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Abstract

Electroencephalogram (EEG) in combination with machine learning (ML) tech-
niques is becoming an increasingly popular method in medicine for clinical dis-
orders prediction. This study applies ML techniques to the ePod dataset devel-
oped by the ePODIUM project, for the prediction of developmental dyslexia in
infants. The dataset contains EEG recordings of 129 infants, existing out of two
groups with dyslexic- and non-dyslexic parents, obtained from an experiment
with auditory stimuli for eliciting a Mismatch Negativity (MMN). Four different
approaches for feature selection are used to see the differences in performance on
different ML algorithms. The baseline approach uses the MMN of all EEG chan-
nels. The second approach includes EEG channels reported in the literature as
the most informative. The t-test approach uses significance testing, verified us-
ing a t-test on the ePod data, and resulted in a selection of significantly different
channels between the two groups. The final approach uses the channels from
the ePod data that show the highest connectivity with other channels. The
algorithms used on the different feature input approaches are support vector
machine, logistic regression, decision tree, multilayer perceptron, and convolu-
tional neural network. The convolutional neural network showed the highest
performance in combination with the features of the t-test approach with an
accuracy of 73%. However, this result is not significant (p=0.447) because of
high variation in model performance. The connectivity approach performs also
well based on average accuracy with the convolutional neural network. The
traditional machine learning algorithms support vector machines and logistic
regression can learn from the t-test and connectivity with moderate accuracy
of 60%. The results show that data-driven selected features, using significance
testing and connectivity, are promising in predicting developmental dyslexia
in infants in combination with deep learning and traditional machine learning
models.
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1 Introduction

Centuries ago, dyslexia was identified as word blindness by a German Profes-
sor, Adolph Kussmaul. He was the first one to recognize the possibility of the
inability to read [1]. Nowadays, dyslexia is characterized by having difficulties
with accurate word recognition and poor spelling abilities [2]. A rough estimate
is given that 5-10% of the world population has a form of dyslexia. This im-
plies that there are approximately 2 children with dyslexia in a classroom of
30. Although there is no evidence that dyslexia can be cured, there is scientific
proof that early interventions are effective remediation of reading problems [3].
This raises the importance of detecting dyslexia as early as possible. However,
detecting dyslexia in infants by observation only is an impossible job, since
the children did not yet develop reading and speaking skills. For this research
dyslexia refers to developmental dyslexia. An upcoming method to detect and
understand developmental disorders is using neurophysiological data using elec-
troencephalography (EEG). EEG measures the electrical activity in the brain
using placed electrodes along the scalp. With EEG, scientists were able to suc-
cessfully detect autism at a younger age by using machine learning methods.
They achieved this by measuring brain responses after exposing subjects to a
certain stimulus and by training a cross-validated machine learning model to
predict whether an infant will develop autism [4] [5]. The Dutch Dyslexia Pro-
gramme (DDP) created a dataset containing EEG recordings of young infants
to research the risk of dyslexia [6].

The University of Utrecht started a project in collaboration with UMC
Utrecht and eScience Center to explore the possibilities of using machine learn-
ing to predict later language/literacy performance on the individual level. The
name of the project is: early Prediction Of Dyslexia in Infants Using Machine
learning (ePODIUM). This master thesis is part of the ePODIUM project. The
DDP dataset stimulus-response paradigm came out to be not suitable for pre-
dicting dyslexia, which resulted in generating a new data set to increase the
ability of dyslexia detection, by using a different protocol for the experiment.
This newly generated data contains EEG data of 129 infants labeled at risk or
control, based on whether the parents are dyslexic or not. In this thesis, the
dataset is referred to as the ePod dataset.

Related studies on developmental dyslexia and EEG show a bottom-up ap-
proach, where theory is based upon the outcome of machine learning models.
For this research, a top-down approach is proposed to predict dyslexia by first
assessing the neurophysiological theory of dyslexia and using the findings as ex-
tra information for the model. A theory-driven model can contribute to better
model performance by reducing the dimensionality of the model to only keep
relevant features.

For this project, algorithms were trained with data-driven features as input.
With features is meant electrodes corresponding to a specific part of the brain.

5



Data-driven refers to the selection of features. The signals of those electrodes
will be transformed into a mismatch negativity (MMN). MMN is the response
of the brain after an abnormality in a sequence of sensory stimuli [7]. The ePod
dataset is based on the MMN, and therefore it is interesting to see if a model
can find a pattern in this response. Four different input approaches are used
for the models. The first approach is using the MMN of all electrodes as input
to set a baseline. The second approach is based on previous studies. Multiple
studies will be assessed to get a better understanding of which electrodes are
relevant for children with dyslexia and how this differs from non-dyslectic chil-
dren. The third and fourth approaches are based on data analysis of the ePod
data. Significant testing between the at risk and control groups will be done
to see which electrodes are significantly different in the two groups. The final
approach calculates the connectivity between the electrodes to reduce the num-
ber of features. Different algorithms were tested to discover the best-performing
model for predicting dyslexia at an early age. From this, the research question is:

To what extent can data-driven features extracted from EEG recordings be
used with machine learning models to predict the risk of developmental dyslexia
in infants?

To answer this research question, a literature review has been done followed
by data analysis. Both the literature and the analysis are of great importance
for selecting the input for the models. Next, the different models are assessed
on their usability. Finally, the model outcomes are evaluated to see if a the-
oretical approach can be useful for predicting the risk of developmental dyslexia.
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2 Background

2.1 Developmental Dyslexia

Dyslexia is a widespread disability ranging from 5% to 17.5% of the human
population. The variability can be explained by the loose definition of dyslexia
and some different factors such as sexual bias, different ways of measuring IQ,
and differences in spoken language [8]. Even though dyslexia is quite common,
there are multiple misunderstandings about people with reading disabilities, for
example, that reading disabilities are caused by visual perception problems or
that people with dyslexia only have problems with word reversals (saw/was) [9].
The most accepted definition of dyslexia so far is:

Dyslexia is a specific learning disability that is neurobiological in
origin. It is characterized by difficulties with accurate and/or fluent
word recognition and by poor spelling and decoding abilities. These
difficulties typically result from a deficit in the phonological compo-
nent of language that is often unexpected to other cognitive abilities
and the provision of effective classroom instruction [2].

Accordingly, dyslexia is neurobiological in origin and can be strengthened by
a deficiency in education. Other factors that can put a child more at risk for
developing dyslexia are poverty, developmental delay, speech or hearing impair-
ments, or learning a second language. Those conditions can be more seen as
correlates to reading disabilities instead of a cause for dyslexia [10]. There are
multiple hypotheses about the cause of dyslexia. The mainstream hypothesis
is the deficit of access to phonemic language units retrieved from long-term
memory [8]. A phoneme is the smallest unit of a sound and can help distin-
guish similar words from each other. The words ’pet’ and ’bet’ are for example
distinguishable by the letters p and b. People with dyslexia find it harder to
differentiate those words since they have difficulties with learning the letter
and phoneme associations. Research validates this theory by showing phone-
mic deficits in university-educated participants [11]. The study showed that all
dyslectic participants have reduced short-term verbal memory and phonemic
awareness. Ramus and colleagues also tested the magnocellular theory. The
magnocellular theory argues that there is a dysfunction in the neurons respon-
sible for the visual system. The magnocellular system is important for visual
attention, control of eye movements, and visual search. Those three components
influence the reading ability [12]. In the study 2 out of 16 participants suffered
from a visual deficit. The third theory is the cerebellar theory, where the cere-
bellum is dysfunctional [13]. The cerebellum has a function in motor control,
which signifies plays a role in speech. It also has a function in the automati-
zation of over-learned tasks, for example walking, biking and reading. Ramus
and colleagues only found 4 out of 16 dyslexic participants with a motor deficit.
Another theory is the rapid auditory processing theory [14]. Participants with
dyslexia show poor performance on auditory tasks with rapidly varying sounds.
There is even a higher deficit once the auditory task uses similar phonemes. 10
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out of the 16 participants showed this auditory deficit. Ramus’s study resulted
in support of the phonological theory of developmental dyslexia, with additional
auditory deficits. This could indicate that audio can play a role in analyzing
dyslexia.

Technology to analyze the brain has become more advanced over the last
couple of years. This makes it easier to measure the effects of interventions
on dyslexia. Studies showed that early interventions on dyslexia can increase
the reading ability of the participant. Aylward and colleagues did an experi-
ment to see whether a 28-hour intervention has an impact on brain activation
during tasks of identifying letter sounds. The results show that participants
with dyslexia have a significant increase in brain activation in areas important
for reading and language [15]. Another study showed similar results. After
the intervention, the experimental group had increased activation in the left
hemispheric regions which are important for reading [16].

2.2 Brain anatomy

There is no specific area in the brain that has reading as function[17]. In-
stead, there are brain regions whose functions are involved with reading, those
functions are spoken language and object recognition. The brain had two hemi-
spheres, in most people the left hemisphere, is responsible for speech and lan-
guage processing, and therefore, reading. The hemisphere can be divided into
four areas illustrated in figure 1. The focus of this research is only on the cere-
brum, with the exclusion of the insula since its interior location. The frontal
lobe controls speech, reasoning, planning, emotions, and consciousness. Studies
also showed that the frontal lobe is involved during silent reading [16]. The Pari-
etal lobe controls sensory perceptions and can link spoken and written language
to memory to give it meaning in a way we can understand what we hear and
read. The primary visual cortex is located in the occipital lobe and is therefore
responsible for the identification of letters and other visual inputs. Finally, the
temporal lobe is responsible for encoding auditory information into memory [9].

Two other systems are also involved in language processing, the left pari-
etotemporal area (Broca’s area) which is involved in word analysis, and the left
occipitotemporal area (Wernicke’s area) which seems to be involved in auto-
matic rapid access to whole words and increases fluent reading [16]. Broca’s
area is located in the frontal lobe of the dominant hemisphere. Wernicke’s area
is located in the cerebral cortex. Broca’s area is primarily involved in produc-
ing language, while Wernicke’s area focuses on the comprehension of spoken and
written language.

The explanation of which area has which function is more complex than
stated above, which makes this a rather global explanation of the functions of
the different lobes. The brain area functions are more specified within the lobes.
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Figure 1: Brain areas in the left hemisphere [18]

The brain itself is made out of two types of material, grey matter composed
of neural cell bodies for processing information, and white matter composed
of myelinated axons facilitating communication between nerves. Research has
found that people with developmental dyslexia have less gray matter in the
parietotemporal area, which means that there is less processing of words. It can
also lead to problems in processing the sound structure of language, phonologi-
cal awareness [19]. People with dyslexia also show less white matter in the same
area, which lessens the ability of the brain regions to communicate with each
other. fMRI studies showed that there was more activation in the brain areas
important for reading in non-dyslectic children. Their left hemisphere is signif-
icantly more activated compared to their right hemisphere, while right-handed
dyslexic children make more use of the right hemisphere to compensate for the
lack of activation in the left hemisphere [16].

The theories in this paragraph are only valid for right-handed people since
their left hemisphere is dominant. Research showed that for left-handed people,
the right hemisphere shows more dominance. The brain structure is approx-
imately symmetrical in both sides. The difference is in the higher activation
of the right hemisphere for left-handed people. Left-handed people constitute
about 10% of the world’s population[20].

2.3 Electroencephalography

Electroencephalography (EEG) measures the electrical activity of the different
brain parts using placed electrodes along the scalp. EEG signals capture the ac-
tivity in a specific brain area over a period of time. This is measured by voltage
fluctuations from ionic current, the flow of electrical charge through ion chan-
nels, within the neurons of the brain. This flow is measured in amperes. One
ampere is equal to one coulomb, the amount of electricity flowing per second.
Voltage is used to set the current in motion, and can also be called electrical
potential since it is the potential of the current to flow. This voltage is measured
in volt (V). On the other hand, resistance inhibits the current from flowing and
is measured in Ohm. The final part concerning physics, which is important to
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know, is the role of magnetism in electricity. Every current is surrounded by a
magnetic field, that circles around the conductor of the current. This magnetic
field can pass through a different conductor and can cause a small current in
this conductor. This can result in electrical noise.

Physics tells us that electrical activity arises when there is an electrical po-
tential, which causes a current to flow through a conductor. These currents are
captured in the neurons of the brain. The electrical activity between neurons
can be divided into action potentials and postsynaptic potentials. Action po-
tentials send signals around the body by voltage changes in the membrane of
the neuron. This membrane surrounds the neuron and consists of ion channels,
which can allow charged atoms of sodium and potassium channels to pass into
and out of a neuron. In general, there are far more sodium ions (Na+) outside
the neuron compared to the potassium ions (K+) inside the neuron. This results
in an electrical imbalance between the inside and the outside, which causes a
voltage difference across the cell membrane. The ion channel can change shape,
allowing a particular ion to pass through the membrane. When the ions pass
those channels, the voltage changes. Those ion channels are a passive mech-
anism. The ions only migrate towards lower concentrations. More sodium is
being transported out, which makes the inside of the cell negatively charged
compared to the outside. This is the cell membrane’s resting potential, where
there is an imbalance of ions across the cell membrane. The action potential is
a temporary shift, caused by a triggering event from other connecting neurons,
where sodium channels open and let sodium ions into the cell, which causes
depolarization of the neuron. The voltage in the cell will reach a positive peak.
To gate the positive ions outside the cell, the potassium channel opens to repo-
larize the cell to its resting potential.

Postsynaptic potentials are the voltages that arise from transmissions be-
tween two neurons. The area between two neurons where they are close enough
to pass information to one another is called a synapse. The sending neuron is
called the presynaptic neuron and passes the signal to the receiving postsynap-
tic neuron. The presynaptic neuron has vesicles that contain a large group of
neurotransmitters. When the presynaptic neuron reached its action potential,
it releases the neurotransmitters in the synaptic space between the two neurons.
the postsynaptic neuron contains receptors that can bind with the released neu-
ron transmitters. This release and binding of neurotransmitters cause a change
in voltage in the cells.

EEG measures the above-described voltage changes in the brain by placing
sensors on the scalp of a participant. The sensors measure the electrical activ-
ity in the cerebral cortex, which is the outer layer of the neural tissue of the
brain. The sensors, called electrodes, measure the electrical activity of groups
of neurons that transmit signals at the same time. One of the reasons why
the measurement is done on a group of neurons is that the measurement of a
single neuron would contain a lot of noise caused by the magnetic field of the
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adjacent neurons. There are different ways to place the sensors on the scalp,
those placings are called montages. Montages display activity over the entire
head and make it easier to localize which electrode belongs to which area of the
brain [21]. The setup of an EEG experiment can be seen in figure 2. The figure
shows that the electrodes are placed on the head by using an EEG cap. An
amplifier strengthens the EEG signal and displays it in a diagram with a signal
per electrode. Each signal is a single EEG recording.

Figure 2: Setup of an EEG experiment, adopted from [22]

The oscillations shown in an EEG recording are classified into different fre-
quency patterns. The so-called EEG waveforms are divided based on their
frequency, and every waveform explains the state of a person. The first wave-
form is gamma, with frequency differences between 30 to 80 hertz (Hz). Here
a person is in a problem-solving state of mind and highly concentrated. The
second waveform is the beta waveform (12-30Hz), where the person is active.
The alpha waveform (8-12Hz) represents the brain being at rest and the theta
waveform (4-8Hz) represents sleep. The final waveform is the delta (0.5-4Hz),
where a person is in deep sleep. The higher the frequency, the more bumps
the EEG recording shows.[23]. Fourier transformation can be used to sum the
oscillations at the different frequencies, to give insight into what sine wave fre-
quencies make up a signal [24].

Event-Related Potentials (ERP) refer to an average of EEG responses after
a certain stimulus in a so-called oddball paradigm, where there is a sequence of
standard stimuli and a randomly occurring deviant. In section 4.1.1 an illustra-
tion of an oddball paradigm will be given. The reaction to an event is measured
by taking small segments of an EEG after the stimuli occurred. Each segment is
referred to as a trial. An example of an ERP can be found in figure 3. The figure
shows the response of electrode Fz of a single child for both the standard stimuli
and deviant stimuli. The figure also shows the MMN. The MMN is calculated
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by subtracting the deviant stimuli from standard stimuli to determine the dif-
ference in response. More about the use of the MMN can be found in section 3.2.

EEG data is from origin very noisy, which makes it difficult to look at the
signal of interest. Besides adding more data to cancel out random noise, the
data can also be filtered to make it less noisy. There are different filtering meth-
ods with different purposes to achieve interpretable data. A band-pass filter can
filter out low and high frequencies. There is also a notch filter, which can filter
out noise at a specific frequency. EEG data can also contain artifacts. Those
artifacts are caused by, for example, blinking of the eyes. Artifacts can also
arise by simple eye movements. Those artifacts need special treatment since
it is undesirable to have those anomalies in your data which can lead to false
conclusions. Another problem with EEG is that sometimes a signal can be bad
because the electrode isn’t connected well to the scalp. Those bad signals can
influence the analysis and therefore should be detected and removed or adjusted.
To cut a long story short, it is highly necessary to use the correct filtering to
retrieve valid information from the EEG recordings [24].

2.3.1 Advantages and disadvantages

EEG is becoming a more popular tool in psychology and clinical medicine nowa-
days. One of the biggest advantages is the ability to see brain activity in real-
time, at the level of milliseconds (ms). This means that EEG has a high tem-
poral resolution when it comes to brain imaging, which is also continuous. This

Figure 3: ERP example of a single trial of one participant from the ePOD data
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characteristic of EEG showed success in determining which processes are influ-
enced by experimental manipulation, identifying multiple neurocognitive pro-
cesses, and by measuring behavioral responses to subjects who are incapable of
making a response, like infants. EEG can also be used as biomarkers in medical
applications, by measuring aspects of the brain function to detect abnormali-
ties in the brain that can be related to neurological and psychiatric diseases [24].

There are also disadvantages when using EEG, besides the advantages of
EEG. EEG is very coarse since all neurons are connected. Therefore it is hard
to determine which neuron provides which signal. It is very challenging to
isolate and measure the internal underlying components based on the data that
you can record from the scalp. Since ERP waveforms typically reflect the sum
of multiple internal, underlying components. This is called the superposition
problem [24]. Another big problem with EEG is the noise created by for example
blinking or the beating of the heart. There is also noise in the signals based on
the magnetic field of surrounding neurons as explained earlier.

2.4 Machine Learning

Machine learning is a very popular field within AI for classification or regres-
sion problems. Machine learning models can be supervised, unsupervised, or
reinforced. Supervised machine learning models contain labels and therefore
the model can train on the expected outcome. Unsupervised models have an
unknown outcome and are harder to validate. Reinforcement models maximize
performance based on interactions with the environment by using a reward sys-
tem. Multiple research has been done on which machine learning model is most
effective on EEG data [25] [26] [27]. Combining their findings, a supervised
classification model is the best-performing method on EEG data. Some models
within this class are support vector machines (SVM), logistic regression and
decision trees.

Another popular field within machine learning is deep learning. Deep learn-
ing models are inspired by the human brain and therefore exist out of multiple
layers of neurons that pass information through, hence the name neural net-
work. A neural network has different weights which represent the strength of a
connection between neurons. Studies have shown that neural networks have a
good performance on EEG data classification. The best-performing algorithms
are convolutional neural networks (CNN), long short-term memory (LSTM) and
a CNN-LSTM hybrid model [28]. Another study showed the effectiveness of a
deep convolutional neural network (DCNN) on epileptic EEG classification [29].

For this research 5 different models were used to predict developmental
dyslexia. The motivation for why those models were chosen can be found in
section 4.3. A brief explanation of each chosen model will be given in the fol-
lowing sections to understand the basic principles of the algorithms.
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2.4.1 Support Vector Machine

Support vector machine (SVM) is a machine learning algorithm that can be
used for both regression and classification tasks. The objective of the SVM
is to find an optimal hyperplane in a space with multiple dimensions. This
hyperplane serves as a classification decision boundary and can be set by finding
the maximum margin, which is the distance between the hyperplane and the
closest data point of both classes. Those data points closest to the hyperplane
are called support vectors. The equation of the hyperplane is as follows:

wTϕ(x) + b = 0 (1)

In this equation, w represents the weight vector, ϕ(x) represents the mapping
from the data point into the feature space and b is the bias term. To optimize
this separation hyperplane, we need to know the distance between the hyper-
plane and a data point. The distance between a line and a point is the length
of the line segment that is perpendicular to the hyperplane and passes through
the point. The formula of the distance is:

dH(ϕ(x0)) =
|wTϕ(x) + b = 0|

||w||2
(2)

The distance is calculated by taking the absolute of the formula of the hyper-
plane and dividing this by the euclidean distance, which is the distance between
two points in a vector space. In our case, it is the length of the weight vector.
The goal of a SVM is to minimize the margin between the decision boundary
and the support vectors. The equation for this is:

w∗ = argwmax[minndH(ϕ(x0))] (3)

Here arg max is an operation that finds the argument that gives the maximum
value from a function. It finds the maximum margin by finding the minimum
distance between the data points and the hyperplane.

It can be checked whether the data points are divided in the correct class by
the hyperplane. This can be done by filling in the data points in the hyperplane
equation. The product of a predicted and actual label would be greater than
0 on the correct prediction. Else it would be less than 0. Figure 4 shows
two examples of a SVM in a 2-dimensional space. A soft margin allows some
misclassification to happen by softening the constraints of the SVM. It is used
once data is not linearly separable, like the ePod data, because the data can’t
be perfectly divided with a hyperplane.
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Figure 4: Example of a 2 dimensional hyperplane [30]

2.4.2 Logistic regression

Logistic regression is used to predict a categorical dependent variable using a
set of independent variables. It gives the probability of a value between 0 and
1. In figure 5 a logistic regression function is shown. Logistic Regression uses a
sigmoid function, which has an S-shape. This function goes from −∞ to +∞
to avoid probabilities below 0 and above 1. The equation of a logistic regression
function is:

log[
y

1− y
] = b0 + b1x1 + b2x2 + b3x3 + · · ·+ bnxn (4)

For logistic regression, the equation is obtained from the linear regression
equation. This shows in the right part of the equation, which is the equation
of a straight line. Here the b are the coefficients and x are the independent
variables. In logistic regression, the dependent variable can only be between 0
and 1 in a range between −∞ to +∞. This is where the left part of the equation
comes from. y

1−y is 0 for y = 0 and goes to infinity for y = 0. The logarithm
is taken to get the infinite range. The standard default of the threshold of the
algorithm equals 0.5. For this research for example, once the outcome is above
0.5 the child will be at risk of developmental dyslexia. If it is below 0.5 the child
belongs to the control group.
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Figure 5: Example of a logistic regression function [31]

2.4.3 Decision Trees

Decision trees use simple decision rules to predict the class. A decision tree
starts on the root node and will be divided into multiple sub-nodes. The decision
tree splits the nodes on all available variables and then selects the split which
results in the most homogeneous sub-nodes. There are multiple algorithms
used in decision trees. The one used for this project is a Chi-square automatic
interaction detection (CHAID) that performs multi-level splits. This is the
underlying algorithm of the decision tree model from the scikit-learn library
[32]. CHAID finds a significant difference between two sub-nodes and the parent
node. It is measured by the sum of squares between the observed and expected
values of the target variable. The formula for Chi-square is:

χ2 =
∑ (O − E)2

E
(5)

In this formula, O is the observed score and E is the expected score. The Chi-
square will be calculated for each feature of the data set. The feature having
the highest Chi-square will be the decision point. An example of a decision tree
can be found in appendix C.

2.4.4 Multi-Layer Perceptron

A multi-layer perceptron (MLP) is a fully connected feedforward neural net-
work. It consists of an input layer, an output layer, and hidden layers. Each
node in the layers represents a weight, which will eventually map the output
correctly. A neural network uses backpropagation to update the weights to
make the network able to learn good internal representation. This means that
the right nodes in a neural network should be activated when they have a pos-
itive influence on the performance of the network. A node’s activation in a
neural network is dependent on the incoming weights and bias term. The goal
of backpropagation is to optimize the weights for each hidden layer node, so
the neural network can learn how to map inputs and outputs correctly. Hidden
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layer nodes don’t have a target output, which means there is no error function
for a single specific node. This means that the error for that node is depen-
dent on the values of the parameters in previous layers (which are the input
for that specific node), but also the following layers (because the output of the
node affects these layers). Calculating the effect of each node compared to the
other nodes can be complicated with a long calculation time. Backpropagation
simplifies the mathematics of gradient descent between those layers and is more
efficient. Backpropagation uses gradient descent to calculate the gradient of the
error function concerning the neural network’s weights. A gradient measures
how much the output changes when the inputs change. Gradient descent is
a minimization algorithm that minimizes the cost function. Backpropagation
calculates the gradient backward through the network, in a way that the error
of the output can adapt the weights of the nodes in the network. First, the gra-
dient of the weights in the final layer will be calculated. The second step is to
calculate the gradient of the weights of the second-last layer. As said earlier, lay-
ers affect each other and therefore the last layer is dependent on the second-last
layer. More specifically, the weights are dependent on the weights and output
of the previous layer. To solve this dependency for the gradient, the chain rule
is used because there is a function within a function. This comes down to the
fact that partial computations of the gradient from one layer are reused in the
computation of the gradient from the previous layer. This backward pass of
the error will continue until calculating the gradient of the weights of the first
layer. Backpropagation runs in a cycle with the feedforward network. After the
forward pass for each training example (or a batch of examples to speed up the
process), a backward pass will be done to adjust the weights based on the error.
In short, the backpropagation algorithm is efficient because the flow of error
information goes through each layer, instead of calculating the gradient for each
layer separately, which makes it hard to include the dependencies between layers.

An activation function is used to decide whether a node will be activated or
not. It determines the importance of the nodes in the process of predicting the
outcome. Commonly used activation functions for a MLP are: identity, logistic,
tanh and relu.

Table 1: Activation functions for a neural network

Activation Function
Identity f(x) = x
Sigmoid f(x) = 1

1+e−x

Tanh f(x) = ex−e−x
ex−e−x

Relu f(x) = max(0, x)
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2.4.5 Convolutional Neural Network

A convolutional neural network (CNN) is a learning network that transforms
or extracts features using multiple non-linear processing units arranged in hier-
archical multiple layers with different levels of representation and abstraction.
Each layer of a CNN consists of a filter, an activation, pooling, and normaliza-
tion. The filter of a layer looks for a pattern in the neighboring data points,
with matrix multiplication a match between the filter and a small part of the
input image is given using the dot product. Figure 6 shows an example of the
calculation of a single filter in image classification. The output activations of a
given filter are called feature maps.

Figure 6: Filter of a CNN [33]

The next step is introducing a non-linear activation function. The goal of
this operation is to only activate the output feature map if its value reaches a
certain threshold. The most common activation function in deep neural net-
works is ReLU. The formula of ReLU can be found in table 2. For input values
in the feature map below zero, the output of the operation will be zero. For
input values above zero, the output equals the input. This introduces a simple
non-linearity around zero.

Pooling down samples of the units for efficiency. The filter creates multiple
feature maps and in the next layer, those maps will turn into more feature maps.
To avoid an explosion of computational load, it’s important to reduce the size
of these maps by using pooling. Max pooling is the most used pooling method
and chose the highest value of a unit from the feature map to reduce the shape.

The last step is normalizing the data. The threshold and pool operations
use max functions. As a result, even if the convolution filter has a mean of zero,
by the pool stage the mean activation is above zero and an arbitrary range.
The normalization operation scales the data linearly to have a mean of zero for
each feature map. The mean response of each feature map will be subtracted
from all responses to zero-center the data. The next step is to divide the result
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by the standard deviation. The normalized data now have a mean of zero and
a standard deviation of one. This is useful for creating identical distributions
so each feature map contributes similarly to classification. Those steps will be
repeated for the number of layers in the CNN. A schematic overview can be
found in figure 7. The data for this research consists out of extracted features
from the MMN instead of images. However, the fundamental principles of the
neural network remains the same.

Figure 7: Schematic view of a CNN in image classification [34]
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3 Related Literature

3.1 Predicting disorders with EEG

EEG has become useful in diagnosing brain disorders. So far using EEG has
been successful in diagnosing epilepsy, Alzheimer’s disease, autism, and other
conditions that affect the brain. Al Zoubi and colleagues conducted a study
to predict the brain age gap, the difference between the estimated age and
the chronological age of an individual, using EEG signals [35]. They used a
nested-cross-validation approach combined with a set of regression algorithms,
such as Random Forest and Support Vector Regression. The framework has
a reliable estimation of chronological age and brain age. Another study used
EEG signals to predict epileptic seizures. They used an algorithm to detect the
spikes in an EEG signal during interictal, preictal, and ictal periods followed
by a mean filter to smooth the spike number. The maximum spike rate of
the interictal state was used as an indicator (threshold) to predict seizures.
Once the signal passed the threshold, the signal would indicate a seizure. This
approach reached a 92% accuracy [36]. Besthorn and colleagues used the delta
and theta waves to predict Alzheimer’s disease. They found out that there is an
increase in the delta and theta power and a decrease in the alpha and beta power
in Alzheimer’s patients. Four different methods were used: classification by
group means, discriminant analysis, neural network, and discriminant analysis
combined with principal component analysis. They reached a maximum of
86.6% accuracy and 95.9% when they included age as variable [37]. EEG data
has also been very useful in classifying different emotional states. A study
showed that using a smoothing algorithm can improve emotion classification
performance by SVM. Also, dimension reduction showed improved performance,
by for example using principal component analysis or correlation based feature
selection methods. The highest accuracy obtained was 91.77% by using linear
discriminant analysis smoothing and correlation based feature reduction. A
final insight was that emotion was mainly produced in a specific lobe of the
brain [38]. Another interesting paper is the paper of Gibbon and colleagues.
They researched classifying neural responses to rhythmic speech versus non-
speech in infants. Their goal was to see whether classification with a rhythmic
stimulus is possible since neural tracking of rhythm is atypical in children with
developmental language disorders. Results show that both CNN and SVM can
be reliably used on EEG data to classify the sound as a drumbeat or a repeated
syllable. The CNN seemed to be more robust to the noisy EEG data [39].
There also have been multiple research done on predicting dyslexia using EEG
data. Perera and colleagues wrote an extensive review of different classification
frameworks for dyslexia, based on previous studies. They concluded that for
predicting dyslexia, each class should contain at least 15 participants. It is
also important to compare the differences in signals between males and females.
Three different models are recommended, linear discriminant analysis, neural
networks, and SVM, where SVM is called ’the classifier’ to be used in EEG-
based classification for dyslexia. Perera and colleagues also made a comparison
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between popular EEG channels used in research. Those channels can be seen
in figure 8 [40]. The bottom row is a summary of the most commonly used
channels from the different contemplated research. The most commonly used
channels are the channels in the frontal lobe in the left hemisphere. The sensors
from the frontal lobe of the right hemisphere are also commonly used, the same
as the sensors located on the axis of the brain.

Figure 8: Popular choice of EEG channels from [40]

3.2 Mismatch Negativity

Mismatch negativity is the response of the brain after an abnormality in a se-
quence of sensory stimuli [7]. The presentation of a deviant event embedded
in a stream of repeated standard events results in an evoked response recorded
with an EEG. Subtracting the response of the standard event from the de-
viant response results in a negative waveform, which is the MMN. The highest
difference is after 100-250ms onset and the strongest intensity is in the tem-
poral and frontal areas of the scalp [41]. A lot of research has been done on
the event-related potential in clinical applications. Umbricht and colleagues
studied the relation of mismatch negativity with schizophrenia. They found
that patients with schizophrenia have a significantly smaller mean mismatch
negativity compared to healthy participants [42]. The study of Baldeweg and
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colleagues examined mismatch negativity in dyslexic subjects. They hypothe-
sized that dyslexic subjects are impaired in auditory frequency discrimination.
This hypothesis was tested by using an auditory brain potential to measure the
mismatch negativity on 10 dyslexic and matched control subjects. The results
showed that the mismatch potentials to changes in tone frequency were abnor-
mal in the dyslexic subjects. This difference was not found in tone duration [43].

Analyzing the mismatch for each subject hand by hand can be time con-
suming and is also dependent on interpretation. Armanfard and colleagues
used machine learning to detect if the mismatch negativity is present in the
averaged event related potentials. The existence of the mismatch negativity
in a coma patient showed a correlation with coma emergence. They tested an
auditory odd-ball paradigm on 22 healthy subjects and 2 coma subjects. The
used classification model reached an accuracy of 92.7% [44].

3.3 Connectivity

Connectivity between the EEG sensors gives information on the dynamic inter-
actions of segregated brain regions. It is an estimation of the relation between
brain areas. EEG features, which are used as input for a machine learning
model, are determined by neurophysiological processes. The features are most
of the time selected by algorithms as principal component analysis and lin-
ear discriminant analysis. Those approaches do not include the origin of the
analyzed data, which are the characteristics of neurophysiological processes in
either time-frequency or spatiotemporal domains. Research showed that these
properties reduced the number of input signals from 31 to 8 and can achieve
up to 90% accuracy [45]. Hramov and colleagues used brain connectivity as a
feature reduction method. Their approach was to calculate the connectivity be-
tween the different sensors on the different frequency waves and use the sensors
with the most connections as raw input for the model [45]. Another study used
brain connectivity to detect Alzheimer’s disease. Alzheimer’s patients have a
dramatic global cognitive decline, where their brains exhibit abnormal patterns
of functional activity. A distinct connectivity pattern between Alzheimer’s pa-
tients and non-Alzheimer’s has been found based on the strength of connections
between lobes[46]. Another study used brain connectivity as input to identify
autism using machine learning. The SVM had the functional connectivity z-
scores for all pairs of the region of interests as input along with other features
for example causal path weights between the region of interests. Results show
that causal connectivity path weights had the highest predictive power using
support vector machine classification [47]. Martinez-Murcia and colleagues did
research on differences in connectivity in the brain to detect dyslexia in partic-
ipants. Temporal and spectral inter-channel EEG connectivity was estimated
together with a denoising auto-encoder to learn the representation of the connec-
tivity matrices. They reached an accuracy of around 0.7 and found a connection
between the sensors on the temporal lobe and increased connectivity of the F7
electrode (located in Broca’s area) [48].
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4 Methods

The experiment protocol of the ePod dataset is based on the mismatch nega-
tivity. The hypothesis is that the MMN is more negative for the control group.
It is expected that healthy participants in the control group will show a big-
ger difference in response between the standard and deviant stimuli. For this
research, the input for the models will therefore be the theoretical approach
of the average of epochs from the individual channels, which translates to the
mismatch negativity. In this chapter, an epoch refers to a specific time window
extracted from a continuous EEG signal. This is different from the term epochs
used in neural networks. Building upon the mismatch response theory, three
different approaches are implemented, which results in four approaches in total.
The approaches are:

• Approach 1: Baseline

• Approach 2: Literature

• Approach 3: T-test

• Approach 4: Connectivity

The baseline approach uses the MMN of all channels used in the experiment.
The other three approaches use different methods to select channels. By select-
ing specific channels as input, the model reduces complexity since it has fewer
features to learn from. If the selected channels contain valuable information for
the dependent variable it can increase model performance. The second approach
is based upon the literature of section 3.1. The most popular electrodes in re-
lated research will be used as input features. Another approach for selecting
important sensors is consulting our dataset, by looking at significant differences
between the at risk and control groups. Research shows that connectivity can
be used as feature reduction since the channels with high connectivity capture
information about nearby channels. Those three theories; literature, t-testing,
and connectivity will be compared to a baseline feature set consisting of all sen-
sors.

This research is a binary classification problem since the dependent feature
will be whether the participants are at risk or in the control group. Supervised
machine learning models have a great history with classification problems. The
supervised machine learning models chosen for this problem due to their per-
formance with classification are: SVM, logistic regression, decision trees, MLP,
and CNN. Motivation for the chosen models can be found in 4.3.

This chapter starts with the experimental protocol to understand the mo-
tivation behind the used ePod dataset. Then an extensive description will be
given of how the data is processed to a useful input for the machine learning
models. This chapter ends with a short discussion of the performance measures
to validate the models.
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4.1 Data

4.1.1 Experiment protocol

The ePODIUM project has gathered data over the past couple of months to
create a dataset that can be of use for predicting dyslexia at an early age. They
collected EEG data from infants aged 15 to 24 months. Every child got tested
twice, respectively test A and test B. During test A the children’s age varies
between 15 to 21 months. For test B, the children’s age is between 21 and 24
months. The aim is to have ideally 3 months between both tests. Both tests
have the same setup, only the moment of testing is different.

During the test, the child is presented with a sequence of sound syllables,
where occasionally an odd sound occurs. This is called an oddball paradigm
for eliciting mismatch negativity. In an oddball paradigm, participants hear
a sequence of standard stimuli, which randomly gets interrupted by a deviant
stimulus. After the deviant, the standard stimulus continues. If a participant
can discriminate between the two stimuli, different brain responses are expected.
The average deviant minus the average standard represents the MMN, which
gives information on how much the two stimuli differ from each other. This
brain activity is measured by 32 sensors on the scalp. There are four conditions
during tests A and B, those conditions are:

• Standard sound “giep” and deviant sound “gip” with 12 different pronun-
ciations for both.

• Standard sound is “giep” and deviant sound “gip” with a single pronun-
ciation.

• Standard sound is “gop” and deviant sound “goep” with 12 different pro-
nunciations for both.

• Standard sound is “gop” and deviant sound “goep” with a single pronun-
ciation.

The test results are processed in three different stimulus types. Those are
standard 1, standard 2 and the deviant. Standard 1 is the stimuli short after the
deviant, where the participant might not be adjusted yet to this sound being
one of the standards. Therefore those stimuli are excluded when analyzing. In
total there are 78 different sounds. For the multiple pronunciations, we have 12
x 3 = 36 and for the single pronunciations, we have 3 x 1 = 3. So for the four
conditions, we have 36 + 3 + 36 + 3 = 78 sounds.

During the experiment, data is also collected on the characteristics of the
children (e.g. sex and age), whether the parents are dyslexic or not and vocab-
ulary knowledge of the child based on MacArthur Communicative Development
Inventories (CDI).
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4.1.2 ePodium data

The metadata collected during the experiment consists of four different text
files: cdi.txt, children.txt, codes overview.txt and parents.txt. The cdi text file
contains, besides the basic information about the children, information on their
vocabulary size. The vocabulary is split into different subcategories, for ex-
ample, animal names, toys, food, games, and verbs. The features are all inte-
gers showing the count of words. The children’s file consists out of the chil-
dren’s age during both test A and test B, their gender, and whether they
are at risk for dyslexia. The parent’s text file has information on how the
parents score on different dyslexia tests. It also contains concluding variables
dyslexia mother accToMother and dyslexia father accToFather. The final text
file codes overview.txt is a dictionary to see which event belongs to a specific key.

Figure 9: Information of a single bdf file

There are 248 different bdf files besides the text files. A total of 129 children
participated in the experiment and 22 of them didn’t come back for test B. The
bdf files are the recorded EEG data of a single test. An example of a bdf file
can be found in figure 9. The bdf has information on the measurement date,
the amount of good and bad channels, the sampling frequency, the lowpass
and highpass, the name of the file, and the duration of the experiment. The
sampling frequency is the number of samples per second. For our data, the
sampling frequency is 2048 Hz, which means that there are 2048 data points
for each second. The high and lowpass signify that all signals were measured
between 0 to 417 Hz. In figure 10 the EEG recording of the same participant is
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shown. On the y-axis, the 32 EEG channels for this experiment are shown. The
8 missing channels which were shown in the bdf file description are the reference
channels. On the x-axis, we see the 2048 data points per second and the time
itself in seconds (s).

Figure 10: EEG recording

Each bdf file has a corresponding event file. There are 248 text files contain-
ing the key of an event and the time when the event occurred. The number of
distinctive events is 78, but can be reduced to 12 events by combining the dif-
ferent pronunciations. This has been done since the pronunciations only differ
from each other acoustically and not phonologically. Research showed that dif-
ficulties in reading typically result from a deficit in the phonological component
of language, as already mentioned in paragraph 2.1 [2]. Since the pronunciations
do not differ phonologically, they can be combined. The events are respectively:

• GiepM FS : 1

• GiepM S: 2

• GiepM D: 3
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• GiepS FS: 4

• GiepS S: 5

• GiepS D: 6

• GopM FS: 7

• GopM S: 8

• GopM D: 9

• GopS FS: 10

• GopS S: 11

• GopS D: 12

’M’ stands for multiple pronunciations and ’S’ for single pronunciations. ’ FS’ is
the first standard, ’ S’ for standard event and ’ D’ stands for the deviant event.

4.2 EEG preprocessing

Before the EEG data was fed to the models, multiple data preparation steps
were necessary. An additional library developed by MNE is used to perform
the data preparation, such as filtering or visualizing to understand and analyze
the data. The MNE library is an open-source python package for exploring,
visualizing, and analyzing human neurophysiological data [49]. All mentioned
custom-made functions below are added to the eegyolk library, a library made
for analyzing EEG data [50].

The first step was loading the data into jupyter lab, a web-based interactive
environment running on python for notebooks, code, and data [51]. To load all
the raw EEG files, a function has been created called load dataset. This func-
tion takes as input the folder where all the files are stored and the file extension
type, which is bdf in our case. The function loops over all the files in the folder
and uses the function mne.io.read raw bdf to read the bdf file. All the files are
stored in a list. The name of the file, indicating the participant ID, is stored in a
separate list. For loading the events a different function has been created, called
load events. This function has as input the folder where the event text files are
stored and the list of the EEG filenames. There is a loop in the function to go
over all filenames and to load the corresponding event files into a list with all
events. In section 4.1.2 we talked about reducing the events to only 12 distinct
events. This is done with the function group events 12. For the metadata files,
a separate loader is created to load the cdi.txt, children.txt, codes overview.txt
and parents.txt files, which are also stored in a list.

The next step is filtering the raw EEG data. It is better to filter before cut-
ting the signal into small segments to accurately estimate and remove low and
high signals [52]. The filtering is done by the self-created function filter eeg raw.
This function needs as input a single bdf file, a lowpass value, a highpass value,
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the mastoid channels and if needed, some channel names to drop. Multiple func-
tions are inside the filter eeg raw function. The first one is the bandpass filter
from the mne library. A bandpass filter is applied to filter out slow frequencies
with a high-pass filter and high frequencies with a low-pass filter. The low-pass
filter is set to 40 Hz since research shows that this frequency records accurate
values [52] [53]. Tanner and colleagues did research on an optimal high-pass
filter. They found that cutoffs above 0.3 Hz produced artifactual effects. The
frequency cutoff creates a negative peak which is an artifact. Cutoffs at 0.01 Hz
and 0.1 Hz do not show those effects, those waveforms are nearly identical to the
unfiltered waveform [54]. Therefore the high-pass filter has been set to 0.1 Hz
for this research. Another frequency that has to be filtered out is the power line
noise. Power line noise is created by the flow of current between two conductors
in a gap and is at 50 Hz. This is mostly caused by broken, improperly in-
stalled, or loose hardware. These artifacts should be suppressed to allow proper
analysis [55]. The mne.filter.notch filter is used for noise removal. The next
preprocessing step is subtracting the reference from the EEG signals. We want
that each measurement electrode only contains information on the changes in
brain fluctuations after a certain stimulus. We don’t want environmental noise
that is being picked up by the measurement electrodes. Therefore, there are
two reference channels, called mastoid channels, which are placed near the ears
to pick up environmental noise but don’t pick up too many brain signals. The
signals are subtracted from the measurement electrodes to only keep the brain
fluctuations caused by the controlled stimulus [24]. The two mastoids channels
in the ePod dataset are [’EXG1’, ’EXG2’] and are subtracted by using the func-
tion mne.set eeg reference from the mne library. The mne library also provides
a function, mne.Info.set montage to map the EEG electrodes to the right posi-
tion. For this research, we used the standard 10-20 montage. Using a montage
to standardize the EEG electrode placement, ensures that inter-electrode spac-
ing is equal and the electrode placements become proportional to the skull size
[56]. Finally, filter eeg raw uses the two functions of mne to drop self-selected
channels (mne.io.drop channels) and to remove the bad channels marked by
the mne.info method. The channels dropped are [’EXG1’, ’EXG2’,’EXG3’,
’EXG4’, ’EXG5’, ’EXG6’, ’EXG7’, ’EXG8’, ’Status’], since those channels are
either used as reference channels or do not contain information on the stimulus-
response.

The next filtering step is cutting the raw EEG data into epochs. This is done
in the self-build function create epoch EEG epoching is a procedure to extract
specific time windows from the raw continuous EEG signal. Creating epochs
helps with interpreting the response to a specific event, by selecting the time
window from right before the event to shortly after the event. For this research,
the time window is from -0.2s to 0.8s. The average time calculated between two
events for the ePod dataset is 0.8s. Choosing -0.2 indicates the EEG waveform
before stimuli onset. The waveform has time to stabilize until 0.8s when the
next stimulus is presented. This MMN occurs after 150-250ms after the stimuli
onset. Each sound file is around 300ms, but since the experiment uses natural
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stimuli, where the vowel is already integrated into the consonant before, the
MMN can already be seen before the end of the audio. The epochs are created
with the mne function mne.Epochs, which needs as input the raw EEG file, the
events, and the time window of an epoch. This function automatically detrends
the data. Also, an auto-reject function is used to automatically reject bad trials
and repair bad sensors. The auto-reject function creates a threshold by splitting
the data into multiple segments and calculates the mean of the signal of good
trials in each set. Then it calculates the median of all trials in the test set and
calculates the error between the train and test set of that set. The set with
the lowest error will be the rejection threshold for global rejection [57]. All the
cleaned epochs per participant per test are saved in a new folder.

To easily find the desired data, a pandas data frame has been created con-
taining all the necessary metadata, for example, the child’s age, gender, and
whether it is data from test A or B. This data is merged with the corresponding
data paths for the raw EEG data, the events, and the cleaned epochs. The data
frame is saved in the file called metadata.csv. A separate function has been cre-
ated to easily load in the cleaned data from the csv file, called read filtered data.

For this research, only the data for test A is used. The motivation behind
this is that research shows that infants begin to engage in long-term memory
at 8 months old [58]. The children may be different on test B since they have
already been exposed to the test before. To rule out this possibility only test B
is used. This has however not been tested since it is out of scope for this research.

The bdf files have a large size, which resulted in memory issues. There-
fore, this project has been done in a CUDA workspace running on a GPU Base
(A10) with Ubuntu 20.04. Even though this workspace has a high memory
capacity, there still were issues with memory since we are talking about pro-
cessing 304GB. Therefore filtering the raw EEG data uses a generator, which
first checks if the file is already in the cleaned epoch folder. If this is not the
case, the generator loads the data of a single EEG file and runs the filter eeg raw
and the create epoch functions and saves the cleaned file. The generator clears
the memory in the terminal and repeats the process.

4.2.1 Mismatch Negativity input

The input for the model will be the MMN of the participants since the ex-
periment is built on this theory. The custom-made function input mmr prep
calculates the mismatch negativity from each electrode. The functions need as
input the metadata.csv file, a list with the channels (electrodes) of interest, and
the event names. For each file, the event-related potential will be calculated, by
taking the average of all epochs for a specific event per channel. This is done
for both the standard and deviant events. Then the array of the standard event
will be subtracted from the array of the deviant event, which results in a new
array containing the difference between the two events. This array has the shape
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(32, 2049), which are the 32 channels and 2049 data points. For each channel,
features will be calculated to get an idea of the shape of the line. Those features
are the surface, standard deviation, minimum, and maximum. The mean isn’t
calculated because it correlates with the surface. Zero crossings are also not
included. Before onset the signals for both the standard and deviant aren’t that
different, causing a MMN near zero. Therefore zero crossings are inconclusive.
The data is saved in a pandas data frame with each row containing a single file
and the features of the sensor’s MMN.

4.2.2 Feature selection

As mentioned at the beginning of this method section, the distinction of this
research is the selection of channels. The baseline will be a feature set of all
sensors. Using this as a baseline will indicate how a theory-based model is
performing. The second feature set is based on the literature. The chosen
channels are: [Fp1, F3, Fz, F4, F8, T7, C3, Cz, C4, T4, AF3, P7] based on the
research of Perera and colleagues [40]. Note that T3 is replaced by T7 since T3
is not present in our data. T7 has the same position as T3, near the left ear [59].
Electrodes PHz and TP7 are also missing in our data and therefore not included
in the feature set. Different t-tests will be done to see where which channels
differ significantly between the at risk and the control group. This will be done
only on the training data to avoid overfitting on the test data. The results of
the t-tests and the corresponding selected channels can be found in section 5.3.
The last feature set is based on the connectivity between the different sensors.
As mentioned in section 3.3, Hramov and colleagues used connectivity between
sensors as a feature reduction method with great results of 90% accuracy on
EEG data [45]. The last approach is to calculate the connectivity between the
sensors to reduce the number of features. Features that show strong connectivity
to other sensors will be used as a final feature set. The results can be found in
section 5.4. The location of the sensors and the corresponding brain areas can
be found in figure 11.
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Figure 11: Sensor placing on the scalp with corresponding brain areas

4.3 Machine learning

The algorithms that are for this research are SVM, logistic regression, decision
tree, MLP, and CNN. Similar studies mentioned in section 3.1 on EEG data
used those five models as well as some other models. The motivation for limit-
ing this research to those models is because the objective is to see whether the
MMN and the selection of channels influence predicting dyslexia. Additional
to the good performance of those models on EEG data, they are also easy to
implement due to numerous available libraries containing those models.

The input for those models is the four different datasets related to the four
approaches of feature selection. A smaller dataset is used for the t-test and con-
nectivity approach since a part of the data is used for an independent analysis.
Before feeding the data directly to the models, the data has been divided into
a training set and a test set. For this, the scikit-learn library is used. For each
approach, 80% of the data belongs to the training set. The other 20% is part of
the test set. This is a commonly used split in machine learning [60]. The next
step is scaling the data. Scaling can boost a model’s performance by reducing
the chance of biases towards higher values in features. SVM, logistic regression,
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decision tree, and MLP all use the standard scaler from the scikit-learn library.
The CNN uses a normalizer from the tensorflow library to scale the data. A
standard scaler operates on each column, so each value gets scaled on the values
that are observed in all participants for that specific channel. The normalizer
scales the data for each row, meaning that all features are scaled in respective
of the values of the specific participant. Two different methods are used since
the CNN takes a tensor as input and the other models take a data frame as input.

Each model can be trained with different hyperparameters, which control
the learning process. Grid search is used to optimize the hyperparameters to
calculate the performance of different combinations of parameters. The scikit-
learn library contains a function for this. The hyperparameters for the SVM
are the kernel, C, and gamma. The kernel is used to transform linearly insep-
arable data into linearly separable ones. The C gives a penalty for incorrect
classifications and is often referred to as regularization term. Gamma controls
the distance of the influence of a single training point. Besides having the C as
a hyperparameter, logistic regression also has maximum iterations and a solver
to tune. Different solvers have different approaches to minimizing the optimiza-
tion problem. The solver needs a corresponding penalty for misclassifications,
therefore the penalty is not part of the grid search. The decision tree algorithm
has the hyperparameters criterion, splitter, and maximum depth to tune. The
criterion controls how the impurity of the split of the node will be measured.
The splitter hyperparameter decides whether a suboptimal split will be used or
a random split. Maximum depth limits the size of the tree to maintain inter-
pretability and overfitting. For the MLP algorithm grid search has been done on
the hyperparameters activation, alpha, solver, learning rate, and maximum it-
erations. The activation hyperparameter decides which activation function will
be used to activate the nodes in the neural network. Alpha is the strength of
the regularization term. The learning rate controls the change in the coefficients
for each iteration. The hyperparameter learning rate determines whether the
learning rate changes over time or remains constant. The solver and maximum
iterations have the same function as for logistic regression. For the CNN no
hyperparameter tuning is used. The CNN is a simple model containing 3 dense
layers, to avoid overfitting and to get a better insight if a model that can learn
from the ePod data.

All models use k-fold cross-validation as an evaluation method to find out
how well the model can predict the outcome of unseen data. The method di-
vides the data into k-groups which will be used as a test set. The remaining
data will be used for training the model. An 80/20 split is commonly used and
since the remaining of the ePod dataset is 101 participants after filtering, 20
participants should be in the test set, which results in k=5 folds.

The accuracy is used as a performance measure as it gives a good insight
into binary classification. For the CNN also the loss is calculated to see after
how many errors the neural network makes over the epochs. The accuracy score
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is the number of correct predictions and the loss values are the values indicating
the difference from the desired target state.

4.4 Reproducibility

Reproducibility of work is highly important in scientific research since it serves
as proof that an established and documented work can be verified, repeated,
and reproduced. To make this research reproducible a library is created called
eegyolk [50]. This is the same library as mentioned in section 4.2. This library
contains all methods used for this research, including code used for previous
research on age prediction. Specific instructions on how to reproduce this work
can be found in the readme of the eegyolk repository. An environment file
is created to list all dependencies of the used libraries to keep the versions of
different libraries compatible. A configuration file is set up containing all data
pathways to avoid changing the code in the notebooks. All work has been
reviewed and tested on reproducibility.
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5 Initial statistics

Before feeding all data to the models, some statistics have been done to get a
better insight into the data. This will be a group-level analysis between the
control group and at risk group. The differences in ERPs will be plotted. Also,
significance tests will be done to see whether there is a significant difference
in specific electrodes between the two groups. This paragraph ends with a
connectivity analysis to see which sensors have the highest connectivity for each
group.

5.1 Participant information

After cleaning and filtering the data only 101 distinct participants are left in the
data set. This means that 28 children were dropped from the research due to
missing events or bad signals. In total there are 58 children in the control group
and 43 infants in the at risk group. In section 4.1.1 was already mentioned
that the participants are between 15 to 24 months. Only the data for test A is
used where the age varies between 15 to 21 months. The average age is 17.95
months for all infants. For the control group, the average is 17.88 months with
a standard deviation of 1.44 months, and for the at risk group 18.05 months
with a standard deviation of 1.50 months. In the control group, 33 participants
are male, while 25 are female. For the at risk group 19 are male and 24 are
female. This means that there are relatively more males (57%) in the control
group compared to the at risk group (44%).

5.2 ERP group analysis

For the ERP group analysis, the MMN are averaged over all participants of
either the at risk or control group. Also, the responses to the standard stimuli
and the deviant stimuli are plotted separately to see if the difference in the
mismatch can be explained by the standard response or the deviant response.

5.2.1 Mismatch Negativity

The MMN of both the control and the at risk group is calculated over all 4
events. This means that the standard responses [GiepM S, GiepS S, GopM S,
GopS S] are averaged together and subtracted from the average deviant re-
sponses [GiepM D, GiepS D, GopM D, GopS D]. The first standards are ex-
cluded. High voltage fluctuations in the MMN indicate a bigger difference in
the standard and the deviant event. If the voltages are near zero, the partici-
pant is less responsive to the deviant event. Expected is that the control group
has a bigger difference between the standard and deviant event compared to
the group at risk for dyslexia. In figure 12 the MMN can be seen for the 58
participants in the control group. The plot shows that the sensors in the oc-
cipital area of the brain have a peak a little bit above 1µV around 0.4s. The
standard response is in this area higher compared to the deviant response. The
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electrodes in the prefrontal cortex show a negative MMN, which indicates that
there is a measured higher voltage in the deviant response.

Figure 12: Average MMN of the control group

For the group at risk for dyslexia, a similar pattern can be seen in figure
13. The occipital area has high voltages at time 0.4, while the prefrontal cortex
shows negative voltages. There is also a small bump shown around 0.2s for some
electrodes in the occipital and parietal area.

Figure 13: Average MMN of the at risk group

A noticeable difference between the two groups is the electrodes on the pre-
frontal cortex. The participants in the control group have a more negative
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voltage in the electrodes placed in this area. The electrodes in the occipital
area show a higher voltage in the at risk group. Expected was that the control
group has higher voltages compared to the at risk group. This is only valid for
the sensors in the prefrontal cortex. The electrodes in the occipital brain area
show the opposite as hypothesized. Another difference is in the fluctuations
before and right after the stimulus onset. The at risk group has higher voltage
changes compared to the control group.

The MMN for each event per group can be found in appendix A and B. The
gop single pronunciation shows the most expected pattern, which is a bigger
response for the control group and a smaller response for the deviant group.
This motivates the decision to use this stimulus as input for the models.

5.2.2 Standard stimuli

For the standard stimuli, all standard events are averaged, similar to the MMN
group analysis. Different than the MMN, the peaks are shown at 0.2s after
onset. For the control group, the occipital area shows a negative voltage, while
the left prefrontal cortex shows higher voltages. The electrodes in the right
prefrontal cortex seem to differ a lot in voltage. The ERP for the at risk group
shows the same pattern. However, the electrodes in the occipital area have a
more negative voltage after 0.4s. This can explain why the peak of those sensors
in the MMN is higher for the at risk group at 0.4s.

Figure 14: Average standard response of the control group
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Figure 15: Average standard response of the at risk group

5.2.3 Deviant stimuli

The same process is applied for averaging the deviant stimuli as the standard
stimuli. The ERPs for the control and at risk groups can be seen in figure
16 and 17 respectively. For the control group, the electrodes in the occipital
area seemed to be more clustered, compared to the signals of the at risk group.
Also, those electrodes have higher negative voltages for the at risk group. The
response of the electrodes in the prefrontal cortex shows a similar pattern for
both groups.

Figure 16: Average deviant response of the control group
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Figure 17: Average deviant response of the at risk group

5.3 Significance tests for approach 3

In the previous paragraph, some differences in electrode voltages in the ERP
between the two groups were found. The electrodes that differ between the two
groups can be a good indication of which electrodes to focus on when predicting
dyslexia. However, if the same data as this analysis is fed into the model, the
model might have a prejudice. It learns from the values which we know already
influence dyslexia. To maintain the validity of the model, this part of the analy-
sis will only be done on a small sample of the data, which will be excluded from
the model training and validation. A 30% sample size has been chosen since
research showed that for a small data set, 30% is necessary for the sample to be
representative [61]. This results in a sample size of 30 participants, with 17 in
the control group and 12 participants in the at risk group. This corresponds to
the distribution of the whole dataset.

To check whether the differences in the MMN are significant, a simple t-
test will be performed on each electrode for each group. Here, all the signals
are taken individually for each participant. Since t-testing doesn’t take a time
series array, a single value had to be selected which captures the line of the ERP.
The surface has been chosen as the value since most differences in ERPs were
found in the voltage peaks. Due to the occurrence of differences between local
minima and maxima, choosing the maximum wouldn’t be a good indication.
The t-test will be performed with the scipy stats library [62]. For the t-test, all
standard and deviant events will be combined, similar to calculating the ERP
of the MMN in section 5.2.1.
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Table 2: T-test on group differences of the surface

Channel t-value p-value
Fp1 0.850 0.402
AF3 1.020 0.316
F7 1.268 0.215
F3 1.749 0.091
FC1 0.131 0.896
FC5 2.490 0.019
T7 0.867 0.393
C3 0.113 0.911
CP1 0.175 0.862
CP5 0.235 0.816
P7 0.445 0.660
P3 0.572 0.572
Pz 0.358 0.722
PO3 0.201 0.842
O1 0.412 0.684
Oz 0.786 0.438
O2 0.911 0.370
PO4 1.227 0.230
P4 1.017 0.317
P8 0.363 0.719
CP6 0.629 0.535
CP2 1.154 0.258
C4 0.627 0.536
T8 1.798 0.083
FC6 0.492 0.627
FC2 0.549 0.587
F4 0.127 0.900
F8 1.694 0.101
AF4 2.011 0.054
Fp2 0.710 0.484
Fz 0.270 0.789
Cz 0.567 0.575

The null hypothesis of this t-test will be that there is no difference between
the two groups in each electrode. The hypothesis will be rejected if the p-value
¡ 0.1. Low p-values indicate that the data did not occur by chance. Since the
EEG data is very noisy and diverse, the p-value is set a bit higher than usual
to include more channels that are likely to differ between the two groups. The
greater the t-value, the more likely that there is a difference between the two
groups. The highest t-values are from electrodes F3, FC5, T8, F8 and AF4.
All those channels satisfy p ¡ 0.1, which implies that the null hypothesis can be
rejected and that the two groups are significantly different in those electrodes.
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The electrodes will be used as input for the models based on their significant
difference.

5.4 Connectivity tests for approach 4

As explained earlier, measuring connectivity between electrodes can be used
as a feature reduction method. The mne library contains a function to calcu-
late the connectivity between channels, called mne.spectral connectivity epochs.
This function calculates the connectivity between epochs using Phase Lag In-
dex (PLI). PLI is based on phase locking centered around 0 [63]. The electrodes
with the highest connectivity with other electrodes will be chosen as model in-
put. The same theory is applied as for the t-test input concerning the fact that
the sample used for the analysis must be excluded from the model to guarantee
a valid model. The same data sample as the previous paragraph 5.3 will be
used. To calculate the group connectivity, all epochs are concatenated from all
participants belonging to the sample of one of the groups.

The connectivity between the electrodes can be seen in 18. Most connections
are formed between the electrodes in the prefrontal cortex. The electrodes with
the most connections are Fp2, Fp1, Fz, FC1 and AF4 from high to low. Chan-
nel Fp1 has the strongest connections. Then the electrodes Fz, Fp2 and FC1
show high connectivity. The connectivity for the at risk group is shown in figure
19. The electrodes with the most connections are Fp2, Fp1, Fz, AF4, FC1 and
AF3, also all located in the frontal cortex. Fz shows the highest connectivity,
followed by Fp1 and Fp2.

Figure 18: Connectivity plot of the
people in the control group

Figure 19: Connectivity plot of the
people in the at risk group
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For both groups, Fp2, Fp1 and Fz show the most connections and the highest
connectivity. This means that those electrodes have a strong connection with
other electrodes. A side note is that PLI ranges from 0 to 1, from which can
be inferred that the connections of our data aren’t that strong. However, those
connections are the strongest and therefore will be used as input for the model.
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6 Results

In total, 5 different models were used on 4 different feature sets as input data.
The 4 different feature sets follow from the 4 different approaches to reduce the
number of features. The approaches are the MMN of all channels as a baseline,
a selection of channels based on related literature, selected channels based on
a significant difference between the at risk and control group of a subset of the
ePod data, and the channels that show the highest connectivity in the subset of
the ePod data. The used models are a SVM, logistic regression, a decision tree,
a MLP, and a CNN. The model input differs in the selection of channels. The
results can be found in table 3, where the performance is measured in accuracy.

Table 3: Performance of different models

Model baseline literature t-test connectivity
SVM 0.573 0.524 0.605 0.633

Logistic regression 0.564 0.572 0.609 0.605
Decision Tree 0.564 0.545 0.421 0.521

MLP 0.593 0.495 0.549 0.607
CNN 0.667 0.571 0.733 0.682

CNN is the best performing model for all 4 approaches. Decision trees, how-
ever, do not seem like a suitable algorithm for the mismatch response approach.
The literature approach has the worst performance. Connectivity seems to be
a good approach to reducing the number of features, resulting in high accuracy.
However, the accuracy in combination with the CNN is not significantly better
compared to the accuracy of the baseline approach with CNN over the different
folds with a p-value of 0.266. The t-test approach has the highest performance
of all in combination with the CNN, however, the result is still not significant
compared to the baseline with a p-value of 0.447. All results are not significant
because of the high variation between the different folds of each model.

In this chapter, the epochs refer to the number of times that the learning
algorithm will work through the entire training set. This is different compared
to the epochs in the data preprocessing, where an epoch referred to a time
window around an event in an EEG signal.

6.1 Approach 1: Baseline

The baseline input contains all channels, reference channels excluded, used in
the experiment. The channels are [’Fp1’, ’AF3’, ’F7’, ’F3’, ’FC1’, ’FC5’, ’T7’,
’C3’, ’CP1’, ’CP5’, ’P7’, ’P3’, ’Pz’, ’PO3’, ’O1’, ’Oz’, ’O2’, ’PO4’, ’P4’,
’P8’, ’CP6’, ’CP2’, ’C4’, ’T8’, ’FC6’, ’FC2’, ’F4’, ’F8’, ’AF4’, ’Fp2’, ’Fz’,
’Cz’]. Grid search is used to find the most optimal values for the hyperparam-
eters. For the SVM model, the selected hyperparameters are SVC(C=1000,
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gamma=’auto’, kernel=’linear’). For the Logistic Regression model, the hyper-
parameters are LogisticRegression(C=1000, solver=’sag’). The hyperparame-
ters used for the Decision Tree are DT(criterion=’entropy’, max depth=2, split-
ter=’random’). The decision tree can be found in figure 36. For the neural
network, MLP, grid search is also used to choose the hyperparameters. The
hyperparameters are MLPClassifier(activation=’logistic’, alpha=1e-05, learn-
ing rate=’invscaling’, max iter=5000, solver=’lbfgs’). The cross-validated ac-
curacy after 5 folds is shown in table 5. For all four models, it can be seen that
the performance for each fold varies a lot. This can bring the validity of the
models in question.

Table 4: K-fold accuracy baseline input

Model Accuracy Mean Standard Deviation
SVM [0.67, 0.55, 0.65, 0.45, 0.55] 0.57 0.08

Logistic regression [0.48, 0.60, 0.55, 0.60, 0.55] 0.56 0.04
Decision Tree [0.52, 0.60, 0.65, 0.40, 0.65] 0.56 0.09

MLP [0.62, 0.60, 0.50, 0.70, 0.55] 0.59 0.07
CNN [0.62, 0.60, 0.60, 0.65, 0.60] 0.59 0.07

For the CNN no hyperparameter tuning is used. The CNN is a simple model
containing 3 dense layers, to avoid overfitting and to get a better insight if a
model can learn from the ePod data. It uses an adam optimizer and the loss is
calculated with binary cross entropy. The training and the loss of each fold of
the model can be found in appendix D. In figure 20 and figure 21 the results of
the third fold are shown. There can be seen that the accuracy stabilizes around
0.60. The validation loss is higher compared to the training loss. The ePod
dataset is a small dataset, which makes it harder for a model to learn patterns
in the training data and can result in more errors. After 20 epochs the loss goes
up, which indicates that the model gets worse in performance. The other folds
also show an increasing loss between 10 to 25 epochs. Training the model on
more epochs did not result in better model performance.
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Figure 20: CNN accuracy on baseline input fold 3

Figure 21: CNN loss on baseline input fold 3

6.2 Approach 2: Literature

For the literature input, the channels [’Fp1’, ’F3’, ’Fz’, ’F4’, ’F8’, ’T7’, ’C3’,
’Cz’, ’C4’, ’AF3’, ’P7’] are used. The found hyperparameters for the SVM
are SVC(C=1000, gamma=’auto’, kernel=’linear’). For Logistic Regression,
the parameters are LogisticRegression(C=1000, solver=’liblinear’). Decision-
TreeClassifier(max depth=2, splitter=’random’) are the found parameters for
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the Decision Tree. The grid search found the same optimal hyperparameters for
the SVM and Decision Tree as for the baseline input. The MLP uses the hy-
perparameters MLP(activation=’tanh’, alpha=1e-05, learning rate=’adaptive’,
max iter=4000, solver=’lbfgs’). The literature input shows a lower accuracy for
all the different models. Also, there is still a lot of variation in performance
between the 5 folds.

Table 5: K-fold accuracy literature input

Model Accuracy Mean Standard deviation
SVM [0.57, 0.55, 0.55, 0.55, 0.4] 0.52 0.06

Logistic regression [0.57, 0.35, 0.60, 0.70, 0.60] 0.56 0.12
Decision Tree [0.52, 0.60, 0.65, 0.40, 0.65] 0.56 0.09

MLP [0.52, 0.65, 0.35, 0.45, 0.50] 0.49 0.10
CNN [0.57, 0.55, 0.50, 0.70, 0.60] 0.58 0.07

The CNN is the same model with the same parameters as used on the base-
line input. The performance of each fold can be found in appendix E. For all
folds the loss starts increasing after 25 epochs. The accuracy is slightly improv-
ing over each epoch for most of the folds. It is the best performing model on
the literature input. The model did not increase in performance when training
on more epochs.

Figure 22: CNN accuracy on literature input fold 5
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Figure 23: CNN loss on literature input fold 5

6.3 Approach 3: T-test

For the t-test input, the sensors were used which showed a significant differ-
ence between the at risk and the control group. The participants used for
the analysis are excluded from the model training and validation. This re-
sulted in less data to train the model on. The channels used as input data
are [ ’F3’, ’FC5’, ’T8’, ’F8’, ’AF4’]. The hyperparameters used for the SVM
are SVC(C=10000, gamma=’auto’, kernel=’linear’). The model shows way
less variation between the different folds compared to the previous two inputs.
Logistic Regression has LogisticRegression(C=1000, solver=’liblinear’) as opti-
mal parameters. The model results in higher accuracy, however, the accuracy
of the folds differs a lot, which makes the model more unpredictable. The
Decision Tree has a depth of 2 and is split into two nodes randomly. The
model performs worse than a random prediction would do, which makes it
clear that the model is incapable of learning the data. The best hyperpa-
rameters for the MLP model are MLP(activation=’relu’, alpha=1e-05, learn-
ing rate=’invscaling’, max iter=4000, solver=’lbfgs’). The different folds show
less variation, the same as SVM. The performance is lower compared to the
SVM model.
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Table 6: K-fold accuracy t-test input

Model Accuracy Mean Standard deviation
SVM [0.67, 0.57, 0.57, 0.64, 0.57] 0.60 0.04

Logistic regression [0.40, 0.64, 0.64, 0.86, 0.50] 0.61 0.16
Decision Tree [0.53, 0.50, 0.36, 0.36, 0.36] 0.42 0.08

MLP [0.60, 0.57, 0.57, 0.50, 0.50] 0.55 0.04
CNN [0.67, 0.64, 0.71, 0.50, 0.71] 0.65 0.08

Training the CNN model resulted in some issues. The network is not im-
proving accuracy for most folds, which can indicate that the model has trouble
with learning from the input data. This is confirmed by the loss which shows a
constant increase for most folds. However, the model does perform well based
on accuracy. A possible scenario is that the model has fewer features to train
and therefore already reaches high accuracy in the beginning and stops improv-
ing. To test this, the model has been run on more epochs. The results in figure
24 and figure 25 show that the accuracy does improve over time and the loss
increase after 75 epochs. The CNN is therefore the best performing model on
the t-test input. The accuracy isn’t smooth over the epochs because of the small
size of the testing set.

Figure 24: Accuracy of the CNN on the t-test data with more epochs
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Figure 25: Loss of the CNN on the t-test data with more epochs

6.4 Approach 4: Connectivity

There are only three different channels used as input to see whether feature
reduction using connectivity can help predict dyslexia. The used channels are
[’Fz’, ’Fp1’, ’Fp2’]. Those three channels were found by performing analysis on
partial data. This data is excluded same as in the previous paragraph 6.3. The
hyperparameters found for the SVM model are SVC(C=10000, gamma=’auto’,
kernel=’linear’). The model performs well, even though the high variation in the
different folds. Logistic Regression shows less variation, but a higher accuracy
compared to the SVM. It uses hyperparameters LogisticRegression(C=1000,
solver=’liblinear’). The Decision Tree has a maximum depth of 20, which is
remarkable since the input contains fewer features while resulting in a more
complex model compared to the other used inputs. The MLP model uses hy-
perparameter MLP(activation=’tanh’, alpha=1e-05, learning rate=’adaptive’,
max iter=4000, solver=’lbfgs’). The MLP model is most compatible with the
connectivity input.

Table 7: K-fold accuracy connectivity input

Model Accuracy Mean Standard deviation
SVM [0.67, 0.79, 0.50, 0.43, 0.79] 0.64 0.15

Logistic regression [0.67, 0.57, 0.64, 0.50, 0.64] 0.60 0.06
Decision Tree [0.53, 0.50, 0.640, 0.43, 0.50] 0.52 0.07

MLP [0.53, 0.71, 0.71, 0.50, 0.57] 0.60 0.09
CNN [0.56, 0.81, 0.81, 0.56, 0.67] 0.68 0.11
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The CNN model has the highest performance on the connectivity input
compared to the other models. However, the accuracy, based on training over
50 epochs, did not increase or even decrease for most folds as seen in appendix G.
The loss also increases. The model has been trained on more epochs since this
approach also uses fewer input features compared to approach 1 and approach 2,
and for the t-test, the model performed better using more epochs. This resulted
in higher accuracy and a decreasing training loss as seen in figure 26 and figure
27.

Figure 26: Accuracy of the CNN on the connectivity data with more epochs

Figure 27: Loss of the CNN on the connectivity data with more epochs
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7 Conclusion

Multiple research has been done to predict dyslexia in infants. Most methods
were based on using the epochs and feeding them directly to a model. This re-
search aimed to develop a theory-driven approach, based on the literature and
the ePod dataset. The formulated research question was:

To what extent can data-driven features be used with machine learning mod-
els to predict developmental dyslexia in infants?

After extensive research on the literature, 4 different approaches were found
to answer the research question. Since the ePod data was collected in a way
that the mismatch negativity (MMN) easily could be calculated, the main goal
was to validate this theory by using machine learning. The first approach is
to use all the channels and calculate the MMN of each channel and feed this
as input to a model. The second approach is to pick channels as input based
on previous research. Different studies already tried to predict dyslexia using
EEG data and machine learning. The most commonly used channels will be
the features for a literature-based input. The other two approaches are based
on the ePod dataset. By performing data analysis on partial data, some chan-
nels showed a significant difference between the at risk and control groups. The
significantly different channels were used on an independent part of the data as
a third input feature set, called the t-test input. Connectivity between EEG
electrodes was used in some studies as a feature reduction method. Therefore,
connectivity analysis has been done for both at risk and control groups, using
t-testing, to determine which channels are most connected during the EEG trial.
Those channels were used as the fourth and final input of this research.

The selected models are support vector machines, logistic regression, decision
tree, multilayer perceptron, and a convolutional neural network, based on their
usage in previous studies and their predictive capabilities in binary classification.

The CNN is the best-performing model using the t-test approach with an
accuracy of 73%. The model also has a high performance on the connectivity
input with an accuracy of 68% followed by the baseline input with an accuracy
of 67%. Using the t-test and connectivity as input for the traditional machine
learning algorithms SVM and Logistic Regression results in a relatively high
performance around 60%. However, there is high variation in model perfor-
mances and therefore the results are insignificant.

To answer the research question, data-driven selected features, using signif-
icance testing and connectivity, show promising results in predicting develop-
mental dyslexia in infants using deep learning and traditional machine learning
models, nevertheless, the results are so far not significant.
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8 Discussion

The best-performing model is the CNN model with the t-test input followed by
the connectivity input. However, both approaches needed more epochs to train
the model to increase performance. Adding more epochs on the baseline and
literature approach did not result in better performance. A possible reason for
this can be that the baseline and literature approach contain more features and
therefore easily overfit. The t-test and connectivity approach have less features
and with not enough epochs the model might underfit. Therefore the model uses
a different amount of epochs to train on. The CNN in combination with the
baseline input with all channels also show high accuracy and is learning from the
data. Looking at the simpler machine learning models, SVM, and Logistic Re-
gression, the t-test, and connectivity input both have higher accuracy. Overall
can be said, that the t-test and connectivity approach are best performing with
both traditional machine learning and deep learning. The decision tree seems
to be not suitable for this problem since it doesn’t show good performance on
any of the different data inputs. The literature input also doesn’t show high
performances. This can be because the most common channels from different
studies were used, however, the channels combined may not correspond well
with one another.
None of the models are performing significantly better compared to the other
models. This is caused by the high variation of performance in the different
runs of each model. The performances can vary because the model has a hard
time finding patterns in the dataset. A possible cause is that the size of the
dataset is either too small or the EEG is too noisy for the model to find a pattern.

The different approaches for feature selection do not have much overlap in
the used electrodes. The features for the connectivity approach are for example
located in the prefrontal cortex, while the used channels for the t-test approach
are more spread over the scalp. Further analysis can be done on the influence
of selecting individual channels on predicting dyslexia. Since the results of this
research are not significant due to high variation in performance, no model eval-
uation on feature importance has been done.

The created CNN model is a simple model containing 3 dense layers. In-
creasing the complexity of the model can result in better performance. For this
research, the decision has been made to keep the model simple, since the scope
is to see how different inputs can affect the performance and a more complex
model will make it harder to interpret the results. The model complexity of
the CNN can be increased in further research to see if this can improve the
model performance. Hyperparameter tuning can increase the complexity and
performance to of the CNN. An additional recommendation is to explore dif-
ferent neural network architectures of their effects on the ePod data since this
research is limited with the MLP and CNN.

The accuracy from the different folds highly varies for most models and

51



model inputs. Although this is very normal since the input of the model changes
for every fold, it might interfere with the model’s integrity. A way to solve this
problem is to look for each fold if the model is bad at performing a specific class.
It might be that the model learned a good representation to predict the control
group, but when a fold contains more at risk values, the model might perform
worse. Due to time constraints, this problem will be pushed to future research.

For this research, only the data from test A is used because of the possibility
that the children still have a memory of the first test during test B. However,
it might be that there is useful information on dyslexia in test B, also because
the children are already 3 months older during test B. Since the scope of this
research is to see in which extend models based on theory can predict dyslexia,
the decision is made to not dive deeper into the difference in performance be-
tween test A and test B. However, this can be done in further research and
might result in more training data.

There is a difference in response between the different events. All models are
trained on the single gop event since this event showed the expected difference
between the control and at risk groups. However, it is recommended to perform
the same research on other events to see whether a machine learning model can
detect a better pattern than the human eye. All standard events and all de-
viant events weren’t combined, since research showed that there is a difference
between dyslexic children and non-dyslexic children in the single and multiple
stimuli, but also in the perception of different vowels [64] [65].

Another discussion point of this research is the dependent variable. The de-
pendent variable is based on whether the parents have dyslexia. It is unknown
whether the infant will develop dyslexia or not. The only way to find out is to
gather additional data about the infants after a few years. A potential direction
for future research is to look at creating a continuous variable based on the cdi
scores of the children. For this research the decision is made to go for a binary
at risk variable based on the parents.

Finally, a lot of data has been lost by averaging over all epochs and calcu-
lating the MMN. This results in less data to feed into deep learning algorithms
while the data still have a high dimensionality of 2048 features. Deep learning
algorithms have difficulties learning due to this curse of dimensionality. To solve
this, a simple solution has been chosen to collect information about the time
series, such as the surface and the maximum, to reduce the number of features.
Another option was to create batches of the raw data, however, the focus of
this research was to see if a theoretical approach performs better compared to
existing research by using basic machine learning models, which do not require
high dimensional input features. For further research a recommendation will
be to not average all standard and deviant epochs to create the MMN but to
calculate the MMN in batches of the standard and deviant epochs. In this way,
there is more training data left to use deep learning algorithms.
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A Mismatch negativity of control group for each
event

Figure 28: Mismatch GiepM of control group

Figure 29: Mismatch GiepS of control group
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Figure 30: Mismatch GopM of control group

Figure 31: Mismatch GopS of control group
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B Mismatch negativity of at risk group for each
event

Figure 32: Mismatch GiepM of at risk group

Figure 33: Mismatch GiepS of at risk group
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Figure 34: Mismatch GopM of at risk group

Figure 35: Mismatch GopS of at risk group
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C Decision Trees

Figure 36: Decision Tree on the baseline data

Figure 37: Decision Tree on the literature data
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Figure 38: Decision Tree on the t-test data

Figure 39: Decision Tree on the connectivity data
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D CNN performance on baseline

Figure 40: CNN accuracy on baseline input fold 1

Figure 41: CNN loss on baseline input fold 1
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Figure 42: CNN accuracy on baseline input fold 2

Figure 43: CNN loss on baseline input fold 2
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Figure 44: CNN accuracy on baseline input fold 3

Figure 45: CNN loss on baseline input fold 3
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Figure 46: CNN accuracy on baseline input fold 4

Figure 47: CNN loss on baseline input fold 4
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Figure 48: CNN accuracy on baseline input fold 5

Figure 49: CNN loss on baseline input fold 5
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E CNN performance on literature

Figure 50: CNN accuracy on literature input fold 1

Figure 51: CNN loss on literature input fold 1
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Figure 52: CNN accuracy on literature input fold 2

Figure 53: CNN loss on literature input fold 2
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Figure 54: CNN accuracy on literature input fold 3

Figure 55: CNN loss on literature input fold 3
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Figure 56: CNN accuracy on literature input fold 4

Figure 57: CNN loss on literature input fold 4
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Figure 58: CNN accuracy on literature input fold 5

Figure 59: CNN loss on literature input fold 5
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F CNN performance on t-test

Figure 60: CNN accuracy on t-test input fold 1

Figure 61: CNN loss on t-test input fold 1
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Figure 62: CNN accuracy on t-test input fold 2

Figure 63: CNN loss on t-test input fold 2
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Figure 64: CNN accuracy on t-test input fold 3

Figure 65: CNN loss on t-test input fold 3
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Figure 66: CNN accuracy on t-test input fold 4

Figure 67: CNN loss on t-test input fold 4
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Figure 68: CNN accuracy on t-test input fold 5

Figure 69: CNN loss on t-test input fold 5
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G CNN performance on connectivity

Figure 70: CNN accuracy on connectivity input fold 1

Figure 71: CNN loss on connectivity input fold 1
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Figure 72: CNN accuracy on connectivity input fold 2

Figure 73: CNN loss on connectivity input fold 2
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Figure 74: CNN accuracy on connectivity input fold 3

Figure 75: CNN loss on connectivity input fold 3
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Figure 76: CNN accuracy on connectivity input fold 4

Figure 77: CNN loss on connectivity input fold 4
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Figure 78: CNN accuracy on connectivity input fold 5

Figure 79: CNN loss on connectivity input fold 5
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