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A B S T R A C T

In medicine, clinical prediction models are often developed to estimate future risk of pa-
tients regarding a certain health outcome (e.g., in-hospital mortality). To develop these
models, historic structured data is needed about patient characteristics and the relevant
health outcomes. Sometimes the to be predicted health outcome was not recorded in struc-
tured data but may be extracted from the textual notes by using text mining. If a text
mining model is developed to extract outcome variables from clinical notes, that model
can be used to generate the training data for the prediction model. Contemporary research
often applies text mining, but the impact of text mining quality on prediction model per-
formances in this setting remains unclear. We performed a simulation study that charted
this relationship in a case study of in-hospital mortality prediction in ICUs. We created
a logistic regression and neural network prediction model and trained it on data extrac-
ted by multiple text mining models with a wide range of performance. We varied the
performance of the text mining models by changing the size of the training data used to
develop them and by shifting the decision boundary. We found that analysis can be done
to determine whether the text mining model performs well enough, or whether more data
might be needed for text mining training purposes. We also concluded that shifting the
decision boundary of the text mining model can be a viable way to increase prediction
model performance, especially when a low amount of training data is used. The know-
ledge gained in this project may be used to create better performing prediction models
using text mining models when training data is limited.

v



1
I N T R O D U C T I O N

1.1 problem statement

Since the introduction of machine learning into clinical research, many prediction mod-
els have been built for diagnosis and prognosis of clinical outcomes [1, 2]. Traditionally,
most of these models are developed using structured data entries, such as lab values,
demographic data, height, weight and blood type. More recently, researchers have been
incorporating text mining into their prediction models as well, to take advantage of the
huge amounts of free text entries (also called ’clinical narratives’) available [3–6]. These
free text entries consist of clinical notes as well as discharge summaries and can be used to
mine outcome variables. For example, Dormosh et al. [7] extracted medical outcomes from
electronic health records and then trained a prediction model on that extracted outcome.
This allowed them to develop a prediction model that predicts an outcome variable that
was not originally recorded in a structured manner. However, it remains unclear how ac-
curate text mining models need to be for the prediction models to perform well, and how
big of an influence the text mining model has on the prediction model.

1.2 objectives

In this project, the main goal is to answer the general question "How accurate does text
mining to extract outcome data need to be to create a valuable clinical prediction model?".
We will be answering our research questions with a case study, creating a clinical predic-
tion model for in-hospital mortality based on variables collected in the first 48 hours of
admission to the intensive care unit. A text mining model will analyze the clinical notes,
and extract whether or not mortality is recorded in these clinical notes. The clinical pre-
diction model is trained on the output data of this text mining model. The performance
of the clinical prediction model using text mined outcomes will be compared to the clin-
ical prediction model using ground truth data. We will examine how different text mining
performances compare to give an insight into how text mining performance relates to
prediction performance for a task like mortality prediction. We will do this by artificially
adjusting the performance of our text mining model. A quick overview of the pipeline
of creating one of these prediction models can be seen in Figure 1.1. A more in-depth
explanation of the project setup can be read in Section 3.

1



2 introduction

Figure 1.1: Diagram of one of the prediction models

1.3 research questions

The research questions are indicated below. RQ1 is the primary research question. To com-
prehensively answer the primary research question, we need the answers to secondary
research questions RQa, RQb and RQc.

1. When using a text mining model for extracting clinical prognosis outcome data, how
does the performance of the text mining model (precision, recall, F1 score) affect
the performance of the prediction models (discrimination and calibration) trained on
that mined data?

a) How does changing the decision threshold and the training data size of the text
mining algorithm affect the performance metrics (precision, recall, F1 score) of
that text mining model for extracting information from clinical notes?

b) How does changing the decision threshold of the text mining model affect the
performance metrics (discrimination, calibration) of a clinical prediction model
trained on text-mined data?

c) To which extent is the choice of prediction modeling method (logistic regres-
sion, feedforward neural network) relevant in the performance (discrimination,
calibration) of the prediction model trained on text-mined data?

1.4 thesis outline

In this thesis we will first discuss the existing literature in Section 2, and how our research
relates to it. In Section 3 we will discuss our method of answering the research questions
posed in section 1. Section 4 will show the results of the experiments done, and Section 5
consists of the interpretation of the results and what they could mean for the clinical field,
as well as a discussion of limitations and future research topics.



2
L I T E R AT U R E R E V I E W

In this section, we look at some of the existing research regarding our research question.
We identify how medical research is organized, give a brief summary of prediction model-
ing methods that will be relevant to this research and how they are used in clinical settings
and discuss different performance measures that are often compared in the clinical field.
We also give a short history of clinical text mining usage and provide some scientific em-
bedding regarding the methods we used in our research. We also provide some examples
to signify why our research is relevant and needed.

2.1 medical research

Medical research is a huge field with many different subcategories. There is a distinction
between primary and secondary research, where secondary research consists of aggreg-
ating the best sources to strengthen or weaken a certain conclusion. Aggregating sources
can also increase the statistical analysis power for a conclusion. Primary research includes
observational as well as experimental studies. In experimental studies, an intervention is
done, e.g. a drug is administered or treatment is performed. The purpose of these studies
is to determine the (side-)effects of certain drugs, surgery or other procedures. In obser-
vational studies, data is recorded from patients and the impact of a dependent variable
is measured. Observational studies can be retrospective (historical) or prospective. In a
retrospective study, previously recorded data is analyzed for certain patterns or outcomes,
whereas a prospective study records the variables that are needed to draw a conclusion in
the future. In other words, a prospective study generates new data whereas a retrospect-
ive study uses pre-existing data. An example of an observational study is a cohort study,
where a group of people is followed during a study. Sometimes two groups of people are
followed based on a common characteristic, after which one of the groups will be exposed
to a certain risk factor to determine or explore the effect of this risk factor on a certain
outcome [8]. In this project, the main focus is on the methods in observational research,
specifically within epidemiology and prospective medical prediction research.

2.2 clinical prediction models

Since 1950, physician’s technology usage and dependency in the medical field have
evolved, leading to more and more data being captured and stored about patients. In

3



4 literature review

the late 1950’s the development of the HELP [9] system started, which is one of the earli-
est systems that aimed to help physicians in medical decision making and diagnosis. The
development of this system continued for over 15 years. In 1974, the term medical inform-
atics was coined, which is the field of studying information technology in the healthcare
industry [10]. Since then, government mandates as well as the necessity to collaborate
between different medical institutions have increased the data stored by those institutions
for cooperation purposes [11]. Most of this data is stored in Electronic Medical Records
(EMRs). The data is partly stored in a neat, ordered structure, which could directly be
used to develop statistical models. These statistical models can then be used to help prac-
titioners make informed decisions, or they can be used to predict, for example, a patient’s
mortality risk. Those prediction models can also be used to identify relevant predictor
variables for a patient’s mortality risk. For example, in research done by Valgimigli et al.
[12] it was found that activation of a certain receptor correlates with an increased risk of
mortality in patients with acute myocardial infarction. Previously, the risk of heart failure
mortality would be estimated by the average mortality rates across all patients, or by the
physician’s experience. However, with access to the stored data from the EMRs and in-
creased computational power, a more accurate estimate can be given to assist in decision
making regarding whether or not a patient should be discharged [13], whether they should
be admitted to an ICU [14], or whether they require end-of-life care (for high-risk patients)
[15].

When developing medical prediction models, some things can happen that make the
prediction model unsuitable for widespread clinical adoption. First of all, people often
confuse predictions with causality. For example, a rule-based model for prediction of pneu-
monia risk was developed by Caruana et al. [16], using machine learning methods. One of
the rules that the model learned was that a patient with asthma has a lower mortality risk.
This is unexpected from a causal viewpoint, since asthma patients often require extra care
when dealing with pneumonia. However, since this is known by physicians, many of the
patients with asthma who presented with pneumonia were directly transferred to the ICU.
The care they received there was so effective that their risk of dying from pneumonia was
lower than that of an average pneumonia patient [17]. So while the rule asthma → low
mortality risk was true in the data set, it does not represent a causal rule which, if misin-
terpreted, might lead to physicians changing their treatment based on the model, which in
turn would lead to an increase in asthmatic patients dying. It is important to realize that
the prediction of the model assumes that the received care is unchanged. It should not
be used to derive rules about when to reduce the treatment that a patient should receive.
Secondly, data like cardiac stroke volume or blood pressure is not directly measurable. In-
stead, indirect measures are used and it is hard to determine how well these are calibrated
[18], which introduces a form of measurement error. This measurement error might make
it difficult to transfer a prediction model from one institution to another, since different
ways of measuring might have been used.

Collins et al. [19] noted that the reporting of prediction model studies is poor, and that
this makes it hard to assess whether those models are biased or useful for clinical adoption.
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Based on this observation they created the Transparent Reporting of a multivariable pre-
diction model for Individual Prognosis Or Diagnosis (TRIPOD) initiative, which made a
statement consisting of a 22 items checklist that should be included when reporting a mul-
tivariable prediction model for diagnosis or prognosis. These items include guidelines on
model development, model performance and model specification, as well as how to report
on the methods used, what to include in the discussion of a paper, and what should be in
the introduction. In a review by Andaur Navarro et al. [20] from 2022, it was found that
a mean of 37.9% of the TRIPOD items was adhered to in 152 papers published between 1
January 2018 and 31 December 2019.

With that, the need for a standardized way to develop prediction models (also when
accompanied by text mining models) has been illustrated. This is where our research be-
comes relevant. If we can gain insight into the relation between text mining performance
and text-mining based prediction model performance, developers can use this information
to create better performing, more transparent models, and physicians may estimate more
accurately whether a model might be useful in practice.

2.3 text mining in clinical records

Unstructured, free text entries are a less explored part of EMR analysis. These entries con-
tain text that is not ordered as nicely as entries such as blood values or glucose levels.
However, they still contain valuable information that might not be included in quantifi-
able entries. An example of an unstructured text entry in EMRs is discharge summaries.
Discharge summaries often include a lot of information about the hospital stay, such as dis-
charge diagnosis, treatment received in hospital, results of investigations and the follow-up
required [21].

Text mining in these free text entries is challenging. Lots of abbreviations are used, and
many of those abbreviations are not homogeneously used by different medical instances.
Clinical narratives also often contain values for medical measures, such as blood pressure
[22]. Terminology between two hospitals might vary, despite the same thing being meant.
So not only is the lexicon very specific to the medical field, within the medical field there
are also big differences in how each of the medical instances uses certain words. The notes
can be, depending on the institution, grammatically coherent or only consist of keywords,
meaning there is no grammatical structure at all, increasing the difficulty of text mining.
The fact that there is a lot of jargon also makes it likely that some text mining algorithms
will not perform as well, since there might not be a pre-trained representation for unknown
words in algorithms that use contextualized embeddings like BERT [23]. An example of a
discharge summary can be found in Figure 2.1.
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Figure 2.1: Example of a discharge summary, created by Maurice et al. [24]

Solutions have been created to standardize the text mining process for clinical research.
In 2010, Savova et al. [25] built and evaluated the clinical Text Analysis and Knowledge
Extraction System (cTAKES). This is a natural language processing system designed for
the clinical field. It contains a sentence boundary detector, tokenizer, normalizer, Part-of-
Speech tagger, a named entity recognition annotator, and a negation annotator. This system
has been used to develop prediction models or information extraction [26, 27], and is still
considered a state-of-the-art mechanism to make the development of prediction models
using NLP easier. Similarly, Aronson and Lang [28] created a system to extract topics from
biomedical texts. The two systems have different goals but have a slight overlap in that
they can both analyze clinical notes or papers to extract biomedical knowledge [29]. And
while a lot of research has been done on the performance of these systems by themselves,
not much is known about their interaction with prediction models.

There are multiple ways to use text mining in clinical predictions. The first method is
to mine a certain variable from the text and use this variable in a prediction model. In
this case, the mined variable is used as input for the machine learning model. One such
instance is the research done by Ford et al. [30]. In a meta-analysis, they found that in-
cluding textual information in case-detection algorithms led to a significant increase in im-
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provement in algorithm discrimination when combined with other (structured) predictors.
They noted that there was no clear difference between rule-based and machine learning
approaches to extracting information from the text.

Another way is to use text mining to fill in missing data. Missing data can be addressed
by ignoring the samples containing missing data (not preferable), using averages, fitting a
regression function to fill in the missing value or treating the missing data as a separate
class so that the samples can still be used [31, 32]. Not every solution might work for every
type of "missingness". Values might be missing completely at random or for a specific
subgroup of samples. This requires appropriate handling, to reduce the risk of developing
an over- or underestimating model [33]. This is quite a complex issue, and using text min-
ing to fill in the gaps may help prevent it. For example, Erraguntla et al. [34] managed to
fill in a gap of missing ICD 9 codes using text mining with an accuracy of around 70%.
One limitation of this research is that the performance was validated using records for
which the ICD code was known. There might be a significant difference between samples
where the ICD code is known and samples where the code is missing. Two other examples
are research done by Hylan et al. [35] and Dormosh et al. [7]. They use natural language
processing to mine a specific outcome from clinical notes. They both use the same meth-
odology; first, the text entries are mined, after which the positive outcomes are checked
manually. A flaw in this methodology is that it will be unknown which entries might be
missed by the text mining algorithm since negative outcomes are not analyzed. This might
lead to structural flaws in the prediction models, since the characteristics of the falsely
negative flagged samples are unknown, and might share a pattern. These two examples
contribute to the motivation of our research; the reporting of their text mining method is
incomplete which makes it unclear whether this model is suitable for practical use.

2.4 prediction modeling methods overview

2.4.1 Risk scores

Risk scores are a traditional way to model the risk of a patient. Originating from the field of
statistics, they are calculated to assess, for example, the risk of a patient for complications
or death during surgery or an ICU stay [36]. Generally, they consist of some calculations
using various relevant factors and produce a score that gives insight into the risk that is
involved in their stay. These scores can then be used to adjust the care given to the patient.
If a patient has a high-risk score, they might need some special medical attention to re-
duce the risk of complications or death. One of the earlier risk scores is the widely used
Simplified Acute Physiology Score (SAPS), which was published in 1984 [37]. It uses 14
easily measured variables and is designed to be easily used across multiple pathologies,
reducing the need for pathology-specific risk scores. As time progressed, the complexity
of risk scores went up in an effort to score the highest accuracy, such as APACHE IV [38],
which consists of over 120 predictor variables. Some other examples of risk scores include
the ASA grade for postoperative mortality, APACHE I, II and III (Acute Physiology And
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Chronic Health Evaluation) and POSSUM (Physiological and Operative Severity Score for
the enUmeration of Mortality and morbidity). These risk scores precede contemporary
machine learning methods and are generally less accurate than new state-of-the-art ma-
chine learning techniques [39–41]. However, they have been validated thoroughly and are
easy to understand and use, given that they typically use fewer predictor variables than
machine learning methods. For this reason, they still see quite a bit of use even today. Of-
tentimes, they are also calculated and used as a predictor value in machine learning-based
prediction models.

2.4.2 Prediction model performance measures and evaluation

Performance measures for prediction modeling vary depending on the task. For regres-
sion tasks, the mean square error (MSE), root mean square error (RMSE) or mean absolute
error (MAE) are common. For classification problems, we often look at accuracy, F1 scores,
confusion matrices or receiver operating characteristic (ROC) curves (seen in Figure 2.2).
In clinical settings, the accuracy metric is often not very insightful, since classes may be
imbalanced (patients with a certain prognosis are often outweighed by those without). If
1% of the data has label 1, the accuracy can be 0.99 just by predicting the majority class.
It is also important to note that recall (what percentage of the cases is detected?) is often
more important than precision (what percentage of the detections are actual cases?). One
reason for this is that algorithms are often used as a pre-screening method, so positive clas-
sifications will still be manually confirmed by a physician, whereas negative classifications
might not be reassessed. Since the predictions are uncertain, a binary prediction gives less
information than a risk score. It is hard to distinguish a label 0 with extremely low risk
from one that borders the 1 label. ROC curves are analyzed frequently, to evaluate the
trade-off between true positive and false positive rates. The more top-left the ROC curve
is, the better the model’s performance. To quantify a model’s performance according to
the ROC curve, the area under the curve (AUC or AUROC) can be calculated to give some
insight.
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Figure 2.2: Example of a ROC curve, created by Hoo et al. [42], licensed by BMJ Publishing Group
Ltd.

Steyerberg and Vergouwe [43] call for standardization within the development of clinical
prediction models. Part of that standardization covers the evaluation of the model. They
introduce the ABCD measures for validation, which include calibration (also argued for by
Van Calster et al. [44]), discrimination and clinical usefulness. Since validation of clinical
usefulness (D) is not in the scope of this project, it will not be summarized here. Instead,
we focus on the ABC part. First of all is Alpha: calibration-in-the-large. This metric refers
to the ratio of observed outcomes and predicted outcomes. The example Steyerberg and
Vergouwe [43] use is: "if we predict a 5% risk that a patient will die within 30 days, the
observed proportion should be ~5 deaths per 100 with such a prediction." Beta is the cal-
ibration slope. This slope determines how "extreme" predictions were. If low predictions
are consistently too low, and high predictions are consistently too high, the calibration-in-
the-large could appear to be perfect, but the predictions would still be consistently wrong.
The calibration slope captures this notion. The closer to 1, the better. The calibration curve
can be plotted to show how well-calibrated a model is. An example can be seen in Figure
2.3. It shows the predicted probability on the x-axis against the observed probability (%
of positive outcomes for those samples) on the y-axis. A perfectly calibrated model has a
45-degree line from the origin of the graph. If the calibration curve is consistently above
that, it means the prediction model underestimates risks, whereas a line below indicates
an overestimating model. The final letter in our ABC model is for the concordance statistic:
discrimination. This notion captures the idea that a model should be able to separate pa-
tients with positive outcomes from patients with negative outcomes. If a model predicts
the average outcome for every patient, it would have a perfect calibration, but no discrim-
inative ability, hence being useless. For binary prediction, this concordance statistic c is
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equal to the area under the ROC curve. In this project, we will use these guidelines to
compare the performance of the models we will create.

0.5

Figure 2.3: Example of a calibration curve, created by Herder et al. [45], licensed by Elsevier.

2.4.3 Refitting to improve calibration

In medical prediction models it has been observed that throughout the years, the calibra-
tion drifts despite the discrimination capability being maintained. Models start consistently
over- or underpredicting after a few years, possibly due to a shift in prevalence of a certain
outcome [46]. This can be addressed by refitting the model to increase calibration. First, a
logistic regression model without regularization should be fit to the predicted linear prob-
abilities for the validation set. To do this, the logit function (log(

p
1 − p

)) should be applied

to the outcome vector as created by the prediction model, which inverses the logistic func-
tion applied by the logistic regression model. This new model consists of only an intercept
and one coefficient [47]. Now let us call our original prediction model LR1, and our newly
fit model with only one coefficient LR2. Then LR2 = α + βLR2, where α is the intercept
and β the slope. We can update our calibration intercept by replacing the original intercept
of LR1 with α added to the original intercept of model LR1. The slope can be updated by
multiplying each of the coefficients of LR1 with the single coefficient of LR2 ([44], supple-
mentary information). Of course, the more refitting is being done, the more the model is
fit to the validation data instead of the training data. This can lead to worse performance
on the test set if the validation data set is too small. If we know the training data is biased,
however (such as in our case where we text mine outcomes from clinical notes), we can
use a validation set to recalibrate the model after training it. This might reduce the costs
and effort needed compared to creating a fully unbiased training data set. This process of
recalibrating can also be done on external datasets. This means that a model created at a
certain medical institution can be taken and recalibrated to a different health care facility
[48]. Other recalibration methods include Platt scaling [49] and isotonic regression [50],
but these strategies are generally reserved for boosted trees, random forests and support
vector machines [51].
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2.5 text mining methods overview

For our text mining algorithms, in this project, we primarily focused on tf-idf. We did not
look at rule-based data mining approaches, because despite these being commonly used,
they require expert knowledge in the domain, which we don’t possess. Other algorithms
we considered were Word2Vec, GloVe and Clinical BERT. Since we realized during our
project that tf-idf allowed for a wide range in performance, we did not analyze other text
mining algorithms.

For the purpose of this research, we will define a text mining algorithm as a model that
extracts an outcome from text. We use the text mining algorithm on a clinical note, and the
algorithm will output whether that note contains the output we inspect, e.g. mortality. This
means that for tf-idf we will add our own logistic regression model to make predictions
with the generated tf-idf vectors. More on this can be read in Section 3.

2.5.1 tf-idf

tf-idf (term frequency-inverse document frequency) is an algorithm that calculates how
important a word is for that text based on how often it occurs, normalized for how often
that word occurs in all texts. For example, the word "the" occurs often in most texts, so it
gets a low score. "mortality" might occur often in texts for patients that expired, but not
in texts for patients that survived, so it gets a high rating. To use this value in text mining,
the top n most "important" words are encoded into a vector, and each sample document
will have n features, with each feature having a count of that word for that document.
The tf-idf value for a term within a document is calculated with the formula t f (t, d) ∗
id f (t, D), where t f (t, d) is the count of term t divided by the number of unique terms in
that document, and id f (t, D) is calculated by taking the log of the result of the number
of total documents divided by the number of documents that contain term t. tf-idf has
been used to improve the accuracy of clinical prediction models, by combining traditional
regression models using structured data with a tf-idf text mining approach. Research has
shown that adding tf-idf (or other context-free algorithms like Bag-of-Words) as a way of
extracting information from clinical notes from a clinical dataset to a regression model
with other features increases the AUROC on a test split when compared to a baseline
model using only structured data for predicting 1-month mortality [52]. Note that this
does not give us information about the performance outside of the dataset, such as in
other clinical facilities. Similarly, Klang et al. [53] came to the same conclusion with a
significantly increased AUROC, but for 48-hour and in-hospital mortality. These studies
lead us to believe that mortality can be sufficiently mined using tf-idf.

2.5.2 Clinical BERT

BERT (Bidirectional Encoder Representations from Transformers) [54] is an algorithm that
could be used for text mining in our context. It is a language model built on the idea
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of Transformers [55], which is a way to use an attention mechanism without relying on
recurrence. This means that the model does not have to go left to right, but instead can
go both ways at the same time. This allows for the model to have a higher contextual
awareness. An attention mechanism relates every token in the input sequence to every
other token. BERT is trained on general text like Wikipedia articles, but can be fine-tuned
for specific tasks or inputs, by using the base model and training it on a specific dataset.
This is called transfer learning. With a fine-tuned model, performance can be increased on
clinical data. As with tf-idf, BERT and several of its other pre-trained variants like Clinical
BERT, MedBERT and BioBERT have been widely used for clinical prediction since their
introduction [56–58]. Since Clinical BERT has been trained on MIMIC-III [59], the data set
we will be using, this model could also be used for this research. When using Clinical
BERT, it should be kept in mind that there is a 512 token limit. In the research by Huang et
al. [56], they dealt with this problem by splitting the clinical notes from a specific patient
into sub notes of ~318 words and then filling in a formula to "average" the prediction in a
way.

Using this formula resulted in an increased performance of 3-8% when compared to
taking the mean of the predictions for readmission prediction. We assume mortality pre-
diction is similar, so the same method of calculating the outcome variable probability could
be used in a project like this as well.

Recently, Carlini et al. [60] showed that it is possible to extract training data from lan-
guage models like GPT-2 [61]. This caused concern for other language models, such as
BERT, and of course ClinicalBERT. For this reason, we might ask ourselves whether there
is a privacy risk in releasing models that are trained on privacy-sensitive data. Lehman et
al. [62] tried to replicate this conclusion using a BERT model pretrained on the MIMIC-III
dataset with artificially reintroduced patient names, but the conclusion stated that they
were mostly unable to do so using simple methods. However, they noted that this does
not rule out the possibility of extracting patient data with a more advanced technique, or
future techniques that might not yet be developed. For this reason, we believe that model
weights trained on the MIMIC-III data set should not be shared.

2.5.3 Text mining performance measures and evaluation

Since the original data contains labels of 0 or 1 for in-hospital mortality, we want to mimic
this for our text-mined dataset, so we will be classifying our samples with a 0 or 1. This
means that we will use binary classification metrics. The specific classification metrics
we will use are precision, recall and F1 score. Precision indicates what percentage of the
detections are actual cases and is calculated with TP

TP+FP , where TP is the number of True
Positives, and FP is the number of false positives. Recall indicates what percentage of the
cases is detected and is calculated with TP

TP+FN . FN is the number of False Negatives. The
F1 score is calculated with 2 · Precision∗Recall

Precision+Recall . This score is calculated by taking the harmonic
mean of the precision and recall, meaning that a model with a low precision or recall will
have a low F1 score, whereas a balanced precision and recall will lead to a higher F1 score.
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2.6 used prediction modeling methods

In this project, we will be taking a look at two different prediction modeling methods,
logistic regression (LR) and feedforward neural networks (FFNN). We do this to determ-
ine whether our results are generalizable across different prediction modeling methods. If
the trends that show for logistic regression carry over to the feedforward neural network,
that gives us an indication that the results are at least generalizable over these two al-
gorithms. While we often see that neural networks outperform logistic regression models
in traditional AI tasks, research has shown that neither of them necessarily outperforms
the other for clinical prediction tasks [63–66], which could indicate that clinical prediction
tasks generally do not include non-linear predictors.

2.6.1 Logistic regression

The first prediction modeling method, which can perhaps be considered the main model-
ing method for this research due to its widespread usage, is logistic regression. It is one of
the most popular techniques across medicine, marketing, credit scoring, and public health
[67]. The basic idea is similar to that of a linear classifier, where a vector of weights is
multiplied by a vector of inputs, giving the formula wTxj. To introduce an intercept to this
formula, x(j,0) = 1. With gradient descent, the optimal vector for w is found by updating
the weights iteratively until a minimum in the loss function is found. logistic regression
applies the logistic function to the linear regression function, which leads to outcomes in
the space of [0, 1]. This makes the outcome analogous to a probability estimate. The loss
function is changed to the maximum likelihood estimation, so our model is chosen such
that the training data is most probable given that model compared to other models, or in
other words, the model that explains the data best [68]. A logistic regression model often
includes a regularization term that prevents or reduces overfitting by penalizing complex
models.

2.6.2 Feedforward neural networks

A feedforward neural network is a network consisting of layers of nodes (some hidden,
meaning that they are not connected to the output nodes) that are connected, moving in
one direction so that each node is passed no more than once. Each node has a weight
and an activation function which determines whether and how the signal is propagated
throughout the network. An activation function that results in either 0 or 1 is called a
perceptron, but other activation functions, such as the logistic function can also be imple-
mented. Having multiple of these nodes with nonlinear activation functions means that
the entire network can reshape the inputs into a nonlinear output, which makes it able to
approximate the training data more closely. As a result, training an FFNN is more complex
and takes more resources, and has a higher risk of overfitting if no preventative measures
are taken.
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2.7 common outcome variables in clinical prediction modeling

When regarding prediction models in clinical settings, there is a distinction to be made
between diagnosis and prognosis [69]. Diagnosis is the identification of a certain present
disease. For example, detecting whether someone has Alzheimer’s disease based on an
MR image of the hippocampus using machine learning methods [70]. This is a form of
diagnosis. On the other hand, we have prognosis. Prognosis refers to estimating the risk
of future outcomes. Some prognosis outcomes that can be analyzed include mortality rate
within a given time (mortality within 30 days or within a year are commonly analyzed
outcomes). Other prognosis examples include, given a cancer patient, whether or not can-
cer will reoccur, or whether or not the patient will survive the cancer [71]. Both diagnostic
and prognostic variables can be used as outcome variables, depending on the goal.

In this project, we will focus on in-hospital mortality. Other outcome variables we con-
sidered were sepsis (an extreme response to an infection), 30-day and 1-year mortality.

2.7.1 In-hospital mortality

One of the outcome variables commonly predicted is in-hospital mortality. This outcome
is included in the MIMIC-III dataset and we expect it to be relatively easy to mine from
the text entries since it should almost always be included in the discharge summary and
mortality is expected to be written in relatively context-free ways. We expect the problem to
mainly be a word-detection problem (e.g. "Absence of followup" or "Discharge condition:
Expired" in the discharge summary indicates that the person has passed away), where the
context is not as important as in other text mining tasks. Even negations should be rare
in discharge summaries when talking about the expiration of patients. For this reason,
it is expected to be easily minable, even when supported by a rudimentary text mining
algorithm such as tf-idf. We expect tf-idf to perform similarly on outcome variables like
this when compared to a context-dependant algorithm like BERT or Clinical BERT.

2.7.2 Sepsis

A second outcome variable that could be predicted is sepsis. Because of its multi-factorial
characteristic, it is considered quite challenging to predict. Text mining this outcome from
text should once again mainly be a text-mining task. We expect it to be harder than in-
hospital mortality detection since mortality is virtually always mentioned in the discharge
summary whereas sepsis is less impactful on the continuation of treatment, so it might
not always be mentioned. For this outcome variable, we expect that it requires a bit more
nuance, so a context-dependant algorithm like Clinical BERT might outperform tf-idf.
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In this section, we look at the structuring of the research. We discuss the dataset itself (and
preprocessing steps), the models that were built, the text mining and machine learning
algorithms involved, how we artificially changed the performance of the text mining al-
gorithms, and how we evaluated the differences between the models in relation to the text
mining model’s accuracy. The code used in our method is published, see Chapter A.

3.1 study design

An overview of the project setup can be seen in Figure 3.1. The purple circle indicates how
we answer RQa, the yellow circle indicates how we answer RQc, and the red circle indic-
ates how we answer the main research question RQb and finally RQ1. The red rectangle
indicates the reference pipeline, the green rectangle indicates the pipeline for our own text
mining-based clinical prediction models. It is important to note that the green pipeline
was traversed for each of the combinations of split size and decision threshold mentioned
above.

To elaborate, our general setup can be split up into three sections:

1. Text mining part: We mined in-hospital 48-hour mortality from clinical notes for
each patient. We adjusted the performance of the text mining model by adjusting the
decision threshold and the training data split size.

2. Prediction model part: We trained a prediction model with the text mined outcomes.

3. Evaluation: The effect of changing the text mining performance on the performance
of the prediction model was evaluated.

15
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Figure 3.1: Diagram of project setup

Throughout this thesis, we use some consistent terminology, which will be explained
below.

• Text mining model: A model that takes text as input and outputs whether or not that
piece of text contains the outcome variable.

• Clinical prediction model: A model that takes certain inputs, and predicts an outcome
about the health status of a patient.

• Reference model: A clinical prediction model (FFNN or logistic regression) that is
trained without any text mining involved, to compare with the results of our text-
based clinical prediction model. It is based on the model created by Harutyunyan et
al. [72].

• Text mining-based clinical prediction model: A clinical prediction model that is trained
using text mined outcomes.

• Split size: The ratio of data given to the tf-idf algorithm to learn from. E.g. a split size
of 0.2 indicates that 20% of the total data made available for the tf-idf model is used.

• Decision threshold: The cut-off value for the text mining model. A decision threshold
of 0.1 means that all predicted probabilities of label 1 above 0.1 will be classified as
a 1. With this parameter we can increase or decrease the recall; a decision threshold
of 0 means that all samples are classified as label 0 and a decision threshold of 1
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means that all samples are classified as label 1. Any value between 0 and 1 slides the
classification ratio.

3.2 data

The dataset we used is the MIMIC-III dataset [59]. This dataset contains information about
ICU stays of patients at the Beth Israel Deaconess Medical Center in Boston, Massachusetts
between 2001 and 2012. It includes vital signs, medications, laboratory measurements, ob-
servations and notes charted by care providers, diagnostic codes, whether a patient sur-
vived or not and the length of their stay, among others. Since the data of patients is private,
all the data in MIMIC-III is de-identified, and the dates are also shifted forward or back-
wards in time to further anonymize the patients. It is one of the freely accessible databases,
normally clinical dossiers are not freely distributable. A data usage agreement was signed
to access the data for this study.

Each patient in the dataset has one or more hospital admissions, and each hospital
admission contains one or more ICU stays. A clinical event is an observation, measurement
or treatment of a subject. The dataset contains over 300 million events we can use to predict
in-hospital mortality.

The dataset contains 53,423 ICU admissions for 38,597 unique patients. The in-hospital
mortality is 11.5%. The main tables we are interested in are the "noteevents", which con-
tains 2,083,180 rows of physicians’ notes, and "chartevents" and "labevents", which contain
all charted data for all patients. This includes things like heart rate, glucose levels, height,
oxygen saturation, capillary refill rate and diastolic blood pressure. The table of features
used can be seen in table 3.1. From these features, the minimum, maximum, mean, stand-
ard deviation and skew are recorded for the first 10%, 25% and 50% as well as the last 10%,
25% and 50% of time. This means there are a total of 17 ∗ 7 ∗ 6 = 714 features. The features
are normalized and missing values are replaced with the mean value for that feature in
the training set.
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Variable MIMIC-III table Modeled as

Capillary refill rate chartevents categorical

Diastolic blood pressure chartevents continuous

Fraction inspired oxygen chartevents continuous

Glascow coma scale eye opening chartevents categorical

Glascow coma scale motor response chartevents categorical

Glascow coma scale total chartevents categorical

Glascow coma scale verbal response chartevents categorical

Glucose chartevents, labevents continuous

Heart Rate chartevents continuous

Height chartevents continuous

Mean blood pressure chartevents continuous

Oxygen saturation chartevents, labevents continuous

Respiratory rate chartevents continuous

Systolic blood pressure chartevents continuous

Temperature chartevents continuous

Weight chartevents continuous

pH chartevents, labevents continuous

Table 3.1: Table with features used in the reference model. Adapted from Harutyunyan et al. [72].
(CC BY 4.0)

From this dataset, we used ICU stays to develop our model. For in-hospital mortality,
we determined for each of the hospital admissions whether the patient expired during the
hospital stay, using data from the first 48 hours of the hospital stay.

3.2.1 Data split

The data split in this project is less straightforward than usual data splits, so a diagram was
made, seen in Figure 3.2. The MIMIC-III database consists of 42057 usable ICU stays, that
is excluding patients with multiple ICU stays and ICU transfers, of which we separated
42% into the text mining component (blue), and 25% into the prediction model component
(green). The text mining component consists of a train and test set, of which the train set
varies based on the split size. After training the text mining model and creating a new
outcome vector for the prediction model’s training data, some data were excluded as done
by the authors of the adapted model, Harutyunyan et al. [72]. The most relevant exclusion
criteria were:

• Length of stay was missing

• Length of stay was shorter than 48 hours



3.3 reference model 19

• No events were captured before 48 hours

These criteria removed 21137 samples. Note that our text mining model is trained on
data that contains these samples. This should not be a problem, as long as mortality is
recorded and text notes are registered, our text mining model will be able to learn from it.
After training the text mining model we also removed samples from the prediction model
training set that did not contain text notes, since those could not be classified by the text
mining model. The prediction model test data set did not require text notes (since text
mining is only done for training purposes, our test data should contain the ground truth),
so they are kept as-is.

Figure 3.2: A figure showing how the data was split up and used.

3.3 reference model

For our project we first constructed the reference models to compare our results with.
For this reference model we trained a logistic regression model that predicts in-hospital
mortality based on a number of structured features that can be extracted from the MIMIC-
III dataset. This model used the ground truth labels; no text mining was involved. The
model from Harutyunyan et al. [72] was used as our reference model. They proposed a
strong baseline for prediction tasks, including mortality risk, using the features in table
3.1. We also created a second reference model, a feedforward neural network. It is the
same as the first reference model, except using a different machine learning algorithm. We
then split the data into a training, validation and test set, and did some minor optimizing.
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Since this is a baseline model to compare our results to and the aim of this project is
not to achieve the highest possible performance, we did not spend too much time on
optimization. We determined the area under the ROC curve (AUROC), as well as gathered
the calibration slope, intercept and calibration in the large for the reference models.

3.4 text mining model design

Then, we took the same dataset and instead of using the outcome variables as provided
by the dataset, we mined them from the aggregate of clinical notes per patient using tf-
idf combined with a logistic regression network instead. The logistic regression used C
= 1 and L2 regularization based on a grid search with parameters [0.001, 0.01, 0.1, 1, 10,
100, 1000]. The tf-idf vectorizer selects the 2000 most important words and converts each
sample into a data set with 2000 features. The logistic regression model, with C=1 and L2
regularization, then determines for each sample whether the feature vector is associated
with mortality. This is our text mining model. Some standard text preprocessing steps,
such as stemming, lemmatization, number removal, lower casing, stop word removal and
punctuation removal were performed to increase the performance of our tf-idf model. The
two outcome variable vectors (original vector and the text mined vector) are compared
using standard classification performance metrics, like F1 score, precision and recall. With
performance metrics of these text mining algorithms we can answer RQa: "How does
changing the decision threshold and the training data size of the text mining algorithm
affect the performance metrics (precision, recall, F1 score) of that text mining algorithm
for extracting information from clinical notes?"

3.5 prediction model design

This new outcome variable vector was then used to train two new clinical prediction mod-
els, with the same features as the reference model, resulting in a new text mining-based
clinical prediction model that is expected to perform similarly to the original model. The
two models created are a logistic regression model and an FFNN model. The reason we
choose FFNNs and logistic regression is that they are some of the most used algorithms
for models combining free text with structured data entries [6]. For logistic regression,
since we have the reference model, we did not perform a grid search to optimize paramet-
ers, since we already had the optimized parameters as found by Harutyunyan et al. [72]
(C=0.001, L2 regularization). For the FFNN, we manually optimized the reference model
by testing different layer setups, and use the layer setup that we find works best for all
of the text mining-based models as well. The final model passes the input of 714 features
through a densely connected reLU layer with 16 units, then applies a dropout filter of 0.5,
into another densely connected softmax layer with 2 units. We compare the performance
measures we have recorded of both models, both discrimination (AUROC) and calibration
(slope, intercept, CITL), to see if either of them outperforms the other.
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3.6 performance adjustments of the text mining algorithm

3.6.1 Split size

To answer our research questions we want to have a wide variety of text mining model
performances. We want bad as well as good text mining performances, and see how it
affects the prediction model. To achieve this, we need to adjust our text mining models so
that the performance drops slightly or dramatically. The first way of changing the perform-
ance is by giving it less data to work with. Instead of using all samples, we only used a
percentage of the data, which we expected would cause the precision and recall metrics to
decrease. That decrease should also be observable in the text mining-based clinical predic-
tion model’s AUROC. We used split sizes in the range of 0.05 up to 0.95 with increments
of 0.05.

3.6.2 Decision threshold

The second way to change the performance of the text mining algorithm is by changing
the cut-off value for predictions to change the precision/recall ratio. This means that in-
stead of any sample with a probability of over 0.5 getting a label 1 (as is the default),
we changed it to some other value, such as 0.7 or 0.3. Increasing the decision threshold
increases precision but reduces recall, while reducing the decision threshold reduces pre-
cision but increases recall. With these two adaptations, we generated a wide range of
precision and recall values for our text mining algorithm. We used decision thresholds 0.1
up to 0.9 in increments of 0.1. The result of changing the split size and decision threshold
is a big table mapping these values to each other, with for each combination the precision,
recall, F1 score, AUROC, slope, intercept and CITL.

3.7 evaluation of results

With the experiments done, we now have numerous data points that connect the split
size and the decision threshold to the precision, recall and F1 score of the text mining
algorithm. These in turn connect to the discrimination and calibration metrics of the text
mining-based clinical prediction model. An example row with possible values can be seen
in Table 3.2. The different F1 scores are from the different amounts of data used for training
the text mining-based clinical prediction model and from adjusting the decision threshold,
and the AUROC score is the result of using that text mining algorithm in conjunction with
our text mining-based clinical prediction model. A data table consisting of 174 (split sizes ∗
decision thresholds = 18 ∗ 9) sample rows can be made for both the FFNN and the logistic
regression models. With the information from this table, we can answer RQb.
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Split size Decision threshold Precision Recall F1 Score AUROC Slope Intercept CITL

0.05-0.95 0.1-0.9 0-1 0-1 0-1 0.5-1 1 0 0

Table 3.2: A layout for what each row of our data looks like.
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The results include plots about various performance metrics of the prediction models, and
how they change given the adjustments in text mining performance.

To start this section off, we reestablish some terminology. When we talk about precision,
recall or F1 scores, that means we are talking about the performance of the text mining
algorithm. The text mining algorithm supplies us with 0 or 1 labels for the prediction
model to learn from, so we can calculate the precision, recall and F1 score based on the
true labels. When talking about AUROC or calibration metrics, this concerns the prediction
model. The prediction model calculates a probability representing the risk of mortality.
For terms like decision threshold, split size and reference model, refer to Section 3. The
colored plots will always be color coded in a way that green equates to the highest possible
outcome.

All plots will be added in full size to the appendix.1

4.1 text mining performance variations

The first section of our results will be about the text mining algorithm, and how we ad-
justed its performance by changing the split size and the decision threshold. In Figure
4.1 we can see the effect of changing the training data split size on the F1 score of the
positive label. Increasing the training data size increases the F1 score. The relation seems
asymptotic. The first 20% of training data accounts for 60% of the increase in F1 score,
after which the remaining 80% of data accounts for the last 40% of the increase in F1 score.
Figure 4.2 shows the effect of a change in decision threshold on the performance metrics
of the positive label. Interestingly, the optimal decision threshold seems to be below the
standard threshold of 0.5, at around 0.3. The further the threshold from that point, the
lower the F1 score. It also shows how the decision threshold changes the precision and
recall of the positive label. Moving the threshold to the right increases precision at the cost
of a lower recall, and moving the threshold left means that the recall increases at the cost
of precision. Interestingly, the recall seems to decrease linearly with the decision threshold,
while the precision has the shape of a logarithmic relationship with the decision threshold.
An optimal F1 score emerges at the intersection of the precision and recall.

1 Calibration curves for each of the trained models were also made. Some examples will be put in the ap-
pendix. They show some insight into the performance of a single model, but the figures shown in this section
summarize them, so we did not cover any of them individually.
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Figure 4.3 shows the precision/recall curve for the text mining model. In color the F1
score is indicated. As expected, the top right of the curve has the highest F1 score, since
the F1 score is the harmonic mean of the precision and recall.

Figure 4.1: The precision, recall and
F1 score for different split
sizes with an equal decision
threshold of 0.5.

Figure 4.2: The precision, recall and F1 score
for different decision thresholds
with an equal split size of 0.5.

Figure 4.3: The precision, recall curve with the F1 score as color.

4.2 interaction between prediction model and text mining model

The prediction model’s performance is analyzed in two components; discrimination and
calibration, as encouraged by Collins et al. [19], Steyerberg and Vergouwe [43] and Van
Calster et al. [44]. For discrimination we analyze the AUROC, for the calibration metrics
we analyze the calibration slope, the calibration intercept and the calibration in the large.
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4.2.1 Discrimination

4.2.1.1 Influence of the F1 score

In Figure 4.5 we can see the effect of the F1 score of the text mining model on the AUROC
of both prediction models, with a line indicating the model with a 0.5 decision threshold.
The trend is the same for both, where a higher F1 score leads to a higher AUROC. In the
logistic regression model, this is true for every data point on the line, while the FFNN
shows some noise and randomness, with some points having a lower AUROC despite a
higher F1 score. A relatively low F1 score of around 0.5 already yields an AUROC above
0.8, which is generally considered good [73, 74]. We can also see that a high enough F
score (in this case 0.8 seems high enough) can approximate the AUROC of the model
using the true labels. It should be noted that this relation between F1 score and AUROC
may be problem-dependent. The FFNN even manages to surpass the reference model for
some data points, but this can be attributed to the property of the FFNN having a random
initialization, meaning that the same parameters can lead to different models, and perhaps
a lack of optimization on the reference model. The AUROC for both reference models,
using the ground truth data instead of text mined data, are very close (logistic regression:
0.85, FFNN: 0.84).

(a) Logistic regression (b) FFNN

Figure 4.5: The AUROC of the LR model and the FFNN model for the F1 scores of the text mining
model.

4.2.1.2 Influence of shifting the decision threshold

Figure 4.7 shows how changing the decision threshold of the text mining model changes
the AUROC of the prediction model. Since we know from Figure 4.2 that a decision
threshold of around 0.3 leads to a higher F1 score and a higher F1 score leads to a higher
AUROC, this figure is somewhat implied, but it is still interesting to confirm that a de-
cision threshold of 0.3 led to the model with the highest AUROC for both FFNN and
logistic regression. Some explanations for this will be covered in Section 5.
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(a) Logistic regression (b) FFNN

Figure 4.7: The AUROC of the logistic regression model and the FFNN model for the different
decision thresholds of the text mining model, with an equal split size of 0.5.

4.2.1.3 Precision/recall curves

Figure 4.9 shows how the precision and recall of the text mining algorithm relate to the
AUROC of both prediction models. Again, the plot for both the FFNN and the logistic
regression model look very similar. We can see that a balanced precision and recall works
well for a high AUROC, with an optimum around 0.82 for both the precision and recall,
just like in Figure 4.3. However, a model with a slightly higher AUROC can be found on
the curve where the recall is slightly higher than the precision. So in this case, retrieving
more relevant samples was more important than only retrieving correct samples in order
to create the prediction model with the highest AUROC. Some outliers can be seen in the
bottom left. These occur when a combination of split size and decision threshold leads
to a text mining model that labels all samples with outcome value 0, for example, split
size 0.05 with decision threshold 0.9. This will lead to a recall and precision of 0, and the
AUROC will be 0.5 since the model has no information to learn from, and will predict that
all samples are of outcome 0.
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(a) Logistic regression (b) FFNN

Figure 4.9: The precision/recall curve with the AUROC as color for the FFNN model (reference
model AUROC: 0.84) and the logistic regression model (reference model AUROC: 0.85).

4.2.2 Calibration metrics

4.2.2.1 Influence of the F1 score

The same trend, where a higher F1 score leads to a model that more closely resembles the
reference model, continues for the calibration metrics as seen in Figures 4.11, 4.13, 4.15
we can see how the F1 score of the text mining model influences the calibration metrics
of the prediction models. Keep in mind that a perfect slope is 1, a perfect intercept is 0
and a perfect CITL is also 0. While for the AUROC comparisons a higher F1 score meant
a better model, in this case, the reference model is not better on all metrics than some of
the points in the graph, however this statement holds true for the points with the decision
threshold fixed at 0.5. In Figures 4.11a and b, we see that the intercept decreases past the
ideal intercept of 0 until they approach the reference model. In Figure 4.15a we also see
that an increase in F1 score decreases the CITL beyond 0, even though a CITL of 0 would
be ideal. For the Intercept and the CITL graphs for the FFNN, we see that a higher F1 score
leads to a better performance in that metric.
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(a) Logistic regression (b) FFNN

Figure 4.11: The calibration slope of the prediction models for the F1 scores of the text mining
model.

(a) Logistic regression (b) FFNN

Figure 4.13: The calibration intercept of the prediction models for the F1 scores of the text mining
model.

(a) Logistic regression (b) FFNN

Figure 4.15: The calibration in the large of the prediction models for the F1 scores of the text mining
model.
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4.2.2.2 Influence of shifting the decision threshold

The influence of the decision threshold, as seen in Figures 4.17, 4.19 and 4.21, seems quite
uniform across the intercept and calibration in the large for both prediction models, but the
slope increases with a shift of the decision threshold to the right for the logistic regression
model, while for the FFNN model the opposite is true. This means that the logistic re-
gression model becomes more moderate (predicted probabilities closer to the average) the
fewer samples it has to learn from, whereas the FFNN becomes more extreme. The logistic
regression has the best slope of around 1 (optimal is 1) at decision threshold 0.1, while
the FFNN has the best slope it can achieve at 0.2. The intercept increases for both models
as the decision threshold shifts to the right, and both models see an intercept closest to
optimal (0) around 0.5 or 0.6. The calibration in the large also increases for both models as
the decision threshold shifts to the right, but the FFNN crosses the optimal CITL (0) at a
decision threshold of 0.3, the logistic regression model only gets closer but never reaches
it.

(a) Logistic regression (b) FFNN

Figure 4.17: The calibration slope of the prediction models for the different decision thresholds of
the text mining model, with an equal split size of 0.5.

(a) Logistic regression (b) FFNN

Figure 4.19: The calibration intercept of the prediction models for the different decision thresholds
of the text mining model, with an equal split size of 0.5.
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(a) Logistic regression (b) FFNN

Figure 4.21: The calibration in the large of the prediction models for the different decision
thresholds of the text mining model, with an equal split size of 0.5.

4.2.2.3 Precision/recall curves

In Figures 4.23 - 4.27, the precision/recall curves are shown for each of the calibration
metrics. Keep in mind that the scale is not always the same for both models; for example,
the logistic regression model has a bigger range of values for the slope than the FFNN.
Still, the green dots represent the models with the best value for that metric. Important to
pay attention to are the points in the top right. With some exceptions, the top right areas
are greenest, indicating the best performance measures can be found when precision and
recall are balanced. Interestingly, the CITL seems to increase with a higher precision for
the logistic regression model, even at a high recall cost. This is not the case for the FFNN.

(a) Logistic regression (b) FFNN

Figure 4.23: The precision/recall curve with the calibration slope as color for the prediction models.
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(a) Logistic regression (b) FFNN

Figure 4.25: The precision/recall curve with the calibration intercept as color for the prediction
models.

(a) Logistic regression (b) FFNN

Figure 4.27: The precision/recall curve with the calibration in the large as color for the prediction
models.



5
D I S C U S S I O N

In this section, we discuss the results and talk about the implications they have for future
research, and how they can be used in practice to create better text mining- and predic-
tion models. We will also discuss some limitations of this project and how they could be
improved upon.

We start by looking at the influence of changing the decision threshold and split size
on the performance of the text mining algorithm (RQa). Then we will look at the effect of
changing those attributes on the prediction model (RQb). We will also address the differ-
ences between our logistic regression model and our feedforward neural network (RQc).
Combining these answers will allow us to answer the primary research question: "When
using a text mining algorithm for extracting clinical prognosis outcome data, how does
the performance of the text mining algorithm (precision, recall, F1 score) affect the per-
formance of the prediction models (discrimination and calibration) trained on that mined
data?".

5.1 research questions

5.1.1 Secondary Research question a.

As we could see in Section 4.1, increasing the split size leads to an increase in the F1
score. More data would yield a slightly higher F1 score, but more data does not seem to
increase the F1 score after an F1 score of around 0.8. Since the increase in F1 score for the
last 40% in training data is small, performance would not have decreased much (judging
by precision, recall and F1 score) if there was 40% less data available for this particular
problem. The recall also increases with more data, meaning that the text mining model
retrieves more relevant information the more training data it has. The precision decreased
when the split size increased. This is because our model with very little training data only
rarely classifies a sample with a 1 label, so when it does happen it is quite ’certain’ of its
decision. As we increase the training data, the model learns more associations between the
training data and the outcome variable, so it will label more samples with a 1 label. The
precision remains relatively high throughout but shows a slight decline, which indicates
that precision is quite a poor performance metric by itself.

The decision threshold had a large impact on the text mining performance as well. This
makes sense since a high decision threshold resulted in almost no samples being labelled as

32
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1, whereas a low decision threshold resulted in almost all samples being labelled as 1. This
is reflected in the precision and recall values for each of the decision thresholds. A high
decision threshold means that only samples with a high probability of having label 1 are
given label 1. The recall will increase by default by increasing the number of samples that
are classified with a 1 label unless all those classifications are of samples with an outcome
of 0 (which of course is possible, but gets rarer the more classifications are performed).
Interestingly, the optimal F1 score for label 1 is achieved at a decision threshold of 0.3,
which could be an artifact of the fact that the text mining model minimizes the log loss.
Since our goal is to maximize the F1 score of label 1, this is not always in agreement with
the model with the lowest loss, since this loss function is biased towards the majority class.
Adjusting the decision threshold manually is one way to fix this.

The extracted outcome variable we have chosen for this research is well-suited for text
mining, due to the high F1 score that can be achieved (around 0.8). Even with a rudi-
mentary algorithm as tf-idf, which ignores word order and context, we achieve quite good
results. We presume this is in part due to the fact that mortality is almost always included
in the discharge summary, so it should theoretically be minable for most of the discharge
summaries. We also presume that discharge summaries are less context-driven because
they contain many keywords and fewer sentences than texts for typical text mining prob-
lems. Since text mining models like BERT are particularly good at context-related tasks in
contrast to tf-idf, we expect that in this case, the difference in performance would not be
that big. This hypothesis would also explain why tf-idf performs well for this task. Other
outcomes could give different results, which would be interesting to explore as well.

5.1.2 Secondary Research question b.

The decision threshold has a big influence on both the calibration and the discrimination of
the prediction model. In our case, a lower decision threshold of around 0.3 gave the highest
AUROC, and some calibration metrics were improved as well. One possible explanation
for why a lower decision threshold leads to a higher AUROC is that it allows the text
mining algorithm to include patients that are more likely to die than others. This gives
the prediction model more high-risk samples to learn from which might be the reason
that it can discriminate between the models better. From Table A.1, we can also see that
moving the decision threshold can lead to models with limited text mining training data
still giving a high AUROC score. Notice the first 9 rows, where the split size is 0.05. With
a decision threshold of 0.5, an AUROC of only 0.62 is achieved, due to the limited amount
of positive samples being retrieved (recall of 0.01). Moving the decision threshold to 0.2
leads to a big F1 score increase, and thus a big AUROC increase as well. The model can
later be recalibrated to increase the calibration metrics.
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5.1.3 Secondary Research question c.

Our results show us that the logistic regression and FFNN models perform extremely sim-
ilar regarding AUROC. This is in line with research done by Dreiseitl and Ohno-Machado
[75], who established based on a meta-analysis that neither model performs significantly
better than the other. On the calibration metrics the FFNN performs better, with the ex-
ception that the logistic regression model has a better CITL even when the F1 score is
lower. A downside to the FFNN models is that due to their random initialization, the res-
ults might vary from run to run. This means that analysis of the performance metrics is
slightly harder and might sometimes require repeatedly training a model to rule out a
better alternative. Deciding which model to use depends on which of these properties is
valued more highly.

5.1.4 Primary Research question 1.

In Section 4 we saw that a better F1 score was associated with better discrimination and
calibration closer to that of the reference model. Since increasing the text mining training
data size leads to a better prediction model, more training data needs to be gathered and
sometimes manually annotated, which may be costly. For this reason, we would recom-
mend creating some training data, and plotting the precision, recall and F1 score against
the amount of training data used (as in Figure 4.1). Based on the trajectory of the line it
may be determined whether more training data is required. In our case study, a text min-
ing model with a relatively low F1 score of 0.5 could already create a prediction model
with an AUROC of 0.8 (Figure 4.5). If 0.8 would be considered a high enough AUROC for
our problem, we can then read in Figure 4.1 that we only needed about 20% of our training
data, which could save around 80% of the training data collection effort. In other words, if
we incrementally increased our training data, figured out which decision threshold is best
and analyzed the figures named above, we would have been able to conclude at 5% of our
training data that we did not need to gather any more.

5.2 implications for clinical prediction model development

Analysis of the precision, recall and F1 score versus the discrimination and calibration can
be done for any setting of interest, and can be done iteratively; create the plots, determine
whether the F1 score line has flattened, and if not, gather more training data and repeat. It
also shows the relation between F1 score and AUROC for the setting of interest, which can
give insight into whether text mining is suitable, and whether a lacking prediction model
performance can be attributed to a poor text mining model. It also opens up possibilities
to use a text mining algorithm created by others. Using a text mining algorithm created by
others without making any adjustments could result in calibration problems or a poorly
performing prediction model. However, by validating the text mining model on a part of
your training data some of these problems may be prevented. First, it should be checked
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whether a sufficient F1 score can be attained by the text mining model and whether the
decision threshold should be adjusted. Then, a prediction model may be created based on
the data generated by the text mining model. The same training data used in validating
the text mining model may be used if training data is scarce and hard to acquire. This
prediction model should then be evaluated on AUROC and calibration metrics.

5.3 limitations and future research

While the data gathered from this research provides a clear insight into the research ques-
tions posed, there are some limitations. Fixing these limitations would allow for a more
generalized answer to the research questions. First of all, determining the relation between
text mining performance and prediction model performance for other outcome variables
(such as sepsis) could give new insights based on different settings of interest, and could
show that the conclusions reached in this project are generalizable across different project
settings. If the results are consistent with ours, it would solidify the conclusion of our re-
search. Secondly, a different text mining algorithm should also be tested. This was initially
planned but scrapped when we realized that tf-idf performs quite well on this task. Since
we wanted the performance range of our text mining model to be as big as possible we
thought we would need to include a more sophisticated text mining algorithm, but tf-idf
by itself could create a large enough range. It would still be interesting to see if anything
notably changes when another algorithm is used. It would also be interesting to perform
a grid search for every split size and decision threshold combination so that each model is
optimized for the data it uses. In future research this would be an interesting addition as
it might slightly change the results. Another limitation is that we used internal data to test
with. For our research purpose this is fine, but to make our findings more applicable to the
medical field it would be interesting to see our analysis performed on a separate external
data set from another medical institution to test and validate on. This situation, where
a text mining model is created by an organization and adopted by another for usage in
their own prediction model, would pave the way for broader text mining usage in clinical
prediction models. It is therefore a valuable next step to consider.
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A P P E N D I X 1

a.1 code repository

The code can be found at https://github.com/zwierd99/ClinicalTM. Keep in mind that
this code will not run without having the MIMIC-III database. However, for transparency
and completeness the code is shared.

a.2 calibration curves
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Figure A.1: The calibration curve of the FFNN reference model on the test set.

Figure A.2: The calibration curve of the logistic regression reference model on the test set.

a.3 data table

Table A.1: Data generated from our experiments from the Logistic Regression model. The split size
= 0.0 value is the reference model using the ground truth data.

Split size Decision threshold AUROC Precision Recall F1 score Slope Intercept CITL

0.00000 0.50000 0.84849 1 1 1 1.36956 -0.65799 -0.11040
0.05000 0.10000 0.80913 0.28000 0.96000 0.43000 0.76132 -2.36803 -0.34545
0.05000 0.20000 0.83182 0.68000 0.71000 0.69000 1.08360 -1.31554 -0.16791
0.05000 0.30000 0.81695 0.93000 0.30000 0.46000 2.09071 0.37949 -0.10626
0.05000 0.40000 0.75192 1.00000 0.08000 0.16000 4.08050 3.45686 -0.08473
0.05000 0.50000 0.62232 1.00000 0.01000 0.02000 17.36474 22.55112 -0.07898
0.05000 0.60000 0.50000 0.00000 0.00000 0.00000 0.12715 -0.00798 0.11557
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0.05000 0.70000 0.50000 0.00000 0.00000 0.00000 0.12715 -0.00798 0.11557
0.05000 0.80000 0.50000 0.00000 0.00000 0.00000 0.12715 -0.00798 0.11557
0.05000 0.90000 0.50000 0.00000 0.00000 0.00000 0.12715 -0.00798 0.11557
0.10000 0.10000 0.82546 0.31000 0.98000 0.47000 0.73134 -2.36795 -0.33126
0.10000 0.20000 0.83999 0.67000 0.85000 0.75000 0.99705 -1.52329 -0.18626
0.10000 0.30000 0.83583 0.86000 0.57000 0.69000 1.46123 -0.67984 -0.13313
0.10000 0.40000 0.81513 0.94000 0.31000 0.46000 2.13181 0.44234 -0.10493
0.10000 0.50000 0.77841 0.98000 0.13000 0.24000 3.07287 1.94853 -0.08975
0.10000 0.60000 0.73926 1.00000 0.05000 0.09000 6.21332 6.53938 -0.08154
0.10000 0.70000 0.68520 1.00000 0.01000 0.02000 19.58157 25.63759 -0.07905
0.10000 0.80000 0.50000 0.00000 0.00000 0.00000 0.12715 -0.00798 0.11557
0.10000 0.90000 0.50000 0.00000 0.00000 0.00000 0.12715 -0.00798 0.11557
0.15000 0.10000 0.83012 0.34000 0.98000 0.51000 0.70802 -2.27384 -0.30573
0.15000 0.20000 0.84090 0.67000 0.87000 0.76000 0.96783 -1.57457 -0.19022
0.15000 0.30000 0.83381 0.84000 0.70000 0.77000 1.24610 -1.00289 -0.14595
0.15000 0.40000 0.82787 0.90000 0.45000 0.60000 1.67501 -0.27240 -0.11785
0.15000 0.50000 0.80373 0.96000 0.25000 0.40000 2.40083 0.85419 -0.09985
0.15000 0.60000 0.77810 0.98000 0.13000 0.22000 3.13344 2.02506 -0.08964
0.15000 0.70000 0.74639 1.00000 0.05000 0.09000 5.86227 6.01723 -0.08204
0.15000 0.80000 0.72701 1.00000 0.01000 0.03000 20.11889 26.32341 -0.07921

0.15000 0.90000 0.50000 0.00000 0.00000 0.00000 0.12715 -0.00798 0.11557
0.20000 0.10000 0.83367 0.37000 0.97000 0.53000 0.72069 -2.22871 -0.29046
0.20000 0.20000 0.84359 0.67000 0.89000 0.76000 0.98563 -1.56402 -0.18972
0.20000 0.30000 0.83863 0.84000 0.74000 0.79000 1.22520 -1.06273 -0.14964
0.20000 0.40000 0.83332 0.92000 0.54000 0.68000 1.56177 -0.47946 -0.12481
0.20000 0.50000 0.81959 0.95000 0.35000 0.51000 2.16090 0.45316 -0.10542
0.20000 0.60000 0.79298 0.97000 0.20000 0.33000 2.75471 1.41814 -0.09393
0.20000 0.70000 0.77737 0.97000 0.08000 0.15000 4.35922 3.76834 -0.08572
0.20000 0.80000 0.73391 1.00000 0.03000 0.06000 8.80049 10.25465 -0.07998
0.20000 0.90000 0.59868 0.00000 0.00000 0.00000 51.64269 71.39243 -0.07858
0.25000 0.10000 0.83589 0.40000 0.97000 0.56000 0.72052 -2.16118 -0.27680
0.25000 0.20000 0.84422 0.69000 0.90000 0.78000 1.02828 -1.50652 -0.18573
0.25000 0.30000 0.84189 0.84000 0.76000 0.80000 1.26461 -1.04430 -0.15098
0.25000 0.40000 0.83470 0.91000 0.59000 0.72000 1.52589 -0.54649 -0.12746
0.25000 0.50000 0.82775 0.95000 0.40000 0.56000 2.03601 0.24454 -0.10954
0.25000 0.60000 0.80156 0.98000 0.25000 0.39000 2.69528 1.28763 -0.09600
0.25000 0.70000 0.78638 0.98000 0.11000 0.21000 3.68321 2.79407 -0.08767
0.25000 0.80000 0.73245 1.00000 0.05000 0.09000 7.15041 7.86989 -0.08097
0.25000 0.90000 0.63678 1.00000 0.00000 0.01000 26.54588 35.59491 -0.07881
0.30000 0.10000 0.83765 0.41000 0.97000 0.58000 0.74598 -2.10008 -0.26589
0.30000 0.20000 0.84316 0.69000 0.90000 0.78000 1.05763 -1.46606 -0.18301
0.30000 0.30000 0.84172 0.85000 0.78000 0.81000 1.25907 -1.05294 -0.15102
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0.30000 0.40000 0.83411 0.92000 0.61000 0.73000 1.50047 -0.58391 -0.12845
0.30000 0.50000 0.82770 0.95000 0.44000 0.60000 1.92227 0.06202 -0.11305
0.30000 0.60000 0.81125 0.97000 0.28000 0.43000 2.55771 1.03979 -0.09953
0.30000 0.70000 0.79175 0.98000 0.14000 0.24000 3.38751 2.32055 -0.09032
0.30000 0.80000 0.74853 1.00000 0.06000 0.11000 5.57642 5.60367 -0.08233
0.30000 0.90000 0.72276 1.00000 0.01000 0.03000 16.67751 21.45208 -0.07926
0.35000 0.10000 0.83617 0.43000 0.96000 0.59000 0.73768 -2.09029 -0.26426
0.35000 0.20000 0.84465 0.69000 0.90000 0.78000 1.03155 -1.50100 -0.18512
0.35000 0.30000 0.84353 0.84000 0.80000 0.82000 1.23790 -1.10014 -0.15350
0.35000 0.40000 0.83625 0.90000 0.65000 0.75000 1.43439 -0.69440 -0.13233
0.35000 0.50000 0.83110 0.93000 0.49000 0.64000 1.82066 -0.12234 -0.11783
0.35000 0.60000 0.81964 0.95000 0.35000 0.51000 2.22540 0.55415 -0.10413
0.35000 0.70000 0.79432 0.97000 0.19000 0.32000 2.99485 1.73425 -0.09315
0.35000 0.80000 0.77654 0.97000 0.10000 0.18000 4.78539 4.36189 -0.08493
0.35000 0.90000 0.74224 1.00000 0.02000 0.03000 14.44527 18.24455 -0.07946
0.40000 0.10000 0.83869 0.43000 0.96000 0.60000 0.75388 -2.06621 -0.25990
0.40000 0.20000 0.84569 0.70000 0.91000 0.79000 1.07348 -1.46802 -0.18393
0.40000 0.30000 0.84403 0.84000 0.81000 0.82000 1.24807 -1.09224 -0.15380
0.40000 0.40000 0.83742 0.90000 0.68000 0.77000 1.46065 -0.68530 -0.13363
0.40000 0.50000 0.83345 0.92000 0.54000 0.68000 1.75238 -0.22192 -0.11977
0.40000 0.60000 0.81996 0.95000 0.39000 0.56000 2.19373 0.48250 -0.10576
0.40000 0.70000 0.80222 0.97000 0.23000 0.37000 2.87705 1.53899 -0.09482
0.40000 0.80000 0.78707 0.98000 0.11000 0.21000 4.23719 3.55979 -0.08650
0.40000 0.90000 0.73468 1.00000 0.03000 0.05000 9.17748 10.78716 -0.07997
0.45000 0.10000 0.83843 0.44000 0.97000 0.60000 0.76809 -2.04707 -0.25749
0.45000 0.20000 0.84533 0.70000 0.91000 0.79000 1.07899 -1.46447 -0.18408
0.45000 0.30000 0.84384 0.83000 0.81000 0.82000 1.24379 -1.10661 -0.15494
0.45000 0.40000 0.83747 0.90000 0.70000 0.79000 1.41697 -0.74906 -0.13561
0.45000 0.50000 0.83239 0.93000 0.56000 0.70000 1.72177 -0.27252 -0.12139
0.45000 0.60000 0.82334 0.94000 0.42000 0.58000 2.05566 0.27778 -0.10895
0.45000 0.70000 0.80584 0.97000 0.25000 0.39000 2.85914 1.48311 -0.09601
0.45000 0.80000 0.78563 0.98000 0.13000 0.22000 3.77512 2.90005 -0.08798
0.45000 0.90000 0.73706 1.00000 0.04000 0.07000 9.48519 11.20224 -0.08012
0.50000 0.10000 0.83982 0.45000 0.97000 0.61000 0.78354 -2.03424 -0.25434
0.50000 0.20000 0.84487 0.70000 0.91000 0.79000 1.07016 -1.46962 -0.18399
0.50000 0.30000 0.84438 0.83000 0.83000 0.83000 1.25297 -1.09486 -0.15451
0.50000 0.40000 0.83834 0.90000 0.70000 0.79000 1.43559 -0.74181 -0.13638
0.50000 0.50000 0.83385 0.93000 0.57000 0.71000 1.65963 -0.37357 -0.12387
0.50000 0.60000 0.82899 0.94000 0.45000 0.60000 2.02214 0.20261 -0.11086
0.50000 0.70000 0.81122 0.96000 0.27000 0.42000 2.78496 1.36402 -0.09717
0.50000 0.80000 0.79005 0.98000 0.14000 0.24000 3.54759 2.56251 -0.08915
0.50000 0.90000 0.74099 1.00000 0.05000 0.10000 8.12504 9.24961 -0.08055
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0.55000 0.10000 0.84012 0.45000 0.97000 0.62000 0.77893 -2.01740 -0.25242
0.55000 0.20000 0.84573 0.71000 0.91000 0.80000 1.07433 -1.47281 -0.18464
0.55000 0.30000 0.84426 0.83000 0.84000 0.83000 1.24893 -1.11441 -0.15604
0.55000 0.40000 0.84064 0.89000 0.70000 0.79000 1.41349 -0.78121 -0.13796
0.55000 0.50000 0.83504 0.93000 0.58000 0.71000 1.61786 -0.43850 -0.12552
0.55000 0.60000 0.83046 0.94000 0.46000 0.62000 1.96071 0.10375 -0.11279
0.55000 0.70000 0.80956 0.96000 0.31000 0.46000 2.58259 1.07231 -0.09928
0.55000 0.80000 0.79561 0.97000 0.15000 0.26000 3.44173 2.39930 -0.08994
0.55000 0.90000 0.74380 1.00000 0.07000 0.13000 6.55591 7.01438 -0.08134
0.60000 0.10000 0.83994 0.46000 0.97000 0.62000 0.77067 -2.01402 -0.25063
0.60000 0.20000 0.84676 0.71000 0.91000 0.80000 1.08154 -1.46653 -0.18440
0.60000 0.30000 0.84521 0.84000 0.84000 0.84000 1.22198 -1.13941 -0.15687
0.60000 0.40000 0.84040 0.89000 0.73000 0.80000 1.41695 -0.78421 -0.13837
0.60000 0.50000 0.83647 0.92000 0.60000 0.73000 1.59769 -0.47233 -0.12685
0.60000 0.60000 0.83123 0.94000 0.48000 0.64000 1.95578 0.08557 -0.11363
0.60000 0.70000 0.81304 0.95000 0.33000 0.49000 2.47978 0.91720 -0.10072
0.60000 0.80000 0.79575 0.95000 0.17000 0.28000 3.39240 2.32215 -0.09024
0.60000 0.90000 0.75244 1.00000 0.08000 0.14000 6.74903 7.25209 -0.08163
0.65000 0.10000 0.84141 0.46000 0.97000 0.62000 0.78409 -2.00465 -0.24911
0.65000 0.20000 0.84647 0.71000 0.92000 0.80000 1.08398 -1.46056 -0.18399
0.65000 0.30000 0.84535 0.84000 0.86000 0.85000 1.23350 -1.13364 -0.15705
0.65000 0.40000 0.84030 0.89000 0.75000 0.81000 1.41101 -0.79977 -0.13933
0.65000 0.50000 0.83761 0.92000 0.62000 0.74000 1.60680 -0.48136 -0.12801
0.65000 0.60000 0.83016 0.94000 0.49000 0.65000 1.85454 -0.06264 -0.11620
0.65000 0.70000 0.81391 0.94000 0.36000 0.52000 2.35939 0.73687 -0.10266
0.65000 0.80000 0.80244 0.96000 0.19000 0.32000 3.27611 2.12246 -0.09185
0.65000 0.90000 0.75300 1.00000 0.09000 0.17000 5.65196 5.67761 -0.08265
0.70000 0.10000 0.84091 0.46000 0.97000 0.63000 0.79054 -1.99726 -0.24756
0.70000 0.20000 0.84701 0.71000 0.92000 0.80000 1.08852 -1.46361 -0.18444
0.70000 0.30000 0.84479 0.84000 0.85000 0.85000 1.23509 -1.14171 -0.15802
0.70000 0.40000 0.84060 0.90000 0.76000 0.82000 1.40389 -0.81910 -0.14051
0.70000 0.50000 0.83829 0.92000 0.63000 0.75000 1.59448 -0.50749 -0.12899
0.70000 0.60000 0.82896 0.94000 0.52000 0.67000 1.84283 -0.09040 -0.11694
0.70000 0.70000 0.81600 0.94000 0.37000 0.53000 2.34890 0.71265 -0.10311
0.70000 0.80000 0.80336 0.96000 0.20000 0.33000 3.31458 2.16918 -0.09182
0.70000 0.90000 0.74998 1.00000 0.10000 0.18000 5.61907 5.62234 -0.08287
0.75000 0.10000 0.84104 0.47000 0.97000 0.63000 0.80772 -1.98278 -0.24531
0.75000 0.20000 0.84735 0.71000 0.92000 0.80000 1.09682 -1.45373 -0.18354
0.75000 0.30000 0.84479 0.84000 0.86000 0.85000 1.24041 -1.14343 -0.15863
0.75000 0.40000 0.84140 0.89000 0.76000 0.82000 1.40853 -0.82773 -0.14154
0.75000 0.50000 0.83950 0.92000 0.64000 0.76000 1.58324 -0.52981 -0.12994
0.75000 0.60000 0.82988 0.94000 0.52000 0.67000 1.79817 -0.15383 -0.11813
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0.75000 0.70000 0.81968 0.94000 0.40000 0.56000 2.22000 0.53281 -0.10474
0.75000 0.80000 0.80740 0.96000 0.22000 0.35000 3.11512 1.87569 -0.09331
0.75000 0.90000 0.76239 1.00000 0.11000 0.19000 5.50060 5.41704 -0.08347
0.80000 0.10000 0.84116 0.47000 0.97000 0.63000 0.80617 -1.98047 -0.24490
0.80000 0.20000 0.84704 0.72000 0.92000 0.80000 1.07982 -1.46680 -0.18405
0.80000 0.30000 0.84398 0.84000 0.86000 0.85000 1.22881 -1.15309 -0.15864
0.80000 0.40000 0.84083 0.89000 0.77000 0.82000 1.38761 -0.85304 -0.14213
0.80000 0.50000 0.83949 0.92000 0.64000 0.76000 1.57350 -0.54788 -0.13063
0.80000 0.60000 0.83082 0.94000 0.53000 0.68000 1.74489 -0.23087 -0.11950
0.80000 0.70000 0.82181 0.94000 0.42000 0.58000 2.19251 0.47263 -0.10607
0.80000 0.80000 0.80554 0.97000 0.23000 0.37000 3.11270 1.86624 -0.09363
0.80000 0.90000 0.77297 1.00000 0.11000 0.19000 5.23518 5.01198 -0.08414
0.85000 0.10000 0.84075 0.48000 0.97000 0.64000 0.79637 -1.96740 -0.24231
0.85000 0.20000 0.84727 0.72000 0.92000 0.81000 1.07918 -1.46978 -0.18433
0.85000 0.30000 0.84473 0.84000 0.86000 0.85000 1.22707 -1.15862 -0.15899
0.85000 0.40000 0.84061 0.89000 0.77000 0.83000 1.38970 -0.85660 -0.14263
0.85000 0.50000 0.83993 0.92000 0.66000 0.77000 1.56609 -0.57018 -0.13185
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0.85000 0.90000 0.78789 0.98000 0.12000 0.21000 4.90129 4.49639 -0.08506
0.90000 0.10000 0.84045 0.48000 0.96000 0.64000 0.79605 -1.95844 -0.24028
0.90000 0.20000 0.84716 0.72000 0.92000 0.81000 1.09031 -1.45676 -0.18354
0.90000 0.30000 0.84466 0.84000 0.86000 0.85000 1.22620 -1.16068 -0.15918
0.90000 0.40000 0.84178 0.89000 0.78000 0.83000 1.37508 -0.87757 -0.14345
0.90000 0.50000 0.84115 0.92000 0.66000 0.77000 1.54420 -0.59850 -0.13239
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0.95000 0.50000 0.84083 0.92000 0.67000 0.78000 1.53558 -0.61127 -0.13287
0.95000 0.60000 0.83341 0.94000 0.56000 0.70000 1.68588 -0.33014 -0.12245
0.95000 0.70000 0.82806 0.94000 0.45000 0.61000 2.05680 0.26207 -0.10950
0.95000 0.80000 0.80875 0.97000 0.27000 0.43000 2.74231 1.30589 -0.09751
0.95000 0.90000 0.78673 0.96000 0.13000 0.22000 4.55737 3.99919 -0.08589
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a.4 plots in full size



bibliography 47



48 bibliography

Figure A.3: Logistic regression

Figure A.4: FFNN
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Figure A.5: Logistic regression

Figure A.6: FFNN
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Figure A.7: Logistic regression

Figure A.8: FFNN
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Figure A.9: Logistic regression

Figure A.10: FFNN
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Figure A.11: Logistic regression

Figure A.12: FFNN
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Figure A.13: Logistic regression

Figure A.14: FFNN
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Figure A.15: Logistic regression

Figure A.16: FFNN
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Figure A.17: Logistic regression

Figure A.18: FFNN
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Figure A.19: Logistic regression

Figure A.20: FFNN
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Figure A.21: Logistic regression

Figure A.22: FFNN



58 bibliography

Figure A.23: Logistic regression

Figure A.24: FFNN



Figure A.25: Logistic regression

Figure A.26: FFNN
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