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Abstract

Given a graph, one obtains its degree sequence by placing the degrees of the vertices in
an ordered list. We are interested in the reverse problem: How do you go from a list of
arbitrary natural numbers to a graphical realization with that list as its degree sequence?
In 1960, Paul Erdős and Tibor Gallai solved the existence problem. By verifying a list of
inequalities, one can determine whether a graphical realization exists. We continue the
research on this question by first determining which lists have a unique graphical realiza-
tion. We then investigate the problem of ‘packing’ multiple lists, that is verifying if there
are edge-disjoint graphical realizations for each list. Although this problem is NP hard in
general, we give some sufficient conditions. We also show that this problem can be solved
in polynomial time for a specific case, when one packs a list of degrees with a given fixed
graph. Finally, we investigate the problem of randomly generating graphical realizations.
In 2010, a paper published by Mohsen Bayati, Jeong Han Kim and Amin Saberi gave a
sequential algorithm. If the degrees are asymptotically not too large, then choosing the
right bias on the edges results in an asymptotically uniform distribution of graphical re-
alizations. This same approach has been applied to directed graphs and coloured graphs.
We generalise these related results by bringing them under one framework for generating
random maximum independent sets in a certain meta-graph.
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INTRODUCTION

Introduction

Putting the degrees of the vertices of a graph G = (V, E) with V = [n] = {1, . . . , n} in a list π = (d1, . . . , dn), we get
the degree sequence of the graph. We will focus on the reverse, looking for graphical realizations of given degree
sequences. We assume graphs to be simple, so we do not allow self-loops or double edges, making the existence
problem non-trivial. In 1960, Paul Erdős and Tibor Gallai [29] stated precisely which n-tuples are graphical, that
is, have a graphical realization. An n-tuple π = (d1, . . . , dn) of integers d1 ≥ . . . ≥ dn ≥ 0 is graphical if, and only
if, d1 + . . . + dn is even, and for all 1 ≤ k ≤ n we have

k

∑
i=1

di ≤ k(k − 1) +
n

∑
i=k+1

min{di, k}.

This solves the existence problem with a simple parity check and a list of n inequalities.

Graphical degree sequences typically have many different graphical realizations. This can make it difficult to an-
alyze the set of all graphical realizations. On the other end of the spectrum, there are some degree sequences with
only one graphical realization. In [18] it is proven that these sequences are exactly the vertices of the convex poly-
tope formed by the inequalities of the Erdős-Gallai Theorem, up to permutations, and it is concluded that there
are 2n−1 such sequences of length n. In [22] more classifications are given for a graphical realization to be unique.
An unlabeled variant is also considered, counting isomorphic graphs as the same. Many other publications such
as [12, 17, 20, 16, 15, 14] study related questions. For example, in [19] bipartite graphs are considered. In Section 1
we give a recursive constructive characterization of degree sequences with a unique labeled graphical realization.
This characterization gives an easy way to list all 2n−1 such sequences of length n, up to permutations. We also
use this characterization to count all ordered such sequences, where permutations do matter. We also give a linear
time verification algorithm for this characterization.

The problem of finding graphical realizations can be extended to graphs with colored edges. We say that multiple
n-tuples π1, . . . , πk pack if they admit edge-disjoint graphical realizations. The different n-tuples can be thought
to represent the different colors of the edges. Note in particular that the sum of any subset of the n-tuples needs
to be graphical. However, this condition is not sufficient. Unlike with single colored graphs, there is no easy way
to check whether n-tuples pack. In fact, in [6] it is proven that the problem is NP-hard even with just two colors.
However, one can still look for sufficient conditions under which packing is guaranteed. For example, in [21] and
[24] it is proven that a graphical n-tuple π1 packs with π2 = (k, . . . , k) exactly if π1 + π2 is graphical. In [4] a more
general sufficient condition is given. If π1, π2 are graphical and ∆, δ are the maximum and minimum of π1 + π2

respectively, then π1 and π2 pack if ∆ ≤
√

2δn − (δ − 1), except that strict inequality is required when δ = 1. In
Section 2 we generalize this result to more than two colors. We also consider the scenario when certain specified
edges are not allowed to be used.

Instead of specifying edges that are not allowed to be used, we can equivalently specify the edges that are allowed
to be used. These edges form a graph, and any subgraph that is a graphical realization of a degree sequence f is
called an f -factor. For instance, 1-factors correspond to perfect matchings. Tutte’s factor theorems from [34, 35,
33] give characterizations for graphs with perfect matchings or f -factors. Other publications such as [8, 30, 27,
28] have also studied a directed graph analogue of this problem. In [11] a relaxation of f -factors is considered,
which they call a partial f -factor. Just like how a general matching matches some but not necessarily all vertices,
with a partial f -factor the degrees are only bounded by f and not necessarily equal. In Section 3 we show that a
maximum partial f -factor can be constructed with a polynomial time algorithm. More specifically, we construct a
related graph of which any maximum matching corresponds to a maximum f -factor of the original graph.

When a sequence has many graphical realizations, one might be interested in randomly sampling among those
realizations. A straight forward approach would be to randomly match all half-edges and to apply rejection
sampling if any self-loops or double edges are formed. However, in [3] this was shown to take exponential time
with respect to the square of the average degree. However, in [25, 10, 9] a polynomial time exact uniform sampling
algorithm is given. Instead of rejecting graphs with self-loops or double edges, they are corrected by swapping
some of the edges. In [32, 2, 1] a sequential approach is used instead, matching half-edges one by one, making sure
not to create any self-loops or double edges. With proper biases on the possible matches, this runs in practically
linear time, however the sampling is only asymptotically exactly uniform, so this works best on very large graphs.
In [13, 23] the sequential approach is applied to directed graphs and two-colored graphs instead. However, the
proof does not generalize very easily, so in both cases, all calculations in the proof have to be done from scratch.
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INTRODUCTION

In Sections 4, 5, 6 and 7 we describe a way to generalize the concept of matching half-edges in such a way that it
encapsulates all known cases. The main idea is to consider the line graph of the graph of all possible matches of
half-edges. The line graph of a graph turns the edges into vertices and connects them if they share an endpoint.
This concept turns matchings into independent sets, such that we need to sequentially sample a maximum in-
dependent set instead. In Section 4 we discuss the necessary regularity properties of a graph for this sequential
approach to give a uniformly random maximum independent set. In Section 5 we discuss the performance of
the sequential algorithm on graphs with the necessary regularity properties. In Section 6 we show how the algo-
rithm can be applied to generate random graphs of different types. Finally, in Section 7 we give heuristics and we
describe a framework for the proof of correctness.
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1 CHARACTERIZATION OF ALL UNIQUELY GRAPHICAL SEQUENCES

1 Characterization of all uniquely graphical sequences

We determine which n-tuples are uniquely graphical, that is, admit exactly one graphical realization. Trivial
examples are (0, . . . , 0) and (n − 1, . . . , n − 1), only attaining the edgeless and complete graph respectively. Note
that there are 2n(n−1)/2 labeled graphs on n vertices. Furthermore, since vertices have at most n − 1 neighbors,
there are at most nn graphical n-tuples. It follows that a uniformly random graphical n-tuple has an average of at
least n−n2n(n−1)/2 = 2n2−O(n log n) graphical realizations. So uniquely graphical n-tuples are very unusual on this
aspect.

Another example of a uniquely graphical n-tuple is the 4-tuple (3, 2, 2, 1). The following is the only graphical
realization.

Figure 1.1: The only graph with degree sequence (3, 2, 2, 1).

All examples thus far have something in common. One of the entries is either 0 or n − 1, forcing it to be connected
to either nothing or everything respectively. For all other vertices it is thus already determined whether it is
connected to the particular vertex. In order to find a graphical realization, we therefore might as well remove the
vertex from the n-tuple and edit the remaining degrees accordingly. Inspired by this idea, we study the following
definition.

Definition 1.1 (Dull n-tuples). For an n-tuple π = (d1, ..., dn) with n ≥ 1, we define the null-addition (n + 1)-tuple
π− = (d1, ..., dn, 0) and the full-addition (n+ 1)-tuple π+ = (d1 + 1, ..., dn + 1, n). We call π dull if it is a permutation
of the null-addition or full-addition of some (n − 1)-tuple.

Note that there is a symmetry between null-additions and full-additions. For any n-tuple π = (d1, . . . , dn), there
is a conjugate n-tuple πC = (n − 1 − d1, . . . , n − 1 − dn). Taking the complement of edges gives a bijection from
graphical realizations of π to graphical realizations of πC. So, π and πC have the same number of graphical
realizations. We find the symmetry (π−)C = (πC)+. So an n-tuple π is dull if, and only if, either π or πC has a
0-entry, or equivalently, if π has either a 0-entry or an (n − 1)-entry.

Figure 1.2: The complement of (3, 2, 2, 1) gives (0, 1, 1, 2), which is still uniquely graphical, as is (1, 1, 2).

Since a null-addition only adds an isolated vertex to graphical realizations, we find that π, π− and π+ all have the
same number of graphical realizations. It follows that we can turn any uniquely graphical n-tuple into a uniquely
graphical (n + 1)-tuple by taking either a null-addition or a full-addition. A natural question to ask is whether all
uniquely graphical n-tuples can be constructed this way. This brings us to the following proposition.

Proposition 1.2 (Uniquely graphical n-tuples). Every uniquely graphical n-tuple is dull.

This proposition lets us classify exactly which n-tuples are uniquely graphical, which is the main theorem of this
section.
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1 CHARACTERIZATION OF ALL UNIQUELY GRAPHICAL SEQUENCES

Theorem 1.3 (Classification of uniquely graphical n-tuples). Starting with the only uniquely graphical 1-tuple π =
(0), and iteratively taking null-additions and full-additions, we find every uniquely graphical n-tuple exactly once, up to
permutations. For all n ≥ 1, there are thus exactly 2n−1 uniquely graphical n-tuples, up to permutations.

Figure 1.3: Constructing (3, 2, 2, 1) with the procedure from Theorem 1.3.

Proof of Theorem 1.3. Since null-additions and full-additions do not change the number of graphical realizations,
we indeed only find uniquely graphical n-tuples. So, what is left to show is that every uniquely graphical n-
tuple is found exactly once. By induction, it suffices to show every uniquely graphical n-tuple with n ≥ 2 is a
permutation of the null-addition or full-addition of a uniquely graphical (n − 1)-tuple in exactly one way, up to
permutations.

Note that Proposition 1.2 provides the existence, so we only need to show uniqueness. For this, first note that null-
additions, and thus also full-additions, are injective. Furthermore, null-additions always include a 0-entry, while
full-additions never do. It follows that, even up to permutations, null-additions and full-additions are disjoint.
Uniqueness follows.

To prove Proposition 1.2, we take an arbitrary graphical realization of an n-tuple which is not dull, and we find
a cyclic list of vertices where consecutive vertices alternate between having an edge between them or not. By
shrinking this list if necessary, we find that we can switch which consecutive vertices have edges between them
and which do not. Since this does not affect the overall degrees of the vertices, this will result in a different
graphical realization of the same n-tuple.

Figure 1.4: This graphical realization of (2, 2, 2, 2, 1, 1) has an alternating cyclic walk. Swapping the edges gives a
different graphical realization.

In order to make this argument precise, we use the following definitions.

Definition 1.4 (Walks). Let G be a graph. A walk on the vertices of G is a list of vertices (v1, ..., vk), where no
two consecutive vertices are equal. In a cyclic walk, the last and first vertices are also considered consecutive in
that order, and thus not equal. We say that a walk is alternating if consecutive pairs of vertices alternate between
having an edge in G and having an edge in the complement GC. We say that a walk is simple if all unordered pairs
of consecutive vertices are distinct.

Proof of Proposition 1.2. We prove the contrapositive. Let G be a graphical realization of an n-tuple π which is not
dull. The goal is to show that there is another graphical realization of π.

We start by showing that the graph G has an alternating cyclic walk. Since π is not dull, we find that any vertex
has neighbours in both G and in the complement GC. Therefore, we can start at any vertex, and we can indefinitely
alternate walking over edges in G and over edges in GC. Eventually there will be an edge over which we have
walked twice in the same direction. At that point, we find an alternating cyclic walk.

Let Z = (v1, ..., vk) be an alternating cyclic walk of minimal length. The goal will be to show that it follows that
Z is simple. If we know Z is simple, then we can switch which consecutive vertices have an edge in G and which
have an edge in GC. Because Z is simple, we know that this modification does not change the degree of any vertex
in G. The resulting graph is thus a different graphical realization of π.
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1 CHARACTERIZATION OF ALL UNIQUELY GRAPHICAL SEQUENCES

Assume for the sake of contradiction that one edge appears twice in Z. Assume without loss of generality that the
edge {v1, v2} appears again as {vi, vi+1}, and that this edge is in G. By the alternating nature, we find that there
must be an even and non-zero number of vertices, so at least two, on the walk from v2 to vi, and the same must
hold on the walk from vi+1 back to v1.

If v1 = vi and v2 = vi+1, then (v1, ..., vi−1) is a shorter alternating cyclic walk, which is a contradiction. We
conclude that v1 = vi+1 and v2 = vi, so the second time the edge {v1, v2} is traversed in the opposite direction.
Since there are at least two vertices on the walk from v2 to vi and on the walk from vi+1 back to v1, we find that
2 < 3 < i, and we find some vertex vj ̸= v3 with i + 1 < j ≤ k.

We split Z up in four major parts. Namely, walk W1 from v2 to v3, walk W2 from v3 to vi, walk W3 from vi+1 to
vj, and walk W4 from vj back to v1. See Figure 1.5 for an example of such a splitting. Let Wr denote the reverse of
any walk W. Note that W1, Wr

2 , W3 and Wr
4 all start with an edge in GC. Furthermore, exactly one of W1 and Wr

2
ends with an edge in G, while the other ends with an edge in GC, and the same holds for W3 and Wr

4 .

Let WA denote whichever walk of W1 and Wr
2 ends with an edge that would alternate with {v3, vj}, and let WB

denote whichever walk of W3 and Wr
4 would do the same. Consider the cyclic walk starting with {v1, v2}, then

going over WA, then going over {v3, vj}, and finally going over Wr
B. This walk alternates between edges in G and

edges in GC. It is shorter than Z, because we removed two non-empty sub-walks while we only added one edge.
This is, again, a contradiction, so we conclude Z is simple.

Figure 1.5: Example walk. If {v3, vj} ∈ E(G), then WA = W1 and WB = W3. Otherwise, WA = Wr
2 and WB = Wr

4 .

While the number of uniquely graphical n-tuples up to permutations has a very simple closed formula, the same
is not true if we do count permutations as different n-tuples. However, it turns out that this number sequence can
still be expressed with an exponential generating function.

Proposition 1.5 (Exponential generating function). Let an denote the number of ordered n-tuples which are uniquely
graphical. Consider the convention a0 = a1 = 1 on the initial values. Then we have the following recurrence for n ≥ 2:

an = 2
n

∑
k=1

(−1)k−1
(

n
k

)
an−k

= 2
[

nan−1 −
(

n
2

)
an−2 +

(
n
3

)
an−3 − . . .

]
It follows that the sequence (an) is A005840 on the OEIS, which is given by the following exponential generating function:

f (x) :=
∞

∑
n=0

an

n!
xn =

(1 − x)ex

2 − ex

5
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1 CHARACTERIZATION OF ALL UNIQUELY GRAPHICAL SEQUENCES

Proof of Proposition 1.5. The recurrence formula is derived from Theorem 1.3. The factor 2 in the recurrence comes
from the symmetry between null-additions and full-additions. So, without loss of generality, we only need to
count the number of uniquely graphical ordered n-tuples that are a permutation of the null-addition of some
uniquely graphical (n − 1)-tuple. The formula follows from the principle of inclusion-exclusion on the set of 0-
entries. For any set of k ≥ 1 indices, exactly an−k sufficient n-tuples have zeros on all these indices, and there are
exactly (n

k) such sets.

With the recurrence relation established, we can determine the exponential generating function. We have the
following exponential series:

2e−x − 1 = 1 + 2
∞

∑
n=1

(−1)n

n!
xn

= 1 − 2x +
2
2!

x2 − 2
3!

x3 +
2
4!

x4 − . . .

By the initial values and the recurrence relation, we get the following Cauchy product:

f (x) ·
(
2e−x − 1

)
=

∞

∑
n=0

[
an + 2

n

∑
k=1

(−1)k
(

n
k

)
an−k

]
xn

n!

= 1 − x

Solving for the exponential generating function f (x) gives

f (x) =
1 − x

2e−x − 1

=
(1 − x)ex

2 − ex .

While we have a classification of uniquely graphical n-tuples, it is not directly obvious how this translates into
a decision problem algorithm. Theorem 1.3 seems to propose recursively trying to write the given n-tuple as a
permutation of the null-addition or full-addition of an (n − 1)-tuple. However, a naive implementation of this
requires quadratic time, while linear time is possible.

Proposition 1.6 (Uniquely graphical algorithm). There is an algorithm that determines whether a given n-tuple is
uniquely graphical in time linear with respect to n. In case the given n-tuple is uniquely graphical, the algorithm addi-
tionally constructs a sequence of null-additions and full-additions that, when applied to (0), result in a permutation of the
given n-tuple.

Proof of Proposition 1.6. First of all, for the given n-tuple, π to be graphical, all entries need to be in the range from
0 up and till n − 1. This can be checked in linear time, after which we can use counting sort to sort π from large to
small in linear time. With π sorted, write π = (d0, . . . , dn−1).

The algorithm will keep track of a contiguous subtuple of π, and a stack of null-additions and full-additions. We
initialize the boundaries i = 0 and j = n − 1 of the subtuple, and an empty stack S. We define π(i, j) := (di −
i, . . . , dj − i). The algorithm will attempt to keep shrinking the subtuple while preserving the following invariant.
From top to bottom, applying the stack S of null-additions and full-additions to π(i, j) gives a permutation of π.
Once we have π(i, j) = (0), we know π is uniquely graphical, and we can terminate.

In order to shrink the subtuple, we use the fact that π, and thus also π(i, j), is sorted. If π(i, j) ends with a 0, we
can simply decrease j by one and add a null-addition to stack S. Otherwise, if π(i, j) starts with a j − i, we can
instead increase i by one and add a full-addition to stack S. Using |π(i, j)| − 1 = j − i, it is easily verified that
this procedure preserves the invariant. If neither scenario occurs, then by Proposition 1.2 we know π(i, j) is not
uniquely graphical, so by the invariant, neither is π.

With uniquely graphical n-tuples fully classified, we finish this section with a slightly more general statement
about restricting the number of graphical realizations. Namely, the following shows that any number of graphical
realizations is possible.
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1 CHARACTERIZATION OF ALL UNIQUELY GRAPHICAL SEQUENCES

Proposition 1.7 (Exact number of graphical realizations). For n ≥ k ≥ 1, the (n + 2)-tuple π = ({n}k, {n −
1}n−k, k − 1, 1) has exactly k graphical realizations.

Figure 1.6: The parameters n = 4, k = 3 give the 6-tuple (4, 4, 4, 3, 2, 1) which has exactly 3 graphical realizations.

Proof of Proposition 1.7. The first n vertices of any graphical realization G of π have n(n − 1) + k connections com-
bined. Since at most k connections can be made with the remaining two vertices, at least n(n − 1) connections
need to be between the first n vertices. This is the maximum possible number only attained if all of the first n
vertices are connected with each other.

This only leaves the first k vertices with one more connection each with the last two vertices. Only one of these
k vertices can get connected with the last vertex, while the remaining k − 1 vertices will get connected with the
second to last vertex. This leaves us with exactly k possibilities for G.

7



2 PACKING GRAPHICAL SEQUENCES WITH SMALL DEGREES

2 Packing graphical sequences with small degrees

We give sufficient conditions for a number of graphical n-tuples to pack, so for there to be edge disjoint graphical
realizations, based on the size of the degrees with respect to the number of vertices. Recall that the different n-
tuples can be interpreted as the degree sequences of different colored edges. We also consider the possibility that
there are some forbidden edges.

2.1 Packing more than two colors

We formalize the problem with the following definition.

Definition 2.1 (Packing of n-tuples). We say that multiple graphical n-tuples π1, ..., πk pack if there are graphical
realizations Gi = ([n], Ei) of each πi respectively, such that the edge sets Ei are all disjoint. We call such graphical
realizations a packing of π1, . . . , πk.

When the given degrees are small, one would expect there to be enough room for edges, such that you can avoid
overlap between graphical realizations. The following is Theorem 2.2 from [4] which formalizes this intuition.

Theorem 2.2 (Packing two n-tuples with small degrees). Let π1 and π2 be graphical n-tuples. Let ∆ and δ denote the
maximum and minimum values in π1 + π2 respectively. If

∆ ≤
√

2δn − (δ − 1),

then π1 and π2 pack, except that strict inequality is required when δ = 1.

This theorem only applies to the case with two colors. We generalize the theorem to arbitrarily many colors. The
proof is inspired by that from [4].

Theorem 2.3 (Packing multiple n-tuples with small degrees). Let π1, . . . , πk be graphical n-tuples. For i < j, consider
the indices that are non-zero in πi +πj. Let ni,j be the number of these indices, let ∆i,j be the maximum value of π1 + . . .+πk
at these indices, and let δi,j be the minimum value of πi + πj at these indices. If

∆i,j <
√

2δi,jni,j − (δi,j − 1)

for all i < j, then π1, . . . , πk pack.

Proof of Theorem 2.3. We prove the contrapositive. So assume that π1, . . . , πk do not pack. Let G1, ..., Gk be graphical
realizations of π1, . . . , πk respectively, such that the number of pairs of edges from different graphs that overlap is
minimized.

By the assumption, there is at least one overlapping pair of edges, say xy ∈ E(Gi) ∩ E(Gj). For convenience, we
write n′ = ni,j, ∆ = ∆i,j and δ = δi,j. The idea of proof is to find conditions under which we can fix the overlap
without creating any new overlap. The goal will be to show that, for all such conditions to fail, we need to have
∆ ≥

√
2δn′ − (δ − 1), thus proving the theorem.

Let G be the unified graph of G1, ..., Gk, restricted to the indices that are non-zero in πi + πj, such that |V(G)| = n′.
Let I = V(G)− (NG(x) ∪ NG(y)). Here, we use the notation NG(x) = {x′ ∈ V(G) : xx′ ∈ E(G)}.

Let ℓ ∈ {i, j}, and assume for the sake of contradiction that there exists an edge uv ∈ E(Gℓ) with u ∈ I and
v ̸∈ NG(x) ∩ NG(y). Assume without loss of generality that v ̸∈ NG(y). Then we can fix the overlap by replacing
{xy, uv} with {xu, yv} in Gℓ, which does not affect the degrees. This contradicts minimality, so we conclude that
Qℓ := NGℓ

(I) ⊆ NG(x) ∩ NG(y).

Note that it follows that Qℓ is disjoint from I, and we know that Qℓ does not contain x or y. Assume for the sake
of contradiction that there exist two vertices w, w′ ∈ Qℓ with ww′ ̸∈ E(G). We find z, z′ ∈ I with wz, w′z′ ∈ E(Gℓ).
Then we can fix the overlap by replacing {xy, wz, w′z′} with {xz, yz′, ww′} in Gℓ, which does not affect the degrees.
This contradicts minimality again, so we conclude that Qℓ is a clique.

We find that the edge complement of Q = Qi ∪ Qj is bipartite in G. For r = |EG(Q)|, writing q = |Q|, it follows
that

r ≥
(

q
2

)
−
( q

2

)2
=

q2

4
− q

2
. (1)

8



2 PACKING GRAPHICAL SEQUENCES WITH SMALL DEGREES

Figure 2.1: Left visualizes the argument that Qℓ ⊆ NG(x) ∩ NG(y). Right visualizes the argument that Qℓ is a
clique.

Note that |I| = n′ − |NG(x) ∪ NG(y)| = n′ − |NG(x)| − |NG(y)|+ |NG(x) ∩ NG(y)|. Since xy is an overlapping
edge, we have |NG(x)|, |NG(y)| ≤ ∆ − 1. Since Q ⊆ NG(x) ∩ NG(y), we find

|I| ≥ n′ − 2(∆ − 1) + q. (2)

Each vertex v ∈ I has at least δ incident edges in Gi and Gj combined, all connecting to a vertex in Q. Since every
vertex in Q is connected to x and y, that leaves at most (∆ − 2)q − 2r edges with endpoints in Q and I. We find

δ|I| ≤ (∆ − 2)q − 2r. (3)

Combining (2) and (3) gives
δ(n′ − 2(∆ − 1) + q) ≤ (∆ − 2)q − 2r.

Using (1) and simplifying gives
q(∆ − δ − 1 − q/2) ≥ δ(n′ − 2∆ + 2).

The left hand side is maximized when q = ∆ − δ − 1, giving (∆ − δ − 1)2 ≥ 2δ(n′ − 2∆ + 2). Solving the quadratic
inequality in ∆ gives

∆ ≥
√

2δn′ − (δ − 1).

2.2 Forbidden edges

We consider an additional restriction on packing n-tuples where we are not allowed to use certain forbidden
edges. This can be interpreted as if one of the graphical n-tuples already has a given associated graph. If we can
not modify this graph, then the edges in this graph can not be used for the graphical realizations of the remaining
n-tuples. Again, the question is whether we can find graphical realizations of the remaining n-tuples, such that
no edge appears in multiple graphs.

Definition 2.4 (Packing of a graph and n-tuples). Let G0 = ([n], E0) be a graph and let π1, . . . , πk be graphical n-
tuples. We say that G0 and π1, . . . , πk pack if there are graphical realizations Gi = ([n], Ei) of each πi for i = 1, . . . , k
respectively, such that the edge sets Ei for i = 0, . . . , k are all disjoint. We call such graphical realizations a packing
of G0 and π1, . . . , πk.

We want to know if a result similar to Theorem 2.3 also holds with this additional restriction. In the proof, we
will need to take into account the additional possibility that an edge overlaps with the graph of forbidden edges.
Although the forbidden edges can not be modified, we can still attempt the graph modifications in the proof of
Theorem 2.3 to the other graph. We reach a similar conclusion with slightly modified inequalities.

9



2 PACKING GRAPHICAL SEQUENCES WITH SMALL DEGREES

Theorem 2.5 (Packing of a graph and n-tuples with small degrees). Let G0 = ([n], E0) be a graph with degree sequence
π0 and let π1, . . . , πk be k ≥ 1 graphical n-tuples. For integers 0 ≤ i < j ≤ k, consider the indices that are non-zero in
πi + πj. Let ni,j be the number of these indices, and let ∆i,j be the maximum value of π0 + . . . + πk at these indices. Let δi,j
be the minimum value at these indices of πi + πj if i > 0, and of πj if i = 0. If

∆i,j <
√

2δi,jni,j − (δi,j − 1) ∀1 ≤ i < j ≤ k,

∆0,j < 2
√

δ0,j(n0,j + 2δ0,j)− (3δ0,j − 1) ∀1 ≤ j ≤ k,

then G0 and π1, . . . , πk pack.

Proof of Theorem 2.5. Note that the proof of Theorem 2.3 still works, as long as we have 1 ≤ i < j ≤ k for the
overlapping edge xy ∈ E(Gi) ∩ E(Gj). Therefore, we only need to consider what happens if xy ∈ E(G0) ∩ E(Gj)

for some 1 ≤ j ≤ k. Again, we write n′ = n0,j, ∆ = ∆0,j and δ = δ0,j.

Choosing ℓ = j in the proof of Theorem 2.3, we ensure that we can still modify graph Gℓ, such that we can reach
the same conclusion that Qj is a clique contained in NG(x)∩ NG(y). Letting Q = Qj, for r = |EG(Q)| and q = |Q|,
we get r = (q

2). Equations (2) and (3) still hold, giving

nδ(n′ − 2(∆ − 1) + q) ≤ (∆ − 2)q − 2r.

Simplifying now gives
q(∆ − δ − 1 − q) ≥ δ(n′ − 2∆ + 2).

The left hand side is now maximized when 2q = ∆ − δ − 1, giving (∆ − δ − 1)2 ≥ 4δ(n′ − 2∆ + 2). Solving the
quadratic inequality in ∆ gives

∆ ≥ 2
√

δ(n′ + 2δ)− (3δ − 1).
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3 POLYNOMIAL TIME ALGORITHM FOR MAXIMUM PARTIAL f -FACTORS

3 Polynomial time algorithm for maximum partial f -factors

We give a polynomial time algorithm to find a maximum partial f -factor in a graph. The main idea will be to
construct a related graph such that a maximum matching in the related graph can be turned into a maximum
partial f -factor of the given graph. Finding a maximum matching in a graph can be done in polynomial time, for
example with the blossom algorithm [7], so this allows us to find a maximum partial f -factor in polynomial time.

To start off, we formalize the problem with the following definition.

Definition 3.1 (Partial f -factor). Let G = (V, E) be a graph and let f : V → N represent the desired non-negative
degree of each vertex. A subgraph H of G is a partial f -factor if dH(x) ≤ f (x) for all x ∈ V. If all inequalities are
actually equalities, then H is an f -factor.

The following is the main theorem of this section.

Theorem 3.2 (Maximum partial f -factor algorithm). Given a graph G = (V, E) and an function f : V → N. Let
fmax be the maximum of f (x) over x ∈ V. Then there is an algorithm that constructs a maximum partial f -factor of G in
O
(

fmax|E|3/2
)

time.

In order to prove Theorem 3.2, we define a related graph K for which matchings correspond to partial f -factors of
G. For all edges xy ∈ E, we add vertices ex,y and ey,x and connect them by an edge. Furthermore, for all vertices x
of G and indices 1 ≤ i ≤ f (x), we add a vertex vx,i and connect it by an edge to ex,y for all neighbors y ∈ NG(x).
We call the resulting graph K. We study matchings on K and their correspondence with subgraphs of G.

Figure 3.1: Example construction for graph K. The black vertices correspond to the edges in the original graph,
while the green vertices correspond to the desired degrees of the vertices.

For any matching M on K, we define the corresponding partial f -factor HM by taking those edges xy ∈ E for
which ex,y and ey,x are matched with vertices vx,i and vy,j respectively, for some i, j.

Figure 3.2: Example conversion from matching to partial f -factor.

The following lemma implies that a maximum matching M on K always gives a maximum partial f -factor HM.

Lemma 3.3 (Maximum partial f -factor). We have the following correspondence between matchings and partial f -factors.

11



3 POLYNOMIAL TIME ALGORITHM FOR MAXIMUM PARTIAL f -FACTORS

(i) If M is a maximum matching on K, then HM is a partial f -factor and |M| = |E|+ |HM|.

(ii) For any partial f -factor H there exists a matching M on K such that HM = H and |M| = |E|+ |H|.

Proof of Lemma 3.3. (i) We have dHM (x) ≤ f (x) for all x ∈ V, because there are only f (x) vertices of the form vx,i
that vertices of the form ex,y can be connected with, so HM is a partial f -factor. Since M is a maximum matching,
for any edge xy ∈ E, there is at least one match in M connecting at least one of ex,y and ey,x. There are two such
matches exactly if xy ∈ E(HM), so |M| = |E|+ |HM| follows.

(ii) We first match ex,y with ey,x for any xy ∈ E \ E(H). Then any x ∈ V has at most f (x) neighbors in H, so for
every such neighbor y, we can match ex,y with vx,i for some i. We find a matching M on K such that HM = H. The
equality |M| = |E|+ |H| follows a similar reasoning as in (i).

To see why this lemma implies that a maximum matching M on K always gives a maximum partial f -factor HM,
let M be a maximum matching. By (i) HM is a partial f -factor and |M| = |E|+ |HM|. Then for any partial f -factor
H, by (ii) there exists a matching M′ on K such that |M′| = |E|+ |H|. Since M is a maximum matching, we have
|H| = |M′| − |E| ≤ |M| − |E| = |HM|, so HM is a maximum partial f -factor. The only thing left to prove for
Theorem 3.2 is its running time.

Proof of Theorem 3.2. Note that we may assume without loss of generality that f (x) ≤ dG(x) for all x ∈ V, since
we are looking for a subgraph of G. It follows that ∑x∈V f (x) ≤ 2|E| and fmax ≤ n − 1.

We first construct K. For all edges xy ∈ E we introduce two vertices and one edge, resulting in 2|E| vertices of
the form ex,y with |E| edges. Then, for any x ∈ V, we introduce f (x) more vertices and f (x)dG(x) more edges.
In total, this adds at most 2|E| vertices of the form vx,i with at most 2 fmax|E| additional edges. We find that the
constructed graph K has O (|E|) vertices and O ( fmax|E|) edges.

In [26] an algorithm is given that can construct a maximum matching on a graph G′ = (V′, E′) in O
(√

|V′||E′|
)

time. Applying this algorithm to the constructed graph K, we thus find a maximum matching M on K in asymp-
totic time O

(
fmax|E|3/2

)
. Then translating to HM gives a maximum partial f -factor of G by Lemma 3.3.
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4 INDEPENDENT SET REGULARITY

4 Independent set regularity

The sequential random graph generating algorithm from [2] attempts to find a uniformly random graphical re-
alization of a given n-tuple π = (d1, . . . , dn). Their analysis relies on the following configuration model. Let
W = ∪n

i=1Wi be a set of 2m = ∑n
i=1 di mini-vertices with |Wi| = di. The algorithm sequentially generates a random

perfect matching on W. By combining the mini-vertices of each Wi into a single vertex i, the perfect matching is
turned into a graphical realization of π.

In order to end up with a perfect matching, the generated matches need to be disjoint. Furthermore, consider
sequentially adding a uniformly random match that is disjoint from all pairings added thus far. Since all mini-
vertices are symmetrically equivalent in this setting, this procedure generates a uniformly random perfect match-
ing on W. This symmetry argument appears to be the most fundamental argument behind the analysis.

In the case of generating a directed graph instead, the configuration model becomes bipartite. The mini-vertices
are no longer symmetrically equivalent, because they are either an in-degree or an out-degree. However, the
matches between in-degrees and out-degrees are still symmetrically equivalent. In order to generalize the sym-
metry argument, we thus need to focus on the matches and forget about the mini-vertices. The only thing we need
to take into account with respect to the mini-vertices is which matches overlap.

We model a generalization of the configuration models with a meta-graph. The matches of mini-vertices be-
come the vertices, and the edges indicate which pairings overlap. This turns the problem of generating a perfect
matching of mini-vertices into the problem of finding a maximum independent set of vertices in the meta-graph.
Since independent sets of the same size are symmetrically equivalent in the meta-graph, we can sequentially add
uniformly random independent vertices to end up with a uniformly random maximum independent set.

This concept successfully generalizes the configuration model, however this does not yet take into account the
problem of self-loops and double edges. It turns out that we can generalize these concepts in this setting as well.
Self-loops are essentially a set of forbidden vertices, and double edges essentially form an equivalence relation
on the vertices. It turns out that this is enough information to run the sequential algorithm. This will be further
justified in Section 5.

4.1 Definition

Recall that an independent set of a graph is a set of vertices, no two of which are adjacent. The important symmetry
induced by the pairings of mini-vertices is that independent sets of the same size are symmetrically equivalent.
We formalize this idea by defining the following graph property.

Definition 4.1 (Independent set regularity). We say that a graph G = (V, E) has independent set regularity if any
two independent sets S, T of G of the same size also have neighborhoods of the same size. Let dk(G) denote this
size for independent sets of size k and d(G) = d1(G).

Remark 4.2. Note that a collection of disjoint cliques of the same size has independent set regularity. We refer to
these examples as trivial, and are mostly interested in non-trivial graphs with independent set regularity. Note
that this includes empty, edgeless and complete graphs.

This property allows us to make the fundamental symmetry argument for generating uniformly random maxi-
mum independent sets. The number of vertices that can be added to an independent set is only dependent on its
size. It follows that all maximum independent sets are generated with equal probability, if you sequentially add
uniformly random independent vertices.

We explore some basic properties of graphs with independent set regularity. First, note that G is d(G)-regular. If
the graph is not connected, then two vertices can have disjoint neighborhoods, so d2(G) = 2d(G). Then no two
non-adjacent vertices have a neighbor in common, so every connected component is a clique, so by regularity the
graph is trivial. By contraposition, any non-trivial graph is connected, and any non-adjacent pair of vertices have
overlapping neighborhoods, so the graph has a diameter of 2. In particular, it follows that d(G)2 + 1 ≥ n(G) = |V|,
so the graph can not be sparse.
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4 INDEPENDENT SET REGULARITY

4.2 Examples

The simplest examples of non-trivial graphs with independent set regularity are regular complete multipartite
graphs.

Example 4.3 (Regular complete multipartite graph). Given positive integers r, k, we define the r(k − 1)-regular
complete k-partite graph, denoted K{r}k , as the edge complement of k disjoint cliques of size r. This graph has
independent set regularity, because any independent set has a neighborhood of size r(k − 1). △

For our purposes of sequentially generating random graphs, the two most important examples are the meta-
graphs of the configuration models. Recall that the meta-graphs turn edges into vertices, so they are instances of
line graphs.

Definition 4.4 (Line graph). The line graph of a (hyper)graph G = (V, E), denoted L(G), has vertex set E, and has
two vertices adjacent if they intersect.

Figure 4.1: The line graph of a complete graph on 6 vertices.

The motivation behind line graphs is that they turn matchings into independent sets. Indeed, a set of edges of G is
a matching if, and only if, it is an independent set of L(G). Thus, the following two examples turn the problem of
generating a perfect matching of mini-vertices into the problem of finding a maximum independent set of vertices
in a meta-graph.

Figure 4.2: A maximum independent set in the line graph gives a maximum matching in the original graph.

Example 4.5 (Matching graph). Given a set X, we define the matching graph on X, denoted G2(X), as the line graph
of the complete graph on X. This graph is also known as the triangular graph, which is an instance of a Johnson
graph [31]. This graph has independent set regularity, because all independent sets of the same size are equivalent
by a bijection on X. △

The following definition is related to the bipartite case.

Definition 4.6 (Cartesian product graph). For graphs G, H, the Cartesian product graph of G and H, denoted G□H,
is defined on the Cartesian product of the vertices, by connecting vertices if one entry has equality and the other
has adjacency.

14



4 INDEPENDENT SET REGULARITY

Example 4.7 (Bipartite matching graph). Given sets X1, X2, we define the bipartite matching graph on X1 and X2,
denoted G1,1(X1, X2), as the line graph of the complete bipartite graph on X1 and X2. This graph is also known
as the rook’s graph from chess, which is also the Cartesian product of two complete graphs. This graph has
independent set regularity, because all independent sets of the same size are equivalent by bijections on X1 and
X2. △

We can generalize the concept behind these two examples to hypergraphs as well. This gives quite a large family
of graphs with independent set regularity. In the following definition, the notation (S

k) is used to denote the set of
all subsets of the set S of size k.

Example 4.8 (Generalized matching graph). Given sets X1, . . . , Xk and positive integers r1, . . . , rk, we define the
generalized matching graph on X1, . . . , Xk with parameters r1, . . . , rk, denoted Gr1,...,rc(X1, . . . , Xk), as the line graph of
the hypergraph with vertices X1 ∪ . . . ∪ Xk and edges (X1

r1
)× . . . × (Xk

rk
). This graph has independent set regularity,

because all independent sets of the same size are equivalent by bijections on X1, . . . , Xk. △

Finally, we have a construction to generate larger graphs with independent set regularity from smaller ones.

Example 4.9 (Complement Cartesian product). If the edge complement GC of a graph G has independent set
regularity, then (G□G)C also has independent set regularity, because independent sets of multiple vertices are
constant in one entry. In particular, since G1,1(X, X) is the Cartesian product of two complete graphs on X, the
edge complement G1,1(X, X)C has independent set regularity. △

4.3 Uniform independent set regularity

The generalization to generalized matching graphs may seem promising, allowing us to sequentially generate
random hypergraphs. However, when we carefully study the analysis of sequentially generating random graphs,
we run into an issue. In order to deal with self-loops, we will have to forbid certain vertices from the generated
maximum independent set. The problem we run into is that not all vertices are equivalent with respect to a
maximum independent set, which makes the effect of forbidding certain vertices unpredictable.

Consider for example the generalized matching graph G3([9]) and consider the maximum independent set S =
{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}. Then vertex v = {1, 2, 4} is adjacent to two elements from S, while w = {1, 4, 7} is
adjacent to three elements from S. We find that forbidding v has a larger effect on the probability of generating S
compared to forbidding w. Whichever of the vertices of S is added first, vertex w is adjacent and thus no longer
worth considering, while the same is not true for vertex v.

We are going to prevent this issue by conditioning on the elements outside a maximum independent set being
equivalent with respect to the maximum independent set.

Definition 4.10 (Uniform independent set regularity). Let G be a graph with independent set regularity. If, for
any maximum independent set S, all vertices outside S are adjacent to the same number of elements of S, then we
denote this number by ς(G), and we say that G has ς(G)-uniform independent set regularity.

Remark 4.11. Note that ς(G) is unique, and thus well-defined, unless G is edgeless, in which case any value of
ς(G) is valid.

We find that the matching graph G2(X) has 2-uniform independent set regularity if |X| is even, because then any
maximum independent set is a perfect matching on X, and any other vertex connects two elements of X from
different matches. For the same reason, the bipartite matching graph G1,1(X1, X2) has 2-uniform independent set
regularity if |X1| = |X2|. However, generalized matching graphs usually do not have uniform independent set
regularity, as we have seen with G3([9]) for example.

Before we explore some basic properties of graphs with uniform independent set regularity, we introduce some
notation. Recall that independent set regularity means that independent sets of the same size have the same size
neighborhoods. By induction, using the inclusion-exclusion principle, it follows that the size of the intersection of
the neighborhoods, defined by ∩s∈SN(s) for the independent set S, also only depends on the size of S. Indeed, if
ℓk(G) denotes this size for independent sets of size k, then dk(G) = ∑k

i=1(−1)i+1(k
i)ℓi(G).

If a graph G has uniform independent set regularity, we write ℓ(G) = ℓς(G)(G) and note that ℓς(G)+1(G) = 0.
For example, the matching graph has ℓ(G2(X)) = 4, because common neighbors of non-adjacent vertices simply
connect one endpoint of one vertex to one endpoint of the other vertex, giving 2 × 2 = 4 options. Similarly, the
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4 INDEPENDENT SET REGULARITY

bipartite matching graph has ℓ(G1,1(X1, X2)) = 2. Furthermore, let α(G) denote the independence number of G,
that is the size of a maximum independent set of G.

Remark 4.12. If G is edgeless, then ℓ(G) depends on the choice of ς(G). If ς(G) ≤ α(G), then ℓ(G) = 0, otherwise
any value of ℓ(G) is valid.

Consider a graph G with uniform independent set regularity. For a maximum independent set S, consider the
mapping from V \ S to ( S

ς(G)), mapping v to N(v) ∩ S. By the definitions of ς(G) and ℓ(G), this is an ℓ(G) to one

relation, which means that n(G) = ℓ(G)(α(G)
ς(G)

) + α(G).

For any subset T ⊂ S of size k, we can also consider the mapping from ∩t∈T N(t) to ( S\T
ς(G)−k) mapping x to

N(x) ∩ S \ T. We find another ℓ(G) to one relation, this time giving ℓk(G) = ℓ(G)(α(G)−k
ς(G)−k). In particular, this gives

d(G) = ℓ(G)(α(G)−1
ς(G)−1).

Conversely, consider a graph G with independent set regularity with n(G) = ℓk(G)(α(G)
k )+ α(G) and ℓk+1(G) = 0.

Consider a maximum independent set S. For any subset T ⊂ S of size k, the intersection of neighborhoods of T
has size ℓk(G), and all such sets are disjoint. We find that all ℓk(G)(α(G)

k ) vertices outside S are adjacent to exactly
k elements of S, so G has k-uniform independent set regularity.

4.4 Classification

We briefly investigate the problem of classifying graphs with independent set regularity. This is mostly unrelated
to the goal of generalizing the random graph generating algorithm, but it does give some insight as to how widely
the generalization may apply.

Recall that a graph is called vertex transitive if any vertex can be mapped to any other vertex by a graph automor-
phism. An edge transitive graph is defined similarly. A natural alternative to independent set regularity would
be independent set transitivity, when any two independent sets of the same size can be mapped to each other
by a graph automorphism. An even stronger alternative would be bijective independent set transitivity, when
graph automorphisms can induce any bijection between two indendent sets of the same size. It is worth looking
into how these definitions compare. It is clear that bijective independent set transitivity implies independent set
transitivity, which implies independent set regularity. However, none of the reverse implications hold.

A graph with independent set regularity, but no vertex transitivity, is (C4 + C5)
C, the edge complement of a

disjoint union of a four-cycle and a five-cycle. Indeed, maximum independent sets correspond to edges on one of
the two cycles, but vertices between the cycles are not transitive.

A graph with independent set regularity and vertex transitivity, but no independent set transitivity, is (C4□C5)
C,

the edge complement of the Cartesian product of a four-cycle and a five-cycle. Indeed, maximum independent
sets again correspond to edges on one of the cycles, but maximum independent sets between the cycles are not
transitive.

A graph with independent set transitivity, but no bijective independent set transitivity, is the edge complement
of the Holt graph [5]. This is because the Holt graph is half-transitive. Since the Holt graph is triangle-free,
independent sets in its edge complement are either singletons or edges in the Holt graph.

A graph with bijective independent set transitivity, but no edge transitivity, is CC
6 , the edge complement of a six-

cycle. Indeed, maximum independent sets correspond to the edges on the six-cycle, but vertex pairs that are two
apart form edges that are not transitive with vertex pairs that are three apart.

We finally investigate uniform independent set regularity. We already know that the values ς(G), ℓ(G) and α(G)
determine the number of vertices and edges, using 2|E(G)| = d(G)n(G), so maybe the entire graph is determined
by just these three values.

Conjecture 4.13 (Uniform independent set regularity characterization). If a non-trivial graph G has uniform indepen-
dent set regularity, then ς(G)|ℓ(G) and α(G) ≥ ς(G) ≥ 2. Furthermore, for any integers α, ς, ℓ with ς|ℓ and α ≥ ς ≥ 2,
there is a unique non-trivial graph G with uniform independent set regularity and with (α(G), ς(G), ℓ(G)) = (α, ς, ℓ), up
to graph isomorphisms. This graph also has bijective independent set transitivity and edge transitivity.
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This would lead to a complete characterization of graphs with uniform independent set regularity. We find that
there would be infinitely many more families of graphs on which our algorithm can be applied. However, the
uniqueness with respect to only three values would also emphasize how restrictive uniform independent set reg-
ularity is. Moreover, uniform independent set regularity would imply both bijective independent set transitivity
and edge transitivity. The rest of this section discusses the evidence for this conjecture.

4.4.1 Deletion of neighborhoods

We investigate the hereditary nature of uniform independent set regularity.

Definition 4.14 (Deletion of a neighborhood). For a graph G = (V, E) with an independent set S, the deletion of
the neighborhood of S is the induced subgraph H on V \ S \ N(S).

First, note that independent set regularity is hereditary on the deletion of neighborhoods. Consider an indepen-
dent set T of H. Note that T ∪ S is an independent set of G. We find that d|T|(H) = |NH(T)| = |NG(T ∪ S) \
NG(S)| = d|T|+|S|(G)− d|S|(G) only depends on the size of T. Also note that α(H) = α(G)− |S|.

Furthermore, if G has uniform independent set regularity, then ς(H) = ς(G) and ℓ(H) = ℓ(G). Consider a
maximum independent set T of H. Indeed, vertices outside T in H are adjacent to ς(G) elements of S ∪ T, none of
which can be in S. We thus also find that the intersection of neighborhoods of ς(G) elements of T is not adjacent
to S and thus contained in H.

Second, note that bijective independent set transitivity is also hereditary on the deletion of neighborhoods. Any
bijection f : T → R between two independent sets of H can be extended to a bijection f+ : T ∪ S → R ∪ S by
simply sending S to itself. Then the corresponding automorphism of G is closed on N(S), so it can be restricted to
an automorphism of H.

If we consider going in reverse, we run into a problem. Consider a path of length three. The deletion of any
neighborhood gives a graph with bijective independent set transitivity, yet the graph is not even regular. However,
if we assume the deletion of the neighborhoods of different individual vertices to be similar, then we can make
useful deductions.

Proposition 4.15. Let G be a d-regular graph.

(i) Assume the deletion of the neighborhood of any vertex gives a subgraph H with independent set regularity, and with the
same values of α(H) = α and dk(H) = dk for all k. Then G has independent set regularity with dk+1(G) = d + dk,
and α(G) = α + 1.

(ii) Assume furthermore that any such subgraph H has uniform independent set regularity, and with the same values of
ς(H) = ς ≤ α and ℓ(H) = ℓ. If furthermore n(G) = ℓ(α(G)

ς ) + α(G), then G also has ς-uniform independent set
regularity and ℓ(G) = ℓ.

Remark 4.16. Recall that the values α(H) and dk(H) determine whether H has uniform independent set regularity,
so either all deletions of neighborhoods H are non-trivial with uniform independent set regularity, and with the
same values of ς(H) = ς and ℓ(H) = ℓ, or none of them are. Furthermore, the condition n(G) = ℓ(α(G)

ς ) +

α(G) is necessary to avoid counter examples such as the disjoint union of two isomorphic graphs with uniform
independent set regularity, with additional edges connecting all vertices from one graph with the other.

Proof of Proposition 4.15. (i) For any vertex v, the maximum independent set not adjacent to v has size α, so the
maximum independent set including v has size α + 1, so α(G) = α + 1. Consider an independent set S of size
k + 1 with v ∈ S. Then S \ {v} is an independent set of size k in the deletion of the neighborhood of v, so
N(S \ {v}) \ N(v) has size dk, so |N(S)| = |N(v)|+ |N(S) \ N(v)| = d + dk.

(ii) Consider a maximum independent set S of G. Consider a vertex v outside S and not adjacent to some s ∈ S.
Then v is in the deletion of the neighborhood of s, so it is adjacent to exactly ς elements of S \ {s}, and thus of S.
So all vertices outside S are adjacent to either all of S, or exactly ς elements of S.

Consider a subset T ⊂ S of size ς. Consider the intersection of the neighborhoods of T in the deletion of the
neighborhood of some s ∈ S \ T. Any element v can not be adjacent to all elements of S, so we find N(v) ∩ S = T.
It follows that all such sets are disjoint and of size ℓ. We thus find ℓ(α(G)

ς ) vertices outside S that are adjacent to
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4 INDEPENDENT SET REGULARITY

exactly ς elements of S. Since n(G) = ℓ(α(G)
ς ) + α, it follows that G has ς-uniform independent set regularity and

ℓ(G) = ℓ.

Note that this does not work for bijective independent set transitivity. Consider again the graphs (C4 + C5)
C,

(C4□C5)
C, and the edge complement of the Holt graph. None of these graphs have bijective independent set

transitivity, but the deletion of the neighborhood of any vertex always gives a complete graph on the same number
of vertices, which has bijective independent set transitivity.

Finally, we have one more interesting counter example, showing that vertex transitivity is not hereditary on the
deletion of neighborhoods, even for graphs with independent set regularity. Consider the edge complement of
the Cartesian product of the octahedron graph with the icosahedron graph. This graph is vertex transitive and
has independent set regularity, with maximum independent sets corresponding to faces of the platonic solids.
However, the deletion of the neighborhood of any vertex gives a graph isomorphic to (C4 + C5)

C, which is not
vertex transitive.

4.4.2 Partial solution for Conjecture 4.13

We first prove α(G) ≥ ς(G) ≥ 2. Consider a graph G = (V, E) with uniform independent set regularity. Let S
be a maximum independent set. If G is not edgeless, then there exists a vertex v outside S, giving α(G) = |S| ≥
|N(v) ∩ S| = ς(G). If G is non-trivial, then we can pick two distinct elements s, t ∈ S, and they must have a
common neighbor v. We find that ς(G) = |N(v) ∩ S| ≥ 2.

We prove the conjecture for the case α(G) = ς(G). First note that the regular complete multipartite graph G =
K{r}k has α(G) = ς(G) = r and ℓ(G) = r(k − 1), which proves the existence, since G is non-trivial for r, k ≥ 2.
Note that G indeed has bijective independent set transitivity and edge transitivity.

Uniqueness follows from the hereditary nature of uniform independent set regularity. The deletion of the neigh-
borhood of any vertex gives a subgraph H with α(H) < ς(H), which means that H is edgeless. Note that the
hereditary nature of the values ς(G) and ℓ(G) also means that this suffices to prove that ς(G)|ℓ(G) holds in gen-
eral.

We prove the conjecture for the case α(G) − 1 = ς(G) = ℓ(G). First note that the complement of the bipartite
matching graph G = (G1,1(X, X))C has α(G) = |X| and ς(G) = ℓ(G) = |X| − 1, which proves the existence, since
G is non-trivial for |X| ≥ 3. Note that G indeed has bijective independent set transitivity and edge transitivity.

To prove uniqueness, note that the deletion of the neighborhood of any vertex v is isomorphic to the regular
complete bipartite graph K{α(G)−1}2 . So v is part of exactly two maximum independent sets S, T, of which it
is the intersection. We can map S and T to [α] × {1} and {1} × [α] respectively, with v mapped to (1, 1). We
can map the remaining vertices to [2, α] × [2, α], indicating which elements of S and T respectively they are not
adjacent to. Since the deletion of the neighborhood of any vertex from S or T is again isomorphic to K{α(G)−1}2 ,
every row and column forms a maximum independent set. Since the deletion of the neighborhood of any other
vertex is again isomorphic to K{α(G)−1}2 , no cell is occupied twice. We conclude that we have an isomorphism to
G = (G1,1([α], [α]))C.

Finally, the cases (ς(G), ℓ(G)) = (2, 2) and (ς(G), ℓ(G)) = (2, 4) have existence given by the bipartite matching
graph and the matching graph respectively, which indeed have bijective independent set transitivity and edge
transitivity.
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5 SEQUENTIAL RANDOM MAXIMUM INDEPENDENT SET ALGORITHM

5 Sequential random maximum independent set algorithm

Consider again the configuration model used in [2] to generate a random graphical realization of a given n-tuple
π = (d1, . . . ,.n). A perfect matching of mini-vertices is generated sequentially. Considering all pairs of unmatched
mini-vertices i, j that do not create a self-loop or double edge, one of them is chosen at random with probability
proportional to 1 − bi,j for some small positive bias bi,j. Self-loops essentially give us a set of mini-vertex pairings
that are not allowed, and double edges are essentially an equivalence relation on mini-vertex pairings such that
no two chosen pairings are allowed to be equivalent. We use this idea to generalize the sequential algorithm to
generating maximum independent sets.

5.1 The algorithm

Suppose a non-trivial graph G = (V, E) with uniform independent set regularity is given. We write α = α(G),
ς = ς(G), ℓ = ℓ(G), n = n(G), and d = d(G). Suppose furthermore that we are given a set F ⊂ V of forbidden
vertices and an equivalence relation R ⊂ V × V.

Definition 5.1 (Feasible set). We say that an independent set S of G is feasible if it contains no forbidden vertices
and no two elements are R-equivalent.

Finally, suppose we are given a bias function b : V → [0, 1). The following is an algorithm for sampling a
maximum independent set of G that is feasible.

Algorithm 1 Random feasible maximum independent set

1: Initialize the feasible set S = ∅
2: while There exist v ∈ V \ S such that S ∪ {v} is feasible do
3: Add a random such v to S with probability proportional to 1 − b(v)
4: end while
5: return S

Note that we do not specify how such v is randomly generated, so we can not make any conclusions about the
running time of this algorithm. We are solely interested in the probability that this algorithm generates a maxi-
mum independent set, and the distribution of maximum independent sets generated by this algorithm. Efficient
implementation of this algorithm can be discussed on a case by case basis, based on the specific graph G that is
given.

5.2 Performance

In order for this algorithm to properly generate feasible maximum independent sets, we need to have some
bounds on the number of forbidden vertices and the number of equivalences between vertices. We thus define
the quantity dF

max as the maximum of dF(v) = |F ∩ N(v)| over all v ∈ V, and we define bmax as the maximum of
b(v) over all v ∈ V.

In order to quantify equivalences, let R(v) = {w ∈ V \ {v} \ N(v) \ F : (v, w) ∈ R} be the set of vertices that
any vertex v ∈ V can not appear with due to R-equivalence. For a set of vertices S ⊂ V, let R(S) = ∪s∈SR(s).
We define the quantity dR

max as the maximum of |R(s)|+ |R(S)∩ N(s)| over all maximum independent sets S and
elements s ∈ S. The bound on |R(S) ∩ N(s)| will play a similar role as the bound on |F ∩ N(v)|, while the bound
on |R(s)| just limits the size of equivalence classes.

In order to precisely state the distribution of independent sets generated by the algorithm, we define some final
quantities. For a set of vertices S ⊂ V, let b(S) = ∑s∈S b(s). Let PG = α/n be the proportion of vertices of G
present in any maximum independent set. Finally, let I denote the set of all maximum independent sets of G.

The following is our main theorem. It essentially states that, if dF
max, dR

max, and bmax are sufficiently bounded,
then with probability close to 1, the algorithm will generate a random feasible maximum independent set, the
distribution of which can be approximated by a formula based on the bias terms.

Theorem 5.2 (Random maximum independent set). Consider ς, ℓ to be constant and α → ∞. If dR
max, dF

max =
O(ας−3/2−τ) and bmax = O(α−1/2−τ) for some τ > 0, then with probability 1 − o(1), the algorithm outputs a feasible

19



5 SEQUENTIAL RANDOM MAXIMUM INDEPENDENT SET ALGORITHM

maximum independent set. Furthermore, any feasible maximum independent set S ⊂ V will be the output of the algorithm
with the following probability:

P(S) = exp
(

PG|F|+
1
2

PG|R(S)|+ PGb(V)− b(S) + o(1)
)

/|I| (4)

The value |I| can be calculated with the following formula:

|I| = 1
α!

α−1

∏
r=0

(
ℓ

(
α − r

ς

)
+ α − r

)

Indeed, consider generating a sequence of α independent vertices, of which there are α!|I|. After generating r
independent vertices, the next vertex has to be chosen from the deletion of the neighborhood of the first r vertices.
This is a subgraph H with α(H) = α − r, ς(H) = ς, and ℓ(H) = ℓ, so there are ℓ(α−r

ς ) + α − r options.

Note that n = ℓ(α
ς) + α = ℓ

ς! α
ς + O(ας−1), since ς ≥ 2. It follows that PG = ς!

ℓ α1−ς + O(α−ς) and b(V) ≤ nbmax =

O(ας−1/2−τ). Furthermore, for any feasible maximum independent set S, we have b(S) ≤ αbmax = O(α1/2−τ)
and |R(S)| ≤ αdR

max = O(ας−1/2−τ). Any element of F is adjacent to ς elements of S, which finally gives |F| ≤
1
ς αdF

max = O(ας−1/2−τ).

We find that the argument of the exponent is of order O(α1/2−τ). Furthermore, replacing PG with ς!
ℓ α1−ς changes

the argument by at most O(α−1/2−τ). This is negligible due to the o(1) term, so we find that the theorem would
still hold. Finally, note that PGb(F) ≤ PG|F|bmax = O(α−2τ) is negligible, which indicates that the biases of
forbidden vertices are negligible, which is to be expected.
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6 Application to random graphs

We show how Theorem 5.2 can be used to generate asymptotically uniformly random graphs with a given degree
sequence, as the algorithm from [2] does. We show that Theorem 5.2 can be used for undirected graphs, directed
graphs and colored graphs. While generalizing these cases was the main goal of Theorem 5.2, as discussed in
Section 4.4, there might very well be many more applications to still discover.

6.1 Undirected graphs

Recall the configuration model. Given the n-tuple π = (d1, . . . , dn), let W = ∪n
i=1Wi be a set of 2m = ∑n

i=1 di
mini-vertices with |Wi| = di. By combining the mini-vertices of each Wi into a single vertex i, a perfect matching
on W can be turned into a graph on [n]. For this to be a graphical realization of π, there need to be no self-loops
or double edges. A self-loop occurs when two mini-vertices vertices from one set Wi are matched, and a double
edge occurs when two mini-vertices from one set Wi are matched with mini-vertices from the same other set Wj.

We apply Theorem 5.2 on the matching graph G = G2(W) = (V, E). We let F contain all pairs of mini-vertices
from the same set Wi, and we say that two pairs of mini-vertices are R-equivalent if they connect mini-vertices
from the same sets Wi and Wj. Then combining the mini-vertices of each Wi into a single vertex i turns a maximum
independent set of G into a graphical realization of π if, and only if, the independent set is feasible.

For v ∈ V connecting mini-vertices from Wi and Wj, let b(v) =
(di−1)(dj−1)

4m . Finally, let dmax be the maximum of di

over all i ∈ [n], and let λ = λ(π) = 1
2m ∑n

i=1 (
di
2 ). We use the algorithm for generating a random feasible maximum

independent set of G to generate an asymptotically uniformly random graphical realization of π.

Theorem 6.1 (Random undirected graph). Let m → ∞. If dmax = O(m1/4−τ) for some τ > 0, then with probability
1 − o(1) a graphical realization is generated. Furthermore, any graphical realization H of π will be generated with the
following probability:

P(H) = exp
(

λ + λ2 + o(1)
)

m!
n

∏
i=1

di!
m−1

∏
r=0

1

(2m−2r
2 )

Proof of Theorem 6.1. For v ∈ V connecting mini-vertices wi ∈ Wi and wj ∈ Wj, we have b(v) =
(di−1)(dj−1)

4m , so
bmax ≤ 1

4m d2
max = O(m−1/2−2τ). The set F ∩ N(v) can be partitioned in those elements containing wi, of which

there are di − 1, and those elements containing wj, of which there are dj − 1. We find dF
max ≤ 2dmax = O(m1/4−τ).

For a maximum independent set S of G and an element s ∈ S connecting mini-vertices wi ∈ Wi and wj ∈ Wj,
we have |R(s)| = (di − 1)(dj − 1). The set R(S) ∩ N(s) can be partitioned in those elements containing wi, and
those elements containing wj. Those containing wi are double edges with some t ∈ S \ {s} connecting another
mini-vertex from Wi. There are di − 1 such t, all giving at most dmax − 1 double edges containing wi. We find
dR

max ≤ 3d2
max = O(m1/2−2τ).

Since α = m, by Theorem 5.2 with probability 1 − o(1), a feasible maximum independent set of G is found.
Any specific such set S is found with probability given by equation (4). For any graphical realization H of π,
there are ∏n

i=1 di! such sets S that generate H. Since ς = 2 and ℓ = 4, we have ℓ(α−r
ς ) + α − r = (2m−2r

2 ), so

|I| = 1
m! ∏m−1

r=0 (2m−2r
2 ).

We can replace PG with ς!
ℓ α1−ς = 1

2m . We have |F| = ∑n
i=1 (

di
2 ), so PG|F| = λ. Furthermore, for v ∈ V connecting

mini-vertices from Wi and Wj, we have |R(v)| = (di − 1)(dj − 1), so 1
2 PG|R(S)| = b(S). Since the biases of

forbidden vertices are negligible, it suffices to show that PGb(V \ F) = λ2 + o(1).

PGb(V \ F) =
1

2m ∑
1≤i<j≤n

didj
(di − 1)(dj − 1)

4m

=
1

16m2

( n

∑
i=1

di(di − 1)

)2

−
n

∑
i=1

d2
i (di − 1)2


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6 APPLICATION TO RANDOM GRAPHS

Indeed, we have ∑n
i=1 d2

i (di − 1)2 ≤ d3
max ∑n

i=1 di = 2md3
max = O(m7/4−3τ).

Remark 6.2. The bias b(v) =
(di−1)(dj−1)

4m can be replaced by the bias b(v) =
didj
4m . Indeed, summing the difference

di+dj−1
4m over V \ F gives

∑
1≤i<j≤n

didj
di + dj − 1

4m
=

1
4m

(
∑

1≤i,j≤n
d2

i dj −
n

∑
i=1

d3
i − n + |F|

)
,

which is 1
2 ∑n

i=1 d2
i −

n
4m +O(m1/2−τ). Summed over a feasible maximum independent set, this gives 1

4m ∑n
i=1 d2

i −
1
4 , so they cancel each other out in PGb(V)− b(S).

6.2 Directed graphs

Given n-tuples π+ = (d+1 , . . . , d+n ) and π− = (d−1 , . . . , d−n ) with m = ∑n
i=1 d+i = ∑n

i=1 d−i . We want to generate
a uniformly random directed graphical realization of (π+, π−), that is, a simple directed graph on [n] with out-
degrees given by π+ and in-degrees given by π−.

Let W+ = ∪n
i=1W+

i and W− = ∪n
i=1W−

i be sets of m mini-vertices with |W+
i | = d+i and |W−

i | = d−i . A perfect
bipartite matching between W+

i and W−
i can be turned into a directed graph on [n], by considering the matches

to be directed from W+
i to W−

i , and by combining the mini-vertices of each W+
i ∪ W−

i into a single vertex i. A
self-loop occurs when a mini-vertex from W+

i is matched with a mini-vertex from W−
i , and a double edge occurs

when two mini-vertices from one set W+
i are matched with mini-vertices from the same other set W−

j .

We apply Theorem 5.2 on the bipartite matching graph G = G1,1(W+, W−) = (V, E). We let F contain all pairs of
mini-vertices from W+

i and W−
i for some i, and we say two pairs of mini-vertices are R-equivalent if they connect

mini-vertices from the same sets W+
i and W−

j . Combining the mini-vertices of each W+
i ∪W−

i into a single vertex
i turns a maximum independent set of G into a directed graphical realization of (π+, π−) if, and only if, the
independent set is feasible.

For v ∈ V connecting mini-vertices from W+
i and W−

j , let b(v) =
(d+i −1)(d−j −1)

2m . Let dmax be the maximum of d+i
and d−i over all i ∈ [n], and let λ± = λ(π±) = 1

m ∑n
i=1 (

d±i
2 ). We use the algorithm for generating a random feasible

maximum independent set of G to generate an asymptotically uniformly random directed graphical realization of
(π+, π−).

Theorem 6.3 (Random directed graph). Let m → ∞. If dmax = O(m1/4−τ) for some τ > 0, then with probability
1− o(1) a directed graphical realization is generated. Furthermore, any directed graphical realization H of (π+, π−) will be
generated with the following probability:

P(H) = exp

(
1
m

n

∑
i=1

d+i d−i + λ+λ− + o(1)

)
1

m!

n

∏
i=1

d+i !d−i !

Proof of Theorem 6.3. The proof follows the same structure as for Theorem 6.1. Only some computations are dif-
ferent. We have bmax = O(m−1/2−2τ), dF

max = O(m1/4−τ), and dR
max ≤ 3d2

max = O(m1/2−2τ), using the same
arguments.

Since α = m, by Theorem 5.2 with probability 1 − o(1), a feasible maximum independent set of G is found. Any
specific such set S is found with probability given by equation (4). For any graphical realization H of π, there
are ∏n

i=1 d+i !d−i ! such sets S that generate H. Since ς = 2 and ℓ = 2, we have ℓ(α−r
ς ) + α − r = (m − r)2, so

|I| = 1
m! ∏m−1

r=0 (m − r)2 = m!.

We can replace PG with ς!
ℓ α1−ς = 1

m . We have PG|F| = 1
m ∑n

i=1 d+i d−i and PGb(V) = λ+λ−. Furthermore, for v ∈ V
connecting mini-vertices from W+

i and W−
j , we have |R(v)| = (d+i − 1)(d−j − 1), so 1

2 PG|R(S)| = b(S).
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6 APPLICATION TO RANDOM GRAPHS

Remark 6.4. By a similar reasoning as with Remark 6.2, the bias b(v) =
(d+i −1)(d−j −1)

4m can be replaced by the bias

b(v) =
d+i d−j

4m .

6.3 Forbidden edges and colored graphs

In order to generate colored graphs, we will generate them one color at a time. We first randomly generate a
graph of the first color with the desired degree sequence. We then randomly generate a graph of the second
color with the desired degree sequence, but we have to forbid all the edges from the graph of the first color.
We continue randomly generating graphs of all subsequent colors, each time forbidding all the edges from all
previously generated graphs, until the graphs of all colors are generated.

Forbidding the edges from the graph of the first color in all subsequent graphs affects the distribution of all
subsequently generated graphs. In order to cancel out this effect, we have to introduce a bias on the generated
graphs of the first color. In order to determine this bias, we will first consider the problem of generating a random
graph with forbidden edges, and we will keep the bias function unspecified.

Consider an n-tuple π = (d1, . . . , dn) and a set of forbidden edges D. Let W = ∪n
i=1Wi be a set of 2m = ∑n

i=1 di
mini-vertices with |Wi| = di, like in Section 6.1. We apply Theorem 5.2 on the matching graph G = G2(W) =
(V, E) again. We define F, R, dmax and λ = λ(π) in the same way, except that we add to F all pairs of mini-
vertices from sets Wi and Wj with ij ∈ D.

We use the algorithm for generating a random feasible maximum independent set of G. For an unspecified bias
function b̃ : ([n]2 ) → [0, 1), we use the bias function b : V → [0, 1) on G, defined by b(v) = b̃(ij) if v ∈ V \ F
connects mini-vertices from Wi and Wj with i ̸= j and b(v) = 0 otherwise. Note that bmax = b̃max. Finally,
let dD

max be the maximum of dD
i = |{j ∈ [n] : ij ∈ D}| over all i ∈ [n], and let δD(π) = 1

2m ∑ij∈D didj and
β(b̃) = 1

2m ∑1≤i<j≤n didj b̃(ij).

Theorem 6.5 (Random undirected graph with forbidden edges). Let m → ∞. If dmax, dD
max = O(m1/4−τ) and

bmax = O(m−1/2−τ) for some τ > 0, then with probability 1 − o(1) a graphical realization with no edges from D is
generated. Furthermore, any such graphical realization H of π will be generated with the following probability:

P(H) = exp
(

λ(π) + δD(π) + γH + β(b̃)− b̃(E(H)) + o(1)
)

C(π)

Here γH = 1
4m ∑ij∈E(H)(di − 1)(dj − 1) and C(π) = m! ∏n

i=1 di! ∏m−1
r=0

1
(2m−2r

2 )
.

Proof of Theorem 6.5. The proof follows the same structure as for Theorem 6.1 again. We have dR
max ≤ 3d2

max =
O(m1/2−2τ) using the same argument. For v ∈ V, the set F ∩ N(v) contains at most 2dmax self-loops and at most
2dmax(dmax − 1) forbidden edges, so dF

max ≤ 2d2
max = O(m1/2−2τ).

Since α = m, by Theorem 5.2 with probability 1 − o(1), a feasible maximum independent set of G is found. Any
specific such set S is found with probability given by equation (4). For any graphical realization H of π with no
edges from D, there are ∏n

i=1 di! such sets S that generate H, and we have |I| = 1
m! ∏m−1

r=0 (2m−2r
2 ). Replacing PG

with 1
2m , we get PG|F| = λ(π) + δD(π), 1

2 PG|R(S)| = γH , PGb(V) = β(b̃) and b(S) = b̃(E(H)).

We want to apply Theorem 6.5 to generate colored graphs one color at a time. Let π1 = (d1
1, . . . , d1

n), . . . , πk =

(dk
1, . . . , dk

n) be n-tuples with 2mc = ∑n
i=1 dc

i . We first generate a graph H1 with degree sequence π1 and no for-
bidden edges, using an unspecified bias functions b̃1 : ([n]2 ) → [0, 1). We then generate a graph H2 with degree

sequence π2 and forbidden edges E(H1), using an unspecified bias functions b̃2 : ([n]2 ) → [0, 1). We continue
this process, each time forbidding edges E(H1) ∪ . . . ∪ E(Hc−1) when generating graph Hc, until all c graphs are
generated.

We consider k to be constant and we let mmin → ∞ with mmin the minimum of mc over all c. By Theorem 6.5, if
there is some τ > 0 such that dc

max = O(m1/4−τ
min ) and bc

max = O(m−1/2−τ
min ) for all c, then with probability 1 − o(1)

edge-disjoint graphical realization are generated. Furthermore, any such graphical realizations H1, . . . , Hk are
generated with the following probability:
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P(H1, . . . , Hk) =(1 + o(1))
k

∏
c=1

exp
(

λ(πc) + β(b̃c)
)

C(πc)

·
n

∏
c=1

exp

(
γHc +

k

∑
c′=c+1

δE(Hc)(πc′)− b̃c(E(Hc))

)

In order for this probability to be asymptotically uniform, it follows that we need the term b̃c(E(Hc)) to cancel
with the term γHc + ∑k

c′=c+1 δE(Hc)(πc′) for all c. This is achieved by defining

b̃c(ij) =
(dc

i − 1)(dc
j − 1)

4mc
+

k

∑
c′=c+1

dc′
i dc′

j

2mc′
= O(m−1/2−2τ

min ).

The final probability can be calculated by evaluating β(b̃c). This is similar to evaluating PGb(V \ F) in the proof of
Theorem 6.1.

β(b̃c) =
1

8m2
c

∑
1≤i<j≤n

dc
i dc

j (d
c
i − 1)(dc

j − 1) +
k

∑
c′=c+1

1
4mcmc′

∑
1≤i<j≤n

dc
i dc

j d
c′
i dc′

j

Defining λ(πc, πc′) = 1
4mcmc′

∑1≤i<j≤n dc
i dc

j d
c′
i dc′

j , we get β(b̃c) = λ(πc)2 + o(1) + ∑k
c′=c+1 λ(πc, πc′). We end up

with the final probability

P(H1, . . . , Hk) =(1 + o(1))
k

∏
c=1

exp
(

λ(πc) + λ(πc)
2
)

C(πc)

· ∏
1≤c<c′≤k

exp (λ(πc, πc′)) .

Note that, by a similar reasoning as with Remark 6.2 again, the term
(dc

i −1)(dc
j−1)

4mc
in b̃c(ij) can be replaced by the

term
dc

i dc
j

4mc
.
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7 Idea of proof

We want to calculate for a given feasible maximum independent set S ⊂ V the probability P(S) that it will be the
output of the algorithm. We give a heuristic calculation and a framework for the proof of the equation. Both the
heuristics and the proof framework follow a similar structure as [2], where the same statements are proven for the
specific case of generating uniformly random undirected graphs with a given degree sequence, as described in
Section 6.1. The framework for the proof will divide the work into a few lemmas that together prove Theorem 5.2.
However, while [2] contains proofs for the equivalent versions of those lemmas in the specific case of generating
uniformly random undirected graphs with a given degree sequence, we do not give proofs for these lemmas in
this more general setting.

7.1 Heuristics

Consider step r = 0, . . . , α − 1 where we go from Sr to Sr+1. Let Ṽr ⊂ V contain all vertices v ∈ V for which
Sr ∪ {v} is still an independent set, and let Vr ⊂ Ṽr contain all vertices v ∈ V for which Sr ∪ {v} is still a feasible
set. Note that the maximum independent set symmetry on G implies that the restriction of G to Ṽr also has
maximum independent set symmetry. It follows that nr = |Ṽr| = ℓ(α−r

ς ) + α − r and |I| = 1
α! n0 . . . nα−1.

Let pr = r/α denote the proportion of vertices already added to Sr, and let qr = 1 − pr denote the proportion of
vertices still to be added. By maximum independent set symmetry, any forbidden vertex is adjacent to exactly ς

elements of S, so on average there are qς
r |F| forbidden vertices in Ṽr. By a similar argument, on average there are

prqς
r |R(S)| vertices in Ṽr that can not be added to Sr due to R-equivalence. Ignoring the bias function for now, we

get the following probability:

P(S) ≈ α!
α−1

∏
r=0

1
|Vr|

≈ α!
α−1

∏
r=0

1
nr − qς

r |F| − prqς
r |R(S)|

Taking out a factor nr and approximating nr/n ≈ qς
r , so qς

r ≈ 1
α PGnr, gives

P(S) ≈ α!
α−1

∏
r=0

1
nr

1
1 − 1

α PG|F| − pr
1
α PG|R(S)|

.

Approximating 1
1−x ≈ ex for small x and approximating ∑α−1

r=0 pr ≈ α/2 gives

P(S) ≈ exp
(

PG|F|+
1
2

PG|R(S)|
)

/|I|.

We can consider how the bias affects this product. The numerator will be multiplied by 1 − b(s) ≈ e−b(s) for all
s ∈ S, which ends up giving an extra factor e−b(S). The denominator currently counts elements of Vr, all of which
need to be multiplied by their bias. On average, the denominator is multiplied by 1 − 1

n b(V) ≈ e−
1
n b(V), which

ends up giving an extra factor ePGb(V). Equation (4) follows.

7.2 Proof framework

We give a framework for the proof of equation (4). We divide the work up into a few lemmas, and show that these
lemmas together suffice to prove Theorem 5.2.

Let S be the set of all permutations of S, so P(S) = ∑N∈S P(N ). Fix some N = (s1, . . . , sα) ∈ S . Let Sr(N ),
Ṽr(N ) and Vr(N ) be as in the heuristics. By the chain rule, we have
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P(N ) =
α−1

∏
r=0

P(Sr+1 = {s1, . . . , sr+1}|Sr = {s1, . . . , sr})

=
α−1

∏
r=0

1 − b(sr+1)

∑v∈Vr(N ) 1 − b(v)
.

Let ∆r(N ) = |Ṽr(N ) \ Vr(N )| and Ψr(N ) = ∆r(N ) + b(Vr(N )) such that the denominator becomes nr − Ψr(N ).
For the numerator, we apply 1 − x = e−x+O(x2) as x → 0 and bmax = O(α−1/2−τ), which gives

P(N ) = exp(−b(S) + o(1))
α−1

∏
r=0

1
nr − Ψr(N )

. (5)

For fixed r, we can model Ψr(N ) as a random variable Ψr depending on a uniform distribution of permutations
N ∈ S . Equivalently, one might consider Sr to be a uniformly random subset of S of size r. The main goal is to
show that Ψr is sharply concentrated around its expected value.

We can approximate the distribution on Sr by independently adding the elements of S with probability pr. We use
a pr subscript to emphasise the use of this model, for example with Spr and Ψpr . The first main step to proving
equation (4) is to prove the following formula for the expected value of Ψpr .

Lemma 7.1 (Expected value). The expected value ψpr (S) = E(Ψpr ) is given by the following formula:

ψpr (S) = qς
r n
(

1
α

PG|F|+ pr
1
α

PG|R(S)|+
1
α

PGb(V) + ρpr (S)
)

Here ρpr (S) = O
(

α−1−τ + r
α−r α−3/2−τ

)
is a negligible error term.

The second main step to proving equation (4) is to evaluate the product in equation (5) with Ψr(N ) replaced by
ψpr (S).

Lemma 7.2 (Product). We have the following product equality:

α−1

∏
r=0

1
nr − ψpr (S)

= exp
(

PG|F|+
1
2

PG|R(S)|+ PGb(V) + o(1)
) α−1

∏
r=0

1
nr

The third, final and most important step to proving equation (4) is to prove the following concentration result
about Ψr.

Lemma 7.3 (Concentration). We have the following concentration equality:

∑
N∈S

α−1

∏
r=0

1
nr − Ψr(N )

= (1 + o(1))α!
α−1

∏
r=0

1
nr − ψr(S)

In order to finally prove equation (4), we take P(S) = ∑N∈S P(N ) and we apply equation (5), then Lemma 7.3
and finally Lemma 7.2. So, the only remaining ingredient to prove Theorem 5.2 is the probability of ending up
with a feasible maximum independent set.

Lemma 7.4 (Termination). The algorithm has an o(1) probability of terminating before S has α elements.

In [2] proofs are given for statements similar to these four lemmas, but for the specific case of generating uniformly
random undirected graphs with a given degree sequence, as described in Section 6.1. Specifically, in [2], Section
5 proves the equivalent of Lemma 7.4, Section 7.1 proves the equivalent of Lemma 7.1, Section 7.2 proves the
equivalent of Lemma 7.2 and the rest of Section 7 proves the equivalent of Lemma 7.3.
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