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Abstract

Motivation: Here we present Clockwork, a high-throughput bioinformatics pipeline for genotyping

CRISPR-Cas9 induced frameshift mutations in single neurons. Clockwork is part of a project that

aims to elucidate the molecular mechanisms of replication-independent mutations associated with the

mutational signature SBS5. In this project key components involved in DNA repair and mutagenesis

are mutated by CRISPR-Cas9, introducing frameshift mutations and subsequently studying its effect on

the mutational rate, pattern and load. However, the success rate of CRISPR-Cas9 is highly dependent

on the local sequence context and guide sequences, with samples frequently having no mutations.

Therefore Clockwork addresses a need for genotyping successful frameshifts, saving valuable resources

by avoiding whole genome sequencing of unedited samples. Clockwork’s efficacy is interrogated with a

proof-of-concept dataset consisting of hybrid Mus musculus and Mus spretus embryonic stem cells as

well as human retinal pigment epithelium cells.

Availability: https://github.com/Bryan-vd-Brand/

Contact: bryan.v.d.brand@gmail.com

1 Layman’s summary

In the last 10 years, sequencing of DNA has become commonplace.

Sequencing is a laboratory process used to learn the exact sequence (order)

of the four building blocks (bases) that make up the DNA, A, C, G and

T. Initiatives like the cancer genome atlas project have aggregated the

sequencing data of thousands of cancers and their patients. Such projects

represent a powerful tool for researchers to investigate the cause of cancer,

mutations (changes) in the order of the DNA. Researchers collect samples

of tissue from both the tumour and healthy cells to discern two classes

of mutations, germline and somatic mutations. Germline mutations are

mutations present from the moment you were born, present in the germline

cells, cells that form the egg and sperm. Somatic mutations arise after

your birth and are not present in all the cells of your body. Cancers often

accumulate significant amounts of somatic mutations and those mutations

are catalogued in databases like The Catalogue of Somatic Mutations in

Cancer (COSMIC). Careful analysis of the data available in COSMIC

revealed distinct patterns of mutations, generally linked to a specific

process or cancerous substance. For example the mutational signature

SBS4, found in lung tumours is known to be caused by exposure to cigarette

smoke. SBS is short for single base substitution, in this case the chemicals

in the cigarette smoke cause specific DNA mutations often swapping C’s

to A’s in the DNA sequence of lung cells.

There are many more distinct signatures that were found and for one

of them, SBS5, we hope to find the biochemical or molecular process

underlying the pattern of mutations associated with it. To do this, our

approach will be to disable genes encoding key components of DNA repair

systems. Subsequently we observe the effect of the disabled genes on the

location, type, pattern and occurrence of mutations on the DNA. However

CRISPR-Cas9, the complex used to disable the genes is not perfect, often

failing to edit the DNA.

Therefore within this project there is a need to identify cells that were

successfully mutated before sequencing all their DNA, a costly process that

would be wasted on cells without disabling mutations. Here we designed

Clockwork, a bioinformatics pipeline, in order to genotype (identify

the DNA sequence) of cells in a high-throughput manner for disabling

mutations. Clockwork relies on the sequencing of a small part of the DNA,

specifically in the gene where CRISPR-Cas9 introduces mutations and

looks for missing bases in the sequence. The absence of the bases indicates

the disabling of the component encoded by the gene and subsequently

all these results are compiled into graphs for inspection and ease of use.

Since the sequencing of a small part of the DNA for genotyping is cheap

compared to the sequencing of all the DNA in a sample, Clockwork saves

significant resources sequencing samples without disabling mutations.
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2 Introduction

Recent advances in next generation sequencing (NGS) has led to the

proliferation of sequencing data across many fields of study. Due to

initiatives like the cancer genome atlas (TCGA) project, the molecular

characterizations of thousands of cancers and matched normal samples

have been aggregated in large databases (Chang et al., 2013). Furthermore

the collaboration between the TCGA and the international cancer genome

consortium (ICGC) led to the Pan-Cancer Analysis of Whole Genomes

(PCAWG) project containing whole genome sequencing of over 2600

primary cancers and their matching normal tissue for 38 distinct tumour

types (Campbell et al., 2020). By collecting both primary cancer and

matching normal tissue, somatic DNA mutations can be discerned

from germline mutations. The Catalogue of Somatic Mutations In

Cancer (COSMIC) (Tate et al., 2018), carefully analysed the somatic

mutations in the PCAWG dataset aiming to categorise and quantify

unique combinations of somatic mutations dubbed COSMIC - Mutational

Signatures. Four classes of variants are studied in the COSMIC-MS

dataset. Single Base Substitutions (SBS) defined as the replacement of

a certain nucleotide base. Double Base Substitutions (DBS) are defined

as the replacement of two consecutive nucleotide bases. Small Insertions

and Deletions (ID) defined as the incorporation or loss of nucleotides

and Copy Number Variations (CN) defined as the gain or loss of large

segments of the genome as well as the loss-of-heterozygosity, total copy

number and segment length. In general, mutational signatures are linked

to mutagenic processes. By estimating the relative contribution of known

exogenous or endogenous mutagenic processes to discovered signatures

in individual cancer genomes, associations can be found. For example,

SBS4 found in lung tumours and SBS7 found in melanoma are caused by

exposure to cigarette smoke and UV radiation, respectively. SBS1 is an

example of a endogenous mutagenic process, associated with the with the

deamination of 5-methylcytosine to thymine; failure to repair the resultant

G:T mismatch results in T to C substitutions upon DNA replication(Nik-

Zainal et al., 2012). However, the molecular mechanisms driving many of

the mutational signatures still remains unknown.

Two SBS signatures are of special interest, the aforementioned SBS1

and SBS5. For these signatures, the number of mutations associated with

them increases over time and is correlated to the age of the patient across

a broad range of cancer types (Alexandrov et al., 2015). This correlation

has led to naming SBS1 and SBS5 as “clock-like” mutational signatures.

However, the rate of SBS1 does not correlate with SBS5, indicating

different biological processes drive their mutation rates (Alexandrov et al.,

2015). Recently, single-cell whole genome sequencing of 161 postmitotic

single neurons from the prefrontal cortex of 15 individuals showed SBS5

as one of three dominant mutational signatures (Lodato et al., 2018; Bae

et al., 2022). Surprisingly, the number of SBS5 mutations continues

to increase over time even in post-mitotic cells. During replication,

replication coupled repair mechanisms such as interstrand crosslink repair,

double-strand break repair and mismatch repair work to address replication

stress caused by DNA damage (Chatterjee and Walker, 2017; Cortez,

2019). However these repair mechanisms are not perfect, occasionally

transforming DNA damage encountered during replication into DNA

mutations. Since SBS5 arises in a postmitotic neuron this challenges

the aforementioned mutagenesis dogma, as the mutations have arisen

independently of replication.

The overall aim of the project is to elucidate the molecular mechanism

of replication-independent SBS5 mutations. To do this, we will study

mutagenesis in non-dividing (i.e. post-mitotic) cells to focus the analysis

on replication-independent sources of mutation and exclude mutations

introduced by replication-coupled mutagenesis (e.g. polymerase errors).

Our approach will be to inactivate genes encoding key components

involved in DNA repair and mutagenesis, and subsequently study its

effect on the mutational burden, rate and pattern of the single neurons.

Knockouts will be generated by applying CRISPR-Cas9 to post-mitotic

neurons; edited neurons will be subsequently incubated for a period

of up to 6 months. Finally, the single cell genomes are amplified

using Primary Template-directed Amplification (PTA, Gonzalez et al.

(2021)) and sequenced for mutational signature analysis. By combining a

systematic dissection of DNA repair pathways and single-cell sequencing,

we hope to elucidate the aetiology of SBS5 mutations.

Within this project, there is a need for genotyping the single neurons

to identify cells with successful frameshifts introduced by CRISPR-Cas9,

to avoid whole genome sequencing of samples with in-frame mutations or

unedited cells. The success rate of CRISPR-Cas9 is highly dependent

on the local sequence context and guide sequence and a significant

portion of cells can be unedited (Canver et al., 2017). Following whole-

genome amplification by PTA, single neurons will be screened by PCR

amplification using primers targeting the CRISPR-Cas9 cut locus and

subsequent sequencing of this amplicon. Here we design Clockwork,

a bioinformatics pipeline, in order to determine the genotype of single

cells in a high-throughput manner identifying cells carrying frame-shift

mutations. Alignment of sequencing reads is performed using CRISPResso

(Clement et al., 2019), improving alignment of insertions and deletions by

preferentially aligning them in the region defined by the CRISPR-Cas9

guide sequence. Clockwork is interrogated with a proof of concept dataset

consisting of human retinal pigment epithelium cells (RPE-1) as well as

hybrid Mus musculus and Mus spretus embryonic stem cells (ESCs).
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Fig. 1: Graphical representation of the PCR amplification for the human

RPE-1 cells and the mouse ES cells. PCR was performed in two steps,

the product of the first amplification reaction is used as the template for

the second PCR, which is primed by reverse2 that is placed internal to the

reverse1.

3 Results

3.1 Proof of concept dataset

Currently, wet lab efforts to transduce and incubate neurons for an

extended period of time are ongoing. In order to verify the efficacy of

Clockwork, two proof-of-concept datasets are applied. Human retinal

pigment epithelium (RPE-1) cells as well as hybrid Mus musculus and

Mus spretus embryonic stem cells (ESCs) were transiently transfected

with Cas9 and small guide RNA (sgRNA) sequences targeting two genes

of interest. 48 hours later the cells were FACS sorted, isolating GFP+

transfected cells. In RPE-1 cells, REV7 was targeted, encoding a subunit

of polymerase zeta involved in translesion synthesis and microhomology

mediated break-repair (Martin and Wood, 2019a). In ESCs Msh2 was

inactivated, which encodes the MSH2 protein, involved in mismatch

repair (MMR) and interstrand crosslink repair (ICL) (Edelbrock et al.,

2013). Two 96-well plates containing single-cell derived clones of the

aforementioned cell lines were PCR amplified. The PCR was performed

in two steps, first targeting the loci of interest then a subsequent nested

PCR adding 96 barcodes (Fig.1). Subsequent sequencing of the pooled

PCR products (Fig.2) provides a representative dataset for interrogating

Clockwork’s function of detecting frameshifts introduced by CRISPR-

Cas9 in 96 samples.

3.2 Clockwork’s Pipeline

Clockwork’s configuration allows for flexibly setting the various

definitions and parameters required for analysis. The reference sequence,

one for each allele, encompassing the locus of interest for the sample

can be set in a fasta formatted file. The guide- and coding- sequences

corresponding to that reference can be set in an accompanying file. To

allow for multiplexed sequencing of samples, barcodes can be set. Lastly,

setting the type of analysis restricts Clockwork to using the paired, forward

or reverse reads in the sample. Adapting Clockwork for any locus of interest

requires only a change in the aforementioned configuration, allowing for

automation of genotyping CRISPR-Cas9 knockouts in wet-lab workflows.

With the configuration set, Clockwork automatically executes the

various components of the pipeline. Before processing samples are

checked for quality by FastQ and MultiQC (Ewels et al., 2016). Reads

are demultiplexed into separate samples. Adapters, barcodes and bad

Fig. 2: Top, Gel electrophoresis of the PCR amplification product targeting

the gene REV7 in clonal human RPE-1 cells. Of note samples B4 and

C8 do not have a clear band. Bottom, Gel electrophoresis of the PCR

amplification product targeting the gene Msh2 in hybrid mouse ESCs.

quality bases are trimmed from the reads by cutAdapt (Martin, 2011).

CRISPResso2 aligns the reads using an implementation of Gotoh’s

affine gap alignment algorithm (Gotoh, 1982) that contains an additional

parameter, the gap incentive vector. By use of this vector insertions and

deletions are preferentially aligned at the CRISPR-Cas9 cut site, improving

the accuracy of indel alignments and the genotyping of frameshifts. The

various output files and tables of CRISPResso2 are processed by Python’s
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pandas, quantifying samples as frameshift, in-frame or no modification.

Lastly a graphical report for each sample (Fig.3), a visualisation of

genotypes in 96-well plate format (Fig.4) and various plots are generated.

Fig.3A’s barplot gives an indication of alignment efficiency against the

reference genome. Fig.3B’s piechart shows the percentage of reads

modified or unedited for each allele. Fig.3C’s Piechart quantifies modified

reads as frameshift or in-frame for the Mus musculus allele. Fig.3D’s

Piechart quantifies modified reads as frameshift or in-frame for the Mus

spretus allele. Fig.3E’s plot shows the most frequent alignments of reads

for both the Mus spretus and Mus musculus alleles.

Fig. 5: Left, Frequency of mutation in sequence reads for all 96 samples

in the human RPE-1 dataset. Right, Frequency of mutation in sequence

reads for all 96 samples in the mouse ESCs dataset.

3.3 Genotypes by Clockwork

The alleles are discerned by a single A/G polymorphism 38 bp upstream

of the CRISPR-Cas9 cut site and represented as a double circle in Fig.4.

Surprisingly, a significant amount of the alleles in the mouse ESC dataset

are not genotyped. These untyped alleles fall under the “Insufficient Data”

category due to less than 1000 reads aligning against the allele’s reference

genome. In the case of samples like A2, B1, C4, D7, E6, F4, G3 and

H7 either the Mus spretus or the Mus musculous allele has a significant

amount of aligned reads containing a frameshift mutation whilst the other

allele’s coverage is under the acceptable threshold. Even if the covered

allele is consistent with the wild type sequence, allelic dropout still occurs

as in samples B2 and C1. In the case of a large deletion at the CRISPR-

Cas9 cut site it is possible that the single nucleotide polymorphism is

deleted, subsequently distinct mutation patterns can still be discerned but

Fig. 3: The Graphical report for sample E1 of the hybrid Mus musculus

(Mm) and Mus spretus (MSpretus) ESCs. A.) Barplot showing the

percentage of sequences (reads) aligned to the reference sequence. B.)

Piechart quantifying read modifications for both alleles. C,D.) Piechart

quantifies the modified reads as frameshift, in-frame or non-coding for

each allele. E.) Chart showing the most common sequences for each allele

and their modification pattern. Of note are the likely chimeric PCR reads

present in the second entry for each allele.

not assigned to an allele. For samples A2, B1 and G3 the polymorphism is

missing and a single mutation pattern is present, likely due to the deletion

of the primer binding site of the other allele. Interestingly, there appears

to be a significant difference in the efficacy of the CRISPR-Cas9 induced

mutation between the two datasets (Fig.4, Fig.5). The difference is likely

explained by the differing guide sequences (van Overbeek et al. (2016),

Allen et al. (2019)). Furthermore the local sequence context could favour

certain repair pathways, with local microhomology known to bias towards

microhomology-mediated end joining repair (Allen et al., 2019). The
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Fig. 4: Top, Visualisation of genotypes in the 96-well plate format for the hybrid mouse ESC dataset. Each sphere represents an allele in the sample and

is coloured by the expected genotype of the most common sequence for that allele. Bottom, Visualisation of genotypes in the 96-well plate for the human

RPE-1 dataset.

relative activity of the DNA repair pathways in the cell lines can also bias

repair outcomes. The comparison of 3777 repair outcomes in Allen et al.

(2019) shows a bias toward microhomology mediated deletions in ESC

lines and 1bp insertions in RPE lines. Whilst these factors all influence the

resultant genotypes, the efficiency of the guide sequence is the dominant

influence (van Overbeek et al., 2016).

Fig. 6: Allele sequence plot for sample B6 of the hybrid mouse ESC

dataset. The top plot represents the Mus musculus allele and the bottom

plot represents the Mus spretus allele. The second entry in both plots

represents a chimeric PCR reads with sequence belonging to both alleles.

3.4 Chimeric reads

Several samples of the mouse ESC dataset show clear signs of chimeric

PCR products, with reads belonging to Mus spretus and the Mus musculus

alleles having the same deletion (Fig. 3E, 6, 7). On average between 2-

5% of the reads of each allele show evidence of chimerism. Chimeric

PCR products are formed by the incomplete elongation or premature

termination of synthesis. Subsequently the incomplete strand re-anneals

to a heterologous sequence like the other allele and continues elongation

leading to the formation of a chimeric PCR product (Omelina et al.,

Table 1. Genotype per sample

A8 1bp deletion

A9 10bp indel and WT

B5 1bp indel and C insertion

D3 1bp deletion and WT

WT Parental WT

2019). Chimeric read formation during PCR can be controlled by adjusting

the temperature in the thermal cycles, adding less input template and

increasing the extension time (Liu et al., 2014). Chimeric PCR reads can

complicate and mislead the upstream analysis, introducing false positive

signals. Thresholds applied in Clockwork’s pipeline remove the chimeric

PCR signal.

3.5 Growth inhibition assay

In order to verify Clockwork’s prediction of frameshift and in-frame

mutations in the human RPE-1 sampleset, we performed a growth

inhibition assay on a representative set of samples (Table.1). Samples

with a frameshift mutation have a knockout for the REV7 protein, a

subunit of polymerase zeta involved in trans-lesion synthesis (Martin

and Wood, 2019a). 4NQO has mutagenic properties, introducing bulky

lesions analogous to UV damage (Bailleul et al., 1989). Cells deficient in

polymerase zeta are unable to bypass these lesions through trans-lesion

synthesis, causing replication fork collapse, double stranded breaks and

toxicity (Martin and Wood, 2019b). Therefore samples with frameshift

mutations are expected to survive at lower rates then their wild-type

equivalent.

Surprisingly, Sample A9 called unedited by Clockwork (Fig. 4),

shows similar performance to A8 constituting a false negative (Fig. 8).

Sample B5, called frameshift by Clockwork, shows similar performance

to the WT control constituting a false positive. Samples A8 and D3

perform as expected and were called as a frameshift and unedited genotype

respectively.
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Fig. 7: Visualisation of the read alignments by Integrated Genome

Viewer (IGV) for sample B6 (Fig.6). The single nucleotide polymorphism

discerning the alleles is present in the 5th nucleotide and is coloured brown

for Mus spretus. Reads that likely originate from chimeric PCR templates

are marked by a yellow highlight.

4 Discussion

During development of Clockwork and its subsequent interrogation by

the two datasets several possible improvements and challenges were

discovered. Chimeric reads, primarily caused by the two step PCR library

preparation, can be avoided by changing the protocols annealing time and

number of cycles (Kanagawa, 2003). Indels larger then 100bp causing

the deletion of the primer binding site used during library preparation can

lead to the absence of either or both alleles in the sample. Whilst both

chimeric reads and absence of alleles is recognizable from the sequencing

data they reduce the effectiveness of Clockwork as a genotyping tool,

requiring manual investigation of the data to resolve the ambiguities.

Clockwork relies on the overlapping forward and reverse reads to construct

a consensus sequence. Whilst effective at removing sequencing artefacts,

3’ read quality trimming can lead to gaps in the coverage of the consensus

sequence. Overall these challenges can be addressed by increasing the

read-length to 250 bp allowing for more options for primer design,

increased overlap of the reads and avoiding the deletion of the primer

binding site. Whilst this sequencing chemistry is more expensive than

the 150bp variant, multiplexing and barcoding allows for the massively

Fig. 8: Growth inhibition assay plots for a set of samples from the

human RPE-1 dataset representing several types of frameshift and in-frame

deletions. The assay was performed on a range of concentrations of 4NQO,

a carcinogenic inducing bulky adducts. The experiment was performed

with 3 replicates per sample.

parallel sequencing of many samples reducing the costs per sample.

Alternatively, repeating the interrogation with long-read sequencing could

be an interesting follow up. The relatively higher error rate of long-read

sequencing compounds with the challenging alignment of indels in short

amplicons, possibly invalidating the approach if the constructed consensus

sequence cannot address sequencing artifacts sufficiently.

Verifying Clockwork’s predictions through growth inhibition assays

turned out to be challenging. As a bioinformatician this was my

first introduction to working in a wet-lab and performing experiments.

Unfortunately my three attempts at performing a growth inhibition assay

failed due to difficulties with measuring cell concentrations accurately.

Luckily the second author had performed a growth inhibition assay in

parallel. Therein two false predictions were found, in sample A9 and B5.

In the first case, closer inspection of the read alignment shows three signals

of possible allele’s, a 10bp indel at 50% of reads, a wild-type sequence at

24% of reads and a 1bp indel at 9% of reads. Since A9’s survival rate is

worse then the wildtype control, the wildtype sequence could have arisen

by contamination of the two step PCR amplification. In the case of B5,

there are two clear signals, a 1bp deletion and a 1bp insertion. Further

inspection of the data does not indicate a clear cause for the false positive,

leaving mutations outside the amplicon or contamination of the assay as a

possible explanation.

Overall, Clockwork addresses a need for high-throughput genotyping

in experiments applying CRISPR-Cas9 to induce frameshift mutations.

We have seen the efficiency of CRISPR-Cas9 can vary wildly between

cell types and guide sequences causing samples to be frequently unedited.

Genotyping of samples is relatively cheap compared to the costs of whole

genome sequencing, saving significant resources sequencing unedited

samples.
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Table 2. Primer Sequences for human RPE-1

Gene Specific Forward GTAAACGACGGCCAGTTAAAAGTCCACCCTGTACCAC

Barcoding Forward CGATNNNNNNNNGTAAACGACGGCCAGT

Reverse 1 TTCAACTCCAGAACAGCACACT

Reverse 2 TCCAGGTCGGAGGGATGGA

Table 3. Primer Sequences for mouse ESCs

Gene Specific Forward GTAAAACGACGGCCAGAGGCTACGTAGAGCCAATGC

Barcoding Forward CGATNNNNNNNNGTAAAACGACGCCAGT

Reverse 1 AACCAGATGTAAGTCTAGGACT

Reverse 2 AGGTTTACTGCACGTGAAAC

5 Methods

5.1 Two step PCR amplification

Human retinal pigment epithelium (RPE-1) cells as well as hybrid Mus

musculus and Mus spretus embryonic stem cells (ESCs) were transiently

transfected with Cas9 and small guide RNA (sgRNA) sequences targeting

two genes of interest. 48 hours later the cells were FACS sorted, isolating

GFP+ transfected cells. Two 96-well plates containing single-cell derived

clones of the aforementioned cell lines were PCR amplified. The PCR was

performed in two steps, first amplifying the locus of interest with the gene

specific forward primer and the reverse 1 primer. Then the PCR product

was re-amplified using the barcoding forward primer and the reverse 2

primer. The gene specific forward primer and barcoding forward primer

share the M13 universal sequence, extending the amplicon with a unique

barcode sequence represented as 8N in Tables 2 and 3.

5.2 Trimming of adapters and bad quality basepairs

Raw reads from the sequencer are trimmed for adapter sequences and bases

with unacceptable quality. Often these sequences occur at the 5’ and 3’

side of the read respectively. Cutadapt (Martin, 2011), a commonly used

library for read trimming, was supplied with Illumina adapter sequences

and a quality value of 5. With larger quality values the quality trimming is

more aggressive, 5 was chosen to conservatively trim 3’ read bases. The

effectiveness of adapter and quality trimming was assessed by FastQC and

MultiQC after processing by Cutadapt (Ewels et al., 2016).

5.3 Barcoding and demultiplexing

Samples in the experiment were barcoded to allow for simultaneous

sequencing during a single run on the Illumina sequencer. Barcoding

was applied using in-house primers containing barcode sequences during

PCR amplification of the target locus. After sequencing the reads were

processed by Cutadapt which after aforementioned trimming and quality

control separated reads by barcode sequence (Martin, 2011). A maximum

error rate of 15% of the barcode sequence was set to allow for sequencing

errors in the barcode sequence. Reads for which no barcode sequence was

present are removed before upstream analysis.

5.4 Alignment by CRISPResso2

Reads are aligned against the supplied reference sequence by

CRISPResso2[4]. CRISPResso2 specialises in aligning sequencing of

genome editing experiments by cleaving nucleases like CRISPR-Cas9.

CRISPResso2 contains a modified implementation of Gotoh’s algorithm

(Gotoh, 1982), where the affine gap penalty is extended by a gap incentive

vector. The gap incentive vector promotes aligning an indel at the cut site of

the CRISPR-Cas9 complex. Cut sites are defined by supplying the guide

sequence for the sample and creating a ‘window’ of base pairs around

the cut site for which the gap incentive vector will be positive. Window

sizes are set to 2bp for paired analysis and 10bp for forward/reverse read

analysis. The middle of the window corresponds to the cut site defined

by the guide sequence. After alignment CRISPResso2 uses the supplied

reference, guide and exon sequences to quantify insertions, deletions and

substitutions. These quantifications are stored in table format as well as

visualised.

5.5 Quantify frameshifts with Python’s Pandas

Python scripts read CRISPResso2’s various output files into tables using

Pandas (pandas devteam, 2020). For each sample these files are processed

applying a set of thresholds to ensure confidence in frameshift calls. Firstly

any sample must contain at most 5% of reads with a wildtype sequence,

avoiding calling frameshifts in samples with a significant wildtype signal.

Secondly the sample must have at least 1000 reads to ensure sufficient

confidence and coverage in the alignment. Lastly if more than 10% of the

reads for each allele contains an in-frame variant the sample is assumed to

be fit. In the case where the change in exon sequence is not a multiple of 3,

the read contains a frameshift mutation. Otherwise, where the change in

exon sequence is a multiple of 3, the read contains an in-frame mutation.

The quantification of the frameshift, the length and type of mutation

for each allele and overall alignment parameters are saved for upstream

visualisation.

5.6 Snakemake

Snakemake (Mölder et al., 2021), a library for automating scientific

workflows, automates the pipeline. By defining rules that encode the

workflow steps the pipeline is capable of reproducing and scaling data

analysis to any new query or data set size. The rules are split into

separate sets, with each set representing a discrete step in the pipeline. By

changing the configuration and supplying a new reference sequence any

locus targeted by CRISPR-Cas9 can be analysed, detecting frameshifts and

visually reporting the results. The configuration allows for custom barcode

sequences, defining alleles for each sample, preferentially analysing

forward, reverse or paired reads as well as simultaneously processing

multiple reference genomes and/or samples. Furthermore data analysis

is supported by snakemake’s logging, automatically deleting partial files

upon fault and the capability of restarting a partially executed analysis.

5.7 Integrated Genome Viewer

To further investigate the benefits of CRISPResso’s gap incentive vector

all samples have been aligned against their respective references using bwa

mem on default settings (Li and Durbin, 2009). The resultant alignment

was automatically visualised and saved using the Integrated Genome

Viewer (IGV) bash script option.

5.8 PyPDF and GGplot2

A combination of python and R scripts and libraries read and visualise

CRISPResso2’s quantification. Pandas reads the data into a dataframe

table, then mutates into the proper format for visualisation by R’s GGplot2

library (Wickham, 2016). For each sample a set of graphs is created.

The set of graphs are then merged into a summary pdf file specifically

for that sample by PyPDF (Fenniak et al., 2022). All samples that

confidently contain a frameshift mutation are aggregated into a super

summary pdf for printing and ease of use in the wet lab. A 96-well

plate visualisation showing coloured spheres representing alleles and

their respective mutations allows for easy adaption into existing wet lab

protocols.
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5.9 Anaconda

The pipeline is stored alongside an anaconda environment file describing

the various libraries and their versions used within the pipeline. Upon

cloning the git storing ClockWork the file can be used to reconstruct the

environment allowing for reproducibility and consistency. Anaconda is set

to recent versions of libraries from both conda-forge and bioconda.

5.10 Growth inhibition assay

5 samples were chosen for a growth inhibition assay from the human RPE-

1 plate selecting for various patterns of mutation (Table. 1). Cells were

grown on medium, then diluted to a concentration of 15.000 cells per 1

mL. 96 well plates were prepared with a range of concentrations of 4NQO

(Bailleul et al., 1989), a carcinogenic inducing bulky adducts. Wells were

seeded with 100 µl of the cell suspension, with three technical replicates

for each sample. After 72 hours of incubation, the medium was removed

and replaced with CellTiter-Glo (Hannah et al., 2001). Subsequently the

plate was mixed on an orbital shaker and imaged on a plate reader. Lastly

the values were normalised from blank measurements and plotted as a

percentage of the untreated well.
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7 Code Availability

A snakemake pipeline was written for this paper. The pipeline is published

on github at https://github.com/Bryan-vd-Brand/. The supplementary files

used are also available alongside the pipeline.

8 Supplementaries

Large files like the barcode, reference and exon sequences, the anaconda

environment specification file and the snakemake file can be found on

github. See the code availability section.

Table 4. small RNA guide sequences

human ACGTGCGCGAGGTCTACCCCG

mouse ACTGGTCGTACATAAGGAAC

Fig. 9: Length of mutation determined by clockwork, coloured by mutation

type, plotted for each allele
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