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Abstract

Wastewater is a reservoir of human excretion and contains virus particles shed by people. Its analysis
can provide information on the prevalence of infectious diseases. In the Netherlands, sewage surveil-
lance has been used as a tool for monitoring the COVID-19 pandemic by detecting and measuring
SARS-CoV-2 virus particles in sewage at over 300 sewage treatment plants (STPs) multiple times
a week. The result thereof is an extensive data set of multivariate time series. In this thesis, linear
regression models are used to model and forecast virus load time series for each variable (STP). We
compare vector autoregressive (VAR) models which were enriched with different variable selection
methods, based on K-Nearest Neighbours, correlations between time series and principal component
analysis. How much the inclusion of multiple variables improves predictions is strongly dependent
on the number and choice of variables, on the smoothness of the time series, on the length of the
training set and on time between training and testing. A remarkable result from this research is that
intermediate number of variables used in the models resulted in largest test errors. We found that
performance of the models was worse for STPs with small catchment areas. With this research, we
shed light on how relationships between STPs can be incorporated in multivariate linear time series
models and introduce three novel variable selection methods for VAR.
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Chapter 1

Introduction

Wastewater-based epidemiology (WBE) is a relatively new and popular method within the field of
infectious disease surveillance. As wastewater is a reservoir of human excretion, it contains endoge-
nous biological compounds such as virus particles, and so its analysis can provide information on
the spread of infectious diseases [19]. WBE has been used successfully for creating local illicit drug
consumption profiles [33] and containing a polio outbreak by timely detection of poliovirus in Israeli
sewage [6].

Recently, WBE has also been used for monitoring of the COVID-19 pandemic. Since March 2020,
The National Institute for Public Health and the Environment (RIVM) has been collecting wastew-
ater samples three to four times a week from sewage treatment plants (STPs) in the Netherlands.
Currently, 317 STPs are sampled. Each STP serves a geographically well-defined population, to-
gether covering 99.7% of Dutch households. In figure (1.1), a map of the sampled STPs is given.
STPs are distributed fairly evenly over the Netherlands, with larger STPs and a higher density
of STPs in the west of the Netherlands. The number of inhabitants per STP ranges from 947 to
827, 802. SARS-CoV-2 virus particles are present in the faeces of about half of infected people,
and flow with sewage to an STP. At the STPs, 24-hour samples of sewage are taken and sent to the
RIVM, where genetic material (RNA) is extracted from the samples. Then, a PCR test is conducted
to detect SARS-CoV-2 virus particles. The number of virus particles are corrected for daily sewage
volume and normalized for number of inhabitants in the catchment area of the STP. The result is
an extensive data set of time series of virus loads per 100,000 inhabitants for each STP. These time
series contain information on the spatial and temporal trends of the disease [18].

Besides sewage surveillance, COVID-19 is additionally monitored through: clinical testing at pub-
lic health services (GGDs) and general practitioner practices, hospital and ICU admissions, and
deaths caused by COVID-19. Advantages of sewage surveillance with respect to these tools are its
anonymity and its ability to measure virus particles in non-symptomatic cases. The method also
does not rely on testing policy or preparedness of patients to get tested. It provides information
on almost the whole population [18]. As infected individuals typically excrete virus particles before
showing symptoms, sewage prevalence of SARS-CoV-2 precedes positive tests and hospital admis-
sions, and could serve as an early-warning system for disease outbreaks [19].

WBE as a monitoring tool is not only used in the Netherlands. In 2021, at least 55 countries and
200 universities were conducting a wastewater monitoring program for SARS-CoV-2. Besides the
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Figure 1.1: Map of sampled sewage treatment plants in the Netherlands (blue dots). The size of each
dot represents the number of inhabitants in the catchment area of the STP.

Netherlands, also Finland, France, Hungary, Luxembourg, Spain, and Turkey have nationalized pro-
grams [16]. Much research has been done into the relationship between SARS-CoV-2 virus loads
in sewage and COVID-19 case numbers at the level of catchment areas of STPs [22]. However, to
our knowledge, the prediction of virus loads at the level of STPs, utilizing the extensive network
of STPs, is still an underexplored problem. The spatial samples potentially contain information
on where disease hot spots occur and on patterns of disease spread [11]. For example, spatial anal-
ysis has brought to light geographical patterns in the distributions of two other viral diseases [15, 20].

Wastewater surveillance is most useful when data can be interpreted in real time. Unfortunately,
there is a delay of approximately three days between the sampling of STPs and publication of the
measurements. To facilitate early warnings at the level of STP catchment areas, predictive models
should be developed. Compartmental disease transmission dynamic models are popular tools for
modelling and forecasting infectious diseases [29]. An example of such a model is the SIR (Sus-
ceptible, Infectious, Recovered) model, in which dynamics between compartments S, I and R are
based described by a system of differential equations. A study by Rahimini, Chen and Gandomi
(2021) found that the SIR model was one of the models that was most often applied to estimate the
COVID-19 outbreak [17]. However, to be able to use the SIR model on wastewater data, virus loads
need to be translated to number of infected people, which has proven to be difficult [2].
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Within econometric modeling, vector autoregressive models are often used for time series forecasting.
Sparse vector autoregressive models, in which many components are assumed to be zero or negligibly
small, have been proven to be effective in large-scale econometric applications [9]. Autoregressive
time series models are also suited for infectious disease modelling. For example, multivariate time-
series autoregression models were used to predict daily and weekly new COVID-19 cases for different
age groups [29]. Also for the wastewater data, multivariate time series models are well suited. With
these models, the virus load at a given STP can be written as a linear combination of previous virus
loads of (a subset of) all STPs. The incorporation of multiple sampling locations in these methods
has shown to be beneficial in predicting new COVID-19 cases [13].

In this thesis, linear regression models are implemented to predict virus loads at the level of STPs.
This research focuses on detecting and incorporating dependencies and correlations between STPs
to improve forecasting performance. We focus on relatively short forecasting horizons (7 days). The
main research question is whether the predictions of virus loads at a given STP, acquired using
linear models, can be improved by incorporating historical data of other STPs. We want to detect
and investigate (possible latent) relationships between time series of STPs. Can we identify STPs
whose (lagged) virus loads are strong predictors of future virus loads at other STPs, and can we
identify STPs for which the opposite is true? The ultimate goal is to create a multivariate linear
regression model that has an underlying network structure with which virus loads at each STP can
be predicted. Ideally, we would like to find a network structure such that a subset of STPs predicts
all STPs.

This thesis is structured as follows. In chapter (2), we discuss the required mathematical background
on time series analysis. In chapter (3), we explain the method of linear regression, which is used
to determine model coefficients for linear models. In chapter (4), the models that are implemented
are introduced. Then, in chapter (5), data analysis procedures are explained to show how historical
data can be used to train models and choose optimal parameters. In chapter (6), we discuss the
WBE data set that is used in this thesis and the data preprocessing steps that are performed to
make the data set suitable for the time series models. In chapter (7), we show the main results,
which are further discussed in chapter (8).
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Chapter 2

Time Series and Hilbert Spaces

In this chapter, we discuss the basic concepts of time series analysis on which the models in chapter
(4) are based. We only consider real-valued time series, although many notions extend to complex-
valued time series. This chapter is mainly based on lecture notes by A.W. van der Vaart [23] and
books on time series analysis and forecasting by P. J. Brockwell and R. A. Davis [4, 5].

2.1 Univariate time series

Observations of a variable at different points in time gives us information about how this variable
evolves. The set of these observations is called a time series.

Definition 2.1: Discrete Time Series [30, Chapter 1]

A discrete time series {xt} is a set of observations xt of random variables Xt, recorded at
observation times t. The observation times t = 1, 2, . . . form a discrete and linearly ordered
set.

An observation xt is a realization of a random variable Xt and the time series {xt} is a realization
of an underlying stochastic process {Xt} [30]. We assume that the state space S of {Xt} is R.
When analyzing the time series, we are interested in the joint distributions of the random vectors
(X1, X2, . . . , Xn)

T for n = 1, 2, . . . . Specifying these distributions is equivalent to specifying for all
n = 1, 2, . . . and −∞ < x1, . . . , xn < ∞ the following probability:

P (X1 ≤ x1, . . . , Xn ≤ xn) .

In practice, we often do not know these probabilities and the estimation from available data is com-
plex and often involves too many parameters [4].

Time series models for observed data {xt} are models that predict future values xt, xt+1, xt+2, . . .
based on historical observations {x1, x2, . . . , xt−1} of the time series. The models for this purpose
are of the form

x̂t := g (xt−1, xt−2, . . . , x1) ,
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where x̂t denotes the predicted value at time t. These models try to specify the function g(·) based
on available observations and an optimization function.

In order to be able to learn from observations and make informed predictions, the time series needs
to possess at least some structure. Many time series models assume weak stationarity. A time series
is called weakly stationary if E [Xt] and E [Xt+hXt] exist and do not change over time [23]. The
first and second moments are completely determined by its mean, the auto-covariance and auto-
correlation functions. The auto-covariance γX(h) of a weakly stationary time series at lag h ∈ Z is
defined as

γX(h) = cov (Xt+h, Xt) .

The auto-correlation ρX(h) of a weakly stationary time series at lag h is

ρX(h) = ρX (Xt+h, Xt) =
γX(h)

γX(0)

[23]. The auto-covariance and auto-correlation are measures of linear dependencies between obser-
vations of a single variable. An example of a univariate time series is the Gaussian white noise series.

Example 2.1: Gaussian white noise series [5]

A process {Zt} is a Gaussian white noise series with mean 0 and variance σ2,(
{Zt} ∼ WN

(
0, σ2

))
, if and only if {Zt} has zero mean and its covariance function γZ(·)

is given by

γZ(h) =

{
σ2 if h = 0,
0 if h ̸= 0.

In general, when working with time series data, a number of preprocessing steps might be needed to
be able to implement certain models. For instance, time series data is often not weakly stationary
in practice. Variables can steadily increase or decrease over a long period of time. This is called a
trend [23]. A trend causes the mean to change over time, thus resulting in a non-stationary time
series. Seasonality is when a variable shows a cyclic pattern in observation values [23]. If a time
series contains seasonality, the variance changes over time, resulting in non-stationarity. Trends and
seasonality can be detected by visually inspecting the time series or by inspecting the mean and
auto-covariance function over time. Before applying the models to the data, trends and seasonality
should be removed and can later be added to the model. There are various techniques to transform
a time series into a weakly stationary one. Perhaps the easiest one are the difference filter

∇Xt = Xt −Xt−1

and the seasonal difference filter

∇kXt = Xt −Xt−k,

where k is a positive integer, representing the period of the season. These filters can be applied
multiple times to remove polynomial trends [4].
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In the next sections, we will encounter time series that are shifted in time. To improve readability,
we will make use of the lag operator (or backward shift operator), which is defined as follows:

Definition 2.2: Lag Operator [4]

For a time series {xt} = (x1, x2, . . . xT ), the lag operator L is the operator such that

Lkxt = xt−k for all t > k and all k = 1, 2, . . . .

2.2 Multivariate time series

When at each observation time multiple variables are observed, we refer to the series as amultivariate
time series. Multivariate time series are of interest when the observed variables are assumed to be
dependent.

Definition 2.3: Multivariate Time Series

A n-dimensional multivariate time series {xt} is a set of observations
xt = (x1,t, x2,t, . . . , xn,t)

T of random variables Xt = (X1,t, X2,t, . . . , Xn,t)
T recorded at ob-

servation times t = 1, 2, . . . .

A multivariate time series is called weakly stationary if the vector of means (EX1,t, . . . ,EXn,t)
T
and

the covariance matrices of X1,t, . . . , Xn,t are time-invariant. The auto-covariance at lag h is the
matrix

γX(h) = (cov (Xi,t+h, Xj,t))i,j=1,...,n

and the auto-correlation at lag h is

ρX(h) = (ρ (Xi,t+h, Xj,t))i,j=1,...,n

[23].

2.3 Hilbert Spaces and linear predictions

Assuming weak stationarity of a variable, in particular a finite second moment, allows us to use
Hilbert Space theory to solve the problem of finding the best predictor of xt based on observations
x1, . . . ,xt−1. By formulating the prediction problem in terms of Hilbert Spaces, we can use concepts
from Euclidean geometry that are very intuitive in two- or three-dimensional space, for instance or-
thogonality and orthogonal projections.

We restrict ourselves to linear predictions and univariate time series. The linear prediction problem
is defined as the problem of finding the linear combination (or model) φ1xt−1+φ2xt−2+ · · ·+φpxt−p

that minimizes the squared error

m∑
i=p+1

(xi − φ1xi−1 + φ2xi−2 + · · ·+ φpxi−p)
2
,
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where p is a parameter that is called the order of the model and m is the number of observations
[5].

For general Hilbert spaces, we can use the projection theorem to find a linear model that minimizes
the squared prediction error for a stationary process. Before discussing the projection theorem, we
give the requisite definitions and theorems from Hilbert space theory.

Definition 2.4: Real Vector Space [21]

A real vector space is a set H together with an addition operation + : H×H 7→ H and a
multiplication operation · : R×H 7→ H that satisfy for all x,y, z ∈ H and all α, β ∈ R the
following conditions:

(a) x+ y = y + x,

(b) (x+ y) + z = x+ (y + z),

(c) There exists a vector 0 ∈ H such that if x ∈ H , then x+ 0 = x,

(d) For each vector x ∈ H , there exists a vector −x ∈ H such that x+ (−x) = 0,

(e) α(x+ y) = αx+ αy,

(f) (α+ β)x = αx+ βx,

(g) α(βx) = (αβ)x,

(h) 1x = x and 0x = 0.

Definition 2.5: Inner-Product Space [5]

A real vector space H is an inner-product space if for all x,y, z ∈ H and all α ∈ R there
exists a real number ⟨x,y⟩ such that

(a) ⟨x,y⟩ = ⟨y,x⟩,

(b) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y + z⟩,

(c) ⟨αx,y⟩ = α⟨x,y⟩,

(d) ⟨x,x⟩ ≥ 0,

(e) ⟨x,x⟩ = 0 if and only if x = 0.

⟨x,y⟩ is called the inner product of x and y.

For an element x of an inner-product space, we define its norm to be

∥x∥ =
√
⟨x,x⟩.

For inner-product spaces, the parallelogram law and the Cauchy-Schwarz inequality hold.
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Lemma 2.1: (Parallelogram law).

If H is an inner-product space, then for all x,y ∈ H

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2. (2.1)

Proof. The equation follows from repeatedly applying conditions (a) and (b) from definition (2.3.2).

Lemma 2.2: (Cauchy-Schwarz inequality).

If H is an inner-product space, then the Cauchy-Schwarz inequality holds:

|⟨x,y⟩| ≤ ∥x∥∥y∥ for all x,y ∈ H

and

|⟨x,y⟩| = ∥x∥∥y∥ if and only if x =
y⟨x,y⟩
⟨y,y⟩

.

Proof. Let x,y be elements of an inner-product space H . We define the function p : R 7→ R as

p(t) = ⟨tx+ y, tx+ y⟩.

Using the conditions of an inner product space, we can rewrite p as

p(t) = ⟨tx+ y, tx+ y⟩
= ⟨tx, tx⟩+ ⟨tx,y⟩+ ⟨y, tx⟩+ ⟨y,y⟩
= t2⟨x,x⟩+ 2t⟨x,y⟩+ ⟨y,y⟩
= t2∥x∥2 + 2t⟨x,y⟩+ ∥y∥2,

from which follows that if ∥x∥2 ̸= 0, then p is a polynomial of degree 2 in t. If ∥x∥2 = 0, the
Cauchy-inequality is trivial. Assume that ∥x∥2 > 0, then p is a parabola opening upward, with its
minimum at tmin = −⟨x,y⟩∥x∥−2. By condition (d) of definition (2.3), we know that p(t) ≥ 0 for
all t ∈ R, so in particular, we have that

p (tmin) =
−⟨x,y⟩2 + ∥x∥2∥y∥2

∥x∥2
≥ 0,

from which follows that ⟨x,y⟩2 ≤ ∥x∥2∥y∥2, and thus |⟨x,y⟩| ≤ ∥x∥∥y∥.

Note that

p (tmin) = 0 ⇐⇒ ⟨x,y⟩2 = ∥x∥2∥y∥2.

By applying condition (e) of definition (2.5) to

p (tmin) = ⟨tminx+ y, tminx+ y⟩ =
〈
−⟨x,y⟩∥x∥−2x+ y,−⟨x,y⟩∥x∥−2x+ y

〉
,
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we see that

|⟨x,y⟩| = ∥x∥∥y∥ if and only if x =
y∥x∥2

⟨x,y⟩
=

y⟨x,y⟩
⟨y,y⟩

.

We will make use of the following proposition. For its proof, we refer to Chapter 2 of [5].

Proposition 2.1: (Continuity of the Inner Product).

Let H be an inner-product space. If (xn) and (yn) are sequences of elements in H such
that ∥xn − x∥ → 0 and ∥yn − y∥ → 0 as n → ∞, with x,y ∈ H , then, as n → ∞,
∥xn∥ → ∥x∥ and ⟨xn,yn⟩ → ⟨x,y⟩.

Definition 2.6: Cauchy Sequence [5]

A sequence x1,x2, . . . of elements of an inner-product space H is a Cauchy sequence if

∥xn − xm∥ → 0 as m,n → ∞,

which is the case if for every ϵ > 0 there exists a positive integer N(ϵ) such that

∥xn − xm∥ < ϵ for all m,n > N(ϵ).

An inner-product space H is called complete if every Cauchy sequence converges in norm to an
element x ∈ H . We are now ready to define Hilbert Spaces.

Definition 2.7: Hilbert Space [5]

An inner-product space which is complete is called a Hilbert Space H .

Perhaps the easiest example of a real Hilbert Space is Euclidean Space. In the next example, we
will show that Euclidean space satisfies the conditions of a Hilbert Space.
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Example 2.2: (Euclidean Space).

If we consider the space consisting of all column vectors x = (x1, . . . , xn)
T ∈ Rn for some

n ∈ N, and we define its inner product as

⟨x,y⟩ =
n∑

i=1

xiyi,

then this space (Euclidean space) is a real inner-product space. The norm of a vector in Rn

is its length. Suppose we have a Cauchy sequence (x1,x2, . . . ) with xi ∈ Rn for i = 1, 2, . . . .
Then

∥xn − xm∥ → 0 as m,n → ∞. (2.2)

As

∥xn − xm∥2 =

n∑
i=1

|(xn)i − (xm)i|
2
,

equation (2.2) holds if and only if

|(xn)i − (xm)i| → 0 as m,n → ∞ for all i = 1, . . . , n. (2.3)

We can interpret each equation in (2.3) as an individual Cauchy sequence in R. As R is a
complete metric space, every Cauchy sequence in R has a limit that also lies in R. So, for
i = 1, . . . , n, there exists some xi ∈ R such that |xni − xi| → 0 as n → ∞. As a result, there
exists a x ∈ Rn such that

|xn − x| → 0 as n → ∞.

It follows that the Euclidean space is complete, and thus a Hilbert space.

For a probability space (Ω,F , P ), the space L2(Ω,F , P ) is exactly the set of all real random variables
X defined on Ω with finite second moment E

[
X2
]
[23], where the second moment of a variable X

is given by

E
[
X2
]
=

∫
Ω

X2dP =

∫
R
x2p(x)dx, (2.4)

with p the probability density function of X. In the next example, we will see that L2(Ω,F , P ),
together with specific equivalence classes, is also a Hilbert space. To do this, we will make use of
the following proposition:

Proposition 2.2

If xn is a sequence in L2(Ω,F , P ) and ∥xn+1 − xn∥ ≤ 2−n for n = 1, 2, . . . , then there exists
a random variable X on (Ω,F , P ) such that xn → X with probability one. [5]

Proof. Suppose that X0 = 0. Then Xn =
∑n

j=1 (Xj −Xj−1) ≤
∑n

j=1 |Xj −Xj−1|. By linearity of
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expectation, it holds that

E
∞∑
j=1

|Xj −Xj−1| =
∞∑
j=1

E |Xj −Xj−1| . (2.5)

Note that we can write E |Xj −Xj−1| as
∣∣⟨Xj −Xj−1, 1⟩

∣∣. Applying the Cauchy-Schwarz inequality
then gives the following inequality:

E |Xj −Xj−1| ≤ ∥Xj −Xj−1∥∥1∥ = ∥Xj −Xj−1∥.

Filling in above inequality in equation (2.5), together with the assumption that ∥Xn+1−Xn∥ ≤ 2−n

for n = 1, 2, . . . gives

E
∞∑
j=1

|Xj −Xj−1| ≤
∞∑
j=1

∥Xj −Xj−1∥ ≤ ∥X1∥+
∞∑
j=1

2−j = ∥X1∥+ 1 < ∞.

From this, we conclude that with probability one,
∑∞

j=1 |Xj −Xj−1| < ∞. So,
∑n

j=1 |Xj −Xj−1|
is a non-decreasing sequence that is bounded above that converges to its supremum. As a result,
limn→∞ Xn exists and is finite with probability one. Note that for X0 ̸= 0 the proof still holds.

We will also use Fatou’s lemma:

Lemma 2.3: Fatou’s lemma [14]

For a measure space (Ω,Σ, µ) and a measurable function f on Ω, let {fn} be a sequence
of extended real-valued measurable functions which is bound from below by an integrable
function. Then ∫

Ω

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
Ω

fn dµ.
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Example 2.3: (L2(Ω,F , P )).

This example is based on Chapter 2 of [5]. It is easy to see that L2(Ω,F , P ) is a vector
space. If we define the following inner product on L2(Ω,F , P ):

⟨X,Y ⟩ = E [XY ] =

∫
R

∫
R
xyfX,Y (x, y) dx dy,

where fX,Y is the joint probability distribution ofX and Y , then L2(Ω,F , P ) is also an inner-
product space. We will now show that above inner product indeed satisfies the conditions
in (2.5). Conditions (a) and (b) follow from L2 being a vector space, and condition (d) is
trivial. For condition (c), we have that

⟨αX, Y ⟩ =
∫
R

∫
R
α xyfX,Y (x, y) dx dy = α

∫
R

∫
R
xyfX,Y (x, y) dx dy = α⟨X,Y ⟩.

From X = 0, it follows that E[X2] = 0. Then, we only have to show that if ⟨X,X⟩ = 0, then
X = 0. Assume that ⟨X,X⟩ = 0. Then

E
[
X2
]
= E

[
(x− E[X])2

]
+ (E[X])

2
= 0.

As both terms in the middle of this expression are always positive, it follows that
E
[
(x− E[X])2

]
= 0 and E[X] = 0. So, it holds that P(X = 0) = 1. By introducing

equivalence classes to L2(Ω,F , P ), we are able to take the last step from P(X = 0) = 1 to
X = 0. Random variables X and Y are said to be equivalent if P (X = Y ) = 1.

We will now show that L2(Ω,F , P ) is complete. To do this, we use the Cauchy-Schwarz
equation, which for the space L2(Ω,F , P ) is given by∣∣E[UV ]

∣∣ ≤√E [U2]E [V 2].

We need to prove that if ∥Xm −Xn∥2 → 0 as m,n → ∞, then there exists X ∈ L2(Ω,F , P )

such that ∥Xn−X∥2 = E |Xn −X|2 → 0 as n → ∞. Hereto we make use of proposition (2.3).

To prove completeness, we need to show that if ∥xm − xn∥2 → 0 as m,n → ∞, then there
exists an element X in L2(Ω,F , P ) such that ∥xn − X∥ → 0 as n → ∞. Suppose that
{xn} is a Cauchy sequence in L2(Ω,F , P ). Then, or all ϵ > 0, there exists an integer N(ϵ)
such that ∥xn − xm∥ < ϵ for all m,n > N(ϵ). Choose integers n1 < n2 < . . . such that
∥xn − xm∥ ≤ 2−k for all m,n > nk.

By applying proposition (2.3) to the sequence xn1
, xn2

, . . . , it follows that there exists a
random variable X such that xnk

→ X as k → ∞ with probability one. Now, we make use
of Fatou’s lemma (2.3). As

∥xn −X∥2 = ⟨xn −X,xn −X⟩ = E
[
(xn −X)2

]
=

∫
|xn −X|2 dP

=

∫
lim inf
k→∞

|xn − xnk
|2 dP,

12



1: Example 2.3: extended

by Fatou’s lemma it holds that

∥xn −X∥2 ≤ lim inf
k→∞

∥xn − xnk
∥2.

As {xn} is a Cauchy sequence, we can choose n large enough to make the right side arbitrarily
small. So, ∥xn −X∥2 → 0 as n → ∞. By the triangle inequality,

∥X∥ = ∥xn − xn +X∥ ≤ ∥xn −X∥+ ∥xn∥,

for which the right-hand side is finite for large enough n. Thus, E
[
X2
]
< ∞, thus X ∈

L2(Ω,F , P ).

We can view observations of a stationary process as elements of a probability space L2 (Ω,F , P ). To
solve the linear prediction problem, we first need to define orthogonality for the space L2 (Ω,F , P ).

Definition 2.8: Orthogonality [23]

Two elements f, g ∈ L2 (Ω,F , P ) are orthogonal (f ⊥ g) if ⟨f, g⟩ = 0. Two subsets F,G
are orthogonal (F ⊥ G) if f ⊥ g for all f ∈ F and all g ∈ G.

Theorem 2.1: Projection Theorem [23]

Let L ⊂ L2(Ω,U , µ) be a closed vector subspace (i.e. a vector subspace that contains all its
limit points). For every f ∈ L2(Ω,U , µ), there exists a unique element Πf ∈ L such that

Πf = min
l∈L

∥f − l∥2.

This element is uniquely determined by the requirements Πf ∈ L and f − Πf ⊥ L. The
function Πf is called the orthogonal projection of f onto L.

Proof. Let L ⊂ L2(Ω,U , µ) be a closed vector subspace and f ∈ L2(Ω,U , µ). First, we show that
there exists an element Πf ∈ L such that Πf = minl∈L∥f− l∥2. As 0 ∈ L and ∥f∥ < ∞, the minimal
distance d = inf l∈L∥f − l∥ of f to L is finite. Let ln be a sequence in L such that ∥f − ln∥2 → d.
We can rewrite ∥lm − ln∥2 as follows:

∥lm − ln∥2 = ∥lm − f + f − ln∥2

= ⟨lm − f, lm − f⟩+ ⟨f − ln, f − ln⟩+ 2⟨lm − f, f − ln⟩
= 2∥lm − f∥2 + 2∥f − ln∥2 + ⟨lm − f − (f − ln), lm − f − (f − ln)⟩
= 2∥lm − f∥2 + 2∥f − ln∥2 − ∥lm − f − (f − ln)∥2

= 2∥lm − f∥2 + 2∥f − ln∥2 − ∥lm − f − (f − ln)∥2

= 2∥lm − f∥2 + 2∥f − ln∥2 − 4

∥∥∥∥12 (lm + ln)− f

∥∥∥∥2 .
Note that (lm+ ln)/2 ∈ L, and thus −4

∥∥ 1
2 (lm + ln)− f

∥∥2 ≤ −4d2. Also, it holds that 2∥lm−f∥2 →
2d2 and 2∥f − ln∥2 → 2d2 when m,n → ∞. Thus, ∥lm − ln∥2 is bounded above by 4d2 + o(1)− 4d2.

13



Together with the non-negativeness of ∥lm − ln∥2, it follows that this term converges to zero. By
the completeness of L2(Ω,U , µ), it follows that ln is a Cauchy sequence which converges to some
element x ∈ L2(Ω,U , µ). As L is closed, we must have that x ∈ L. By the continuity of the norm,
we have that ∥f − l∥2 = limn→∞∥f − ln∥2 → d, from which follows that we can choose x as the
minimizing element Πf .

We will now show that the element Πf = minl∈L∥f − l∥2 is unique. Suppose that

Π1f = min
l∈L

∥f − l∥2 and Π2f = min
l∈L

∥f − l∥2.

Then we can take the sequence ln with li = Π1f for i = 1, 3, 5, . . . and li = Π2f for i = 2, 4, 6, . . . .
This sequence satisfies ∥f − ln∥ → ∞ as n → ∞, and so we have already shown that ln is a Cauchy-
sequence and converges to a limit, from which follows that Π1f = Π2f .

It rests to show the orthogonality relation. Suppose that x̂ ∈ L and (f − x̂) ⊥ L. Let y ∈ L.

∥f − y∥2 = ⟨f − x̂+ x̂− y, f − x̂+ x̂− y⟩
= ∥f − x̂∥2 + ∥x̂− y∥2 + 2⟨f − x̂, x̂− y⟩
≥ ∥f − x̂∥2,

with equality if and only if y = x̂.

Now suppose that x̂ ∈ L and (f − x̂) ̸⊥ L. Take x̃ = x̂+ ay∥y∥−2, with y an element in L such that
⟨f − x̂, y⟩ ≠ 0 and a = ⟨f − x̂, y⟩. Then

∥f − x̃∥2 = ⟨f − x̂+ x̂− x̃, f − x̂+ x̂− x̃⟩
= ∥f − x̂∥2 + ∥x̂− x̃∥2 + 2⟨f − x̂, x̂− x̃⟩
= ∥f − x̂∥2 + ∥−ay∥y∥−2∥2 + 2⟨f − x̂,−ay∥y∥−2⟩

= ∥f − x̂∥2 + a2

∥y∥2
− 2

a2

∥y∥2

< ∥f − x̂∥2.

So, if (f − x̂) ̸⊥ L, there exists an element x̃ ∈ L such that ∥f − x̃∥2 < ∥f − x̂∥2, so x̂ ̸= Πf .

We can view Πf as the projection of f onto the linear space L, and f − Πf is orthogonal to L. In
the following example, we will give a geometric interpretation of the Projection Theorem, but first
we need to define the root mean squared error.

Definition 2.9: Root Mean Squared Error

The root mean squared error RMSE of predictions ŷ1, ŷ2, . . . , ŷm with actual values
y1, y2, . . . , ym is

RMSE =

(
1

m

m∑
i=1

(ŷi − yi)
2

)1/2

. (2.6)

14



Example 2.4: (Minimum Root Mean Squared Error Linear Prediction of a Sta-
tionary Process)

Let {Xt, t = 0, 1, . . . } be a stationary process on (Ω,F , P ) with mean zero and autocovari-
ance function γX(·). We want to find the linear combination X̂n =

∑p
i=1 φiXn−i that best

approximates Xn, so the linear combination that minimizes E |Xn −
∑p

i φiXn−i|. Hereto we
take H = L2(Ω,F , P ).

Note that by minimizing ∥Xn − X̂n∥2, we minimize E |Xn −
∑p

i φiXn−i|.

Note that Xn−i, i = 0, 1, . . . , p are all (m − p)-dimensional vectors, where m is the number
of observations of the time series. As an example, consider the time series Xt = (1, 4, 3, 2, 7).
In this case, we are interested in linear prediction of Xn from it’s two previous values. We
have Xn = (3, 2, 7)T , Xn−1 = (4, 3, 2)T and Xn−2 = (1, 4, 3)T . These vectors are drawn in
figure (2.1).

As the prediction of Xn is a linear combination of Xn−1 and Xn−2, it must lie on the
plane spanned by these vectors. This plane is depicted in light blue in figure (2.1). We call
this plane V . As ∥Xn − Y ∥2 is the distance from Xn to Y , we see that taking Y as the
intersection of V and the line through Xn that is perpendicular to V minimizes this distance.

In the next section, we will discuss the linear prediction problem in more detail.

15



Figure 2.1: Geometric interpretation of linear prediction of xn of order 2. The blue vectors xn−1

and xn−2 contain the observations shifted back one and two time steps, so the vectors Lxn and
L2xn, respectively. The red vector xn is the target vector, which we want to approximate. The black
vector y is the linear combination of Lxn and L2xn−2 that minimizes ∥xn − α1Lxn + α2L

2xn∥ for
α1, α2 ∈ R. The solution y is found by projecting Xn onto the space spanned by Xn−1 and Xn−2.
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Chapter 3

Linear Regression

With the term linear regression, we refer to statistical models that represent an outcome variable
as a linear combination of indicator variables. If A is a matrix with observation times as rows and
indicator variables as columns, and b is a vector of observations of the predictor variable, then the
linear regression problem is finding the vector x such that

Ax = b. (3.1)

In the previous chapter, we have seen that linear time series models are examples of linear regression
problems. In this chapter, we discuss how linear regression problems can be solved analytically given
a data matrix of observation of variables.

Definition 3.1: Linear Regression Problem for Univariate Time Series

Let {xt}, t = 1, 2, . . . T be a univariate time series. Suppose that we want to represent an
observation xt in terms of the linear combination of its p previous values xt−1, . . . , xt−p. Then

A =
(
Lxt L2xt . . . Lpxt

)
(the matrix with as columns the lagged time series of {xt}) and

b = (xp+1, xp+2, . . . , xT )
T
.

Note that in the definition above, the columns of A are not exactly Lixt, but actually contain the re-
sults of applying the operator Li only on the observations of xt at observation times p+1, p+2, . . . , T .
In the next example, we will clarify how this is done.
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Example 3.1

Suppose we have the following sequence of observations of some variable: (5, 6, 4, 7, 3). Sup-
pose that p = 2. Then

A =

 6 5
4 6
7 4

 and b =

 4
7
3

 .

If A is a square matrix of full rank, then the solution to (3.1) is given by

x = A−1b.

However, when A is not square or not of full rank, it is not invertible.

In the general case that A is underdetermined (i.e. the number of observations is smaller than the
number of coefficients to estimate), there are infinitely many solutions to equation (3.1), and another
criterium is needed to select only one. One option is to select the mimimum-norm solution, i.e. the
solution x to (3.1) such that x = argminx ∥x∥ .

If A is overdetermined (i.e. the number of observations is larger than the number of coefficients to
estimate), it is possible that no exact solution exists. In this case, we want to select a solution that
best fits the data, i.e. that minimizes the error between predicted values and actual values. The
least-squares solution is the solution that minimizes the squared sum

∥∥Ax− b||2. [7].

To find solutions x, we use a substitute for the inverse of A using Singular Value Decomposition
(SVD).

3.1 Singular Value Decomposition

Definition 3.2: Singular Value Decomposition (SVD) [7]

The SVD of a real-valued matrix A ∈ Rn×m is

A = UΣV T , (3.2)

where U ∈ Rn×n and V ∈ Rm×m are unitary matrices (i.e. UUT = UTU = In and
V V T = V TV = Im) with orthonormal columns, and Σ ∈ Rn×m is a diagonal matrix with
non-negative entries on the diagonal.

Let r denote the rank of matrix A. The matrix U in 3.4 contains the r orthonormal eigenvectors of
AAT , V the r orthonormal eigenvectors of ATA, and Σ has as first r diagonal entries the square
roots of the eigenvalues λi of both AAT and ATA, supplemented with zeros to form a square matrix
[27]. We can thus write the SVD of A in equation (3.4) as

A =
(
u1 . . . un

)( S 0
0 0

) v1
T

...
vm

T

 , (3.3)
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where

S =

 σ1 0
. . .

0 σr

 .

If we arrange the diagonal entries of S in decreasing order, then we can also decompose the matrix
A in the following way.

Definition 3.3: Alternative Singular Value Decomposition [1, Chapter 5]

Any m× n real-valued matrix A with rank r can be decomposed as

A = UΣV T , (3.4)

where U ∈ Rm×r and V ∈ Rn×r are unitary matrices and

Σ =

 σ1 0
. . .

0 σr


is a r × r diagonal matrix with positive entries that satisfy

σ1 ≥ · · · ≥ σr > 0.

Note that a SVD of a matrix is not unique [27]. A SVD exists for any matrix and can be computed
numerically [7]. Once we have calculated the SVD of X, we can insert it into equation 3.1 to get a
solution for x:

Ax = b

UΣV Tx = b

V Σ−1UTUΣV Tx = V Σ−1UT b

x = V Σ−1UT b.

The solution of x in above expression can be written in terms of the Moore-Penrose left pseudo-
inverse of A.

Definition 3.4: Moore-Penrose left pseudo-inverse

The Moore-Penrose left pseudo-inverse A† of a matrix A is V Σ−1UT .

This expression gives the minimum-norm solution for underdetermined systems, and the least-
squares solution for overdetermined systems.
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Theorem 3.1: Minimum Norm Solution

For an underdetermined system Ax = b, x = A†b is the minimum euclidean norm solution.

Proof. Let A be a m × n-matrix with m < n. Let x and z be solutions such that Az = Ax = b,
and let x = A†b. We can write the euclidean norm of z as follows:

∥z∥2 = ∥z − x+ x∥2 = ∥z − x∥2 + ∥x∥2 + 2xT (z − x). (3.5)

Note that

xT (z − x) =
(
A†Ax

)T
(z − x)

= xTA†A(z − x)

= xT
(
A†Az −A†Ax

)
= xT

(
A†b−A†b

)
= 0.

Filling in in equation 3.5, we get that ∥z∥2 = ∥z − x∥2 + ∥x∥2 ≥ ∥x∥2. So, x is the minimum norm
solution.

In figure (3.1), a geometric interpretation of the minimum norm solution is depicted. The red line
contains all solutions to the system of equations Ax = b. The green lines denote levels of the l2
norm, i.e. vectors x for which ∥x∥2 = x1

2 + x2
2 = a for some a > 0. The minimum norm solution

x∗ is the first intersection point of Ax = b and x1
2 + x2

2 = a that arises when increasing a from
zero. The solution is the vector that is perpendicular to all other solution vectors.

Theorem 3.2: Least Squares Solution

For an overdetermined system Ax = b, the the Moore-Penrose left pseudo-inverse is the
least-squares solution.

Proof. For this proof, we use the first definition of SVD (3.1) and its form as in equation (3.3). We
want to find the solution x which minimizes the sum of squares of errors r2, i.e. the x for which

r2(x) := ∥Ax− b∥22

is minimized. Hereto, we will use that unitary transformations are invariant under the euclidean
norm.

r2(x) = ∥Ax− b∥22 =
∥∥∥UT (Ax− b)

∥∥∥2
2
=
∥∥∥UT (UΣV Tx− b)

∥∥∥2
2
=
∥∥∥ΣV Tx−UT b

∥∥∥2
2
.
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Figure 3.1: A geometric interpretation of the minimum norm solution. The red line contains all
solutions x to Ax = y. The blue vectors are examples of such solutions x. The green circles are
level curves of the L2-norm. The solution x∗ = A†y is the minimum norm solution, which is the
first intersection that occurs between the level curves and the line of solution when increasing the
norm.
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r2(x) =

∥∥∥∥∥∥∥
(

S 0
0 0

) − v1
T −
...

− vm
T −


 x1

...
xn

−

 − u1
T −
...

− un
T −


 b1

...
bm


∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥∥∥


σ1 (v11x1 + v12x2 + · · ·+ v1mxm)

...
σr (vr1x1 + vr2x2 + · · ·+ vrmxm)

0

−

 u11b1 + u12b2 + · · ·+ u1mbm
...

un1b1 + un2b2 + · · ·+ unmbm


∥∥∥∥∥∥∥∥∥
2

2

.

Note that the 2-norm of a vector is a sum which we can simplify by omitting zero-terms. We then
get the following expression for the error r2:

r2(x) =
∥∥∥SU r

Tx−Ur
T b
∥∥∥2
2
+
∥∥∥U−r

Tb
∥∥∥2
2
, (3.6)

where V r is the n × r-matrix containing the first r column vectors of V , U r is the m × r-matrix
containing the first r column vectors of U , and U−r contains all other columns of U . So, the solution
x that minimizes ∥Ax− b∥22 is the solution that minimizes equation 3.6. Because b and U−r

T are
independent on our choice of x, this is the same as minimizing∥∥∥SU r

Tx−Ur
T b
∥∥∥2
2
.

Filling in x = V rS
−1U r

T gives
SU r

Tx−Ur
T b = 0,

which is indeed the smallest possible 2-norm.

3.2 Principal Component Analysis

Principal Component Analysis (PCA) is a popular technique for dimension reduction in data anal-
ysis. It assumes that high-dimensional data samples are drawn from a single low-dimensional sub-
space. PCA projects the D-dimensional data points {x1, . . . ,xN} onto a lower-dimensional space S
of dimension d ≪ D, in such a way that as much of the the initial variance as possible is preserved
[28]. In figure (3.2), a geometric interpretation of PCA is given.
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Figure 3.2: Example of a two-dimensional data set (red dots) with its two principal components u1

and u2. From [28].

Definition 3.5: Principal Components [28, Chapter 2]

Let x ∈ RD be a multivariate random variable and d < D the dimension of the subspace that
x will be projected on. The d principal components of x, y1, . . . , yd, are the d uncorrelated
linear combinations of x, given by

yi = ui
Tx+ ai ∈ R, ui ∈ RD, i = 1, . . . , d, (3.7)

that maximize the variance of y1, . . . , yd consecutively and satisfy

∥ui∥ = 1, i = 1, . . . d

and

Var(y1) ≥ Var(y2) ≥ · · · ≥ Var(yd) > 0.

When we consider a set {xj}Nj=1 of realizations in RD of the random variable X, we can approach

PCA from a geometric point of view. If we assume that there exists a subspace S ⊂ RD of dimension
d such that all points xj , j = 1, . . . , N lie on S, then each point xj ∈ S can be represented as

xj = µ+Uyj , j = 1, 2, . . . , N,

where µ ∈ S is a point in the subspace, U is a D × d-matrix whose columns form a basis of S, and
yj ∈ Rd is the vector of new coordinates of xj in the subspace. As

µ+Uyj = (µ+Uz) +U
(
yj − z

)
for all z ∈ Rd, and

µ+Uyj = µ+ (UA)(A−1yj)
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for every invertible matrix A ∈ Rd×d, we see that the choice of µ and U is arbitrary, and we will
not be able to find a unique affine subspace for the data. By adding the condition that the columns
of U are orthonormal (i.e. UTU = I) and

1

N

N∑
j=1

yj = 0,

a subspace S for projection of the data points can be found that is unique up to rotation [28].

Now suppose that the points xj do not lie perfectly in S, but that

xj = µ+Uyj + εj , j = 1, 2, . . . , N.

In this case, we can write the data matrix A as

A = PLT +E,

where P is an n× k-matrix whose columns contain the principal components, L is a m× k-matrix
whose entries are the component loadings, and E is an error-matrix. The matrix product PLT is
an approximation of A. The goal is to find P and L that minimize the approximation error:

min
P ,L

∥E∥2F =
∥∥∥A− PLT

∥∥∥2
F
,

where ∥·∥F is the Frobenius norm.

Definition 3.6: Frobenius norm [27]

The Frobenius norm of a m× n-matrix F with entries F ij is defined as

∥F ∥F =

 m∑
i=1

n∑
j=1

|F ij |2
1/2

.

The solutions for above minimization problem are given through SVD [1].

Theorem 3.3: PCA through SVD [1]

Let A be a N ×D-matrix, with SVD A = UΣV T . Assume that d ≤ rank(A) = r and that
the diagonal elements of Σ are positive and arranged in decreasing order. Let Ud denote the
N × d-matrix consisting of the first d columns of U and V d the D × d-matrix consisting of
the first d columns of V . Let Σd be the diagonal matrix with diagonal entries the first d
entries of Σ. Then, ∥∥∥A− PLT

∥∥∥2
F

with P a N × d matrix and L a D × d matrix is minimized for

PLT = UdΣdV
T
d .
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Proof. Let M be a real-valued N × D-matrix with a SVD of M = UΣV T . We can rewrite the
expression for ∥A−M∥2F in the following way:

∥A−M∥2F =
∥∥∥A−UΣV T

∥∥∥2
F

(3.8)

=
∥∥∥A−AV V T +AV V T −UΣV T

∥∥∥2
F

(3.9)

=
∥∥∥A−AV V T

∥∥∥2
F
+
∥∥∥AV V T −UΣV T

∥∥∥2
F
+ 2c, (3.10)

with

c =

N∑
i=1

D∑
j=1

(
Aij − (AV V T )ij

)(
(AV V T )ij − (UΣV T )ij

)

=

N∑
i=1

D∑
j=1

(
Aij(AV V T )ij −Aij(UΣV T )ij − (AV V T )ij(AV V T )ij + (AV V T )ij(UΣV T )ij

)
= tr

(
ATAV V T

)
− tr

(
ATUΣV T

)
− tr

((
AV V T

)T
AV V T

)
+ tr

((
AV V T

)T
UΣV T

)
= tr

(
ATAV V T

)
− tr

(
ATUΣV T

)
− tr

(
V V TATAV V T

)
+ tr

(
V V TATUΣV T

)
.

Using that V V T = I and the property of the trace that

tr (ABC) = tr (CAB) ,

we see that

c = tr
(
V TATAV

)
− tr

(
ATUΣV T

)
− tr

(
V TATAV

)
+ tr

(
ATUΣV T

)
= 0.

Furthermore, we have that∥∥∥A−AV V T
∥∥∥2 = ∥A∥2 − 2 tr

(
ATAV V T

)
+ tr

(
V V TATAV V T

)
= ∥A∥2 − tr

(
V TATAV

)
.

Filling in above expression and c = 0 into equation (3.10) gives us

∥A−M∥2 = ∥A∥2 − tr
(
V TATAV

)
+
∥∥∥AV V T −UΣV T

∥∥∥2 .
The above expression can be minimized if we can find U ,Σ and V that maximize tr

(
V TATAV

)
while minimizing

∥∥∥AV V T −UΣV T
∥∥∥2. The matrices

U = Um, Σ = Σm, V = V m

withUm,Σm and V m as defined in (3.2) both maximize tr
(
V TATAV

)
and minimize

∥∥∥AV V T −UΣV T
∥∥∥2.

For the proof of this last statement, we refer to [1, Chapter Appendix].
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Note that the solution given by SVD does not give unique matrices P and L. By adding the following
constraints onto P and L:

1

N
P TP = I

and adding the constraint that LTL is a diagonal matrix whose diagonal elements are arranged in
decreasing order, the following unique solution is found:

P =
√
NUm, L =

1√
N

V mΣm.

The proportion of explained variance by the first m PCs PEVm is given by

PEVm =
tr(PLT )TPLT

tr
(
N−1ATA

)
[1].

We can rewrite the matrix P as AW , where the matrix W is the weight matrix W . Elements in
W provide the weights by which variables are multiplied to form the PCs (columns of P ).
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Chapter 4

Models

In this chapter, we explain the linear models that are implemented for this research. All models are
deterministic and work on regular time series data (i.e. time series with regular intervals between
observations). We start with AR(p), a simple autoregressive model for univariate time series. Then,
we discuss VAR(p), the variant of AR(p) for multivariate time series. At last, we show some lower-
dimensional variants of VAR(p), where the covariates are reduced to the principal components of the
data, the nearest neighbours of a predictor in a geographical sense and most correlated variables.

4.1 Autoregressive model (AR)

The simplest model for time series analysis is the autoregressive (AR) model. This model assumes
that an observation of a variable is a linear combination of it’s previous values up to a certain lag p
plus noise. Optionally, an intercept term can be added.

Definition 4.1: Autoregressive model (AR(p)) [4]

An autoregressive model of order p (AR(p)) of a variable X specifies a time series {xt}
at time t as

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + φp+1 + εt,

where {xt} is stationary, φ1, φ2, . . . , φp+1 are constant coefficients and φp ̸= 0. The error
term εt is assumed to be a Gaussian white noise series with mean zero.

We can use the AR(p) model to make predictions x̂t of the underlying process {Xt} using the
following expression:

x̂t = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + φp+1. (4.1)

In order to make good predictions, the model coefficients φ1, φ2, . . . , φp+1 need to be chosen so that
the modeled values of x̂t are as close to the observed values xt as possible.
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4.2 Vector autoregressive model (VAR)

The vector autoregressive model with order p (VAR(p)) is the multidimensional version of AR(p).
In this model, it is assumed that an observation of any one variable is also dependent on past
observations of other variables. The model writes observations of a variable as a linear combination
of p previous observations of itself and all other variables, plus an intercept term.

Definition 4.2: Vector autoregressive model (VAR(p)) [4]

The vector autoregressive model of order p (VAR(p)) is of the form

xt =

(
p∑

i=1

W ixt−i

)
+ c+ ϵt

where xt−i, i = 0, 1, . . . are vectors of n stationary time series, W i are (n × n) coefficient
matrices, c is an intercept vector and εt is a vector of error terms, which are assumed to be
Gaussian white noise series with mean zero.

Note that the VAR(p) can also be written as

xt =
(
W 1 . . . W p c

)


xt−1

...
xt−p

1

+ ϵt. (4.2)

The left-most matrix in equation (4.2) is the n× (n · p+ 1) coefficient matrix W .

The number of coefficients k is n (n · p+ 1), where n is the number of variables. If k is larger or
comparable to the number of observations, predictors can seem to be highly correlated, even when
they are independent and identically distributed. As a result, the coefficients of important but
spuriously correlated variables may become relatively small. Furthermore, high dimensional spaces
have geometrical properties that are counter-intuitive, which can make the linear tools described in
chapter (2) unsuitable [9]. Another problem that could arise by incorporating too many variables is
overfitting, which will be discussed in the next chapter.

To prevent the problems described above, we propose to reduce the number of parameters by writing
each variable as a linear combination of a restricted number of variables. In the next sections, we
discuss different methods for this parameter reduction.

4.2.1 VAR with principal variables (PCA)

PCA is widely used as a dimension reduction tool. It can be applied to the VAR model by replacing
the original variables by a smaller set of principal components (PCs), thereby reducing the number
of coefficients to be determined. As we have seen in chapter (3), each PC explains a proportion of
variance of the data. This proportion can be interpreted as a measure of importance of the PC. By
selecting only the first few PCs, the dimension of the problem is reduced while trying to preserve as
much variation in the data as possible. As the PCs are usually linear combinations of all the original
variables, interpreting the model can be difficult. Ideally, we would like to reduce the number of
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predictor variables instead of the number of PCs. We can use the PCs and their proportion of
explained variance to select a subset of the variables, called the principal variables. We will now
explain how principal variables are selected from PCs.

Let A be a N ×D-data matrix of D variables X1, . . . , XD. Let V denote the set of variables. When
we perform principal component analysis on A, we get D principal components y1, . . . , yD, sorted
in decreasing order of proportion of explained variance PEV. The expression of the i-th PC is as
follows:

yi = wi1X1 + wi2X2 + · · ·+ wiDXD + ai, wi1, . . . , wiD, ai ∈ R,

and so we can write the vector of PCs (y1, y2, . . . , yD)
T
as

y1
y2
...
yD

 =


w11 w12 . . . w1D

w21 w22 . . . w2D

...
...

. . .
...

wD1 wD2 . . . wDD




X1

X2

...
XD

 = W


X1

X2

...
XD

 .

If the variables in V all have mean-zero and are defined on a similar scale, the entries in W contain
information on the importance of each variable for determining the PCs. Together with the propor-
tions of explained variance for each PC, we define the importance measure f : V ×{1, 2, . . . , D} 7→ R
for the first d < D PCs:

f(Xi, d) := PEV1 |W i1|+
d∑

j=2

(PEVi − PEVi−1) |W ij | ,

where d is the number of PCs that are used and PEVi is the proportion of explained variance of the
first i PCs. We use this measure to define the set PVd,k of k principal variables.

Definition 4.3: Principal Variables

The set PVd,k of k principal variables, based on the first d PCs, is the set

PVd,k ⊆ V

such that
|PVd,k| = k

and
f(Xi, d) ≤ min

Xr∈PVd,k

f(Xr, d)

for all Xi ̸∈ PVd,k.

With this set, we can define the vector autoregression model with principal variables (PCA(p, d, k)).
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Definition 4.4: Vector Autoregression with Principal Variables (PCA(p, d, k))

The vector autoregression model with principal variables (PCA(p, d, k)) of order p,
based on the first d principal components of the data matrix, and with k principal variables
is of the form

xt =

(
p∑

i=1

W ixt−i

)
+ c,

with W i = (wi1 wi2 . . .wiD), where

wij = 0 if Xj ̸∈ PVd,k

for all i = 1, 2, . . . , p.

4.2.2 VAR with K-Nearest Neighbours (KNN)

Let {xt} be a n-dimensional time series, with V = {X1, X2, . . . , Xn} the set of variables. If a
distance measure d : V × V 7→ R between all pairs of variables is defined, for instance the euclidean
distance, we can for each variable Xi ∈ V define a set KNNXi,k of its k nearest neighbors.

Definition 4.5: k-Nearest Neighbors

Let V be a set of variables with distance measure d. For any variable Xi ∈ V , the set of its
k nearest neighbors is the set

KNNXi,k ⊆ V

such that
|KNNXi,k| = k

and
d (Xi, Xj) ≥ max

Xr∈KNNXi,k

d (Xi, Xr)

for all Xj ̸∈ KNNXi,k.

Definition 4.6: k-Nearest Neighbours model (KNN(p, k))

The K-Nearest Neighbours model (KNN(p, k)) of order p with k predictor variables is
of the form

xt =

(
p∑

i=1

W ixt−i

)
+ c

where xt is a vector of n stationary time series X1, . . . , Xn, W i are n×n coefficient matrices,
c is an intercept vector and

(Wi)rs = 0 if Xs ̸∈ KNNXr,k.
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4.2.3 VAR with correlation-based neighbours (CORR)

The idea behind the correlation based model is to detect and leave out uninformative variables.
Hereto, the correlations between time series of variables with lagged time series of all variables are
calculated. We will use xi to denote the set of observations of variable Xi, and Llxi to denote
the set of observations of Xi that are shifted backwards l time steps. Correlations of time series
of variables Xr with lagged time series of variable Xs are calculated. An example of a correlation
function that can be used is the Bravais-Pearson Correlation Coefficient.

Definition 4.7: Bravais-Pearson Correlation Coefficient [8, Chapter 4]

The Bravais-Pearson Correlation Coefficient r of paired observations
(xi, yi), i = 1, 2, . . . , n of two variables X and Y measures how linearly correlated X
and Y are and is given by

r =

∑n
i=1 (xi − x) (yi − y)√∑n

i=1 (xi − x)
2∑n

i=1 (yi − y)
2
,

where x and y are the mean of the observations of X and Y respectively. Note that
−1 ≤ r ≤ 1. When |r| is close to 1, the linear correlation between X and Y is considered
strong. When |r| is close to 0, this correlation is considered weak.

We can define a neighborhood of nearest neighbors in the sense of the correlation measure in a similar
way as we did for k-Nearest Neighbors. However, we will now make this neighborhood dependent of
the order p that is used in the model. A variable Xj is added to the neighborhood of Xi if for any
lag l = 0, 1, . . . , p, the correlation cor (xi, L

sxj) is small enough. We will call the set of neighbors
the k-Most Correlated Neighborhood. What is meant with ”small enough” will become clear in the
following definition.

Definition 4.8: k-Most Correlated Neighbors

Let V be a set of variables with correlation measure cor and let p be a positive integer. For
any variable Xi ∈ V , the set of its k most correlated neighbors is the set

KMCNXi,k,p ⊆ V

such that
|KMCNXi,k,p| = k

and
min

l=0,1,...,p

∣∣cor (xi, L
lxj

)∣∣ ≤ min
Xr∈KMCNXi,k,p

s=0,1,...,p

|cor (xi, L
sxr)|

for all Xj ̸∈ KMCNXi,k,p.

If for any Xi, Xj and l = 0, 1, . . . , p the observation times of variables Xi and LlXj are not equal,
only the observation times on which both variables are observed are used for the calculation of
cor
(
xi, L

lxj

)
. We will now define the model that is based on the k-Most Correlated Neighborhoods.
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Definition 4.9: k-Most Correlated Neighbours model (CORR(p, k))

The k-Most Correlated Neighbours model (CORR(p, k)) of order p with k predictor
variables is of the form

xt =

(
p∑

i=1

W ixt−i

)
+ c

where xt is a vector of n stationary time seriesX1, . . . , Xn, W i are (n×n) coefficient matrices,
c is an intercept vector and

(Wi)rs = 0 if s ̸∈ KMCNXr,k,p.

4.3 Baseline model

In our analyis, we will compare the models already mentioned with a baseline model which copies
the last observed value of each STP. We will call this model LAST. The model is of the following
form:

xt = xt−i.

In the next chapter we will see some results of the models on the SARS-CoV-2 data sets.
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Chapter 5

Data analysis

In this thesis, we use algorithms to build regression models from data that approximate the true,
unknown rules of the data. In this chapter, we describe the process of splitting the available data
in separate sets, and show how models are trained and evaluated using these different sets. We also
describe preprocessing steps that are applied to the data before training takes place.

5.1 Training, validating and testing

In the first phase of model building, called the training phase, a subset of the data (called the training
set) is used to determine model coefficients. Let X denote the input space and Y the output space.
Then each element of the training set (or training instance) can be written as a tuple (x,y) where
x ∈ X and y ∈ Y, and a mapping f : X 7→ Y is established [32]. We have already encountered an
example, where we wanted to determine coefficients φ s.t. f : A 7→ b with f(A) = Aφ for a data
matrix A and a target vector b.

Once a model (or mapping) has been established, it can be used to make predictions based on new
input. To test how well the model generalizes to new samples, the model predicts outcomes on the
test set, which consists of data instances that have not been used in the training phase. Each test
instance is a tuple (x∗,y∗). Using an error measure, outcomes y∗ and ŷ∗ = f(x∗) are compared
for each test instance, and so we get an indication of the generalizability of the model [32]. In this
thesis, we will measure model performance with the root mean squared error (RMSE).

There are often multiple candidate algorithms to model the data, and each algorithm comes with
parameters for which (infinitely) many values can be chosen. To choose between algorithms and
parameter settings, a validation set is used. All algorithms are trained for a number of parameter
combinations. The performance of these models is tested on the validation set. Then, the optimal
model is selected, which is the model with parameters that minimize the error on the validation set.
Training is then repeated, now using data points of both the training and validation set. The model
performance on the test set gives an indication of how well the models performs on new data.

Testing the models performance on new data can prevent over- and underfitting. Overfitting is the
phenomenon where the model is too complex, thereby fitting the training data very closely, with as
result a loss of generalizability of the model [26]. This loss of generalizability occurs because noise in
the training data is seen as part of the underlying rules of the data. In general, the higher the model
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complexity, the smaller the error on the training set. Overfitted models will change significantly if
a different training set is used. Underfitting occurs when the model is not flexible enough, and is
therefore not able to capture the underlying rules governing the data, and does not learn the rela-
tionship between input and output properly. An underfit model depends very little on the training
data. A good model should balance complexity and goodness of fit [28].

All available samples are divided over the 3 sets, where the training set consists of 60% of the data
and the validation and test set both of 20%. We have chosen to fill the training, validation and
test set chronologically, so that the training set contains the oldest observations and the test set the
most recent observations.

5.2 Preprocessing

During data preprocessing, some techniques are applied to the original data, resulting in a data set
that is better suited for model building.

Missing values and regularity

For the models discussed in the previous chapter, missing values are problematic. We have seen that
the models require inputs xt−1,xt−2, . . . , and so all observations at all observation times should be
available. Furthermore, we require the time series to be regular, so there should be regular time
intervals between measurements. From the original data, a regular data set can be constructed using
linear interpolation.

Definition 5.1: Linear Interpolation for Time Series Data

Given two consecutive observations xt and xt+h with h ≥ 1 of a variable X, we define

xt+i = xt + i

(
xt+h − xt

h

)
for all i = 1, . . . , h.

If observations at the beginning or end of the time series are missing, the first and last observation
respectively are copied to create regular data.

Moving Average Smoothing

Smoothing is a technique to reduce variation between time consecutive steps, which hopefully reduces
noise and enables the model to fit the underlying rules of the data. From a time series {xt} of
original observations, a new time series {yt} is created whose observations yt are averages of a
specified interval (window) around the original observation xt. To determine {yt}, first a window
size w is chosen. Then, a window of this slides along the time series and averages of the window
are calculated. When the window contains the original observations and w − 1 previous values, the
resulting time series is specified as follows:

yt :=
1

w
(xt + xt−1 + · · ·+ xt−w) , t > w.
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Chapter 6

Application: SARS-CoV-2 virus
loads in sewage

In this chapter, we describe in more detail the data set that is used in this research, and the
preprocessing steps that have been performed before the modelling phase. We use RIVM’s
open data set on wastewater measurements, which can be accessed through [18]. Wastewater
measurements are created by taking 24-hour samples of wastewater at each STP. From each sample
the number of SARS-CoV-2 virus particles present in the sample is determined. Then, this number
is corrected for the daily flow of wastewater through the STP and is normalized for the number of
inhabitants the STP serves. The resulting data set contains observations of the sampling date of the
measurement, the name of the STP from which the sample was taken and the average concentration
of SARS-CoV-2 RNA, per 100,000 inhabitants and corrected for daily flow. Sampling frequencies
vary over time and between STPs. In 2022, each STP is in principle sampled four times a week.
The number of virus particles in a sample can be too small to be measured. In this case, the value
is recorded as zero [18]. In this research, we make use of observations from 01-01-2020 to 20-10-2022.

6.1 Preprocessing steps

First, all zero-values in the data sets were replaced by 1012, which is approximately half of the cut-off
point for SARS-CoV-2 RNA detection in sewage samples. Then, a log10-transformation was applied
to all observations. The following STPs were removed: Aalst, Woerden, Katwoude, Eck-en-Wiel,
Valburg, Lienden and Veenendaal. These STPs were left out due to consistently deviating values
(Woerden, Katwoude), large periods without measurements (Aalst, Eck-en-Wiel, Valburg, Lienden)
or the catchment size was unknown at the time of implementation (Veenendaal).

In the SARS-CoV-2 data set, irregular intervals are present due to irregular sampling intervals. We
use different methods to construct a data set with regular time intervals, one of which is linear in-
terpolation as described in the previous chapter. A moving average with window size 3 was applied
to this data. The resulting data set will be referred to as the linear data set.

We also make use of a data set of estimated log10-transformed virus loads based on a multilevel
Bayesian penalized spline model, of which a detailed description can be found in [3]. We will refer
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to this data set as the modelled data set from here on.

6.2 Additional constraints

The following constraints on predictions x̂t were added to the models:

12 ≤ x̂t ≤ 15.25,

and

0.76 ≤ x̂t − x̂t−1 ≤ 0.76,

to decrease unrealistic behaviour of the models. These constraints are based on the maximum and
minimum values observed, and the maximum difference between two consecutive observed values
between 2020 and 2022.
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Chapter 7

Results

In this chapter, we discuss our main results. We start by discussing the 7-step predictions of the
various models for different training and test sets. Next, the model performances are compared to
the baseline model and we indicate optimal parameter settings and show figures of the predictions.
Then, in section (7.2), we further investigate the behaviour of the multivariate models by inspecting
the coefficients matrices for different parameter settings. In section (7.3), we discuss how model
performance differs from STP to STP.

7.1 7-step forecasts

In this section, we present the results of 7-day ahead predictions on the validation set and test set
as described in chapter (6), both for the linear data set and the modelled data set. Training for AR
and VAR was repeated for each p ∈ {1, 2, . . . , 7}. For the models KNN, CORR and PCA, training
was repeated for each combination of p ∈ {1, 2, . . . , 7} and at least values 17 values of k, where k
is the number of covariates in the prediction for each STP. The number of principal components d
that were used to determine the principal components were 41 and 4 for the linear data and the
modelled data, respectively, with corresponding proportions of explained variance of 0.7559 and
0.9986.

For each model, the optimal p or optimal combination of p and k (i.e. the parameter(s) that min-
imized the total RMSE on the validation set) was selected. Then, training was repeated for the
optimal parameter(s), using both the training and validation set. In table (7.1), the optimal param-
eters are given.
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data set
linear modelled
p k p k

AR 6 7
VAR 7 7
PCA 7 240 2 31
KNN 6 1 2 1

CORR 6 1 2 1

Table 7.1: Parameter combinations that were found to minimize the average RMSE of all STPs on
the validation set for each model.

Table (7.2) contains the errors on the test set for each model with optimal parameters and each data
set. Here, the error is the average error of all STPs and all 7-day predictions on the test data.

data set
linear modelled

LAST 0.2433 0.0596
AR 0.2006 0.0065

VAR 0.2431 0.0010
PCA 0.2427 0.0830
KNN 0.2191 0.0086

CORR 0.2191 0.0086

Table 7.2: Average RMSE of all STPs on the test set of the models with optimal parameters as found
on the validation set. Smallest RMSEs found per data set are written in bold.

In figure (7.1), the weighted average of some 7-step predictions are plotted for the models LAST,
AR(6), VAR(7) and PCA(7, 240) and the linear data set. The weighted average was calculated
with as weights the sizes of the catchment areas of the STPs. The results for KNN and CORR
are omitted, as the optimal parameter combination was found to be (p = 6, k = 1) for both these
models. The resulting predictions were very similar to those of AR(p = 6), and are therefore not
shown.
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(a) Last

(b) AR(6)

(c) VAR(7)
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(d) PCA(7, 240)

Figure 7.1: Predictions on the test set for the linear data set. The red points are actual values and
the coloured lines are 7-step predictions, averaged over all STPs. Predictions of the models LAST,
AR(p = 6), VAR(6) and PCA(p = 7, d = 41, k = 240) are shown.

The RMSE on the test set for the linear data set is smallest for AR(6). For the linear data, all
VAR models have a RMSE that is close to that of the baseline model. Looking at figure (7.1),
we notice the following differences in predictions between models. For the linear data set, the AR
predicts almost straight lines, which do not necessarily follow the trend of the data. The VAR and
PCA predictions are more flexible, which explains the smaller training errors for these models. Both
VAR and PCA predict well between mid July through mid August, when the virus loads go steeply
downwards, but perform poorly when the trend rises steeply (mid September through October). The
results of the VAR and PCA model look very similar, due to the large number of principal variables
used in the PCA model.

In figure (7.2), the weighted average of some predictions are plotted for the models LAST, AR(7),
PCA(2, 31) and KNN(2, 1) and the modelled data set.
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(a) Last

(b) AR(7)

(c) PCA(2, 31)
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(d) KNN(2, 1)

Figure 7.2: Predictions on the test set for the modelled data set. The red points are actual values and
the coloured lines are 7-step predictions, averaged over all STPs. Predictions of the models LAST,
AR(p = 7), PCA(p = 2, d = 4, k = 31) and KNN (p = 2, k = 1) are shown.

For the modelled data, all models outperform LAST on the first half of the test set. However, the
RMSE for the PCA model was relatively large. When we look at the predictions, we see that the
PCA model predicts well at the beginning of the test set, with very bad predictions from mid August
on. For the KNN model, the predictions for June and July after 4 or 5 steps lie relatively far from
the real curve.

For the linear data, it stands out that prediction lines seem to deviate more from the actual values
when the starting date of the prediction lies further away from the date of the last training instance.
For the modelled data, this phenomenon is observed for the PCA model. To check if this is indeed
the case, we have plotted the average RMSE for 7-step predictions on the linear data set, starting
at each date in the test set. The results are given in figure (7.3).
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Figure 7.3: RMSE on 7-step predictions of each date in the test set.

We notice two large peaks in the RMSE for both the PCA and VAR model at the beginning and
around the middle of September. When comparing figure (7.3) to the actual values of the test set in
figure (7.1), we see that these peaks occur at dates where the virus loads are shaped like a parabola
opening upward, so where the virus loads starts rising after it had been decreasing. For VAR, PCA
and AR, a rising trend in the RMSE is observed, meaning that the RMSE grows when the start date
of a prediction lies further away from the last training instance (which was 23-06-2022). This trend
is present to a greater extent for the VAR and PCA models. We expect that the model performances
benefit from training up to the point of prediction, so for each test instance xt, the model is trained
on data from t− h up to t− 1 for some h > 1. In this case, training is repeated very often, and to
keep computation time within limits, we need to choose h appropriately.

In figure (7.4), the RMSE of 7-step predictions starting from three different dates (24-06-2022, 01-
08-2022, 24-09-2022) is plotted for different sizes of the training set. The model that was used was
PCA(p = 7, d = 41, k = 240) on the linear data set. The training set consisted of the observations
of the h days previous to the test date.
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Figure 7.4: RMSE of 7-step predictions of the PCA(p = 7, d = 41, k) model for different sizes
of training set k ∈ {7, 14, 21, 28, 35, 42, 49, 56, 115, 174} and different starting dates of predictions
(24-06-2022, 01-08-2022, 24-09-22).

We see that by increasing h, the RMSE first decreases, but after some point, the RMSE starts
to increase again. This trend is observed for all dates. We have run the PCA model again with
p = 7, d = 41 and k = 60, with training sets of size h = 49. Training was repeated before each new
7-step prediction. In figure (7.5), the RMSE of 7-step predictions of this model is plotted for each
fifth day in the test set.

Figure 7.5: RMSE of 7-step predictions for different dates.
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All RMSEs in figure (7.5) lie between 0.0384 and 0.0643, which are small values compared to the
results in table (7.2). The RMSE shows an increasing trend in time.

7.2 Inspection of the validation errors

In this section, we compare the results on the validation set for the PCA and KNN model for dif-
ferent numbers of variables that were used in the model. In figures (7.6) and (7.7), the RMSE of
1-step predictions on the training set, the RMSE of 7-step predictions on the validation set and
the Frobenius norm of the coefficient matrix are given for different number of variables used in the
models. For PCA, the number of variables is p× k + 1, for KNN this is p× (k + 1) + 1.

For both data sets, we observe that a decrease in training error is not paired with a decrease in
validation error. We observe that the models indeed find the minimum norm solution, as the norm
starts to decrease from the point where the error on the training set is approximately zero. For
both data sets, the validation error is highest for intermediate numbers of variables. In these cases,
coefficient matrices with relatively large norms are found. For the linear data, we suspect the cause
for the large norm solution might be the following. As variables are added to the model, the model
becomes more flexible, and it will be able to better fit the training data. However, the training data
is noisy and contains much variations between data points. So, by better fitting the training data,
the variance of predictions Aφ (where A is the data matrix) becomes larger. We can write

Var (Aφ) = φTΣφ,

where Σ is the covariance matrix of A. Above expressions describes how increasing variance and
larger values in φ, and thus a larger norm, are related to each other. When the large norm solutions
are then used to predict test instances, the differences between test instances and training instances
are magnified by the large coefficients.

For the modelled data, the KNN model shows a similar curve in the test error to the KNN and PCA
for the linear data. Both KNN and PCA show oscillations in the test error plot. What is remarkable
is the extremely large norm of the solution for PCA at approximately 7 variables. We also note that
the norm of the solution grows, even though the training error is already close to zero.

In figure (7.8), the coefficient matrices for PCA(p = 5, d = 1, k) are visualised for different values of
k. In Appendix B, a description of how the coefficient matrices are visualised is given. The principle
variables that were used are depicted with bold black dots.
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Overall, the error on the validation set was smallest for k = 294 and largest for k = 32. For small
values of k, the value k = 7 resulted in the lowest RMSE. We first focus on the first 4 networks
in figure (7.8). We see that increasing k from 6 to 7 makes the network less dense. As the edge
width corresponds to the relative coefficient size, we conclude that for k = 7 the coefficient matrices
contains some kind of outlier. The size of these coefficients are so large, that the contributions by
other coefficients is small. In the first 8 networks, we notice that adding a variable to the model
changes the network significantly. For the transitions from k = 6 to k = 7, from k = 7 to k = 8
and k = 32 to k = 33, the added variable becomes an important predictor, which can be seen by
the relatively large degree of that variable. For k = {31, 32, 33, 34}, the networks contain a small
number of strongly connected components, which is best observed in k = 33 and k = 34. The most
strongly connected STP here is Soerendonk. We already showed that intermediate values of k have
coefficient matrices with large norms. As we observe only a small number of strongly connected
components in the networks for intermediate values of k, we assume that the large norm is caused
by only a small number of extreme values, that occur in the same column(s) of the coefficient matrix.
For large values of k (k ∈ {292, 293, 294, 295}, the edges in the network are distributed more evenly
than for smaller values of k. An explanation for this is that by increasing k, there are more solutions
to perfectly fit the training instances. As we saw in chapter (3), the minimum norm solution is
selected. This minimum norm tries to avoid extremely large absolute coefficients. As k increases,
the degree of freedom to do this (avoiding extremely large values) grows.

7.3 Predictive power per STP

In this section, we try to better understand the predictive power of the models by inspecting errors
on the level of STPs. In figure (7.9), boxplots of the RMSEs of each STP on the linear data set is
given for the models AR, VAR, PCA and KNN.
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Figure 7.9: Boxplot of RMSEs per STP for the AR, VAR, PCA and KNN model, tested on the
linear data set.

What is striking is that when outliers are left out of consideration, the KNN model actually has
better results than AR. For PCA and VAR, outliers have higher RMSE than for KNN and AR. The
medians lie relatively close to each other.

In figure (7.10), for each STP the log-10 transformed RMSE is plotted against the log-10 transformed
population size of its catchment area. For each model, a negative correlation between population
size and RMSE is observed, meaning that the predictive power of all models is smaller for STPs
with small catchment areas.
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Figure 7.10: The log10 RMSE plotted against the log10-population size for each STP and the models
AR, KNN, PCA and VAR. RMSEs are calculated on the test set for the linear data set.

In figure (7.11), the RMSEs for each STP is shown in the map of the Netherlands for AR, VAR,
KNN and PCA on the linear data set. The size of the blue dot corresponds to the size of the error.
We notice that for all models, the islands and other northern STPs have relatively large errors. For
AR and KNN, we see larger errors in the region spanning from Zeeland to Twente. This region,
together with two STPs in Leewarden and Groningen with large errors seem to correspond to the
Biblebelt.

In figure (7.12), the population sizes of the STPs are included for AR and VAR. Here, the size of the
red dot corresponds to the population size of the STP, and the color responds to the RMSE, with
darker reds corresponding to larger RMSEs. We note that the STPs in the region mentioned before
are relatively small, and thus have larger RMSE. For VAR, we notice that large STPs in northern
Limburg and southeast Brabant have remarkably large RMSE.
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Figure 7.6: The RMSE of 1-step predictions on the training set, the RMSE of 7-step predictions on
the validation set and the Frobenius norm of the coefficient matrix for different number of variables
for the PCA and KNN models on the linear data set.
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Figure 7.7: The RMSE of 1-step predictions on the training set, the RMSE of 7-step predictions on
the validation set and the Frobenius norm of the coefficient matrix for different number of variables
for the PCA and KNN models on the modelled data set.
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k = 5 k = 6

k = 7 k = 8

Figure 7.8: Networks from coefficient matrices of PCA for different number of principle variables k.
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k = 31 k = 32

k = 33 k = 34

Figure 7.8: Networks from coefficient matrices of PCA for different number of principle variables k.
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k = 292 k = 293

k = 294 k = 295

Figure 7.8: Networks from coefficient matrices of PCA for different number of principle variables k.
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AR(6) VAR(7)

KNN(6, 1) PCA(7, 240)

Figure 7.11: RMSE plotted on a map of the Netherlands. The size of the dots corresponds to the
RMSE of the corresponding STP.
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AR(6) VAR(7)

Figure 7.12: RMSE plotted on a map of the Netherlands. The size of the dots corresponds to the
number of inhabitants in the catchment area of the corresponding STP. Dark reds correspond to large
values of RMSE, light reds to small values.
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Chapter 8

Discussion

In this chapter, we discuss in more detail the results that were found in chapter (7). We showed that
for 7-step predictions on a large test set, overall RMSE was lowest for the AR model on the linear
data set, and for the VAR model on the modelled data set. However, if outliers were taken out of
consideration, adding the nearest neighbour of each variable as predictor variable increases predictive
power. We saw that the predictive power decreases as the time between the last training instance
and the starting date of a prediction increases. We also showed that adding more observations to the
training set does not always result in increased predictive power. Both these observations indicate
that (too) old observations should not be included, which could be the result of changing relationships
or interactions between STPs and between observations over time. The multivariate models seem
to have difficulty in predicting a rise in virus loads after a period of decreasing virus loads. Overall,
the models performed better on the modelled data set, with almost each model having 7-steps ahead
predictions that lie very close to the actual values. However, on the linear data, the PCA obtains
relatively small RMSE values when trained on observations made directly before the prediction date.

We observed remarkable behaviour of the error on the validation set for the number of variables
used in the PCA and KNN models, where intermediate values for the number of variables in the
model resulted in the worst model performance. Models with intermediate number of variables have
coefficient matrices with large norms. These large norms occur because a small number of variables
(or columns) are assigned extremely large coefficients. A possible explanation is that coefficient sizes
grow to increase the flexibility of the model, thereby enabling the model to fit the noisy training
data. We also showed that the coefficient matrices of models with a small or intermediate number
of variables change significantly when a variable is added to the model, indicating that for these
number of parameter settings, the models are not capable of subtracting the true, underlying spatial
relationships of the time series.

On the linear data, predictive power varies much from STP to STP, with smaller errors made for
STPs with a large catchment area. This correlation between catchment size and transformed pre-
diction error was found in all models. Time series of STPs which serve a small population are
more likely to have larger variations between observations, which makes the prediction task more
difficult. Vaughan et al (2023) showed that the performance of Random Forest algorithms is poorer
when forecasting virus loads at sites where low or zero values are frequently observed [25]. It would
be interesting to explore if low or zero values have a similar effect in the models used in this research.
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Both on the linear and the modelled data, the PCA model performs worse than other models. How-
ever, when choosing the training set correctly, the PCA model performs well on the modelled data
and performs comparable to the other multivariate models on the linear data. This means that
when the time series data is sufficiently smooth, the data of only some STPs are needed to predict
all 311 STPs. On the modelled data, only 31 principal variables were needed to predict virus loads
at the national level well. On the linear data, we have shown that adding more than 60 principal
variables to the model, the error on the test set does not decrease significantly. Also, by decreasing
the number of training samples and repeating training for each test instance, performance of the
PCA model on the linear data was shown to improve considerably. Due to time limitations, the
effect of these changes on the other models has not been examined, and so a complete comparison
with PCA cannot be made yet. However, we have shown that the PCA variable selection method is
a promising tool to reduce the number of variables used in vector autoregression.

The models performed much better on the modelled data than on the linear data. This is not
surprising, as the relationship between observations on the modelled data is more straightforward
than on the linear data, and thus easier to learn. The linear data contains large variations between
measurements. The difference in model performance on the different data sets suggests that more
extensive preprocessing on the linear data set could improve model performances. In this research,
only moving average smoothing was performed on the linear data set, with a relatively small moving
window. Outliers could be detected and replaced before training. Also, a larger window size could
be employed.

The implemented models are not equipped to deal with the changing relationships between ob-
servations. The models have no information on, for instance, changes in coronavirus restrictions
or impacts of dominant virus variants. Also, relationships between catchment areas are likely to
change over time, as does population mobility. For instance, during holidays, the population of the
Dutch islands grows. Adding mobility data or (dynamic) population sizes of catchment areas to
the model could possibly improve results. A recent study by Haak et. al. (2022) found that STPs
with the highest peaks in virus loads had higher rates in poverty, lower family incomes and higher
population density [11]. Average family incomes and population densities are parameters that could
be added to the model as well. However, adding external data to the models can also have a negative
impact on model performance. For instance, adding flow data was found to have a negative effect
on the prediction of virus loads for the Netherlands [25]. Further research should be done to identify
important variables that improve model performance.

It could be that the relationship between STPs is not linear, and that the models will not be able to
correctly identify relationships between STPs. In recent years, graph neural networks have proven
to be capable in handling relational dependencies between variables. Graph convolutional networks
(GCNs) for time series learn graph structures from data, and model both spatial dependencies among
variables and temporal dependencies. An advantage of these models is that the underlying graph can
change over time. Also, these models are able to capture non-linear relationships by using non-linear
activation functions [31]. Recently, GCNs have been applied to estimate COVID-19 case numbers
and reproduction rates using wastewater data sets [12].

An advantage of the models used in this thesis is their interpretability. In this research, we have
shown that adding a nearest neighbour to the model can improve predictions. Also, we have shown
that time series of small STPs are more difficult to predict than time series of large STPs. To the
best of our knowledge, the interpretation of the vector autoregression model on a network, and using
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properties of that network as feature selection has not been used for multivariate time series forecast-
ing yet. This research introduces new selection methods for VAR based on K-Nearest Neighbours,
correlations between (lagged) time series and principal component analysis.

In conclusion, this research has shown that virus load time series can be modelled and forecasted
using (multivariate) linear regression models. For time series where variations between observations
are small, using multivariate autoregressive models improved predictive power for 7-step predictions
compared to autoregressive models. For time series with large variations between observations,
results should be explored in more depth, but adding one nearest neighbour as predictor of a variable
was shown to improve predictive power. We have shown how a set of principle variables can be
selected from a data matrix, such that only a subset of all variables are used in the multivariate
autoregressive model. This model performs comparably to other autoregressive models on modelled
virus load data, and shows promising results on linear interpolated data when training is repeated
before each prediction.
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Appendix A

Implementation

In this appendix, we describe the outline of the programs that were written for this thesis. Most
of the coding for this thesis was done in R. The programs were written from scratch based on the
theory from chapter (2). The visualization of coefficient matrices was done in Python, using the
networkX package. All code is uploaded to [10]. We now give a general overview of the structure of
the programs.

The most important program is VAR Implementation.R, with which all autoregression models can
be executed on all data sets. In algorithm (1), and overview with description of the parameters and
the most important steps of the program are given. In figure (A.1), a pipeline of the program is given.



Algorithm 1 Vector Autoregression

Parameters:
type {AR, VAR, PCA, KNN, CORR} which autoregression model to use.

data type {int linear, int poly, int weekly} specifies which data set to use,
log {TRUE, FALSE} should values be log10-transformed?

moving av N specifies the moving-average window.
self {TRUE, FALSE} should the diagonal of the adjacency matrix

be 1?
n col {1, 2, . . . , 311} number of variables to use in factor models.

reg type {ordinary, PCA} should ordinary or PCA-regression be
used?.

start train between 20-03-2020 and 20-10-2022 date of first training instance.
end train between 20-03-2020 and 20-10-2022 date of last training instance.
start pred between 20-03-2020 and 20-10-2022 date of first test instance.
end pred between 20-03-2020 and 20-10-2022 date of last test instance.
plotting {TRUE, FALSE} should plots of predictions be made?
n sing val {1, 2, . . . , 311} number of principal components to use in

regression if reg type is PCA.
Steps:

1: Load data
2: if moving av > 0 then
3: Perform moving average smoothing
4: end if
5: if log then
6: Perform log10-transformation of data set
7: end if
8: Create Adjacency Matrix A
9: Create empty coefficient Matrix W

10: for all rows in W do
11: Get vector y with values xrow,t

12: Get vector x with values yi,t−j for all i for which Arow,i = 1 and all lags j = 1, . . . , p
13: Perform linear regression
14: Fill row in W with coefficients
15: end for
16: for all dates in test set do
17: Predict horizon days ahead
18: end for
19: Calculate RMSE on test set
20: Plot predictions
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Figure A.1: Flow diagram of the implementation of the models. First, a model and data set are
chosen. Then, training, validation and test sets and an adjacency matrix are created. The adjacency
matrix is used in linear regression to determine which coefficients are calculated, and which are set
to zero. Coefficient matrices are determined and used to make predictions on the validation and test
sets. The blue box corresponds to the validation phase, in which training is repeated for multiple
parameter combinations.
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Appendix B

Network vizualization

The networks of the coefficient matrices in chapter (7) were based on the absolute values of the entries
of normalized coefficient matrices. First, we discuss some notions from graph theory on which the
network visualization is based. Then, we explain how the coefficient matrices were normalized.

Graph Theory

A graph G = (V,E) consists of a set of vertices V and a set of edges E. In a directed graph, E
contains ordered pairs (u, v) where u, v ∈ V , indicating that there is an edge going from vertex u to
vertex v [24].

The in-degree din(u) and the out-degree dout(u) of a vertex u are the number of edges ending in u
and the number of edges originating from u respectively [24]:

din(u) =
∣∣∣ {v ∈ V | (v, u) ∈ E}

∣∣∣, dout(u) =
∣∣∣ {v ∈ V | (u, v) ∈ E}

∣∣∣.
A graph is captured by its adjacency matrix.

Definition B.1: Adjacency matrix

The adjacency matrix A of a directed graph G with n vertices is a n × n-matrix whose
entries are

Aij =

{
1 if (i, j) ∈ E,
0 if (i, j) ̸∈ E.

Normalization

We assume that the range and mean of observations are (approximately) the same for each variable.
For each row in the coefficient matrix, we have scaled the entries so that the sum of the absolute
entries in the row is one. In the network, each edge width and color corresponds to the size of the
corresponding coefficient in the coefficient matrix. An edge between variables Xi and Xj is assigned
a color based on the lag i for which the coefficient size between Xi and LiXj is largest. The darkness
of the color corresponds to the coefficient size. Only the top 25% largest coefficients are plotted.
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