System - Auth

Protocol B
PTC System - Auth

M: Insuff. Balance

Trip Terminal - Auth

Authorized

Unauthorised

Can
Check-in

Cannot
Check-in

Message M1

PTC System - Auth

M : Register Trip

PTC System - Trip Get Trip

Protocol B Start

PTC System - Trip

M: Can check-in

PTC System - Auth

PTC System - Trip

M: Cannot check-in

PTC System - Auth

OK

Insuff.
Balance

Protocol B End

PTC System - Auth

M :  Authorised

Trip Terminal - Auth

Figure 2.4: Substituting reference to Protocol B with its literal choreography to construct a “composed
structure”.

The behavior and notation of composed choreographies i.e. compositions are defined as followed.

Definition 2.2: Protocol composition

Let the set of abstract choreographies C be derived from an interaction
model Mi.

The set C contains five protocols: C = {A,B,C,D,E}.

Now assume that (A refs B), (B refs C), (B refs D). Protocol E is not
referred to or referred by other protocols.

Protocol B

Partial of "Protocol A"

Protocol C

Partial of "Protocol B"

Protocol D

Figure 2.5: Example protocols: protocol A
refers protocol B, and protocol B in its turn
refers to protocol C and protocol D.
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The reference tree looks like:

. Protocol A

Protocol B

Protocol C Protocol D

Starting from the root of the tree, we call the composition of A
{A,B,C,D} ∈ Ac. The hierarchy based on edges is denoted as:
r(Ac) = {(A → B), (B → C), (B → D)}. Note that E is not included in
the composition of A as it is independent in regards to A.

Additional conditions are given to refine the composition. Assume a simplified abstract interaction
model as seen in Figure 2.6

   Component 1

  Component 2   Component 3

F1 F4

F2 F3

A

B

C

   Component 1

  Component 2   Component 3

F1 F4

F2

F3

i : {B}

A

i : {C}

C

B

Figure 2.6: Abstract example of functions communicating by protocols: A, B and C.

1. Compositions of protocols are trees. In this thesis the condition is that there is no internal state
machine which needs to be considered for each function. In Figure 2.6 function F3 is used by
both protocol B and C, but due to this general assumption we assume B is using an instance of
F3 called i : F3B and C is using an instance of F3 called i : F3C . This means that it would not
be possible to end up in a dead- or livelock between the use of B and C in F3. The scope of this
research covers the interaction between components and not their inner workings.

2. A composition of a sound protocol itself is sound iff all referenced protocols are sound. The
composition of a protocol P is called P c and is composed by replacing all references by their pro-
tocol nets recursively.

For example, in Figure 2.6 a sound protocol A references (“uses”) another sound protocol B, and
the composition of A (Ac) is sound. If protocol A were to reference a non-sound protocol !B, the
composition of A (Ac) would not be sound.
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2.5 Petri Nets

As stated in the previous section, formalizing the choreography can be done using Petri nets. The formal
definition of a Petri net by [16] is given in definition 2.3.

Definition 2.3: Petri net, adapted from [22]

A Petri net is a tuple, N = (P, T, F,W ) where:
- P = {p1, p2, ..., pm} is a finite set of places
- T = {t1, t2, ..., tn} is a finite set of transitions, such that P ∩ T = ⊘
- F ⊆ (P × T ) ∪ (T × P ) is a set of arcs
- W : F → N+ is a weight function

Note: when W is not explicitly defined, the weights of all weight of for
all arcs will be set to 1. (∀f ∈ F : W (f) = 1)

A marking of N is a function M : P → N, where m(p) denotes the
number of tokens in place p ∈ P . If m(p) > 0, place p is marked. Given
a Petri net N with marking m, the pair (N,m) is called a marked Petri
net. The initial marking is described by (N,M0).

A Petri net is an abstract and formal model of information flow. The properties, concepts, and techniques
of Petri nets are being developed in a search for natural, simple, and powerful methods for describing
and analyzing the flow of information and control in systems, particularly systems that may exhibit
asynchronous and concurrent activities [23]. It addresses all concerns mentioned in [7] and has a couple
of mathematical properties that can be exploited to quickly verify a net. In this thesis, Petri nets are
depicted as directed graphs, which is the standard for describing Petri nets. Places are represented as
circles, transitions as squares, arcs as arrows, and the marking as black dots within places. These black
dots are also called “tokens”. Any place holds at any time 0..n tokens [16]. An example Petri net is given
in Figure 2.7.

t1 p2

t2 t3p3

t4 t5p4

p5p1

Figure 2.7: The graphical representation of a basic Petri net. Adapted example from [2].

The mathematical notation corresponding to this net is given in figure 2.1. Note that this shows a useful
resemblance with storing objects in arrays, a property that is used to actually store Petri nets in computer
code.

P = {p1, p2, p3, p4, p5}
T = {t1, t2, t3, t4, t5}
F = [(p1, t1), (t1, p2), (p2, t2), (p2, t4), (t2, p3), (p3, t3), (t3, p5), (t4, p4),
(p4, t5), (t5, p5)]
W = ⊘
M0 = [p1]

Any transition t ∈ T has a preset and a postset. The definition is given in definition 2.4.
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Definition 2.4: Presets and postsets, adapted from [2]

Each transition in a net t ∈ T has a preset •t = {p ∈ P | (p, t) ∈ F} and
postset t• = {p ∈ P | (t, p) ∈ F}.

A basic concept of a Petri net is to check whether a certain transition is enabled [23]. A certain transition
can only move tokens if it is enabled. A transition t ∈ T is enabled in (N,m), denoted by (N,m)[t⟩,
iff W ((p, t)) ≤ m(p) for all its input places ∀p ∈ •t. An enabled transition can fire, which will result in
a marking m′ iff m′(p) + W ((p, t)) = m(p) + W ((t, p)), for all p ∈ P and such a transition is denoted
by (N,m)[t⟩(N,m′). In this research we assume the default weight of 1 for each arc. A firing thus will
consume the tokens and produce one in each of the output places. Therefore each place in •t0 needs to
have at least one token to be enabled. An example is given in figure 2.8.

t1

p2

p3

p1 t1p1

p2

p3

[enabled] [not enabled]

Iteration n Iteration n+1

Figure 2.8: Two states of the same Petri net with iteration n having t1 enabled, and iteration n+ 1 being
the result after the firing of t1.

This also implies that all transitions in a Petri net follow interleaving semantics rather than true concur-
rency [24]. This means that when two transitions A and B are fired “simultaneously” they either follow
sequence A → B or B → A to get to the transitioned state, whereas true concurrency may fire them both
concurrently. An example can be seen in figure 2.9. As the verification tools that are used in this thesis
use interleaving semantics, all examples and logic will too.

(b)(a)

A p2

B p4p3

p1

BA

B A

(c)

BA

B A

{AB}

Interleaving True concurrency

m0 = {p1: 1, p2: 0, p3: 1, p4: 0}m0 = {p1: 1, p2: 0, p3: 1, p4: 0}

mΩ = {p1: 0, p2: 1, p3: 0, p4: 1} mΩ = {p1: 0, p2: 1, p3: 0, p4: 1}

Figure 2.9: Differences between interleaving semantics (b) and true concurrency (c) depicted as possible
transitions for a Petri net (a).

There are two stricter types of Petri nets that are relevant in the context of this thesis: state machines and
marked graphs. The official definition is given in definition 2.5

Definition 2.5: State machine (S-Net), marked graph (T-net), adapted
from [25]

A Petri net is a state machine (S-net) if •t ≤ 1 and t• ≤ 1 for ∀t ∈ T . A



CHAPTER 2 THESIS PAGE 19

Petri net is a marked graph (T-net) if •p ≤ 1 and p• ≤ 1 for ∀p ∈ P .

In this thesis, we make use of a certain type of Petri net to model interactions: an Open net. An open
Petri net is defined in 2.6.

Definition 2.6: Open Petri net

An open Petri net is a Petri net with certain places designated as inputs
and outputs via a cospan of sets. We can compose open Petri nets by
gluing the outputs of one to the inputs of another [26].

Formally, it is defined as, N = (P, I,O, T, F,W ) where:
- T, F,W are defined as in Definition 2.3
- P ∪ I ∪O is a union of all intermediate, input and output places, with
(P, T, F,W ) called the internal net and I ∪O called its interface.

The following conditions and implications hold:

∀i ∈ I : •i = ∅
∀o ∈ O : o• = ∅
∀t ∈ T : •t ∩ I ̸= ∅ ⇒ t • ∩O = ∅ ∧ t • ∩O ̸= ∅ ⇒ •t ∩ I = ∅

The properties of an Open Petri net can be used to synchronize with another participant net. The papers
[27] [28] describe how these open nets and their connection places are used to describe interactions of
two asynchronous services. For example, two (identical) nets can interact by consuming and producing
tokens in the interface, as can be seen in Figure 2.10.

Service A

t1
[Interaction]

p2

t2
[Interaction]

p3

p1

t1
[Interaction]

p2

t2
[Interaction]

p3

p1

c1
A > B

c2
A > B

Service B

Iteration i

t3
[Interaction]

p4

t3
[Interaction]

p4

c3
A < B

Service A

t1
[Interaction]

p2

t2
[Interaction]

p3

p1

t1
[Interaction]

p2

t2
[Interaction]

p3

p1

c1
A > B

c2
A > B

Service B

Iteration j

t3
[Interaction]

p4

t3
[Interaction]

p4

c3
A < B

Input / Output place
"Connection"

Figure 2.10: Two partners can asynchronously act when communicating with each other. In this case
Service A produces down its tokens before Service B does anything at all, which is allowed behavior.
They are “synced” once A needs an answer from B.

More formally, the composition of two Petri nets using the interface is defined as
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Definition 2.7: Composition of Open nets, adapted from [29]

Let N = (P, I,O, T, F,W ) and N ′ = (P ′, I ′, O′, T ′, F ′,W ′) be two open
nets with P ∩ P ′ = ∅, T ∩ T ′ = ∅, I ∩ I ′ = ∅ and O ∩ O′ = ∅,
the composition N

⊕
N ′ is the open net (P ∪ P ′, T ∪ T ′, F

⊕
, (I ∪

I ′) \ (O ∪ O′), (O ∪ O′) \ (I ∪ I ′)), where F
⊕
(x, y) = F (x, y) if

(x, y) ∈ (P × T )∪ (T ×P ), F ′(x, y) if (x, y) ∈ (P ′ × T ′)∪ (T ′ ×P ′), and
0 otherwise.

This interaction-oriented approach of syncing a multiplicity of open nets using an interface is the basis
for constructing participant nets. Each participant in a choreography can be seen as a service, and they
communicate via interface places. Both nets are identical and “glued” together to model the interaction
between components. The following chapters will deep-dive into this topic.

Petri Net Properties

A Petri net is a formal modeling technique that holds several useful properties. It is possible to perform
certain checks on a net to see whether the properties hold and conclude if the net is of high quality.
Properties of Petri nets are extensively researched in literature since their introduction in 1977 [23].

To analyze Petri nets a reachability graph needs to be constructed. A reachability graph is a directed
graph G = (V,E) with V being a class of distinct reachable markings from m0 and E being a set of
directed arcs between two markings in V . Any enabled transition can change the marking of the Petri
net, and therefore the reachability graph ensures that all possible markings are known and it is also
known how which firing sequences can lead to a certain marking. The reachability graph is also known
as the State Space. It starts with the given initial marking m0 and flows to all possible states. There may
be infinite states, as the tokens in a certain place can be any natural number n ∈ N+. This is solved by
writing the increase and decrease of tokens as wn where w stands for the weight of the arc. An example
(with weight w = 1) is given in figure 2.11.

p1 t1

p3

p2 t2

t3

p4

(1, 0, 1, 0)m0

(1, 0, 0, 1)

(1, n, 1, 0)

(1, n, 0, 0) (1, n, 0, 1)

t3

t2

t1 t2
t3

(b)(a)

Figure 2.11: An example Petri net (a) and its reachability graph (b), adapted from [30].

Using the state space, it is possible to analyze a Petri net on the following properties [30]:

• Safeness and Boundedness: A place in a Petri net is called k-bound if it does not contain more than
k tokens in all reachable markings from M0 (called V in the reachability graph): ∀m ∈ V : m(p) ≤
k. This guarantees an upper bound of the in-process parts [31]. The absence of upper bounds at a
place may indicate a weakness in the design and should be avoided. A Petri net is bounded (k-safe)
if all places in the net are k-safe. As in this thesis the assumption is made that k = 1, a Petri net can
simply be called safe. Each marking is stored in the state space and therefore safeness can easily be
checked.

• Liveness: A deadlock exists if there is a marking reachable from m0 where no transitions can be
fired. It is possible to check for deadlocks (and thus whether a Petri net is “live”) using the state
space. This is done by looking for terminal nodes in the state space: a node without a successor.
This is called a terminal node. Although liveness and deadlocks are not the same, [32] states that
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as long as the controlled-siphon property [33, 34] holds, they are equivalent and therefore that
liveness implies an absence of deadlocks.

• Free of livelocks: An computational heavier problem is finding the livelocks in a Petri net. Live-
locks are defined as “unintended cyclic terminal strong components of the state space” [35]. Ac-
cording to [36] a Petri net is free of livelocks if the state space and its strongly connected component
graph (SCC graph) [37] are isomorphic and contain no self-loops or “if the state space contains self-
loops or if there exists at least one strongly connected component that consists of more than one
node (i.e., the number of nodes in the SCC graph is less than the ones in the state space), then we
need to check if all terminal components are trivial (i.e., consist of a single node and no arcs)” [36].

• Soundness: In literature [38, 39] the soundness of a process is defined as: “A process is sound if for
each state that can be reached from the initial state, a firing sequence exists that leads the system
to the final state.”. Substituted INORA choreographies (or composed systems) can be viewed as
a service tree [2]. A service tree is a composition of components that is non-cyclical; the children
provide services to the parents [9]. A composed system is sound of each of the components is
sound.

A sound system has three properties [39]:

– Option to complete The option to complete entails that for all markings m reachable from
the initial marking m0 it should be possible to reach the final marking Ω.

– Proper completion When the final marking is reached, there should be no tokens left in the
rest of the model. This is followed from weak termination meaning that from every reachable
state of a system, some final state can be reached [40].

– No dead transitions No transitions in the net should be dead. A transition is dead if the
transition is never enabled in any reachable marking from m0.

The analysis techniques mentioned in this research all use the reachability graph/state space of a Petri
net. A major aspect that should not go unnoticed is the state space explosion problem. It entails that
the number of states of even a relatively small net is often far greater than can be handled in a realistic
computer [41]. Therefore reduction techniques need to be applied to tackle this problem. Tools that are
mentioned in the next section make use of these reduction techniques. Their inner workings will not be
explained here, as it is outside of the scope of this thesis.



Chapter 3

Related Work

There exists a wide range of related literature in the scope of the general topic of the thesis. It is, however,
necessary to narrow down the scope in a way that it connects to the design cycle and puts focus on the
research questions. Answering the research questions will both solve the problem introduced and guide
a logical flow through the thesis.

3.1 Introduction

The chapter will cover related work belonging to the scope of each subquestion, and the problem in gen-
eral. A major part of the thesis will be refining and formalizing the translation of an INORA Choreogra-
phy to a Petri net. Translations of such semi-formal notations to Petri nets have already been researched,
this section will review this literature and highlight their shortcomings. Papers covering the verification
and general properties of Petri nets, as well as how to display the outcome as feedback are discussed.
Finally, best practices from the literature for building a set of tools and consequentially evaluating it in
an empirical study are covered.

As there are five concrete sub-questions to be answered in this thesis there is a rather narrow scope
for each of the sub-topics. There is no formal literature review method used in this thesis, as there is no
large set is papers that need to be indexed. Each search for literature starts off by using keywords and on
basis of expert knowledge. Consequentially, papers that are relevant are used in forward- and backward
snowballing to look for foundational or follow-up papers on the topic. Each paper used needs to meet
either of two quality standards. It needs to be either (i) an academic paper that is published with at least
more than one citation, or (ii) a renowned university-approved master’s thesis. Other sources such as
documentation for tools may also be used but will be documented with footnotes indicating that it is
not an academic yet trustworthy source.

3.2 Translating a Choreography to Petri Nets

In the thesis describing INORA [2], choreographies are depicted with an adapted version of BPMN
2.0 [42, 43]. In general, a choreography is a global representation of the interactions between multiple
organizations or organizational units involved in a common business process [44]. An example of such a
notation can be found in Figure 3.1. Choreographies are not solely used to describe business processes,
but are also used to describe a systems concurrency on a high level when designing software as is
proposed with INORA. It is a helpful method to capture all possible user scenarios in one model as it
captures all interactions between system components, without exposing their internal structure [45]. It
is defined as a type of concurrency model, as such a choreography can define [18]

1. subprocesses that can be executed at the same time (concurrently)

2. interruptions as a result of exceptions

3. interactions between process participants

The representation of the choreography in BPMN 2.0 yields several advantages. It is (i) the de-facto
standard for representing any process in a very expressive graphical way [46] and is an increasingly
popular method [47] (ii) it is already a semi-formal language and addresses most concerns raised in
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Figure 3.1: Example of an choreography in BPMN 2.0 [20]

[7] and (iii) is intuitive and flexible [48]. The adapted version of BPMN Choreographies used in IN-
ORA only uses the AND-gateway and the XOR-gateway and displays the messages between the sender
and receiver as the name of the activity, which further simplifies the capabilities of the choreography [2].

The choreography is thus an intuitive way to model an interaction between software components, yet
it is a semi-formal language and thus lacks the formal semantics and properties to verify this proposed
system [3]. A translation is needed to formally verify these choreographies so that it can be used to
automatically validate it [47].

The INORA Choreographies are a stricter version of BPMN Choreographies, and a translation for any
BPMN Choreography to a Petri net can be used to translate the INORA version. BPMN Choreographies
actually are BPMN models with each activity having a sender and a receiver. Therefore a BPMN to Petri
nets validation should also work for INORA choreographies as tasks are labeled with the corresponding
messages as stated by [2]. The net formed after the translation is then copied over for each participant
(distinct set of all sender and receivers in the choreography) and connected by message places [2].

A mapping for translating BPMN Diagrams to Petri nets can therefore be used to translate INORA
choreographies. Such translations have already been proposed in several papers. [49] and [38] laid the
theoretical foundation to translate BPMN Tasks, Events and Gateways to Petri net elements in 2007. It
is further refined in [18]. The basic building blocks for translating a BPMN model to a Petri net can be
found in Figure 3.2. Further studies [3] define the reason for translation, investigate how the translation
is done, and list problematic features of BPMN. A major unsolved problem is the relation between
“correctness” and whether a given choreography is realizable. If a Petri net that is translated from a
choreography is operable (definition 3.1), realizability is assured. Yet operability is undecidable [29].

Definition 3.1: Operability, adapted from [29]

An open net N (with interfaces to connect components) with an initial
marking m0 and a given set of final markings Ω is called operable if
there exists an open net N ′ with an initial marking m′

0 and a set of final
markings Ω′ such that for any marking m ∈ RN

⊕
N ′(m0

⊕
m′

0) there
exists a marking mf ∈ Ω

⊕
Ω′ such that mf ∈ RN

⊕
N ′(m). N ′ as

above is called a partner of N .

A Petri net belonging to a choreography itself can be “correct” (checked and free from problems listed
in section 2.5) yet it may not be realizable. In [25], the author proves that if the skeletons of two state
machine nets (S-net) are isomorphic with respect to some function ρ and their composition agrees on ρ,
it is possible to assure realizability. This property is used in [2] to copy over a Petri net for each partici-
pant and connect them via the message exchange places. This is called the participant net. There is no
additional literature that explicitly uses this for verification, and the use defined in [2] lacks a formaliza-
tion and has some unresolved problems such as not defining strict conditions to assure AND and XOR
gateways do not introduce decision-making problems. This is a clear gap in literature this thesis aims to
fill.
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Figure 3.2: Building blocks for BPMN Diagram to Petri net translation by [18]

With regard to translating BPMN to Petri nets in general, more recent studies show that there are ap-
proaches to automatically execute a translation to Colored Petri Nets [47]. This is later refined by includ-
ing interaction (choreography diagrams) within the model [50, 51]. A 2018 study [51] gives automatic
translation steps that include pre-processing of the BPMN model so that it is strict and complies with
formal BPMN semantics. Furthermore, it includes Petri net refinement and applies reduction rules, and
covers step-wise Petri net element (place and transitions) coordinate assignment for a clear depiction of
the final net.

The INORA choreography may reference other protocols, which can be substituted to construct a “com-
posed structure”. Such a composition is not considered a choreography anymore, as it may violate
restrictions such as having a single begin and end event. This is partially covered in [2], but conclusive
research is missing in this field.

3.3 Tool-based Verification and Analysis of Petri nets

A crucial element in answering the research question is to do an automated verification and analysis of
a constructed Petri net. This section will cover literature concerning the (automated) checking of Petri
nets to give a background on SQ3.

LoLA

Any combination of properties mentioned in section 2.5 can defer a certain quality of a given Petri net.
Checking for these properties can be done automatically. There are several tools developed to automat-
ically and optimally check for these properties and run analysis on the nets. Examples of tools are 1)
Wolflan [52], which checks if the Petri net is valid and sound, 2) INA [53], which checks the net on a
number of properties and shows the reachability of coverability graphs and 3 )LoLA [54], which tackles
the state space explosion by using reduction techniques and can run CTL formulas to check for a num-
ber of Petri net properties.

In this thesis, LoLA 2.0 (Low Level Analyzer 2) is used to verify Petri nets resulting from choreography
translation. The two main reasons for this are 1) it is highly optimized and achieves a high speed for
tasks 3) it is the Petri net checking project that received the most recent updates. LoLA 2, in comparison
to its predecessor, is based on a strict modularisation and has the integration of various standard tools
[55]. “Through its code quality and its frequent comparison to other tools in the yearly model checking
contests, LoLA 2 has become one of the most reliable verification tools for distributed systems” [55]. The
tool uses explicit model checking as opposed to symbolic model checking. This means that LoLA gener-
ates and evaluates states one by one. Checking for a certain property in a Petri net is called “querying”.
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LoLA 2 traverses a subset of the reachable states that is as small as possible yet, by construction, suffi-
ciently large for evaluating a given query [56]. This means that it needs to construct a different subset
for every distinct query. Where implicit models either give all the answers (to queries) or result in a
time-out during the generation of their diagram, explicit tools often return an incomplete list of answers
which generally is enough. Furthermore, LoLA 2 applies on-the-fly verification [56] which speeds up
the process significantly. [56] found that LoLA 2 was the fastest explicit model checking tool during the
2015 Model Checking Contest. Although LoLA 2 does not get recommendations as the most versatile
Petri net verification tool in the comparison done in 2015 [57], it supports all the functionalities which
are needed in this thesis to verify choreographies. Combined with the performance this tool is chosen
to execute the (close to) real-time verification.

LoLA and LoLA2 have already regularly been used in practice to verify a wide range of problems. It
is used for checking compliance (a set of rules) on the Petri net models that represent data fragment
case management [58]. This is done by entering temporal logic [59] into LoLA 2, which supports the
languages LTL/CTL to do this.
In [60], the Business Process Execution Language for Web Services (BPEL) is transformed to a Petri
net so that it can be used as input in LoLA and the paper proves that it is well suited for computer-
aided verification. It uses a similar basis as this thesis: translating a semi-formal process to Petri nets.
This same approach is also used in PlanICS which is defined as “a system that solves the Web service
composition problem by dividing it into several stages. The first phase, called the abstract planning,
deals with an ontology that contains a hierarchy of classes describing sets of real-world services and
processed object types.” [61]. The paper uses LoLA as an abstract planning engine.
Furthermore, LoLA 2.0 is already included in Petri net tools. An example is RENEW [62], which is a
Petri net IDE that combines the advantages of Petri nets and object-oriented programming for the de-
velopment of concurrent and distributed software systems. RENEW offers model verification through
LoLA.

This thesis uses LoLA 2.0 as a standalone service, which is connected to any service that wants to verify
a Petri net. This is done by running LoLA 2.0 on a docker container and providing a REST protocol
endpoint for services to connect to. This method (i) assures safety as LoLA is not run within the tool
itself (ii) guarantees that any service that needs a LoLA verification can use it as long as it is authenticated
and communicates via the REST protocol (iii) LoLA only needs to be compiled once on a given machine
(iv) LoLA can be hosted on a powerful machine, such as a server, to provide performance on complex
queries. This docker image with LoLA and Python is explained in detail in chapter 6.

3.4 Feedback on Models

A part of the problem is researching the feasibility of showing feedback on the models. This section shows
the types of feedback and possibilities of handling the derived results from an analysis.

Feedback Composition

As stated in section 3.3 there are several properties on which a Petri net can be verified. If a given Petri
net is safe, live, free of livelocks and sound it is of high quality. If it fails on one or more properties, it is
probably of lower quality. However, it does not have to mean the net is of extremely low quality. Fur-
thermore, it is quite hard to test for soundness as it consists of multiple sub-properties that can require a
lot of computational power.

It is, therefore, infeasible to calculate a single quality “score” by combining all outcomes for each test.
Such an aggregation suggests an arbitrary definition of quality. A formal combination framework, how-
ever, for qualification is outside of the scope of this research. Feedback will therefore be composed
of these properties as individual weaknesses/strengths, which an architect can view in a summarised
manner.

Translation of Feedback to Context

Once a Petri net is verified and queried for certain properties there is a “result” for each property. Re-
sults may be simple boolean answers such as {deadlock : no, sound : yes} but are often more complex.
It may exist of a mathematical notation for a counter-problem as a proof, or return (a set of) weak places,
transitions and arcs. These formal results need to be translated back to human-friendly feedback which
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makes sense in the original context. There are multiple ways to do this.

One of the aims for this thesis is to minimize the interaction of the modeler with the formal model (Petri
nets). Simply displaying the LoLA feedback such as “mx ∈ M has no successor marking which implies
a deadlock” is not useful for a user as the abstract representations of the net have no translation to their
choreography. This problem is described by [63] as “formal verification is (...) usually achieved us-
ing model transformations. However, the verification results are available in the formal domain which
significantly impairs their use by the system designer who is usually not an expert in the formal tech-
nologies”. This problem is solved by either 1) embedding the context information in the formal model
[64] or 2) creating an additional intermediate model that consists of a "mapping" between the context-
model (source) and the formal model (target) [65]. Both guarantee traceability, which is the term used
for linking elements in one model to the other. To avoid pollution of the formal model (Petri net) [63]
an intermediate model is best to use. This is called a Source2Target model. Its use definition is depicted in
figure 3.3.

Figure 3.3: A translation model that assures traceability between elements in the context (source) and
formal (target) modeling language [63].

This thesis uses an adapted version of the Source2Target to assure traceability. Furthermore, it is possible
to simplify the terminology used in the feedback. Livelocks, for example, may be translated to “possible
infinite loop”. This ensures that the architect does not need prior knowledge of these terms.

Visualization of Feedback

Feedback on translated Petri nets needs to be displayed in the context of the choreography itself. As
there is a lack of research on the semi-formal choreographies translation to formal Petri nets, logically
there is also no research on how to display temporal problems (such as (dead)locks as a result of syn-
chronicity problems) on non-temporal models such as choreographies in the context of software inter-
actions. This is also a clear gap in the research.

A recent paper [66] has made recommendations for visual feedback on BPMN models, however, that are
coherent with the needs of the modelers. It found that three different categories of need exist as to what
feedback should be provided: (i) alternatives to correct the problem (ii) problem description (iii) type of
problem. Furthermore, 7 categories are identified as to how this feedback should be visually displayed.
These can be seen in figure 3.4.
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Figure 3.4: Seven categories of concern as to how to display feedback on BPMN models, image from
[66].

From this research, some important conclusions can be drawn. For our implementation, the following
recommendations are the most important:

• A basic convention that is used is the color scheme, using red for errors and yellow or orange for
warnings [67].

• The decision to use either preemptive or non-preemptive feedback highly depends on the user’s
experience with modeling. Giving the choice to the user results in the best user satisfaction. How-
ever, much of in INORA the choice is made to trigger it non-preemptive manually. The two main
reasons for this are that (i) the generic rules and the Petri net of non-complete models will often not
comply with the property analysis and therefore bloat the feedback pane with unnecessary errors
and (ii) running a constant stream of Petri net verifications may be very expensive and a waste of
computer resources.

• Problems can be marked with visuals on the model itself and are directly linked to a detailed
explanation in the list of feedback. Clicking on either of the two will highlight the other.

The goal is to include all errors and warnings onto the BPMN model itself. A general image by [66] as
to how the feedback can be shown is seen in figure 3.5.

Figure 3.5: A wireframe model of some tool implementing feedback as stated in the section above, image
from [66].
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3.5 Summary

In this chapter related work is used to provide background information and identify gaps in the litera-
ture on the automatic verification of choreographies. Current literature shows the use of choreographies
and why and how they can be translated to Petri nets. We then highlight the problems and shortcomings
in the existing literature. The major shortcomings that are found are 1) limited research on participant
nets to assure realizability 2) lack of description of the behavior of composed choreography structures 3)
displaying feedback on interaction problems found by semi-formal-to-formal translation of choreogra-
phies to Petri nets 4) deciding which combination of techniques can provide soundness. Furthermore,
this chapter shows how and on what properties Petri nets can be (automatically) checked and what the
impact is on the quality of a net. In the last section, we described how to translate these results into
potential user feedback.



Chapter 4

A Robust Translation

One of the key aspects of the problem this research is trying to solve, is to provide formal semantics so
that we can check models for soundness. In [2] the author presented an adapted version of [38] to trans-
late semi-strict BPMN choreographies to Petri nets, using duplication and connection of sub-nets. In
this chapter, this proposed translation will be used as a foundation. It will then be formalized, extended
and partially rewritten so it can be used to run an efficient analysis. To achieve this, additional bounds
to the choreography are introduced, which will be discussed and introduced in this chapter.

In this chapter, an simple choreography is used to connect the abstract definitions and translation seg-
ments to a context. In this protocol a requests something from b (signage m?), b then either responds
with “valid” or “not valid” (both signage m!), and the protocol finishes.

a

request m

b

b

valid

a

b

not valid

a

Figure 4.1: An abstract basic protocol
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4.1 Constraints to INORA protocols

Before any translation can be made, the INORA protocol must comply with a series of constraints. The
constraints on the contents (CoC) of such a protocol P in a non-graphical format are:

P rule cardinality type with conditions
(c01) must have 1 StartEvent 1 outgoing arc
(c02) must have 1 EndEvent 1 incoming arc
(c03) must have n > 1 Message 1 incoming and 1 outgoing arc

+ 1 Message label
+ 1 Initiating participant i
+ 1 Receiving participant r ̸= i

(c04) may have n Reference 1 incoming and 1 outgoing arc
(c05) may have n Fork Gateway (XOR) 1 incoming and m > 1 outgoing arcs
(c06) may have n Fork Gateway (AND) 1 incoming and m > 1 outgoing arcs
(c07) may have n Join Gateway (XOR) m > 1 incoming and 1 outgoing arcs
(c08) may have n Join Gateway (AND) m > 1 incoming and 1 outgoing arcs
(c09) must have n > 2 Directed Arc each connecting ai with aj
(c10) may have n Other Label -
(c11) cannot have n else -

Furthermore, the following generic constraints hold.

• (Gc01) No ambiguous gateways. Each gateway should be explicitly labeled with the icon corre-
sponding to either “XOR” or “AND”. All other gateways present in the BPMN notation are not
allowed as they unneccesarily complicate interactions in translation.

• (Gc02) Forks and joins are only modeled with gateways. This is implied in the CoC: it is not
allowed to split or join arcs directly from a non-gateway element. Although generic BPMN allows
for unlabeled splits/merges implying an AND/XOR gateway, protocols will only support explicit
gateways.

• (Gc03) Use valid participants. Each participant in a Message should a valid function in the Inter-
action Model.

• (Gc04) Use BPMN stardards. For the visual notation the BPMN 2.0 choreography graphical stan-
dard is used [43, 45], for constraints not explicitly described in this chapter.

• (Gc05) Follow up decisions with an activity. A decision (XOR-fork) should always directly be
followed by an activity in all outgoing paths. This ensures decidability: decisions are made by the
protocol itself.

4.2 Petri Net Transformation

For each of the distinct events and structures in a BPMN choreography a basic sound Petri net represen-
tation can be created. The definitions by [2] are used as a basis, and are refined and formalized.

Building Blocks

Each possible element in any choreography has its own representation in the Petri net. In this section,
we define for each possible element (and its sub-behavior e.g. fork or join gateways) how a translation
can be made. The official Petri net notation (as denoted in Definition 2.3) is used. Gateways are the
only elements that are allowed to have an 1 : n interaction with other elements. Therefore, when n is
mentioned, it represents a set of natural numbers from 1 to n.

Translation
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Start Event

The start event can be translated to Petri nets by creating a place i1, a transition t1 consuming tokens in
i1, and a producing place o1. This is the only translation in which a token is placed initially: the input
place for the start event is the start of a Petri net.

BPMN Petri net Formal

StartEvent t1i1 o1

P = {i1, o1}
T = {t1}
F = {(i1, t1), (t1, o1)}
M = {i1}

End Event

The end event can be translated to Petri nets by creating a place i1, a transition t1 consuming tokens in
i1, and a producing place o1.

BPMN Petri net Formal

EndEvent t1i1 o1

P = {i1, o1}
T = {t1}
F = {(i1, t1), (t1, o1)}
M = ∅

Reference Event

The reference event can be translated to Petri nets by creating a place i1, a transition t1 consuming tokens
in i1, and a producing place o1. The workings of transition t1 are to be refined with the corresponding
protocol.

BPMN Petri net Formal

Protocol B t1i1 o1

P = {i1, o1}
T = {t1}
F = {(i1, t1), (t1, o1)}
M = ∅

Interaction (aliases message and activity)

The interaction can be translated to Petri nets by creating a place i1, a transition t1 consuming tokens in
i1, and a producing place o1. This translation is correct under the condition that an interaction can only
have one incoming and one outgoing arc, as defined in the generic constraints.

BPMN Petri net Formal

a

?m

b

a

message

b

P = {i1, o1}
T = {t1}
F = {(i1, t1), (t1, o1)}
M = ∅

XOR Gateway (fork)
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An XOR gateway that splits intro multiple branches can be translated to a Petri net using a single place.
This place has the properties that it can have 1 incoming arc, and m = n = arcsout out arcs. In the Petri
net representation, these arcs are drawn for clarity, although they are not part of the actual translation
as they indicate arcs between translation segments. An important characteristic of this translation is that
as there are no transitions in this translation segment, the XOR step itself cannot “make a decision”. The
decision-making is done by the transitions connected to the outgoing arcs.

BPMN Petri net Formal

1

n

..

mop
n

1
..

P = {mop}
T = ∅
F = ∅
M = ∅

XOR Gateway (join)

An XOR gateway that joins multiple branches can be translated to a Petri net using a single place. This
place has the properties that it can have 1 outgoing arc, and m = n = arcsin in arcs. In the Petri net
representation, these arcs are drawn for clarity, although they are not part of the actual translation as
they indicate arcs between translation segments. An important characteristic of this translation is that as
there are no transitions in this translation segment, the XOR step itself cannot “make a decision”. The
decision-making is done by the transitions connected to the outgoing arcs.

BPMN Petri net Formal

1

n

..

mip
n

1

..

P = {mip}
T = ∅
F = ∅
M = ∅

AND Gateway (fork)

An AND gateway that splits into multiple branches can be translated with one input place i1, one
transition t1 that consumes from the in place and produces in all of its out places, and n = arcsout out
places.

BPMN Petri net Formal

1

n

..

t1i1

o1

on

..

P = {i1} ∪ {oj | ∀j ∈ n}
T = {t1}
F = {(i1, t1)}

∪ {(t1, oj) | ∀j ∈ n}
M = ∅

AND Gateway (join)

An AND gateway that joins multiple branches can be translated with n = arcsout out places on, one
transition t1 that consumes from all of the in places and produces in its out place.

BPMN Petri net Formal
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1

n

..

t1

i1

o1

in

..

P = {ij | ∀j ∈ n} ∪ {o1}
T = {t1}
F = {(ij , t1) | ∀j ∈ n}

∪ {(t1, o1)}
M = ∅

Procedure

In the previous section, all individual translation segments are defined. This section defines a step-by-
step procedure to apply and combine all translation blocks. We use the protocol given in 4.1 to bring
each step into context and provide an example.

The translation procedure is defined:

1. Check whether the tree violates the generic constraints (CoC) given in section 4.1.
In our protocol from Figure 4.1 we check for all constraints c ∈ {c01..c11}. It does not violate any
of them. Furthermore, the generic constraints are not violated either:

Gc01 (OK) All gateways are explicitly labeled with XOR labels.

Gc02 (OK) There are not merges or splits without involvement of a gateway.

Gc03 (OK) The interaction model is not given, therefore this condition is always OK.

Gc04 (OK) BPMN standards are followed for any non-explicit constraint.

Gc05 (OK) Each outgoing path of the XOR fork is directly followed up with an activity.

2. Translate each element
The first step is to generate a raw net that looks like a Petri net, but is not a valid Petri net yet.
It maps the Petri net translation segments to each other. This means simply walking over all ele-
ments in the choreography from the start event and replacing them with their Petri net notation
respectively.

For the protocol depicted in Figure 4.1, this would result in the following net. This is not a Petri
net by definition, as there are mappings between places indicated by the red lines. We will call this
a “raw” net.

EndEventMessage m?

XOR (join)XOR (fork)

StartEvent

t1i1 o1 mop mipt1i1 o1

t1i1 o1

t1i1 o1

t1i1 o1

Message m! (not valid)

Message m! (valid)

Figure 4.2: Step 1 result: “raw” net, with each translation segment indicated seperately.

3. Merge duplicate places
In the raw net there are flows between two places, and places cannot move tokens. Therefore this
violates the Petri net rules. Semantically it means they behave as a single place, and therefore
multiple directly connected places can be merged and outgoing and incoming flows connected to
these groups are assigned to the merged place. The Petri, after this refinement, net would look like
this:
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XOR (join)

EndEvent

Message m! (valid)

Message m! (not valid)XOR (fork)

                           Message m?StartEvent

t1i1 mop mipt1

t1

t1

t1 o1i/o

Figure 4.3: Step 2 result: “refined” Petri net

4. Create a participant net
The last step is to create the net involving the communication between the components, called the
participant net. Components participating in an interaction are called “participants” in this con-
text. Interaction can only happen with a message element, and a message element always mentions
two participants: the initiator in the upper band, and the receiver in the lower band.

(a) Find all participants in the protocol (check each of the message bands). In this protocol, the
participants are U = {a, b}.

(b) Copy over the net generated from the previous step for each unique participant. The result is
two identical nets Uc = {Ca, Cb}.

(c) For each of the nets in Uc, look for every message in which its corresponding participant is
the initiator and connect it to messages of other nets in Uc in which their corresponding par-
ticipant is the receiver. Such a connection is drawn from one transition to another transition,
so connection places called the interfaces are needed, as defined in definition 2.7.

After these steps, the participant net is created which can be seen in Figure 4.4.

Participant net for b

t1i1 mop mipt1

t1

t1

t1 o1i/o

t1i1 mop mipt1

t1

t1

t1 o1i/o

b to a
(not valid)

a to b
(request)

Participant net for a

b to a
(valid)

Figure 4.4: Step 2 result: “participant” Petri net

Executing this procedure results in the final Petri net, on which analysis can be performed.

4.3 Block structured Choreographies

Up until now, the literature has covered mostly the translation from a protocol directly to a Petri net. If
a protocol complies with the constraints given in the previous section it is always possible to generate a
corresponding Petri net and verify the soundness of the protocol by doing Petri net analysis. However,
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checking Petris net for certain properties (e.g. liveness, deadlocks, reachability) can be very expensive
due to two reasons: 1) the complexity of the verification algorithms is inherently quite high [23, 68, 69]
even if efficient tools such as LoLA 2.0 are used [54, 70] 2) Petri net checking needs to be done by some
optimized external tool, and therefore I/O operations (potentially over a network) need to be done,
which can be expensive in an analysis. Therefore it is essential to skip Petri net checking when it is not
strictly necessary and only do it when soundness is truly uncertain.

Soundness can be guaranteed if it is a choreography tree that follows a certain grammar resembling a
process tree, and is block-structured. We call this correctness by constructing.

Definition 4.1: Process tree [71] [72]

A process tree is a tree representation of a process. Each leaf node and
each internal node respectively represent an action and an operator in
the process. A choreography tree in this thesis follows a specific gram-
mar given in Definition 4.2.

The grammar called the Choreography Tree Definition, is given in Definition 4.2 and is used to set
definitions as to when a protocol is a choreography tree.

Definition 4.2: Choreography Tree Definition

Grammar

A ::= message

S ::= start

| end
|A
| × (S, S)

T ::= S

| Ω (T,A)

| → (T..)

(1) Property: Associativity of operators
For ϕ = {+,×,→} the associative property holds, which means that

ϕ(ϕ(A,B), C)
ℓ≡ ϕ(A, ϕ(B,C)) (4.1)

This Tree Protocol Definition grammar T has three possible nodes: S, a loop Ω with another node in T
and an message M , and a sequence of actions consisting of any amount {t1...n} ∈ T . This implies a
couple of constraints to a choreography.

1. A sequence may contain any number of nodes of type T. This is the node with the largest distinct
set of nodes and therefore a sequence in a choreography may exist of any other node defined in
the grammar.

2. A loop (expressed with a XOR gateway directing back to a earlier XOR gateway in the choreogra-
phy) should always exist of a choice between a back-arc to an activity A and a T continuing the
choreography forward with any node. This implies that an "empty" back arc (known as a τ -step)
is not allowed.
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3. A T maybe also be a substitute node S, which is a subset and has its own defined sub-grammar.

Nodes of type S imply the following constraints.

1. An S can be either a start-event, an end-event or an A. An S may also be operator XOR (×).

2. Operator XOR can only contain exactly two S. Due to property 1, associativity for operators
{×,→} , it is still possible to give a correct representation of three or more items in one of these
operators. The tree ×(A,B,C,△) is rewritten to ×(A,×(B,×(C,△))). The equivalency guaran-
tees this. Operator {×} containing only one element is not useful: they pollute the tree and are
therefore not allowed.

An A is a message block with a signage. A signage indicates the message flow between participants,
given in Definition 4.3.

Definition 4.3: Signage of messages

A message in a choreography is signed. Signage implies the message
flow. A message from a component △ to component Y should at least
be answered once by Y in every possible path, or: △ → Y should
always be followed by at least once by Y → △ to comply with correct
asynchronous behavior in a choreography.

The translation blocks in a Petri net can also be marked with such
signage. For example, a transition is marked with:

Y → △ = m?
△ → Y = m!

This is derived from the properties of an Open Petri net: communica-
tion from one service should be answered by the other at least once.

Additional Constraints

To ensure the soundness of a tree, two additional constraints are stated. Properties concerning pure
BPMN diagramming relate to the 7PMG guidelines [73], covering basic BPMN validity.

• Block structure
One of the most important bounds is that the choreography is block-structured. This means that
once a gateway produces branches (e.g. XOR gateway gives two options), such branches should
eventually be merged by another XOR gateway before the end-event. Formally, each gateway that
has n(> 1) outgoing arcs has a merging partner that merges all n arcs somewhere in the choreog-
raphy. This means that |GAND| and |GXOR| should be divisible by 2.

This is related to 7PMG guideline G4.

• Signage in blocks
In a protocol choreography a interaction m is signed with either m! or m?. In a choreography with
two participants P = {A, B} an interaction request from A to B should always be answered by B
at least once in each possible path: when A sends a message m? to B it should be followed by m?.
B acknowledges the request of A and sends a response. This is needed as the protocol choreogra-
phy describes how components interact, which implies that they should all have an active role in
the protocol.

For the translation this means that in a sequence (→) the messages should alternate for at least one
cycle (e.g. → (?m, !m, ?m, !m) with m = sign(a) | a ∈ A). For an XOR (×) or AND (+) this means
that the signage before the operator should be inverted for the first A node in each of the branches
after the operator:
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→ (?m,×(!m,×(!m, !m)))

Note that in this bound it is assumed that there are two participants (|P | = 2). This is a loose
bound, and it is possible to introduce more than two participants in the protocol. It is, however,
not possible to directly tell if the signage fulfills a correct alternating pattern. We will then use
Petri net exploitation in the implementation to check if the protocol is sound.

Checking for Trees

Given the protocol, we need to determine whether it is a choreography tree. This is done by executing
each of the following steps listed below. The implementation is written down in pseudo-code in 5.2.
During these steps the protocol described in Figure 4.1 is used to bring each step into context.

1. Check whether the tree violates the generic constraints (CoC) given in section 4.1.

This step is identical to the first step in the Petri net procedure.

2. Check for loops

In the protocol there are no loops. This step would find the entries and exits of all loops in the
diagram if (a) loop(s) would be found.

3. Verify the block structure of the tree

The protocol is block-structured, as all opened gateways are closed by its counter partner. The
XOR fork (×) splitting into 2 branches is eventually followed by a join XOR (×) merging the 2
branches before continuing.

4. Verify the signage

In our protocol the two possible paths are:
p1 : (StartEvent) -> (Message m?) -> (=valid) -> (Message m!) -> (EndEvent)
p2 : (StartEvent) -> (Message m?) -> (=not valid) -> (Message m!) -> (EndEvent)

The signage of all paths alternate at least once: sign(p1) = m?m! and sign(p2) = m?m!.
Therefore this protocol does not violate this step.

5. Construct the tree, and check if the EndEvent is reached.

Using depth-first traversal, construct the tree. The implementation. A detailed pseudo-code can
be found in section 5.2. The resulting tree belonging to this protocol is depicted in Figure 4.5.

Root
Sequence

StartEvent
Activity

Message m?
Activity

XOR
Gateway

EndEvent
Activity

Valid
Sequence

Invalid
Sequence

Message m!
Activity

Message m!
Activity

Figure 4.5: Choreography tree



CHAPTER 4 THESIS PAGE 38

Which can also be written in parenthesis notation, similar to the defined grammar:

T =→ (Ss, Am?,×(→ (Am!),→ (Am!)), Se) (4.2)

The pseudo-code of this algorithm can be found in section 5.2.

If all steps are successful, the protocol is a choreography tree and we can guarantee its soundness. If any
of the steps fail, it is not possible to determine whether the protocol is sound, but it still might be. If the
choreography tree cannot be constructed, a Petri net translation and verification needs to be done.

Complex Structures

Up until now, in this section, we have left out the AND operator. This is done intentionally, as it intro-
duces a variety of complexity and problems. Special cases are known to result in inconsistency when
translating it with previously specified building blocks. We classify these cases as complex construc-
tions. One such a construction is a XOR gateway directly followed by one or more parallel (AND)
gateways. To achieve this, an additional rule with equivalency needs to be introduced.

+ Rule: XOR followed by AND
If within the tree one or more children of an XOR are directly followed by an AND, rewrite it to

the language equivalent (
ℓ≡)

×(+(X,Y ),△)
ℓ≡ +(×(X,△),×(Y,△))

The Tree Protocol Definition has a special rewrite rule for this condition. This is used to form a correct
translation. The choreography tree representation of the choreography snippet below is

×(+(A,B), C)

which is rewritten to the language equivalent

+(×(A,C),×(B,C))

which has a sound translation as seen in (b). Note that component C refers to the same element, although
it is denoted twice.

C

A

B

(a) AND gateway with input n=1 and output n=2 (b) Petri net representation
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If the equivalence condition is encountered, the part of the tree will be rewritten according to Rule 1.
Such a rewritten version of the tree is called a Choice Normal Form. We can guarantee that the behavior
is equivalent. This rewrite condition solves the problem of synchronicity in a tree. Because the resulting
Petri nets use interleaving semantics we need to enforce that after an XOR operation, both branches can
be executed.

This is just one example of a complex structure that can be achieved by using certain combinations of
gateway flows. The complexity it introduces and the vast and ongoing research in the field of decidabil-
ity in Petri nets is the reason that we leave it out of the current scope of this research.
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Petri net vs. Choreography Tree

As the Petri net can always be generated without the strict constraints needed for a choreography tree,
the analysis run on a Petri net always dominates the choreography tree. However, once a choreography
tree can be generated correctly, it also implies that the Petri net analysis will also result in soundness but
the reverse does not hold.

Therefore we can skip the Petri net analysis once the choreography tree is constructed, as the analysis of
a Petri net can be computationally heavy.

4.4 Summary

This chapter covered the procedure and necessary building blocks for translating a given choreogra-
phy/protocol to 1) a Petri net and 2) a choreography tree. As a basis, a set of generic constraints are
defined with which a protocol should always comply. To avoid a potentially costly translation and anal-
ysis of a Petri net, we show that it is possible to guarantee soundness if a choreography tree can be
generated. As a Petri net can always be generated, and the choreography tree only in certain semi-strict
conditions, the Petri net analysis will always be the dominant analysis.



Chapter 5

Implementation

Until now, a lot of theory has been discussed regarding translating choreographies to Petri nets, chore-
ographies to choreography trees, and analyzing Petri nets. The research question(s) implies that some
automation is needed to provide automatic feedback. This chapter introduces a custom tool that handles
automation and support: INORA 2.0.

5.1 What is INORA2?

INORA2 is a completely rewritten version of the original INORA tool, created from scratch by the au-
thor. Whereas the its predecessor was built as a plugin for Sirius, INORA2 is written in Typescript and
can be used as a standalone application. It offers a variety of analysis and insight modules, and refines
the possibility to easily create and manage INORA models.

The application is project-driven: to make use of the power of INORA you should create or load a
project. Once a project is loaded, the application has four major components.

1. Main menu: a menu bar providing all navigational and app- and project controls.

2. File browser: for quick navigation through all models, with the capability of search

3. Bottom bar: a context-specific bottom bar that allows for settings and environment-specific but-
tons.

4. Main panel: all the main content is projected to this panel.

Figure 5.1: Basic INORA application frame
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Interaction modeler

The core of any INORA project is the interaction model. Only one interaction model can exist per project.
Guidelines to draw interaction models is laid out in [2], which are adapted to create a slightly different
version of the interaction model called Interaction Model Version 2 (IMV2). IMV2 is used in INORA2.
In addition to some visual changes, the main difference is that there is no more distinction in communi-
cation within and across components. All interaction is now simply a called protocol, and all protocols
should be modeled with a choreography. The reason for this original differentiation synchronicity. The
assumption that interaction within components is always synchronous is dropped, as practically mod-
eling with this assumption raises limitations to the system.

Figure 5.2: The INORA interaction modeler with the controls and two side panels.

INORA has a powerful tool to model interaction models. The editor provides the necessary means
to create the three main components of an interaction model: 1) a function 2) a component in which
functions may be placed and 3) a connection between any two functions. A run-time screenshot of
the modeler can be seen in Figure 5.2. Items can be created, renamed, resized, connected and copied.
Selecting an item brings up the possible modeling options as a pop-up and a way to control attributes
in the right-side panel. The left-side panel will provide an overview of the contents, it displays:

• All functions drawn A list of all functions in the interaction model, and their activity status. The
status is indicated by a square which is blue if the function participates in at least one protocol,
and grey if it is dangling. By convention, dangling functions either will be connected in the future
or should be reconsidered; “why is the modeler drawing a function that is not participating in any
commutation in an interaction model?”

• All protocols drawn A list of all protocols i.e. arcs drawn between functions. As with the function
their status is indicated by a blue/grey square, which means either a protocol is drawn and is
modeled in the projects protocols (active, blue) or a protocol is drawn but is not (yet) modeled
(dangling, grey). An active protocol provides the users with actions to open the modeler or its
settings directly, whereas a dangling protocol offers to option to directly create a new protocol and
start modeling.

• Ghost protocols A list of all protocols found in the project but that are not connected to any arcs
drawn in the interaction model. The user is provided with the actions to (re-)attach such a protocol,
or delete it.

Protocol modeler

The protocol modeler is the true heart of INORA2. It allows users to quickly and efficiently model
INORA protocols conforming to the requirements defined in previous chapters.
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Figure 5.3: The INORA protocol modeler creating a simple XOR choreography.

Similarly to the interaction model it provides a modeling canvas, a side panel and a creation menu. It
provides the possibility to create any protocol element from scratch, or (by selecting an element) select-
ing a logical follow-up in the pop-up menu. It also allows the user to control attributes, resize and move
elements, drag and drop any element, rename or label any element and use canvas actions such as mass
select and zoom. This modeler is an adapted version of the chor-js framework [74].

Elements in this tool may be linked to elements in the interaction model. While conventionally the
expectation is that users model only with elements in the interaction model, this is not a restriction.
As INORA2 is an educational tool, it is still possible to model generic interactions between an initiator
and receiver for demonstration purposes. If used to actually draw active protocols from the interaction
model, this user can make use of two ways to link the protocol to the interaction model:

• Direct linking Each protocol has a settings panel, in which the protocol can be explicitly linked to
an interaction model element. This works even if the functions mentioned in the protocol are not
used in the arc in the interaction model. This freedom is left to the user.

Example: The user decides to model a simple interaction model between functions F0 and F1. The
user links this protocol to Protocol A in the interaction model. INORA2 now understands that the
choreography and the protocol arc are linked. Note that if a user creates a choreography directly
from the interaction model, the linking will automatically take place.

• Participant reference In the choreography model itself any interaction (denoted by a message
activity) uses two participants: the initiator and the receiver. These two participants can be selected
by clicking on the band of an interaction. Possible participants are:

– Generic Initiator

– Generic Receiver

– A function in the interaction model.

An example of such a participant selection can be seen in Figure 5.6
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Figure 5.4: Selecting a participant for an interaction in the INORA choreography modeler.

Protocol analysis

One of the aims of the thesis was to show feasibility of automated analysis on (composed) choreogra-
phies. A major part of the INORA tool is therefore dedicated to analysing the choreography. Both from
the menu and directly from a choreography modeler view, the corresponding analysis can be brought
up.

Figure 5.5: The analysis overview of a protocol in the given choreography is considered sound.
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Figure 5.6: The analysis overview of a protocol in the given choreography does not fulfill the criteria of
soundness.
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Analysis steps

The analysis consists of multiple steps which are executed in a serial manner: they await the previous
step before starting its own. Each step is part of the analysis and checks for a single thing. The main
view of the analysis is the stepper overview. The user can quickly see the status and outcome of each
analysis step, before opening up the details window per step.

The steps included in this version of INORA2 are:

1. Build reference tree
Protocols may refer to other protocols. The first step of the analysis is therefore to discover all
(indirectly) referred protocols.

Due to the conditions stated in section 4.1 we know a protocol can only be sound iff all of its refer-
enced protocols are sound. It is not necessary nor desired to substitute all protocols in the model,
as this can lead to more complexity in the analysis. Instead, it is possible run the analysis on all
protocols that are referred from this protocol recursively using a tree from the discovery. Starting
with the “bottom” protocols (protocols that do not refer other protocols, and thus can be checked
by themselves), moving up a branch until reaching the current protocol under analysis.

The reference tree of Protocol A in Figure 5.7 looks like:

. Protocol A

Protocol B

Protocol C Protocol D

This step would run an analysis on Protocol C and D, and if both are considered sound it will
continue to B. If the referenced protocols {B,C,D} are all sound, this step succeeds.

2. Syntax verification
The analysis checks whether the syntax of the protocol is in line with the generic constraints listed
in section 4.1.

3. Generating choreography tree
INORA2 checks whether it can generate a valid choreography tree using the rules specified in
section 4.3, and using the algorithms in section 5.2.

This can either fail, after which a warning is thrown and the next step is executed. It might also
succeed, which allows the user to open up a detailed window to explore and manually analyze
the choreography tree. In this case, the protocol should be correct by construction.
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Figure 5.7: Process tree details window in INORA2.

4. Generating Petri net
This step can be divided into two sub-steps:

• Generation
Contrary to generating a choreography tree, this transformation should always succeed if the
generic constraints have been respected. It uses the techniques discussed in section 4.2 and
implements it using an algorithm described in 5.2. The user can see and investigate the Petri
net in the details window as seen in Figure 5.8

Figure 5.8: Petri net details window in INORA2.
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Another powerful INORA2 feature is to investigate a Petri net error within the Petri net UI.
If an error is found, and a counter-sequence can be generated, INORA offers the user a se-
quential scenario in which such an error can occur. It than shows it on the Petri net itself, and
provides a UI to click through the sequence, as can be seen in Figure 5.9.

Figure 5.9: Clicking through an error sequence to show how the protocol can potentially end up in a
deadlock. The yellow marking indicates the nodes and arcs involved with that transition firing, and the
red marking shows that a transition is partially active i.e. has at least one but not all tokens necessary to
fire in its consumer places.

• Validation
After the generation is done, INORA2 looks in its internal state whether the user has con-
nected a valid DAME LoLA client. DAME LoLA is an external tool that can verify a Petri net,
and it is described in section 6. If the user has connected a valid client, the Petri net along
with a checking formula is sent to DAME LoLA. It awaits its response and shows either an
error or success in the details window. If the Petri net is not sound, an example trace is given
to the user.

INORA verifies the net by running a LoLA formula (CTL [75]) that checks for: always even-
tually all tokens should be in the end places (output place of end event): given P being all
the places in the net and PΩ ⊂ P all places that are end-event outputs, the formula checked
for is:

AG(EF (∀p ∈ PΩ : m(p) = 1 ∧ ∀p ∈ P \ PΩ : m(p) = 0))

For example, if the sets P = {p1, p2, p3, p4, p5, p6} and PΩ = {p5, p6} are used, the resulting
formula in its explicit state is:

AG(EF(p1=0 AND p2=0 AND p3=0 AND p4=0 AND p5=1 AND p6=1))

This guarantees the soundness property of weak termination.

If no DAME LoLA client is connected at all, this analysis step cannot check for the validity of
the protocol. The Petri net translation is still made, and the user can view it, but the correct-
ness can solely be derived from the (not always applicable) choreography tree generation.

• Final result
To summarize all steps, a single outcome is given to the user: the choreography is sound /
not sound. The decision table as depicted below is used to derive this final outcome. Note
that the decision was made to display an elaborate “analysis report” as the final result of the
analysis. In section 3.4 we discussed the mapping of feedback to an easily understandable
model context, as modelers might not be an expert on formal feedback. We found, however,
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that giving concise and temporal feedback is a complex research field. Therefore it is decided
to not include it in the scope of this thesis. Two of three guidelines laid out in section 3.4 have
been fulfilled. An example is using red for critical errors, yellow for non-critical warnings,
and green for a successful result.

Correct references No Yes

Valid syntax 3** Incorrect Correct

Process Tree 2** Can be generated Cannot be generated

Petri net * No DAME LoLA client Is correct Is incorrect

Outcome Composition Error Syntax Error Sound choreo Undecisive Sound choreo Not sound

Table 5.1: Decision table to conclude correctness of a choreography.

Start All references
correct? Syntax correct?

Choreography
Tree can be
generated?

Petri net
generated and

checked?

Error in
composition Syntax Error StartSound by

construction

Sound by
evaluation

Choreo not
sound

OK OK Error

Error Error OK No DAME

Sound

Not sound

Figure 5.10: Visual flow derived from the Decision table

Due to the constraint definitions and theory defined in chapters 3 and 4 the outcome can be sound when
either the Petri net evaluation of choreography tree generation succeeds.

5.2 Algorithms

The tool uses multiple algorithms to perform analytics and to offer supportive tools to work with inter-
action models and choreographies. In this section, two major algorithms are discussed: transforming
the choreography to a choreography tree and translating the choreography to a Petri net.

Data Format

Before we can tackle how to transform a choreography into a given output, it is important to understand
how the modeler stores a choreography. In INORA we make use of an adaptation of chor-js [74] to
model choreographies. For visualization, these are stored in XML notation. However, as INORA is
written in a front-end web framework, it is useful to deal with these visual objects as actual (JavaScript)
objects. The connecting bridge between XML and run-time elements is a tool called bpmn-moddle1 (we
refer this as Moddle from now on).

Moddle takes as input either XML or a list of run-time elements, then verifies and translates these to
their counterpart. The run-time elements are the nodes and edges (called “flows”). In INORA we are
only interested in the nodes themselves, as the flows can be implicitly derived from their attributes.

Definition 5.1: Two-way translation of visual (XML) to run-time ele-
ments.

Consider the following simplified protocol.

1https://github.com/bpmn-io/bpmn-moddle
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F1

(request m1)

F2

This is the visual representation of an XML diagram. The actual XML
code is omitted as the end-user never sees it, and it is not used by
INORA (with the exception of storage purposes).

The diagram contains 3 nodes:

StartEvent, ChoreographyTask and EndEvent

The result is an array with three Moddle elements.

result = [ModdleElement, ModdleElement, ModdleElement]

Code snippet 5.1: Result of calling Moddle on XML diagram.

Each ModdleElement has the following attributes:

ModdleElement = {

$type: string, // What BPMN event? e.g. StartEvent

id: string,

name: string, // Name of the element in diagram

incoming: [ModdleElement], // List of references (in flow)

outgoing: [ModdleElement], // List of references (out flow)

...

}

Code snippet 5.2: Attributes of a Moddle element

In each of the sections below, the list of Moddle elements as seen in 5.1 is used. The start element can
be found by selecting on the $type attribute and the diagram can be traversed with the incoming and
outgoing references.

Generating a Choreography Tree

The first major step in choreography analysis is generating a choreography tree to check for correctness
by construction. For a process tree to form, there is a strict set of conditions that need to hold. The
algorithm is denoted in pseudo-code in snippet B.1.

Before this translation is fired the analysis stepper has already checked for basic constraints. However,
nothing can be said about the structure of the choreography before the actual algorithm is launched.
This algorithm, therefore, performs both checking and construction tasks simultaneously and may fail
in doing so.
The algorithm is a set of four main steps, each with its own sub-steps:

1. Preprocess the input

(a) Filter the ModdleElements to only include nodes and no flows.
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(b) Map the list of ModdleElements to a simplified integer graph for quick analysis. This can
then be translated in later steps once information on nodes is actually required.

2. Find the start and stop nodes of all loops in the graph

(a) Find the strongly connected components (SCC) in the graph [76].

(b) For each SCC, find the single entry node (start of loop) and the single exit node (end a loop).
These are stored. If more are found for a single SCC, throw an error.

(c) To check whether the strongly connected component itself has more SCCs in it, take the SCC
and perform the SCC check on it recursively.

A

m?

B

B

m!

A

B

m!

A

1 2 43

5

6 7

1 2 43

5

6 7

Entry Exit

Preprocess
to integer

graph

Run
SCC

discovery

Figure 5.11: Single entry, single exit detection of loops as described in step B.

(d) Return a list of all loop-starting nodes, and loop-ending nodes.

An example can be seen in Figure 5.11.

3. Check for block structure

(a) Each forking gateway should be matched with exactly one joining gateway. Assume a walker
with two stacks of tokens in it: a red stack for XOR gateways, and a blue stack for AND gate-
ways. The walker would up the corresponding stack with one token for each fork gateway
encountered, and lower the corresponding stack with one if a join gateway is encountered.
Starting with initial state Si = {R : 0, B : 0} at the start event, after each possible path the
state at the end event should equal Si, ∀p ∈ P : Si = Sep.

(b) If block-structured, continue; else throw an error, it will not be possible to construct a tree.

4. Attempt to construct choreography tree

(a) Traverse the choreography from the StartEvent using a depth-first method.

(b) If the node is already visited, continue Mark node as visited

(c) For each node



CHAPTER 5 THESIS PAGE 51

• Create a choreography tree node if it is an 1) activity 2) reference 3) fork node (AND or
XOR) 4) start of a loop. If possible children may be appended to this node

• Pop the parent stack if join node (future nodes in the path trace will use the previous
parent).

• Append newly created node to the children of its current parent.
• If this is a loop exit, also directly append the back-activity to the loop and mark it as

visisted.
• If this is a loop, sequence or fork node, add itself to the parent stack. Future nodes in the

path trace will be appended as a child to this node.
• Add its children to the DFS stack.

(d) Return constructed tree.

The pseudo-code algorithm can be found in Appendix B.

Transformation to Petri net

As stated the previous section, the algorithm for building a tree may fail, which is considered acceptable
behavior. The analysis then falls back on the computational heavier transformation to a Petri net. This
is done using the algorithm described in this section.

1. Preprocess the input
The algorithm uses the same ModdleElement input as used in the choreography tree algorithm.
No further preprocessing is needed as element attributes are used consistently in the algorithm.

2. Use Depth First Traversal
As each choreography node may be translated into multiple Petri net elements (e.g. a start event
consists of two places and a transition, connected by two flows.), it is needed to track the IDS of
these newly constructed elements and to which choreography element they belong. Use a depth-
first manner to walk over the choreography, and use a naive translation. This means that we do not
use any logical checks, and simply translate each part into its corresponding Petri net structure.
Start with the StartEvent and:

(a) Check if we have already visited this element. If so, it might still have open input places,
which need to be connected. Example: a join XOR node might need to merge two paths into
a single node. We may have already discovered and created this node for path1 and gave it
two input places. Now we again encounter it in path2. Therefore we create a flow to its one
remaining input possibility. Then continue to the next node.

(b) Using the type of the ModdleElement, find the corresponding generic Petri net mapping. A
list of mappings used by INORA2 can be found in Appendix D, these are the JSON notation of
the formal notation given in section 4.2. For example, the Parallel fork gateway is translated
using the segment:

{

translationSegment: 'ParallelGateway_fork',

content: {

places: [

'i1',

'on'

],

transitions: [

't1'

],

edges: [

'i1>t1',

't1>on'

]

}

}
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Code snippet 5.3: Translation segment used for Petri net translation in INORA2.

The algorithm uses the segment to calculate how many places and transitions need to be
created. Assume a parallel fork gateway with two outgoing branches. It would create

• 3 places: i1, o1, o2
• 1 transition: t1
• 3 flows: (i1 → t1), (t1 → o1), (t1 → o2)

It has |{i1}| = 1 input place which is used to connect the item this current iteration came
from (trace), and |{o1, o2}| = 2 possible output places. This information is stored in a global
tracking store, that keeps track for each ModdleElement the list of input and output places
that are still open, so they can be connected in later iterations (see step (a)).

(c) All children are pushed to the depth-first stack, and the next iteration is started.

3. The resulting net is refined
After the depth-first traversal has reached completion, the result is a place-transition net in which
multiple places are directly connected to each other. This is in violation with Petri net rules, and
therefore directly sequential places need to be merged (as shown in 4.3), so that a valid Petri net is
created.

4. Duplicate and connect

(a) Count all unique participants mentioned in the choreography.

(b) Copy the Petri net over for each participant, and track to which participant this belongs.

Example: a choreography modeling a simple interaction between components A and B needs
to be copied two times.

(c) For each copied net cd (with d being the dominant participant e.g. copy for both A and B
result in N = {cA, cB}), find all the interaction transitions in which the dominant component is
the initiator.

(d) For each, create a connection place and create flows between the initiating net and the same
transition in the receiving net.

5. The participant net is returned

The pseudo-code algorithm can be found in Appendix C.

5.3 Documentation, licensing and installation

INORA2 is created as an educational tool. It is open source and distributed under the MIT license 2. To
make maintenance, extension, and forking easy, the tool is accompanied by documentation within the
Git repository under /documentation/*.

The tool can be downloaded from the official Utrecht University Gitlab:

https://git.science.uu.nl/interaction-oriented-architecture/inora-open-source-modeler

To use the pre-compiled version, host the contents of the /inora/dist/ directory on any webserver
(e.g. Apache3 or Nginx4). Alternatively, use the /inora/dist_electron/ to directly run the Win-
dows and Linux executable files. We have not provided a Mac OS executable, as an Apple Developer
account was needed to sign the application.

The developer versions can be launched by running npm or docker. The documentation provides
further instructions to launch and maintain INORA2.

2https://choosealicense.com/licenses/mit/
3https://httpd.apache.org/
4https://www.nginx.com/

https://git.science.uu.nl/interaction-oriented-architecture/inora-open-source-modeler
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5.4 Version Comparison

Whereas the original INORA project was created as a plugin for Eclipse and Obeo Studio using the Sir-
ius project, INORA2 is a standalone tool that is completely rewritten.

The table below covers the main differences between the two versions.

Version 1 Version 2

Frame-
work

- Sirius plugin
- Java

- Standalone
- TypeScript

Prere-
quisites

- Installed Obeo Community Studio or
Eclipse
- Install using Sirius
- Java
- Knowledge of Sirius modeling

- Knowledge of BPMN modeling

Ease of
use

- Installation requires multiple steps
- Running multiple instances of Obeo
Studio, with different projects running
- Need to understand the complex
GUI of Sirius
- Can use the Sirius UI to make use of
the full set of modeling features.

- No installation necessary, simply open up the
compiled application.
- Simple GUI covering the needed interactions
- No graphical way to achieve complex connec-
tions or use plugins

Features - Modeling interaction model
- Modeling choreography
- Basic verification
- Basic model management

- Modeling interaction model with clean and
single-purpose UI
- Modeling choreography with clean and single-
purpose UI
- Extensive evaluation: reference tree, syntax,
soundness of protocol using constructing and
Petri net tools
- Ability to do extensive analytics on Petri net
using external LoLA tool
- Simplified and integrated model management
- Integrated viewers for Petri net and Choreog-
raphy trees.

Main-
tenance

- Steep learning curve and complex
set-up to start working with the plu-
gins source.
- Can use industry standards once set-
up.
- Always need to run big software
packages for maintenance.
- Little to no documentation.
- Works on all OS that can run Obeo /
Eclipse.

- Need to know TypeScript and Vue + Vuetify +
Vuex.
- Does not use a standard layout for the applica-
tion source.
- Documentation is provided.
- Compiles to all OS that can run Electron appli-
cations.
- Modular
- Uses a lot of external dependencies.

5.5 Summary

This chapter describes the implementation of the techniques introduced in the previous chapter. We in-
troduce INORA2, the successor to INORA. This is a standalone application distributed as an educational
tool to support software architecture modeling and analysis. The layout and features of the application
are explained and the two major algorithms used and their inputs are described in-depth, followed
by a set of examples. Furthermore, we compare both versions of INORA and discuss the license and
documentation.
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Petri net model checking

To perform analysis on the Petri nets generated by INORA2, we can use already existing and heavily
optimized tools. This chapter introduces such a tool and discusses the modifications, a newly created
API, and containerization of a Petri net tool called LoLA 2.0. The modified version is called DAME
LoLA. This forked project of the tool can be used by the INORA2 client to perform Petri net checks.

6.1 Model

The INORA2 Modeler and DAME LoLA tools are two separate tools written in distinct languages, but
can be seen as a software package. The INORA2 Modeler can be installed on any local computer and
can be connected to the DAME LoLA tool via an exposed endpoint. It is recommended to run DAME
LoLA on a server as it may take a lot of computer power and resources to verify large Petri nets. We
made the decision to decouple the two tools and not integrate them. The main reason for this is DAME
LoLA being a versatile forked project for LoLA 2.0 that can be used in a number of contexts other than
supplying INORA2 with validation. To make use of the full power of INORA it is recommended to
connect to DAME LoLA. The interaction model of the components in both tools can be seen as a single
system, which is shown in Figure 6.1.

  INORA + DAME

  INORA2 Modeler                       Application   DAME Docker Container

  User interface

  Backend

Draw
Int.

Model

Draw
Protocol
Choreo.

Display
Feed-
back

AxiosTrans-
lation

A

  LoLA 2.0

  API

Handle
Request

Check
Petri
Net

C

D

B

......

Figure 6.1: Interaction model for the INORA2 + DAME LoLA.

The interaction model displays interaction protocols A,B,C and D, which are defined as followed:

• Protocol A: A user-constructed choreography in the user interface is sent to the back-end of the
application to be translated to a Petri net.
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Figure 6.2: Protocol A definition.

• Protocol B: The translated Petri net is sent to the function that constructs and receives external
calls (axios).

Backend - Axios

No DAME client

Backend - Translation
Backend - Translation

Check Petri net

Backend - Axios Protocol C

Backend - Axios

Feedback

Backend - Translation

Figure 6.3: Protocol B definition.

• Protocol C: Axios sends a request and handles the HTTP responses and REST construction and
extraction.

Protocol D

DAME - API

Request error

Backend - Axios

Backend - Axios

Check Petri net

DAME - API

Invalid request

Valid request
DAME - API

Petri net feedback

Backend - Axios

Figure 6.4: Protocol C definition.

• Protocol D: After receiving a request, some pre-processing is done, such as creating temporary
directories and checking the syntax. The API then initiates one or more property checks on the
compiled LoLA 2 tool via this protocol, and returns it via Protocol C.
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v

DAME - API

Model checking

DAME - LoLA

v

DAME - LoLA

Feedback

DAME - API

Figure 6.5: Protocol D definition.

6.2 DAME LoLA

Next to the INORA2 modeler, we create an additional tool called DAME LoLA. As we outsource the
actual checking of Petri nets to a more optimized industry-standard tool, an interface needs to be created.
Therefore the following requirements need to be achieved:

1. Compile the INORA2 source1 code to an executable.

2. Move INORA to a container so that it can be used on any system without the hassle of installing
all necessary dependencies manually.

3. Write an easily accessible interface to communicate with LoLA from a network.

Docker Image

Python LoLA

Fast API
(REST)

System.OS
HTTP

Figure 6.6: Basic DAME overview.

These requirements are implemented in an interface tool called DAME LoLA. It is open-source and
has the advantage that it can be installed quickly, can be maintained with basic Python knowledge
and is stable on any OS. The tool, its use, advantages and its maintainability are described extensively
explained in Appendix E.

6.3 Summary

The checking of the Petri nets is outsourced to an optimized industry-standard tool called LoLA 2.0. A
side product of this research in a containerized version of LoLA 2.0 called DAME LoLA. This chapter
describes the interaction between INORA2 and DAME LoLA. Furthermore, DAME LoLA is explained
in-depth in Appendix E.

1https://theo.informatik.uni-rostock.de/theo-forschung/tools/lola/



Chapter 7

Application walk-through

Using the running example, we will model a range of protocols and the interaction model using IN-
ORA2. The aim of this chapter is to demonstrate the use of INORA.

1. Start up the application.
INORA can be started in three different ways:

• Using npm run serve to start the development environment using npm1. This requires the
installation of a bunch of dependencies and is slow, but allows for quick modification of the
source code.

• Using the docker image to run a container.

• Using the native OS Electron compiled distribution to quickly open an optimized production
edition.

2. Either create a new project, or open an existing one
For this walk-through, we will create a new project called “PTC”.

Figure 7.1: Create a new project, and name it.

3. Start by populating the Interaction Model.
This is the key diagram in the project. Populate it with some initial functions, or draw out the
full diagram. It is possible to later adjust this diagram, but drawing arcs between functions and
naming them is the easiest way to create a choreography.

1https://www.npmjs.com/
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Figure 7.2: Draw the required functions, and start connecting them with protocol arcs. They can easily
be connected using the connection tool in the left modeling palette.

4. Create a new protocol.
The drawn arcs result in new protocol suggestions in the left overview bar. You can easily create a
new protocol from this pane by clicking on “NEW”.

Figure 7.3: The overview panel and protocol creation button. You can also manage existing protocols
and see the status of individual functions/protocols in this pane.

5. A new empty protocol with a basic template is created.
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Figure 7.4: The basic template of protocol A is shown. The interaction does not yet include any functions
from the interaction model.

6. Link the participants from the interaction model.
By selecting the interaction activity, and clicking on the database icon in the top right pop-up
menu, a list of available participants appears.

Figure 7.5: We click on the Check Trip participant as the initiator for the first message.

7. Model out the full protocol A
Let’s create a logical flow candidate for protocol A.
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Figure 7.6: The protocol can easily be modeled using the available tools. They are designed especially
for choreography modeling and have some useful features such as element suggestion, automatically
flipping initiator and receiver after modeling the reverse, quick labeling and renaming, grid snapping,
and auto-reconnecting after deletion to name a few examples.

8. You can add some documentation to each element.

Figure 7.7: Using the right-side pane you can easily rename, alter the ID or add documentation to each
element. It is recommended to describe what exactly data may look like, or if certain conditions need to
hold.

9. Our protocol is done, let’s create the references.
We reference protocol B. To have a useful analysis of the composition Ac = {A,B}, we need to
create Protocol B. Let’s keep this one simple.
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Figure 7.8: Create a simple protocol B with is called by A.

10. Setup DAME LoLA
To make use of the Petri net analysis, we need to set up a connection with a DAME LoLA client
running LoLA (as explained in the previous chapter). If you have a DAME LoLA instance running
it is extremely simple to connect it to INORA. Go to settings (or click the status in the top right
bar), fill in the exposed endpoint and click connect.

Figure 7.9: Connect to DAME LoLA .

11. Start the analysis of protocol A.
We can ask if this protocol is sound (and thus realizable) by running the analysis.
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Figure 7.10: Click on the analysis menu tab, or use the button in the lower right corner to run the analysis
module.

12. Inspect the analysis overview
This is the main page of the analysis. A user can see the progress and results (when done) of each
step in the analysis timeline.

Figure 7.11: Correct protocol. All steps are green.
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Figure 7.12: This protocol references a non-existing protocol.

13. Open up the details of each step by clicking the button or the menu.
The interesting steps of course are the ones with an error. “Choreography tree” and “Petri net”
also produce interesting visuals to prove that are correct.

Figure 7.13: Syntax checker details. The syntax is correct.
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Figure 7.14: Scenario with error) Syntax checker details. The modeler has included too many
StartEvents.

Figure 7.15: Details of the Petri net generation, the Petri net is sound.
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Figure 7.16: (Scenario with error) Details of the Petri net generation, the Petri net is not sound. DAME
LoLA has found some errors in the Petri net. The modeler can step through an example counter firing
sequence and see the formula that is verified by DAME LoLA.

Figure 7.17: Details of the choreography tree generation, the Petri net is sound as the tree can be gen-
erated. It shows a detailed tree viewer, and its parenthesis notation for the user to quickly share the
protocol in single-line format.

14. Manage protocol settings
If we, for example, were to delete the protocol arc of “Protocol B” in the interaction model, the
choreography in INORA2 would become a Ghost. This is a choreography that is modeled in IN-
ORA2 but is not linked to any arc in the interaction model (since it was deleted). If we were to
re-create it, the modeler does not know that choreography B is related to protocol B. The settings
of a choreography offer the option to re-connect and rename it.
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Figure 7.18: Settings of a protocol. Can be opened from the side-panel in the interaction model, or from
the protocol itself.

15. Save the project
All changes are always stored upon change directly to the local store. If you want to make a copy,
start another project or share the models with other people it is possible to export (save) the project.

Figure 7.19: Name the project and save it as a .inora file.



Chapter 8

Conclusions

In this chapter, the conclusions regarding the research are drawn and related back to the research aim.
Furthermore, the limitations and the future of the research field are discussed.

8.1 Answers to Research Questions

The aim of this research is to provide formal semantics and tool support in order to give architects feed-
back to create sound INORA models, such that the quality of software architecture is improved.

After covering basic assumptions and introducing the general context of interactions between software
components and their relations to Petri nets we provide two formal techniques to transform a choreog-
raphy. The main translation is the formal and refined technique to map a BPMN choreography to a Petri
net. The second is showing that correctness can be a result of construction, by showing we can construct
a strict-grammar choreography tree. These two techniques are then implemented into a newly created
tool called INORA2, which demonstrates that it is feasible to use these techniques in modelers. Types
and ways to display this feedback are also discussed and partially implemented in the tool.

The following sub-questions can now be answered.

SQ1 What is a formal translation of a composed choreography to Petri nets, that allows
for verification?

In chapters 4 and 5 we described formal techniques to generate valid Petri nets from a given choreogra-
phy. Each segment of a generic choreography is provided with a formal translation using visual, formal
and code-like formatting. Using an example, procedure definition, and pseudo-code algorithm the steps
to achieve such a translation are covered extensively.

SQ2 What techniques can be used to check for the soundness of a Petri net?

In chapter ?? a variety of Petri net properties and their implications are discussed. In the following
chapters, we apply some of these techniques to check for the soundness of generated Petri nets. We also
show conditions in which a Petri net does not need to be generated and checked due to correctness by
construction.

SQ3 How can the formal translation method and the verification techniques best be
implemented in a tool so that it returns feedback?

Chapters 5, 6 and 7 cover the two tools in-depth. INORA2 is a newly developed tool to model, construct
and analyze interaction models and protocols. It shows feedback and supports the software architect
by implementing the theory discussed in chapter 4. DAME LoLA is a wrapper that allows for easy use
of LoLA 2.0. Both are combined to provide the user with extensive and automated feedback on the
protocol.
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By answering all these sub-questions, we can answer the main research question.

RQ How can software architects best be provided with automated feedback on the
quality of an Interaction Oriented Software Architecture?

The outcome of this thesis is a formal framework for translating choreographies to Petri nets and (condi-
tionally) choreography trees. We provide procedures and formal building blocks to do this. These can be
used in future research as a starting base for extending model checking and analysis on choreographies
and BPMN in general. Furthermore, the theoretical techniques are implemented in a tool that supports
analysis and modeling. They can be used to evaluate systems and show problems in the concurrency of
interactions; both for educational purposes and in the industry.

8.2 Discussion and limitations

This thesis covers a broad section of literature and the inherently complex field of model-checking. Al-
though a lot is covered, we explicitly left some in-depth topics out. There are also assumptions and
conditions for our solution that might not always fit practical systems. In this section, we discuss some
limitations of this research.

First and foremost, we have shown that a tool can automatically translate choreographies to a Petri net
and potentially a Choreography Tree. The checks executed on the Petri net are now limited to checking
for weak terminatio: checking if all tokens from the initial marking eventually always end up in all the
end places, without any lingering tokens. There is a wide variety of possible model-checking formulas
(some of which are already discussed in chapter ??), and this research does not compare exactly which
minimal combination can prove full correctness. It provides a way to quickly supply a very powerful
analysis to a choreography but lacks the formal proofs and research to guarantee correctness on all as-
pects of the net.

Another limitation of the study is the visual representation of the generated feedback. We have achieved
a way to automatically translate, verify and display it outcomes in the INORA tool, yet it lacks a
way to display the information on the diagram itself. In section 3.4 we discussed literature related
to Source2Target models and translating back feedback formal feedback to run-time GUI elements. Al-
though this is partially achieved as a mapping between a Petri net element and a BPMN element is kept,
it is not implemented in the INORA2 tool. The main reason for this is that the feedback received is
inherently complex to map back. Although LoLA outcomes and our mapping can translate back a trace
of sequences that can be run to end up in a deadlock, for example, it is difficult to display this on a static
non-temporal view such as a general BPMN model. We did decide to implement such a firing sequence
visualizer in the Petri net viewer itself, but due to scope limitations were not able to find a good way to
map that back to the modeler itself. Another major obstacle to this would be the heavy computational
activities that would need to be run in the background of the tool whilst modeling. This is something
INORA2 currently does not support, as we have chosen a non-preemptive feedback viewer, and thus
have to activate the analysis module manually.

In chapter 4.3 a language equivalence is assumed to show that a choreography tree can prove correctness
by construction. This equivalency has a major “weakness”. It assumes that an interaction is an atomic
operation: once it happens, nothing can happen during the interaction, and the next “iteration” results
in a finished interaction. This viewpoint works fine if you consider a Petri net transition because it is
just a transition between two states: before and after the interaction. In the choreography tree, however,
to guarantee that the behavior is exactly the same after the equivalence rewrite means that an activity A
is instantly completed after making a decision. This is of course not the case and thus is this equivalency
considered a simplified view.

The fourth point of discussion in this research is that we have proven the feasibility of automated model-
checking in interaction models and their protocols, yet have not applied any non-formal evaluation.
Though the steps, translations, and evaluations seem correct, we have not conducted a case study or
consulted professionals for their opinions. Therefore there is a lot of room to further validate the actual
usefulness of this approach itself: both in terms of model language, types of analysis, and ease of use of
INORA2 itself.
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The two tools developed (INORA2 and DAME LoLA) are released as educational tools. Although they
are developed with usability in mind, it is not professionally developed software. The research aims to
prove feasibility and therefore offers a proof of concept tool, yet is not ready to be used in commercial
applications. Mostly due to a lot of re-scoping certain supportive parts of the software are underdevel-
oped; the main focus of the research was to create a tool that could model and run analysis. Whereas
these features received a lot of development iterations, other functions like navigation, security, cus-
tomizability, and file management might lack features. The provided documentation, however, should
be sufficient to further develop the tool.

8.3 Future work

From these discussion points and limitations, a number of opportunities and future research topics can
be derived.

• Extensive evaluation
One major aspect still to tackle in this research field is: is this approach “useful”. A quantitative
and qualitative evaluation involving parties such as professional software architects and modeling
experts may be conducted in future work. It could find whether the use of the tool in practice is
useful and that it works as expected. It could also test whether the theoretical outcomes of the
interaction models and their protocols actually uphold in an applied system and whether they can
actually cover the right interactions between software components.

• Visual protocol feedback
To deliver the analysis results of the protocol directly and conveniently to the user visual feedback
on the protocol modeler could be projected. As discussed in the discussion, the type of feedback
we are currently checking for is complex to show on the modeler view so future research would
need to look for what and how to display such feedback.

• Petri net verification and proofs
As stated before, we currently perform powerful but basic checking on the Petri net. Future re-
search could find a combination of Petri net checks that completely guarantees correctness on
multiple aspects of the Petri net, and provide formal proofs as to why such a set of checks guaran-
tees correctness. Research would focus much more on the evaluation itself and move its scope to
Petri net validation of interactions.

• Choreography tree and Petri net translation extension
The Choreography tree and Petri nets that we can generate from protocols are quite restricted:
AND gateway, XOR gateways, References, and Loops are the only structures that a user can work
with. Future research might prove which ones are actually useful, and which ones from the BPMN
language might potentially be useful to add. It would then also be possible to extend the trans-
lations to include these new structures. Furthermore, it should also be possible to modify the
transformations for the process tree, as this thesis simplifies them quite heavily.

• INORA2 extension
The tool needs some work to be a fully operational software distribution. Future work could be to
extend and stabilize INORA2. Areas on which the tool can be improved are:

– Better project and file management The saving, loading and quick modification of INORA
projects is a part that can really be improved, as currently there is just some basic support.

– Intermodel-usability The aim of the tool is to quickly create protocols that are related to an
interaction model. Future work could heavily improve the linking of interaction model flows
and actual protocols, and make referencing easy with selection and potential mass query
execution. This would most likely require a database.

– Stability and distribution
The INORA2 project is open-source code that can easily be ported to native OS applications
with the use of Electron. It, however, also produces a lot of unstable builds, which can be
solved in the future by finding all version discrepancies.
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– DAME LoLA integration
A more extensive integration of DAME LoLA is an area of improvement. The REST proto-
col could follow a more generic and easily maintainable structure, with industry-standard
security protocols.
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Appendix B

Algorithm for generating Choreography
Tree

// Preprocess Moddle elements

i = preprocess(m)

// Find loop entries and exits

entries, exits = detectLoops(i)

if(isBlockStructured(i)) {

// Create a choreography tree node (output) that has and id, type and children (nodes)

root_sequence = new Node(id, type, [children])

// Create a stack with an array

// Give a start node, and the parents

stack = [[start, parents]]

// Depth First Traversal

while(stack is not empty) {

// Pop the last node on the stack, and their parent array.

node, parents = stack.pop();

// If node is seen, do nothing

if(seen) continue;

// If Node is the start of a loop, create a loop structure in the tree and make it the parent

if(node in entries) {

self = new Node(loop + sequence);

self.append_to(parent);

parents.push(self);

}

// If Node is the end of a loop, find the back-activity, add it to the loop structure and

go up in the parent stack.

if(node in exits) {

self = new Node(activity);

self.append_to(loop);

parents.pop();

}

// If Node is a join node, go up in the parent stack (this block is closed)

if(type of node is 'join') {

parents.pop();

}

// If node is fork node, create fork structure in the tree and make it the parent.

if(type of node is 'fork') {

self = new Node(fork + sequence);



self.append_to(parent);

parents.push(self);

}

// If node is a none structure node (e.g. simple activity, reference), add it to the current parent.

else {

self = new Node(activity or reference);

self.append_to(parent);

}

// All children of this node, add to DFS stack

for nodes in outgoing_arcs:

stack.push([node, parents])

}

}

Code snippet B.1: Pseudo code for generating a choreography tree



Appendix C

Algorithm for generating Petri net

// Filter on the start node of Moddle elements

start = getStartNode(elements)

// Create a stack to depth-first traverse over all the nodes

// In edge stores the ID of the element before current one

stack = [[startNode, inEdge]]

// Store all elements for the petri net

net = []

// Track all unique participants in this protocol

participants = []

// Track all open i/o places for each element

io = {[id]: { in: [], out:[] } }

while(stack is not empty):

// Pop from the stack

node, in_edge = stack.pop()

if(seen):

// Even if we have seen this node, might still need to connect.

// A place can have multiple incoming arcs

if(in_edge):

edge = connect(in_edge, this)

net.push(edge)

else: continue

seen.push(node)

// If unseen participant, add to participant tracker

if(node.participant not in participants) push(participant)

// Find the corresponding translation segment from a dictionary

segment = findTranslationSegment(node)

// Map generic segment to context

map(segment)

// for each Petri net element in context

for item in mapped_segment {

// Create id and add to net

id = generate_id()

element = item.toPetri(id)

net.push(element)

// Mark possible input and output places for this node

if(outplace) io.node.out.push(this)

if(inplace) io.node.in.push(this)

}



// Connect incoming edge for this iteration to next

// available input place of this node

find_and_connect(this, in_edge)

// populate DFS stack

for nodes in outgoing_arcs {

stack.push([node, out_edge])

}

Code snippet C.1: Pseudo code for generating a Petri net



Appendix D

Petri net translation segments

/*
How do we translate a BPMN to a petri net? Define a certain "component" e.g. start event.

Then define the places used: place = "<modifier><id>", input place one = i1,

intermediate place 2 = p2, output place one = o1 etc...

Then define the transitions: transition = "t<id>"

Then define the edges: "{p/t}>{p/t}" e.g. "i1>t1"

You can use number (e.g. 1,2,3) as <id> for fixed places/transitions,

or you can use a generic "n" which maps a n = 1...n.

Example: a Parallel gateway fork will need as many out places as arcs coming out in the protocol.

Therefore we define n transitions and n "o" places.

You can also use a "merged node" ("m<modifier>p", short for Merged <modifier> Place),

which simply inserts a single place that functions as

("in" AND "o1") OR ("i1" AND "on") depending on mip/mop. It cannot have transitions or edges.

*/

export const translationModule = [

{

translationSegment: 'ChoreographyTask_sequence',

content: {

places: [

'i1',

'o1',

],

transitions: [

't1'

],

edges: [

'i1>t1',

't1>o1',

]

}

},

{

translationSegment: 'IntermediateThrowEvent_sequence',

content: {

places: [

'i1',

'o1',

],

transitions: [

't1'

],



edges: [

'i1>t1',

't1>o1',

]

}

},

{

translationSegment: 'event_start',

content: {

places: [

'i1',

'o1',

],

transitions: [

't1'

],

edges: [

'i1>t1',

't1>o1',

]

}

},

{

translationSegment: 'event_end',

content: {

places: [

'i1',

'o1',

],

transitions: [

't1'

],

edges: [

'i1>t1',

't1>o1',

]

}

},

{

translationSegment: 'ParallelGateway_fork',

content: {

places: [

'i1',

'on'

],

transitions: [

't1'

],

edges: [

'i1>t1',

't1>on'

]

}

},

{

translationSegment: 'ParallelGateway_join',

content: {

places: [

'in',

'o1',

],

transitions: [

't1'



],

edges: [

'in>t1',

't1>o1',

]

}

},

{

translationSegment: 'ExclusiveGateway_fork',

content: {

places: [

'mop'

],

transitions: [],

edges: []

}

},

{

translationSegment: 'ExclusiveGateway_join',

content: {

places: [

'mip'

],

transitions: [],

edges: []

}

}

]

Code snippet D.1: Translation segment used for Petri net translation in INORA2.



Appendix E

DAME LoLA

An important side product of this research is DAME: a containerized version of LoLA 2.0 with a simple
connection interface. This appendix explains the project in detail.

DAME LoLA: Petri net validation tool

As stated in section 3.3 LoLA2 is one of the most powerful tools to validate Petri nets and use them for
model checking. A logical consequence is to therefore use it in INORA2. This “model checking” part
of the INORA2 system is built as a standalone tool, with all interactions being executed via a generally
accepted protocol. As the tool can be used to check any Petri net on properties, it has a broader purpose
than solely supporting INORA2. This tool combines the power of LoLA2, an API (REST), and Docker.
The working title for this combination is “DAME LolA” (Docker Analysis MicroService for LoLA).

LoLA2

LoLA2 is a tool written by Karsten Wolf and Niels Lohmann. It can be downloaded via their website1.
It is distributed with a GNU AFFERO GENERAL PUBLIC LICENSE which allows altering and redis-
tributing software under the same license2. The license is specifically designed to ensure cooperation
with the community in the case of network server software, as which LoLA2 can be categorized.

LoLA2 is written in C and distributed as source code. To do a local installation the code first needs to
be compiled using the automake procedures. The newest versions of the C compiler, however, cannot
deal with a deprecated declaration and therefore the source code of LoLA first needs to be patched. This
fix is suggested by Bentley James Oakes3. After patching the source code, LoLA2 can simply be installed
by running the following command from within the LoLA source directory [55]:

> ./configure

> make install

Code snippet E.1: Installing LoLA2 via command line.

After installation the tool can be used as a command-line executable. It can be used with the following
syntax:

1https://theo.informatik.uni-rostock.de/theo-forschung/tools/lola/
2https://www.gnu.org/licenses/agpl-3.0.nl.html
3http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/assignments/Assign5-AToMPM_CodeGen.

pdf

https://theo.informatik.uni-rostock.de/theo-forschung/tools/lola/
https://www.gnu.org/licenses/agpl-3.0.nl.html
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/assignments/Assign5-AToMPM_CodeGen.pdf
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/assignments/Assign5-AToMPM_CodeGen.pdf


> lola [FILE] [--formula=FORMULA] [OPTIONS]...

Code snippet E.2: Running LoLA2 command line executable.

A few key arguments are

• [FILE] This argument supplies a file path on the system to LoLA. This file is formatted as a LOLA
file (.lola) and contains the Petri net that needs to be verified.

• [--formula=FORMULA] This argument sets the property on which the net will be checked. This
is read from a .formula file, due to the character limit on commands. All possible formulas and
the way they are supposed to be used can be found in a PDF file which is part of the distribution.

• OPTION[--json=output.json] There are many different options for the lola command. These
are all listed in the PDF as stated above. An important option for DAME LoLA is to write the JSON
output to a file so that is can be used later.

• OPTION[--path=output.path] This option returns a counter-path to a query. For example, if
checking for deadlocks, this option produces a firing sequence (path) which makes the net end up
in a deadlock iff there exists one.

REST API

Once LoLA2 is installed on the system it can be used from within the terminal. However, it is not yet
callable from external sources. Note that LoLA2 includes software to use LoLA in a network setup. This
uses the UDP protocol and requires all callers to be on the same network. To make LoLA2 callable from
sources that are not on the same network, another protocol needs to be used. Technically it would be
possible to use the UDP protocol for this, but this limits the customizability of requests and verification.

A very commonly used method to supply applications [77] with information from external tools is Rep-
resentational State Transfer (REST), which is a set of design constraints [78] that uses the HTTP protocol
[79] and allows users to define any type of pattern for reading, writing and other interactions with a
service via an URL [80]. In the scope of DAME LoLA, it specifically implements an HTTP POST call
which can be implemented to supply the installed LoLA instance with instructions and a Petri net. This
is done by calling an URL endpoint which can then parse the POST call with a given body. This body is
formatted as JSON (JavaScript Object Notation), which is an inherent consequence of using REST [81]
and outperforms XML in terms of performance [82].

As REST is not a protocol itself it can be implemented with many different programming languages and
frameworks. In DAME LoLA this is done by writing an API with a Python framework called FastAPI4.
FastAPI is a fast and low code method of exposing Python functions via REST over an URL endpoint.
The main endpoint from DAME LoLA is given as an example function as can be seen in snippet E.4.
Once FastAPI is imported, it can be used as a function decorator5 for any function. In this case, a POST
request can be submitted to /analyse and expects a LolaRequest typed variable and returns a Python
dictionary. Both the class LolaRequest and the returned dictionary have a direct mapping to a JSON-
like object, which is used as request and response bodies in the REST framework. Note that Pythons
typing package is used in this code to make it clear and maintainable.

1 from fastapi import FastAPI

2 app = FastAPI()

3

4 @app.post("/analyse")

5 def handle_request(request: LolaRequest) -> Dict:

6 ...

7 return Dict

4https://fastapi.tiangolo.com/
5https://wiki.python.org/moin/PythonDecorators

https://fastapi.tiangolo.com/
https://wiki.python.org/moin/PythonDecorators


Code snippet E.3: Python definition exposed as REST POST endpoint using
FastAPI.

Python logic

As stated in the previous section, the Python script provides a REST API. The two main callable func-
tions are /status and /analyse. In snippet E.4 and E.5 pseudo code of these implementations can be
found.

1 # Used to check the status of the service via GET.

2 @app.get("/status")

3 async def status() -> Dict:

4 ...

5 return Dict

6

7 # Output (Dict/JSON)

8 {

9 "status": True | False

10 }

Code snippet E.4: Input and output of /status.

1 # Used to submit LoLA files and run verification

2 # on Petri nets via POST

3 @app.post("/analyse")

4 def handle_request(request: LolaRequest) -> Dict:

5 ...

6 return Dict

7

8 # Input (REST/JSON)

9 {

10 "formulas": ["<name>", ...],

11 "lolafile": "..."

12 }

13

14 # Output (Dict/JSON)

15 {

16 "analysis": [

17 {

18 "formula": "<name>",

19 "result": {...}

20 },

21 ...

22 ]

23 }

Code snippet E.5: Input and output of /analyse.

Once a LoLA call on /analyse has been made, the API fires a sequence of steps. During any time an
error may occur. If this happens the process is interrupted, the error is logged to a .log file on the
server and the caller is notified via an HTTP error message.

1. The call is verified to check whether it complies with the LolaRequest class.



2. Logging is now enabled. All actions as a consequence of this call are logged on the system.

3. A unique process ID is generated at random to identify all temporary files belonging to this call.

4. The request variable LolaRequest.lolacode is extracted and checked for validity. If is a valid
LoLA file, the file is written to a temporary file on the system /<home>/tmp_files_in/<uid>.lola.

5. Next, all formulas are extracted from the request variable LolaRequest.formulas. This is a list
of all checks that the caller wants to run on the Petri net. It may contain an arbitrary number of
LoLA2 supported formulas, such as deadlock and general modelchecking. The user-friendly
names are then mapped to the correct LOLA2 formula format, and written to a temporary input
file. This step also ensures that there is never any input from the caller directly being run on the
terminal, because if the mapping fails nothing will be run at all.

6. After all formulas are extracted, and the LoLA file written to the system, the tool will be run. This
is done serially and separately for each formula, as LoLA2 does not support multiple formulas at
one time. The result is written to /<home>/tmp_files_out/<uid>/<formula_name>.json.
The directory
/<home>/tmp_files_out/<uid>/ thus includes a separate JSON file for each LoLA formula
run.

7. If the net does not comply with a formula and LoLA is able to find a path that demonstrates the
non-compliance, it writes a possible firing sequence (one of many) in the
/<home>/tmp_files_out/<formula_name>.path file.

8. All output files are collected from the directory and are combined into a Python dictionary. The
in and out directories destroyed.

9. The combined result is returned to the caller.

Combining LoLA and REST: Docker

Now that LoLA2 is compiled and Python handles the requests it is very useful to make this a single
“package” so that is can be run from anywhere as a microservice [83]: in the cloud, on a server or on
a local PC. A powerful method that supports this is containerization, and one of the most commonly
used open-source tools is Docker [84] [85]. Such a container can be packaged into a Docker image: a
predefined package that any user can run that includes all the code and environment settings and can
be modified to the liking of the user. It ensures that the application responds the same on any system
running Docker.
The DAME LoLA docker image is built around another image and ensures system security by incorpo-
rating a couple of techniques.

1. It uses the base image of gcc6, which is a set of tools to compile C-code installed on a very
lightweight Linux distribution called Alpine.

2. It copies the LoLA2 source code to the container.

3. It runs some basic configuration (setting working directory, installing packages) and runs the
LoLA2 installer.

4. It installs Python3, which is necessary for the REST API.

5. It creates a limited access user called pyapi-runner that can only run Python and LoLA and
access its home directory for security reasons.

6. All Python source code is copied to the container, and all directories that the API will use are
created with the right access levels.

7. The tool uvicorn is used to run a web server with FastAPI. This web server is assigned to IP
address 0.0.0.0 and port 8000.

6https://hub.docker.com/_/gcc

https://hub.docker.com/_/gcc


With the use of a docker-compose.yml runtime variables can be set, and the image can be run. Some
important variables that should be set are the port and volume mapping. The ports flag should map
the 8000 port from the container to a free port on the host OS, and the flag volumes is mapped to a lo-
cation on the system to checkout LoLA output files on the host OS. An example of a docker-compose file
running DAME LoLA can be found in snippet E.6. To run the application, make sure Docker is running
on the host OS and run docker-compose up in the terminal of the docker-file directory. After is it run-
ning the endpoint can be found under the host OS IP or http://localhost:<host-port>/<endpoint>.

1 version: "3"

2 services:

3 # Define the container to run LORD

4 lola-runner:

5 # Build from the dockerfile if

6 # you run the source code from Git

7 build: ./build

8 # Or use image flag if you want to

9 # pull the image from Docker Hub

10 - image: lola-docker

11 # Map docker ports to local ports (host:container)

12 ports:

13 - 8080:8000

14 # Create a volume which is stored

15 volumes:

16 - /some/local/hostOS/path:/home/pyapi-runner/

Code snippet E.6: Example docker-compose file contents.

Summary

In this Docker is used to install both LoLA2 and Python to a Docker image. A FastAPI tool is supplied
with the image to expose the LoLA command line executable via a REST API. This package is created
with security and flexibility in mind. The image will be published to Docker Hub7 once finished under
an open-source license. The source code can be found on Gitlab: https://git.science.uu.nl/
interaction-oriented-architecture/lola-docker.

7https://hub.docker.com/

https://git.science.uu.nl/interaction-oriented-architecture/lola-docker
https://git.science.uu.nl/interaction-oriented-architecture/lola-docker
https://hub.docker.com/
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