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Abstract 

Cancer is a very complex disease driven by DNA alternations, called somatic mutations. The 

identification of cancer-related genes and their contribution to the initiation and development of 

cancer is needed to make an accurate diagnosis and treatment. For this reason, high throughput DNA 

sequencing techniques are frequently applied, resulting in dozens or even hundreds of cancer driver 

candidate genes. However, identifying a small number of cancer driver mutation genes from a much 

greater number of passenger mutation genes is still highly challenging and the experimental validation 

of all these candidates would be too expensive and time-consuming. Therefore, multiple different 

cancer driver candidates prioritization tools are developed to tackle this problem. In this review, 

different computational tools to prioritize cancer driver candidates will be evaluated. The tools are 

divided into three different groups; methods based on literature, methods based on machine learning 

and network-based approaches. This review aims to inform the reader about the key features of 

different cancer gene prioritization tools. The reader can, based on this, select a tool that is suitable 

for their specific purpose and avoid possible pitfalls of the methods. 

Layman’s Summary 

We all know that cancer is a leading cause of death worldwide. Cancer is a very complex disease 

driven by mutations in your genome. Differences in your DNA can lead to the initiation and 

development of cancer. Therefore it is needed to identify the cancer-related genes to make an 

accurate diagnosis and treatment. There are cancer driver mutation genes and passenger mutation 

genes. The cancer driver mutation genes initiate and develop cancer, while the passenger mutation 

genes do not affect functionality. There are only a small number of cancer driver genes in a big pool 

of passenger genes. Therefore, the identification of these driver genes candidates is challenging and 

the experimental validation of all these candidates is expensive and time-consuming. For this reason, 

multiple different cancer driver candidates prioritization tools are developed. In this review, different 

computational tools to prioritize cancer driver candidates will be evaluated. 

Introduction 

Cancer is a very complex disease driven by alternations to a cell’s DNA. These alterations are also 

known as somatic mutations. A lot of research has been done to characterize somatic mutations in a 

patient tumor using next-generation sequencing technologies. Well-known projects of this kind are 

The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC). All this 

research results in more than 30.000 cancer whole exomes or genomes that have been sequenced and 

thousands of unique somatic mutations from a broad range of cancer types that are identified. Most 



of the found somatic mutations have no biological effect nor phenotypical consequences. These 

mutations don’t have a positive or negative selection during cell division and are so-called passenger 

mutations. On the other hand, among the somatic mutations, there is a small fraction called driver 

mutations. Such somatic driver mutations have a functional effect and also positive selection with 

respect to neighbouring cells. This leads to the exponential growth or survival of a clone. Although the 

discovery of new unique somatic mutations is going very rapidly, it is still challenging to distinguish 

passenger mutations from driver mutations.  

There are multiple different somatic mutations; single-nucleotide variants (SNVs), indels and structural 

variants (SVs) including copy number alterations (CNAs) (Pleasance et al., 2010). Single-nucleotide 

variants (SNVs) are variants where a single nucleotide is substituted (Spencer et al., 2015). When an 

SNV is present in a protein-coding region, the nucleotide substitution can result in a translation of 

another amino acid, which can affect the protein structure and function. This is called a non-

synonymous change or a missense variant. There are multiple codons for the same amino acid, which 

makes it possible that the amino acid does not change, even though there was a nucleotide 

substitution. This is called a synonymous change. The third change that can happen by a nucleotide 

substitution is the initiation of a stop codon, this mostly results in a non-functional protein and is also 

called a nonsense variant mutation.  

Indels are small insertions or deletions from the genome, usually less than 50 base pairs (Mullaney et 

al., 2010). In the process of translation, three bases (= 1 codon) of the mRNA sequence are read at the 

time. A frameshift will occur when the length of the indel is not a multiple of three. This will rearrange 

the reading frame and all the remaining bases will be translated differently than intended. Resulting in 

a totally different product of translation, which most of the time leads to a targeted decay of the 

mRNA.  

Structural variants (SVs) are large rearrangements of more than 50 base pairs in the genome (Feuk et 

al., 2006). This can be an insertion, deletion, duplication, inversion, translocation or even a 

combination of these kinds. A large subtype of SVs are copy number alterations (CNAs), a duplication 

or deletion that alternates the number of copies of sections of DNA in the genome (Taylor et al., 2008). 

This can change the expression level of genes in the affected genomic regions, causing tumor 

progression (Bhattacharya et al., 2020).  

We have seen that different alterations in the genome can lead to changes in protein function. These 

mutations can cause a protein to lose its native function (loss of function, LoF) or it can obtain a new 

function (gain of function, GoF) (Schroeder et al., 2014) (Jung et al., 2015). Loss of function mutations 

disrupts the normal activity of a protein by reducing its expression level or by impairing its function. 

These mutations are often associated with tumor suppressor genes, which are genes that normally 

prevent cancer development by regulating cell growth and division. On the other hand, gain of function 

(GoF) mutations enhances the activity of a protein by increasing its expression level or by changing its 

function. These mutations are often associated with oncogenes, which are genes that promote cancer 

development by stimulating cell growth and division.  

The identification of cancer driver genes is needed for targeted drug therapy. Already some cancer 

mutations can be targeted therapeutically. For instance, the oral drug Crizotinib, which is a tyrosine 

kinase inhibitor targeting the anaplastic lymphoma kinase (ALK) in ALK-positive lung cancer patients 

(Sahu et al., 2013). Another targeted drug is Sorafenib. This is a multi-kinase inhibitor that targets the 

extracellular signal-regulated kinases (ERK) and other pathways that are involved in cell proliferation 

in tumors (Shaw et al., 2013) (Pinter et al., 2009) (Dimitrakopoulos & Beerenwinkel, 2017). The 



identification of more cancer driver genes will help us develop mutation-specific drugs and will 

improve the treatment of cancer. 

There are multiple (good) tools available to discover cancer driver candidates, but how do we find out 

if these candidates are in practice actual cancer driver genes and not passenger genes? (Martínez-

Jiménez et al., 2020) (Gonzalez-Perez & Lopez-Bigas, 2012) (Han et al., 2019) There are too many 

different cancer driver candidates to validate individually in the lab. An additional step, between the 

characterization of cancer driver candidates and the experimental validation, is needed. A step that 

can prioritize the cancer driver candidates in such a way that it is easier to select the ones that we want 

to validate experimentally.  

In this review, different computational tools to prioritize cancer driver candidates will be evaluated. 

The tools are divided into three different groups; methods based on literature, methods based on 

machine learning and network-based approaches. (Fig. 1) This review aims to inform the reader about 

the key features of different cancer gene prioritization tools. So that the reader can, based on this, 

select a tool that is suitable for their specific purpose and avoid possible pitfalls of the methods. For 

this review, we focused on ‘newer’ available tools, in other words, tools that have been developed 

since 2017. This was done to eliminate outdated tools and to (hopefully) found more in-depth 

approaches.  

Main 

In this review, we evaluate tools that use different approaches but have the same goal: the 

prioritization of a list of cancer driver candidates. (Table 1) We categorized the tools into three groups: 

Literature-based tools, Network-based tools and Machine learning based tools. (Fig. 1) Sometimes a 

method does not fit perfectly into one group; it might have some overlap between the groups. Overall, 

it is helpful to have this categorization, because it is easier to follow this way and the tools are easier 

to compare.   



 

Figure 1. Process of detecting cancer driver genes. First, the tumor and normal samples need to be 

sequenced. Then somatic mutations, such as single-nucleotide variants, indels and CNVs are detected 

from the sequencing data using variant calling. From this list of variants, the passenger mutations need 

to be filtered out and the candidate cancer driver genes need to be detected. An often used tool for 

this is Intogen (Martínez-Jiménez et al., 2020). The next step is to prioritize these cancer driver 

candidates. They can broadly be categorized into three groups: Methods based on literature, Methods 

based on machine learning and Network-based approaches. The last step is to validate the findings 

experimentally.  

 

 



         Tool Article Accessibility Year 

Literature based tools 
 

  

         CancerMine Link 
(Lever et al., 2019) 

Online tool 2019 

Extracts various types of cancer-related information from scientific publications, creating a database of drivers, 
oncogenes and tumor suppressors in different types of cancer. 

 

         OncoKB Link  
(Chakravarty et al., 2017) 

Online tool 2017 

Summarizes all the already known cancer drivers from 7 different sources. 

Machine learning based tools 
  

         OncodriveROLE Link 
(Schroeder et al., 2014) 

Available in intogen pipeline 2014 

Predicts if cancer driver genes have a loss of function (LoF) or a gain of function (GoF). 

 

         CHASMplus Link 
(Tokheim & Karchin, 2019) 

Available via OpenCRAVAT 2019 

Calculates a score that represents the fraction of decision trees which vote for the mutation being a driver. 

 

         PrimateAI Link 
(Sundaram et al., 2018) 

Available for academic and 
non-profit use 

2018 

Uses a deep neural network trained on non-human primate data to predict the functional impact of genetic 
variants.  

 

         DriveR Link 
(Ülgen & Sezerman, 2021) 

Available via GitHub 2021 

Uses a multi-task learning model with the combination of genomics information and prior biological knowledge. 

Network-based tools 
  

         MaxMIF Link 
(Hou et al., 2018) 

Download via website 2018 

Calculate a maximal mutational impact function score by integrating somatic mutation data and protein–
protein interaction (PPI) data. 
 

         OncoVar Link 
(Wang et al., 2021) 

Online tool 2020 

Calculates a ‘driverness’ score based on a Gaussian mixture model (GMM). 

Tools specific for personalized use 
 
         PDGPCS Link 

(Zhang et al., 2022) 

Available via GitHub 2022 

Identifies and prioritizes personalized cancer driver genes based on the Prize-Collecting Steiner tree model. 

         PersonaDrive Link 
(Erten et al., 2022) 

Available via GitHub 2022 

Calculates a weighted ‘pairwise pathway coverage’ score to prioritize the mutated genes of a patient.  

 

 

 

Table 1. Overview of different computational approaches to prioritize cancer driver candidates. The 

tool name, reference, accessibility, year of publication and a brief description is given. The accessibility 

shows the easiest way of using the tools. Some tools are publicly available as an online platform, while 

others provide the source code to run the tool, for instance via GitHub.  

 

https://www-nature-com.proxy.library.uu.nl/articles/s41592-019-0422-y
https://ascopubs.org/doi/full/10.1200/PO.17.00011
https://academic-oup-com.proxy.library.uu.nl/bioinformatics/article/30/17/i549/201062
https://www-sciencedirect-com.proxy.library.uu.nl/science/article/pii/S2405471219301541
https://www-nature-com.proxy.library.uu.nl/articles/s41588-018-0167-z
https://link-springer-com.proxy.library.uu.nl/article/10.1186/s12859-021-04203-7
https://onlinelibrary-wiley-com.proxy.library.uu.nl/doi/full/10.1002/advs.201800640
https://academic-oup-com.proxy.library.uu.nl/nar/article/49/D1/D1289/5976976
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04802-y
https://academic-oup-com.proxy.library.uu.nl/bioinformatics/article/38/13/3407/6586794


Literature based tools 
The first category is literature-based tools, which are tools that use information from the scientific 

literature to prioritize cancer driver gene candidates. A tool that summarizes all the already known 

cancer drivers is available, called OncoKB (Chakravarty et al., 2017). It uses information from various 

sources, such as different sequencing panels, the Sanger Cancer Gene Census and Vogelstein et al. 

(2013). In particular, the inclusion of the genes in 4 different sequencing panels was evaluated, named 

MSK-IMPACTTM (Cheng et al., 2015), MSK-IMPACT HemeTM (Ptashkin et al., 2019), FoundationOne®CDx 

(FoundationOne CDx | Foundation Medicine, z.d.), FoundationOne®Heme (Foundation Medicine, 

2020). Besides that, they checked if the gene was part of the published Vogelstein et al. (2013) cancer 

gene list, which is a list of 125 ‘known’ cancer driver genes identified by Vogelstein et al. and part of 

the Sanger Cancer Gene Census Tier 1, which included 576 genes. Based on this, the gene can be 

covered in 7 different sources and thus can have a score between 0 to 7 sources. The higher the 

number of sources for a particular gene, the more evidence there is that this gene is actually a cancer 

driver gene. Ranking the genes based on the number of sources seems to be a good way to start the 

prioritization of the cancer driver candidate genes.  

Another literature-based tool is called CancerMine developed by the University of California, San Diego 

(UCSD) (Lever et al., 2019). CancerMine extracts various types of cancer-related information from 

scientific publications, creating a database of drivers, oncogenes and tumor suppressors in different 

types of cancer. This is done by a combination of rule-based and machine learning algorithms. First 

CancerMine preprocesses the input text by removing noise and irrelevant information, like formatting 

and citation information. The next step is to identify and extract mentions of relevant entities, such as 

genes, from the preprocessed text. Then CancerMine uses machine learning algorithms to identify 

relationships between those relevant entities, like gene mutations associated with specific cancer 

types. A logistic regression classifier was trained on word frequencies and description features, to learn 

the characteristics of sentences. After, a prediction of the pairs of genes and the associated roles in 

different cancer types was done using the classifier. To minimize the effect of incorrect associations, a 

high threshold on the classifier scores is applied. This will decrease the number of false positives, but 

also increase the number of false negatives, this is something to take for granted. Finally, the extracted 

information will be normalized by mapping entities and relationships to standard terminologies and 

ontologies, such as the Unified Medical Language System (UMLS), a repository of biomedical 

vocabularies developed by the US National Library of Medicine (Bodenreider, 2004). This results in a 

frequently updated database of drivers, oncogenes and tumor suppressors, available via a web viewer 

or download link. 

 

Figure 2. General overview of machine learning approaches. First, the data will be extracted and 

prepared. This involves removing irrelevant or duplicate data, handling missing values and 

transforming the data into the desired format. Then, the most relevant features are defined that help 

the model learn patterns and make accurate predictions. Now, the machine learning model can be 

created and trained. Once the model has been trained and tested, it can be deployed to make 

predictions on new, unseen data (test data).  



Machine-learning based tools 
In the previous section, we saw examples of machine learning being applied to literature data, but 

there are also tools that apply machine learning to mutation data as input by the user (Fig. 2). 

OncodriveRole can predict if cancer driver genes have a loss of function (LoF) or a gain of function 

(GoF) (Schroeder et al., 2014). Loss of function mutations disrupts the normal activity of a protein by 

reducing its expression level or by impairing its function. These mutations are often associated with 

tumor suppressor genes, which are genes that normally prevent cancer development by regulating cell 

growth and division. On the other hand, gain of function mutations enhances the activity of a protein 

by increasing its expression level or by changing its function. These mutations are often associated 

with oncogenes, which are genes that promote cancer development by stimulating cell growth and 

division. OncodriveROLE predicts these LoF and GoF mutations based on several features, like the 

location of the mutation within the protein sequence, the potential impact of the mutation on the 

protein structure and function, and the potential effect of the mutation on the protein-protein 

interactions or signaling pathways. The output given is the probabilities per gene if it is a LoF or a GoF 

and a label assigned with Activating (GoF), Loss of Function (LoF) or No class. For this tool, the default 

threshold for labelling a gene Activating or Loss of Function is at a probability of >0.7. Nevertheless, it 

is possible to change this threshold, it depends on how strict of a classification the user wants for their 

list of cancer driver genes.  

The tool CHASMplus is based on an earlier algorithm called CHASM (Cancer-specific High-throughput 

Annotation of Somatic Mutations), which was developed by the same research group (Carter et al., 

2009) (Tokheim & Karchin, 2019). CHASM is a machine learning algorithm to analyze various features 

of somatic mutations, such as their location within the genome and the type of amino acid substitution. 

Eventually, it will assign a score to each mutation, reflecting its likelihood of being a driver mutation. 

In comparison to CHASM, CHASMplus includes some improvements, like the usage of more features 

and a machine learning-based approach that can incorporate multiple types of data. First, the user 

needs to provide the protein sequence and the somatic missense mutation of interest. Then 

CHASMplus will extract various features from the protein sequence and the mutation to use in the 

prediction model. These features include information on evolutionary conservation, physicochemical 

properties of the substituted amino acids, and the location of the mutation in the protein structure. 

Then a Random Forest classier is used to learn the relationship between the extracted features and 

the functional impact of the mutation. This classifier is trained on a large set of known driver mutations 

and neutral mutations. Now, CHASMplus can predict the functional impact of the somatic missense 

mutation by calculating a score that reflects the likelihood that the mutation is a driver mutation. The 

output is not only this likelihood score, but it gives also the location of the mutation in the protein and 

the conservation of the affected amino acid. Based on this likelihood, the cancer driver candidates can 

be ranked, from most likely to be a cancer driver gene to least likely.  

Sundaram et al. (2018) demonstrated that missense variants that are common in other primate species 

are largely clinically benign in humans. For this reason, it is possible to systematically identify 

pathogenic mutations by the process of elimination. Their tool PrimateAI uses a deep neural network 

that was trained on a dataset consisting of ~380.000 common missense mutations from human and 

six non-human primate species (Sundaram et al., 2018). This training was done using a semi-supervised 

benign versus unlabeled training approach. Once the algorithm is trained, it can be used to predict the 

functional impact of genetic variants in your own genomic data. The algorithm takes in the genomic 

sequence of a variant and outputs the prediction of its functional impact, such as whether it is likely to 

be benign or pathogenic. This is in the form of a prediction score, where the founders of the tool 

recommend a threshold of > 0.8 for likely pathogenic classification, <0.6 for likely benign and between 



0.6 and 0.8 for genes that could not be specified as either. For approximately 70 million human 

missense variants the prediction scores are already publicly available, which makes this tool very 

accessible.  

DriveR does not only utilize somatic mutation information but also incorporates prior biological 

knowledge (Ülgen & Sezerman, 2021). The DriveR algorithm uses a two-step approach to prioritize 

cancer driver candidate genes. First, they employ a feature selection method to identify the most 

informative genomic features that distinguish diseased from healthy individuals. The features can 

include gene expression, protein-protein interactions and pathway information. The second step is to 

assign a score to each gene based on its association with the disease of interest, this is done using a 

Support Vector Machine (SVM). The higher the score, the more likely the gene is to be involved in the 

disease. The algorithm also incorporates a network-based approach to identify genes that are highly 

connected to other genes already known to be involved in cancer. It is possible to customize the 

analysis by selecting specific data sources or features to be included in the analysis and the weights 

that are assigned to each feature can be adjusted. 

Network-based tools 
The last tools that we saw are machine learning based. DriveR is a machine learning based tool that 

also incorporates a network-based approach. Besides this combination, there are also tools that mainly 

use network-based approaches. These are tools that use biological networks to evaluate the 

relationships between genes based on their interactions within biological pathways or networks.  

One of these tools is called MaxMIF (Hou et al., 2018). MaxMIF consists of three steps (Fig. 3). First, 

based on somatic mutation data, a mutation score for each candidate driver gene for its role in driving 

cancer is computed. An earlier study showed that there are only a few driver mutation genes in 

comparison to the total number of mutated genes in the sample (Vogelstein et al., 2013). To avoid 

potential biases caused by samples with a large number of mutated genes, this approach ensures that 

each cancer sample contributes equally to the mutation score. This allows genes to be stratified based 

on their resulting mutation scores. The second step is calculating a mutational impact function (MIF) 

value for every candidate genes pair. Here, their mutational impact is measured according to their 

relationship in protein-protein interaction (PPI) networks. If they both have a high mutation score and 

are close to each other in the PPI networks, the two genes should have a strong mutational impact 

(Cheng et al., 2015).  For that reason, the MIF value of two genes is defined to be proportional to the 

product of their mutation scores but inversely proportional to the square of the distance between 

them in PPI networks (𝑀𝐼𝐹(𝑎, 𝑐) =
𝑀(𝑎)𝑀(𝑐)

𝑟𝑎,𝑐
2 ). Lastly, a novel maximal mutational impact function 

value for each candidate gene is computed by taking all its neighbours in the PPI networks into account 

(𝑆𝑀𝑎𝑥𝑀𝐼𝐹(𝑎) =
𝑚𝑎𝑥

  𝑗∈{𝑏,𝑐,𝑒,𝑓,ℎ}
 𝑀𝐼𝐹(𝑎, 𝑗). The candidate genes are then ranked based on their maximal 

mutational impact function value (MaxMIF value). The MaxMIF score represents the predicted 

functional impact of a mutation, where higher scores indicate a greater likelihood of the mutation 

causing a significant change in protein function. The maximal MaxMIF score (MaxMIF value) is the 

highest predicted score for a given mutation, among all possible amino acid substitutions at that 

position. Prioritizing the cancer driver candidates based on this MaxMIF value is helpful as mutations 

with high MaxMIF values are more likely to have a functional impact and may be more relevant to the 

disease.  



 

Figure 3. Visual representation of the MaxMIF approach. a: First the somatic mutation data matrix is 

standardized using the frequency of the samples per gene and the number of mutated genes per 

sample. Then, the mutation score of each gene is calculated by taking the sum of the rows. b:  The 

mutational impact function (MIF) value of two candidate genes is computed as the product of their 

mutation scores divided by the square of the interaction distance between them in the PPI networks. 

c: The maximal MIF score for each candidate gene is calculated by taking all of its neighbors in the 

networks into account.  

Adapted from Hou et al., 2018.  

The tool OncoVar works quite differently, the approach calculates a scoring based on a Gaussian 

mixture model (GMM) (Wang et al., 2021). This score is called the ‘driverness’ of each mutation, gene 

and pathway.  A probabilistic model is used to estimate the distribution of genomic features for driver 

and non-driver genes separately. OncoVar uses somatic mutations, copy number alterations, and gene 

expression data to calculate the driverness score. First, the likelihood of the gene’s genomic features 

is calculated given the driver and non-driver GMMs separately. Then, the posterior probability of the 

gene being a driver gene is calculated using the Bayes’ theorem. This takes the likelihood of a gene’s 

genomic features given the prior probability of that gene being a driver into account. Eventually, the 

driverness score is the difference between the posterior probability and the prior probability of the 

gene being a driver gene. Genes with higher driverness scores are more likely to be cancer driver genes. 

OncoVar is incorporated into a user-friendly platform, where you can find the driverness score of more 

than twenty thousand mutations.  

Tools for personalized use 
The tools that we evaluated before, are tools that work with large cohorts. Other available tools use 

patient-specific data to discover personalized cancer driver genes. This is very helpful for providing 

diagnosis and target drugs for individual patients. PDGPCS (Personalized cancer Driver Genes based on 



the Prize-Collecting Steiner tree model) is a tool that uses a network-based approach (Zhang et al., 

2022). It integrates gene expression, mutation, copy number alteration, and protein-protein 

interaction data to predict driver genes specific to individual cancer patients. A personalized driver 

gene network is constructed for each patient using a Prize-Collecting Steiner tree model. This model 

aims to find the minimum subnetwork covering the maximum number of significant cancer-related 

genes. Then, the candidate driver genes are ranked based on their impact on the personalized driver 

genes network and their association with cancer-related pathways.  

PersonaDrive is a patient-specific tool with three main steps (Erten et al., 2022). First, a personalized 

bipartite graph for each patient is constructed to model the relationship between the set of mutated 

genes and the differentially expressed genes (DEGs). Secondly, the edge weights in the bipartite 

networks are calculated. Eventually, the cancer driver candidates are ranked, based on the sum of the 

weighted ‘pairwise pathway coverage’ scores of all of the samples. Here, the coverage scores are 

normalized using the relevant pairwise patient similarity scores as weights. Interestingly, PersonaDrive 

takes whole cohort data into account, when it produces the personalized ranking for every individual 

patient. The degree of how much influence each individual patient data has on the other personalized 

driver ranking is determined using a pairwise patient similarity score, which is based on the amount of 

overlap between the set of DEGs of the pair. 

Discussion and Conclusion 

Studies from the Pediatric Cancer Genome Project (PCGP) have revealed that pediatric cancer differs 

from adult cancer in several ways (Downing et al., 2012) (Bandopadhayay & Meyerson, 2018). Unlike 

adult cancer, pediatric cancer has a lower rate of mutation and typically involves a single cancer-driving 

mutation (Kattner et al., 2019). In contrast, adult cancer usually involves multiple cancer drivers. While 

adult cancer shares certain mutational characteristics, pediatric cancer has its own unique set of 

mutational features. Furthermore, even within the same type of pediatric cancer, the frequency of a 

particular mutation can vary depending on the patient's age. For this reason, the applicability of the 

tools with regard to pediatric cancer needs to be discussed. The literature-based tools OncoKB and 

CancerMine contain mixed adult and pediatric cancer data. With the tool CancerMine it is possible to 

filter on specific childhood cancers. Most of the machine learning based tools are trained on adult data. 

Because of the differences between grown-up cancers and pediatric cancers, it logically seems that the 

outcome will differ if you train only on adult cancers, only on pediatric cancers or on both. The effects 

of using different training sets are not in the scoop of this literature review, but it is definitely 

something to keep in mind while considering the different tools for pediatric cancers. Network-based 

tools mostly use protein-protein interaction (PPI) networks, which are also applicable to pediatric 

cancers. For example, MaxMIF uses two independently developed PPI networks, HumanNet24 and 

STRINGv10.25 as a default (Hou et al., 2018). It is also possible to run MaxMIF with other networks, 

making it a tool that can be used for pediatric cancer data.  

In the past twenty years, the biomedical field has seen significant progress in high-throughput 

technologies. As a result, there has been a constant increase in the amount of biomedical knowledge, 

the diversity of evidence sources, and the completeness of these sources. Therefore, there are now 

large and comprehensive data portals that collect gene and gene-disease associations for humans and 

other organisms. To continue improving the field of gene prioritization in the future, it is crucial to 

incorporate new or rarely used evidence sources and to enhance the quality of the available data.  

 



We discussed two tools specific for personalized use. The use of specific patient data is very useful for 

the improvement of establishing a diagnosis and the development of targeted drugs specific to 

individual patients. The use of these tools seems to be a revolution in this field, but there is a downside. 

At the moment, there is a limited number of personalized omics data available. In the future, when it 

becomes easier to sequence the genome per patient, these tools could be very helpful.  

There is a difference in how the various tools are presented by the developers. Some were described 

as a black box, while others were very open about the process behind their tool. Besides that, some 

tools use a web tool to visualize their results and scores per gene, while others only state the process 

and not the specific scores resulting from this process. This results in some tools being more user-

friendly than others. You can go to the web tool, find the genes that you want to rank and save the 

scores per gene. A downside to this is that your gene of interest might not be included in the already-

generated results, then you still need to use the tool itself to generate the scores. It was not in the 

scope of this review, but it would be interesting to compare these tools based on how many genes are 

incorporated in the already formed scoring schema and how likely it is to find your gene of interest in 

this list.  

By the evaluation of the named prioritization tools, it was very helpful that the results and scores per 

gene were given for some tools. This made it easier to get a feeling of the tools. I would advise future 

developers of computational tools to include some kind of web interface, where the user interactively 

can play with the tool. Furthermore, a tool is way more appealing to use when there is a clear 

description of the input data and when the full source code is on GitHub. Ideally, a tutorial on how to 

use the tool would be available. 

All in all, it is hard to point out which tool is better, given the scope of this literature review. To really 

say something about the quality and performance of the different tools, a more practical approach is 

needed. Testing all of the different tools on the same data is a possibility and some kind of scoring 

mechanism to compare the tools should be determined. This is something that could be done for 

further research.  
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