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Abstract

In this thesis, we have analysed multiple-choice and text questions within faculties using devi-
ation profiles. Three methods were used to calculate these deviation profiles, a naive percentage-
based, an IRT-based approach and a proportional IRT-based approach. The results of these anal-
yses were contradictory. Further research is needed to examine whether examinees score better on
multiple-choice or text questions. We also analysed differential item functioning for two groups
based on their preferred language. The result of this analysis was that within some faculties, there
seems to be DIF present within tests. Further research is needed to verify whether this is true for
the entire test set. We also discuss future works based on this thesis and the test set used.
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1 Introduction

During the last few years, digital testing has seen a steady increase in usage within the education
system (Roode, 2020). This means that the possible effects of digital testing on a student also
increase. As a result, studying digital testing has become ever more interesting. A number of phe-
nomena, such as response times, are now easier to obtain. Therefore, new avenues of study have
opened up, such as comparing these response times. Testing has several types available for ques-
tions, such as multiple choice, open, text, match and order (Vromant, 2022). In digital testing,
questions also have a type attached to them; in the future, we will refer to this phenomenon as
strict typing. As a result of strict typing, it is possible to research these strict types. Not only do
these types of research become available, but they also become scalable, enabling us to perform
studies on item wide scale.
One such type is balance is given as the distribution of the achieved score over the different parts
of tests. So for a maths test, we can think in terms of subdomains, such as geometry and algebra.
The balance between these two domains can be given as the ratio of the achieved score achieved
between categories (Haberman & Sinharay, 2009). The focus of this study, however, is to apply
the methods learned from balance research to different attributes of questions. This is interesting
because, in contrast to categorisation, typing is strict. Because balance analysis is only as strong as
the basis for the split, strict typing might yield a clear split.
When calculating balance, we can go about it in several ways, some being item model-based as
shown in section 2.5 and some person model based as shown in section 2.5.7. A third option,
a percentage-based approach, calculates an expected percentage score for each part of the test for
each total score. When the observed percentage differs from this expected percentage score, an im-
balance occurs (Verhelst, 2017). The model-based approach works by assigning a difficulty score
to each question, which can then be used for a more fair assessment of how many points should
be granted for that question. This approach uses a so-called item response model, which is based
on item response theory. Using these difficulties, we can then calculate the balance conditional
to the difficulty. A secondary aim of this study will be to find examinee groups that get a differ-
ent balance on questions. A grouping factor is, for instance, the field of study. In the following
section, the research questions are laid out.

1.1 Research questions

The aim of this study is to find out how students achieve certain test scores. Do certain types of
questions yield more points than others? What are the factors that influence the performance of
students on certain questions? The main research question of this study is, therefore:

1. What can we learn from sub-scores based on item types in higher education high stake testing?

1



1 Introduction

In order to answer this question, several sub-questions have been established:

2. What types of sub-scores can we identify?

Using the types as presented above, what types of questions are actually used? What sub-scores
can we construct out of these types?

3. What methods are available in the literature for sub-score analysis?

We will view several sub-score analysis methods, both within sub-scores and between sub-scores.

4. What can we learn from different test types?

Test types refers to either practice exams, practice or high stake exams.

5. What can we learn from different item types?

Several item types are available in digital tests. Text questions and multiple choice are the most
common types used.

6. What can we learn from different examinee groups?

Different examinee groups can refer to what faculty students belong to, their preferred language
or their gender.

2



2 Literature Review

This section will present the theory that is related to the research questions. Firstly we will start by
introducing how to create what is known as sub-scores, which is the notion of picking fractions
of a test. Firstly we will cover sub-scores and how to make them. After this, we will cover balance,
which is a way of viewing sub-scores for specific groups. There are several approaches to calcu-
lating balance. There are several approaches to calculating balance, one of which is item response
modelling, which is why we will discuss it next. Another way of approaching balance is not by
starting at items but at the persons completing the items. When items perform differently, this
is called differential item functioning. Lastly, we will cover differential item functioning (DIF)
between different participant groups.

2.1 sub-scores

Tests in higher education are often divided into sections based on categories. When scores are as-
signed to parts of tests, they are called sub-scores. These sub-scores hold value in two ways (Haber-
man, 2005). Firstly, they give the examinee insight into its performance on different test parts.
Secondly, they give the institution a view of its performance in different sections. Feedback on
staff or study curriculum can be constructed using these sub-scores (Haladyna & Kramer, 2004).
A few factors have to be considered to justify using these sub-scores to influence decisions.
Haberman (2005) argues in favour of reporting sub-scores only if the sub-score can be shown to
have a more accurate representation of the measured construct than the total score. A sub-score
is only useful when it gives more information on the ability of, for example, a sub-domain. An
example would be a maths test with algebra and geometry questions. The total score would indi-
cate the mathematical ability of the examinee. The sub-scores for algebra and geometry can give
more fine-grained insight into the algebraic or geometric ability.

The validity of taking a sub-score of a test is studied by Haberman and Sinharay (2009). In their
paper, Haberman and Sinharay (2009) outline two possible uses for taking sub-scores—that of
the test subject and that of the institution behind the test. Similar analyses were applied to both
cases. The examinee-level analysis was done following Haberman (2005). A similar approach was
used to determine the validity of usage for institutions. These analyses were applied to two types of
teacher’s aide’s tests. The result of the analysis was that reporting examinee means on sub-scores
on a test-wide level does not appear to be justified for any realistic institution size. Which is in
contrast to mean total scores, which can have value for the institution, starting from around 30
participants per test.
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2.2 Balance

One way of studying identified sub-scores is through the concept of balance. Balance is the distri-
bution of an examinee’s score over the different parts of the test. So if we take the mathematical
test example from above, the ratio of points gained on the geometry part is a way of depicting
balance. Balance is interesting because it gives information about performance between subsets
of exam items (Verhelst, 2017).
A way of calculating balance would be, adding up all points per sub-score and dividing them over
the total achievable score. Because distributions of questions over sub-scores are not always equal,
using this approach might result in a skewed balance. A way of counteracting this would be to
weigh the sub-scores over their part of the total score, thus mitigating the unequal size problem.
In addition, some items are more difficult to answer correctly than others (Thompson, 2022c).
What happens if one sub-score yields significantly more difficult items?
A response to this question has been given as item response theory (Thompson, 2022c). The idea
is that when we assign a difficulty score to a question and an ability score to a respondent, we can
predict the respondents chance of a correct response. Models that follow this general principle
are called item response models. In their paper, Verhelst (2017) includes such models and illus-
trates a way of using profile analysis to calculate the balance between domain-specific questions
and multiple-choice and constructed response.

2.2.1 Profile analysis

Profiles

To achieve a score, many routes can be taken. Consider, for example, a test with 7 questions worth
1 point. There is only one way to achieve a maximum score, by correctly answering 7 questions.
When we calculate ways to achieve a score of 1, we see that already 7 options are available. For
the scores in the middle of the spectrum, many different routes lead to the same score. When the
number of questions increases, so does the number of routes one can take to achieve a specific
score. Each way one can come to a score is called a profile (Verhelst, 2012).

An example of profile analysis is given as follows. A test is given for which all questions be-
long to one of two mutually exclusive categories. Furthermore, the maximum score is given as the
number of questions on the test. We can then compute a score for each given category. When an
examinee completes our test the result is called an observed profile, given by a sequence of corrects
and incorrects. The sequence that we would expect when we look at the average sequence for the
score our examinee got is called the expected profile. The difference between these two profiles is
called the deviation profile. When we sum the deviation profile, we get 0, because the sum of the
expected profile and the observed profile is the same (Verhelst, 2012).
The traditional approach of profile analysis focuses on the observed profiles. The aim is often
to use these observed profiles versus the expected profiles to depict meaningful information be-
tween two categories of test (Verhelst, 2012). This leads to a focus on performance on sub-scores
(Verhelst, 2017). As discussed in sub-score section 2.1, this is often not worth reporting on the
institutional level (Haberman & Sinharay, 2009). Verhelst (2017) instead focuses on the deviation
profiles and its meaning within the measurement model. The deviation profile is used to depict
the balance between categories, larger deviations illustrate skewed balance and vice versa. When
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2.3 Mean-based sub-score comparisons

deviation profiles are aggregated one can compute averages over respondents, even when differ-
ing items were answered. For example, when a giant test bank is used, we can compute a balance
for the whole bank. This will only hold as far as the categorisation holds. A division between
multiple-choice (MC) and constructed response (CR) is a clearly defined categorisation. We need
the model parameters to analyse these profiles, that is, the differing parameters constructed from
the item response models. We will go into these parameters in the next section. To know these
parameters, we need a test set large enough to where we can substitute the estimates for the real
parameters because the standard error is considered negligible; for an example, see Verhelst (2017).
Once we have these deviation profiles, we must compute expected scores. To rule out these de-
viation profiles being a product of mere chance, we also need a way of evaluating the likelihood
of the deviation profiles occurring (Verhelst, 2017). The central limit theorem is used (Kwak &
Kim, 2017) for this purpose.

Expected score calculation

Verhelst (2017) are calculating the deviation profile for the TIMSS 2011 data (Martin et al., 2012).
The TIMSS 2011 data is a mixture of binary and polytomous data. Verhelst (2017)’s technical
overview highlights the journey from a classical Rasch model to a model suitable for both binary
and polytomous data (Rasch, 1993). This paper will touch upon some of these models in the IRT
part of this literature review. For now, it is interesting to see that Verhelst (2017) mixes several
types of item response models to create a model suitable to the data type. They use this model to
calculate the expected response (or score) for each score achieved. These are then subtracted from
the observed score to yield an average deviation profile for the groups analysed.

2.2.2 Balance and item types

To use balance analyses for comparing performance on different parts of tests, we first need to
decide how to split tests. Which can be done by splitting tests based on the characteristics of
items. Examples of these types of splits are multiple-choice or constructed response (open-ended)
and little or lots of time spent. This is why Verhelst (2017) is carefully examined; they touch upon
this subject with their MC and CR comparison.

2.3 Mean-based sub-score comparisons

When sub-scores have been identified, we can use them in several ways. One is researching whether
these sub-scores hold more insights than the total score (Haberman, 2005; Leading & Monaghan,
2006). Another is to compare the sub-scores with each other (de la Torre et al., 2011; Puhan et al.,
2008). While both routes offer interesting insights, we are interested in the balance aspect. Because
we have access to a set of items in which the questions are strongly typed. Which in turn creates
very strictly cut sub-scores. Thus we will, in this section, examine the comparison of sub-scores
and not their added insights.

Firstly we will look at several methods that have been identified to compare sub-scores. These
methods can be sorted into two camps, the classical test theory (CTT) camp and the item response
theory (IRT) camp. For the CTT camp we examined Puhan et al. (2008), they argue that propor-
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2 Literature Review

tional reduction of mean squared errors is a good approach for interpreting sub-score differences
and comparing them with the total score.

The paper by de la Torre et al. (2011) is our starting point for IRT-based approaches. They have
identified four IRT sub-scoring methods: multidimensional scoring, augmented scoring, higher-
order item response model scoring, and objective performance index scoring. They found that the
first three gave similar results, while the latter resulted in poorer results on both ability estimates
as proportion correct scores. In section 2.5, we will examine several of these IRT techniques.

2.4 Classical test theory

Classical test theory (CTT) and item response theory (IRT) are two different approaches to analysing
test data see T. Bechger et al. (2003) for a combined approach. Classical test theory is widely used
to evaluate tests within most education systems. A test is made up of questions, and each question
yields a score. These scores are then combined to achieve a test score. This is a straightforward way
of calculating a mark for a test. A few problems can be established immediately. Samples change:
when a test is taken the results are only applicable within that sample (Verhelst, 2004). This also
means that any statistics done on this set will not automatically be applicable to a second set of
the same test. Another problem is the lack of inherent guessing handling (Verhelst, 2004). For
multiple-choice tests, this leads to skewed results. And lastly, not all questions are of equal diffi-
culty. Resulting in a skewed reward for achieving correct on any question. A solution for some of
CTT’s problems is given in the form of item response theory (Thompson, 2022c).

2.5 Item response models

Item response theory starts with the notion that each item has a difficulty parameter. Depending
on the type of model used, multiple parameters can be incorporated. In the section below, we
will start by looking at a simple form of an IRT model, the Rasch model (Rasch, 1993). After
discussing this model, we will gradually move on to more elaborate item response models.

2.5.1 Rasch model

Pi

(
uij = 1

∣∣θj , bi) = exp(θj − bi
)

1 + exp(θj − bi
) (2.1)

Equation 2.1: Equation of the dichotomous Rasch model (Rasch, 1993)

The Rasch model is an early model in modern item response theory. Its core idea is: placing
items and persons on the same scale. It has also been used to construct new ways of looking at
tests, such as test information, conditional standard error and maximum likelihood estimating.
In this section we will take a brief look at the makeup of the Rasch model.
The Rasch model is given as the equation 2.1 for a single test item; an example function is de-
picted in Figure 2.1. This exponential function denotes the probability (Pi) of a correct response
(Uij = 1) for a single item (i). It uses the trait level(θ) for the participant (j) and the difficulty
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2.5 Item response models

Figure 2.1: Example item response function for a single question

of an item (bi) to calculate this. Note that the difficulty of an item thus influences where on the
x-axis the sigmoid function will intersect; it moves the graph right when the difficulty increases.
In case (θj − bi

)
equals 0, a participant’s trait level is the same as the difficulty of an item. In this

situation exp(θj − bi) results in 1 leading to Pi = 0.5. When a person’s latent trait is higher
than the difficulty, the resulting probability is greater than 0.5 and vice versa. This idea is central
to the Rasch model and subsequent extensions (Weiss, 2022).
The model assumes difficulty as the sole factor influencing the probability of achieving a correct
score for a given ability. This is in contrast to other IRT models, which include extensions like
discrimination parameters or guessing score parameters. A positive side-effect of this is simplicity.
A participant can be scored based on their number correct or observed score without considering
which questions they got right exactly, their observed profile. An observed profile is a profile of
what points were achieved on what questions. This also means that the number of possible re-
sponses is always the number of test items +1, which uses less information about the test than
is available (B. Wright & Tennant, 1996). Thus the following models discussed extend upon the
Rasch model to include the abovementioned problems.

2.5.2 two-parameter logistic model

Pi(Xi = 1| θj) =
exp[ai(θj − bi)]

1 + exp[ai(θj − bi)]
(2.2)

Equation 2.2: Equation of the two-parameter logistic model

7
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The two-parameter logistic model, as given in equation 2.2 and the three-parameter logistic
model, are extensions of the Rasch model. The extension for the two-parameter model is given
in the form of the ai parameter. This parameter is the discrimination parameter. It determines
how well the item discriminates between high and low latent train levels. It does so by affecting
the slope of the item response function, with a steeper slope being more discriminating and vice
versa. An example of a test that could use the two-parameter logistic model would be a person-
ality test because its only goal is placing a person on a scale for a personality trait. Thus using a
discrimination parameter to discern between high and low trait discriminating questions.
The Rasch-type models are able to deal with multiple-choice and binary questions. Many educa-
tional tests assign scores to items based on performance. Therefore we will need a model that can
handle the input of a score for an item, which should be able to be polytomous. We will discuss
some polytomous IRT models below.

2.5.3 Three-parameter logistic model

Figure 2.2: Example three-parameter logistic model for five items with different parameter values (Thomp-
son, 2022c)

Pi(Xi = 1| θj) = ci + (1− ci)
exp[ai(θj − bi)]

1 + exp[ai(θj − bi)]
(2.3)

Equation 2.3: Equation of the three-parameter logistic model

In formula 2.3, we see an extension to the Rasch, and two-parameter model introduced earlier,
called the three-parameter logistic model (Birnbaum, 1968). The extra parameter is the ci. With
ai still being the discrimination parameter determining how well the item discriminates between
high and low latent trait levels. We have now seen the two factors influencing the slope and the

8



2.5 Item response models

Figure 2.3: Example generalised partial credit model for a single item

place on the x-axis of this function. This is demonstrated by comparing items 2 (red) and 3 (green)
in Figure 2.2. Blue has a steeper slope, thus it discriminates more.
The guessing parameter given as ci influences the horizontal asymptote. The guessing parameter
influences where the function starts for the lowest latent trait possible. Let’s take a multiple-choice
item with five options. When guessing randomly, a participant answering this item will have a
20% chance of guessing the correct item. Therefore, the guessing parameter aims to take this min-
imal expected reward into account (Loe, 2021). In Figure 2.2, each curve denotes an item. Most
items seem to have some guessing correction because the asymptote is assumably not at probabil-
ity 0.000. Item 4, the purple item, does not have a guessing parameter defined.

2.5.4 Generalised partial credit model

Pix =
exp[

∑x
j=0 ai(θ − gij)]∑m

r=0 exp[
∑r

j=0 ai(θ − gij)]
(2.4)

Equation 2.4: Equation of the generalised partial credit model

In equation 2.4, the generalised partial credit model is given. This model is used to fit polyto-
mous items. Polytomous items are items on which a score can be achieved between correct and
incorrect. We will briefly examine the equation below.
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• m is the max score

• x is the student’s score on the item

• i is the index for a given item

• r is an index used by the summation

• ai is the discrimination parameter

• θ is the latent trait parameter or ability

• gij is the boundary parameter used for step j on item i

• r is used by the summation

The GPCM can be used to evaluate questions that can yield multiple scores. It is mostly used
within educational testing alongside 3pl or 2pl model. The GPCM model can then be used on
the polytomous questions, while the 2pl or 3pl model can be used on the dichotomous questions.
ai and θ are back and have the same effect as earlier models. However, note that the discrimina-
tion parameter ai is a unique item discriminator instead of a unitary one. This means that this
discrimination parameter only applies to this item and can not be used to scale the discrimination
with other items (Hao, 2022). The difference, however, is in the summations. To grasp how the
gij parameter works, we will look at an item to which GPCM can be applied. We have chosen an
item for which 4 points can be achieved. This means there are five possible scores, 0,1,2,3 and 4. If
we plot these scores as a function of theta, we could get something like plot 2.3, in which option
1 is a score of 0 and option 5 is a score of 4. In Figure 2.3 we see five curves which denote the
chance of achieving that score for a given θ. There are a few intersections within this graph; these
are the boundary parameters gij , where the likelihood for a score given a latent trait shifts from
one score to another. In equation 2.4, they are given as gij , the boundary parameter for step j on
item i. For a GPCM function to be constructed, a graph like figure 2.3 is a visualisation. There
are always m− 1 boundaries (Loe, 2021; Thompson, 2022b; Weeks, 2010).

2.5.5 Extended nominal response model

The extended nominal response model is an extension to the original nominal response model as
proposed by Darrell Bock (1972). It was extended by G. Maris et al. (2015) and specifically tailored
to suit the Dexter R package by Koops et al. (2020). The original Nominal response model is used
to model the situation in which a question has unordered responses, so there is no best or worst
answer. An example of such a question would be: "What is your favourite colour?" The answers
to the question are of categorical nature.
The nominal response model was extended to also encompass the marginal Rasch and GPC model
by G. Maris et al. (2015). This was done by taking the desirable traits from the nominal response
model and combining them with characteristics from the marginal Rasch and GPC model. The
marginal Rasch model used was taken from Cressie and Holland (1983). G. Maris et al. (2015)
use a Gibbs sampler to estimate the extended nominal response model (ENORM) (Geman &
Geman, 1984).
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2.5 Item response models

Koops et al. (2020) extends upon this approach by ensuring that their Markov Chain - Monte
Carlo method is suited for large-scale calibrations of test administrations. The version that they
use is implemented in the Dexter R-package under the name fit_enorm (Maris & Bechger, 2023).

2.5.6 Minimum sample sizes

The models described above are well-defined and yield good approximations of parameters in the-
ory (Lord, 2012). In practice, a minimal sample size of participants is recommended for each of
them to satisfy statistical significance (Lord, 2012). In this section, we will take a look at the min-
imum sample sizes needed to fit the models above.
With regard to sample sizes used, opinions differ. Some sources suggest a minimum of 150 (Sahin
& Anil, 2017) or 200 (Wright & Stone, 1979) participants for the Rasch model. Other sources
recommend at least 400 candidates (Harris & Crouse, 1993; Kolen & Brennan, 2004). O’Neill et
al. (2020), however, found that while less precision and item instability occur when smaller sam-
ple sizes are used, this has minimal effect on person ability estimates for the Rasch model. For the
2pl and 3pl models, estimates vary from 250 to 1000 participants. The GPCM is a more complex
model, and thus most estimates vary between 500 and 1000 participants (O’Neill et al., 2020).
Concerning the number of items within a test, Linacre (1994) and B. Wright and Tennant (1996)
state that the sample size should be at least 30 for the GPCM. These sample sizes mean that, in
practice, these IRT models are hard to apply in the context of exams in higher education.

2.5.7 Differential item functioning

In this section, we will briefly address differential item functioning (DIF) due to its relation to the
balance type analysis we aim to do in this paper (Roju et al., 1995).

Differential item functioning is a technique to assess whether an item is biased against a certain
group of examinees. Often the groups are predetermined, such as gender or race. A straight-
forward approach would be, do members of this group perform worse on this item? When the
answer is yes, the item is biased (Sehmitt & Dorans, 1990).
A frequently used DIF analysis technique is the Mantel-Haenszel analysis (Dorans & Holland,
1992). This technique uses the raw number correct score to depict latent trait. This is then used
to depict the percent correct per ability for both the regular group as the (maybe) biased against
group. See figure 2.4 for an example. When we see differences between the lines that form, we
can see the differing performance of both groups and whether there is DIF present (Thompson,
2022a).
However, problems arise when there are ability or trait differences between the biased against
group and the regulars. These problems being, that comparison based on raw performance does
not yield a fair comparison. Both groups tend to perform differently overall. This is why we need a
separate technique to determine bias. We need to analyse an examinee’s performance conditional
to their ability. T. Bechger and Maris (2015) argue that difficulty should not be based on observing
correct scores on individual items. Because Lord (2012) has proven that relative item difficulties
are equal across groups, T. Bechger and Maris (2015) argue that using relative difficulties yields
more accurate comparisons and thus a more accurate DIF analysis. Their test is closely related to
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Figure 2.4: Example Mantel-Haenszel analysis as given by Thompson (2022a), the y-axis is the probability
correct for an item that presumably has DIF, while the x-axis is the total score achieved, a sub-
stitute for ability

Lord (2012), with a different interpretation. For a visualisation, consult T. Bechger (2022). T.
Bechger (2022) DIF test was implemented in the R-package Maris and Bechger, 2023.

DIF is a measurement of differences in item performance. It measures whether items perform
differently in differing groups. It does so while also incorporating the skill of a group into the
mix. So DIF’s relation to balance is that it’s an inverse perspective. Balance is a person-to-item
type relationship, whereas DIF is an item-to-person type relation. This means that the outcome of
both types of analysis can be pretty similar, even though the way of measurement is very different.
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3 Data Exploration

In this section, the data as examined will be examined from differing angles. All plots in this section
have been created using H. Wickham (2016). For a full overview of how the plots were created
view the R code in appendix 1.3.

3.1 Source

Utrecht University uses a system provided by Paragin (2021). The system is called RemindoToets
and is used by various educational institutes in the Netherlands. Students use this system to fill
out high-stakes tests. Their results are then saved to a central database that Paragin is maintaining,
but is the property of Utrecht University. It holds the entirety of the digital testing data that the
university has gathered. The university has used these means of digital testing since 2015. Our
export was taken on the 10th of November, 2022. This means that we have roughly 7 years of
data at our disposal. The database was stored in a MariaDB database structure. The total size of
the database is 56 GB. Below you will find a summary of the data available. Importing the database
into R was done using the DBI, and RMySQL packages (M. Wickham, 2022).

3.1.1 RemindoToets

The tests that are taken within this environment have a lot of variances. Tests can be of a certain
length. Tests can have a random order of questions. Tests can be split into sections, which can then
have a random order of questions within them. The questions themselves can have a random order
of answering options, so one candidate might get ABC as options, whereas another candidate
sees BAC. There are a lot of different question types possible within RemindoToets. Within a
question, questions of multiple types can be asked. For example, an inline choice followed by a
multiple-choice can be found in the database within one question. See 3.1 for an example of such
a question. The same question can be asked in several ways. For example, the multiple-choice
option. There is also the inline choice option; when a single inline choice is used, the same effect
as with a multiple-choice option can be achieved. See figures 3.2 and 3.3 for an example of the
same question in differing formats 1.

1Occurrences like this mean that navigating this database requires intimate knowledge of the contents. Luckily the
RemindoToets team has been very helpful.
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Figure 3.1: Multiple question elements

Figure 3.2: Multiple-choice question example

Figure 3.3: Inline question example
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3.2 Contents

Feature name Recipe specific Question specific Answer specific

Recipe ID X
Question sequence X

Question ID X
Section ID X
Guess score X

Maximum score X
Weight X

NeedsManualCheck X
QTI X

Metadata X
Questiontype X

Answer ID X
Result ID X
User ID X

Date/time X
Duration X

Score X
Fullscore X

Dont know X

Table 3.1: Domain specification per feature

3.2 Contents

3.2.1 Features

The data has been transformed into a row-wise format. Each given answer has several features.
These features are: Question sequence, Recipe ID, Answer ID, Result ID, Question ID, Sec-
tion ID, User ID, Date/time stamp last change, Duration, Completion status, Guess score, Score,
Maximum score, Fullscore, Weight, NeedsManualCheck, DontKnow, QTI XML, Metadata and
Questiontype. In table 3.1, we see the specific domain a feature is a part of. For a full explanation
of each feature check the appendix in section 1.1.

3.2.2 Feature statistics

In table 3.2, we see the numeric values from the list above laid out in a summary table. The year
and month is an extract from the date/time stamp. Furthermore, we see some outliers in the Guess
score and Duration columns. Tests were taken over a period of roughly 7 years.
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Min. 1st Qu. Median Mean 3rd Qu. Max NAs

Duration 0.00 27.00 58.00 151.90 126.00 1205550.00 4771
Guess score 0.00 0.25 0.25 0.34 0.25 44.25 0
Score 0.00 0.00 1.00 1.33 1.00 200.00 0
Maximum score 0.00 1.00 1.00 2.09 1.00 200.00 0
fullscore (y/n) 0.00 0.00 1.00 0.62 1.00 1.00 0
Weight 0.00 1.00 1.00 1.08 1.00 40.00 0
Totalscore 0.01 25.00 40.00 55.95 54.00 1015.00 0
Year 2015 2019 2020 2020 2021 2022 0
Month 1.00 3.00 6.00 6.83 10.00 12.00 0

Table 3.2: Summary of some interesting numerical values from our set

3.2.3 Type distribution

In these 7 years, 16.5 million questions have been answered in over 9000 tests. These questions
belong to one of 12 types. See figure 3.4 for the distribution of the questions over these types.
Questions were filtered to only include the types of questions that we want, namely multiple-
choice, extended text and inline choice. Inline choice and multiple-choice were put together under
the term: choice. Answers were only used if they did not have multiple question elements within
a single question. After this filtering, 12.6 million questions still remained, which is 79% of the
original data. These questions belonged to either choice or extended text. See figure 3.5 for the
distribution over these two categories.

Figure 3.4: Type distribution of all questions - see 3.2.3.
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Figure 3.5: Distribution between multiple-choice and extended text, with eligible inline choice incorpo-
rated into multiple-choice - see 3.2.3.

3.2.4 Stats per year and month

In figure 3.6, the number of tests per year is laid out. The drop in 2022 is due to our export being
taken in November, which means our data for 2022 is incomplete. In figure 3.7, the distribution
over the months of the year can be seen. There is a clear dip within the summer months. In figure
3.8, we see the mean normalised scores achieved on questions in each month. Normalisation was
done based on the maximum score possible for each question. In figure 3.9, we see the mean
normalised scores achieved on questions in each year.
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Figure 3.6: Distribution of tests over the years - see 3.2.4.

Figure 3.7: Distribution of tests over the months - see 3.2.4.
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Figure 3.8: Mean normalised score per month - see 3.2.4.

Figure 3.9: Mean normalised score per year - see 3.2.4.
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3.2.5 Multiple-choice and extended text distributions

In figure 3.10 the density of the score given a question type is laid out. In figure 3.11 we see the
cumulative distribution of scores using an ECDF plot (DeJesus, 2021).

Figure 3.10: Density plot of types - see 3.2.5.

20



3.2 Contents

Figure 3.11: ECDF plot of types - see 3.2.5.

Score buildups

In figure 3.12, multiple-choice and extended text scores are depicted. Every dot represents a test,
with an extended test score and a multiple-choice score. Note that the scores achievable are as-
signed by the test creator. This means that people can assign high scores to single questions, see
table 3.2 at the maximum score for the distribution of these values. Next to the main plot in figure
3.12 are density plots of the frequencies. In figure 3.13 and 3.14, we see the same plot as in figure
3.12, except it is zoomed in to where the most activity happens. In figures 3.15, 3.16, and 3.17, we
see the same data, but in a hexbin format. This is a heatmap depiction of figures 3.12, 3.13 and
3.14.
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Figure 3.12: Scatterplot of score distribution of all tests - see 3.2.5

Figure 3.13: Scatterplot of score distribution of all tests limited to score 60 - see 3.2.5
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Figure 3.14: Scatterplot of score distribution of all tests limited to score 30 - see 3.2.5

Figure 3.15: Hexbin of score distribution of all tests - see 3.2.5
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3 Data Exploration

Figure 3.16: Hexbin of score distribution of all tests limited to score 60 - see 3.2.5
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Figure 3.17: Hexbin of score distribution of all tests limited to score 35 - see 3.2.5
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Normalized versions

In figure 3.18 and 3.19, the data has been normalised based on the max score achievable per type.
So for each test from a student, we take its multiple-choice score and divide it by the maximum
achievable score for multiple-choice. The same is done for the extended text type. The result is
a graph with a maximum of 1 for both axes. A normalised scatterplot was also made with exam
types expressed. See Figure 3.20 for this plot. Within this plot we have three lines, indicating the
regression lines for each type of exam.

Figure 3.18: Scatterplot of tests normalised by max score achievable per type
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Figure 3.19: Hexbin of tests normalised by max score achievable per type
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Figure 3.20: Scatterplot of tests normalised by max score achievable per test type
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4 Methods

This chapter will discuss the practices used during the analysis part of this thesis. Firstly a brief
overview of the data cleanup and collection practices will be laid out. Following this, the analysis
part of this paper will be discussed.

4.1 Data preparation

4.1.1 Data collection

To access the data, a MySQL dump was provided by Paragin. This dump consisted of their entire
database for the Utrecht University test bank. It was anonymized in advance so as not to include
any names. We will not go deeply into the shape of this database, as this is out of this project’s
scope. It will suffice to say that this database was optimized for MySQL speed and not for ease
of access. The MySQL table containing all these answers with relevant parameters was created to
extract all of the answers. See appendix 1.1 for an overview of what a single row for a single answer
looks like. This table was imported into R using RmySQL, see the appendix for the SQL and R
code (Ooms & James, 2021). The tables imported consisted of roughly 16 million rows. In the
next section, we will examine how the data was cleaned.

4.1.2 Data cleanup

Before we loaded the data into R, we already applied some cleanup inside the query. In the query’s
WHERE clause, we cleaned the data in several ways: filtering incomplete answers, filtering out
tests with sectioning, and filtering out questions that consist of multiple elements as described in
Figure 3.1.

Once we used RMySQL to import the data, a few more cleaning steps were taken. The study
code feature was split up only to include the faculty code, and then anonymized to numbers.
There was also a response variable created, which is the response answer for multiple-choice, but
the weighted score for text-based answers. In the analysis section, we will explain why this was
necessary.

4.2 The analysis

In this section, we will explain our naive percentage-based method, the Verhelst (2017) based
method and our own IRT-based proportional deviation method. Lastly, the differential item
functioning analysis based on T. Bechger and Maris (2015) will be discussed.
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Variable Calculated result Calculation
choice score 14
text score 20
total score 34
max choice score 20
max text score 32
max total score 52
proportion of choice achieved 0.41 choice score / total score
proportion of text achieved 0.59 text score / total score
proportion of choice test 0.38 max choice score / max total score
proportion of text test 0.62 max text score / max total score

percentage based deviation choice 0.03 proportion of choice achieved -
proportion of choice test

percentage based deviation text -0.03 proportion of text achieved -
proportion of text test

Table 4.1: Example sub-score proportional deviation score

Research question 4: "What can we learn from different test types?" was analysed using the bal-
ance method, with different test types being tests that are from a certain university faculty. It was
also analysed using the regression lines in Figure 3.20.

Research question 5: "What can we learn from different item types?" was analysed using the
balance analysis and mean score analyses.

To analyse research question 6: "What can we learn from different examinee groups?" we added
a grouping variable to examinees and analysed different faculties for DIF within their tests based
on this grouping variable.

We believe that in order to study two sets, we must determine the statistical significance of the
difference between them. As such, we have also performed an independent samples t-test on each
faculty. We compared the distributions of item scores of the two differing types, choice and text.
We used the Welch T-test specifically because these two sets are of unequal size and of unequal
distribution (Delacre et al., 2017).

4.2.1 Percentage based

Firstly we will examine the mean scores for both types per faculty. After this, we will do the actual
percentage-based analysis. An example test percentage-based deviation profile calculation is given
in Table 4.1. The result is a deviation profile, where a positive profile means a higher proportion
correct than the proportion of that type in the test. These profiles were calculated for all tests.
These profiles were grouped by faculties, and the mean per faculty was calculated using dplyr’s
mean function (H. Wickham & François, 2022).
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row_number 1 2 3 4 5 6 7 8

booklet_id 1 1 1 1 1 1 1 1
booklet_score 0 1 2 3 4 5 6 7

expected_choice_score 0.00 0.00 0.00 0.00 1.93 1.89 3.83 3.74
expected_text_score 0.00 1.00 2.00 3.00 2.07 3.11 2.17 3.26

Table 4.2: Example expected score calculations

4.2.2 IRT-based

Score based deviation profiles

The first IRT-based method was done following Verhelst (2017) deviation profile calculations.
The general steps taken were:

1. Fit an item response model for each test.

2. Calculate expected domain scores for each test.

3. Calculate observed domain scores for each test result, which is when a single student takes
a certain test.

4. Calculate the deviation profile per type for each test result.

5. Calculate the mean deviation profiles per faculty.

To calculate the item response model, we use the R package Dexter (Maris & Bechger, 2023).
Because Dexter uses keys, we cannot use text-based responses directly. Instead, we create a rule
set for each item based on the scores possible. If, for instance, possible scores on a text item were
1,2,3.5 and 6, we would give each answer a score within this range and an equal interaction answer
to the score. This way, we are able to input our text-based answer scores into dexter for analysis.

The model used was the ENORM model as implemented in (Maris & Bechger, 2023) and de-
scribed in 2.5.5. Using the ENORM model, we estimate the expected sub-scores for each test in
the database. The fitting of this model on all tests is not without hurdles. There are several types
of errors that occur when training on this many tests. The most common error was caused by
a uniform response to a question. This meant that for a single item in a test, all responses were
equal. The ENORM model can not be fit when this is the case. We ignored these tests in our
analysis and ended up fitting models for about 3000 tests.

When the fitting of a model was completed, it was used to estimate expected domain scores.
These were given in the shape of table 4.2.

Afterwards, we add the domain scores to the table and use these to calculate the deviation pro-
files. This calculation was done by subtracting all expected scores from the actual score. Table
4.3 shows an example resulting table. Note that the deviation scores for choice and text are each
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ResultID 1 1 1 1 1 1 1

booklet_id 1 1 1 1 1 1 1
booklet_score 4.00 3.00 3.00 4.00 3.00 3.00 3.00

text_score 0.00 0.00 0.00 0.00 0.00 0.00 0.00
choice_score 4.00 3.00 3.00 4.00 3.00 3.00 3.00

expected_choice_score 3.97 2.99 2.99 3.97 2.99 2.99 2.99
expected_text_score 0.03 0.01 0.01 0.03 0.01 0.01 0.01

deviation_choice 0.03 0.01 0.01 0.03 0.01 0.01 0.01
deviation_text -0.03 -0.01 -0.01 -0.03 -0.01 -0.01 -0.01

faculty 4 4 4 4 4 4 4

Table 4.3: Example deviation profile table

other’s opposite sign. This is because when the actual scores differ for an observed score, this dif-
ference has to come from somewhere, in this case, the other item type.

Finally, we calculate mean deviation profiles per faculty, which can then be reported in a di-
verging bar chart.

Proportional based deviation

The start of this analysis is laid out exactly the same as within section 4.2.2. We diverge from this
method when calculating the deviation profiles. Instead of subtracting the expected_choice_score
from the choice_score, we calculate proportions for both and subtract those, see Table 4.4. The
result is a proportional deviation profile

A problem that this analysis solves is that it scales the deviation profiles in proportion to the
tests. If a test has higher scores on average, then the deviation profiles based on the score will
reflect this difference. When a multiple-choice question is answered the question is often either
right or wrong, resulting in either 0 or more than 0 points. When the scores per question then
differ between tests, a right or wrong answer on two different tests can have different influences on
their overall deviation profiles depending on the scores assigned to each question. This is why this
way of analysing also allows us to make a better comparison between tests, whereas the Verhelst
(2017) method is more suitable for single tests.
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Variable Calculated result Calculation
choice score 14
text score 20
total score 34
expected choice score 16
expected text score 18
proportion of choice achieved 0.41 choice score / total score
proportion of text achieved 0.59 text score / total score

proportion of expected choice 0.47 expected choice score /
max total score

proportion of expected text 0.53 expected text score /
max total score

percentage based deviation choice -0.06 proportion of choice achieved -
proportion of expected choice

percentage based deviation text 0.06 proportion of text achieved -
proportion of expected text

Table 4.4: Example proportional deviation profile calculation

4.2.3 Differential item analysis

In order to answer research question 6: "What can we learn from different examinee groups?" -
see section 1.1, we perform a differential item analysis, and we follow the same steps as shown in
section 4.2.2. We have added the language feature to each student. This feature is the language that
they have selected as their preferred language in Remindo. Instead of training an ENORM we use
the DIF function as available in Dexter on this language feature (Maris & Bechger, 2023). This
analysis is based upon the paper by T. Bechger and Maris (2015). Unfortunately Dexter is not able
to analyse all tests for several reasons such as uniform responses and not enough score variation.
The result of this analysis is a Chi-square value, degrees of freedom value and probability value.
The probabilities used were then analysed using boxplots for each faculty.
When testing for DIF through multiple statistical tests. One should expect to have some false
discoveries, discovering DIF where there is none. Kim and Oshima (2013) studied this effect and
concluded that for some DIF methods, the Holm method was beneficial to the analysis (Holm,
1979). We will also report p values after the Holm correction.
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5 Results

5.1 Balance

5.1.1 Percentage based

Figure 5.1: Mean faculty scaled scores

In Figure 5.1, the mean score per faculty is displayed for multiple-choice and text formats. It is
ordered by the highest mean choice score. The lowest is faculty 9, while the highest mean choice
score is faculty 1.

In Figure 5.2, the mean deviation score per faculty is displayed for multiple-choice and text
questions. It is ordered by the highest text score. Faculty 9 has the highest mean choice deviation,
while faculty 8 has the lowest mean choice deviation. All faculties score better proportionally on
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Figure 5.2: Mean percentage based deviation of scores

multiple-choice, according to this analysis. When we take faculty 9 for example the 0.051 means
that 5.1 percent more score was earned on the multiple-choice part of the test than the sub-score
distribution over text and multiple-choice would suggest.

5.1.2 IRT-based

Figure 5.3: Mean deviation scores per faculty

In Figure 5.3, the deviation scores are depicted. The data is presented in the same manner as
Verhelst (2017). Note that the profiles switch from being text favoured to choice at faculty 3 and
1. The faculty with the most text-heavy deviation profile is faculty 6, while this is 3 for choice.
The result of 0.156 for faculty 3 means that on average within this faculty examinees tend to gain
0.156 higher multiple-choice scores on their tests than the ENORM model estimates, meaning
that the balance is tilted towards the multiple-choice type questions according to this analysis.
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5.1 Balance

Figure 5.4: Mean proportional deviation scores per faculty

5.1.3 Proportional IRT-based

In Figure 5.4, the proportional deviation scores are depicted. Note that the profiles switch from
being text favoured to choice at faculty 2 and 3. The faculty with the most text-heavy deviation
profile is faculty 9, while this is 3 for choice. The result of 0.002 for faculty 3 means that on average
within this faculty examinees tend to gain 0.2% higher multiple-choice scores on their tests than
the ENORM model estimates, meaning that the balance is tilted towards the multiple-choice type
questions according to this analysis.

5.1.4 Comparison between methods

In Figure 5.1, the results from the percentage, IRT-based and proportional IRT-based methods
are shown. The faculty names with an * after them are the faculties for which results were equal.
An interesting observation is that between the two IRT-based methods, results are pretty similar,
with the exception of faculty 1, which switches between being choice heavy in the regular IRT-
based approach, to text-heavy within the proportional IRT-based approach.

Faculty Percentage IRT Proportional IRT Welch t-test

9 choice text text 0.33
8 choice text text 0.00
7 choice text text 0.00
6 choice text text 0.00
5 choice text text 0.02
4 choice text text 0.00
3* choice choice choice 0.00
2 choice text text 0.00
1 choice choice text 0.00

Table 5.1: Comparison between percentage, IRT-based and proportional IRT-based methods
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A T-test was performed on scaled score values per faculty for the two different question types,
choice and text. They were tested using a Welch T-test. The Welch T-test was used because this
concerns two sets of unequal size and of unequal variance (Zach, 2020).

5.2 Differential item functioning

Figure 5.5: Differential item functioning per faculty based on language grouping

In Figure 5.5, boxplots are shown for the differential item functioning analysis. For this analysis,
359 tests, or booklets, were analysed for DIF based on the language feature. The distributions per
faculty can be seen in Table 5.2. Of the 359 tests, 61 had a p-score lower than 0.05 before Holm
correction. After applying Holm correction on the entire set of 359 tests, we find that 18 tests
have a value below 0.05 and thus contain DIF. Frequency of DIF tests per faculty can be seen in
Table 5.2. Most notable is faculty 8, with 14 tests containing significant DIF between the language
feature.

Faculty
Amount

of tests
analysed

Amount
of tests with DIF

Amount of tests
with DIF after
holm correction

Percentage tests
containing DIF

1 5 - - -
2 13 1 - -
3 33 4 1 0.03
4 9 4 1 0.11
6 70 5 - -
7 93 7 2 0.02
8 136 40 14 0.10

Table 5.2: Frequencies of tests per faculty containing DIF
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6 Discussion

The aim of this research was to learn something from sub-scores achieved on tests in higher edu-
cation. The central question was:

1. What can we learn from sub-scores based on item types in higher education high stake testing?

To answer this question, several sub-questions have been examined. We will examine these ques-
tions below.

2. What types of sub-scores can we identify?

To examine this question, we did both a literature search and a data exploration. We found that
within the literature, most sub-scoring papers tend to examine domains such as math or reading.
We also found the paper by Verhelst (2017), doing sub-scoring research based on question types
rather than domains. In summary, we identified two ways of sub-scoring, question type-based
and domain type-based.

3. What methods are available in the literature for sub-score analysis?

We found several ways of analysing sub-scores. Haberman (2005) analyses sub-scores by using
classical test theory to examine whether a sub-score holds extra value over the total score. Haber-
man and Sinharay (2009) examine the same question using mean square error approaches. Ap-
proaches also examined are direct reports of subscores, estimates of subscores based on total score,
combined estimates based on subscores and total scores, and residual analysis of subscores. Ver-
helst (2012) uses IRT to analyse three different categories within the PISA dataset (Mulford,
2002). They construct deviation profiles, which are the difference between observed and esti-
mated scores on a sub-score. In Verhelst (2017), the same technique was used to compare coun-
tries within the TIMSS dataset (Mullis et al., 2012). They also analyse different item types within
this paper, comparing multiple-choice and constructed responses. In summary, we find a classical
test theory approach, several mean square error approaches and an item response theory approach
to analysing sub-scores.

4. What can we learn from different test types?

In Figure 3.20 we see the distribution between different exam types. This plot seems to suggest
that when the total score achieved is higher, students score better on exam text questions than on
graded practice text questions. For multiple-choice questions for instance, when the total score is
lower, students score better on graded practices than on exams. This plot just scratches the surface
of this research question and there is a lot more to discover about different test types. Are there
different score distributions? Do people on average score higher on a graded practice?
We also analysed different test types by grouping them based on their faculty, below we will discuss
our findings.
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5. What can we learn from different item types?

Figure 3.4 shows us the distribution of questions over the available item types in Remindo. The
most prevalent types are multiple-choice and extended text. Together they make up over 85% of
all questions. To study these types we did two analyses. A naive percentage-based deviation profile
calculation and two deviation profile calculations based on an IRT model. A Welch t-test was ap-
plied to the set of multiple-choice and text answers for each faculty. The t-test indicates that for all
faculties except for faculty 9, the differences observed between the scores of type multiple-choice
and text are not due to chance.

For the naive percentage-based deviation profile we calculated the differences between the two
proportions. The first is the proportion between the achieved type score and the achieved to-
tal score. The second proportion is the proportion between the test type score and the test total
score. The results indicate that for all tested faculties, multiple-choice yields higher scores than
text. This analysis was done on the entire set that was available after the filtering process shown in
the data cleanup section, see Section 4.1.2. While results indicate that higher scores are achieved
on multiple-choice, this analysis fails to address the problem caused by guessing correction. When
we look at Figure 3.19, we see that on the left side, the graph becomes scarce. This is probably, for a
large part, caused by guessing. On a Multiple-choice question, an examinee has a chance of achiev-
ing a score higher than 0 when answering randomly. This means that probably, multiple-choice
normalised scores will be on average higher than their text counterparts, which is what the result
of our percentage-based analysis seems to suggest. More research is needed to examine the effects
of guessing on this naive approach. Another problem with this approach is item difficulty. Some
items are harder than others but yield the same score. This occurs when one of the sub-scores was
overall harder than the other, making scoring higher on that sub-score more difficult and thus
lowering the mean score.

The IRT-based deviation profile was constructed using the ENORM model as presented in
Koops et al. (2020). This model was used to estimate sub-scores for both text and choice-type
questions. The resulting expected scores were then compared to the actual scores of examinees.
The mean deviation profiles were then used to calculate the means per faculty, see Figure 5.3. Re-
sults indicate that for faculties 1 and 3, more score is achieved on multiple-choice, while this trend
is reversed for the rest. This approach takes the difficulty of items as well as guessing correction
into account. A problem with this approach is that when the scales for tests differ, meaning one
test has a higher total score, these tests are hard to compare. In order to combat this, we performed
a similar test using proportions, which is discussed below. Another shortcoming of our analysis
is the set used. Not all tests lend themselves to fitting within the ENORM model. Items that had
equal response patterns over all examinees could not be fit within the ENORM, and thus we had
to remove the test. As a result, we only analysed less than half of the entire test set. Results could
be different if we analysed the entire set. More research is needed into whether simply removing
these equal response questions will be an adequate solution. Examining whether the current re-
sult is similar to results for the entire set could also be interesting.
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The proportional IRT-based method was constructed following the same first steps as the regu-
lar IRT-based method. The difference between the two methods was that the expected scores were
turned into proportions of the max achievable score. The achieved scores were also turned into
proportions of the max achievable score. The expected proportional score was then subtracted
from the achieved proportional score, to obtain the proportional deviation profile. The mean
proportional deviation profiles were then used to calculate the means for each faculty, see Figure
5.4. Results indicate that only for faculty 3 more points are achieved than expected on multiple-
choice, while this trend is reversed for the rest. For this analysis, the same shortcomings apply as
described within the section above.

In summary, the methods give contradictory results. The naive percentage-based approach is
based solely on the proportion of scores within tests to calculate the estimated score. The regular
IRT-based method uses more information available within a test to calculate the estimated score
and the proportional IRT-based approach tries to enhance the IRT-based approach to be suitable
for aggregating between tests. Furthermore, we can not directly compare the regular IRT-based
method to the naive percentage-based method, because the regular IRT-based method yields score
deviation and not proportion. The naive percentage-based method was also performed on a bigger
data set than the IRT-based methods.

6. What can we learn from different examinee groups?

We examined two groups of examinees. One group self-selected English as their preferred system
language within the testing software while the other group selected Dutch. These groups were
examined per faculty using the DIF analysis function within the R package Dexter (T. Bechger &
Maris, 2015; Maris & Bechger, 2023). The results were further analysed using Holm correction
(Holm, 1979). We found four faculties with tests containing DIF.
Dexter was unable to calculate DIF on tests for several reasons. As a result, we only analysed 359
tests. This means that our analysis does not incorporate a large part of the tests available. Further
research is needed to examine DIF on all tests. Analysis of the entire set could result in a different
outcome. Furthermore, research is needed to find out how the language selection is performed.
What is the default option? Can a user change this language on the go? These aspects have to be
examined to understand the context of the language grouping variable.
A missed opportunity is the grouping variables. Unfortunately for this analysis, there were not
many background variables available within this set. Interesting background variables, such as
gender, country of origin, mother tongue and age were not available.

6.0.1 In conclusion

To answer our main research question we have analysed multiple-choice and text questions per
faculty using deviation profiles. To calculate these deviation profiles three methods were used,
a naive percentage-based approach, a regular IRT-based approach and a proportional IRT-based
approach. The results of these analyses were contradictory, but they seem to indicate that there is a
difference in balance between faculties. Further research is needed to examine whether examinees
score better on multiple-choice or text questions. We also analysed differential item functioning
for two groups based on their preferred language. The result of this analysis was that within some
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6 Discussion

faculties, there seems to be DIF present within tests. Further research is needed to verify that this
is true for the entire test set.

6.0.2 Future works

For future research into this dataset, we would like to recommend some more attention be given
to the filtering of equal response questions. By filtering these types of questions, we think the
size of the to-be-analysed set can be increased. By doing so the results of this study can be made
more reliable. Another option for resolving the equal response patterns would be to change the
expected profile estimation. Expected profiles were able to be generated for all tests using the
naive-percentage method. By changing which item response model we use to calculate estimated
scores, we could enable these calculations for equal response-containing tests.

Adding background variables could result in interesting findings as well. By adding a mother
tongue and/or country of origin variable, cultural differences could be examined on different
types. Gender is another popularly examined background variable and would fit nicely within
our analysis. More involved background variable examples would be risk averseness. This could
be used to see whether risk-averse people tend to score better on multiple-choice. By doing surveys
before a test is administered other phenomena could be studied, such as the impacts of nervous-
ness on test scores, and types of questions.

Time could be used as a third correction parameter, do we see that certain faculties yield differ-
ent scores over the years? Do they yield different scores throughout the year? Maybe we even see
that on average, students score better between 12:00 and 15:00. An advantage of examining time
is that there is already data available within our data set to analyse this, in the form of a datestamp
per question. In Figure 3.7 we have already shown the differences in scores between months of
the year, to briefly touch upon this subject.

Lastly, an interesting comparison that could be made is between educational institutions. Do
certain institutes yield higher mean scores on average? Do similar faculties within different institu-
tions yield similar scores on both item types? Do the same trends hold for high school and higher
education? Do the trends differ between types of higher education, such as universities of applied
sciences and regular universities? Do we see different trends in the more technically focused uni-
versities? Paragin has data on most of these types of institutions, thus enabling this research from
a practical perspective.
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On the relevance of this thesis to the
field of AI

This thesis is relevant to the field of artificial intelligence because it highlights the problems that
come with latent variable estimation. The way in which this thesis tackles the question of balance
is one of interest to the field of AI. Balance is an evaluation of fairness in a sense. Are these dif-
fering types of questions fair? Does one of these question types yield a performance bias against
certain groups? Fairness is not a clear-cut concept. As such, there are also many ways of investigat-
ing whether something is fair. In this thesis, we found that there is differential item functioning
based on what language preference students picked. Which means that certain items performed
differently between these groups.
In this current thesis, the balance research was done on a set of educational tests. In future work,
we might need to apply similar techniques to different decisions of machine learning algorithms.
This is where IRT provides a solution; it formulates the ability of an individual not by raw per-
formance but by relative ability. By doing so, it aims to give a more fair and accurate estimation of
ability. This thesis shows a way of examining latent traits using IRT. Therefore I am convinced that
we will see IRT-based methods seep into the fairness measurements as used by machine learning
experts.
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Appendix

1 Data exploration

1.1 Feature explanations

1. Question sequence

The sequence that a question got within the test. These sequences can be the same for every test
of that type, or, as discussed earlier, differ from one another.

2. Recipe ID

An identifier that is unique to a single test. An answer ID is an identifier unique to a specific
answer for a specific candidate on a specific question. A recipe is a mould used to create a test out
of an item bank

3. Answer ID

An identifier unique to a specific answer for a specific candidate on a specific question.

4. Result ID

An identifier unique to all answers given by a specific student on a specific test.

5. Question ID

An identifier that is unique to a question (version).

6. Section ID

An identifier used to specify the section that a question belonged to, the default being NULL, for
no sectioning.

7. User ID

An identifier unique to a single user.

8. Date/time stamp last change

The last changed is used to see when the last action concerning the question was performed. When
a student fills out a question and returns to it after 30 minutes to update it, this new time is the
date/time saved.
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Appendix

9. Duration

A measurement in seconds of the amount of time an examinee has spent on the question.

10. Completion status

A status type given to every answer. The status has several options, being: completed, not_attempted,
incomplete and unknown. For this dataset we have filtered out all types of completion exept for
completed.

11. Guess score

The score that a candidate would get were a candidate to guess the answer. This is automatically
calculated by RemindoToets.

12. Score

The achieved score that a candidate has achieved.

13. Maximum score

The maximum score a candidate could have achieved.

14. Fullscore

A boolean value depicting whether the candidate achieved the maximum score for this question.

15. Weight

The weight that the test designer has given to the question.

16. NeedsManualCheck

A boolean value that is true when the score can or should not be calculated by RemindoToets.

17. DontKnow

The DontKnow feature is an optional feature for questions where it is possible for the candidate
to indicate that a candidate does not know the answer.

18. QTI XML

A value that is a description of the question in a QTI format qti, 2022. This is a standard for
saving test questions in.

19. Metadata
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1 Data exploration

The metadata is a JSON version of everything that is needed to show the question to a candidate
within the RemindoToets environment.

20. Questiontype

Finally the question type is one of eleven options: choice, combined, extended_text, graphic_associate,
inline choice, match, order, position_object,select_point, text_entry and upload. For our analysis
we have flattened this list of eleven into three types. Multiple choice, text and other. In the Mul-
tiple choice type we find the choice type combined with the inline choice with only one inline
choice box within a question. Within the text type we find exclusively extended_text type. The
other type is populated using the rest of the types. In our analyses the other type questions are
not used for calculating totalscores.

1.2 Session information

version R version 4.2.1 (2022-06-23 ucrt)
os Windows 10 x64 (build 22621)
system x86_64, mingw32
ui RStudio
language (EN)
collate English_Netherlands.utf8
ctype English_Netherlands.utf8
tz Europe/Berlin
date 2023-02-08
rstudio 2022.07.2+576 Spotted Wakerobin (desktop)
pandoc NA

Table 1: R version information R Core Team, 2022
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package ondiskversion loadedversion date source
DBI H. Wickham and Müller, 2022 1.1.3 1.1.3 2022-06-18 CRAN (R 4.2.1)
devtools H. Wickham and Hester, 2022 2.4.5 2.4.5 2022-10-11 CRAN (R 4.2.2)
dplyr H. Wickham and François, 2022 1.0.10 1.0.10 2022-09-01 CRAN (R 4.2.2)
forcats H. Wickham, 2022a 0.5.2 0.5.2 2022-08-19 CRAN (R 4.2.2)
ggplot2 H. Wickham and Chang, 2022 3.3.6 3.3.6 2022-05-03 CRAN (R 4.2.1)
plyr H. Wickham, 2022b 1.8.7 1.8.7 2022-03-24 CRAN (R 4.2.1)
purrr Henry and Wickham, 2022a 0.3.5 0.3.5 2022-10-06 CRAN (R 4.2.1)
readr H. Wickham et al., 2022 2.1.3 2.1.3 2022-10-01 CRAN (R 4.2.2)
rlang Henry and Wickham, 2022b 1.0.6 1.0.6 2022-09-24 CRAN (R 4.2.1)
RMySQL Ooms and James, 2021 0.10.23 0.10.23 2021-12-14 CRAN (R 4.2.1)
stringr H. Wickham, 2022c 1.4.1 1.4.1 2022-08-20 CRAN (R 4.2.1)
tibble Müller and Wickham, 2022 3.1.8 3.1.8 2022-07-22 CRAN (R 4.2.1)
tidyr H. Wickham and Girlich, 2022 1.2.1 1.2.1 2022-09-08 CRAN (R 4.2.1)
tidyverse H. Wickham, 2022d 1.3.2 1.3.2 2022-07-18 CRAN (R 4.2.2)
usethis H. Wickham and Bryan, 2022 2.1.6 2.1.6 2022-05-25 CRAN (R 4.2.2)
xtable Dahl and Scott, 2019 1.8.4 1.8-4 2019-04-21 CRAN (R 4.2.2)

Table 2: R package information, as used for the data exploration

1.3 R code for the plots within the data exploration

###################################################### DATA EXPLORATION ###########################################
library(DBI)
library(RMySQL)
library(rlang)
library(tidyverse)
library(plyr)
library(tidyr)
library(ggplot2)
library(ggExtra)
library(plotly)
library(gapminder)
library(reshape2)
library(rjson)
library(ltm)
library(rlist)
library(svMisc)
library(dexter)
library(digest)
library(knitr)
library(here)
library(xtable)
library(devtools)
library(lubridate)
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library(mirt)
library(data.table)

#load password under pass var
source("somewhere I keep my passwords")

#load in the mariadb
con <- dbConnect(RMariaDB::MariaDB(), "UUtests2", password = pass, user = "root")

#load in the data from the Mysql database
vspr<- dbSendQuery(con,"SELECT

sequence_index as 'Vraag nr.',
item_result.recipe_id as 'Toets ID',
item_result.id as 'Antwoord ID',
item_result.result_id as 'Result ID',
item_result.item_identifier as 'Vraag+versie ID',
item_result.section_id as 'sectionID',
item_result.user_id as 'User ID',
datestamp as 'Datum/tijd laatste aanpassing kandidaat',
duration as 'Hoe lang is de kandidaat bezig met vraag',
completion_status as 'Antwoord-status', # Kan zijn: completed, not_attempted, unknown, incomplete
CAST(JSON_VALUE(metadata, '$.guess_score') AS float) as 'Raadscore',
score, # Som van de item_result_variable scores
item_result.max_score as 'Maximum score', # wat is het mx aantal punten wat je kan halen
passed as 'Heb je hem 100% correct ja/nee',
weight as 'Gewicht',
check_manually as 'Moet handmatig nagekeken worden',
dontknow as 'Kandidaat heeft aangegeven het antwoord niet te weten',
assessmentitem_cache.xml as 'QTI XML',
assessmentitem_cache.metadata as 'Overige metadata', # zit ook vraagtypen in verborgen
JSON_VALUE(metadata, \"$.type\") as 'typevraag',
JSON_VALUE(metadata, \"$.qtidata.RESPONSE-1\") as 'meerineen',
item_result.recipe_id

FROM `item_result`
INNER JOIN assessmentitem_cache ON (item_result.item_identifier = assessmentitem_cache.item_identifier)

WHERE
`assessmentitem_cache`.`metadata` NOT LIKE '%RESPONSE-1%' AND (JSON_VALUE(metadata, \"$.type\") IN (\"choice\", \"extended_text\", \"inline_choice\"))
#AND (item_result.recipe_id IN (14899,16378,23707,27897,28947,30069,35130,35635,36365,52103))

#GROUP BY
# assessmentitem_cache.item_identifier

#LIMIT 10000
; ")

vragenenscoresperresultaat <-dbFetch(vspr)

#make a copy before we adjust anything
savedset = vragenenscoresperresultaat
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# filter out statusses that do not yield accurate scores
vragenenscoresperresultaat = subset(vragenenscoresperresultaat, vragenenscoresperresultaat$`Antwoord-status` != 'unknown')
vragenenscoresperresultaat = subset(vragenenscoresperresultaat, is.na(vragenenscoresperresultaat$sectionID))

#replace inline_choice for choice, this is correct because within the sequel query we already filter out all inline choice questions that are not like multiple choice questions
vragenenscoresperresultaat$typevraag[vragenenscoresperresultaat$typevraag == "inline_choice"] = "choice"

#show type distribution
typedistribution = vragenenscoresperresultaat %>% dplyr::count(vragenenscoresperresultaat$typevraag)

#addtotalscorecandidate and totalscoretest for each answer for both types
vragenenscoresperresultaatplustotaal = vragenenscoresperresultaat %>% group_by(`Toets ID`, `Result ID`, `User ID`) %>% add_tally(score, name = "totalscorecandidate") %>% add_tally(`Maximum score`, name = "totalscoretest") %>% ungroup()
vragenenscoresperresultaatplustotaalchoice = vragenenscoresperresultaatplustotaal %>% group_by(`Toets ID`, `Result ID`, `User ID`, `typevraag`)%>% filter(typevraag == "choice") %>% add_tally(`Maximum score`, name = "maxmpscore")
vragenenscoresperresultaatplustotaaltext = vragenenscoresperresultaatplustotaal %>% group_by(`Toets ID`, `Result ID`, `User ID`)%>% filter(typevraag == "extended_text") %>% add_tally(`Maximum score`, name = "maxtextscore")

#add the two types back together
vragenenscoresperresultaatplustotaal = rbind(vragenenscoresperresultaatplustotaalchoice, vragenenscoresperresultaatplustotaaltext)

#calculate typescores
mettype = vragenenscoresperresultaatplustotaal %>% group_by(`Toets ID`, `Result ID`, `User ID`, `typevraag`) %>% add_tally(score, name = "typescore") %>% ungroup()

#drop all entries that are the same so one typescore and total score row per examinee per tests stays
mettype <- mettype %>%

distinct(`Toets ID`, `Result ID`, `User ID`,`typevraag`, .keep_all = TRUE)

#pivot results into one row
lijstvantype = mettype %>% pivot_wider(id_cols = `Result ID` ,names_from= typevraag, values_from = typescore)%>% dplyr::select(c(`Result ID`, `choice`, `extended_text`))

#filter out all of the tests that do not have two types of answers
typeABscatter = lijstvantype %>% filter(!is.na(lijstvantype$choice))%>% na.omit() %>% mutate(totalscore = choice + extended_text)

#keep one row per test

selection2 = mettype %>% dplyr::select(`Result ID`, `Toets ID`, `totalscoretest`, `maxmpscore`, `maxtextscore`, `totalscorecandidate`, `totalscoretest`) %>% group_by(`Result ID`, `Toets ID`)%>% distinct() %>% ungroup()

#add pre existing variables backm such as max scores and totalscores
typeABscatter = left_join(typeABscatter, selection2, by= "Result ID")

#again filter out all tests that do not have two different types of questions
typeABscattertypeA =typeABscatter %>% filter(!is.na(maxtextscore)) %>% dplyr::select(-maxmpscore)
typeABscattertypeB =typeABscatter %>% filter(!is.na(maxmpscore)) %>% dplyr::select(`Result ID`,maxmpscore)

typeABscatter = inner_join(typeABscattertypeA, typeABscattertypeB, by = "Result ID")

#calc freq tables for both users and tests
answerspertest = vragenenscoresperresultaat %>% group_by(`Toets ID`) %>% dplyr::summarize(Freq=n())
answerspertestperuser = vragenenscoresperresultaat %>% group_by(`Toets ID`, `User ID`) %>% dplyr::summarize(Freq=n())

#filter out tests with a lower score than 2 because they cant tell us much about balance
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typeABscatter = typeABscatter%>% filter(totalscore >2)

#add percentages
typeABscatter = typeABscatter %>% mutate(percentagetextscore = extended_text / totalscore)
typeABscatter = typeABscatter %>% mutate(percentagempscore = choice / totalscore)
#typeABscatter = typeABscatter %>% mutate(percentageotherscore = otherscore / totalscore)
#add normalized versions relative to each scoretype
typeABscatter = typeABscatter %>% mutate(normextended_text = extended_text/maxtextscore)
typeABscatter = typeABscatter %>% mutate(normchoice = choice/maxmpscore)
#typeABscatter = typeABscatter %>% mutate(normotherscore = otherscore / mean(otherscore))

#add normalized versions relative to each test
typeABscatter = typeABscatter %>% mutate(normextended_texttest = extended_text/totalscoretest)
typeABscatter = typeABscatter %>% mutate(normchoicetest = choice/totalscoretest)
typeABscatter = round(typeABscatter, digits = 3)

#here we use a predifined saver function to save the ggplots with a date
saver = function(name, ggplotje, width = 7)
{

# add date to snure we backup automatically on system
ggsave(filename = paste0(format(format(Sys.time(), "%m%d_%H%M")) , name), path = "somewhere", plot = ggplotje, width = width)

# export VERSION SAVE NODATE

}

#create all scatter and hexbin plots and save them
saver("typeecdf.png",ggplot(typeABscatter) + stat_ecdf(aes(x = choice, colour = "Multiple choice"), geom="step",pad = FALSE, show.legend = TRUE) +ylab("Density")+ xlab("Subscore")+ stat_ecdf(aes(x = extended_text, color = "Extended text"), geom="step",pad = FALSE, show.legend = TRUE) + scale_colour_manual("",breaks = c("Multiple choice", "Extended text"),values = c("Multiple choice" = "darkred", "Extended text"= "steelblue")))

saver("typedensity.png",ggplot(typeABscatter) + stat_density(aes(x = choice, colour = "Multiple choice"), geom="line", show.legend = TRUE) +ylab("Proportion")+stat_density(aes(x = extended_text, color = "Extended text"), geom="line", show.legend = TRUE)+xlab("Subscore") + scale_colour_manual("",
breaks = c("Multiple choice", "Extended text"),
values = c("Multiple choice" = "darkred", "Extended text"= "steelblue")))

p1 = ggExtra::ggMarginal(ggplot(typeABscatter, aes(x = choice, y = extended_text)) + geom_point(alpha = 0.1) + geom_smooth(method="lm"), type = "densigram", size = 5, colour = '#FF0000', fill = '#FFA500')
saver("scatterrugtypeunnormnolimit.png", p1)

p2 = ggExtra::ggMarginal(ggplot(typeABscatter, aes(x = choice, y = extended_text)) + geom_point(alpha = 0.1) +ylim(0,60) + xlim(0,60) + geom_smooth(method="lm"), type = "densigram", size = 5, colour = '#FF0000', fill = '#FFA500')
saver("scatterrugtypeunnorm60limit.png", p2)

p3 = ggExtra::ggMarginal(ggplot(typeABscatter, aes(x = choice, y = extended_text)) + geom_point(alpha = 0.1) +ylim(0,35) + xlim(0,35) + geom_smooth(method="lm"), type = "densigram", size = 5, colour = '#FF0000', fill = '#FFA500')
saver("scatterrugtypeunnormzoomin.png", p3)

p4 = ggExtra::ggMarginal(ggplot(typeABscatter, aes(x = choice, y = extended_text)) + stat_binhex(alpha = 0.6) +theme(legend.position="left") +scale_fill_gradientn(colours = c("transparent","red"))+ geom_point(alpha = 0), type = "densigram", size = 5, colour = '#FF0000', fill = '#FFA500')
saver("binhexnozoom.png",p4)

p5 = ggExtra::ggMarginal(ggplot(typeABscatter, aes(x = choice, y = extended_text)) +ylim(0,60) + xlim(0,60) + stat_binhex(alpha = 0.6) +theme(legend.position="left") +scale_fill_gradientn(colours = c("transparent","red"))+ geom_point(alpha = 0), type = "densigram", size = 5, colour = '#FF0000', fill = '#FFA500')
saver("binhexzoomout.png",p5)

p6 = ggExtra::ggMarginal(ggplot(typeABscatter, aes(x = choice, y = extended_text)) +ylim(0,35) + xlim(0,35) + stat_binhex(alpha = 0.6) +theme(legend.position="left") +scale_fill_gradientn(colours = c("transparent","red"))+ geom_point(alpha = 0), type = "densigram", size = 5, colour = '#FF0000', fill = '#FFA500')
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saver("binhexzoomin.png",p6)

#normalized on totaltypescorepertest

p7 = ggExtra::ggMarginal(ggplot(typeABscatter, aes(x = normchoice, y = normextended_text)) + geom_point(alpha = 0.1) +ylim(0,1) + xlim(0,1) + geom_smooth(method="lm"), type = "densigram", size = 5, colour = '#FF0000', fill = '#FFA500')

saver("normescatter.png", p7) #ggplot(typeABscatter, aes(x = normchoice, y = normextended_text)) + geom_point() +ylim(0,1) + xlim(0,1) + geom_smooth(method="lm"))

p8 = ggExtra::ggMarginal(ggplot(typeABscatter, aes(x = normchoice, y = normextended_text)) +ylim(0,1) + xlim(0,1) + stat_binhex(alpha = 0.6) +theme(legend.position="left") +scale_fill_gradientn(colours = c("transparent","red")) + geom_smooth(method="lm") + geom_point(alpha = 0), type = "densigram", size = 5, colour = '#FF0000', fill = '#FFA500')

saver("normhexbin.png",p8) #ggplot(typeABscatter, aes(x = normchoice, y = normextended_text)) +ylim(0,1) + xlim(0,1) + stat_binhex(alpha = 0.6) +theme(legend.position="left") +scale_fill_gradientn(colours = c("transparent","red")) + geom_smooth(method="lm"))

saver("normbin.png",ggplot(typeABscatter, aes(x = normchoice, y = normextended_text)) +ylim(0,1) + xlim(0,1) + geom_bin2d() + geom_smooth(method="lm"))

#normalized on total score per test

#percentage of totalscore on totalscore
saver("testnormescatter.png",ggplot(typeABscatter, aes(x = normchoicetest, y = normextended_texttest)) + geom_point() +ylim(0,1) + xlim(0,1) + geom_smooth(method="lm"))

saver("testnormhexbin.png",ggplot(typeABscatter, aes(x = normchoicetest, y = normextended_texttest)) +ylim(0,1) + xlim(0,1) + stat_binhex(alpha = 0.6) +theme(legend.position="left") +scale_fill_gradientn(colours = c("transparent","red")) + geom_smooth(method="lm"))

# #normalized
ggplot(typeABscatter, aes(x = normchoice, y = normextended_text)) + geom_point() + geom_smooth(method="lm")

ggplot(typeABscatter, aes(x = percentagempscore, y = percentagetextscore)) + geom_point() +ylim(0,1) + xlim(0,1) + geom_smooth(method="lm") + geom_rug()

###################################plot size of types of questions per question(small) ###############################

#load in the question types and question identifiers
vragenplustype = dbSendQuery(con, "SELECT * from `vragenplustypenn`;")
vragenplustypes = dbFetch(vragenplustype)

#frequency table of types
freqtableoftypes = vragenplustypes %>% dplyr::count(QuestionType)
totaal = sum(freqtableoftypes$n)
freqtableoftypes = freqtableoftypes %>% mutate(percentage = round(n/totaal, digits = 3))

#plotting the frequency table for questions
c4 = c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K")
saver("questiontypes.png",ggplot(freqtableoftypes, aes(x=as.character(`QuestionType`), y=`n`, fill = c4, label = `percentage` )) +
geom_bar(stat = "identity", width = 0.8) +
theme(legend.position="none")+
ylab("Number of questions")+
xlab("Type of questions")+
geom_text(nudge_y= -.01,
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color="Black",
size = 4,
vjust = -0.3,
fontface="bold"),11)

#plot size of types of questions for answers(big) -> meaning actual filled in question results
freqtableoftypes = vragenenscoresperresultaat %>% dplyr::count(typevraag)
totaal = sum(freqtableoftypes$n)
freqtableoftypes = freqtableoftypes %>% mutate(percentage = round(n/totaal, digits = 3))
c4 = c("A", "B")
saver("answertypes.png", ggplot(freqtableoftypes, aes(x=as.character(`typevraag`), y=`n`, fill = c4, label = `percentage` )) +

geom_bar(stat = "identity", width = 0.6) +
#scale_fill_brewer(palette = "Set1") +
theme(legend.position="none")+
ylab("Number of questions")+
xlab("Type of questions")+
scale_y_continuous(labels = scales::comma)+
geom_text(nudge_y= -.01,

color="Black",
size = 4,
vjust = -0.3,
fontface="bold"))

svrdyvragen = vragenenscoresperresultaatplustotaal%>% filter(as.character(Datelastchanged) != "-001-11-30 UTC")

#add as month
vragenenscoresperresultaatplustotaal = vragenenscoresperresultaatplustotaal%>% mutate(Year = as.integer(format(as.Date(`Datum/tijd laatste aanpassing kandidaat`), "%Y" )), Month =as.integer(format(as.Date(`Datum/tijd laatste aanpassing kandidaat`), "%m")))
vragenenscoresperresultaatplustotaal = vragenenscoresperresultaatplustotaal %>% filter(Year != -1)
print(xtable(summary(dplyr::select(vragenenscoresperresultaatplustotaal, c("Hoe lang is de kandidaat bezig met vraag","Raadscore", "score", "Heb je hem 100% correct ja/nee","Gewicht" ,"totalscoretest","Year","Month", "Maximum score")), type = "latex", size = "small")))

# plot histogram of occurrences per year
saver("testsperyear.png",ggplot(vragenenscoresperresultaatplustotaal, aes(x=Year)) +

geom_histogram(binwidth=.5, colour="black", fill="steelblue") +
scale_y_continuous(labels = scales::comma) )

library(scales)
saver("testspermonth.png",ggplot(vragenenscoresperresultaatplustotaal, aes(x=Month)) +

geom_histogram(binwidth=.5, colour="black", fill="steelblue") +
scale_x_continuous(n.breaks = 12) + ylab("Number of answers given"))

#score per month
vragenenscoresperresultaatplustotaal = vragenenscoresperresultaatplustotaal %>% mutate(normscore = case_when(score == 0 ~ 0,

score !=0 ~score/`Maximum score`))

meanscorepermonth = vragenenscoresperresultaatplustotaal %>% group_by(Month) %>% summarise_at(vars(normscore), list(name = mean))

saver("meanscorepermonth.png",ggplot(meanscorepermonth, aes(x=Month, y = name)) +
geom_bar(stat = "identity", colour="black", fill="steelblue") + ylab("Mean score") + geom_smooth(method="lm"))

59



Appendix

#score per year
meanscoreperyear = vragenenscoresperresultaatplustotaal %>% group_by(Year) %>% summarise_at(vars(normscore), list(name = mean))

saver("meanscoreperyear.png",ggplot(meanscoreperyear, aes(Year, y = name, label = round(`name`,3))) +
geom_bar(stat = "identity", colour="black", fill="steelblue") + ylab("Mean score") + geom_smooth(method="lm")+
geom_text(nudge_y= -.01,

color="Black",
size = 4,
vjust = -0.3,
fontface="bold"),11)

#create list of all tests
lijstvantoetsen <- as.data.frame(table(vragenenscoresperresultaat$`Toets ID`))
lijstvantoetsen <- as.data.frame(table(vragenenscoresperresultaat$`Toets ID`))
Answerspertestplot = ggplot(lijstvantoetsen, aes(Freq)) + geom_histogram()
print(Answerspertestplot)

#delete the max value because it was a corona questionaire and not a test
flijstvantoetsen = filter(lijstvantoetsen, `Var1` !=13375)

#ecdfplot from tests on amount of results per tests
ecdfplot = ggplot(data=flijstvantoetsen, mapping = aes(x=Freq))+stat_ecdf(geom = 'step')

2 Methods

2.1 MySQL code

CREATE TABLE filteredanswers SELECT

sequence_index,
item_result.recipe_id,
item_result.id,
item_result.result_id,
item_result.item_identifier,
item_result.section_id,
item_result.user_id,
datestamp,
item_result.duration,
completion_status, # Possible values: completed, not_attempted, unknown, incomplete
CAST(JSON_VALUE(metadata, '$.guess_score') AS float) as 'GuessScore',
item_result.score, # Sum of item result variable scores
item_result.max_score, # Max score possible on question
passed,
weight,
check_manually,
dontknow,
item_type,
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item_result.recipe_id,
COALESCE(item_result_variable.value_float, item_result_variable.value_int,
item_result_variable.value_string, item_result_variable.value_text) as 'interaction
answer', #Because answers are stored in a different table, we need to gather the answers
from this table, making this part of the query a bit hard to read.

↪→

↪→

JSON_VALUE(metadata, '$.responseDeclarations.RESPONSE.cardinality') AS cardinality,
result.recipe_type AS ExamType,
studievakken.code,
studievakken.name

FROM `item_result`
INNER JOIN assessmentitem_cache ON (item_result.item_identifier =
assessmentitem_cache.item_identifier AND item_type IN ('extended_text','choice',
'inline_choice' )) # IUnline choice is acceptable when there is only one inline choice
element.

↪→

↪→

↪→

LEFT JOIN item_result_variable ON (item_result_variable.item_result_id = item_result.id
AND item_result_variable.type = 'response')↪→

LEFT JOIN result ON (item_result.recipe_id = result.recipe_id)
LEFT JOIN studievakken ON (item_result.recipe_id = studievakken.recipe_id)

WHERE # Here, we filter out any answers which have not been completed, any answers on tests
that have sectioning and any question which consists of multiple elements.↪→

completion_status != 'unknown' AND item_result.section_id IS NULL AND JSON_VALUE(metadata,
'$.responseDeclarations.RESPONSE.cardinality') != 'multiple'↪→

;

3 Results

3.1 R code for the plots within the results

library(DBI)
library(RMySQL)
library(rlang)
library(tidyverse)
library(plyr)
library(tidyr)
library(ggplot2)
library(ggExtra)
library(plotly)
library(gapminder)
library(reshape2)
library(rjson)
library(ltm)
library(rlist)
library(svMisc)
library(dexter)
library(digest)
library(knitr)
library(here)
library(xtable)
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library(devtools)
library(lubridate)
library(mirt)
library(data.table)

#load password under pass var
source("somewhere I keep my passwords")

#load in the mariadb
con <- dbConnect(RMariaDB::MariaDB(), "UUtests2", password = pass, user = "root")

#import the saved mysql table of all question answers
getkeys = dbSendQuery(con,"SELECT * from `filteredanswers`")
keys = dbFetch(getkeys)

#import the userlanguages per userid
getuserlanguage =dbSendQuery(con, "SELECT

user.`language`,
user.id

from `user`")
userlanguage = dbFetch(getuserlanguage)

#filter out only completed statusses as the rest likely wont have a score
keys2 = keys %>% filter(CompletionStatus == "completed")

#add a column containing the faculty
keys2 = keys2%>% mutate(faculty = str_split(studycode, "\\-| |\\_", simplify = TRUE)[,1])

#save a copy
keystobedistributed = keys

#add weighted scores
keys2 = keys2 %>% mutate(Wscore = Weight * score)
keys2 = rename(keys2, "item_id" = QID, "item_score" = Wscore)

#create scores as answers for all text based questions to prepare for dexter
keyswithanswers = keys2 %>%
mutate(response = case_when(QuestionType == "choice" | QuestionType == "inline_choice" ~

`interaction answer`,↪→

QuestionType == "extended_text" ~ as.character(`item_score`)))

#filter out what we need for dexter for the rules
keyrules = keyswithanswers %>% group_by(item_id) %>% distinct(response, .keep_all = TRUE)%>%

dplyr::select(item_id, response, item_score)↪→

#make integers from all of the scores as they were int64 which dexter did not support (I think
it does now)↪→

keyrules$item_score = as.integer(keyrules$item_score)
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#filter out all itemkeys that would cause an error within dexter
keyrules = keyrules%>% group_by(item_id) %>% filter(any(item_score == 0)) %>% ungroup()
keyrules = keyrules%>% group_by(item_id) %>% filter(n()>=2) %>% ungroup()
keyrules = keyrules%>% group_by(item_id) %>% filter(n_distinct(item_score)>=2) %>% ungroup()

#start the dexter project
db = start_new_project(keyrules,":memory:")

#create alist of all items that occur within the keys
filteredbyrulesanswers = semi_join(keyswithanswers,keyrules, by = "item_id")

#add weightedscore
filteredbyrulesanswers = filteredbyrulesanswers %>% mutate(Wscore = Weight*score)

#add language for DIF
filteredbyrulesanswers = inner_join(filteredbyrulesanswers, rename(userlanguage, UserID =

"id"), by = "UserID")↪→

#change inline choice to choice type because we filtered all inline choice that are actually
multiple choice types out earlier↪→

filteredbyrulesanswers$QuestionType[filteredbyrulesanswers$QuestionType == "inline_choice"] =
"choice"↪→

#filter distinct values
filtrba = filteredbyrulesanswers %>% dplyr::select(UserID, TestID, item_id, response) %>%

rename("person_id" = UserID, "booklet_id" = TestID) %>% distinct(person_id, booklet_id,
item_id, .keep_all = TRUE)

↪→

↪→

#create a design, a dataframe that has sets of items and which booklet they belong to
design_data = filtrba %>% group_by(booklet_id) %>% distinct(item_id) %>%

dplyr::select(booklet_id, item_id)↪→

#load in the repsonses into dexter
add_response_data(db, filtrba, design = design_data, auto_add_unknown_rules = TRUE)

#create a dataframe containing for every item what type of item it is
typeofquestion = keyswithanswers %>% dplyr::select(item_id, QuestionType) %>% distinct()
typeofquestion$QuestionType[typeofquestion$QuestionType == "inline_choice"] = "choice"

#add the type per question to dexter
add_item_properties(db, item_properties = typeofquestion, default_values = NULL)

#rename the languageproperties for language and create a dataframe that has for each person
their preffered language↪→

personproperties = filteredbyrulesanswers %>% dplyr::select(UserID, language) %>%
rename("person_id" = UserID) %>% distinct()↪→

personproperties$language[personproperties$language == "nl-NL"] = "dutch"
personproperties$language[personproperties$language == "en-US"] = "english"
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#add these person properties to dexter
add_person_properties(db, personproperties)

#add info dfs for debugging
bookletsinfo = get_booklets(db)
itemsinfo = get_items(db)

#show how many tests there are per faculty
facultycounts = filteredbyrulesanswers %>% group_by(faculty)

%>%summarise(Numberoffacultyresults = count(ResultID))↪→

############################################## T Test ################################
#filter out what we want and split based on faculty and type
pairedttestonfacultyvstype = filteredbyrulesanswers %>% mutate(weightedpercentagescore =

(score/MaxScore)) %>% split(filteredbyrulesanswers$faculty)↪→

#create a function that takes a faculty and returns a typed welch t-test
pairttester = function(facultydf)
{
t.test(weightedpercentagescore ~ QuestionType, data = facultydf)

}

#run for all faculties
test = lapply(pairedttestonfacultyvstype,pairttester)

#access the returned list
templist = lapply(test, function(x) x[["p.value"]] )
ttestdf = as.data.frame(s)

#print results to a latex table
print(xtable(ttestdf, type = "latex"))

####################### MEAN SCORE ###############################

#create meanscores per faculties that we will examine
meanscoresperfaculty = filteredbyrulesanswers %>% mutate(weightedpercentagescore =

(score/MaxScore)) %>%↪→

group_by(faculty, QuestionType) %>%summarise(meanscore =
mean(weightedpercentagescore),.groups = "keep") %>%↪→

filter(!(faculty %in% c("[REDACTED]")))%>% group_by(faculty, QuestionType)%>%
arrange(desc(meanscore),.by_group=TRUE) %>% #%>% pivot_wider(names_from = QuestionType,
values_from = meanscore)

↪→

↪→

group_by(QuestionType) %>% arrange(desc(meanscore), .by_group = TRUE) %>%ungroup() %>%
mutate(rownr = as.factor(row_number()))↪→

#set the factor so the plot will be ordered
meanscoresperfaculty = meanscoresperfaculty %>% mutate(faculties = factor(faculty, levels =

faculty))↪→
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library(forcats)
meanscoresperfaculty = meanscoresperfaculty %>% mutate(name = fct_reorder(faculty,

desc(rownr)))↪→

#create plot for mean score per factulty
orderedmeanscore = ggplot(meanscoresperfaculty, aes(x = rownr, y = meanscore, fill =

QuestionType)) +↪→

geom_bar(stat = "identity", position = "dodge") + xlab("Faculty")+ ylab("Mean score")

#save using same fucntion from data exploration
saver("orderedmeanscorenew.png", orderedmeanscore,width = 13)

######################### Proportional part#############################

#get all typescores and total scores for each result
alltypescores = filteredbyrulesanswers %>% group_by(ResultID) %>% summarise(textscore =

sum(Wscore[QuestionType=="extended_text"]), choicescore =
sum(Wscore[QuestionType=="choice"]), totalscore = textscore+choicescore)

↪→

↪→

#get all other background info on a test
testresultkoppel = filteredbyrulesanswers %>% dplyr::select(ResultID,TestID) %>% distinct()

#add all backgorund info to typescore and totalscores
typescoresplusinfo = inner_join(alltypescores,testresultkoppel,by ="ResultID")

#create dataframe containing all expected scores according to tests proportions
dexo = rbindlist(output)
dexo$booklet_id = as.integer(dexo$booklet_id)
dexo = pivot_wider(dexo,names_from = questiontype, values_from = expected_domain_score)%>%

rename(maxchoice = "choice", maxtext = "extended_text")↪→

#get all max scores according to DEXTER
maxscooresaccordingtodexter = dexo %>% group_by(booklet_id) %>% summarise_all(last)

#calculate max possible scores according to data
maxtotalscores = filteredbyrulesanswers %>% group_by(RecipeID, ResultID) %>%

summarise(maxtotalscore = sum(MaxScore), .groups = "keep") %>%↪→

ungroup()%>% group_by(RecipeID) %>% summarise(maxtotalscoreall = max(maxtotalscore))

#create typescores again
typescores = filteredbyrulesanswers %>% group_by(RecipeID, ResultID) %>% summarise(choicescore

=sum(score[QuestionType == "choice"]), textscore = sum(score[QuestionType ==
"extended_text"]), .groups = "keep") %>% ungroup() %>%

↪→

↪→

rename(booklet_id = "RecipeID")

#filter out and add proportions -> for the proportional analysis
maxtypescoreswithactual = left_join(typescores, maxscooresaccordingtodexter, by= "booklet_id")
maxtypescoreswithactual = na.omit(maxtypescoreswithactual)
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maxtypescoreswithactual = maxtypescoreswithactual %>% mutate(totalscore =
choicescore+textscore, proportionmaxtext = maxtext/booklet_score, proportionmaxchoice =
maxchoice/booklet_score, proportionchoice = choicescore/totalscore, proportiontext =
textscore/totalscore, differencechoice =
proportionmaxchoice-proportionchoice,differencetext = proportionmaxtext-proportiontext )

↪→

↪→

↪→

↪→

######################################## IRT ENORM PART ########################

#create domain, which is something used to train the ENORM model
aangepastdomain = filteredbyrulesanswers %>% group_by(TestID) %>% filter(TestID == 9556) %>%

rename(questiontype = "QuestionType")%>% ungroup() %>% dplyr::select(item_id,
questiontype) %>% distinct()

↪→

↪→

#change choice types again ;)
aangepastdomain$questiontype[aangepastdomain$questiontype == "inline_choice"] = "choice"

#check how many types per type of question
goedeverdeling = filteredbyrulesanswers %>% group_by(TestID, QuestionType) %>%

rename(questiontype = "QuestionType")%>%↪→

dplyr::select(TestID, item_id, questiontype) %>% summarise(countpertype = n())

#calculate scores per question type for each result
domainscores = filteredbyrulesanswers %>% group_by(TestID, ResultID) %>%

dplyr::summarize(choicescore = sum(Wscore[QuestionType == "choice"]), extendedtextscore =
sum(Wscore[QuestionType == "extended_text"]) ) %>% mutate(totalscore =
choicescore+extendedtextscore)

↪→

↪→

↪→

#function that goes over a test and tries to calculate ENORM, if it fails returns NULL
maakprofieldingvoortest = function(bookletid)
{tryCatch(

expr = {
print(bookletid)
enorm = fit_enorm(db, booklet_id == bookletid)
#plot(enorm)
aangepastdomain = filteredbyrulesanswers %>% group_by(TestID) %>% filter(TestID ==

bookletid) %>% rename(questiontype = "QuestionType")%>% ungroup() %>%
dplyr::select(item_id, questiontype) %>% distinct()

↪→

↪→

aangepastdomain$questiontype[aangepastdomain$questiontype == "inline_choice"] = "choice"
profielding = profile_tables(parms = enorm, domains = aangepastdomain, item_property

="questiontype")↪→

return(profielding)
},
error = function(e){
return(NULL)

})
}

#get all unique booklet id's within dexter

66



3 Results

h = unique(bookletsinfo$booklet_id)

#Fit an ENORM for all unique tests - takes about 4 hours for a little under 7000 tests (about
10 million answers)↪→

output = lapply(h, function(x) maakprofieldingvoortest(x))

#save and load results because we dont want to keep having to run this
save(output, file = "expectdag.Rdata")
load("expectdag.Rdata")

# create new list of all enorm results
lv = rbindlist(output)
lv$booklet_id = as.integer(lv$booklet_id)

#create a list containing all og
lv = pivot_wider(lv,names_from = questiontype, values_from = expected_domain_score ) %>%

rename(expectedchoicescore = "choice", expectedtextscore = "extended_text")↪→

#lv = lv %>% group_by(booklet_id,booklet_score) %>% summarise(expected_text_score =
expected_domain_score[questiontype=="extended_text"],expected_choice_score =
expected_domain_score[questiontype=="choice"] )

↪→

↪→

typescoresplusinfo = typescoresplusinfo %>% rename(booklet_score = "totalscore", booklet_id =
"TestID")↪→

#check for every test result what the expected enorm result would be
deviationprofiles = typescoresplusinfo %>% merge(lv, by = c("booklet_id", "booklet_score"))

%>%↪→

mutate(deviationchoice = choicescore - expectedchoicescore , deviationtext = textscore
-expectedtextscore )↪→

#save the rows of deviationprofiles
save(deviationprofiles, file = "deviationprofiles.Rdata")

#get studies and testids in a table
studytable = filteredbyrulesanswers %>% dplyr::select(c("faculty","ResultID")) %>% distinct()

# add studies to all results from ENORM table
deviationprofiles = merge(deviationprofiles,studytable, by = "ResultID")
deviationproffiltered = deviationprofiles %>% na.omit()

#calculate means per faculty per type
meandevperfaculty = deviationproffiltered %>% group_by(faculty) %>% summarise(meantextdev =

mean(deviationtext,na.rm=TRUE), meanchoicedev = mean(deviationchoice, na.rm=TRUE))↪→

#pivot for plotting
longermeandevperfac = meandevperfaculty %>% arrange(desc(meantextdev)) %>%

pivot_longer(!faculty, names_to = "type", values_to = "mean")↪→

library("forcats")
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#add interaction for ordering
longermeandevperfac$int = interaction(longermeandevperfac$type, longermeandevperfac$faculty)

#lock in ordering
longermeandevperfac$int = factor(longermeandevperfac$int, levels = longermeandevperfac$int)

#plot result per type
plotjedev = ggplot(longermeandevperfac, aes(x = int , y = mean, fill = type)) +
geom_bar(stat = "identity",

show.legend = TRUE) +
geom_text(aes(label = round(mean, 3),

hjust = ifelse(mean < 0, 1.5, -1),
vjust = 0.5),

size = 3) +
xlab("Faculty") +
ylab("Mean deviation profiles of choice type") +
coord_flip()

#save plot
saver("meandeviation1103.png",plotjedev, width = 17)

############################ IRT based proportional part

#create dataframe which has deviationprofiles, maxscores and achieved scores
enormplusmax = left_join(maxscoresaccordingtodexwithbookletid, deviationproffiltered, by =

"booklet_id")↪→

#calculate the proportional deviation score based on comaprison between ENORM expected score
and achieved score↪→

proprtionalirtdev = enormplusmax %>%
mutate(proportionactualtext = textscore/maxscore, proportionactualchoice =

choicescore/maxscore, proportionexpectedtext = expectedtextscore/maxscore,
proportionexpectedchoice = expectedchoicescore/maxscore,

↪→

↪→

deviationprofilechoiceprop = proportionactualchoice -proportionexpectedchoice,
deviationprofiletextprop = proportionactualtext - proportionexpectedtext↪→

)

#remove values for which no proportion oculd be calculated
proportionalwithoutna = na.omit(proprtionalirtdev)

#calculate means per faculty
meanpropdev = proportionalwithoutna %>% group_by(faculty) %>% summarise(meantextdev =

mean(deviationprofiletextprop,na.rm=TRUE), meanchoicedev =
mean(deviationprofilechoiceprop, na.rm=TRUE))

↪→

↪→

#pivot for plotting
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longermeanpropdev = meanpropdev %>% arrange(desc(meantextdev)) %>% pivot_longer(!faculty,
names_to = "type", values_to = "mean")↪→

library("forcats")

#add interaction for ordering
longermeanpropdev$int = interaction(longermeanpropdev$type, longermeanpropdev$faculty)

#lock in ordering
longermeanpropdev$int = factor(longermeanpropdev$int, levels = longermeanpropdev$int)

#plot
plotjedev = ggplot(longermeanpropdev, aes(x = int , y = mean, fill = type)) +

geom_bar(stat = "identity",
show.legend = TRUE) +

geom_text(aes(label = round(mean, 3),
hjust = ifelse(mean < 0, 1.5, -1),
vjust = 0.5),

size = 3) +
xlab("Faculty") +
ylab("Mean deviation profiles of choice type in percentages") +
coord_flip()

#save plot
saver("meandeviationprop.png",plotjedev, width = 17)

############################### DIF PART ################################

#function that tries to calculate DIF for a single test, if it fails returns NULL
maakdifcalcs = function(bookletid)
{tryCatch(

expr = {
difresult = dexter::DIF(db, person_property = "language", booklet_id==bookletid)
chi = difresult[[1]][[1]]
df = difresult[[1]][[2]]
prob = difresult[[1]][[3]]
matr = matrix(c(bookletid, chi, df,prob), nrow = 1, ncol = 4)
colnames(matr) = c("booklet_id","chi","df","p")
return(matr)

},
error = function(e){

return(NULL)
})

}

#get all unique booklet ID's
h = unique(bookletsinfo$booklet_id)
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#apply DIF function to calculate DIF for all tests
difs = lapply(h, function (x) maakdifcalcs(x))

#delete NULLS
diffies = difs %>% discard(is.null)

#make a nice and tify Dataframe
diffies = lapply(diffies, function (x) as.data.frame(x))
difchiresults = rbindlist(diffies)

#save results of DIF calcs --- This calculation took about 2 hours, so we do not want to lose
it somehow↪→

save(difchiresults, file = "difchiresults.Rdata")

#load results of DIF calcs
load("difchiresults.Rdata")

#add faculties to a df with Test ID' ,which is booklet id
testsandfaculties = filteredbyrulesanswers %>% summarise(TestID, faculty) %>% distinct() %>%

rename(booklet_id = "TestID")↪→

testsandfaculties$booklet_id = as.character(testsandfaculties$booklet_id)

#merge the table above to add faculties for each DIF analysed test
intdif = difchiresults
difandfaculty = merge(intdif,testsandfaculties, by = "booklet_id")
difandfaculty$p = as.numeric(difandfaculty$p)

#apply holm method to the resulting p values
difandfaculty$adjustedp = p.adjust(difandfaculty$p, method = "holm")

#create boxplots per faculty
difperfac = ggplot(difandfaculty, aes(x = faculty, y = p)) + # Applying ggplot

function↪→

geom_boxplot()

#save plots
saver("difperfac1103.png", difperfac, width = 11)

difperfacholm = ggplot(difandfaculty, aes(x = faculty, y = adjustedp)) + # Applying
ggplot function↪→

geom_boxplot()

#save plots corrected for holm
saver("difperfac1103.png", difperfacholm, width = 11)

# check how many we have in total
filtereddifandfaculty = difandfaculty %>% filter(adjustedp<0.05)
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