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Abstract 

Cancer dependencies are genes required for proliferation and survival in cancer cells, making them 
potential therapeutic targets. Cancer dependencies are often selective for subtypes of cancers, and 
are measured as conditional changes in fitness caused by genomic and molecular aberrations and 
are known as genetic interactions (GIs). However, cancer dependencies can be influenced by 
several factors, resulting in higher-order GIs, which are difficult to predict for any given cancer 
type. This has resulted in a varied success rate for the development and application of new targeted 
therapies. In order to systematically identify cancer dependencies and GIs, genome-wide 
CRISPR/Cas9 knock-out (KO) screens across pan-cancer libraries have been performed. Due to 
the limitations of large-scale screenings with multiple KOs, advanced computational strategies 
have to be used for inferring higher-order interactions and predicting cancer dependencies based 
on the molecular characteristics of the cancer cells. 

In this study, we show a robust method to infer GIs from pan-cancer CRISPR screens based on the 
genetic and transcriptional background of the cancer cells. Pairwise GIs were inferred by predicting 
fitness change from CRISPR/Cas9-mediated gene deletion using multivariate penalised linear 
regression, combined with null-hypothesis testing. Furthermore, we developed an XGBoost 
approach, where regression tree structures were mined for variable interactions, to discover 
potential complex higher-order interactions from transcriptional changes between cancer cells. 
Novel GIs were subsequently mapped and analysed in a genome-wide GI network. 

In conclusion, our study shows a robust framework for predicting complex GIs involved in the 
regulation of cancer fitness.   
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Layman’s summary 

Cancer is a complex genetic disease and extensive research has been done to find novel treatments. 
Despite the amount of work and money put into this research, a lot of promising potential 
treatments fail to become an approved drug. Due to high genomic and molecular variability 
between cancers, research is shifting towards personalised medicine. One approach for a more 
personalised treatment is to identify the so-called cancer dependencies. Cancer dependencies are 
genes that are required for proliferation and survival in cancer cells. These dependencies are often 
selective across subtypes of cancers.  

To identify cancer dependencies, a so-called CRISPR/Cas9 screen can be used. A CRISPR screen 
investigates the effect of the loss of a single gene on the fitness (survival) of a specific cancer. To 
systematically study this, a CRISPR screen can be used that will consider the whole genome, by 
subsequentially knocking out every single gene in a specific cancer. This has been performed over 
a broad range of cancer cell types. Although these screens are powerful tools to find cancer 
dependencies and genetic interactions, it won’t show complex interactions between the genes. 
Therefore, computational approaches have to be used to identify complex genetic interactions 
involved in cancer fitness.   

In this study, we used statistical and computational methods to infer genetic interactions across a 
broad range of cancer cell types.  We obtained data from a public database that contained results 
of a whole-genome CRISPR screen of many cancer cell lines. In addition, the molecular 
characteristics of these cancer cell lines, including gene expression, mutations and gene copy 
numbers were available. Using all data we inferred genetic interactions with a technique called 
multivariate penalised linear regression. The identified genetic interactions appeared to be highly 
enriched for functional relations, indicating that our approach is useful for predicting genetic 
interactions from molecular and genomic data of cancer cells.  

The second part of this study was to predict second-order genetic interactions. For this approach 
we used a machine learning technique which uses decisions trees for its prediction (XGBoost). The 
XGBoost algorithm assumes a hierarchical structure between the variables (genes), making it 
possible to extract variables as an pairwise interaction from the trees. The interactions obtained 
from the XGBoost trees are second-order interactions. The identified interactions appeared to be 
also highly enriched for functional relations. We selected the top hits of the second-order 
interactions for characterization and evaluation.    

In conclusion, our study shows a robust framework for predicting complex GIs involved in the 
regulation of cancer fitness.   

 



4 
 

Acknowledgements  

First of all, I want to thank Aram for the guidance and supervision throughout the internship. It has 
been such a pleasure working with you and you truly are a great supervisor. Not only did I learn a 
lot from you academically, but you were also a personal mentor for me. I really appreciated that. 
Secondly, I want to thank Jorrit for giving me the opportunity to do this internship in his lab and 
give me the experience to work in such a pleasant working environment. I would like to thank 
Jeroen for being my examiner from Utrecht. Next, Aram, Nathalia, Andrea, Eirik and Alberto I 
enjoyed the interesting discussions we had during our bioinformatics journal clubs, I learned a lot 
from you. Eirik, Alberto and Arno, thank you guys for the wonderful time in and outside the lab. 
In addition, I want to thank the rest of Jorrit’s group and the 6th floor for the pleasant time in the 
lab. Feyza it was nice to have you as an office buddy. Finally, I want to thank my Norwegian 
‘family’. I am really grateful for how you incorporated me into your family. My time in Oslo would 
not have been the same without you. So thank you, Kristian, Ingrid, Heidi, Hanne, Solveig, Sigur, 
Nicolai, Peter, Sverre and a very special thank you for Hilde. 

  



5 
 

Introduction 

Cancer is a complex disease caused by genomic instability1. Despite the extensive research put into 
the development of cancer drugs, the success rate of cancer drugs being approved for therapy 
remains low (~3%) 2. Due to high genetic variability within and between patient groups harbouring 
different types of cancer, treatment is shifting towards personalized medicine. In the field of 
personalized cancer medicine, the (molecular) characteristics of the tumour are being identified 
and exploited for treatment. The profiling of the tumour focuses on alterations that drive tumour 
progression, which covers a broad spectrum of aberrations. Among these characteristics are 
mutations, epigenetic and proteomic markers, transcriptional profiles, and drug sensitivity. 
Treatment is based on these tumour characteristics, which results in a targeted approach with less 
side effects. In recent years, the use of genomics in cancer treatment has taken a more significant 
role3,4. The research for novel treatments is heading towards learning about the complexity of 
tumours and the predicted response to a given treatment option3,5,6. Genes that are selectively 
required for cancer cell proliferation and survival, are so called cancer dependencies, which makes 
them potential therapeutic targets7. Cancer dependencies are often selective for subtypes of cancers, 
and are measured as conditional changes in fitness caused by genomic and molecular aberrations 
and are known as genetic interactions (GIs). 

A GI between two genes occurs when the fitness consequence of a double loss-of-function (LOF) 
mutant is different from the expected fitness based on the single LOF mutants alone. If the fitness 
of the double mutant is lower than expected, it is called a negative GI. An extreme case of a negative 
GI is called synthetic lethality, in which a double mutant is not viable, although the single mutants 
are. In case two mutations lead to a higher fitness than what is expected, it is considered a positive 
GI8,9. The concept of synthetic lethality has been around for a long time, and was described already 
one century ago10,11. However, it was not till 1997 when Hartwell and his colleagues proposed to 
use synthetic lethality for designing cancer drug treatments12. This research led to novel genetic-
drug interactions, which are currently used in cancer treatment. The use of synthetic lethality in 
cancer treatment has been extensively and excellently reviewed13,14. The most well-studied case of 
this concept which has successfully been implemented in the clinic is for breast cancer patients 
with a LOF BRCA1 or BRCA2 mutation. Breast cancer tumours with this mutation are susceptible 
to Poly (ADP-ribose) polymerase (PARP) inhibitors. BRCA1 and BRCA2 are both tumour 
suppressor genes involved in the repair of double stranded breaks (DSBs) of the DNA15. PARP1 
and PARP2 are enzymes that activate the DNA-damage response after sensing DNA damage16. 
The loss of BRCA1/2 results in a dependency of PARP1/2 for the DNA damage response. Healthy 
cells which do not harbour a mutation in their BRCA1/2 genes remain healthy after PARP-
inhibition17, resulting in a targeted cancer therapy. The BRCA and PARP genes are involved in the 
same functional process, which is often the case for negative GIs, making them susceptible for 
targeted therapy.  
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Although the concept of synthetic lethality is promising for personal treatment, its use has been 
limited in the clinic13. In recent years, extensive research has been conducted and many novel 
synthetic lethal interactions have been found in cancer cells18–21. Recent advances in high-
throughput assays have enabled researchers to conduct large genome-wide screens with many 
cancer cell lines to identify selective dependencies in cancer cells. Genome-wide CRISPR/Cas9 
knock-out (KO) and drug screens are powerful tools to identify novel synthetic lethal pairs. In 
addition to the CRISPR and drug screens, cancer cell lines can be characterised for their mutations, 
transcriptional and epigenetic profile. Finding novel synthetic lethal interactions can thus be 
inferred from genetic and chemogenetic screens, together with the characterization of the cancer 
cell line22. 

As it comes to genome-wide KO screens in model organisms, a large amount of work has been 
performed over the last years in the budding yeast Saccharomyces cerevisiae. Systematically high-
throughput screens revealed a global GI network9. Further attempts to expand the GI network in 
yeast were initiated and more recently, trigenic and digenetic-environmental interactions have been 
revealed23,24. Whereas systematic screening in yeast for di- and trigenic interactions is feasible and 
has been carried out, in human cell lines this is more challenging. The number of human genes is 
one of the limiting factors for performing systematically screens for double (or higher up) CRISPR 
KOs. A more cancer specific burden is the high variety of different cancer cell lines, including 
differences in the tissue of origin, but also in mutations. Nevertheless, a recent study conducted a 
CRISPR interference screening over more than 200.000 gene-pairs in two human cancer cell lines 
and established a template for the genetic landscape of human cells25. Furthermore, a CRIPSR 
interference screening was performed for identifying synergistic drug targets and pairwise genetic 
interactions in a leukaemia cell line26.   

As cancer is a complex genetic disease there is a huge genetic variation between the different cancer 
subtypes. The variation occurs in many molecular and genomic factors and may influence the GIs. 
Understanding these variations could improve the development of drugs and their success. To 
address this problem, molecular and genomic characterization have been performed with a broad 
range of cancer cell lines to create a pan-cancer genome-wide analysis7,27,28. This research is 
focused on finding cancer dependencies across cancer cell lines. In 2017, Tsherniak and colleagues 
published an initial framework for a human cancer dependency map with a loss of function pan-
cancer screen. The cancer dependency map can be used to identify genes essential for cell survival 
across cancer cell lines and these dependencies can be exploited for targeted treatments7. The 
research to establish a cancer dependency map has been continued by the Broad Institute in 
collaboration with the Wellcome Sanger Institute, and every quarter of a year they release an 
updated pan-cancer screening which is made public through the DepMap portal. The DepMap 
portal also provides genetic background of the cancer cell lines, provided by the Cancer Cell Line 
Encyclopedia (CCLE). The genetic background includes gene copy numbers, gene expression and 
mutations. Whereas the initial Cancer Dependency Map was created with RNAi screens, the 
current LOF screens are nowadays performed with CRISPR/Cas9. Although both institutes 
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perform their own screens, they made it possible to combine their screens to generate a larger pan-
cancer dataset29.  The use of these large pan-cancer datasets has been valuable in novel targets for 
in the clinic and has been recently reviewed30. 

Due to its limitation of performing systematic double (or higher up) KO screens in human cell 
lines, advanced computational strategies can be exploited to find potential GIs, such as novel 
synthetic lethal interactions and higher-order interactions. The genetic variability and the 
complexity of cancer cells makes it important to look further than pairwise interactions. Higher-
order interactions are important for cancer survival due to the multivariate nature of cancer cells. 
These higher-order interactions can also play a role in drug resistance. The initial treatment can 
influence the gene expression which could lead to drug resistance cancer cells. Therefore, the 
transcriptional modulation of higher-order interactions could be important for drug sensitivity. 
Whereas finding synthetic lethal interactions in cancer has been subject of interest over the last 
years, less research has been conducted in finding higher-order interactions in genome-wide cancer 
screens31,32. 

In this study we investigated potential novel synthetic lethal interactions from a pan-cancer 
CRISPR screen and a genetic LOF dataset. Another aim of this study was to find higher-order GIs. 
We focused on higher-order GIs in gene expression, to study transcriptional modulation of the 
fitness outcome and its potential regulatory influence on GIs. We created a robust machine learning 
algorithm to extract second-order interactions from the structure of boosted tree models. In 
addition, we mapped a global GI network across pan-cancer cell lines with second-order GIs and 
characterised the functional processes of these genes.  
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Methods  

Data availability  

All data was obtained from the DepMap portal (www.depmap.org). For initial model optimizations 
and testing we used the data from the 21Q1 release which included datasets of pan-cancer CRISPR 
screens and molecular characteristics of cell lines33. We obtained the following files: 
‘Achilles_gene_effect.csv’, ‘CCLE_expression.csv’, ‘CCLE_gene_cn.csv’ and 
‘CCLE_mutations.csv’. The Achilles gene effect dataset contains the results of a pan-cancer 
CRISPR KO screen of 808 cell lines. For the CRISPR screen the genome-wide Avana sgRNA 
library34 was used to target 18,119 genes. The effect of the gene copy numbers on the gene effect 
score (fitness perturbation) was corrected by the CERES algorithm35 and corrected for the batch 
effect. The gene effect score was normalized for a set of essential and nonessential genes36 resulting 
in a score of 0 for a nonessential gene KO and -1 as the median for an essential gene KO33. The 
whole pipeline of the Achilles CRISPR screen has previously been described37. 

The three CCLE datasets contain molecular characteristics of the cancer cell lines with 
respectively, gene expression, gene copy numbers and mutations. The gene expressions were 
measured of 19,177 genes in 1,376 pan-cancer cell lines with RNA sequencing. The data has been 
processed with a pseudo-count of 1 and a log2 transformation28,33. The gene copy numbers were 
measured of 27,563 genes in 1,470 pan-cancer cell lines and obtained from whole genome 
sequencing (WGS), whole exon sequencing (WES) or single nucleotide polymorphism (SNP) 
arrays. The gene copy number data has also been processed with a pseudo-count of 1 and a log2 
transformation28,33. The mutations data contained information from 1,747 cancer cell lines and 
18,788 genes and was obtained from WGS, WES or RNA-sequencing33. The pipelines for the 
CCLE data can be obtained from the GitHub of the Broad Institute 
www.github.com/broadinstitute/depmap_omics.  

For the final analysis of the second-order interactions, we used the data from the 21Q4 DepMap 
release and obtained the following files: ‘CRISPR_gene_effect.csv’ and ‘CCLE_expression.csv’38. 
The CRISPR gene effect dataset also contains the fitness perturbation of a CRISPR screen, the 
same as the Achilles gene effect, but the CRISPR gene effect data is a combined dataset of the 
CRISPR screens of both the Wellcome Sanger and the Broad Institute29. Another difference is that 
the CRISPR gene effect has been processed with the Chronos algorithm instead of the CERES 
algorithm39. 

All data was processed and analysed with statistical programme R (version 4.1.1) and RStudio 
version (2021.09.0)40,41. 
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Data preparation  

The CRISPR dataset was first standardized over each cell line to align the fitness distributions of 
the individual CRISPR screens. In order to perform genome-wide regression over each CRISPR 
gene target using a common set of hyperparameters, we also standardized the fitness distribution 
of each gene. Subsequently for the linear regression, the mean and standard deviation of each 
CRISPR gene target were kept to re-scale the estimated coefficients. The gene expression dataset 
was also standardized over each gene in order to reduce uneven penalization and variable selection 
based on variations in gene expression magnitude.  

A binary LOF dataset was created from the mutation and the gene copy number datasets. Genes 
with deleterious mutations or copy-number aberrations resulting in homozygous gene deletions 
were counted as a LOF event for a given cell line. The final LOF dataset was filtered to only include 
genes with a coverage of LOF events in at least 1% of all the cancer cell lines.  

 

Multivariate penalised linear regression  

A multivariate penalised linear regression was performed to predict the fitness perturbation of the 
CRISPR screen with two different sets of independent variables, the gene expression and the LOF 
data. The outcome of the linear regression showed GIs between the CRISPR genes and the gene 
expression or the LOF genes as the magnitude of the fitted coefficients. Before performing the 
penalised linear regression, we removed cell lines if they were not present in both datasets. The R 
package ‘glmnet’ was used for carrying out the regressions42. 

To optimise regularisation parameters for the penalised linear regressions, we first randomly 
selected 200 genes of the CRISPR dataset and performed a five-fold cross-validation (CV) pilot 
run. The CV was used for selecting the optimal penalty (λ) for three regularisation approaches. The 
L1-penalisation of Lasso regression, and the L2-penalisation of Ridge regression, and Elastic Net 
regression which combines both L1- and L2-penalisation. We selected the penalty with the best 
average CV-error over the 200 genes. Subsequently, Ridge, Elastic Net and Lasso regressions were 
performed over the whole genome using their complementary pre-selected penalties.  

To obtain a null distribution for the estimated interactions we subsequently performed additional 
linear regressions by scrambling either the independent variables (H0 X) or the predicted outcome 
(H0 y). These null distributions were estimated the same way as the regression as described above. 

 

Synthetic lethal interactions 

To find potential synthetic lethal interaction we used the LOF dataset to predict the fitness 
perturbation of the CRISPR screens with the Lasso and Elastic Net regressions. To validate our 
findings, we computed a precision-recall and ROC curves with validated human synthetic lethal 
interactions from the SynLethDB database43. These were evaluated against a potential negative 
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reference set of interactions with non-essential genes described by Hart and colleagues36. We 
computed a gene-wise p-value and a q-value (false discovery rate (FDR)-adjusted p-values) for the 
interactions inferred from the regressions. The p-value and q-value were computed against their 
null-distribution generated with the scrambling for each covariate in the model and were used for 
adjusting the rank order of the interaction coefficients.  

 

Gene set enrichment analysis  

A gene set enrichment analysis (GSEA) of gene ontology (GO)-terms was performed over the 
number of GIs obtained from the Elastic Net per CRISPR gene. We selected the class of ‘Biological 
Processes’ of the GO-terms. The GSEA was accomplished with the R package ‘clusterProfiler’44. 
GO-terms with a p-value < 0.05 were selected. To reduce the redundancy of the obtained GO-
terms, we performed semantic similarity using the Wang method 45 with a similarity cut-off < 0.5.  

 

XGBoost hyperparameter searches 

To find non-linear and higher-order interactions between the genes of the gene expression, we used 
extreme gradient boosting (XGBoost) with the R packages ‘xgboost’ and ‘EIX’46,47. Variables with 
non-zero coefficients from the Elastic Net regression of the gene expression dataset served as a soft 
variable pre-selection for the XGBoost in order to reduce the dimension of evaluated variables. 

For optimizing the test error of predicting the fitness perturbation with the preselected variables 
with the XGBoost algorithm, we ran a hyperparameter over a broad range of values of the different 
parameters to establish an approximate range for the best solution. These parameters consisted of 
the learning rate (eta), minimal child weight and the maximum depth of the trees. This 
hyperparameter search was performed with a five-fold CV and the top 10 ranked CRISPR genes 
with the highest absolute coefficient sum of the Elastic Net regression. Per CRISPR gene we 
selected the number of iterations based on the lowest CV-error and performed a final XGBoost 
model with all the samples of the preselected variables and fitness perturbations. 

Another hyperparameter search was conducted with the top 200 ranked CRISPR genes with the 
highest absolute coefficient sum of the Elastic Net. This hyperparameter search focussed on the 
subsampling and the column sample per tree and used a fixed learning rate, minimal child weight 
and maximum depth of the trees. This hyperparameter search was performed the same way as 
previous described above. 
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Second-order interactions  

To extract interactions between the covariates of the gene expression genes, we mined the structure 
of the boosted trees with the EIX package. An interaction pair is considered between parent and 
child nodes in a tree. The XGBoost algorithm uses a Gain score to evaluate the split of a growing 
tree. The Gain is used by the EIX package to calculate a sumGain which sums the Gain of the 
interaction pair present in all the trees of the model. If the Gain of a child node is higher than its 
parent node, this is considered to be a strong interaction. Another evaluation measurement of a 
single features is the Frequency. The Frequency score measures the frequency of a single feature 
in all the trees of the model. In addition to the sumGain, the EIX package also provides the 
frequency of a given pair in all the trees of the model.  

For further optimization of finding interactions within the structure of the boosted trees, we ran 40 
random XGBoost models for the same fitness perturbation prediction and created ensembles of the 
extracted interactions, to test the pooling of models trained under random subsampling of the 
training data for the gene expression in the XGBoost model. The data was divided into a test and 
training dataset, to evaluate model performance in relation to model structure. The test dataset was 
established by selecting 10 cell lines from different clusters based on their gene expression after 
dimension reduction with the Uniform Manifold Approximation and Projection (UMAP) 
algorithm. The 10 different clusters were created with k-means clustering48.  

The second-order interactions selected for preliminary evaluation in a genome-wide GI network 
with hypernodes were obtained after a five-fold CV for the whole genome for preselecting CRISPR 
targets based on a cut-off of 0.9 of the CV round mean squared error (RMSE). After preselecting 
the CRISPR targets, we performed the same procedure with 40 XGBoost models as described 
above. The obtained interactions were ranked by their sumGain. We performed a Fisher exact test 
for cumulative PPI enrichment and set a cut-off at a p-value of 0.001. The selected second-order 
interactions were used to expand the gene expression dataset and were modelled as an interaction 
term of the two single genes of the second-order interaction. This extended gene expression dataset 
was used for the multivariate penalised linear regression and the same procedure was performed as 
previously described.  

 

Protein-protein interactions enrichment 

The interactions obtained from the linear regressions and the XGBoost trees were scored for their 
enrichment of experimentally validated protein-protein interactions (PPIs) from the STRING 
database49. First, all the unique genes which formed an interaction were extracted and the chance 
of a randomly validated PPI interaction was established. Secondly, the interactions found were 
ranked by the sum of the value of interest (coefficient, sumGain or frequency). The percentage of 
validated PPIs of the ranked interaction were calculated for multiple cut-offs, based on a quantile 
or rank. The enrichment score was then obtained by calculating the fold-change of the percentage 
of found interactions versus the random chance.  
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Genome-wide genetic interaction map  

The UMAP algorithm was used to create genome-wide GI maps. The UMAP algorithm is a 
technique for dimension reduction 48, and we used the Pearson squared correlation as a distance 
metric. We used the interactions and the coefficients obtained from the Ridge regression of the 
gene expression data for the initial GI map and the GI map with the second-order interactions. In 
the projected genome-wide GI map, clusters were created by k-means clustering with 100 clusters 
and annotated for their enriched ‘Biological process’ from the Gene Ontology (GO) Term 
Enrichment database44,50. 
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Results 

Workflow 

In this study, we used the L1-regularised linear regression with Lasso and Elastic Net which 
combines both L1- and L2-penalisation, to infer GIs from pan-cancer CRISPR screens based on 
the genetic and transcriptional background of the cancer cells (figure 1a). This technique was used 
for both the gene expression and LOF datasets and predicted the fitness perturbation of the CRISPR 
screen. L1-regularisation using Lasso is a reliable method for finding causal inference by strongly 
penalising multicollinear structures that exist in biological omics data51–53. Additionally, the Elastic 
Net regression was used to preselect candidates for inferring second-order GIs, being a softer 
variable selection method compared to Lasso. These methods were benchmarked for enrichment 
of PPIs and detection of synthetic lethal interactions between the selected covariates and their 
respective CRISPR targets (figure 1b). 

On the other hand, we used the L2-regularisation Ridge regression to map a genome-wide GI 
network based on the correlative fitness structure of gene expression. Functional similar genes 
cluster together within the network with a correlated fitness interaction profile9,54. We used the 
Ridge regression in order to preserve a continuous parametric fitness interaction spectrum for the 
whole genome. The UMAP algorithm was used for dimension reduction to create a two-
dimensional network (figure 1b).   

The XGBoost algorithm was used for predicting higher-order non-linear fitness dependencies. We 
mined the structures of the XGBoost trees to establish second-order interactions. To improve the 
inference of true interactions, we benchmarked the methodology for enrichment of PPIs under 
various hyperparameter conditions. Second-order interactions discovered by the XGBoost 
algorithm were subsequently modelled as polynomials within the linear regression scheme in order 
to infer the directionality of the predicted fitness perturbations. In addition, we used the second-
order interaction for hypergraph mapping and functional annotation within a global GI network 
using Ridge regression and UMAP (figure 1c).  

 

 

 

 

 

 

 

 



14 
 

 

 

 

 

 

 

a 

b 

c 



15 
 

Multivariate penalised linear regression 

In order to infer GIs from the CRISPR screen and the independent variables, the gene expression 
or the LOF data, we performed a multivariate penalised linear regression with different penalties. 
For each of the linear regression, we performed a five-fold cross validation over 200 randomly 
selected CRISPR genes to establish a general penalty that was subsequently used for the regressions 
over the whole genome. In order to create a null-hypothesis reference point for the inferred 
interactions, the same optimization schemes were performed by either randomising the sample 
order of either the CRISPR dataset, the dependent variables, (H0 y) or the independent variable 
dataset (H0 X). The results of the Elastic Net regression with the gene expression as the 
independent variables showed that the sum of the absolute coefficients per CRISPR KO gene is 
significantly higher than both scrambled null hypotheses (figure 2b and supplement 1). This was 
also applicable for the absolute sum of the coefficients per gene of the gene expression. The 
scrambling of H0 X destroyed the correlative pattern of the gene expression, which resulted in a 
more conservative null distribution for hypothesis testing. In contrast to the H0 X scrambling, the 
randomization of H0 y maintained the correlative structure of the independent variables and was 
therefore subjected to a stronger penalization for highly correlated variables, that could arise due 
correlated gene deletion patterns for genes on the same chromosomes. The clearance between the 
true data and the null-distributions was stronger for the gene expression data than the LOF data 
after Elastic Net regression.  

The null-distributions for the LOF dataset also showed that randomization results in a significant 
increase of the absolute sum of coefficients per CRISPR gene or a LOF gene (figure 2b and 
supplement 1). In contrast to the gene expression data, the H0 y of the LOF data yielded a more 
conservative hypothesis testing, due to the preserved correlative structures of the mutations and 
gene copy number losses. As the correlations in the mutation patterns are maintained and variables 
with better coverage in the dataset tend to be biasedly selected (in the absence of any fitness 
association). The random associations are potentially more evenly distributed when randomizing 
the X data, thus resulting in more numerous small coefficients.  

To show the distribution at the level of the individual genes (gene expression or LOF genes) we 
picked the 12 highest ranked genes based on their absolute sum of coefficients per gene of the 
Elastic Net regression. The distributions showed the clear distinction between the true linear 
regression compared to the null distributions (figure 1c and 1d).  
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Figure 2. Distribution of the Elastic Net linear regression coefficients. (a) Distribution of the absolute sum of the 
coefficients of the Elastic Net regression with the gene expression data. (b) Distribution of the absolute sum of the 
coefficients of the Elastic Net regression with the LOF data. (c). The top 12 genes with the highest absolute coefficient 
sum for the gene expression data. (c). The top 12 genes with the highest absolute coefficient sum for the LOF data. 

b 

c d 

a 
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Gene level enrichment 

To validate the GIs found by the Lasso and Elastic Net regressions we looked at the enrichment of 
experimentally validated PPIs. We found that in the linear regressions with the gene expression 
and the CRISPR data, the GIs are highly enriched at the top hits in both the Elastic Net and Lasso 
regressions. The top 100 hits are ~13-fold enriched (Elastic Net) and ~17.5-fold enriched (Lasso) 
(figure 3a). Interestingly, the positive GIs were higher enriched compared to the negative GIs. The 
top 100 positive GIs for the Elastic net regression were ~19.5-fold enriched versus ~2.5-fold 
enrichment of the negative GIs. For the Lasso regression, we found a similar trend. A ~22.5-fold 
enrichment of the top 100 positive GIs compared to ~5-fold enrichment of the negative GIs. These 
trends could suggest that gene expression causes an increase in gene dependencies which are not 
commonly manifested through physical interactions. On the other hand, if we look at the PPI 
enrichment of the predicted GIs between LOF mutations and the CRISPR KOs, there is a smaller 
difference. The top 100 ranked hits of the Elastic Net showed an enrichment of ~20-fold for the 
positive GIs and ~21-fold for the negative GIs (figure 3b). For the Lasso regression, the enrichment 
was ~17.5-fold for the top 100 ranked positive GIs versus ~14-fold enrichment of the negative GIs. 

An interesting observation was that the enrichment of the positive GIs from the gene expression 
after performing the Elastic Net and Lasso were higher enriched in PPIs than negative GIs (figure 
2a). A positive GI between a gene expression and a CRISPR gene indicate that a lower gene 
expression is associated with a lower fitness. For a negative GI it is the other way around, a lower 
gene expression is associated with a higher fitness than expected. This is contrary to the meaning 
of a GI between the LOF and CRISPR genes, where a negative GI results in lower fitness than 
expected. An enrichment of PPIs in positive GIs corresponds with previous findings in yeast55. 

The negative GIs inferred by the Elastic Net and Lasso regressions of the LOF dataset were used 
for the prediction of synthetic lethal interactions between the LOF and the CRISPR genes. To 
validate these synthetic lethal interactions, we computed a receiver operating characteristic curve 
(ROC) with respectively 235 true positives and 11,339 potential false positives with non-essential 
genes36 (Elastic Net), and 106 true positive and 1,704 potential false positive interactions with non-
essential genes36 (Lasso). Because we found a substantial bias in inferring an interaction of genes 
with strong coverage in the LOF data, we also tested the adjustment of the rank order based on 
gene-wise hypothesis tests by computing p-values and q-values (FDR-adjusted p-values) for 
interactions of genes in the LOF data against their respective null-distributions (figure 3c and 3d). 

The sensitivity of detecting true positive synthetic lethal interactions increased after gene-wise p-
value adjustments with both null distributions for both the Elastic Net and the Lasso (figure 3c and 
3d). The sensitivity of detecting true synthetic lethal interactions with the Elastic Net was 0.98 with 
an FDR of 0.05 for both H0’s (figure 3c). The sensitivity of detecting true synthetic lethal 
interactions with the Lasso was 0.99 with an FDR of 0.05 when using H0 y (figure 3d). On the 
other hand, the sensitivity dropped to 0.95 with an FDR of 0.05 when using H0 X (figure 3d). These 
findings suggest that the Elastic Net and Lasso regression combined with gene-wise null hypothesis 
testing results in a high sensitivity for detecting true GIs. 
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Figure 3. Functional enrichment of the linear genetic interactions. (a) PPI enrichment of GIs found with the Lasso 
and Elastic Net regressions. The linear regression was performed with the independent variable set of gene expression 
genes. The positive GIs are coloured in blue, the negative GIs in orange and combined in black. The GIs are ranked 
based on the linear regression coefficient. The black dotted line indicates an enrichment of 1-fold. (b) PPI enrichment 
of GIs found with the Lasso and Elastic Net regressions. The linear regression was performed with the independent 
variable set of LOF. (c) Receiver operating characteristic (ROC) curve of synthetic lethal interactions of the Elastic 
Net regression with the LOF dataset. The continuous lines indicate the ROC curves based on the order of the regression 
coefficients (grey), and the coefficients’ order re-adjusted with the gene-wise p-values computed for H0 y (yellow) 
and H0 X (blue). The dotted lines are ROC curves based on the coefficients’ order re-adjusted with the FDR-adjusted 
p-values (q-values). The dashed lines indicate the q-values for the potentially false positives for both null-hypotheses, 
with H0 y in yellow and the H0 X in blue. (d) ROC curve of synthetic lethal interactions of the Lasso regression with 
the LOF dataset.  
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Process level enrichment 

In order to investigate which biological processes were most strongly associated with a high degree 
of GIs, we performed a GSEA with the GO-terms of ‘Biological processes’ on a list of the number 
of GIs identified per CRISPR gene with Elastic Net regression. For GIs inferred from the gene 
expression data, these associations represent cellular dependencies that are most highly influenced 
by changes in gene expression. Here we found mainly enrichment of GO-terms associated with 
cell core-specific processes, such as protein-DNA complex subunit, establishment of RNA 
localization and regulation of G2/M transition of mitotic cell cycle (figure 4a). Although the genes 
with the highest number of GIs were mainly involved in cell core specific processes, the biological 
process with the highest GIs was viral gene expression. This could be a side effect of the CRISPR 
screen, which was performed with viral transfection of the sgRNA to the cancer cells. Compared 
to GO-terms associated with a high number of GIs inferred from the LOF data, we identified mainly 
processes of the mitochondrion, including the following processes, mitochondrial respiratory 
chain complex assembly, respiratory electron transport chain and mitochondrial translation 
(figure 4b). 

The enriched processes with the least GIs from the gene expression and the LOF data were mainly 
involved in tissue-specific processes. The enriched processes of the LOF data were involved in 
regulation of tissue- or sense-specific processes, such as negative regulation of response to food, 
negative regulation of appetite and negative regulation of response to nutrient levels (figure 4b). 
The gene expression data was enriched for other tissue-specific processes such as regulation of 
macrophage activation, regulation of coagulation, and sensory perception of pain (figure 4a). The 
genes with the lowest number of GIs were less dependent on gene expression or a LOF for the 
fitness perturbation. 
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Figure 4. Gene set enrichment analysis of the linear genetic interactions. (a) Gene set enrichment plots for the number of GIs per CRISPR gene after Elastic 
Net regression with the gene expression data. The GeneRatio indicates the ratio of the genes present in the enriched process. 
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Figure 4. Gene set enrichment analysis of the linear genetic interactions. (b) Gene set enrichment plots for the number of GIs per CRISPR gene after Elastic 
Net regression with the LOF data. The GeneRatio indicates the ratio of the genes present in the enriched process. 
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Genome-wide genetic interaction network 

Correlations in GIs have been shown to cluster genes together with similar functionality in a 
genome-wide GI network9,54. To establish a genome-wide network, we used the L2-regularisation 
based Ridge regression. The L2-regularisation forces coefficients for non-predictive association 
towards zero but maintains a non-zero coefficient for all independent variables, thus maintaining a 
genome-wide fitness interaction profiles. Therefore, it can establish a framework for computing a 
correlative global GI network. For the mapping of the GIs correlations in a two-dimensional space, 
we used the UMAP algorithm to reduce the dimensions from the whole-genomic interactions. We 
established two global networks, either based on the genes from the gene expression or the CRISPR 
screen. The network of the gene expression genes is based on the correlative structure of genetic 
fitness interactions of the CRISPR screen. The other network, based on the genetic fitness 
interactions of the CRISPR genes is based on the correlative structure of the regulatory genes.     

In order to identify cluster-wise enrichment of functional processes we performed k-means 
clustering with a total of 100 clusters, followed by GO-term enrichment of the genes in the clusters 
(figure 5a and 5b). The results of the genome-wide GI map showed distinct functional clusters of 
different enriched biological processes. First of all, the network of the gene expression genes 
showed that cell core specific processes and tissue specific biological processes were distinct from 
each other (figure 5a). The cell core processes were mainly at the edges and the centre of the upper 
part of the network. Among these cell core processes we found: RNA splicing, protein targeting, 
ribonucleoprotein complex biogenesis, and regulation of GTPase activity. The tissue-specific 
processes are forming a bigger cluster at the centre of the network, including the following 
processes: skin development, detection of chemical stimulus involved in sensory perception, 
lymphocyte mediated immunity, and blood coagulation (figure 5a). 

For the global GI network for the genes of the CRISPR targets we observed the opposite compared 
to the genes of the gene expression. At the edges of the network, we found that it is mainly enriched 
with tissue-specific processes (figure 5b). For instance, epidermis development, sensory perception 
of smell, humoral immune response, and defence response to bacterium. The cell core specific 
processes were mainly found in the centre of the network, forming a bigger cluster. Among these 
processes we found: Golgi vesicle transport, mRNA catabolic response, tRNA modification, and 
actin filament organisation (figure 5b).  
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Figure 5. Genome-wide genetic interaction networks. (a) The white dots represent the genes from the gene expression. Genes were clustered by k-means 
clustering with 100 clusters. Enriched clusters are indicated with different colours and annotated for the enriched biological process GO-term. (b) The white dots 
represent the genes from the CRISPR screen. (b) Genes were clustered by k-means clustering with 100 clusters. Enriched clusters are indicated with different 
colours and annotated for the enriched biological process GO-term.
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Second-order interactions  

While the mapping and identification of pairwise interactions is a powerful tool to explore fitness 
interactions across a panel of cancer cells, it limits the analysis to an average value with varying 
validity in different cancer subtypes. GIs may vary depending on other factors and understanding 
such variations may be crucial for drug development and response. One step to address this 
complexity is to map potential second or higher variables that change the fitness interaction of an 
initial pair. To find such higher-order dependencies we focused on the regulatory role of gene 
expression. 

In order to find the second-order interactions we used the machine learning technique XGBoost. 
The XGBoost algorithm uses boosted gradient trees for its prediction, making it suitable to mine 
non-linear interactions between the covariates within the trees of the model. The variables for 
predicting the fitness perturbations with the XGBoost algorithm were preselected with the Elastic 
Net regression. We used the Elastic Net for preselecting the variables with the highest predictive 
linear value on the fitness perturbation. The regularisation of the Elastic Net is weaker compared 
to the Lasso, and therefore more variables are accounted for the prediction. The soft variable 
selection of the Elastic Net still holds enough variables to find nonlinear interactions.  

In order to optimize the XGBoost algorithm for predicting fitness perturbations, we ran a 
hyperparameter search to identify the important parameters of the algorithm to minimize the CV-
error. The first hyperparameter runs were to find the approximate regions of the minimal child 
weight, maximum depth, and the learning rate (eta) (supplement 2). After establishing these 
parameters for minimizing the CV-error, we conducted another hyperparameter search for two 
other parameters, subsampling of the training data (subsample), and the column sample per tree 
(figure 6a). The subsample indicates the fraction of training data available for every iteration of a 
growing tree in the XGBoost algorithm. The column sample per tree is another subsampling 
method, but this regulates the fraction of available variables evaluated per growing tree. A 
subsample of 0.5 prevented overfitting of the models compared to no subsampling at all (figure 
6a).     

We mined the interactions between the covariates from the XGBoost trees. The interactions were 
classified as a strong interaction pair when the child node had a higher Gain than the parent node. 
To investigate the functional enrichment of the obtained interactions we performed a PPI 
enrichment test (figure 6b). The interactions were ranked by the sum of their sumGain or frequency. 
The PPI enrichment was improving for all the interactions ranked on either their sumGain or 
frequency when the column sample per tree was increasing from 0.05 to 0.4 for both the 
subsampling fractions of 0.5 and 1 (figure 6b). Increasing the column sample from 0.4 upward, the 
interactions did not show an ascending PPI enrichment anymore for both subsample values. For 
the strong interactions ranked on their sumGain, there was an improvement of PPI enrichment 
under subsampling of 0.5. These results indicate that subsampling prevents model overfitting, and 
this is associated with a high enrichment of functional GIs.   
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Figure 6. XGBoost hyperparameter search. Hyperparameter search of the subsample and column sample per tree. 
(a) The round mean squared error (RMSE) and the 95% confidence interval (black lines) are shown for the test and 
training data of the XGBoost models. (b) The PPI enrichment for different subsamples and column samples per tree 
values, based on the ranking of the interactions. The coloured lines indicate the type of interactions and by which 
metric they are ranked. The black line is based on the ranking of the sum of frequencies, in orange the sum of the 
sumGain, in blue the sum of the strong frequencies and in red the sum of strong sumGain. The black dotted line 
represents an enrichment of 1-fold.   
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XGBoost models binning 

The results from the hyperparameter search with the subsampling showed an improvement with 
respect to overfitting and finding GIs enriched for PPIs, that was dependent on the coverage of 
evaluating covariate sampling. Therefore, we wanted to investigate the effect of pooling several 
models with subsampling trained under random sampling. In order to investigate the effect of 
binning models, we ran 40 models with random subsampling. We found that random subsampling 
is responsible for variability between the enrichment of PPIs. The 40 models we ran were 
performed with 50% of subsampling of the training data for predicting the fitness perturbation. The 
findings showed that the enrichment of PPIs was improving, indicating that ensembles of multiple 
models trained under random subsampling is improving the findings of PPIs (figure 7a and 7b).  

For further exploration, we investigated the possibility to extract the XGBoost models which 
showed the highest enrichment of PPIs. Therefore, we looked at the relation between the 
enrichment of PPIs from an ensemble of models and their average test RMSE. To enhance the 
enrichment of the interactions, we binned the different XGBoost models based on their ranking of 
the test RMSE value. We binned the outcomes of the interactions on two different methods. The 
first binning method was to bin the interactions found per XGBoost model by their ranking per 
CRISPR gene. We used 200 CRISPR genes, so 200 models were binned, one for every CRISPR 
gene. Therefore, the results show 40 different enrichments with a different test RMSE score. The 
enrichment of all the 40 models was higher than the reference model of no subsampling at all 
(figure 7a). In addition, we binned the models with sets of 5 models per CRISPR gene, so 1000 
models were binned together. This showed an improved enrichment for all the binned models 
compared to the reference model (figure 7a). However, the binning strategy based on the RMSE 
score per CRISPR gene did not show a significant correlation between the test RMSE and the PPI 
enrichment for the frequency (p-value = 0.53 and p-value = 0.83, respectively 200 and 1000 
models) and for the sumGain (p-value = 0.43 and p = 0.62, 200 and 1000 models) (figure 7c). 

The other binning strategy was based on ranking the different XGBoost models by overall ranking 
and not per CRISPR gene. This was performed with the binning of 200 and 1000 models (figure 
7b). This binning strategy showed a negative correlation between the test RMSE and the PPI 
enrichment (figure 7d). The negative correlation was higher for the 1000 models (R = -0.96 and p-
value < 0.001, and R = -0.94 and p-value = 0.019) respectively for the frequency and sumGain, 
compared to the 200 models (R = -0.5 and p-value= 0.0011, and R = -0.52 and p-value < 0.001) 
respectively for the frequency and the sumGain. Therefore, the binning of models trained under 
random subsampling improved the detection of PPIs and selective binning of the models with high 
prediction accuracy improved the detection of PPIs even further.  

After these findings, we proceeded with the latest data from the DepMap consortium. We used 
these datasets from the 21Q4 for the final global GI map, because more cancer cell lines were 
included and were not published yet when we started the study. We performed the same pipeline 
with the linear regression as previously described. For the XGBoost we performed a whole genome 
CV-run to preselect CRISPR targets based on their CV-error. The CV RMSE cut-off was set to < 
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0.9, which resulted in 2,870 CRISPR genes (supplement 3 figure 1). The selected CRISPR genes 
and its gene expression variables preselected by the Elastic Net were used and 40 models with 50% 
of random subsampling were performed for each CRISPR target. The top 1000 GIs ranked on the 
sumGain were used for further analysis.  

 

 

Figure 7. XGBoost model binning strategies. (a) PPI enrichment of interactions obtained from an ensemble of 
XGBoost models (200 or 1000) binned per CRISPR gene ranking. The test RMSE is indicated by a colour gradient. 
The black line indicates the XGBoost model without subsampling. (b) PPI enrichment of interactions obtained from 
an ensemble of XGBoost models (200 or 1000) binned by overall ranking. The test RMSE is indicated by a colour 
gradient. The black line indicates the XGBoost model without subsampling. (c) Correlation between the PPI 
enrichment and the test RMSE for different number of models per CRISPR target ranking. (d) Correlation between 
the PPI enrichment and the test RMSE for different number of models binned by overall ranking. 
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Genome-wide genetic interaction network with second-order interactions 

In order to investigate the complex regulatory fitness interactions of gene expression, we generated 
a global GI network that included the second-order interactions. The location of the second-order 
interactions within the global GI network could provide information about the functional process 
of the interaction. The second-order interactions were extracted from the XGBoost models and 
modelled as an interaction term of the gene expression dataset. The same workflow was performed 
with the Ridge regression, but with the second-order interactions included. The UMAP algorithm 
was used to generate a GI network for the fitness correlations along the transcriptome dimension.  

In the GI network with the functional enrichment, we observed a distinction between the cell core 
specific processes, such as RNA splicing, actin filament organization, peptidyl-lysine modification, 
and proteosomal protein catabolic process, which were enriched in the right lower corner of the 
network (figure 8a). On the other side of the network, we found biological processes involved in 
tissue-specific processes, including T cell activation, epidermis development, visual perception and 
regulation of membrane potential.  

The distribution of the second-order interactions and the two single paired genes were mapped on 
the GI network (figure 8b). We found that the second-order interactions were mainly occurring in 
the centre and left corner of the network, whereas the single genes of the interactions were mainly 
distributed on the other side of the network (figure 8b). The distribution of the single genes was 
therefore mainly located in the more cell core processes region, whereas the second-order 
interactions were more located at the tissue-specific part of the network (figure 8a and 8b). 
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Figure 8. Genome-wide genetic interaction network with second-order interactions. (a) The white dots represent the genes from the gene expression. The 
genes were clustered by k-means clustering with 100 clusters. Enriched clusters are indicated with different colours and annotated for the enriched biological process 
GO-term. (b) Distribution of the second-order interactions (blue) and the single genes of the second-order interactions (orange) in the genome-wide GI network. 
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Figure 9. Second-order interactions in the genome-wide interaction network. (a) Mapping of the second-order interactions (white) of CDKN1A in the genome-
wide interaction network of figure 8a. The single genes of the second-order interactions are given in orange. The blue lines are in between the second-order 
interaction and the single genes it consists of. The red dot represents the location of CDKN1A. (b) Mapping of the second-order interactions (white) of CDKN2A 
and CDKN2B in the genome-wide interaction network of figure 8a. The single genes of the second-order interactions are given in orange. The blue lines are in 
between the second-order interaction and the single genes it consists of. The red dots represent the location of CDKN2A and CDKN2B. 
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Figure 9. Second-order interactions in the genome-wide interaction network. (c) Mapping of the second-order interactions (white) of PSMB8 and PSMB9 in 
the genome-wide interaction network of figure 8a. The single genes of the second-order interactions are given in orange. The blue lines are in between the second-
order interaction and the single genes it consists of. The red dots represent the location of PSMB8 and PSMB9. (d) Mapping of the second-order interactions (white) 
of VPS4, CHMP4A, CHMP4B, and CHMP4C in the genome-wide interaction network of figure 8a. The single genes of the second-order interactions are given in 
orange. The blue lines are in between the second-order interaction and the single genes it consists of. The red dots represent the location of VPS4, CHMP4A, 
CHMP4B, and CHMP4C. 
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For demonstration, we selected some genes and its interaction partners which were an established 
second-order GI and located their position in the global GI network. The first gene we selected was 
CDKN1A, which encodes for the protein Cyclin Dependent Kinase Inhibitor 1A. CDKN1A is a 
kinase inhibitor involved in the cell cycle progression. In the global GI network, CDKN1A was 
located at the enriched biological process of response to radiation (figure 8a and 9a). Interestingly, 
the GIs of CDKN1A were clustering in proximity to CDKN1A itself in the network. In this cluster 
we see the GI between CDKN1A and CDKN2A. The proteins of these two genes have similar 
functions in the cell cycle regulation and play a role in numerous types of cancer 56.  The two genes 
encode for the proteins p21 (CDKN1A) and p16 (CDKN2A). Both genes also had overlapping GIs, 
namely with MDM2, EDA2R and RPL22L1. MDM2 is a negative regulator of the tumour 
suppressor gene TP5357 and has been shown that CDKN1A and CDKN2A both interact with 
MDM2. The p16 protein interacts and downregulates MDM258, whereas MDM2 is a negative 
regulator of p2159. However, the other two genes with a second-order interaction with both 
CDKNs, have not been previously shown to interact with them. RPL22L1 encodes for the 
Ribosomal Protein L22 Like 1 protein and is a paralog of the RPL22, which is a 60S ribosomal 
subunit. A recent study linked both paralogs and its pathways to patients with colorectal cancer60. 
The last gene is EDA2R, and this gene encodes for the transmembrane Ectodysplasin A2 Receptor 
that is involved in NF-kappa-beta and JNK pathways61.Other genes with an established GI with the 
CDKN1A gene within the cluster were genes mainly involved in general core cell processes. This 
includes the amino acid transporter SLC38A6, the polypeptide transferase GALNT6, the fatty acid 
hydrolase FAAH, and the guanine nucleotide exchange factor ARHGEF19 (figure 9a). 

The second example is from CDKN2A, the gene of the p16 protein, and CDKN2B, the gene of p15 
protein. These two Cyclin Dependent Kinase Inhibitors are both tumour suppressor genes, which 
regulate the cell cycle. Most of the GIs found with CDKN2A, clustered at two sites of the network 
(figure 9b). One of the clusters was close to the genes of CDKN2A and CDKN2B, which was also 
located at the enriched site of response to radiation (figure 8a and 9b). In this cluster we found 
second-order interactions of CDKN2A with multiple genes involved in regulation of the tumour 
suppressor gene TP53. The MDM2 proto-oncogene encodes for a protein which is a negative 
regulator of tumour suppressor p5357. Another GI partner of CDKN2A with the second-order 
interaction in the cluster was the Xeroderma pigmentosum, complementation group C (XPC) gene. 
The XPC protein has been shown that it can degrade p53 via the MDM2 pathway62. The gene 
SESN1 is on the other side regulated by p5363. Two other genes with a GI in the same cluster were 
Ferredoxin Reductase (FDXR) and Spermatogenesis Associated 18 (SPATA18). These two genes 
are both involved in cellular processes within the mitochondria64,65.   

The other cluster of the second-order interactions was located near the biological process of 
response to drugs and the epidermis development (figure 8a and 9b). In this cluster of GIs, the 
second-order interaction of CDKN2A showed interesting interactions around the retinoblastoma 
(RB1) gene, although the interaction between CDKN2A and RB1 was located outside this cluster 
(figure 9b). It has been shown that CDKN2A negatively regulates the RB1 pathway by suppressing 
CDK4/666. In this cluster four other second-order interactions with CDKN2A were present with 
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more genes that regulate RB1. These four were the E2F3 transcription factor, Cyclin D1/D3 
functional subunits (CCND1 and CCND3) and Cyclin Dependent Kinase 6 (CDK6). CCND1 and 
CCND3 are functional subunits that form a complex together with CDK6 and this complex 
regulates RB167. E2F3 encodes for a transcription factor by the same name and this protein is 
directly suppressed by RB1, therefore it is important for cell cycle regulation68. Two other genes 
in the cluster of second-order GIs with CDKN2A were Caveolin 1 and Caveolin 2 (CAV1 and 
CAV2). These two genes encode for two proteins which form a hetero-oligomeric scaffolding 
complex. This complex is functional in caveolar membranes across different cell types. It has been 
suggested that this complex acts as a tumour suppressor, due to its role in the Ras-ERK 
pathway69,70. Another interesting finding was the interaction of CDKN1A and CDKN2A with 
CDK5 Regulatory Subunit Associated Protein 1 Like 1 (CDKAL1). It is noteworthy that it had a 
interaction with both CDKN1A and CDKN2A, and that the function of CDKAL1 is not completely 
understood. It has been shown that it plays a role in type 2 diabetes 71, but it has not been associated 
with cancer so far.  

The third example consists of two genes, the Proteasome 20S Subunit Beta 8 (PSMB8) and 
PSMB9. Both genes were located in the enriched cluster of response to virus (figure 8a and 9c). 
Both genes encode for subunits of the 20S proteasome complex. Interestingly, a part of the second-
order interactions formed a small cluster at the enriched immune response-activating signal 
transduction cluster (figure 8a and 9c), thus a biological process involved within the immune 
system. The second-order GIs in this cluster consisted of PSMB8 and other genes. Among these 
other genes is Neutrophil Cytosolic Factor 4 (NCF4). NCF4 encodes for a protein that is part of an 
enzyme complex involved in the host defence of neutrophils72. Another gene is Sorting nexin-20 
(SNX20), which is involved in regulation of the innate immune system. A recent study showed that 
SNX20 is a potential therapeutic target and biomarker in lung adenocarcinomas73. The last gene 
which also formed a GI in the cluster is MFNG, which encodes for the enzyme Beta-1,3-N-
acetylglucosaminyltransferase manic fringe, unlike the other partner genes, this enzyme is not 
involved in the immune system, but in the Notch signalling pathway74. 

As final example, we showed the second-order interactions of VPS4B, CHMP4A, CHMP4B and 
CHMP4C (figure 9d). The CHMP genes encode for proteins which are part of the ESCRT-III 
complex. ESCRT-III is part of a bigger complex, namely the endosomal sorting complex required 
for transport (ESCRT) complex and the ESCRT complex is involved in membrane fission75,76. A 
recent study showed a synthetic lethal pair interaction between VPS4A and VPS4B in absence of 
SMAD4 and CDH177. In addition, the same study showed that VPS4A and VPS4B are co-essential 
with CHMP4A. The authors suggested that the VPS4B expression and dependency could be due 
to a paralog interaction with CHMP1A and CHMP4B77. In the GI network map, the VPS4B and 
CHMP4 genes were located in a different cluster. However, their second-order interactions were 
located in a small cluster close to the enriched cluster of response to drug (figure 8a and 9d). A 
recent study suggested that ESCRT-III could be exploited as a potential therapeutic target in drug 
resistant cancer therapy78. The second-order interaction between VPS4B and ITCH was also 
located in this cluster. The ITCH gene encodes for the Itchy E3 ubiquitin ligase which is an 
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important player for the innate immune system. This gene has been of interest as a therapeutic 
target in different types of cancer79. Interestingly, in a VPS4A suppressed cancer cell line, ITCH 
KO increased the cell survival77. The other gene with a second-order interaction with VPS4B is the 
autophagy related gene SH3GLB180.  
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Discussion 

In this study, we showed a robust framework to establish a genome-wide GI network from a pan-
cancer CRISPR screen. The network was characterised by biological functional clusters and was 
based on the regulatory role of gene expression on fitness perturbation in cancer. Furthermore, we 
found second-order interactions by mining the structures of XGBoost trees and mapping them in 
the genome-wide network.  

Our genome-wide network was focused on interactions between gene expression and the fitness 
perturbations of a CRISPR screen. The second-order interactions derived from our technique were 
established between gene expression covariates. We focused on gene expression, due to the 
regulatory role of gene expression on the fitness of cancer cells and the influence on GIs. Due to 
the complexity of cancers, gene expression variability occurs between different cancer and normal 
cells. Overexpression of many genes has been associated with different types of cancers and may 
act as an oncogene. Regulation of the gene expression takes place through different types of 
mechanisms, including mutations of oncogenes and tumour suppressor genes. Gene expression 
variability in cancer cells can also be caused by epigenetic regulation, including DNA methylation 
and chromatin remodelling81,82. Profiling the gene expression yields a high predictiveness for drug-
responses and can be used for drug discoveries83,84. Transcriptional modulation is thereby 
important for cancers to become drug-resistance, due to the changes in expression after initial 
treatment. Therefore, the variability and the transcriptional modulation of GIs and fitness changes 
in response to gene deletions are of great interest for personalised medicine85,86. 

For finding second-order interactions, we used an Elastic Net regression for preselecting variables 
before the XGBoost algorithm. Nowadays, high-throughput screens have become the standard in 
genetic screens. Due to the huge number of genes and relatively low observations, predicting fitness 
dependencies in large CRISPR screens is a statistical burden. Not only is the set of large variables 
a statistical concern, but it also comes with a computational challenge. Therefore, we reduced the 
number of variables and selected the variables with the highest predictive linear value. The 
preselected variables can still be used for finding non-linear relationships within the XGBoost trees 
and in addition it improves the computational speed.  

We showed that the second-order interactions from mining the XGBoost trees were enriched for 
PPIs. The enrichment of PPIs was also improved by running multiple rounds of random XGBoost 
models under random subsampling and binning these models. In this study we ran 40 random 
models with 50% subsampling, but it could be interesting to see if including more XGBoost models 
would improve the PPI enrichment. The interactions established from the XGBoost trees showed 
a negative correlation between PPI enrichment and the test RMSE. However, there was only a 
correlation between them if the models were ranked on their overall score (sumGain and frequency) 
and not ranked per CRISPR gene target. This implies that not all CRISPR targets have many 
predictive regulatory genes for their fitness after preselecting variables with Elastic Net. 
Alternatively, the fitness spectrum of these genes may be difficult to predict and require more data 
due to low signal-to-noise ratio. Genes with a lower number of GIs were associated with more 
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tissue-specific processes, and thus may require more data or more experimental variation in the 
culturing conditions for the CRISPR screens (figure 4b). Indeed, a recent study showed that novel 
fitness dependencies tend to arise in multicellular culture environments87.  

In continuation of this study, we selected the CRISPR targets with the most predictive fitness 
spectrums. Therefore, doing our final run, we set a cut-off based on the test RMSE. This allowed 
us to look at the CRISPR targets with the most reliable interaction structures between regulatory 
genes and reduce the computational burden. Furthermore, the hyperparameter optimization 
indicated that optimal detection of GIs (assessed by PPI enrichment) was associated with a 
minimization of model overfitting. This could suggest that the most profound higher-order 
interactions in fitness perturbation are predicted from models that can generalise well across the 
pan-cancer cell library. A recent study by Costanzo and his colleagues, showed that in yeast most 
GIs in a global GI network remains the same in different environmental conditions23.  

With our technique we found potential second-order GIs and showed a few examples of the 
interactions within the genome-wide network. The second-order interactions of the CDKN2A, 
CDKN2B and CDKN1B formed different distinct clusters. These clusters were in proximity of 
other functionally enriched clusters, which could indicate a similar biological function. Another 
possibility could be that these higher-order interactions form their own functionally distinct 
clusters. Characterizing these clusters could show how genes from different processes of the 
network could contribute to emergent functions through the means of higher-order interactions. 
Notably, the distribution of higher-order interactions in regions predominantly associated with 
tissue-specific functions could suggest a path for mapping how complex interactions between genes 
yield the vast amount functional variability seen in different human cells. 

A utility of our genome-wide GI network is to characterise genes for their function. The function 
of many genes is still poorly understood. Previous work in genome-wide GI networks showed that 
genes cluster together with similar functionality and could be used to assign functions to 
uncharacterized genes9,25,54. Therefore, it would be interesting to use our method and look more 
into depth of a certain biological process within the network to characterise genes which are still 
poorly understood.  

It would be also interesting to validate potential findings of higher-order interactions with our 
technique. Validation of higher-order interactions involved in cancer fitness would be of great 
interest for personalised treatments. Treatment could focus on multiple drugs targeting different 
genes involved in the same biological processes, also known as combination drug therapy. 
Combination drug therapy is already important in the clinic for many types of cancer88 and could 
be exploited even further. Besides the potential benefits for improving cancer treatments. Our 
research could contribute to the understanding of the complexity of genetics, and how it contributes 
to variations in drug sensitivity in different cancer subtypes. One of the key challenges in the field 
of genetics remains the ability of genes to create a wide variety of differential tissues and cells54,89. 
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For further development of this technique, more genetic characteristics of the cell lines should be 
included to find additional higher-order fitness dependencies. These should be gain-of-function 
mutations, gene fusions, loss-of-functions, and gene expression. Due to the limitations of this study, 
we mainly focused on the gene expression as a proof of concept of our method.  

Many recent studies focused on synthetic lethal interactions from large CRISPR screens and novel 
interactions are investigated as potential drug targets13. In this study, we also looked at synthetic 
lethal interactions after establishing a LOF dataset from mutations and gene copy numbers data. 
We selected only deleterious mutations which were present in more than 1% of the cancer cell lines 
to obtain sufficient coverage for the regression. The results from the ROC curve of the potential 
synthetic lethal interactions showed that when adjusting for FDR coming from the coverage and 
distribution of mutations in the cancer library, L1-penalised linear regression serves as a robust 
method for detecting true positive interactions. Therefore, it would be interesting to investigate the 
top hits from the Lasso as potential synthetic lethal interactions. For further development of this 
technique, we could include more mutations and explore the higher-order dependencies of 
synthetic lethality on gene expression variation.  

In conclusion, our work showed a framework for establishing a genome-wide GI network with 
functional clusters. We also showed a method for predicting higher-order GIs and this framework 
can be further developed and be used to gain a better understanding of complex GIs and its 
regulation of fitness in cancer cells.  

  



38 
 

Literature 

1. Hanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell 144, 646–674 
(2011). 

2. Wong, C. H., Siah, K. W. & Lo, A. W. Estimation of clinical trial success rates and related 
parameters. Biostatistics 20, 273–286 (2019). 

3. Francies, H. E., McDermott, U. & Garnett, M. J. Genomics-guided pre-clinical development of 
cancer therapies. Nature Cancer 1, 482–492 (2020). 

4. Chin, L., Andersen, J. N. & Futreal, P. A. Cancer genomics: from discovery science to 
personalized medicine. Nature Medicine 17, 297–303 (2011). 

5. Berger, M. F. & Mardis, E. R. The emerging clinical relevance of genomics in cancer medicine. 
Nature Reviews Clinical Oncology 15, 353–365 (2018). 

6. Du, W. & Elemento, O. Cancer systems biology: embracing complexity to develop better 
anticancer therapeutic strategies. Oncogene 34, 3215–3225 (2015). 

7. Tsherniak, A. et al. Defining a Cancer Dependency Map. Cell 170, 564-576.e16 (2017). 

8. Boucher, B. & Jenna, S. Genetic interaction networks: better understand to better predict. Frontiers 
in Genetics 4, (2013). 

9. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010). 

10. Bridges, C. B. The Origin of Variations in Sexual and Sex-Limited Characters. The American 
Naturalist 56, 51–63 (1922). 

11. Dobzhansky, T. Genetics of natural populations; recombination and variability in populations of 
Drosophila pseudoobscura. Genetics 31, 269–290 (1946). 

12. Hartwell, L. H., Szankasi, P., Roberts, C. J., Murray, A. W. & Friend, S. H. Integrating genetic 
approaches into the discovery of anticancer drugs. Science 278, 1064–1068 (1997). 

13. Huang, A., Garraway, L. A., Ashworth, A. & Weber, B. Synthetic lethality as an engine for cancer 
drug target discovery. Nature Reviews Drug Discovery 19, 23–38 (2020). 

14. O’Neil, N. J., Bailey, M. L. & Hieter, P. Synthetic lethality and cancer. Nature Reviews Genetics 
18, 613–623 (2017). 

15. Chen, C.-C., Feng, W., Lim, P. X., Kass, E. M. & Jasin, M. Homology-Directed Repair and the 
Role of BRCA1, BRCA2, and Related Proteins in Genome Integrity and Cancer. Annual Review of 
Cancer Biology 2, 313–336 (2018). 

16. Ashworth, A. & Lord, C. J. Synthetic lethal therapies for cancer: what’s next after PARP 
inhibitors? Nature Reviews Clinical Oncology 15, 564–576 (2018). 

17. Fong, P. C. et al. Inhibition of Poly(ADP-Ribose) Polymerase in Tumors from BRCA Mutation 
Carriers. New England Journal of Medicine 361, 123–134 (2009). 

18. Mengwasser, K. E. et al. Genetic Screens Reveal FEN1 and APEX2 as BRCA2 Synthetic Lethal 
Targets. Molecular Cell 73, 885-899.e6 (2019). 



39 
 

19. Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 
568, 511–516 (2019). 

20. Chan, E. M. et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. 
Nature 568, 551–556 (2019). 

21. Nie, M. et al. Genome-wide CRISPR screens reveal synthetic lethal interaction between CREBBP 
and EP300 in diffuse large B-cell lymphoma. Cell Death & Disease 12, 419 (2021). 

22. Setton, J. et al. Synthetic Lethality in Cancer Therapeutics: The Next Generation. Cancer 
Discovery 11, 1626–1635 (2021). 

23. Costanzo, M. et al. Environmental robustness of the global yeast genetic interaction network. 
Science 372, eabf8424 (2021). 

24. Kuzmin, E. et al. Systematic analysis of complex genetic interactions. Science 360, eaao1729 
(2018). 

25. Horlbeck, M. A. et al. Mapping the Genetic Landscape of Human Cells. Cell 174, 953-967.e22 
(2018). 

26. Han, K. et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise 
genetic interactions. Nature biotechnology 35, 463–474 (2017). 

27. Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020). 

28. Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 
569, 503–508 (2019). 

29. Dempster, J. M. et al. Agreement between two large pan-cancer CRISPR-Cas9 gene dependency 
data sets. Nature Communications 10, 5817 (2019). 

30. Chen, F. et al. Moving pan-cancer studies from basic research toward the clinic. Nature Cancer 2, 
879–890 (2021). 

31. Basu, S., Kumbier, K., Brown, J. B. & Yu, B. Iterative random forests to discover predictive and 
stable high-order interactions. Proceedings of the National Academy of Sciences 115, 1943 (2018). 

32. Park, S., Supek, F. & Lehner, B. Higher order genetic interactions switch cancer genes from two-
hit to one-hit drivers. Nature Communications 12, 7051 (2021). 

33. DepMap, B. DepMap 21Q1 Public. (2021) doi:10.6084/m9.figshare.13681534.v1. 

34. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects 
of CRISPR-Cas9. Nature Biotechnology 34, 184–191 (2016). 

35. Meyers, R. M. et al. Computational correction of copy number effect improves specificity of 
CRISPR–Cas9 essentiality screens in cancer cells. Nature Genetics 49, 1779–1784 (2017). 

36. Hart, T., Brown, K. R., Sircoulomb, F., Rottapel, R. & Moffat, J. Measuring error rates in genomic 
perturbation screens: gold standards for human functional genomics. Molecular Systems Biology 
10, 733 (2014). 

37. Dempster, J. M. et al. Extracting Biological Insights from the Project Achilles Genome-Scale 
CRISPR Screens in Cancer Cell Lines. bioRxiv 720243 (2019) doi:10.1101/720243. 



40 
 

38. DepMap, B. DepMap 21Q4 Public. (2021) doi:10.6084/m9.figshare.16924132.v1. 

39. Dempster, J. M. et al. Chronos: a cell population dynamics model of CRISPR experiments that 
improves inference of gene fitness effects. Genome Biology 22, 343 (2021). 

40. RStudio Team. RStudio: Integrated Development Environment for R. (2021). 

41. R Core Team. R: A language and environment for statistical computing. Vienna (2021). 

42. Friedman, J. H., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models 
via Coordinate Descent. Journal of Statistical Software 33, 1–22 (2010). 

43. Wang, J. et al. SynLethDB 2.0: A web-based knowledge graph database on synthetic lethality for 
novel anticancer drug discovery. bioRxiv 2021.12.28.474346 (2021) 
doi:10.1101/2021.12.28.474346. 

44. Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The 
Innovation 2, (2021). 

45. Wang, J. Z., Du, Z., Payattakool, R., Yu, P. S. & Chen, C.-F. A new method to measure the 
semantic similarity of GO terms. Bioinformatics 23, 1274–1281 (2007). 

46. Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. in Proceedings of the 22nd acm 
sigkdd international conference on knowledge discovery and data mining 785–794 (2016). 

47. Maksymiuk, S., Karbowiak, E. & Biecek, P. EIX: Explain Interactions in “XGBoost.” (2021). 

48. McInnes, L., Healy, J. & Melville, J. Umap: Uniform manifold approximation and projection for 
dimension reduction. arXiv preprint arXiv:1802.03426 (2018). 

49. Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, 
supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research 47, 
D607–D613 (2019). 

50. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nature Genetics 25, 25–29 
(2000). 

51. Lu, J. et al. Causal network inference from gene transcriptional time-series response to 
glucocorticoids. PLoS computational biology 17, e1008223–e1008223 (2021). 

52. Shojaie, A. & Michailidis, G. Discovering graphical Granger causality using the truncating lasso 
penalty. Bioinformatics 26, i517–i523 (2010). 

53. Runge, J., Nowack, P., Kretschmer, M., Flaxman, S. & Sejdinovic, D. Detecting and quantifying 
causal associations in large nonlinear time series datasets. Science advances 5, eaau4996–eaau4996 
(2019). 

54. Wainberg, M. et al. A genome-wide atlas of co-essential modules assigns function to 
uncharacterized genes. Nature Genetics 53, 638–649 (2021). 

55. Costanzo, M. et al. A global genetic interaction network maps a wiring diagram of cellular 
function. Science 353, aaf1420 (2016). 

56. Zhao, R., Choi, B. Y., Lee, M.-H., Bode, A. M. & Dong, Z. Implications of Genetic and Epigenetic 
Alterations of CDKN2A(p16INK4a) in Cancer. eBioMedicine 8, 30–39 (2016). 



41 
 

57. Michael, D. & Oren, M. The p53–Mdm2 module and the ubiquitin system. Seminars in Cancer 
Biology 13, 49–58 (2003). 

58. Pomerantz, J. et al. The Ink4a Tumor Suppressor Gene Product, p19Arf, Interacts with MDM2 and 
Neutralizes MDM2’s Inhibition of p53. Cell 92, 713–723 (1998). 

59. Zhang, Z. et al. MDM2 Is a Negative Regulator of p21WAF1/CIP1, Independent of p53 *. Journal 
of Biological Chemistry 279, 16000–16006 (2004). 

60. Rao, S. et al. RPL22L1 induction in colorectal cancer is associated with poor prognosis and 5-FU 
resistance. PLOS ONE 14, e0222392- (2019). 

61. Sinha, S. K., Zachariah, S., Quiñones, H. I., Shindo, M. & Chaudhary, P. M. Role of TRAF3 and -
6 in the Activation of the NF-3B and JNK Pathways by X-linked Ectodermal Dysplasia Receptor 
*. Journal of Biological Chemistry 277, 44953–44961 (2002). 

62. Krzeszinski, J. Y. et al. XPC promotes MDM2-mediated degradation of the p53 tumor suppressor. 
Molecular Biology of the Cell 25, 213–221 (2013). 

63. Budanov, A. v & Karin, M. p53 Target Genes Sestrin1 and Sestrin2 Connect Genotoxic Stress and 
mTOR Signaling. Cell 134, 451–460 (2008). 

64. Shi, Y., Ghosh, M., Kovtunovych, G., Crooks, D. R. & Rouault, T. A. Both human ferredoxins 1 
and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis. Biochimica et 
Biophysica Acta (BBA) - Molecular Cell Research 1823, 484–492 (2012). 

65. Dan, X. et al. DNA damage invokes mitophagy through a pathway involving Spata18. Nucleic 
Acids Research 48, 6611–6623 (2020). 

66. Witkiewicz, A. K., Knudsen, K. E., Dicker, A. P. & Knudsen, E. S. The meaning of p16ink4a 
expression in tumors. Cell Cycle 10, 2497–2503 (2011). 

67. Sherr, C. J., Beach, D. & Shapiro, G. I. Targeting CDK4 and CDK6: From Discovery to Therapy. 
Cancer Discovery 6, 353–367 (2016). 

68. Chen, H.-Z., Tsai, S.-Y. & Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle 
control. Nature Reviews Cancer 9, 785–797 (2009). 

69. Volonte, D. et al. Caveolin-1 promotes the tumor suppressor properties of oncogene-induced 
cellular senescence. Journal of Biological Chemistry 293, 1794–1809 (2018). 

70. Kortum, R. L. et al. Caveolin-1 is required for kinase suppressor of Ras 1 (KSR1)-mediated 
extracellular signal-regulated kinase 1/2 activation, H-RasV12-induced senescence, and 
transformation. Molecular and cellular biology 34, 3461–3472 (2014). 

71. Palmer, C. J. et al. Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function 
in adipose tissue. Molecular metabolism 6, 1212–1225 (2017). 

72. Lehman, H. K. & Segal, B. H. The role of neutrophils in host defense and disease. Journal of 
Allergy and Clinical Immunology 145, 1535–1544 (2020). 

73. Wu, G. J. et al. SNX20 Expression Correlates with Immune Cell Infiltration and Can Predict 
Prognosis in Lung Adenocarcinoma. International journal of general medicine 14, 7599–7611 
(2021). 



42 
 

74. Castro, R. C., Gonçales, R. A., Zambuzi, F. A. & Frantz, F. G. Notch signaling pathway in 
infectious diseases: role in the regulation of immune response. Inflammation Research 70, 261–274 
(2021). 

75. Christ, L., Raiborg, C., Wenzel, E. M., Campsteijn, C. & Stenmark, H. Cellular Functions and 
Molecular Mechanisms of the ESCRT Membrane-Scission Machinery. Trends in Biochemical 
Sciences 42, 42–56 (2017). 

76. McCullough, J., Frost, A. & Sundquist, W. I. Structures, Functions, and Dynamics of ESCRT-
III/Vps4 Membrane Remodeling and Fission Complexes. Annual Review of Cell and 
Developmental Biology 34, 85–109 (2018). 

77. Neggers, J. E. et al. Synthetic Lethal Interaction between the ESCRT Paralog Enzymes VPS4A 
and VPS4B in Cancers Harboring Loss of Chromosome 18q or 16q. Cell Reports 33, (2020). 

78. Liu, J., Kang, R. & Tang, D. ESCRT-III-mediated membrane repair in cell death and tumor 
resistance. Cancer Gene Therapy 28, 1–4 (2021). 

79. Yin, Q., Wyatt, C. J., Han, T., Smalley, K. S. M. & Wan, L. ITCH as a potential therapeutic target 
in human cancers. Seminars in Cancer Biology 67, 117–130 (2020). 

80. Takahashi, Y., Meyerkord, C. L. & Wang, H.-G. Bif-1/Endophilin B1: a candidate for crescent 
driving force in autophagy. Cell Death & Differentiation 16, 947–955 (2009). 

81. Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nature Reviews 
Genetics 3, 415–428 (2002). 

82. Hansen, K. D. et al. Increased methylation variation in epigenetic domains across cancer types. 
Nature Genetics 43, 768–775 (2011). 

83. Iorio, F. et al. Discovery of drug mode of action and drug repositioning from transcriptional 
responses. Proceedings of the National Academy of Sciences (2010). 

84. Costello, J. C. et al. A community effort to assess and improve drug sensitivity prediction 
algorithms. Nature Biotechnology 32, 1202–1212 (2014). 

85. Chen, B. et al. Reversal of cancer gene expression correlates with drug efficacy and reveals 
therapeutic targets. Nature Communications 8, 16022 (2017). 

86. van ’t Veer, L. J. & Bernards, R. Enabling personalized cancer medicine through analysis of gene-
expression patterns. Nature 452, 564–570 (2008). 

87. Han, K. et al. CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. 
Nature 580, 136–141 (2020). 

88. Bayat Mokhtari, R. et al. Combination therapy in combating cancer. Oncotarget 8, 38022–38043 
(2017). 

89. Chuang, H.-Y., Hofree, M. & Ideker, T. A Decade of Systems Biology. Annual Review of Cell and 
Developmental Biology 26, 721–744 (2010). 

  

  



43 
 

Supplement 1 

 

 

Figure 1. Statistics of the multivariate penalised linear regression cross-validation. (a) Paired Wilcoxon-signed 
rank test for the coefficients obtained from the different Elastic Net-regularisation (0 < α < 1) and the Lasso-
regularisation (α = 1) CV regressions. The coefficients obtained from the true regressions with the gene expression as 
independent variables were compared to the coefficients of their estimated null distributions of H0 y (yellow) and H0 
X (blue). (b) Paired Wilcoxon-signed rank test for the coefficients obtained from the different Elastic Net-
regularisation and the Lasso-regularisation CV regressions. The coefficients obtained from the true regressions with 
the LOF as independent variables were compared to the coefficients of their estimated null distributions of H0 y 
(yellow) and H0 X (blue). 
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Supplement 2 

 

Figure 1. XGBoost hyperparameter search. (a) Hyperparameter search for the learning rate and minimal child 
weight. (b) Hyperparameter search for the learning rate and the maximum tree depth. The round mean squared error 
(RMSE) and the 95% confidence interval (black lines) are shown for the test and training data of the XGBoost models. 
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Figure 2. XGBoost hyperparameter search. (a) Hyperparameter search for the learning rate and minimal child 
weight. (b) Hyperparameter search for the learning rate and the maximum tree depth. The round mean squared error 
(RMSE) and the 95% confidence interval (black lines) are shown for the test and training data of the XGBoost models. 
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Figure 3. XGBoost hyperparameter search. (a) Hyperparameter search for the learning rate and minimal child 
weight. (b) Hyperparameter search for the learning rate and the maximum tree depth. The round mean squared error 
(RMSE) and the 95% confidence interval (black lines) are shown for the test and training data of the XGBoost models. 

b 
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Figure 4. XGBoost hyperparameter search. (a) Hyperparameter search for the learning rate and minimal child 
weight. (b) Hyperparameter search for the learning rate and the maximum tree depth. The round mean squared error 
(RMSE) and the 95% confidence interval (black lines) are shown for the test and training data of the XGBoost models. 
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Figure 5. XGBoost hyperparameter search. Hyperparameter search for the learning rate and the maximum tree 
depth. The round mean squared error (RMSE) and the 95% confidence interval (black lines) are shown for the test and 
training data of the XGBoost models. 
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Supplement 3 

 
Figure 1.  Histogram of the whole-genome XGBoost cross-validation run. The red dotted line indicates the cut-off 
for the test round mean squared error (RMSE). 
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