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Layperson’s Abstract

A metal nanoparticle is a combination of one or more metals that is a few nanometers (10-9
meters) in size. A well-known material consisting of multiple metals is brass, which contains
copper and zinc, but other metal combinations like gold and platinum are also possible. These
particles form an integral part of the modern chemical industry where they are used as catalysts.
Most modern products have at least one production step involving these particles and recent
research indicates that they can be used to make fuels and other useful chemicals from common
renewable resources. In general, catalysts are compounds that improve a chemical reaction,
such as making hydrogen and oxygen from water, while not being consumed by the reaction.
Metal nanoparticles have the advantage that they can be customized to suit their environment
and goals by producing them with multiple metals, possibly improving their productivity or
bringing down their cost. Computer simulations can be used to screen possible new materials
or help understand how or why certain particles work, which is valuable information to help
improve existing processes.
This thesis investigated the make-up and structure of a nanoparticle consisting of three

metals, namely gold, copper and platinum. Platinum is a very good, but expensive, catalyst. It
was expected that adding a layer of platinum on top of gold and copper results in an equally
good or better catalyst that is less expensive. This was tested using a theoretical model where
the platinum was added on top of the gold and copper surface, and some basic reactions were
tested afterwards. The tested reactions were the splitting of oxygen and hydrogen, which are
important steps in the formation of water from these gasses in fuel cells. It was found that
the investigated surface performed well for these reactions, but only one surface was tested
while a particle generally exhibits several different, so more calculations on other surfaces and
experimental results are needed.
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Abstract

Noble metal nanoparticles continue to be of great interest to the catalysis community for their
characteristics, and extensive research has been conducted into bimetallic nanoparticles in-
volving these metals. Inclusion of another metal to form trimetallic particles could further
enhance the characteristics of these particles by increasing the possible metal compositions
and the associated interactions within a particle. With the increase in possible metal combina-
tions and compositions, theoretical methods can provide assistance in understanding reaction
mechanisms or pre-screen metal combinations for their catalytic activity. Machine learning
methods can additionally reduce the computational cost of such calculations, but the lack of
extensive databases for trimetallic particles hampers their application, requiring the calculation
of accurate databases using first-principles methods.

In this work, the composition and formation of a trimetallic CuAu/Pt surface, the adsorption
of O, H, C and CO on this surface, and the dissociation of O2 and H2 was investigated using
density-functional theory and the nudged elastic band method. The Pt-coated CuAu surface
was found to form at least one monolayer of Pt in various configurations, ranging from highly
ordered to disordered with similar stability. The adsorption of CO and O2 was found to occur
on the top and bridge sites, respectively, whilst H2 was found to adsorb dissociatively with
no discernible energy barrier. The dissociation of oxygen on the surface resulted in molecular
oxygen adsorbing on the bridge site and dissociating to atomic oxygen in the hollow site with
an energy barrier of 0.22 eV.
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1. Introduction

Catalytic nanoparticles involving noble metals are of great interest to a wide variety of chemical
processeswith their capability of improved activity and stabilitymaking themhighly sought after.
Examples include the transformation of oxygen or carbon dioxide into high interest products
such as carbon-based fuels or syngas via thermo- or electrocatalytic conversion [1–3], and a
variety of other oxidation and hydrogenation reactions [4]. The catalytic activity, selectivity
for the desired reaction and stability are the main properties of interest when investigating
catalysts or designing new catalyst [5]. Monometallic catalysts have long formed the backbone
of chemical catalysis, with multimetallic particles forming an increasingly sizeable part of the
field.

These multimetallic particles have been of great interest for a long time due to their capability
of improving the catalyst characteristics compared to their monometallic counterparts [6],
with the bulk of the progress being performed using bimetallic particles. The structure and
composition of these multimetallic particles was found to depend on the concentrations of the
component materials and the energies of the inter-species bonds compared to the bulk materials
[7]. Furthermore, the various metals in these particles can have synergistic effects between the
component metals, improving the selectivity, activity and/or stability of the nanoparticle[8]. A
variety of factors contribute to these synergistic effects, such as the strain around the active site
[9, 10], particle size or synthesis conditions [4, 11]. For example, the strain in a metal surface
can promote the overlap between the electron orbitals and influence the electronic properties
of the surface [12]. This change in electronic properties can manifest itself as a lowering of the
d-band energy when a monolayer of a 2nd metal is added on a bulk material [9].
Recently, there has been an increased interest in trimetallic systems and their potential to

further enhance the metal nanoparticle (NP) characteristics. However, the addition of a third
element vastly increases the available design space for NP’s due to an increase in possible
metal combinations and ratios. This wider possible scope lends itself well to preliminary or
supporting research using density functional theory (DFT) and/or machine learning [13], since
this would partially alleviate the time and resource intensive synthesis for a wide variety of
possible combinations. An example can be found in Pt-based NP’s, where the research in
monometallic particles [14] has been heavily augmented by research into the combination of
this precious metal with base metals into bimetallic particles [8, 15] with limited research on
the trimetallic combinations possible [16].

1.1. Aims of the Project

The aim of this project is to investigate the composition, structure and catalytic properties of
trimetallic CuAu/Pt nanoparticles using theoretical methods, with the scope being limited to the
(100) surface. The project has been split into two sections; First, the composition of a Pt-coated
CuAu surface was explored on a Au-terminated (100) CuAu surface. The goal is to identify
possible surface structures and to prepare a surface that will be used for the second part of the
thesis. In the second part the adsorption of oxygen, hydrogen and carbon monoxide, and the
dissociation of oxygen and hydrogen is investigated. The adsorption and dissociation energies
of these species on the theoretical surface serve as an indicator for their performance in more
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Figure 1: (a) Determined composition of bimetallic CuAu NP’s with the cross-section shown
using density functional theory and machine learning. (b) The experimental structure
of a Au/CuPt core/shell nanoparticle active for methanol oxidation reaction. Reprinted
with permission from [11] and [16]. Copyright 2014 American Chemical Society.

realistic environments [9].

1.2. Multimetallic CuAuPt NP structure

For this thesis, a trimetallic CuAu particle with a Pt shell was chosen for its widespread use and
interest for the system within the research group. In addition to this, there are prior results for
the CuAu core [11, 17] and various bimetallic combinations of Pt with either copper or gold.
For the CuAu particles it was found that after heating in a vacuum the particle would be mainly
Au-coated with a primarily Cu core of the particle (Figure 1a). In an aqueous environment,
on the other hand, the situation was reversed with copper being located mainly on the metal-
water interface. Additionally, it has been shown that growing Pt layers on Au results in a
Au/Pt core/shell structure [18] and that the distance between the layers contracts slightly [19].
Furthermore, it was found that the Pt atoms will be embedded within a gold shell after heating if
the Au-to-Pt ratio is close to 1:1 [20, 21]. The combination of Pt with Cu was also found to form
stable a Cu/Pt core/shell structures with enhanced electrochemical activity [22]. When layer
growth is undesired, it was shown that the synthesis of alloyed AuPt particles is also possible,
and that they can be effective catalysts for the methanol oxidation reaction (MOR) [23]. The
structure that is formed when combining metals is generally also an interplay between the bulk
characteristics of the component metals and how these interact in the created environment
during synthesis [7].

For the trimetallic combinations of Cu, Au and Pt it was shown with theoretical investigations
into 147 atom NP’s with different Cu, Au and Pt ratios that the the Au or Pt atoms are located
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on the outside with Cu generally residing within the structure unless it is present in excess [24].
This segregation of Au towards the outside of the particle was also observed for multiple Au
metal combinations in a vacuum, and is attributed to the lower surface energy of Au compared
to metals like Cu and Pt. If the particles are placed on a support or in a different environment
the effect of this change in environment can result in a different particle morphology [25].
Experimental particles have been synthesized as core/shell particles in aqueous environments
resulting in Au/CuPt (Figure 1b)[16] and AuCu/Pt [26] NP’s. Both mentioned trimetallic particles
were found to be active for the oxygen reduction reaction (ORR).

1.3. O2 and H2 Dissociation on Au and Pt Surfaces

With this segregation of Pt and Au towards a shell in mind it is of interest to also investigate
what is known regarding the oxygen and hydrogen adsorption and dissociation on Cu, Au and
Pt terminated surfaces. A pure Pt system can be taken as a baseline due to their ubiquitous use
in the catalysis field. With theoretical methods it was found that the edge sites in clusters is
most active, with the bridge and hollow (both fcc and hcp) sites being favourable for O2 binding
on (111) Pt [27], while the (100) Pt surface prefers binding of oxygen on the bridge site [28].
The dissociated molecule was found to favour binding on the fcc hollow site for (111) Pt with it
being proposed that oxygen dissociates on the bridge site, followed by migration of the oxygen
atoms via the top site towards the hollow [29]. The Au surfaces are relatively inert for oxygen
dissociation due to the desorption energy being lower than the activation barrier on pure Au,
this can however be improved by selective doping of more reactive metals [28].
For bimetallic CuAu, which forms the core of our target particle, the adsorption of oxygen

is stronger on the Cu terminus, compared to Au, which correlates with the tendency for Cu
to oxidize [11] and monometallic Au to be active for the reaction [28]. This stronger oxygen
adsorption was also calculated for (100) Au/M (M=Cu,Pt) structures, with both the Cu and
Pt-coated surfaces having favourable adsorption energies at all oxygen coverages between 0
and 1 monolayer [19]. This stronger adsorption could be explained using DOS calculations
for the pure Au and Au/Pt surfaces where the addition of oxygen on the surface resulted in a
stronger change in the DOS for the Pt- and Cu-coated surface with the bonding interactions
of these surfaces with oxygen being much lower in energy to the Fermi level [19, 30]. When
Cu is underneath the Pt outer layer it was found that the adsorption of other intermediates in
the ORR is weaker compared to pure Cu [22], indicating that the subsurface layer can have a
significant influence on the characteristics of the Pt outer layer.

The application of the trimetallic metal combinations of Cu, Au and Pt for oxygen dissociation
has been subject of only a few studies, with two publications finding the Au atoms in the core
of the core-shell particle [16, 26]. Both publications highlight experimental results in the
synthesis and activity of their trimetallic particle, but lack a mechanistic explanations on why
this enhancement is observed. The first particle consisted of a CuPt shell, and it was found that
this Au/CuPt NP was more active for oxygen reduction (ORR) and methanol oxidation (MOR)
due to the Au core stabilizing the CuPt shell [16]. The other experimental particle was CuAu/Pt,
which is also the particle of interest in this thesis, and it was found that it has improved ORR
activity due to slight compressive strain created by the CuAu core on the Pt shell [26].
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Figure 2: Difference in computation time with system size scaling between machine learning
and density functional theory for electronic structure predictions. Adapted with
permission from [43].

2. Methods

Using theoretical methods it is possible to dive deeper into the formation of these trimetallic
particles and how certain reactions are influenced by the 3 metals compared to 2 or 1 in bi- and
monometallic particles. The theoretical, or computational, approaches have long been focussed
around first-principles methods like density functional theory (DFT) and machine acceleration
of DFT with an increasing use of machine learning models [13].

2.0.1. Density Functional Theory

DFT methods allow for the computational prediction of material properties by approximately
solving the Schrodinger equation [31]. In practice, most DFT approaches utilize the Kohn-
Sham (KS) equations [32], where a multi-electron system can be approached as a system of
multiple non-interacting one electron systems. If the calculation is performed self-consistently,
it includes both the electron-ion and electron-electron interactions and can reproduce the
correct electron density of the system [33]. KS DFT relies on approximations to the exchange-
correlation (XC) energy, and the choice of XC functional is one of the parameters that depends
on the goals of the research [34, 35]. The most fundamental approximation is the local density
approximation (LDA) [32] which can be improved by taking into account the density gradient
and possibly additional constraints to give (meta-) generalized gradient approximation (GGA)
methods such as PBE [36] and (r2)SCAN [37, 38]. Additionally, there are multiple possible
approaches used to perform KS calculations. Possible implementations include those based on a
projector-augmented-wave (PAW) method [39], as utilized in VASP [40] or Quantum ESPRESSO
[41], or on numeric atom-centered orbitals (NAO), as utilized in FHI-AIMS [42].
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2.0.2. Machine Learning

Recently, an increasing interest has been displayed in the usage of machine accelerated methods
and artificial neural networks for calculations on catalyst materials [11, 44]. This interest is
rooted in the high computational cost of DFT calculations once the system size increases [43, 45]
(Figure 2), and made possible by advances in computational hardware [33] and the availability
of DFT data from open science efforts such as the Materials Project [46]. In essence machine
learning models can be seen as constructed models that improve their results in some task, such
as determining the energy of structures, trough experience or training [47]. When setting up a
machine learning model, how the model learns and what its learning functions or parameters
are is of great importance and depends on the application and the types of data used. A broad
division can be made by the number of learning functions used. The first group has a discrete
set of learning parameters, this is for example the case in linear regression models [33]. The
second group has a continuous set of learning parameters which poses a problem in performing
the computation in a finite amount of time. In Gaussian process regression (GPR) this problem
is tackled by introducing Gaussian probability distributions [48]. This principle has for example
been used in models that sample new datapoints based on Bayesian inference, such as Bayesian
optimization structure search (BOSS) [49]. Additional control on how the model learns can be
exerted by defining other hyperparameters [13, 33].

To train and test the model it is required to use high quality data, with a portion being used
for training and a different set being used for validation of the model. It is important for these
data sets to not overlap, as that could result in the model training on data that is also used to
test it [13, 33]. In the context of catalysis it is also preferable to source experimental data for
the model in addition to DFT data in order to let the results better relate to realistic situations
[13]. Additionally, care has to be taken in the selection of the size of the data set and how long
the model trains in order to avoid over or under fitting, as this can lead to higher errors in the
results. However, if the model is well fitted the accuracy is similar to DFT results with a more
efficient computation time [33] and making the use of machine learning compelling for complex
situations where DFT might require a lot of resources.

2.0.3. Nudged Elastic Band

To find a minimum energy pathway (MEP) between two stable states, or energy minima, and the
associated transition state (TS) the Nudged Elastic Band (NEB) method is commonly employed
[50, 51]. Examples of transitions were NEB has proven useful is the diffusion of atoms along
the surface, or the breaking and forming of chemical bonds [52]. In NEB two stable structures
are taken and equally spaced images are created between these two initial states. Additionally,
the images have "springs" between them to ensure that the spacing of the images remains
approximately equal by applying a restoring force [50]. The structures in the images can then
be evaluated and a force can be projected on the potential energy surface (PES) regarding how
the structure should change to move towards the minima. The spring force is then projected
along the “chain” to ensure spacing whilst the force obtained from the structure is applied
perpendicular to the “chain” in order to obtain the structure of the next image to evaluate [50,
52]. In figure 3 this movement is portrayed with the “spring” force preventing the images from
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Figure 3: Example progression of equally spaced images towards the minimum energy path
during nudged elastic band. The springs between the circles indicate that a spring
force is applied to keep the spacing of the images constant. Reprinted with permission
from [53].

moving towards the two minima.
With regular NEB it is however likely that the TS is not captured with an image due to their

spacing [52], which is also visible in figure 3 with no image on the saddle point. A method to
calculate the TS is climbing image NEB (CI-NEB) where the highest energy images, which are
likely already close to the TS, have their "springs" removed. These images are then allowed to
move up the PES towards the saddle point [51], with the saddle point being a transition state.
The removal of these springs increases the degrees of freedom, which makes an initial guess of
the MEP required to efficiently reach the saddle point [52].

3. Approach

In this section the details of the calculations and other methods used are explained so that it
is clear how the results were obtained. This includes a brief explanation of the parameters
used for DFT, NEB and BOSS calculations. A more detailed description of the input files, the
keywords and their structures can be found in appendix A. All DFT calculations were performed
using the Fritz Haber Institute Ab Initio Molecular Simulations package (FHI-AIMS) [42] with
the Perdew-Burke-Ernzerhof (PBE) exchange-correlation [36] functional. CuAu surface slabs
consisting of 7 layers and a 15 Å vacuum were based on results from previous work [11, 17], and
a Pt coating was added to this surface in this project. The structures of the used Au-terminated
and Pt-coated surface are shown in figure 4. The atomic simulation environment (ASE) [52]
was used to create new structures and to aid in the visualization of results.

For all performed DFT calculations the atomic zeroth order regular approximation (atomic-
ZORA) [42] was employed, which provides a scalar correction to relativistic effects. This was
required due to the use of atoms heavier than Ca (Z > 20). The self-consistent field (SCF)
optimization of the electron density used the Eigenvalue Solvers for Petaflop Applications (ELPA)
[54, 55], which improves the performance on high performance computing (HPC) clusters.
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Figure 4: The structures of the two main surfaces used in this work in isometric projection.
(a) The Au-terminated surface with 7 metal layers alternating between Au (yellow)
and Cu (brown). (b) The Pt (gray) coated surface with 7 metal layers underneath that
alternate between Au and Cu.

3.1. Single Point Calculation

Depending on the desired accuracy for the energies, the light or tight basis sets were used for
single point calculations with the pulay mixer [56] and a 12×12×1 k-point grid. For example,
the light basis set was used for the DFT calculations as part of BOSS or NEB calculations due to
light calculations being faster. To take spin polarisation into account, collinear spins were set in
combination with defining an initial magnetic moment of 1.0 unpaired electron in the structure
geometries for the calculation. This initial moment was required to get the spin polarisation
started with the eventual spin state distribution being calculated during the SCF cycles.

3.2. Geometry Optimisation

A two-step process was used for all geometry optimizations, with a relaxation with the light
basis set being followed by one using the tight basis set. The determination of the next structure
during the relaxation/geometry optimisation was the BFGS method [57]. Other settings for
the calculation were kept equal to those described for the single point calculations. During
optimisation, some layers of the model were frozen which prevented them from moving during
the relaxation steps. Two variants of the base (100) CuAu surface was utilized during these
relaxation steps. One where the top 2 metal layers were able to move and the 3 layers underneath
were frozen, and one where the top 4metal layers were able to move with the 2 layers underneath
being frozen. Any remaining layers left under the frozen metal layers were also left unfrozen.

3.3. Density of States

The density of states (DOS) for structures was also calculated using FHI-AIMS [42] with a
12×12×12 k-point grid and the tight basis set. Additionally, the spin was taken into account as
described above. For the output of the DOS, the k-grid was made denser by a factor 12×12×12
to obtain higher accuracy.
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Figure 5: Overview of the adsorption site identification method using Bayesian Optimization
Structure Searchboss on a Pt (gray) coated surface with Au (yellow) and Cu (brown)
layers underneath. The energy of each configuration is used to determine the pa-
rameters of the next sample until the calculated Potential Energy Surface has a low
uncertainty. Afterwards a 2D energy map is calculated in the global minimum.

3.4. Adsorption Site Identification

To determine where on a surface a species of interest (such as platinum, or atomic oxygen and
hydrogen) might adsorb, the BOSS method [49] and program was used. With it, a surface was
sampled using single point calculations within a defined box using the light basis set and a
5×5×1 k-point grid. With the BOSS method, 200 initial data points were generated to sample
the surface on a mesh, which was followed by at least 50 additional points that were determined
using a Bayesian optimisation method [58]. This is a form of machine (accelerated) learning
as described in section 2.0.2. One of the obtained outputs from BOSS was a 2D surface energy
map at the global minimum, which could be used for further calculations or processing. For
diatomic molecules (such as CO) additional rotational variables describing the orientation of the
molecule were added, and another BOSS calculation was performed to determine the optimal
orientation. The obtained surface energy map was post-processed by subtracting the energy of
the components in order to obtain an adsorption energy map. An overview of the described
method is shown in figure 5, additional information on the files and keywords for BOSS can be
found in appendix A.2.

3.5. Minimum Energy Path & Transition State

To find the MEP between a known initial and final state, such as for the dissociation of oxygen
molecules to atomic oxygen on the surface, the NEB method as implemented in ASE [50, 52]
was used. Between the initial and final state, 7 images were interpolated and used in the
NEB calculations. The energies and forces for each image were obtained using single point
calculations using the light basis set on a 5×5×1 k-point grid and with a reduced atom count.
The new structure for each image was determined in ASE using the Fast Inertial Relaxation
Engine (FIRE) method [59, 60] and a convergence criterion of 0.1 eV/Å. This would result in a
MEP for the investigated change, but this does not necessarily capture the TS, as discussed in
section 2.0.3. To obtain the transition state, another NEB calculation was therefore performed
using identical parameters but with the addition of the climbing image (CI) method [51]. The
CI-NEB was performed on a 5-image interpolation between two selected structures around the
observed energy maximum during regular NEB with a convergence criterion of 0.05 eVÅ. The
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Figure 6: General workflow of the steps taken in the project. Where the adsorption sites were
determined using BOSS and the addition of Pt was performed using geometry opti-
mizations. The dissociation of other species (pictured) was performed using Nudged
Elastic Band.

obtained TS and minima before the TS were then recalculated using the tight basis set to obtain
the activation energy and total energy change of the transition.

3.6. General Workflow

The above described methods and parameters were used to perform the calculations for the
stated aims of the project. First, the Au-terminated (100) CuAu surface was sampled using BOSS
to identify the adsorption sites and compare the used method to intuition and literature, this
also allowed for the identification of limitations that BOSS had in the context of the project.
With the information on Pt adsorption sites, the surface was filled with a monolayer (ML) of Pt
and the associated adsorption energies calculated. From the structures obtained by "filling the
surface", one structure was used for further investigations using hydrogen, oxygen and carbon
monoxide.
The adsorption and dissociation of H2, O2 and CO was investigated by performing BOSS

calculations on the Pt-coated surface to identify the adsorption sites. With the adsorption
information it was possible to construct initial and final structures for the dissociation of O2
and H2. The transition between the molecules and the dissociated atoms could then be analysed
using (CI-)NEB to determine the transition states. DOS calculations and a literature review
allowed for comparison of the obtained results with known Cu, Au and Pt surfaces. A graphical
representation of the described workflow is shown in figure 6.
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Figure 7: (a) Structure of the Au-terminated (100) CuAu surface that was sampled using Bayesian
Optimization Structure Search (BOSS), with the terminal Au atoms (yellow) and sub-
surface Cu atoms (brown) shown. (b) The obtained 2D adsorption energy map at the
global minimum from BOSS. The positions of the Au atom are marked with red dots
in the energy map.

4. Results & Discussion

With CuAu surfaces forming the starting point of the thesis, the first step is to identify the
Pt adsorption sites and add 1 monolayer of Pt on the Au-terminated (100) CuAu surface. The
resulting surface(s) can then be used to investigate the adsorption and dissociation of O2 and
H2 on the coated surface.

4.1. Pt adsorption sites

To determine the adsorption sites of Pt on an Au-terminated (100) CuAu surface slab, the BOSS
method [49] was employed as described in section 3.4. With this method the surface with 4
terminal Au atoms (Figure 7a) was sampled using a single Pt atom in a 3.0 Å high box located 0.4
Å above the centre of the terminal Au atoms. Once the BOSS process was finished the resulting
2D surface energy map was used to obtain a binding energy map with separate single point
calculations of the components (Pt and the surface in this case). The binding energy map (Figure
7b) has a z-coordinate of 2.8 Å above the Au atom centres, which indicates that at this height
the individual Pt atoms prefer to adsorb on the top sites of the Au atoms.

This adsorption site was different from the expected behaviour from the literature and could,
in part, be due to how the sampling is performed using BOSS. Since BOSS, in this case, sampled
with simple single point calculations and with no regard for the centres of other atoms when
selecting the next sample location it was required to choose an lower boundary that would
not result in the Pt atom clashing with the Au atom. This requirement therefore introduced a
certain amount of bias for positions further away from the surface.
A possible way to obtain a surface energy map (as shown in Figure 7) that also samples

the hollow sites and stepped sites, such as a (211) surface slab, without the above mentioned
problem would be an alteration to the user function in how it received and supplied positional
and energy data from and to BOSS. A different alternative would be the usage of other tools,
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such as Ab initio random structure searching (AIRSS) [61] or Atomistic Global Optimization X
(AGOX) [62] that performs smart sampling using a Guassian Process Regression Model but has
been shown to be able to sample the configuration of 14 Pt atoms on a bulk Au surface where
the boundary extends into the said surface.

4.2. Addition of Pt to the surface

To obtain a Pt-coated surface the obtained Pt adsorption sites are used to fill the ’bare’ Au-
terminated surface. This filling was performed using three different techniques, with the first
two consisting of bringing 6 or 8 Pt atoms close to the surface as a monolayer or cluster and
performing a relaxation of the structure. The third and main method consists of adding the Pt
atoms sequentially and performing a full relaxation cycle (with light , followed by tight basis
set relaxation). This sequential filling was performed at least twice for each added Pt to obtain a
wider spread in possible configurations and energies of the Pt-coated surface. Using tight basis
set calculations of the components for Pt filling (the surface and Pt atom) it was possible to
calculate and plot the adsorption energy (Figure 8) after each relaxation cycle using the equation
Eads = ECuAu+nPt − (ECuAu + nEPt).
The Pt atoms were added to the surface on the top and hollow sites following the initial

addition on only the top sites. The initial addition to the top site quickly showed that the
Pt atoms will relax towards the hollow sites (in addition to the Au atoms moving around
to accommodate). This movement towards the hollow site is in agreement with the earlier
discussion regarding the BOSS results (Figure 7) where Pt was found to adsorb on the top site.
Additionally, the layered structure of the surface remained during the adsorption (Figure 9c) as
a consequence of the DFT calculations being performed in a vacuum at 0 K [7].

From the plot in figure 8 where up to 8 Pt atoms were added to the surface a clear downwards
trend is visible where more added Pt atoms on the surface result in a lower and more favourable
binding energy. This indicates that the addition of Pt on this surface will result in a fully covered
surface. Literature on CuAu or Au clusters with Pt show that the terminus of the structure
is in part determined by the ratios of the Cu, Au and Pt atoms [21, 24] with the abundant
atom forming the outer shell. This trend can be partially explained by the outer shell requiring
more atoms to fully cover than internal layers. However, such mixing would require some
external energy (heat) to facilitate. Our computations correspond to the case where previously
synthesised CuAu clusters are coated with Pt. To investigate if these structures are stable over a
longer time, a follow up study is required where, for example, molecular dynamics simulations
are performed to introduce temperature.

To construct the plot in figure 8, two different Au-terminated (100) CuAu surfaces with one
having 2 and the other having 4 surface layers. The surface layer count indicates how many
layers of the surface are unconstrained and are thus able to move during the relaxation. For the
2 surface layer (2SL) samples only the top Au and underlying Cu layer are able to move with
lower layers being frozen. The 4 surface layer (4SL) plot on the other hand had an additional
Au and Cu layer that can move during relaxation. In figure 8 the energy of both approaches
converges towards a similar value with the 4SL samples having a slightly more favourable
energy due to the increased freedom. Despite the similar energy, the structure when 8 Pt atoms
are added to the surface is different (Figure 9) due to the higher flexibility of the 4SL sample.
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Figure 8: Calculated adsorption energy of Pt on Au-terminated (100) CuAu with an increasing
number of Pt atoms on the surface. The adsorption energy was calculated using
Eads = ECuAu+nPt − (ECuAu + nEPt). The results for two series of calculations
are shown. In the first series two CuAu surface layers relaxed together with the Pt
atoms (blue), whilst the second series four CuAu layers were relaxed (yellow). The
solid lines indicate the adsorption energies of the most favourable adsorption sites,
with the shaded areas indicating the energies of all other configurations. For 6 and
8 adsorbed Pt atoms, the energies of monolayer structures (square symbols) are also
compared with those of adsorbed Pt clusters (circles).
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Figure 9: Top view of the surface for Pt addition on (a) 2 surface layers and (b) 4 surface layers.
The Pt atoms (gray) form the top layer with Au (yellow) and Cu (brown) underneath.
The impact that more relaxed layers during sequential addition can have is visible. (c)
Side view of the coated surface in (a) that illustrates the difference between 2 (left half)
and 4 (right half) surface layers with the frozen atoms marked with green crosses.
Additionally, an xy plane is visible in red, showing the unevenness of the coated
surface. The energies of the structures are incorporated in the plot in figure 8.

For the investigations into the dissociation of O2 and H2, and the adsorption of C and CO on
the Pt-coated surface it was decided that the 2SL structure shown in figure 9 would be used.
This was partly done due to this structure being available earlier for the required calculations.
Additionally it was reasoned that the structure of a Pt-coated NP would likely not conform to
the near perfect structure seen in the 4SL sample (Figure 9).

4.3. Adsorption sites on Pt-coated surface

The dissociation of species on the Pt-coated surface was investigated using NEB calculations.
However, these calculations require a static or known initial and final structure between which
the NEB images are made. Instead of sampling various areas of the surface by hand the surface
was sampled using the mono- and diatomic molecules of interest with BOSS as described in
sections 3.4 and 4.1.

4.3.1. Oxygen and Hydrogen

The first two species of interest to be sampled were atomic oxygen and hydrogen. For oxygen
the sampling using BOSS resulted in a 2D energy map that had a z-coordinate 2.0 Å above the
centre of the Pt atoms of the surface and with the adsorption energies calculated (Figure 10a).
The figure obtained using BOSS sampling shows that for atomic oxygen the most favourable
binding positions are the bridge sites with some broadening towards the hollow sites. The
adsorption sites found using BOSS agree with the literature result for (100) Au-Pt [19]. Similar
results were found for (100) Pt-coated surfaces were the subsurface layers consisted of Cu and
pure Pt [22, 29]. In contrast the (100) Au surface was found to have preferable binding of atomic
oxygen on the hollow sites [28], indicating that the adsorption of species is closely linked to the
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Figure 10: 2D Surface energy maps of atomic (a) O and (b) H using Bayesian Optimization
Structure Search on the Pt-coated surface (Figure 9a). The lowest energy regions,
which are most favourable for binding, are coloured in blue and the Pt atom positions
are marked with red dots.

surface composition [9]. Literature on molecular oxygen indicates that the preferable binding
site was the bridge position with both oxygen atoms located towards the top sites on (111) Pt
[22, 28].

A notable trend visible in the obtained results from BOSS is that the energy generally seems
to increase if the oxygen is farther removed from the Pt atoms, for example around (x,y)=(5,6)
(Figure 10a), or when the oxygen gets right on top of the Pt atoms. This latter trend for when
the oxygen is located on top of the Pt does however see large variability in the actual increase,
which could in part be due to the Pt atom positions not having an identical z-value and them
being merely close to the same xy-plane (Figure 9 right). Plotting this 2D plane/energy map
through the global minimum on this slightly uneven surface likely resulted in some positions
having a different perceived energy. This is in some ways similar to the lower bounds issue
mentioned in section 4.1. The surface used for oxygen adsorption was also used for hydrogen
and carbon monoxide, with similar complications being seen.

For hydrogen the obtained 2D surface energy map is shown in figure 10b and the 2D plane
for this species was located 1.8 Å above the Pt atoms of the surface. From the figure it can be
seen that the most favourable adsorption site is the bridge site with the top site being ≤1 eV
less stable. These site preferences differ from those found in literature for a (100) and (110)
pure Pt surface in vacuum, where a hollow site was the most favourable [63] instead of the
bridge site, which was found to be a primary adsorption site in an aqueous environment [64].
Both the literature and thesis results indicate, however, that the bridge site is a possible binding
location for hydrogen atoms [63]. The obtained energy map and literature insights were used
to construct possible initial and final configurations for the investigation of the dissociation
using NEB.
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Figure 11: 2D Surface energy maps of (a) atomic C and (b) molecular CO without rotational
freedom using BOSS on the Pt-coated surface (Figure 9a). The lowest energy regions,
which are most favourable for binding, are coloured in blue and the Pt atom positions
are marked with red dots.

4.3.2. Carbon and Carbon Monoxide

To investigate the dissociation of CO on the surface, additional BOSS calculations for carbon and
carbon monoxide were required. In addition to the positional variables (x,y,z) used for oxygen
and hydrogen, the CO molecule required rotational parameters due to its degrees of freedom.
The rotation was incorporated in a separate calculation after the position was determined. The
obtained adsorption energy map using BOSS for atomic C and molecular CO are in figure 11,
the rotational energy map for CO can be found in appendix C.

From the BOSS calculations it was found that atomic C has preference for adsorption on the
bridge sites between Pt atoms. The CO molecule also shows this preference, but has the top site
of the Pt atoms as a secondary adsorption position. The CO molecule was adsorbed with the
carbon atom closest to the surface, while it was found that CO adsorbs on the top site for pure
Pt [65] and AuPt clusters [23]. This difference could be due to the most active facet of the Pt
cluster not being a (100) surface or the subsurface Au and Cu atoms in the trimetallic surface
influencing the CO adsorption characteristics.

4.4. Dissociation of O2

For the dissociation of oxygen on the Pt-coated surface, the adsorption results found using
BOSS (section 4.3.1) were used in addition to literature information regarding the adsorption of
O2. With the aforementioned resources the likely sites were identified as a bridge site for the
initial position of O2 [22, 28, 30] and a bridge or hollow site for the final position. To obtain the
used initial and final positions a geometry optimisation using the light basis set was performed
on the likely positions in order to account for changes in the surface structure due to the added
atoms. This resulted in the O2 molecule for the initial position being adsorbed on the bridge
site, and the 2 oxygen atoms located in a hollow site with the Pt atoms rearranging slightly to
form FCC-like hollows with the Pt atoms forming rough triangles.
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Figure 12: Dissociation of O2 on a Pt-coated (100) CuAu surface. (a) The energy plot obtained
using (Climbing Image-)Nudged Elastic Band calculations, with the initial, final and
TS structures shown. (b) The species-projected and spin-polarised Density of States
of the top 2 layers and oxygen. Ef is the Fermi energy.

With the obtained initial and final structures NEB calculations were performed using 7
interpolated images, followed by CI-NEB around the highest energy states using 5 interpolated
images. The resulting MEP and TS could then be plotted in figure 12a. The NEB plot, where
the structures of the minima before and after the TS are shown, indicates that the activation
energy for the dissociation of O2 on this surface is 0.22 eV. This relatively low barrier agrees
with findings in the literature where the activation barrier was reported to be low at low oxygen
surface coverage [30] with DFT observed values between 0.05 and 0.13 eV for (100) Pt and Cu/Pt
[22, 28] and an experimental value of 0.36 eV for (111) Pt [28]. As such, the calculated CuAU/Pt
structure is close in TS energy to reported pure Pt structures and significantly lower compared
to a pure Au structure (0.44 eV) [28]. Additionally, the almost negligible energy barrier found
on Cu/Pt hints at the interaction between a Cu-terminated structure having a better interaction
with the Pt atoms, though further calculations might be required to confirm or refute this. The
total energy change in the model due to the dissociation, or the reaction energy, was calculated
to be -1.36 eV. This result for the trimetallic CuAu/Pt system was similar to the -1.32 and -1.28
eV reaction energies found for (100) Cu/Pt and (100) Pt in literature [22]. The obtained results
for the TS and reaction indicate that the dissociation should be energetically highly favourable
and relatively easy, with the surface layer likely contributing most to the characteristics.

Further insight on the binding of the species on the surface can be obtained from density of
states (DOS) calculations. Calculating the species projected DOS on the spin-polarised system
before dissociation for the top surface layers resulted in the plot shown in figure 12 right. The
spin polarisation did not appear to result in different DOS positions for the spin up and down
densities when Au is included, appendix B shows that for DOS on samples with only Pt and
oxygen there is an observable effect. Notable is the proximity of the Pt density to 0 eV, i.e., the
Fermi energy, which has been correlated to a higher surface reactivity with diatomic molecules
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Figure 13: Energy plot for the dissociation of H2 using (Climbing Image-)Nudged Elastic Band
with the initial and final structures shown.

(such as O2) [9, 23]. This effect has been attributed to strain caused by the subsurface layers
on the top layer of the surface, which would for this surface be the strain in the Pt caused by
the CuAu bulk underneath. Another notable aspect of the DOS is the position of the main
oxygen π bonding contribution at 0 eV showing an overlap with the main surface contribution
from Pt compared to the significantly wider gap observed for Au-terminated surfaces [11]. This
indicates, in agreement with the observed adsorption energies, that the adsorption of oxygen
on the Pt-coated surface is facile.

4.5. Dissociation of H2

The dissociation of hydrogen was investigated in a similar manner to oxygen (section 4.4) with
the initial and final configuration being selected using the results from BOSS and the literature
(section 4.3.1), and all structures were again optimised using the light basis set. The bridge and
top sites were used to obtain a final structure and once geometry optimisation was completed
the structure had one hydrogen atom on an fcc-like hollow site and the second atom on a bridge
site between two Pt atoms. A stable initial structure of H2 on the surface was impossible to
obtain due to the extremely low dissociation barrier for hydrogen on a clean surface [66]. A
stable initial structure was obtained when the H2 molecule was located 2.4 Åfrom the surface.
The obtained results from the NEB and CI-NEB calculation for the selected initial and final
structures are shown in figure 13 where the dissociation had an energy difference of 1.32 eV.
The main notable feature from this plot is the lack of a transition state, indicating that the
dissociation occurs spontaneously. This was observed in the literature for clean surfaces with
<0.5 ML of hydrogen coverage [66].
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5. Conclusion

A Pt-coated CuAu surface was successfully constructed from an Au-terminated (100) CuAu base
surface using DFT with the PBE functional. The constructed surfaces were observed to have
varying configurations despite similar total structure energies, with the Pt atoms being observed
on the hollow sites and displaced towards the on-top sites. This difference in configuration was
attributed to the used adsorption positions of Pt on the surface with addition on sites with a
higher degree of freedom resulting in rougher surfaces. Furthermore, the addition of Pt to the
surface resulted in the formation of at least a single monolayer of Pt atoms.

Afterwards, the adsorption sites for atomic oxygen, hydrogen and carbon, and molecular
CO were determined on a Pt-coated surface using BOSS. It was found that atomic oxygen and
hydrogen adsorb on the hollow sites and to a lesser extend the bridge sites, with molecular
oxygen adsorbing on the bridge site with an adsorption energy of -2.24 eV. Atomic carbon adsorbs
on the bridge site. Molecular hydrogen was found to adsorb dissociatively on the clean surface,
and CO molecules adsorb on the bridge or top sites. Based on DOS calculations, the favourable
adsorption of oxygen was hypothesised to likely be caused by strain in the Pt layer increasing
the energy of the Pt band and the overlap with the oxygen bonding states. The dissociation of
O2 and H2 was investigated using NEB calculations between the determined states before and
after dissociation. With these NEB calculations the activation energy of the oxygen dissociation
was found to be 0.22 eV, whilst the hydrogen dissociation would occur spontaneously with no
noticeable energy barrier. These results were in agreement with existing research on mono-
and bimetallic Pt surfaces for oxygen and hydrogen adsorption and dissociation, suggesting
that the main contributor to the activity is the surface composition.

6. Outlook

During the project, the scope of the surface was limited to only the (100) Au-terminated surface,
due to Au being a known terminus in a vacuum, resulting in insights into the Pt-coated surface
on only a single type of facet. As such, it is encouraged to also investigate different facets
such as the (111) or (211) facet to get a wider understanding of the effect that CuAu may have
on the Pt shell compared to, for example, just copper or gold. This would also increase the
scope of a DFT database when a machine learning model is made for the trimetallic system.
Additionally, the structures can also be investigated using molecular dynamics to simulate
the particle at temperatures above the 0 K used in regular DFT, with the above mentioned
possibilities contributing to a better understanding of a realistic particle.

Expanding the investigated reactions on the surface would also be beneficial to gain a better
understanding of the activity of this trimetallic particle for different base reactions. A possible
angle to take in order to further understand the underlying mechanisms to the changes in
activity would also be the strain in the surface, which was only briefly mentioned based on
literature. This would also be well served to combine with experimental endeavours into
synthesising and analysing the trimetallic CuAu/Pt NP. An experimental investigation into such
effects is currently an ongoing project in Dr. Jessi van der Hoeven’s group.

22



7. Acknowledgements

Dr. N. Artrith is thanked for providing the daily supervision throughout the project in addition
to serving as the first examiner. This includes her enthusiastic introduction to the broader
subject of computational chemistry sparking the start of this project, and commentary on
various research ideas. Valuable guidance and feedback on the presentations, this thesis and
scientific poster has also been provided and has been of significant help in improving my
scientific communication. Finally, the help in finding an internship after the project is greatly
appreciated.

Prof. Dr. F.M.F. de Groot is thanked for being the second examiner of the project, suggesting
literature and sharing information during the theory group meetings. Dr. J. van der Hoeven is
thanked for providing the collaboration that sparked this computational project into existence,
and Prof. Dr. P.E. de Jongh is thanked for leading the Materials Chemistry and Catalysis group
and therefore making this project possible.

Current and former members of the theory group are thanked for their feedback, beneficial
discussions and sharing of information. L. Ngamwongwan and K. Rommens are thanked for
their support in setting up the software and scripts for the Snellius HPC, with additional thanks
to R. García-Muelas for providing further support during nudged elastic band calculations. M.
Rokhline, J. He and W. van Weesep and the other members of the theory group thanked for
their feedback and wished good luck in their continued research.

The computational resources on National Supercomputer Snellius, provided by SURF, and
Aenetone, with technical support by Ing. C.G. van der Werf of the Faculty of Science, are
gratefully acknowledged in making the project possible.

The entire MCC group is thanked for providing a welcoming and stimulating work and social
environment, and for organizing various group activities to connect the members of the group.

Finally, the reader is thanked for the interest in the project subject and taking the time to
read this thesis.

23



8. List of Abbreviations
ASE Atomic Simulation Environment
BOSS Bayesian Optimization Structure Search
CI-NEB Climbing Image Nudged Elastic Band
DFT Density Functional Theory
DOS Density of States
FCC Face Centered Cubic
GGA Generalized Gradient Approximation
HPC High Performance Cluster
KS Kohn-Sham
LDA Local Density Approximation
MEP Minimum Energy Pathway
ML Monolayer
MOR Methanol Oxidation Reaction
NAO Numeric Atom-centered Orbitals
NEB Nudged Elastic Band
NP Nanoparticle
ORR Oxygen Reduction Reaction
PES Potential Energy Surface
SL Surface Layer
TS Transition State
XC Exchange and Correlation

24



References

[1] C. G. Morales-Guio, E. R. Cave, S. A. Nitopi, J. T. Feaster, L. Wang, et al., Nature Catalysis
2018, 1, 764–771.

[2] T. Xue, C. Wu, X. Ding, J. Sun, Physical Chemistry Chemical Physics 2018, 20, 17927–17933.
[3] C. Wang, D. van der Vliet, K. L. More, N. J. Zaluzec, S. Peng, et al., Nano Letters 2011, 11,

919–926.
[4] J. Brindle, M. M. Nigra, ACS Omega 2021, 6, 24269–24279.
[5] R. Prins, A. Wang, X. Li, Introduction to Heterogeneous Catalysis, Vol. 2, WORLD SCIEN-

TIFIC (EUROPE), 2016.
[6] R. Ferrando, J. Jellinek, R. L. Johnston, Chemical Reviews 2008, 108, 845–910.
[7] J. M. Rahm, P. Erhart, The Journal of Physical Chemistry C 2018, 122, 28439–28445.
[8] Y. Xu, A. V. Ruban, M. Mavrikakis, Journal of the American Chemical Society 2004, 126,

4717–4725.
[9] J. Niemantsverdriet, I. Chorkendorff, “Surface Reactivity” in Concepts of Modern Catalysis

and Kinetics, John Wiley & Sons, Ltd, 2003, pp. 215–266.
[10] K. Loza, M. Heggen, M. Epple, Advanced Functional Materials 2020, 30, 1909260.
[11] N. Artrith, A. M. Kolpak, Nano Letters 2014, 14, 2670–2676.
[12] C. Li, S. Yan, J. Fang, Small 2021, 17, 2102244.
[13] N. Artrith, Matter 2020, 3, 985–986.
[14] C. Romainczyk, J. R. Manson, K. Kern, K. Kuhnke, R. David, et al., Surface Science 1995,

336, 362–370.
[15] J. Niemantsverdriet, I. Chorkendorff, “Solid Catalysts” in Concepts of Modern Catalysis

and Kinetics, John Wiley & Sons, Ltd, 2003, pp. 167–214.
[16] X. Sun, D. Li, Y. Ding, W. Zhu, S. Guo, et al., Journal of the American Chemical Society

2014, 136, 5745–5749.
[17] N. Artrith, A. M. Kolpak, Computational Materials Science 2015, 110, 20–28.
[18] D. S. He, Y. Han, J. Fennell, S. L. Horswell, Z. Y. Li, Applied Physics Letters 2012, 101,

113102.
[19] S. Jalili, A. Zeini Isfahani, R. Habibpour, Computational and Theoretical Chemistry 2012,

989, 18–26.
[20] H. B. Liu, U. Pal, J. A. Ascencio, The Journal of Physical Chemistry C 2008, 112, 19173–

19177.
[21] L. Vega Dominguez, H. A. Aleksandrov, R. Farris, A. Bruix, F. Viñes Solana, et al., 2021.
[22] K. Li, Y. Li, Y. Wang, F. He, M. Jiao, et al., Journal of Materials Chemistry A 2015, 3,

11444–11452.
[23] D. Mott, J. Luo, P. N. Njoki, Y. Lin, L. Wang, et al., Catalysis Today 2007, 122, 378–385.

25



[24] G. Wu, Y. Sun, X. Wu, R. Chen, Y. Wang, Chemical Physics Letters 2017, 686, 103–110.
[25] J. W. M. Crawley, I. E. Gow, N. Lawes, I. Kowalec, L. Kabalan, et al., Chemical Reviews

2022, 122, 6795–6849.
[26] J. Yang, X. Chen, X. Yang, J. Y. Ying, Energy & Environmental Science 2012, 5, 8976–8981.
[27] P. C. Jennings, H. A. Aleksandrov, K. M. Neyman, R. L. Johnston, Nanoscale 2014, 6,

1153–1165.
[28] M. M. Montemore, M. A. van Spronsen, R. J. Madix, C. M. Friend, Chemical Reviews 2018,

118, 2816–2862.
[29] R. Li, H. Li, J. Liu, International Journal of Quantum Chemistry 2016, 116, 908–914.
[30] S. Yotsuhashi, Y. Yamada, T. Kishi, W. A. Diño, H. Nakanishi, et al., Physical Review B

2008, 77, 115413.
[31] J. K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Proceedings of the National Academy

of Sciences 2011, 108, 937–943.
[32] W. Kohn, L. J. Sham, Physical Review 1965, 140, A1133–A1138.
[33] L. Fiedler, K. Shah, M. Bussmann, A. Cangi, Physical Review Materials 2022, 6, 040301.
[34] N. Mardirossian, M. Head-Gordon, Molecular Physics 2017, 115, 2315–2372.
[35] O. Y. Long, G. Sai Gautam, E. A. Carter, Physical Review Materials 2020, 4, 045401.
[36] J. P. Perdew, K. Burke, M. Ernzerhof, Physical Review Letters 1996, 77, 3865–3868.
[37] J. Sun, A. Ruzsinszky, J. P. Perdew, Physical Review Letters 2015, 115, 036402.
[38] J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, J. Sun, The Journal of Physical Chemistry

Letters 2020, 11, 8208–8215.
[39] P. E. Blöchl, Physical Review B 1994, 50, 17953–17979.
[40] G. Kresse, J. Furthmüller, Computational Materials Science 1996, 6, 15–50.
[41] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, et al., Journal of Physics:

Condensed Matter 2017, 29, 465901.
[42] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, et al., Computer Physics Communications

2009, 180, 2175–2196.
[43] A. Chandrasekaran, D. Kamal, R. Batra, C. Kim, L. Chen, et al., npj Computational Materials

2019, 5, 22.
[44] N. Artrith, Z. Lin, J. G. Chen, ACS Catalysis 2020, 10, 9438–9444.
[45] R. Car, Nature Chemistry 2016, 8, 820–821.
[46] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, et al., APL Materials 2013, 1,

011002.
[47] T. Mitchell, Machine Learning, 1st, McGraw-Hill, 1997, 432 pp.
[48] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning, The MIT

Press, 2005.

26



[49] M. Todorović, M. U. Gutmann, J. Corander, P. Rinke, Npj computational materials 2019, 5,
35.

[50] G. Henkelman, H. Jónsson, The Journal of Chemical Physics 2000, 113, 9978–9985.
[51] G. Henkelman, B. P. Uberuaga, H. Jónsson, The Journal of Chemical Physics 2000, 113,

9901–9904.
[52] A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, et al.,

Journal of Physics: Condensed Matter 2017, 29, 273002.
[53] C. Tönsing, J. Timmer, C. Kreutz, Frontiers in Physics 2019, 7.
[54] V. W.-z. Yu, F. Corsetti, A. Garcia, W. P. Huhn, M. Jacquelin, et al., Computer Physics

Communications 2018, 222, 267–285.
[55] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, et al., Journal of Physics: Condensed

Matter 2014, 26, 213201.
[56] P. Pulay, Chemical Physics Letters 1980, 73, 393–398.
[57] “Quasi-Newton Methods” in Numerical Optimization, (Eds.: J. Nocedal, S. J. Wright),

Springer New York, New York, NY, 2006, pp. 135–163.
[58] M. U. Gutmann, J. Cor, er, Journal of Machine Learning Research 2016, 17, 1–47.
[59] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Physical Review Letters 2006,

97, 170201.
[60] D. Sheppard, R. Terrell, G. Henkelman, The Journal of Chemical Physics 2008, 128, 134106.
[61] C. J. Pickard, R. J. Needs, Journal of Physics: Condensed Matter 2011, 23, 053201.
[62] M.-P. V. Christiansen, N. Rønne, B. Hammer, Journal of Chemical Physics 2022, 157,

054701.
[63] C. D. Vurdu, Advances in Condensed Matter Physics 2018, 2018, 1–10.
[64] J. A. Santana, J. J. Saavedra-Arias, Y. Ishikawa, Electrocatalysis 2015, 6, 534–543.
[65] R. de Souza Monteiro, L. W. C. Paes, J. W. de M. Carneiro, D. A. G. Aranda, Journal of

Cluster Science 2008, 19, 601–614.
[66] A. A. Koverga, E. Flórez, C. Jimenez-Orozco, J. A. Rodriguez, Physical Chemistry Chemical

Physics 2021, 23, 20255–20267.
[67] C. G. Broyden, Mathematics of Computation 1965, 19, 577–593.

27



Appendices

A. Computation Input Files

A.1. Frits Haber Institut - Ab Initio Molecular Simulations (FHI-AIMS)

geometry.in file The geometry.in, with an example being shown in figure 1, contains
the positions of the atoms and the shape of the simulation cell if periodic calculations are
performed. This shape, or unit cell, is defined by setting the lattice vectors using the keyword
lattice_vector. The position of an atom is defined by using the keyword atom, followed
by the coordinate numbers and the element. If a spin-polarized calculation is performed it is
required that at least one atom has a defined intiial spin with the initial_moment keyword. The
relaxation of an atom can be constrained by writing relaxation_constraint .true. under
the atom that should be constrained. Constraining, or freezing, the atom during relaxation
prevents it from moving at all and can serve as a static anchor during relaxations.

l a t t i c e _ v e c t o r 4 . 0 4 4 5 0 . 0 0 0 0 0 . 0 0 0 0
l a t t i c e _ v e c t o r −0 . 0016 4 . 0 4 4 5 0 . 0 0 0 0
l a t t i c e _ v e c t o r 0 . 0 0 0 0 0 . 0 0 0 0 2 8 . 2 8 6 9
atom 0 . 0 1 1 6 0 . 0 1 1 6 7 . 3 2 9 0 Cu

c o n s t r a i n _ r e l a x a t i o n . true .
atom 2 . 0 3 3 4 0 . 0 1 0 6 9 . 1 5 7 9 Au

c o n s t r a i n _ r e l a x a t i o n . true .
atom 0 . 0 1 1 0 0 . 0 1 1 0 1 0 . 9 4 3 9 Cu
atom 2 . 0 3 3 1 0 . 0 1 1 0 1 2 . 6 8 7 3 Au
Listing 1: Example of a geometry input file that contains a unit cell and constrained atoms.

control.in file The control.in, with an example being shown in listing 2, contains all the
keywords and descriptions of the system. With the contents ranging from the XC functional
(xc) and treatment of relativistic effect, to geometry optimization (relax_geometry) and the
convergence criteria. Furthermore, smearing functions like Gaussian can be used to control
the electronic occupation. To aid convergence of the self-consistent field (scf) cycle different
mixers are available like Linear, Broyden [67] or Pulay [56], with the latter being de default and
generally recommended. For periodic systems it is required to, in addition to the lattice vectors
in geometry.in, define the definition of a k-point grid in this file.
The control.in also contains the basis set functions of each species present in a given

calculation, with the standard procedure suggesting that one copies the basis sets for an element
that is provided by FHI to the control.in file. For each species three different basis sets were
defined in advance [42], with the first small basis set containing just the minimal basis consisting
of the just the occupied orbitals and a few additional orbitals. This basis set is called the light
setting with the second basis sets being called the tight basis set. The latter generally gives
converged results in the meV-range for the absolute energies and due to this these sets are
generally used to check results obtained from light settings and further relax a structure after
pre-relaxation has finished. The third basis sets are called really-tight and should generally only
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be used to verify results from calculations using tight or if tigher convergence is desired, due to
the tight basis sets being strongly converged already.

# P h y s i c a l model s e t t i n g s
xc pbe
v dw_ c o r r e c t i o n _ h i r s h f e l d
charge 0 .
s p i n none
r e l a t i v i s t i c a t om i c_ zo r a s c a l a r

# SCF c o n v e r g e n c e s e t t i n g s
oc cupa t i on_ t ype gau s s i an 0 . 1
mixer pu lay

# P e r i o d i c Boundary C o n d i t i o n s
k_g r i d 12 12 1

Listing 2: Example of the control input file used for geometry optimizations. The basis set was
generally also included after the

A.2. Bayesian Optimization Structure Search

Bayesian Optimization Structure Search (BOSS)[49] is a computational tool that can be used for
global structure search based on user created “building blocks”. It employs BayesianOptimization
[58], which is based on Gaussian Process regression [48], to generate surrogate models for
selected properties using the given data that is obtained from atomistic simulations or DFT.
The used program was a python package named aalto-boss and was provided under the
BSD-3 license by the Computational Electronic Structure Theory group at Aalto University.
For basic running of the program on HPCś it required three files to be present in the working
directory: a boss.in file, and a userfn.py and starting bash script. The name of userfn.py
can by anything, but needs to be defined in bos.in.
The DFT calculations that provide the data for the surrogate model were performed using

the light basis set for FHI-AIMS with a 5x5x1 k-point grid. Additionally, the self-concistency
cycle accuracy criterions were set to be 1 order of magnitude looser (e.g. 1E-4 instead of 1E-5)
to speed up calculations.

boss.in file The boss.in file contains all the keywords that are required or optional for a
BOSS calculation. These keywords can be divided into three main sections: those that relate to
the optimization, post-processing and other miscellaneous keywords. The latter set of keywords
relate to aspects such as the parallelization on High Performance Clusters.
The optimization keywords can be viewed as the main set and contain the name of the

user function (for example userfn.py), the bounds of the model and how many initial and/or
iterative data points there should be. It also specifies the kernel, or covariance function, that
should be used for optimization of the model. For all BOSS calculations performed the basic ’rbf’
kernel was used with 200 initial and at least 50 iterative data points. If sampling was performed
with a single atom the boundaries were set to the desired x, y and z values of a box located
just above the surface. For diatomic molecules, where a rotational component should also be
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/
boss.in
calc_template

control.in
O.in
submit.in
surf.in

create_geometry.py
run_boss.sh
sampled_structures

. . .
userfn.py

Figure 14: Structure of the directory and files when starting a calculation using BOSS.

incorporated, x, y and z values of the box were constrained around the found minimum and
rotational boundaries for α, β, γ were added.
The post-processing keywords on the other hand dictate what BOSS should do once the

optimization has finished and post-processing of the results is desired. This can include the
determination of the local minima by selecting a percentage of the lowest acquisitions using
ṕp_local_minima,́ alternatively a slice (2D map) can be made using the ṕp_model_sliceḱeyword
in combination with the two variables that function as the x-axis and y-axis and how many
data points each edge should have.

userfn.py script The user function has as its main function the return of data based on
inputs received from the BOSS algorithm. The BOSS program provides an array with input data
with the same structure as was defined in boss.in to the user function. It is then the job of the
user function to take this array and provide the energy data for this point. How this is done
is entirely up to the user, and for the performed work a FHI-AIMS geometry.in is created by
combining a surface slab with the desired atom/molecule using the provided coordinates. This is
then moved to its own created directory in a śampled_structuresd́irectory where the FHI-AIMS
calculation is performed, the resulting file structure for a BOSS calculation can be seen in figure
14. After the calculation, the resulting energy is read from the output and provided to BOSS in
order to obtain the next desired data point.

A.3. Nudged Elastic Band

Nudged Elastic Band calculations were used to find the minimum energy pathways (MEPs) for
the dissociation of species on the coated surface. For these NEB calculations the implementation
of the Atomic Simulation Environment (ASE)[52] was used for the determination of future data
points [50] whilst FHI-AIMS was used for the single point (DFT) calculations. To perform the
NEB calculation with ASE and FHI-AIMS a python script to guide ASE on what to do is required
in addition to a intial and final structure. THe initial and final structure could be obtained by
performing a geometry optimization of structures that are close to the desired or expected
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states. The python script was then used to take the initial and final state and perform a linear
interpolation between them with the desired amount of images. These images are the structures
that will be changed during the NEB to investigate the Minimum Energy Path between the
initial and final state.
After the script performed the interpolation, it prints a control file for FHI-AIMS with the

keywords described in appendix A.1 to use for the single point calculations. Afterwards the
optimization algortihm is set and this is used by the optimizer can be set with a variety of
choices, with the Fast Intertial Reference Engine (FIRE)[59, 60] algorithm being chosen for
the NEB calculations performed in this work. The optimizer determines from the existing
geometries and calculated single point energy what ’direction’ to take the structures to obtain a
MEP, the movement of the atoms is here constrained by the NEB method that placed an ’elastic
band’ between the images to not let the images cluster [60]. When the optimizer is set the
python script sets the calculator that calculates the energies (FHI-AIMS in this work) and gives
ASE the start command to perform the NEB until a certain criteria is met, which was a residual
forces maximum of 0.1 eV/Å (Fmax = 0.01). Then, when the NEB has finished it is possible to
analyze the energies of the images and perform a Climbing Image (CI) run.
The Climbing Image[51] run is performed to obtain a more accurrate structure and energy

of the transitions state (TS). To perform this an initial and final structure are taken around
the highest energy point in the original NEB. With these structures a procedure similar to the
original NEB was performed, but instead of using a normal NEB the keywork for a climbing
image run (climb=True) is added. During this run the images are not changed to obtain only
the MEP, but also to obtain the saddle point of the Potential Energy Surface (PES) which
is the transition state. These NEB calculations were also performed using a slightly tighter
convergence criterium with a maximum residual forces parameter of 0.05 eVÅ. The transition
state and minima before and after the TS could then be calculated using the tight basis set to
obtain more accurate energies for these structures to determine the activitation energy and
energy difference of the transition.
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B. Density of States
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Figure 15: Species projected and spin polarized DOS of the top layer of the Pt coated surface
and the oxygen molecule before dissociation.
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C. Adsorption sites
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Figure 16: Species projected and spin polarized DOS of the top layer of the Pt coated surface
and the oxygen molecule before dissociation.

D. Poster Presentations

Poster presentations of this thesis were given at the following conferences:

• NWO CHAINS, 21–22 September 2022, NH Koningshof Veldhoven

• The first e-CHEMS & S4S Symposium, 21 October 2022, Utrecht

• nanoGe INTERECT22, 21–22 November 2022, Valencia, Spain

The poster is reproduced below.
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ML: Nudged Elastic Band ML: NEB (Nudged Elastic Band)
surrogate model refinement

Adsorption Energy

ML: BOSS (Bayesian Optimization Structure Search)[2]

DFT: FHI-AIMS code[1]
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DFT and Machine Learning
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Multimetallic nanoparticles can leverage the synergistic effects
between the component metals for improved characteristics with a
potential reduction in the scarce material usage. Building on earlier
theoretical and experimental investigations into bimetallic CuAu
nanoparticles, the addition of a Pt shell is expected to improve the
activity, potentially making the trimetallic system an alternative
for pure Pt.

The CuAu/Pt core/shell particles were investigated as slab models
using DFT calculations. The Pt adsorption sites were identified on an
Au-terminated (100) CuAu surface using Bayesian Optimization
Structure Search (BOSS) and a monolayer of Pt was adsorbed on the
surface and the adsorption energy was investigated. This was
followed by Nudged Elastic Band (NEB) analysis of the O2 dissociation
on the Pt-coated surface.
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It was found that Pt adsorbs on the hollow sites of the CuAu(100)
surface and forms a monolayer instead of clusters. On one of the
resulting surfaces the adsorption of CO, O2, C and O was investigated
and the MEP for the dissociation of O2 was determined using NEB.

Further understanding can be gained by investigating the Density of
States (DOS). Furthermore, the investigation can be expanded to the
adsorption and dissociation of CO and H2 on the surface.
Additionally, expanding this study to other facets of the CuAu alloy
and including an analysis of the surface strain can provide valuable
insights for the interpretation of experimental results.

Density Functional Theory (DFT) calculations were performed using
all-electron electronic structure theory with numeric atom-centered
orbitals as implemented in FHI-aims.

The PBE density functional with the van-der-Waals correction by
Tkatchenko and Scheffler was used. All energies were converged
with a “tight” FHI-aims basis set, using a 12×12×1 k-point mesh for
the integration of the Brillouin zone, the Atomic Zora scalar
relativistic correction and no spin polarization.

Pt adsorption sites were sampled in a specified region (x, y, z
bounds), using Bayesian Optimization to find the global minimum.

Pt addition based on BOSS results with 3 methods and two-step 
geometry optimization:

Pt

Au

Cu

Abstract

Computational Methods: Combined DFT & Machine Learning (ML)

Results: Pt Adsorption

Based on the figure, it is favourable for the Pt to fill the surface (1:1
Au:Pt). After geometry optimisation of 4 surface layers, the Pt is
located around the hollow sites.

Summary & Outlook

Sequential Monolayer Cluster

From the initial state with O2 to the final state with 2 atomic O the MEP
could be investigated using NEB. The NEB was performed with 5
images and the light basis set.

The Atomic Energy Network (ænet)
http://ann.atomistic.net

𝑬𝐚𝐝𝐬 = 𝑬𝐂𝐮𝐀𝐮 + 𝒏𝐏𝐭 − 𝑬𝐂𝐮𝐀𝐮 + 𝒏 𝑬𝐩𝐭 𝒏!𝟏

Results: O2 Dissociation

(x,y)

On one of the Pt coated surfaces, BOSS was used to determine the
preferred adsorption sites of atomic Oxygen. Comparing the Pt-coated

Results: O Atom Adsorption Sites

Interpolation between initial and final state with DFT calculations for
each point. After energy calculation, images are optimized to identify
the minimum energy path (MEP) and transition state (TS).

surface and O-sampled surface
allows for determination of the
binding sites.
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𝑬𝐫𝐞𝐥 = 𝑬𝐢𝐧𝐢𝐭𝐢𝐚𝐥 − 𝑬𝐢

From the NEB the O2 dissociation has an activation energy of 0.28 eV
and total energy change of 1.31 eV, which is in agreement with
existing literature values of ~0.3 eV [3].

34


	Layperson's Abstract
	Abstract
	Introduction
	Aims of the Project
	Multimetallic CuAuPt NP structure
	O2 and H2 Dissociation on Au and Pt Surfaces

	Methods
	Approach
	Single Point Calculation
	Geometry Optimisation
	Density of States
	Adsorption Site Identification
	Minimum Energy Path & Transition State
	General Workflow

	Results & Discussion
	Pt adsorption sites
	Addition of Pt to the surface
	Adsorption sites on Pt-coated surface
	Dissociation of O2
	Dissociation of H2

	Conclusion
	Outlook
	Acknowledgements
	List of Abbreviations
	References
	Appendices
	Computation Input Files
	Density of States
	Adsorption sites
	Poster Presentations


