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1. INTRODUCTION 
 
Since the COVID-19 pandemic began in early 2020 it has had a profound impact on mobility patterns 
across the globe. The enforced lockdowns (figures 1.1 & 1.2), social distancing policy and other 
mitigating measures have fundamentally influenced the way that people move around. While the full 
extent and duration of these these changes is not yet fully understood (Lee & Eom, 2022), significant 
changes in mobility patterns have been observed throughout the world (Bert, Schellong, Hagenmaier, 
Hornstein, Wegscheider & Palme, 2021; Kim, Seo & Choi, 2021). Therefore, due to the abrupt and 
significant changes observed in mobility patterns worldwide, there is an urgent need for a better 
understanding. Besides gaining insight into the specific ways that mobility patterns have changed since 
the start of the pandemic, it is essential to understand the extend and persistence of these changes and 
what it implies for policymakers and (future) transportation planning. 
 
Located at the epicenter of the field of mobility are travel modes, which facilitate the act of travelling, 
allowing people to travel from origin to destination (Adey, 2017; Cresswell, 2006; 2010; Urry, 2002). 
Due to its interwovenness with mobility, scholars have found that most striking changes induced by 
the pandemic are observed in modal usage patterns (Paul, Chakraborty & Anwari, 2022; Rahman & 
Thill, 2022). Apart from reductions in total traffic volumes (Liu, Yue & Tchounwou, 2020), studies have 
observed significant changes in the modal split. Most notably was the decline in public transit, as was 
found that global public transportation ridership fell by 60 to 90 percent during the first months of the 
pandemic (Bert et al., 2020). Furthermore, studies indicated that cars were gaining modal share, like 
the active modes of walking and cycling (Abdullah, Dias, Muley & Shahin, 2020; Ehsani, Michael, 
Duren, Mui & Porter, 2021; Lee & Eom, 2022; Shaer & Haghsenas, 2021; Van der Drift, Wismans & 
Olde Kalter, 2021).  
 

  
Figure 1.1 (left): Unusually empty streets in downtown Toronto during the start of the COVID-19 pandemic (SenicPhoto, 2020). 
Figure 1.2 (right): Uncommon sighting of a fox in downtown Toronto during the lockdown (Osorio & Reuters, 2020). 
 

 
Figure 1.3: A previous car-only street that is now shared with pedestrians and cyclists as part of the Quiet Streets program in Toronto (ActiveTO, 
2021). 
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Since mobility plays such a crucial role in the everyday livelihoods of people and the environment 
(González, Hidalgo & Barabási, 2008), abrupt events like the COVID-19 pandemic and its ability to 
induce (short-term) significant changes in modal usage patterns requires continuous research. This 
served as a source of inspiration for this study to expand upon the (longer term) changes in modal 
usage patterns due to the COVID-19 pandemic. Therefore, this study analyzed traffic counts of cars, 
pedestrians and cyclists in Toronto during the pre-pandemic month of March 2019 and post-lockdown 
month of March 2022. By analyzing the daily modal volumes with daily COVID-19 pandemic related 
variables and other daily related variables, like weather, population characteristics and road 
classification, this study will consider how post-lockdown modal usage patterns have changed and 
what the influence of the COVID-19 pandemic was regarding those changes.  
 
Now that the subject of this study has been briefly introduced, this chapter will further elaborate on the 
reasons for and relevance of this research (§1.1), which acted as an inspiration for this study’s aim and 
main research question (§1.2). Lastly, the research design (§1.3) will provide insight in the structure of 
this study. 
 
§1.1 Reason and relevance 
Considering that it is likely that the pandemic and its associated global crisis will have a lasting impact 
on mobility (Chaudhary, Sodani & Das, 2020; Douglas, Katikireddi, Taulbut, McKee & McCartney, 
2020), scholars have argued that the COVID-19 pandemic can be seen as a divider of eras, being the 
pre- and post-pandemic era. Despite the uncertainty about whether the pandemic is currently past its 
peak and if the changes in mobility it had induced will remain permanent or are short-lived, the need 
for continuous research remains (Lee & Eom, 2022). Thus, studies examining the potential long-term 
impact of the COVID-19 pandemic on mobility patterns is relevant to both science and society. This 
social and scientific relevance exists for four main reasons. 
 

First and foremost, due to mobility playing a crucial role in society, understanding how the 
pandemic has affected both short and long-term modal usage patterns is paramount for both society 
and its policymakers. Mobility concernst the movement of people, goods and ideas, changes in 
volumes and ways that mobility is performed can have significant effects on society as mobility is 
intertwined with the essential social, economic and environmental spheres of society. Through 
analyzing and communicating existing changes in modal usage patterns, policymakers can become 
better informed and equipped to adapt its existing mobility offerings to comply with the changing needs 
and travel behavior of society (Adey, 2017; Barbosa et al., 2018; Cresswell, 2010; Merriman, 2009; Urry, 
2002). 
 

Secondly, most of the previous studies on the influence of COVID-19 on mobility were conducted 
during the pandemic heyday period (2020-2021), in which lockdowns, teleworking, online education 
and internet shopping which were commonplace. However, the COVID-19 pandemic will eventually 
fade away alike previous pandemics have done (Li, Blake & Cooper, 2010; Novelli, Gussing Burgess, 
Jones & Ritchie, 2018). Thus, studies are needed during times in which the COVID-19 pandemic has 
passed its peak (Ehsani et al, 2021).  
 

Thirdly, the emergence of the Omicron coronavirus variant around the 2021-2022 turn of the year 
has led to a new phase in the COVID-19 pandemic. The rise of Omicron has thus allowed for a new 
phase of analysis on changing modal usage patterns as less restrictions on mobility meant that more 
people are going to be travelling than before in the pandemic (Daria & Islam, 2022, Taylor, 2022; Wang 
& Han, 2022). This provides the opportunity to study post-lockdown modal usage patterns and 
compare these with pre-pandemic periods.  

 
Fourthly, the last reason stressing the need for analysis of modal usage patterns considers the 

methodological approach of as most of the preceding research on modal volumes and changes during 
the COVID-19 pandemic has utilized qualitative methods like web-surveys to (Abdullah et al., 2020; 
Borkowski, Jazdzewska-Gutta & Szmelter-Jarosz, Ehsani et al., 2021; Rahman & Thill, 2022). However, 
qualitative methodologies like questionnaires only contain a time- and context sensitive snapshot of 
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the attitudes towards mobility and travel modes, not the actual travel behavior itself. Thus, ‘…it is 
certainly possible that the actual behaviour of the respondents differs from their anticipated behaviours’ (Loa 
et al., 2021, p. 81). Therefore, a quantitative approach of actual counts of travel modes is more suited 
to study changes in modal usage patterns as it depicts the actual conducted travel behavior. While 
most of the current available studies have approached this subject in a qualitive way, there is a strong 
scientific relevance in this study as it utilizes quantitative traffic count data to observe changing modal 
usage patterns.  
 
§1.2 Aim & main research question 
Stemming from the reason and relevance of this study, this research wishes to contribute to a relatively 
small, but growing, amount of research and literature on modal usage patterns during times of less 
mitigating measures. Because of the recentness of the studied phenomenon at the time of research, 
being to study modal usage patterns when Omicron became the dominant coronavirus strain in early 
2022, mobility data is scarce (Lee & Eom, 2022; Zhao et al., 2020) as many traffic agencies, 
governmental organizations and other mobility actors have not yet published adequate, recent and 
open-source data. Therefore, the number of current available studies examining post-lockdown modal 
usage patterns is limited – once more highlighting the scientific gap and relevance of this study. 
Nevertheless, despite the existing difficulties, this study is motivated to fulfill its aim being: 
  

To provide insight in how the COVID-19 pandemic changed modal usage patterns in the post-
lockdown era.  

 

To achieve this goal, the City of Toronto, Canada, was elected as study area. Toronto was chosen as 
it proved to be an exception for the existing data scarcity, as it was able to provide adequate traffic 
count data for March 2022. Hence, Toronto’s modal usage patterns will be analyzed in this study. More 
specifically, the traffic counts of cars, pedestrians and cyclists in the pre-pandemic month of March 
2019 will be compared with the post-lockdown month of March 2022.  
 
Based upon literature (see §2.4.1 - §2.4.2), this study analyzes the impact of COVID-19 through 
government intervention in the form of policy strictness and through the public reaction towards the 
daily confirmed COVID-19 cases. Furthermore, once again based on literature (see §2.4.3 - §2.4.4), 
other related variables like weather, population characteristics, and road classification are included as 
well. In accordance with the aim of this study and the study area of Toronto, this has led to the 
formulation of the following main research question: 
 

How did COVID-19 daily confirmed cases and policy strictness influence the modal volumes of cars, 
pedestrians and cyclists in Toronto during the post-lockdown period? 

 
By answering the main research question, this study intends to fill the gap in current literature as it is 
one of the first to examine modal usage patterns in the post-lockdown context. In doing so, this study 
will contribute to the understanding of the longer-term impacts of the COVID-19 pandemic on modal 
usage patterns. 
 
§1.3 Research design 
Now the reasons, relevancies, aim and main research question have been discussed, this section 
will provide insight on the structure of this study. After this chapter, the second chapter will 
elaborate on the theoretical foundation of this research in such a way that it provides a theoretically 
grounded backbone which will grant guidance for the subsequent phases of the research. Thereafter, 
the methodology (chapter 3) will disclose the specific approach of the research after which the fourth 
chapter will discuss the results of the conducted analysis. In the conclusion (chapter 5), the analysis 
results will be interpreted so that it is able to answer the main research question. Lastly, in the 
discussion (chapter 6) the results of this study will be put in perspective towards other literature and 
studies. Additionally, the discussion will consider study implications, reflections and limitations after 
which this study finalizes by providing recommendations for future research 
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2 - THEORATICAL FRAMEWORK 
 
In this chapter the theoretical foundation upon which this research stands and will build further from 
will be discussed. This section will focus on relevant theories and literature that previously examined 
the influence of COVID-19 on mobility and, more specifically, on modal usage.  In doing so, this chapter 
will provide a theoretical backbone to this study which will provide guidance for subsequent phases of 
this research.  
 
§2.1 Relation between infectious diseases & travel mobility 
During the first months of 2020, the entire world found itself at the dawning of a period of 
unprecedented challenges on an equal unprecedented scale. For the first time since the 1918-1920 
influenza pandemic (Spanish flu), the emergence of the SARS-CoV-2 virus responsible for inducing the 
disease of COVID-19 positioned the global population with the biggest health crisis in a century. The 
COVID-19 pandemic proved once again, like previous infectiousness diseases, that its success depends 
strongly on travel mobility for several reasons. First, the virus itself should be mobile enough so that it 
can successfully infect other individuals while individual travel mobility is strongly related to the spread 
of infectious diseases (Creswell, 2021). Higher travel intensity increases the likelihood of successful 
transmission as the more trips are conducted, the more chance an infected traveler has for infecting 
others on its trip. Furthermore, the popularity and crowdedness of certain trip origins, destinations or 
travel modes increase spread as well: busy places and travel modes contain more possibilities for 
transmission (Alsaeedy & Chong, 2020). Besides the fact that the act of travelling provides 
opportunities for virus spread by itself, travelling is the action that both precedes and facilitates the 
physical-social interaction of people. These close-contact meetings provide the best opportunity for 
infectious diseases to spread as most transmissions occur when people are closely interacting. The 
more intimate and longer the nature of this interaction is, the more likely the possibility of contagion 
(Alessandretti, 2021; Giles et al., 2020).  
 
Although health care systems have significantly improved over the last century, the continuous process 
of globalization have made the world a more connected place. This was particularly important for the 
COVID-19 pandemic, as the extensive 21st century aviation system provided opportunities for long-
distance and cross border spread (Lau et al., 2020). Furthermore, the world during the COVID-19 
pandemic contains more people and is more urbanized than during previous pandemics. This fosters 
virus spread through travel mobility due to more people being located more closely to one another  
(Rocklöv & Sjödin, 2020).  
 
Considering all this, in a more densely populated world which is more closely and intensely connected 
as opposed to previous pandemics, SARS-CoV-2 could spread on an unprecedented pace, scope and 
scale (Da Silva Corrêa & Perl, 2022; Shrestha et al., 2020; Sigler et al., 2021; Zimmerman, Karabulut, 
Bilgin & Doker, 2020). Given the existence of a general scientific agreement over the fact that the 
COVID-19 pandemic will have a lasting and unprecedented impact on travel mobility (Kim, Seo & 
Choi, 2021), inspires this study to further assess these impacts and its components theoretically, in this 
chapter and empirically in the following chapters. 
 
§2.2 Governmental intervention against the spread of COVID-19 through mobility 
restrictions 
During the first months of 2020, governments throughout the world realized that COVID-19 was 
becoming a global pandemic and required intervention. Policymakers wanted to protect public health, 
safeguard the capacity, access and quality of health care systems while harmful social and economic 
policy side-effects were limited as much as possible. Thus, the incentive for limiting travel mobility 
arised as global lawmakers knew that by restricting travel movements the spread of COVID-19 could 
be offset partially (Awad-Núñez, Julio, Gomez, Moya-Gómez & González, 2021; Jenelius & Cebecauer, 
2020; Shaer & Haghshenas, 2021).  
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The mitigating measures that were undertaken by policymakers differed between countries and varied 
over time. The Oxford Coronavirus Government Response Tracker (Hale et al., 2021) was created to 
assess national differences in stringency. This index calculates a value between 0 and 100 and is a 
composite measure of nine policy response metrics related to containment and closure, economic 
response, health systems and other responses. The most influential metrics for travel mobility are the 
closures of educational facilities, workplaces and public transport, the cancelation of public events, 
imposing restrictions on gathering size, internal movement and international travel and stay-at-home 
requirements. These metrics all relate to a more direct top-down decision-making by policymakers 
while a more indirect approach through financial support and public information campaigns was also 
utilized (Askitas, Tatsiramos & Verheyden, 2021).  
 
In figure 2.1 below, the stringency index for several countries is visualized and it demonstrates the 
differences between national policies over time and, after the start of vaccination campaigns, over 
individual vaccination status. For example, countries like Sweden and the Netherlands generally 
imposed less strict policy than China and India and discriminated less on vaccination status than 
countries like Italy and Canada. In most countries the policy strictness follows the same dynamics as 
infection rates: a surge in COVID-19 cases most likely leads to stricter mitigating policy.  

 
Due to variety in measures, time of implementation and enforcement strictness, the effect of individual 
measures has been a point of interest for scholars investigating the effect of single policy actions on 
the COVID-19 pandemic and the travel behavior of people. Despite the scientific interest and relevance 
regarding the individual effect of mitigating measures, the disentanglement of sole measures from the 
conglomerate of COVID-19 mitigating policy has proven to be difficult. The isolation a of individual 
measure is problematic, as mostly a single measure is implemented in combination with other 
measures or introduced in swift succession (International Monetary Fund, 2020; Parady, Taniguchi & 
Tagami, 2020). For instance, measures like closing schools and workplaces and restricting social events 
and group size have a negative effect on travel intensity regardless of the existence of policy specifically 
aiming to reduce the movement of people (Hörcher, Singh & Graham, 2021).  
 
One of the few studies that attempted to isolate individual policy measure effectiveness was conducted 
by Askitas et al. (2021). In their study, daily COVID-19 incidences and mobility pattern data from 175 
countries was used to disentangle individual measures while accounting for differences in timing and 
intensity of mitigating measures. The data was controlled for the influence of coexisting interventions  

Figure 2.1: COVID-19 policy strictness index in different countries between March 2, 2020 and March 31, 2022 (Hale et al., 2021). 
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which provided evidence that mitigating policy should be assessed in its entirety. It was argued that 
ignoring parallel measures can lead to biased predictions of effectiveness of individual measures. Their 
results suggests that the cancellation of large-scale public events, restrictions on group size and the 
closures of schools and workplaces are the most effective mitigating measures as these four 
interventions induced the greatest, statistically significant, drops in COVID-19 rates. Other policies 
such as stay-at-home requirements and international travel restrictions found to be either decelerating 
COVID-19 incidence growth or solely providing a brief beneficial effect in the beginning of the 
pandemic respectively. Regarding the mobility interventions of internal movement restrictions and 
shutdowns of public transportation, Askitas et al., (2021) argue that these measures did not lead to a 
significant decrease in COVID-19 incidences.  
 
This contradicts other studies that state that limiting travel is an effective tool to limit the spread of 
infectious diseases, like COVID-19 (Awad-Núñez et al., 2021; Jenelius & Cebecauer, 2020; Shaer & 
Haghshenas, 2021). However, Askitas et al., 2021 (p. 11) argue that their results not necessarily show 
that mobility limitations are ineffective as it highlights more extensively that the time of implementation 
of certain policies matters more. The results rather suggest that when policies like closures of schools 
and workplaces, restrictions on social gatherings and cancellations of public events are imposed 
previously, mobility limitations are less effective as most of the raison d’être of the act of travelling has 
disappeared. Since the four most effective measures were mostly earlier implemented, there simply 
are not enough travelers left as these interventions generate most of internal mobility movements and 
public transport usage. The people that still want to travel are then of insufficient quantity and density 
to significantly increase the probability of infection among travelers. Thus, restricting travel movement 
and PT usage is less successful in mitigating the impact of COVID-19 as the four most influential 
interventions generate a spillover effect on travel mobility, through reducing the purpose and 
motivations of travel.  
 
Other studies assessing individual effectiveness of mobility limitations on COVID-19 have found that 
stay-at-home policy was the most effective in decreasing COVID-19 incidences. However, remarks are 
made that the support and obedience for this measure declines over time. Consequently, other non-
mobility-oriented measures like public information campaigns can, on the long run, overtake mobility 
limitations as the most effective mitigating measure (Courtemanche, Garuccio, Le, Pinkston & 
Yelowitz, 2020; Li et al., 2021). However, Shortall, Mouter and Van Wee (2022) argue that it is the 
specific composition of total policy that together influences both mobility and COVID-19 rather than 
(partly) assigning the effect to an individual measure. As a rule of thumb, the stricter the combination 
of mitigating measures, the more effective the total policy is in mitigating the harmful effects of the 
COVID-19 pandemic as more policy strictness leads to more public compliance (Hussain, 2020).  
 
§2.3 Public reaction towards the COVID-19 pandemic through travel mobility 
Even though governmental intervention did indeed prove to be influential in changing the (travel) 
behavior and attitudes of the public, solely assessing the top-down decision-making as catalysator for 
behavioral change would be to narrow. Aside from adapting, reacting and complying towards imposed 
mitigating policy from policymakers, the public is an actor on its own - capable of receiving, processing 
and adjusting their actions. Previous unfortunate events, like the 9/11 terrorist attacks and the 2002-
2004 SARS-CoV-1 outbreak, have proven that the public adapts its travel behavior after these events 
had occurred (Hall, 2002). Thus, apart from behavioral changes being mandated through governmental 
intervention, the public takes self-initiated actions based upon information that they have gathered 
through media and social interaction. These public reactions can range from avoiding certain areas 
(Meloni et al., 2011), switching travel modes (Zafri, Khan, Jamal & Amal, 2022), changes in trip 
destinations (Van der Drift et al., 2021) and not travelling at all (De Vos, 2020).  
 
Being the core component that determines self-initiated changes in travel mobility behavior, Neuburger 
& Egger (2021, p. 1006) argue that ‘… it is crucial to understand the relationship between risk perception 
and travel behavior’. Risk perception refers to the individual interpretation of hazardous situations and 
is dependent on severity and characteristics of the perceived danger. As risk perception of individuals 
is formed on the individual level, risk assessments vary among people, this leads to differences in 
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behavioral adaptations (Moreira, 2008; Sjöberg, Moen & Rundmo, 2004). Regarding the risk perception 
of infectious diseases like COVID-19, Floyd, Prentice-Dunn and Rogers (2000) argue the perceived 
danger is based upon the individual impression of the susceptibleness and severity of the virus. In this 
case, susceptibility concerns the perception of the likelihood of infection while severity refers to 
perceived impacts of the disease on health and well-being (Brewer, Chapman, Gibbons, Gerrard, 
McCaul & Weinstein, 2007). Yue, Lau, Chan and Ng (2021) and Harper, Satchell, Fido and Latzman 
(2020) name the rule that the more the public perceives COVID-19 as threatening, the more likely the 
public is to react and adapt its travel behavior towards it. 
 
Additionally, scholars have found that media coverage on pandemics have increased the risk 
perception of public (Beirman, 2003; Wahlberg & Sjöberg, 2000), including perceived risk for the act 
of travelling (Hall, 2002; Meloni et al., 2011). Given the extensive media attention that the emerging 
and ongoing pandemic had received since it had commenced, one could expect that this had enhanced 
the risk perception on COVID-19 which, subsequently, triggers the public to change its travel behavior 
(Neuburger & Egger, 2021). Despite McKercher & Chon (2004) argue that the risk perception of travel 
during pandemics is not solely depended upon individual judgements since it is predominantly 
galvanized through the media and sentiment of the public, most scholars argue that policymakers have 
had the most influence on the public reaction towards the pandemic (Abulibdeh & Mansour, 2021; De 
Haas, Faber & Hamersma, 2020; Ferguson et al., 2020; Kraemer et al., 2020; Oka, Wei & Zhu, 2021). 
According to Yue et al. (2021), the reason for policymakers being the most influential in travel behavior 
of the public originates from the fact that the policymakers, through imposing mitigating measures, 
information campaigns and press conferences, have increased public compliance to these (mobility) 
mitigating measures as it both increases awareness and risk perception of COVID-19. Thus, the role of 
the policymakers and their mobility restricting measures are most decisive in changing the travel 
behavior of individuals. 
 
§2.4 Theoretical changes in travel mobility patterns since the COVID-19 pandemic 
Now both the policymakers and the public perspective on COVID-19 and travel behavior have been 
discussed in the previous two paragraphs, this paragraph will concern the theoretical changes in travel 
behavior itself due to COVID-19. To allow for better understanding of the underlying processes, figure 
2.2 was created to provide conceptual insight in the direct and indirect interaction of relevant actors 
and factors with the COVID-19 pandemic and changes in travel behavior. 
 
 

 
 

Figure 2.2: Conceptual framework of the process through which the COVID-19 pandemic induced changes in travel behavior. 
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§2.4.1 Government intervention 
Starting with government intervention, which was directly influenced by COVID-19 as the ongoing and 
evolving pandemic situation required adequate adaptations in mitigating policy to offset potential 
negative consequences. When COVID-19 cases where either rising or already at a high level, 
policymakers were likely to impose mitigating policy to protect public health and health care capacity. 
On the other hand, when cases were declining or at a low-risk level, policymakers adjusted their 
mitigating policy by making it less strict. Apart from reacting towards the ongoing pandemic situation, 
scholars have suggested that the extensive media attention and the public sentiment also influenced 
the policy strictness: ranging from pressurizing policymakers to either lift or enhance the stringency of 
the mitigating measures (Apriliyanti, Utomo & Purwanto, 2021; Chakraborty, 2020; Malecki, Keating 
& Safdar, 2021; Nguyen & Nguyen, 2020; Robinson 1999; 2000; 2001; 2002; 2005; Yue et al., 2021). As 
was discussed in §2.2, mobility limitations were conceived as an effective tool by lawmakers who were 
intended to protect against the threats of the pandemic. Therefore, governments, dependent on the 
current pandemic situation, either restricted or lifted restrictions (line 1) which were influencing public 
travel behavior and its motivations (Askitas et al., 2021; Awad-Núñez et al., 2021; Jenelius & 
Cebecauer, 2020; Shaer & Haghshenas, 2021).  
 
§2.4.2 Public reaction  
Located at the center of the conceptual framework are the public and its reaction which was influenced 
in fourfold: by the COVID-19 pandemic, its associated mitigating policy and by population and 
environmental characteristics. First, COVID-19 was influential as people reacted and adjusted their 
behavior dependent on the ongoing pandemic situation (line 2). The extensive media coverage on the 
pandemic, most notably are the news reports on the daily number of confirmed COVID-19 cases, was 
important in influencing the public reaction (Tsoy, Tirasawasdichai & Kurpayanidi, 2021). Second, the 
public reaction was influenced by government intervention (line 1) as the policy strictness determined 
both the access to travel modes and motivations for travelling. Furthermore, the stringency provided 
the public insight and guidance for understanding the severity of the pandemic situation which can 
lead to self-initiated changes in travel behavior (Harper et al., 2020; Yue et al., 2021). When the 
individual consideration of COVID-19 and government intervention are compared, scholars have 
argued that government intervention had a higher impact than the reaction of the public due to policies’ 
capabilities to directly influence behavior, in this case the act of travelling (Askitas et al., 2021; Ferguson 
et al., 2020; Hussain, 2020; Rahman & Thill, 2022; Wang, Ge, Huang, 2022). 
 
§2.4.3 Population characteristics 
Apart from COVID-19 and its associated policy measures, characteristics of the public themselves are 
of importance for travel behavior as it influences the public and its reaction (line 3). Population 
characteristics are decisive as travel behavior consist of choices made on the individual level (Scheiner, 
2010; 2018). The first population characteristic is population density. Density could potentially 
influence modal usage patterns as previous studies have argued that high density areas typically 
contain less high-speed modes, higher volumes of active modes and more overall traffic intensity 
(Schafer & Victor, 2000; Buehler, 2011; Liu & Lam, 2014). The second influential population 
characteristic is sex, for scholars have argued that females are related to less work-related travel, less 
usage of active modes and less travel intensity overall (Ehlert & Wedemeier, 2022; Meurs & Haaijer, 
2001; Muñoz, Monzon & Daziano, 2016). Thirdly, the population characteristic of age has shown in 
previous studies that it significantly affects travel behavior, particularly the modal usage. In general, 
scholars have argued that younger people use more active modes while older people use the car more 
often (Figueroa, Nielsen & Siren, 2014; Ha, Lee & Ko, 2020). Lastly, the fourth population characteristic 
is income as it affects overall travel ability through the selection and usage of travel modes. Typically, 
areas with a higher average income have higher rates of car-ownership resulting in higher modal shares 
for cars but lower shares for active modes (Schafer & Victor, 2000; Meurs & Haaijer, 2001; 
Papagiannakis, Baraklianos & Spyridonidou, 2018; Pucher & Renne, 2005). 
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§2.4.4 Environmental characteristics  
The fourth and last factor influencing the public reaction concerns the characteristics of the 
environment in which the public lives and conducts travel (line 4). First, climatological conditions are 
of importance as it determines travel mode choices (Thøgersen, 2006). Weather is most desicive for 
active modal usage, as previous studies suggested that lower temperature, more precipitation and 
higher windspeed is associated with less pedestrian and cyclist volumes (Böcker, Dijst & Faber, 2016; 
Ton, Duives, Cats, Hoogendoorn-Lanser & Hoogendoorn, 2019). Furthermore, the specific road 
classification is of importance. Scholars have argued that higher classed roadways contain more lanes, 
have higher speed limits and more traffic intensity as opposed to more local roads. As a result, more 
local roads contain a higher share of active travel modes (Schepers & Heinen, 2013; Winters, Terschke, 
Grant, Setton & Brauer, 2010).  
 
§2.4.5 Changes in travel behavior 
Now the influence of COVID-19, government intervention, population characteristics and 
environmental characteristics on the public and its reaction have been explained, the actual changes 
in travel behavior forms the concluding piece of the conceptual framework (line 5). It is there where 
the focal point of this study lies: to understand if and how COVID-19 influenced travel behavior. In 
general, scholars have argued that overall travel intensity has decreased in comparison to pre-
pandemic levels. The most striking changes when comparing pre-pandemic travel behavior with 
pandemic levels are witnessed in modal usage patterns, as Rahman & Thill (2022) have argued. The 
following paragraph (§2.5) will further elaborate on the actual changes scholars have witnessed in travel 
modes when pre-pandemic and pandemic modal usage patterns are compared.   
 
§2.5 Actual changes in modal usage patterns since the COVID-19 pandemic  
Now the process leading to travel change has been theoretically examined above, the actual changes 
in travel mobility needs to be discussed. First and foremost, if and by how much travel behavior will 
change differs from time to time and from place to place. As a result, generalizing these changes is 
troublesome as most studies focus on a single area for analysis. However, Rahman & Thill (2022) argue 
that the most striking changes are found in modal usage patterns regardless of the specific study area.  
Most notably change after COVID-19 pandemic had commenced was found for private modal usage 
which increased as opposed to non-private modes, like public transit or shared mobility options. This 
means that more people are driving a private car or are either walking or cycling – as was the case in 
a study by the Boston Consulting Group (Bert et al., 2021). During this study five thousand people in 
urban areas in the United States, Europe and China during April 2020 were examined. The results 
showed that, during lockdowns, modal intensity dropped across almost all modes. The most significant 
drop being in public transit as it dropped at least 60 percent when compared to pre-pandemic levels. 
Private vehicle usage, although it had dropped in intensity, depicted less significant decreases in modal 
usage in both the United States and China (between -21% to -59%) but remained significant in Europe 
with a drop of at least 60 percent. The most striking change was found in the modal usage of private 
bikes, e-scooters and walking as it increased by 21 to 59 percent in all three regions. Furthermore, the 
United States and China also depicted more usage of bike sharing options.  
 
In a Toronto based study the impact of the pandemic on modal usage for non-mandatory trips was 
investigated (Loa et al, 2021). These non-mandatory trips can be divided in twofold: maintenance and 
discretionary activities (Castiglione, Bradley & Gliebe, 2014). The first activity being focused upon 
satisfying basic needs, like buying groceries and visiting medical facilities for healthcare, while the 
latter activity has fulfilling psychological needs at the focal point, including social interaction and 
recreation (Chen & Mokhtarian, 2006; Dharmowijoyo, Susilo & Karlström, 2018). As the pandemic 
influenced modal choice for voluntary purposes, Loa et al. (2021) studied how exactly the modal split 
has changed among inhabitants of the Greater Toronto Area by focusing on transitions between pre-
pandemic and pandemic levels of modal usage. Figure 2.3 provides an overview of the results of the 
pre-pandemic and pandemic comparison of modality profiles – meaning the mode or combination of 
modes used by an individual for non-mandatory activities.  
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In table 2.3, it becomes clear that pre-pandemic modality profiles including the use of public transit 
have transitioned most notably to car-oriented pandemic modality profiles. For instance, of all 
individuals having a pre-pandemic modality profile of transit users, most (26.5%) have shifted to solely 
driving while the other two car-oriented pandemic modality profiles, pedestrians/drivers (18.7%) and 
private vehicle users (7.3%), also increased. This means that around 52.5 percent of previous transit 
users have, at least partially, shifted to cars. The same pattern is found within other transit included 
pre-pandemic modality profiles, as both pedestrians/transit users (77.2%) and private vehicle/transit 
users (84.9%) predominantly transitioned to pandemic modality profiles including car usage. This 
indicates that individuals using cars before the pandemic continue to do so during the pandemic while 
cars are also becoming a more popular mode for individuals with pre-pandemic modality profiles which 
involved less or no modal usage of cars – a transition visible in figure 2.4. 
 

 
 
 

  

Pre-pandemic Modality Profile

Strict drivers Pedestrians/drivers Private vehicle users Shared mode users/cyclists Transit users/pedestrians Non-travellers

Strict drivers 87.1% 5.4% 4.2% 2.2% 0.3% 0.8%

Pedestrians/transit users 7.2% 65.2% 4.8% 7.9% 11.6% 3.2%

Transit users 26.5% 18.7% 7.3% 19.9% 22.1% 5.5%

Private vehicle/transit users 15.8% 10.4% 58.7% 9.5% 2.2% 3.4%

Mobility-on-Demand users/cyclists 20.7% 6.4% 7.8% 43.3% 7.6% 14.2%

Multimodals 10.9% 51.4% 11.8% 24.4% 1.5% 0.0%

Pandemic Modality Profile

Figure 2.3: Pandemic modality profile probability based upon pre-pandemic modality profile in Greater Toronto Area in July 2020 (Loa et 
al., 2021, p. 83). 

Figure 2.4: Relative transitions in modal share percentages from pre-pandemic (left) and pandemic (right) 
modality profiles in Greater Toronto Area in July 2020 (Loa et al., 2021, p. 80). 
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Car-oriented pandemic modality profiles where not alone in gaining modal share as active modes of 
travelling, as is visible in figure 2.4, also gained ground in the modal split. Regarding active modality 
profiles, the modal split for walking (+8.2%) and cycling (+3.4%) increased, as the July 2020 modal 
share increased from a pre-pandemic 15.3 to 23.5 percent and from 5.5 to 8.9 percent respectively. 
This increased popularity of active modes can, to some degree, be attributed to pre-pandemic transit 
users transitioning towards the pandemic modality profiles of pedestrian/drivers (18.7%), shared mode 
users/cyclists (19.9%) and transit users/pedestrians (22.1%). This means that over 60 percent of pre-
pandemic transit users have transitioned to pandemic modality profiles which includes active modes. 
Loa et al. (2021) conclude and summarize their study results on changing modal usage patterns during 
the pandemic as follows: 
 

Aside from the reduced prominence of public transit and increased prominence of private vehicles, 
the transition analysis suggests that active modes are playing a more prominent role in pandemic 
modality profiles than they did prior to the pandemic.  

Loa et al. (2021, p. 81) 
 
Paul et al. (2022) found similarity in modal usage change due to COVID-19. Their literature review of 
over 50 academic sources showed a similar shift to private modes and increased active modal usage. 
Additionally, the pre-existing mobility and modal usage patterns before the pandemic is of importance. 
In general, car-centric cities with a deeply rooted automobile rationality, displayed roughly stable and 
resilient modal splits: the modal usage of cars quickly returned to pre-pandemic levels and where only 
temporarily affected by the pandemic. Furthermore, in cities that contain more diverse multimodal 
mobility options, residents tend to avoid the use of non-private mobility options for shorter durations 
and less pronounced than in cities containing fewer modal options. In places where the mobility culture 
was evolving or was on the verge in doing so, the disruption of modal usage patterns made the COVID-
19 pandemic a window of opportunity in which the pandemic was a catalysator for further or quicker 
change. This was specifically the case for cities who wanted to encourage active modes (Greene, 
Ellsworth-Krebs, Volden, Fox & Anantharaman, 2022).  
 
However, much of the current available research provides solely insight on the short-term effects on 
modal usage, mostly during periods which were strongly influenced by the ongoing pandemic situation 
which, at that time, was perceived more seriously and threatening than during subsequent waves in 
latter stages of the pandemic. Despite the rarity of research studying the long-term effects on modal 
usage, the expectation exists that the increases in modal usage of private cars and active modes could 
continue after COVID-19 becomes less of a threat (Bert et al., 2021). This view is supported by studies 
that either predicted (De Vos, 2020) or provided results (Abdullah et al., 2020; Ehsani et al., 2021; Lee 
& Eom, 2022; Shaer & Haghsenas, 2021; Van der Drift et al., 2021) depicting the same dynamics of 
increased usage of private and active modes of travel at the cost of non-private modal options.  
 
§2.6 Travel mobility after the COVID-19 pandemic 
With most western countries lifting restrictions in early 2022 due to the Omicron variant, which had 
proved to be less threatening than its predecessors (Daria & Islam, 2022; Wang & Han, 2022), scholars 
increasingly started to think, make predictions and study travel mobility in times less affected by the 
ongoing pandemic situation. As travel mobility is less restricted overall, the modal usage patterns can 
be studied for analyzing whether modal usage will rebound to the pre-pandemic situation, continue to 
be the roughly the same as during the pandemic or if it had changed permanently (Lee & Eom, 2022).  
 
Even though previous crises have shown that travel mobility can recover, and sometimes surpass, pre-
crises levels (Hall, 2002; Li et al., 2010; Novelli et al., 2018), there currently is no scientific consensus 
on whether this will be the case for the COVID-19 pandemic. Nonetheless, there is general agreement 
over the fact that the COVID-19 pandemic had an unprecedented impact on travel mobility (Kim et al., 
2021).  
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However, there are opposing views regarding the temporal extend and severity of this impact. In 
general, scholars have either not ruled or are supportive of the idea that the pandemic induced 
significant changes in mobility that will endure on the long run (Das, Boruah, Banerjee, Raoniar, Nama 
& Maurya, 2021; De Haas et al., 2020; Griffiths, Del Rio & Sovacool, 2021; Kellerman, 2022; Zhang, 
Hayashi & Frank, 2021).  
 
Loa et al., (2021) describes and explains both perspectives on the persistence of the pandemic 
induced changes as follows: 
 

On the one hand, a global pandemic is certainly significant enough to bring about long-term 
changes (…) Such a change would likely lead to an increased preference for individual modes and 
a reduced propensity for using public transit. On the other hand, given that the pandemic is 
effectively an external shock, the cessation of the pandemic could result in people returning to their 
pre-pandemic modality profile.  

Loa et al. (2021, p 81) 
 
Currently, as of late 2022, it is too soon to conclude whether the pandemic period can be understood 
as a divider of eras, where significant differences exist between pre-pandemic and post-pandemic 
periods. Hence, scholars are accentuating the need for continuous research on similarities and 
dissimilarities between pre- and post-pandemic eras (Lee & Eom, 2022). Most notably, studies should 
be conducted over longer time periods and during times that are less affected by both COVID-19 and 
its associated measures (De Haas et al., 2020). Until now, most studies focusing on this subject have 
been conducted during times in which both mobility and peoples’ livelihoods are severely influenced 
by the pandemic, for example during the pandemic heyday years of 2020 and 2021. Borkowski et al. 
(2021) provide three research areas on which (future) COVID-19 and its influence on mobility should 
be assessed. First, studies should not focus solely on the short-term shock effects as it should focus 
more on implications on the long-term. Second, comparative studies should be conducted to compare 
changes over different geographical locations, although Zhao et al. (2020) and Lee & Eom (2022) have 
mentioned data availability, quality and limitations to be a factor of concern that needs to be addressed 
to allow for future adequate comparative studies. Thirdly, lastly and most importantly, Borkowski et 
al. (2021) emphasize the need for continuous analysis due to the evolving nature of the pandemic and 
the reaction of both policy makers and the public towards it.  
 
All this taken into consideration, one can conclude that the COVID-19 pandemic has induced 
significant changes in modal usage patterns as non-active private modes of cars and active private 
modes of walking and cycling has gained modal share, most significantly from pre-pandemic transit 
users. Given the fact that these changes in modal usage patterns can pose both challenging problems 
and opportunities, continuous research on changing mobility patterns as a reaction to the evolving 
pandemic situation is necessary (Loa et al., 2021). In doing so, policymakers will be made aware of the 
COVID-19 induced permanent changes in mobility and its associated problems and opportunities it 
upholds.  
 
Although it is perhaps too early to say that the post-pandemic era has begun (Lee & Eom, 2022), the 
rise of the less threatening COVID-19 variant Omicron in early 2022 has allowed policymakers and the 
public, for the first time in two years, to make mobility choices less impeded by the pandemic (Daria 
& Islam, 2022; Kim et al., 2021; Taylor, 2022; Wang & Han, 2022). This provides the first opportunity 
to analyze possible existing mobility pattern changes on the long-term in the post-lockdown era, in 
which the COVID-19 pandemic played a less significant and restricting role. Therefore, this study will 
aid policymakers in gaining insight in how modal usage patterns have evolved between pre-pandemic 
and post-pandemic periods - which will make policymakers better equipped to adjust mobility policy 
to the needs, challenges and opportunities of the future post-pandemic era. 
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3. METHODOLOGY 
 
In the third chapter of this study, the methodology used for the analysis will be presented. First, the 
selection of Toronto as location for analysis will be justified followed by relevant contextual information 
of the study area. Thenceforth, the included dependent and independent variables will be explained 
after which the selected method of the negative binomial regression will be justified followed by 
assumption testing. Following this is the formulation of hypotheses after which the research quality 
assessment will expound upon the validity, suitability and reliability of this study. Lastly, the analysis 
protocol will clarify the operationalization for analysis.  In doing so, this methodological chapter will 
present an overview over the approach for analysis.  
 
§3.1 Study location selection: Toronto 
Since it is the aim of this study to analyze the influence of COVID-19 on modal usage patterns, it is 
important to understand why this research was conducted in the city of Toronto. First and foremost, 
this selection is based upon data availability which had proved to be challenging when this study was 
extensively searching for appropriate and suitable data sources during Spring 2022. During the period 
of orienting on potential databases, this study has followed and studied open-data sources of 35 global 
cities (see appendix 3.1 for list of cities). Toronto was the only city which had publicly accessible, 
adequate and up-to-date databases on traffic volumes, including traffic intensity per travel mode. This 
is particularly important as the rise of the Omicron coronavirus variant around the 2021-2022 turn of 
the year allowed policymakers to adapt their mitigating policy by making it less strict (Daria & Islam, 
2022; Taylor, 2022; Wang & Han, 2022). Since many studies have been conducted during the pandemic 
peak years of 2020 and 2021, the fact that Toronto’s database is more up to date than others makes 
this the most suitable option for investigation as mobility was less restricted than in previous years. 
Therefore, March 2019 and March 2022 were selected for the study time frame because the latter 
month was the most recent month which contained sufficient data.  
 
§3.2 Study context 
For it is important to always interpret study results within its contextual environment, this paragraph 
will briefly provide an overview of relevant information regarding demographics, traffic & mobility, 
climate & the COVID-19 pandemic.  
 
§3.2.1 Toronto demographics  
Located in the province of Ontario in southern Canada, the city of Toronto, with a total population of 
almost 2.8 million in 2021, is the most populous city in the country. Moreover, Toronto’s city size 
(631.1km2) and population density (4427,8 people per km2) is also the highest in Canada (Statistics 
Canada, 2022a).  
 
Toronto is known for its diverse racial and cultural composition population, with 47% of its inhabitants 
being (foreign-born) immigrants compared to 49% Canadian-born while the remaining share of 
population is classified as non-permanent residents. China (10%), the Philippines (9%) and India (6%) 
were represented most as country of birth among Toronto’s immigrant population in 2016 (Toronto 
Public Health, 2019). Further statistical research state that Torontonians are on average 41.5 years old, 
earn a median after-tax income of 36,000 Canadian dollars per person and live in households that 
average 2.4 persons (Statistics Canada, 2022a). In terms of quality of life, Toronto is ranked 8th in the 
Global Liveability Index – making the city one of the most livable cities in the world (City of Toronto, 
2022). 
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§3.2.2 Toronto traffic & mobility  
Being the metropolis that Toronto is, the 
city has an extensive and busy 
transportation network. According to a 
2016 travel survey conducted by 
Transportation Tomorrow Survey (2018), 
around 73% of households in the City of 
Toronto owned at least one vehicle. As 
figure 3.1 visualizes, during the 2016 
morning rush hour (6:00-9:00 AM), most 
residents travel by car (53%), followed by 
public transit (30%) and walking and cycling 
(14%). The figure also highlights a trend in 
which automobiles are losing modal share 
while public transit and active modes are 
gaining share within the morning rush hour.  
 
Census data from 2016 provide roughly the same modal split, with cars (51%) also being the dominant 
mode for commuting of people aged 15 years and over, again followed by public transit (37%) and 
walking and cycling (11%). When Toronto’s modal split is compared regionally, active modes usage is 
more than double than the rate of the rest of Ontario (5%). When compared with other Canadian cities, 
Ottawa and Montreal’s rate for active transportation is similar, 10 and 12 percent respectively, while 
Vancouver (20%) reports the highest share of active transportation (Toronto Public Health, 2019).  
 
§3.2.3 Toronto climate  
Toronto’s climate is categorized as a continental climate, which is influenced substantially by the 
proximity of the Great Lakes. Average temperatures vary from -4.2 °C in January to 22.2 °C in July. In 
terms of precipitation, Toronto receives about 834 mm every year (McGillivray, 2022). 
 
Regarding the month of interest, in March average temperature is around -0.3 °C, varying from minimal 
-3.7 °C to 3.9°C. After February, March is the driest month in Toronto with an average of 59 mm 
precipitation. Torontonians can expect around 7 rainy days in March and an average wind speed of 
17.4 kilometers an hour (Climate Data, n.d.; Weather Atlas, n.d.). 
 
§3.2.4 Toronto and the COVID-19 pandemic 
When on January 25th, 2020, the first positive case was identified, the COVID-19 timeline started in 
Toronto (Ontario Newsroom, 2020). With cases, hospitalizations and deaths rising in March, the 
Government of Ontario, together with the municipality of the Greater Toronto Area, declared a state 
of emergency and closed all educational and recreational facilities while encouraging its population to 
stay at home and only travel for essential purposes, like work and grocery shopping (Loa et al., 2021; 
Nielsen, 2021).  
 
During the summer of 2020, most of these measures were either lifted or became less strict, until a 
second wave of infections ordered government intervention again. With vaccination campaigns 
starting off in 2021, mitigating policy became less strict starting from late May. Policy strictness 
remained stable during the autumn months of 2021 until the rise of the Omicron variant urged 
policymakers for stricter mitigating policy in December. After the new variant proved to be of less 
concern, almost all measures were phased out in the first months of 2022. On the 31st of March 2022, 
Ontario had experienced a total sum of 1,172,333 positive test results and 12,433 deaths related to 
COVID-19 since the beginning of the pandemic (Ontario COVID-19 Science Advisory Table, 2022).  
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Figure 3.2: March 2019 traffic count locations in Toronto. 
 

§3.3 Dependent variable: traffic counts in Toronto in March 2019 & March 2022 
In general, the specific research question and objections determine the specific methods used after 
which the data is selected (Scheepers & Tobi, 2021). However, this research does it the other way 
round. This is due to the intention from this study to analyze mobility patterns both as recent as possible 
and in times in which mobility is less affected by restrictions. To analyze the impact of COVID-19 on 
travel modes, this research has chosen to use traffic counts at the core. After considering multiple data 
sources and portal from cities, including those listed in appendix 3.1, only the city of Toronto was able 
to provide adequate data for the most recent month being March 2022. Therefore, the traffic counts of 
March 2022 will be compared to a comparable pre-pandemic month, in this case March 2019. Thus, 
Toronto traffic count data in March 2019 and March 2022 will be compared to analyze the influence 
of COVID-19 on modal usage patterns.  
 
The dataset used is named ‘Traffic Volumes at Intersections for All Modes’, is provided by the Toronto 
Transportation Services (2022) and was retrieved from the open data catalogue of the City of Toronto. 
Since this dataset is updated frequently, it is important to note that this research used the version 
published on May 7th, 2022. In this dataset, counting takes place across different crossings within the 
Toronto municipality and is conducted by traffic cameras at crossing locations. For each 15-minute 
interval, total traffic volumes are counted and segmented by travel mode. In this study, stemming from 
the interest in individual modal choice, the travel modes that are accounted for are cars, pedestrians 
and cyclists.  
 
Regarding timeframe, this research allocates the 15-minute interval data into three timeframes based 
upon the local rush hours (Toronto Police Services & City of Toronto, n.d.). The morning rush hour 
(AM) will start at 7:00 AM and end at 10:00 AM, followed by a timeframe in between the rush hours 
(IB) from 10:00 AM to 4:00 PM. Lastly, the afternoon rush hour (PM) begins at 4:00 PM and finishes at 
6:00 PM. Within these timeframes, traffic volume will be summed by mode. Although this study realizes 
that the afternoon rush hour will probably last longer than 6:00 PM, this dataset does not provide 
adequate data past this time. By allocating the data into different groups, this research can take 
temporal aspects into consideration when investigating the influence of COVID-19 on travel modes.  
 
Furthermore, it is important to note that traffic volumes are not collected daily, meaning there are 
differences in both the number of daily counts, counting locations and type of day. In March 2019, 
traffic data was collected for 69 days across 62 different locations. Regarding type of day, 2019 counted 
24 out of its 69 days in the weekend. In figure 3.2 a map is displayed depicting the traffic counting 
locations for March 2019. 
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In March 2022, data was collected for 77 days at 72 unique locations including 22 days in the weekend. 
See figure 3.3 below for an overview of counting locations in 2022.  
 

 
 

 
 

As is visible in the two maps, all counts take place within the municipality of the City of Toronto 
(Toronto Information & Technology, 2019). Statistics regarding the traffic volumes in March 2019 and 
March 2022 can be found in table 3.4 below. It is important to note that the dependent variable of 
every counting category includes data of both the pre-pandemic month of March 2019 and the 
pandemic month of March 2022. The reason for not conducting separate analysis for March 2019 and 
March 2022 is due to high multicollinearity with included independent variables like the COVID-19 
related variables when each month is analyzed individually. For more explanation see §3.5.1 and table 
3.5. 
 

 
  

Table 3.4 - Frequencies of all counting categories in Toronto (March 2019 + March 2022)

Total all modes 13415.61 94516673.27 1.036 0.201 0.723 0.399 276 44240
AM total 3135.51 5960500.60 1.510 0.201 2.484 0.399 60 11968
IB total 6237.53 21636100.32 1.041 0.201 0.674 0.399 142 20658
PM total 4042.58 8665861.98 1.066 0.201 0.952 0.399 74 14124
Cars total 10710.22 65073507.33 1.236 0.201 1.227 0.399 148 37920
Cars AM 2606.08 4066457.14 1.304 0.201 1.461 0.399 25 9466
Cars IB 4995.14 15368271.14 1.395 0.201 1.897 0.399 87 18353
Cars PM 3109.00 5302467.63 1.177 0.201 1.033 0.399 36 10479
Pedestrians total 2593.07 17040056.56 3.341 0.201 13.809 0.399 7 25798
Pedestrians AM 504.62 1114468.79 6.128 0.201 43.543 0.399 0 8942
Pedestrians IB 1196.65 3099452.41 2.455 0.201 6.259 0.399 7 9284
Pedestrians PM 891.79 2349710.21 3.643 0.201 16.508 0.399 0 10206
Cyclists total 112.32 33129.56 2.979 0.201 10.540 0.399 0 1098
Cyclists AM 24.80 2738.45 4.769 0.201 25.908 0.399 0 365
Cyclists IB 45.74 4269.48 2.316 0.201 5.876 0.399 0 327
Cyclists PM 41.78 5172.77 2.820 0.201 9.010 0.399 0 416

Maximum
Counting 
category

Mean Variance Skewness
Std. Error 
Skewness

Kurtosis
Std. Error 
Kurtosis

Minimum

Figure 3.2: March 2022 traffic count locations in Toronto. 
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§3.4 Independent variables 
To test for the effects of the COVID-19 pandemic on the modal usage patterns, the analysis must 
incorporate other factors that could potentially influence effects. In doing so, this study hopes to isolate 
the impact of COVID-19 related factors on travel modes by assessing other, non-COVID-19 related, 
aspects. Based upon previous literature (§2.4) and the conceptual framework (figure 2.2) discussed in 
the theoretical framework, this study has selected independent variables referring to COVID-19, 
weather, population characteristics and road classification. In this paragraph, these included 
independent variables will be theoretically justified after which the statistics will be discussed. In the 
Appendix, frequencies and other statistics for the variables are visualized in a table for the dataset in 
total (Appendix 3.2), as well as by year (Appendix 3.3) and crossing type (Appendix 3.4).  
 
§3.4.1 COVID-19: daily new cases (Canada) & Stringency Index (Ontario) 
The first COVID-19 variable that is chosen are the confirmed daily positive test results for COVID-19 
in Canada in thousands (Daily new COVID-19 cases Canada), retrieved from the COVID-19 pandemic 
database on the Our World in Data website (Ritchie et al., 2022). For every date on which traffic counts 
were conducted the date-related newly confirmed case numbers have been added. This study utilizes 
national cases rather than regional data since Ontario had changed its data methodology during March 
2022, therefore regional data is not comparable for the entire month (Public Health Ontario, 2022). 
Naturally, case counts were zero in March 2019 while in 2022 this ranged from 3197 to 10976 cases 
with an average of 6990.53 newly cases per counting day. 
 
Daily case numbers are preferred as it is located at the forefront of the pandemic situation: a rise in 
COVID-19 cases causes an increase in hospitalizations and fatalities in the following period. Although 
vaccination, herd immunity and the Omicron variant have tempered causality with health care 
occupancy and disease severity, rising COVID-19 cases continue to be related to increasing 
hospitalizations and deaths (Iyanda, Boakye, Lu & Oppong, 2022).  
 
While daily case numbers predominately has an indirect effect on travel mobility through altering risk 
perception of individuals to choose a certain mode or not travel at all, COVID-19 mitigating policy has 
a more direct effect on mobility. Since mobility is an important factor in the spread of COVID-19, 
managing mobility is key for policymakers (Jenelius & Cebecauer, 2020; Awad-Núñez et al., 2021; 
Cresswell, 2021). Understanding that this policy could potentially influence the travel modes of interest, 
this study has chosen the index for policy strictness of COVID-19 mitigating measures in Ontario as 
the second COVID-19 variable (Stringency Index Ontario). Known as the Oxford COVID-19 Government 
Response Tracker, this index provides insight in ‘government policies related to closure and containment, 
health and economic policy […] for 19 policy areas, capturing variation in degree of response’ (Hale et al., 
2021, p. 529).  
 
The policy strictness data was retrieved from the website of the Blatvatnik School of Government & 
University of Oxford (2022) and allows for analyzing the influence of mitigating policy on travel mode 
usage. The reason for selecting the provincial level of Ontario lies in the fact that it was at this level 
policy was made that affected Toronto the most (Ontario Newsroom, 2020; Loa et al., 2021). Once 
again, March 2019 is scored zero on stringency as it had no mitigating policy. Policy stringency 
averaged 31.82 in 2022 as March contained two different stringency index scores, being 35.19 between 
1 and 10 March and 22.22 between 22 and 31 March. This drop in index scores indicates that mitigating 
measures were partly lifted during March 2022.  
 
§3.4.2 Weather: temperature, precipitation & windspeed 
Since previous research has argued that climatological conditions can influence modal choice and 
usage (Böcker et al., 2016; Thøgersen, 2006; Ton et al., 2019), weather variables need to be included 
in the model. For every counting day in 2019 and 2022 the following weather variables are accounted 
for: average temperature in degrees Celsius (temperature), total precipitation in millimeters 
(precipitation) and average windspeed in kilometers an hour (windspeed). The historic weather data was 
retrieved from the website of Visual Crossing Corporation (n.d.) and provides average weather data as 
was recorded by local weather stations in Toronto.  



 - 22 - 

Appendix 3.3 shows that the counting day average temperature varied between -10.2 °C and 6.2 °C in 
2019 (x̅ ≈ 0.8 °C) and between -6.3 °C and 9.4 °C in 2022 (x̅ ≈ -0.1 °C). Counting days in 2019 averaged 
more precipitation with around 1.4 mm versus 0.1 mm in 2022, with the maximum precipitation being 
around 22.2 mm and 2.6 mm respectively. Average windspeed was higher in 2022 (29,8 km/h) than in 
2019 (22,4 km/h) as was the minimum and maximum windspeed: 2019 varied between 16.7 and 40.4 
km/h whilst 2022’s windspeed ranged from 22.2 to 51.4 km/h.  
 
§3.4.3 Population characteristics: population density, female population share, age & 
income 
Since mobility choices are made on the level of the individual, this study must take characteristics of 
these individuals into account (Scheiner, 2010; 2018). The first step is to decide at which the 
geographical scale the population characteristics will be analyzed. As the geographical level of wards 
provided troubles with the clustering of counting locations, the level of aggregated dissemination areas 
(ADAs) in Toronto is chosen. ADA data was collected during 2021 Census of Population, the most 
recent available census data, and was collected from the website of Statistics Canada (2022b). ADAs 
have a population between 5,000 and 15,000 people. ADAs were selected by utilizing Geographical 
Information Systems (GIS) for creating a buffer of 300 meters around every counting location. This 
distance was chosen as it represents the average city block size in Toronto (Siksna, 1996; Hawkins, 
Ahmed, Roorda & Habib, 2022). Every ADA that intersected with the buffer will be selected to provide 
the population characteristics of that counting location through the operation of a spatial join. This 
study will refer to this area as the counting location area.  
 
The first population characteristic is population density in thousand people per square kilometer, for 
density has proven to be related to modal choice patterns by other scholars (Schafer & Victor, 2000; 
Buehler, 2011; Liu & Lam, 2014). Regarding the population density of the areas withing the counting 
location buffer, ADA data on total population in thousands was divided by total land area so that it 
provided the population density per for that area. The variable Population Density averaged around 8.14 
thousand people per km2  in 2019 and 6.69 in 2022, varying between 0.52 – 26.25 and 11.23 – 27.04 
thousand people per km2 respectively.  
 
The second population variable is sex, for scholars have argued that females are related to less work-
related travel, less usage of active modes and less travel intensity overall (Ehlert & Wedemeier, 2022; 
Meurs & Haaijer, 2001; Muñoz et al., 2016). As regards to sex, this study calculated the percentage of 
women from the total population at the counting location area that identified as either male or female. 
The variable Females% averaged in 2019 51.13%, ranging between 44.74% and 54.12%, while 2022 
averaged 52.51% and varied from 47.29% to 54.59%.  
 
Thirdly, the average age of the counting location population will be accounted for. Scholars have stated 
that age significantly affects travel mode usage. Some findings include that younger people use more 
active modes while older people are more relying on cars as primary mode of transportation (Figueroa 
et al., 2014; Ha et al., 2020). To investigate the influence of age on modal usage, this study has 
calculated the weighted arithmetic mean of the variable Age weighted average. On average, the counting 
population was younger in 2019 (x̅ = 41,04 years) than in 2022 (x̅ = 43,41 years). The youngest counting 
area was in 2019 33,4 years old and in 2022 37,08 years of age. The most elderly areas in 2019 and 
2022 were 47,33 and 48,49 years old respectively.  
 
The last population characteristic in this study is income, more specifically the weighted arithmetic 
mean of total income in 2020 in thousand Canadian dollars of income-receiving respondents aged 15 
years or older (Income 2020 weighted average). Studies have shown that income affects both the selection 
and usage of travel modes as well as the ability to travel overall (Meurs & Haaijer, 2001; Papagiannakis 
et al., 2018; Schafer & Victor, 2000). To take income and its possible effect on travel modes into 
account, this study will control for average total income. In 2019 average total income was around 
$58.62K, varying between $30.77K and $93.21K. Counting areas in 2022 were on average richer with 
a mean total income of $90.43K, ranging from $35.96K to $195.60K.  
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§3.4.5 Crossing characterization: road classifications 
As the counting takes places at crossings, it is important to gain insight in the type of roads at each 
crossing. Utilizing the Statistics Canada (2022c) road network files from the census year 2021, this 
study will be able to analyze the influence of certain roads. Within these road network files, roads are 
classified by different types of street features.  
 
Regarding the counting locations, all crossing roads are either classified as arterial (rank 1), collector 
(rank 2) or local (rank 3). Arterial roads are characterized by having more lanes, higher speed limits 
and more traffic while local roads are characterized the other way around. Collector roads find 
themselves characterized between arterial and local roads. In 2019, the 69 counting days were 
conducted across 49 arterial, 27 collector and 53 local roads. Regarding the 77 counting days of 2022, 
the crossings contained 35 arterial, 20 collector and 75 local roads. On average, 2019 crossings 
contained higher ranked roads than 2022 (Appendix, 3.4). 
 
Since the road classes will allow for multiple unique combinations, this study has chosen to simplify 
this as there are not enough counts for each unique road classification combination. Therefore, 
dummies are created to still be able to account for road classification in relation to travel mode 
volumes. Being centered between both arterial and local roads, collector roads have been selected as 
the reference variable for the dummy variables Arterial dominant crossings and Local dominant crossings. 
Since this study cannot account for every unique road class combination at each crossing, the dummies 
will focus on the highest ranked road at that crossing. For example, a crossing combination of the 
arterial, collector and local road classes will give a value of 1 to arterial and 0 to local while a crossing 
containing collector and local roads will give a 0 to both dummies. In doing so, this study will be able 
to provide insight in how travel volumes have evolved across different road classifications. Appendix 
3.4, shows that 49 out of 69 counting locations in 2019 arterial was the highest ranked (49), followed 
by collector (12) and local (8) dominant crossings. In 2022, arterial roads were once again most 
dominant (35), above local (24) and collector dominant crossings (18).  
 
§3.5 Method selection: negative binomial regression 
For traffic volume data is the dependent variable of this analysis, the characteristics of count data are 
decisive. First and foremost, count data are non-negative integers since negative values for counts are 
not possible. Furthermore, count data is discrete, has no upper-limit and is randomly distributed 
(Chang, 2005). These count data characteristics call for caution when assuming a normal distribution 
and its related methods like the multiple linear regression (Gardner, Mulvey & Shaw, 1995; Abdel-Aty 
& Radwan, 2000). 
 
Most of the time, count data is analyzed through a generalized linear framework model being either a 
Poisson model or negative binomial regression model (Ver Hoef & Boveng, 2007). The decisive factor 
in choosing between both models is based upon the relation between the mean and variance. The 
Poisson model entails the assumption of equidispersion, which means that the mean of the dependent 
variable is equal to the variance. When this is not the case, the data can either be underdispersed (mean 
< variance) or overdispersed (mean > variance). In the case of overdispersion, the negative binomial 
regression model is preferred (Daraghmi, Yi & Chang, 2012; 2014; Fairos, Wan Yaacob, Lazim & Yap, 
2010; Hilbe, 2011; Miaou & Lum, 1993; Poch & Mannering, 1996).   
 
Looking once more at table 3.4, the data indicates a non-normal distribution as Skewness is higher 
than 1. Likewise for Kurtosis apart from the categories Total all modes, IB total & PM total. Table 3.4 
further shows that across all counting categories the variance is manifold the mean, which indicates 
beyond any doubt that overdispersion exists. Thus, the negative binomial regression will be the 
selected method for analysis.  
 
§3.5.1 Assumptions of the negative binomial regression for dependent variables 
The negative binomial regression demands for three elementary assumptions to be satisfied (Alobaidi, 
Shamany & Algamal, 2021). The first being the existence of overdispersion in the data, which indeed 
exists among the included data. Secondly, the mean parameter should be known. Since the dependent 
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variable contains count data, the means are known (see table 3.4). Regarding the independent 
variables, mean parameters are once more given. Thus, the second assumption is also satisfied. Lastly, 
the third assumption desires that the distribution of observations is independent. This assumption is 
adhered to as the dependent variables are counted and categorized per travel mode thus limiting the 
possibility of individual modes being counted more than once across more than one mode. 
Furthermore, within each travel mode, the observations are again independent as counting takes place 
over longer periods of time (7:00 AM – 6:00 PM) rather than in smaller temporal intervals. Therefore, 
differences in modal use are less affected by temporal effects which again strengthens the satisfaction 
of the third assumption (Alobaidi et al., 2021, as cited in Algamal, 2012; Cameron & Trivedi, 2013; De 
Jong & Heller, 2008).  
 
§3.5.2 Assumptions of the negative binomial regression for independent variables 
The negative binomial regression includes the assumption of independence among independent 
variables, meaning that no multicollinearity exists among these variables. This study assesses 
multicollinearity in two different ways, the first being the examination of the Pearsons’ correlation 
coefficient in the correlation matrix of independent variables and the second being Variance Inflation 
Factor (VIF). There is some consensus about a critical value of the Pearson’s correlation coefficient as 
general rule of thumb (Kim, 2019; Senaviratna & Cooray, 2019). Although some scholars argue that 
Pearson’s correlation coefficient should not be greater than 0.5, most studies favor a critical value of 
minimal 0.8 or 0.9 (Midi, Sarkar & Rana, 2010; Shrestha, 2020; Vatcheva & Lee, 2016). Hence, this 
study has chosen a Pearson’s correlation coefficient of 0.8 and above as outermost edge for 
independent variables to be included in analysis. In table 3.5, the correlation matrix is visible.  
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Year .903** .968** -0.108 -.266** .489** -0.136 .369** .342** .479** -.258** .236**

Daily new COVID-19 cases Canada .903** .779** -.198* -.226** .426** -0.084 .421** .456** .532** -0.137 0.131

Stringency Index Ontario .968** .779** -0.084 -.266** .469** -0.142 .316** .247** .416** -.326** .310**

Temperature -0.108 -.198* -0.084 -0.030 -.232** -0.115 -0.149 -0.045 -0.018 -0.062 -0.049

Precipitation -.266** -.226** -.266** -0.030 0.044 0.111 -0.134 -0.154 -0.108 .200* -0.136

Windspeed .489** .426** .469** 0.000 0.044 -0.088 .337** .261** 0.094 -0.083 0.043

Population density -0.136 -0.084 -0.142 -0.115 0.111 -0.088 -.412** -.572** -.230** 0.020 -.188*

Females% .369** .421** .316** -0.149 -0.134 .337** -.412** .623** .234** -0.034 .190*

Age weighted average .342** .456** .247** -0.045 -0.154 .261** 0.000 .623** .465** 0.102 0.062

Income 2020 weighted average .479** .532** .416** -0.018 -0.108 0.094 -.230** .234** .465** 0.072 0.068

Arterial dominant crossings -.258** -0.137 -.326** -0.062 .200* -0.083 0.020 -0.034 0.102 0.072 -.617**

Local dominant crossings .236** 0.131 .310** -0.049 -0.136 0.043 -.188* .190* 0.062 0.068 -.617**

Table 3.5: Correlation matrix 

* P ≤ 0.05  |  ** P ≤ 0.01
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When looking at the statistically significant correlations, this study concludes that the Pearson’s 
correlation coefficient is below the cutoff value of 0.8 for every independent variable except year. 
Therefore, year will not be included in the analysis. All the other independent variables indicate that 
there are no implications regarding the existence of multicollinearity.  
 
Apart from the COVID-19 related independent variables, no other variables are close to the cutoff 
value, thus allowing for the conclusion that this set of independent variables passes the Pearson’s 
correlation coefficient test for multicollinearity. However, it is important to note that the variables Daily 
new COVID-19 cases Canada and Stringency Index Ontario are close to the maximum 0.8 cutoff value 
with a value of 0.779 as their Pearson’s correlation coefficient. This comes as no surprise as both 
variables have a constant value in 2019 (0) as there were no cases or mitigating policy at that time, 
contrarily to 2022. Even though the value lies below the cut off value of 0.8, this study will analyze AIC 
and BIC values to determine whether both or one of the two COVID variables will be included. Lower 
AIC scores are better as it penalizes models including more parameters while BIC assesses the tradeoff 
between model complexity and fit (Alin, 2010; Burnham, Kenneth & Anderson, 2004; Daraghmi et al., 
2012; Retallack & Ostendorf, 2020; Vrieze, 2012). Thus, for each counting category, three models are 
computed: the first including both COVID-19 variables, the second only including cases and the third 
solely including the stringency index. 
 
The second way of testing for multicollinearity is through the examination of Variance Inflation Factor 
(VIF) through the operation of collinearity diagnostics. To satisfy multicollinearity assumptions, in 
accordance with most studies, the VIF valuations should lie below five while the VIF tolerance must 
be greater than 0.1 (Daoud, 2017; Midi et al., 2010; Niresh &. Velnampy, 2014; Shresta, 2020; Vatcheva 
& Lee, 2016).   
 
In table 3.6 the VIF and VIF tolerance values are visible which shows that, for both VIF value as for 
VIF tolerance, every included independent variable show no indications for problems regarding 
multicollinearity. Once again and for the same reasons as previously discussed, the COVID-19 related 
variables come closest to the critical value, albeit with more margin than in the correlation matrix. The 
variable Age weighted average also shows higher VIF values than other included variables, even though 
the VIF stays clear of the cutoff value. This can partly be explained since age also showed significant 
correlations in the correlation matrix (table 3.5) for 7 out of 10 variables. All the other variables stay 
well clear of the VIFs cutoff value of 5. Regarding VIF tolerance values, all values are above the 0.1 
cutoff value. All this suggests that no multicollinearity related issues are of existence.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Given all three multicollinearity test results, this study concludes that there are no indications that the 
selected set of variables are posing concerns regarding collinearity as all assumptions of the negative 
binomial regression are accounted for.   

Independent variable VIF Tolerance

Daily new COVID-19 cases Canada 4.175 0.240

Stringency Index Ontario 3.851 0.260

Temperature 1.171 0.854

Precipitation 1.174 0.852

Windspeed 1.595 0.627

Population density 1.829 0.547

Females% 1.905 0.525

Age weighted average 2.963 0.338

Income 2020 weigted average 1.735 0.576

Arterial dominant crossings 1.897 0.527

Local dominant crossings 1.865 0.536

Average values 2.230 0.535

Table 3.6: VIF and VIF tolerance values
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§3.6 Hypotheses 
Now the dependent and independent variables have been introduced along with the method for 
analysis, this paragraph will formulate hypotheses based on the included independent variables. These 
hypotheses will be based upon earlier discussed literature and related research findings in the 
theoretical framework (§2.4 & §2.5). The hypotheses of this study can be found in table 3.7.  
 

 

§3.7 Research quality assessment 
Before this study moves on towards the analysis section, this last paragraph will provide a brief 
overview on how this research copes with the important matters related to study validity, reliability 
and suitability.  
 
3.7.1 Validity & suitability 
Starting with validity which, according to Leung (2015, p. 325), concerns the ‘appropriateness of the 
tools processes and data.’ Important considerations for validity are conformity between the research 
question and the aim and methodology selection. Additionally, suitability is also important. To achieve 
suitability the study approach and process should fit the objective: methods should suit research design 
and allow for proper analysis and conclusions while contextual conditions are accounted for.  
 
To incorporate both validity and suitability, this study has put its aim at the center stage: identifying 
the impact of COVID-19 on modal usage. Derived from this aim, this study’s research question was 
formulated accordingly. Based on theoretical foundations and data availability, quality, and analysis 
possibilities, the negative binomial regression was chosen as best fitting method – a method which has 
proven to be a valid tool in assessing developments in traffic count data in many studies (Ver Hoef & 
Boveng, 2007). As this study has included independent variables grounded in theory, this study can 
isolate the impact of COVID-19 as it is able to control for contextual conditions of the data (weather, 
population characteristics, road classification). Thus, the study has a strong, theoretically and 
systematically proven, foundation and approach that will foster validity in the upcoming results and 
conclusions.  

Variable 
group

Independent 
variable

Hypothesis Supporting literature

H1: Higher daily new COVID-19 cases in Canada will negatively predict car volumes

H2: Higher daily new COVID-19 cases in Canada will positively predict active modal volumes

H3: Higher Stringency Index scores in Ontario will negatively predict car volumes

H4: Higher Stringency Index scores in Ontario will positively predict active modal volumes

Temperature H5: Higher temperature will positively predict active modal volumes

Precipitation H6: More precipitation will negatively predict active modal volumes

Windspeed H7: Higher windspeed will negatively predict active modal volumes 

Population 
density

H8: Higher population density will positively predict traffic volumes across all counting categories Buehler, 2011; Liu & Lam, 2014; 
Schafer & Victor, 2000

Females% H9: Higher share of females in population will negatively predict active modal volumes Ehlert & Wedemeier, 2022; Meurs 
& Haaijer, 2001; Muñoz et al., 2016

Age weighted 
average

H10: Higher average age in population will negatively predict active modal volumes Figueroa et al., 2014; Ha et al., 
2020

H11: Higher average income in population will positively predict car volumes

H12: Higher average income in population will negatively predict active modal volumes

Arterial dominant 
crossings

H13: Arterial dominant crossings will positively predict traffic volumes across all counting categories

Local dominant 
crossings

H14: Local dominant crossings will negatively predict traffic volumes across all counting categories

Road 
classification

Schepers & Heinen, 2013; Winters 
et al., 2010

Table 3.7: Hypotheses 

COVID-19

Weather

Population 
characteristics

Daily new COVID-
19 cases Canada

Stringency Index 
Ontario

Income 2020 
weighted average

Abdullah et al., 2020; Bert et al., 
2020; De Vos, 2020; Ehsani et al., 
2021; Greene et al., 2022; Lee & 
Eom, 2022; Loa et al., 2021; Paul et 
al., 2022; Shaer & Haghsenas, 
2021; Van der Drift et al., 2021

Böcker et al., 2016; Thøgerson, 
2006; Ton et al., 2019

Meurs & Haaijer, 2001;  
Papagiannakis et al., 2018; Pucher 
& Renne, 2005; Schafer & Victor, 
2000
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3.7.2 Reliability  
Characterized as the ‘replicability of the processes and the results’, study reliability is crucial as it 
demands consistency in quantitative research (Leung, 2015, p. 326). To include consistency, this study 
has set clear boundaries in the study’s object (traffic counts), time frame (March 2019 & March 2022) 
and contexts (COVID-19, weather, population characteristics, road classification). As this study 
includes control variables grounded in theory and it utilizes the May 2022 open data source from 
Toronto Transportation Services (2022), this study can be replicated which improves the reliability of 
this research. Additionally, the data collection was conducted by traffic cameras, thus objectivity is 
much more protected as opposed to data collection by individuals. Finally, the approach, count data, 
count data collection and control variables are the same for both March 2019 and March 2022 (Heale 
& Twycross, 2015). All this taken into consideration, this study will safeguard its reliability through 
conserving consistency continuously. 
 
§3.8 Analysis protocol 
To allow for better understanding of the analysis and results, this paragraph will provide insight in how 
the procedure of analysis will take place. First, the different counting categories. The order in which 
the counting categories will be analyzed will be from total traffic intensity to volumes per mode. Within 
each counting category, first the volumes between 7 AM and 6 PM (Total) will be analyzed after which 
traffic volumes is analyzed during the morning rush-hour between 7 AM and 10AM (AM) followed by 
period in-between the rush-hours stretching from 10 AM to 4 PM (IB). The last temporal division 
analyzed is the afternoon rush-hour between the hours of 4 PM and 6 PM (PM). Thus, first the TOTAL 
intensity will be assessed, followed by the temporal categories of AM total, IB total and PM total. 
Thereafter, total and temporal intensity will be analyzed per individual mode (cars, pedestrians & 
cyclists).  
 
The analysis will be conducted in IBM SPSS Statistics, using the operation of Generalized Linear 
Models with the Negative Binomial with log link option. Since the COVID-19 related variables are close 
to the critical value of multicollinearity, three models are run: the first model including both COVID-
19 cases and stringency index followed by models including either only cases or stringency index. For 
every counting category (Total all modes, cars, pedestrians & cyclists) and every temporal category 
(Total, AM, IB & PM), one of the three models is chosen based on the values for either Akaike 
Information Criterion (AIC) or Bayesian Information Criterion (BIC). Since every model contains 
different compositions of COVID-19 variables, the model with the lowest value for AIC and BIC will be 
chosen to analyze. Furthermore, the dispersion parameter of the negative binomial regression will be 
estimated by SPSS as this also provides the lowest values for both AIC and BIC (Burnham et al., 2004; 
Daraghmi et al., 2012; Retallack & Ostendorf, 2020; Vrieze, 2012).  
 
After the general discussion of the results from the negative binomial regression model for every 
individual counting category, the analysis will further elaborate and interpret these results by 
comparing the results with the hypotheses formulated beforehand. In the last chapter, this study will 
answer the main research question, formulate conclusions and put these results in perspective.    
 
Summarizing the approach and aim for the upcoming analysis chapter, this study will be able to 
examine the impact of COVID-19 on total traffic volume, traffic volume by mode and traffic volume by 
mode over different daytime periods while other (potentially) influential variables (weather, population 
characteristics & road classification) are accounted for.  
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4. ANALYSIS 
 
After the previous methodology chapter had provided insight and guidelines in the approach for 
analysis, this chapter will contain the results. First, the results of each individual model will be described 
after which the results are compared with the hypotheses which were formulated in the previous 
chapter. In doing so, after conducting the analysis followed by discussing and interpreting the results, 
this study will be able to answer the main question and formulate conclusions in the next chapter. 
 
§4.1 Total traffic volume 
Starting off with the largest counting category of total all modes, consisting of the sum of cars, 
pedestrians and cyclists counted between 7:00 AM and 6:00 PM on counting days in both March 2019 
and March 2022 in Toronto. The model including both COVID-19 independent variables was elected 
as it provided lower AIC and BIC values in comparison to models including only one COVID-19 
variable (see appendix 4.1 for model comparisons of AIC & BIC values). Thus, a negative binomial 
regression was run through SPSS for this model and provided the table of 4.1 below. In this table, the 
Goodness of Fit test provides a Pearson Chi-Square Value/df of 1.101 – indicating that the whole model 
fits the data well. The Omnibus Test further shows that the whole model is significant which marks that 
the model, and its included set of predictors, are a better fit than the intercept only (null) model.   
 

Table 4.1 Analysis of total traffic intensity 

Model parameters 											β   SE IRR 
(Intercept) 7.155 *** 1.8700 1280.615 
Daily new COVID-19 cases Canada -0.064 * 0.0254 0.938 
Stringency Index Ontario -0.014 * 0.0059 0.986 
Temperature 0.001   0.0135 1.001 
Precipitation -0.028   0.0225 0.972 
Windspeed 0.008   0.0084 1.008 
Population density 0.016   0.0136 1.016 
Females % 0.034   0.0380 1.035 
Age weighted average 0.006   0.0229 1.006 
Income 2020 weighted average 0.003   0.0019 1.003 
Arterial dominant crossings 0.364 ** 0.1390 1.439 
Local dominant crossings -0.638 *** 0.1635 0.528 
Goodness of Fit Value df Value/df 
Pearson Chi-Square 146.436 133 1.101 
Log Likelihood -1477.111 

  

AIC 2980.223 
  

BIC 3019.010 
  

Omnibus Test Value df Sig. 
Likelihood Ratio Chi-Square 95.884 11 <.001 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001 

 

Table 4.1 further provides insight in the model parameters for total traffic volume (for entire SPSS 
output see appendix 4.2).  Regarding COVID-19, both Daily new COVID-19 cases Canada (B = -0.064, 
SE = 0.0254) and Stringency Index Ontario (B = -0.014, SE = 0.0059) proved to be significant and 
negative predictors of the log count of total traffic intensity in Toronto. The incidence rate ratio (IRR) 
indicates that for every one unit increase in COVID-19 cases in thousands, the counting incidence rate 
of total traffic volume decreases by 6.2 percent. For every one unit increase in stringency, total traffic 
volume is expected to drop by around 1.4 percent. Thus, COVID-19 is significantly and negatively 
related to total traffic volume. 
 
Regarding controlling variables, the weather- and population characteristics related variables did not 
show significant regression coefficients. In this model, only road classification variables proved to be 
significant predictors outside of COVID-19 related variables. The expected loc count of total traffic 
volume on the reference category of collector dominant crossings is lower than on Arterial dominant 
crossings (B = 0.364, SE = 0.1390) but higher on Local dominant crossings (B = -0.638, SE = 0.1635). 
Looking at the IRR and comparing both included crossing categories to the reference category of 
collector dominant crossings individually, arterial crossings indicate around 43.9 percent more traffic 
counts while traffic volume on local crossings is around 47.2 percent less. 
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§4.1.1 Total traffic volumes during AM rush-hour 
The second model that is run contains the traffic volume over all modes during the AM rush-hour in 
Toronto between 7:00 AM and 10:00 AM. The model including both COVID-19 independent variables 
provided lower AIC and BIC values in comparison to models including only one COVID-19 variable 
(see appendix 4.1 for model comparisons of AIC & BIC values). With both COVID-19 independent 
variables included, a negative binomial regression was run with SPSS (see appendix 4.3 for entire 
output). The Goodness of Fit and Omnibus Test in table 4.2 indicated that the current model suits the 
data well and is significantly better than the intercept only model respectively. Thus, the model 
parameters in table 4.2 can be analyzed.  
 

Table 4.2 Analysis of total traffic intensity during morning rush-
hours 
Model parameters β   SE IRR 
(Intercept) 6.024 *** 1.8672 413.331 
Daily new COVID-19 cases Canada -0.062 * 0.0258 0.940 
Stringency Index Ontario -0.017 ** 0.0060 0.983 
Temperature 0.015   0.0139 1.015 
Precipitation -0.075 *** 0.0205 0.928 
Windspeed 0.020 * 0.0089 1.020 
Population density -0.005   0.0138 0.995 
Females % 0.038   0.0374 1.039 
Age weighted average -0.010   0.0227 0.990 
Income 2020 weighted average 0.004 * 0.0020 1.004 
Arterial dominant crossings 0.304 * 0.1409 1.355 
Local dominant crossings -0.535 *** 0.1657 0.586 
Goodness of Fit Value df Value/df 
Pearson Chi-Square 146.134 133 1.099 
Log Likelihood -1268.099 

  

AIC 2562.198 
  

BIC 2600.985 
  

Omnibus Test Value df Sig. 
Likelihood Ratio Chi-Square 86.991 11 <.001 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001 

 
Starting with Daily new COVID-19 cases Canada (B = -0.062, SE = 0.0258), which is a significant negative 
predictor of morning traffic - for every one thousand cases added the incidence rate of AM traffic 
volume decreases by a factor of 0.940 (-6%). The Stringency Index Ontario (B = -0.017, SE = 0.0060) 
also is a significant negative predictor, as the incidence rate of AM traffic counts decrease by a factor 
of 0.983 (-1.7%) for every one unit increase on the stringency index. Therefore, COVID-19 is both 
significantly and negatively related to morning rush hour traffic volumes.  
 
Regarding weather variables, both Precipitation (B = -0.075, SE = 0.0205) and Windspeed (B = 0.020, 
SE = 0.0089) are significant predictors. For every added millimeter of precipitation that falls, morning 
traffic is decreased by 7.2 percent. Contrary to the negative predictor of precipitation, windspeed is a 
positive predictor: for every one kilometer an hour acceleration in windspeed, AM traffic volume 
increases with a factor of 1.02 roughly. 
 
The Income 2020 weighted average (B = 0.004, SE = 0.0020) is the only significant predictor from the 
population characteristics. For every one unit increase in income, AM rush-hour traffic volume is 
expected to increase by a factor of 1.004. This means that a higher average 2020 income in aggreggate 
dissemination areas within a 300 meter perimeter of a counting location is related to higher traffic 
volumes during the morning rush-hour.   
 
Both road classification variables proved to be significant predictors for AM traffic when referenced to 
collector dominant crossings. Arterial dominant crossings (B = 0.304, SE = 0.1409) was a positive 
predictor, indicating a log AM traffic count increase of 0.304 points as opposed to collector dominant 
crossings while Local dominant crossings (B = -0.535, SE = 0.1657) negatively predict AM traffic, with a 
log count decrease of 0.535 in comparison to collector dominant crossings. This translates to 35.5 
percent more and 41.4 percent less AM rush-hour traffic when arterial and local dominant crossings 
are compared to collector dominant crossings respectively.  
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§4.1.2 Total traffic volumes druing off-peak hours 
To analyze the total traffic intensity between rush-hours, the third model focusses upon total traffic 
volume between 10:00 AM and 4:00 PM (IB total). Models including either only COVID-19 cases or the 
stringency index contained higher values for AIC and BIC than the model inculding both COVID-19 
related independent variables (see appendix 4.1). Therefore, the negative binomial regression was run 
on the latter model and provided satisfactory results regarding the Goodness of Fit and Omnibus Test 
in table 4.3, indicating that the current model both suits the data well and is a significant improvement 
over the intercept-only model. For the entire SPSS output see the appendix 4.4. Due to these satisfying 
test results the model parameters in table 4.3 can be investigated.   
 

Table 4.3 Analysis of total traffic intensity during off-peak hours 
Model parameters  β   SE IRR 
(Intercept) 6.151 *** 1.9286 469.179 
Daily new COVID-19 cases Canada -0.066 * 0.0260 0.936 
Stringency Index Ontario -0.012   0.0061 0.989 
Temperature -0.006   0.0139 0.994 
Precipitation -0.006   0.0245 0.994 
Windspeed 0.002   0.0084 1.002 
Population density 0.024   0.0139 1.024 
Females % 0.029   0.0394 1.029 
Age weighted average 0.020   0.0236 1.021 
Income 2020 weighted average 0.002   0.0020 1.002 
Arterial dominant crossings 0.405 ** 0.1430 1.500 
Local dominant crossings -0.680 *** 0.1678 0.506 
Goodness of Fit Value df Value/df 
Pearson Chi-Square 147.633 133 1.110 
Log Likelihood -1365.746     
AIC 2757.491     
BIC 2796.278     
Omnibus Test Value df Sig. 
Likelihood Ratio Chi-Square 99.514 11 <.001 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001 

 
When analyzing the impact of the COVID-19 variables, daily cases was a significant predictor while 
mitigating policy (p = 0.058) was not. The variable of Daily new COVID-19 cases Canada (B = -0.066, 
SE = 0.0260) negatively predicted traffic intensity between AM and PM rush-hours: for every thousand 
COVID-19 cases added the off-peak traffic counts decrease by a factor of 0.936 which translates into 
a 6.4 percent drop. Thus, counting days containing more newly confirmed positive test results for 
COVID-19 are related to having less traffic volume during off-peak hours, between 10:00 AM and 4:00 
PM.  
 
Regarding controlling variables, both variable groups of weather and population characteristics did not 
contain any significant predictors. Road classification variables were significant predictors, as Arterial 
dominant crossings (B = 0.405, SE = 0.1430) contained around 50 percent more off-peak traffic volume 
than the reference category of collector dominant crossings. The Local dominant crossings (B= -0.680, 
SE = 0.1678) contained around 48.4 percent less traffic than the reference category. 
 
§4.1.3 Total traffic volumes during the PM rush-hour 
The following model focusses on the traffic intensity between the hours of 4:00 PM and 6:00 PM. Alike 
previous models analyzing total traffic volumes, the model including both COVID-19 cases and 
stringency index provided the lowest AIC and BIC values when compared to models including only 
one of two COVID-19 related variables (see appendix 4.1). Thus, the model incorporating both daily 
cases and stringency was elected to conduct a negative binomial regression on (for entire SPSS output 
see appendix 4.5). Resulting from this computation the table 4.4 was created, displaying the Goodness 
of Fit and Omnibus Test results, indicate that the data suits the model well and is significantly better 
than the intercept-only (null) model respectively.  
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Table 4.4 Analysis of total traffic intensity during afternoon rush-
hours 
Model parameters β   SE IRR 
(Intercept) 5.994 *** 1.8711 401.188 
Daily new COVID-19 cases Canada -0.058 * 0.0253 0.943 
Stringency Index Ontario -0.015 * 0.0060 0.985 
Temperature 0.004   0.0135 1.004 
Precipitation -0.032   0.0224 0.969 
Windspeed 0.009   0.0084 1.009 
Population density 0.020   0.0136 1.020 
Females % 0.039   0.0382 1.040 
Age weighted average -0.001   0.0231 0.999 
Income 2020 weighted average 0.003   0.0019 1.003 
Arterial dominant crossings 0.348 * 0.1385 1.416 
Local dominant crossings -0.669 *** 0.1634 0.512 
Goodness of Fit Value df Value/df 
Pearson Chi-Square 144.659 133 1.088 
Log Likelihood -1301.168 

  

AIC 2628.335 
  

BIC 2667.122 
  

Omnibus Test Value df Sig. 
Likelihood Ratio Chi-Square 98.650 11 <.001 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001 

 
Given the satisfactory test results in table 4.4, the model parameters can be analyzed. Starting with the 
COVID-19 related variables, the model states that both Daily new COVID-19 cases Canada (B = -0.058, 
SE = 0.0253) and Stringency Index Ontario (B = -0.015, SE = 0.0060) are significant and negative 
predictors of total traffic during the PM rush-hour. For every thousand units increase in COVID-19 
cases, the PM rush hour traffic volume is expected to drop by around 5.7 percent. Regarding the 
strictness of mitigating policy, every one unit increase in the Ontario stringency index drops PM rush-
hour traffic by 1.5 percent. Therefore, COVID-19 can be understood to have a negative effect on 
afternoon rush-hour traffic volumes as both COVID-19 related variables are significantly and negatively 
related. 
 
Apart from COVID-19 related variables, the only controlling variables that provided significant 
predictors of PM rush-hour traffic were the road classification variables. On Arterial dominant crossings 
(B = 0.348, SE = 0.1385), one could expect 41.6 percent more PM rush-hour traffic than on collector 
dominant crossings while Local dominant crossings (B = -0.669, SE = 0.1634) contained roughly 48.8 
percent less traffic volume respectively. 
 
§4.2 Car-oriented models 
Table 4.5 shows that, all car-oriented models did not provide the lowest AIC and BIC scores for the 
model incorporating both COVID-19 cases and the Stringency Index. As opposed to the models 
analyzing total traffic, pedestrians and cycling intensities, the four car-oriented models displayed the 
lowest AIC and BIC values for the model only including daily new COVID-19 cases. Therefore, this 
study only includes daily new COVID-19 cases as related COVID-19 independent variable in the 
analysis focusing on the modal intensity of cars.  
 

Table 4.5 AIC and BIC value comparison of 
car-oriented models with different COVID-
19 variables included 

AIC BIC 

Cars total (COVID-19 cases & Stringency Index) 2918.416 2957.202 
Cars total (only COVID-19 cases) 2917.055 2952.859 
Cars total (only Stringency Index) 2929.830 2965.633 
Cars AM (COVID-19 cases & Stringency Index) 2509.469 2548.255 
Cars AM (only COVID-19 cases) 2509.425 2545.228 
Cars AM (only Stringency Index) 2518.472 2554.276 
Cars IB (COVID-19 cases & Stringency Index) 2697.311 2736.097 
Cars IB (only COVID-19 cases) 2695.654 2731.457 
Cars IB (only Stringency Index) 2708.492 2744.295 
Cars PM (COVID-19 cases & Stringency Index) 2556.446 2595.233 
Cars PM (only COVID-19 cases) 2554.859 2590.662 
Cars PM (only Stringency Index) 2568.736 2604.540 
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§4.2.1 Cars: total intensity 
The fifth model of this study will analyze the modal intensity of cars in Toronto between the hours of 
7 AM and 6 PM in March 2019 and 2022. For this model only the COVID-19 related variable of cases 
was included. A negative binomial regression was run where the Goodness of Fit and Omnibus Test 
indicated that the data suits the model well and is significantly superior to the null model respectively 
(see table 4.6). For the entire SPSS output, see appendix 4.6. Given the satisfactory results in model fit, 
the parameters in table can be analyzed.  
 

Table 4.6 Analysis of total car intensity 
Model parameters β   SE IRR 
(Intercept) 5.681 ** 1.8685 293.369 
Daily new COVID-19 cases Canada -0.111 *** 0.0195 0.895 
Temperature -0.006   0.0137 0.995 
Precipitation -0.017   0.0223 0.983 
Windspeed 0.005   0.0079 1.005 
Population density 0.001   0.0134 1.001 
Females % 0.038   0.0383 1.039 
Age weighted average 0.037   0.0223 1.037 
Income 2020 weighted average 0.001   0.0019 1.001 
Arterial dominant crossings 0.413 ** 0.1412 1.511 
Local dominant crossings -0.632 *** 0.1622 0.532 
Goodness of Fit Value df Value/df 
Pearson Chi-Square 138.104 134 1.031 
Log Likelihood -1446.528     
AIC 2917.055     
BIC 2952.859     
Omnibus Test Value df Sig. 
Likelihood Ratio Chi-Square 92.392 10 <.001 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001 

 
The model argues that Daily new COVID-19 cases Canada (B = -0.111, SE = 0.0195) is a significant and 
negative predictor. Since COVID-19 cases is a negative predictor for total car traffic volume, the IRR 
of 0.895 indicates that for every thousand units increase in COVID-19 cases the modal usage of cars is 
decreased by 10.5 percent. Thus, the more COVID-19 cases on a given day, the less car intensity is 
expected.  
 
Regarding the controlling variables, both the weather- and population-related variables did not prove 
to be significant predictors for total car volumes . However, road classification was significant though, 
as total car intensity on Arterial dominant crossings (B = 0.413, SE = 0.1412) is expected to be 51.1 
percent higher than on collector dominant crossings. For Local dominant crossings (B = -0.632, SE = 
0.1622) the direction of effect was reversed, as on this specific type of crossing 46.8 percent less cars 
were counted than on the reference category of collector dominant crossings.  
 
§4.2.2 Cars: AM rush-hour intensity 
To analyze the modal usage of cars during the AM rush-hour (7:00 AM – 10:00 AM), the sixth model 
of this study was run. This model only included the COVID-19 variable of cases due to having lower 
AIC and BIC scores (see table 4.5). For the total SPSS output see Appendix 4.7. The Goodness of Fit 
in table 4.7 shows that the data has a good fit to the model. The Omnibus Test in table 4.7 further 
argues that this model is a significant improvement over the intercept-only model. Due to satisfying 
results in these tests, the model parameters can be studied.  
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Table 4.7 Analysis of car intensity during morning rush-hours  
Model parameters β   SE IRR 
(Intercept) 4.018 * 1.8888 55.581 
Daily new COVID-19 cases Canada -0.113 *** 0.0196 0.893 
Temperature 0.005   0.0139 1.005 
Precipitation -0.060 ** 0.0207 0.941 
Windspeed 0.014   0.0083 1.014 
Population density -0.010   0.0139 0.990 
Females % 0.049   0.0380 1.050 
Age weighted average 0.024   0.0222 1.025 
Income 2020 weighted average 0.002   0.0020 1.002 
Arterial dominant crossings 0.400 ** 0.1436 1.491 
Local dominant crossings -0.576 *** 0.1654 0.562 
Goodness of Fit Value df Value/df 
Pearson Chi-Square 136.326 134 1.017 
Log Likelihood -1242.713     
AIC 2509.425     
BIC 2545.228     
Omnibus Test Value df Sig. 
Likelihood Ratio Chi-Square 86.358 10 <.001 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001 

 
Starting with the COVID-19 variable of Daily new COVID-19 cases Canada (B = -0.113, SE = 0.0196) 
which is a significant and negative predictor for car intensity during the morning rush-hour. For every 
thousand more COVID-19 cases on a day, the modal usage of cars is expected to decrease by around 
10.7 percent. This indicates that COVID-19, in this case the daily positive test results on the national 
level, has a negative impact on car volumes as the more cases on a given day is related to less overall 
modal usage of cars. 
 
Looking at the controlling variables focused upon weather and population characteristics, only the 
weather-related variable of Precipitation (B = -0.060, SE = 0.0207) proved to be significant in predicting 
AM rush-hour car intensity. As precipitation is a negative predictor, the more rain, snow or hail on a 
given day, the less car intensity is expected between 7 AM and 10 AM. The IRR of 0.941 of precipitation 
indicates that for every one unit (= millimeters) increase in precipitation AM rush-hour car intensity 
drops by 5.9 percent.  
 
Furthermore, both road classification variables are significant. When both Arterial dominant crossings (B 
= 0.400, SE = 0.1436) and Local dominant crossings (B = -0.576, SE = 0.1654) are compared to the 
reference category of collector dominant crossings, arterial crossings contain 49.1 percent more car 
traffic while local dominant crossings have 43.8 percent less car intensity during the AM rush-hour. 
 
§4.2.3 Cars: intensity between AM and PM rush-hour 
The seventh model of this study focusses upon the modal usage of cars between the hours of 10:00 
AM and 4:00 PM. As table 4.5 made clear, the model only including COVID-19 cases proved to be the 
best choice to perform the negative binomial regression on. The entire SPSS output of this model can 
be found in appendix 4.8. Looking at the Goodness of Fit test results in table 4.8, the results indicate 
that the data suits the current model well. The Omnibus test, also found in table 4.8, further argues that 
the current model is significantly better than the intercept-only (null) model. Thus, the parameter 
estimates can be analyzed.  
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Table 4.8 Analysis of car intensity during off-peak hours 
Model parameters β   SE IRR 
(Intercept) 4.970 ** 1.9213 144.075 
Daily new COVID-19 cases Canada -0.109 *** 0.0202 0.896 
Temperature -0.010   0.0140 0.990 
Precipitation 0.002   0.0240 1.002 
Windspeed 0.001   0.0080 1.001 
Population density 0.006   0.0137 1.006 
Females % 0.034   0.0396 1.035 
Age weighted average 0.041   0.0229 1.042 
Income 2020 weighted average 0.001   0.0020 1.001 
Arterial dominant crossings 0.430 ** 0.1447 1.537 
Local dominant crossings -0.673 *** 0.1661 0.510 
Goodness of Fit Value df Value/df 
Pearson Chi-Square 143.190 134 1.069 
Log Likelihood -1335.827     
AIC 2695.654     
BIC 2731.457     
Omnibus Test Value df Sig. 
Likelihood Ratio Chi-Square 94.956 10 <.001 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001 

 
COVID-19 cases proved to be a significant and negative predictor as the IRR of 0.896 of the variable 
Daily new COVID-19 cases Canada (B = -0.109, SE = 0.0202) indicates that for every thousand cases 
added the off-peak modal usage of cars is expected to drop by 10.4 percent. This means that the more 
COVID-19 cases on a given day, the less cars are counted between 10 AM and 4 PM. 
 
Regarding controlling variables, weather and population characteristics did not provide significant 
predictors.  Road classification was significant, as Arterial dominant crossings (B = 0.430, SE = 0.1447) 
counted 53.7 percent more cars than on collector dominant crossings while Local dominant crossings (B 
= -0.637, SE = 0.1661) counted 49.0 percent less cars respectively.  
 
§4.2.4 Cars: PM rush-hour traffic intensity 
The last car-oriented model concerns the modal usage of cars between the afternoon rush-hours of 
4:00 PM and 6:00 PM. As was visible in table 4.5, the model including only the COVID-19 cases was 
the best choice due to having lower AIC and BIC values. Thus, on this model was conducted a negative 
binomial regression, for which the entire SPSS output is in the appendix at 4.9.  The Goodness of Fit in 
table 4.9 indicates that the data suits well to the current model while the Omnibus Test argues that the 
current model is a significant improvement over the intercept-only model. Therefore, the parameter 
estimates in table 4.9 can be studied to provide insight in what are significant predictors for afternoon 
rush-hour modal usage of cars.  
 

Table 4.9 Analysis of car intensity during afternoon rush-hours 
Model parameters β   SE IRR 
(Intercept) 4.517 * 1.8522 91.603 
Daily new COVID-19 cases Canada -0.111 *** 0.0192 0.895 
Temperature -0.005   0.0136 0.995 
Precipitation -0.017   0.0221 0.983 
Windspeed 0.006   0.0079 1.007 
Population density 0.003   0.0133 1.003 
Females % 0.035   0.0381 1.035 
Age weighted average 0.039   0.0224 1.040 
Income 2020 weighted average 0.001   0.0019 1.001 
Arterial dominant crossings 0.396 ** 0.1401 1.485 
Local dominant crossings -0.628 *** 0.1610 0.534 
Goodness of Fit Value df Value/df 
Pearson Chi-Square 131.964 134 0.985 
Log Likelihood -1265.429     
AIC 2554.859     
BIC 2590.662     
Omnibus Test Value df Sig. 
Likelihood Ratio Chi-Square 93.105 10 <.001 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001 
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Starting with Daily new COVID-19 cases Canada (B = -0.111, SE = 0.0192) which was a significant and 
negative predictor for PM rush-hour car intensity. For every thousand COVID-19 cases increase on a 
day, the PM car intensity drops by 10.5 percent. Thus, the more COVID-19 cases the less afternoon 
rush-hour modal usage of cars is expected.  
 
Looking at the controlling variables, both weather and population characteristics variable groups did 
not provide a single significant predictor. However, road classification was significant, as Arterial 
dominant crossings (B = 0.396, SE = 0.1401) counted 48.5 percent more cars while Local dominant 
crossings (B = -0.628, SE = 0.1610) counted 46.6 percent less cars when both crossing types are 
compared to the reference category of collector dominant crossings.  
 
§4.3 Pedestrian-oriented models 
Walking will be the first active mode that will be analyzed in this paragraph. Starting with analyzing 
total pedestrian volumes first, the mode of walking will be further analyzed during AM rush-hours, 
between both AM and PM rush-hours and, lastly, during the PM rush-hour.  
 
§4.3.1 Pedestrians: total traffic intensity 
The ninth model of this analysis will assess the total volumes of pedestrians between 7:00 AM and 6:00 
PM in Toronto in March 2019 and 2022. As is visible in appendix 4.1, the model including both COVID-
19 cases and policy strictness provides the lowest values for AIC and BIC and, thus, is the model of 
choice. A negative binomial regression was performed (see appendix 4.10 for entire SPSS output) which 
provided arguments indicating that the data suits well to the model (see Goodness of Fit in table 4.10) 
and is significantly better than the intercept-only model (see Omnibus Test in table 4.10). Thus, the 
parameter estimates can be analyzed.  
 

Table 4.10 Analysis of total pedestrian intensity 
Model parameters β   SE IRR 
(Intercept) 10.568 *** 3.0235 38869.646 
Daily new COVID-19 cases Canada 0.164 *** 0.0449 1.179 
Stringency Index Ontario -0.066 *** 0.0110 0.936 
Temperature 0.025   0.0213 1.025 
Precipitation -0.057   0.0432 0.945 
Windspeed 0.018   0.0136 1.018 
Population density 0.066 ** 0.0216 1.068 
Females % 0.025   0.0629 1.025 
Age weighted average -0.121 *** 0.0377 0.886 
Income 2020 weighted average 0.002   0.0036 1.002 
Arterial dominant crossings 0.276   0.2350 1.317 
Local dominant crossings -0.460   0.2707 0.631 
Goodness of Fit Value df Value/df 
Pearson Chi-Square 135.219 133 1.017 
Log Likelihood -1222.654     
AIC 2471.309     
BIC 2510.096     
Omnibus Test Value df Sig. 
Likelihood Ratio Chi-Square 115.275 11 0.000 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001 

 
Starting with the COVID-19 related variables, both Daily new COVID-19 cases Canada (B = 0.164, SE = 
0.0449) and Stringency Index Ontario (B = -0.066, SE = 0.0110) are significant predictors. However, the 
direction of prediction is different as COVID-19 cases are positive indicators while mitigating policy is 
a negative indicator for total pedestrian intensity. This means that for every thousand added COVID-
19 cases, the incidence rate of pedestrian counts increases by 17.9 percent. The Stringency Index 
shows a reverse effect, where for every one unit increase in policy strictness the incidence rate drops 
approximately 6.4 percent. Thus, regarding total pedestrian volumes, the effect of the COVID-19 
variables is opposite of one another.  
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Weather related variables did not provide any significant predictors for morning rush hour pedestrian 
volumes. Regarding population characteristics, Population density (B = 0.066, SE = 0.0216) was a 
significant and positive predictor of morning pedestrian counts: for every increase in population density 
around the counting location by thousand people per square kilometer, the incidence rate of pedestrian 
count increases by 6.8 percent. The population characteristic of Age weighted average (B = -0.121, SE = 
0.0377) was also a significant predictor, albeit negative as a one unit increase in the weighted average 
age around the counting location decreases the incidence rate of pedestrian counts by 11.4 percent.  
 
Lastly, both independent variables of road classifications were insignificant. Thus, the road 
classification structure of the crossings could not significantly affect the volumes of pedestrians 
throughout the day of counting.  
 
§4.3.2 Pedestrians: AM rush-hour traffic intensity 
The first period of day to be investigated for pedestrian traffic volumes is the AM rush-hour, spanning 
from 7:00 AM until 10:00 AM. For this specific model, the AIC and BIC values are the lowest when 
both COVID-19 related variables are included, as is visible in appendix 4.1. A negative binomial 
regression was performed (for entire SPSS output see appendix 4.11) and provided the table 4.11. In 
the Goodness of Fit test, it becomes clear that the data suits well to the model while the Omnibus Test 
argues that this model is significantly better than the null model. Therefore, the parameter estimates 
in table 4.11 can be analyzed.  
 

Table 4.11 Analysis of pedestrian intensity during morning rush-
hours 
Model parameters β   SE IRR 
(Intercept) 10.013 *** 3.0170 22312.883 
Daily new COVID-19 cases Canada 0.150 *** 0.0449 1.162 
Stringency Index Ontario -0.068 *** 0.0108 0.935 
Temperature 0.048 * 0.0217 1.050 
Precipitation -0.113 *** 0.0355 0.893 
Windspeed 0.030 * 0.0139 1.030 
Population density 0.036   0.0220 1.037 
Females % 0.017   0.0616 1.017 
Age weighted average -0.138 *** 0.0370 0.871 
Income 2020 weighted average 0.005   0.0036 1.005 
Arterial dominant crossings 0.080   0.2378 1.084 
Local dominant crossings -0.138   0.2694 0.871 
Goodness of Fit Value df Value/df 
Pearson Chi-Square 152.727 133 1.148 
Log Likelihood -996.171     
AIC 2018.342     
BIC 2057.129     
Omnibus Test Value df Sig. 
Likelihood Ratio Chi-Square 99.009 11 <.001 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001 

 
Once again, Daily new COVID-19 cases Canada (B =0.150, SE = 0.0049) was a significant positive 
predictor while Stringency Index Ontario (B = -0.068, SE = 0.0108) was a significant negative predictor, 
this time for the log count of pedestrians during the morning rush-hour. Every thousand units increase 
in COVID-19 cases leads to an increase in pedestrian count by around 16.2 percent, while a one unit 
increase in mitigating policy leads to a 6.5 percent drop. Hence, although both COVID-19 are 
significant predictors of AM pedestrian counts, the direction of effect differs from one another.  
 
During the morning rush hour, all weather variables proved to be significant predictors for pedestrians. 
Positive predictors were Temperature (B = 0.048, SE = 0.0217) and Windspeed (B = 0.030, SE = 0.0139, 
p = 0.032). For every one unit increase in temperature and windspeed the incidence rate of AM 
pedestrian count increases by 5 percent and 3 percent respectively. Precipitation (B = -0.113, SE = 
0.0355) was a negative and significant predictor, as for every added millimeter of precipitation the 
incidence rate of morning rush-hour pedestrian counts decreases by 10.7 percent.  
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Regarding the characteristics of the population surrounding the counting location, only Age weighted 
average (B = -0.138, SE = 0.0370) was a significant (negative) predictor of morning rush hour pedestrian 
volumes. When the average age is increased by one year, the incident rate of AM pedestrian counts 
decreases by 12.9 percent. Lastly, a certain road classification structure being dominant at a crossing 
did not provide any significant predictors for the volumes of pedestrians between 7:00 AM and 10:00 
AM.  
 
§4.3.3 Pedestrians: traffic intensity between AM and PM rush-hours 
To analyze the volumes of pedestrians outside of rush-hours, this section will study the modal usage 
of walking between the hours of 10:00 AM and 4:00 PM. For this model, the lowest AIC and BIC values 
were found in the model including both COVID-19 related variables (see appendix 4.1). Thus, the 
eleventh negative binomial regression model of this study was run with both cases and stringency 
included and can be found entirely in the Appendix at 4.12. Once again, the Goodness of Fit proved 
that the data is a good fit for the model while the Omnibus Test indicates that this model is superior to 
the intercept-only model. As this model passed the tests for data suitability and significancy, the model 
parameters in table of 4.12 can be used for analysis. 
 

Table 4.12 Analysis of pedestrian intensity during off-peak hours 
Model parameters β   SE IRR 
(Intercept) 9.438 ** 3.0906 12552.610 
Daily new COVID-19 cases Canada 0.166 *** 0.0458 1.181 
Stringency Index Ontario -0.064 *** 0.0113 0.938 
Temperature 0.011   0.0219 1.011 
Precipitation -0.024   0.0513 0.976 
Windspeed 0.014   0.0137 1.014 
Population density 0.075 *** 0.0219 1.078 
Females % 0.014   0.0646 1.014 
Age weighted average -0.098 * 0.0393 0.907 
Income 2020 weighted average 0.000   0.0038 1.000 
Arterial dominant crossings 0.365   0.2404 1.441 
Local dominant crossings -0.578 * 0.2744 0.561 
Goodness of Fit Value df Value/df 
Pearson Chi-Square 137.212 133 1.032 
Log Likelihood -1106.248     
AIC 2238.495     
BIC 2277.282     
Omnibus Test Value df Sig. 
Likelihood Ratio Chi-Square 117.005 11 0.000 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001 

 
Starting with the COVID-19 related variables, the predictors were significant and either positive, in the 
case of Daily new COVID-19 cases Canada (B = 0.166, SE = 0.0458), or of negative nature, in the case 
of Stringency Index Ontario (B = -0.064, SE = 0.0113). When the COVID-19 cases are increased by one 
thousand, the incidence rate of pedestrian counts between rush-hours is expected to increase by 
around 18.1 percent.  For mitigating policy, every one unit increase in strictness will cause off-peak 
pedestrian counts to drop by 6.2 percent. Thus, although both COVID-19 variables are significant 
predictors, it is important to note that the direction of their effect are opposite. 
 
Moving on to the controlling variables, weather-related variables were not significant but both 
Population density (B = 0.075, SE = 0.0219) and Age weighted average (B = -0.098, SE = 0.0393) were 
significant population characteristics predictors. Density is a positive predictor where for every 
thousand unit increase in density, the incidence rate of pedestrian counts increases by 7.8 percent. Age 
was a negative predictor meaning that for every one year increase the incidence rates for the modal 
usage of walking decreases by 9.3 percent.  
 
Regarding crossing characteristics, only the variable of Local dominant crossings (B = -0.578, SE = 
0.2744) was a significant predictor. Being a predictor of negative nature, local dominant crossings 
counted around 43.9 percent less pedestrians outside of rush-hours than the reference category of 
collector dominant crossings. 
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§4.3.4 Pedestrians: PM rush-hour traffic intensity 
The twelfth model of this analysis will be the last pedestrian-oriented model. In this model the volumes 
of pedestrians will be analyzed during the PM rush-hour, between the hours of 4:00 PM and 6:00 PM. 
As was the case for all previous pedestrian-oriented model, the lowest AIC and BIC values were given 
for the model including both COVID-19 related variables (see appendix 4.1). A negative binomial 
regression was run and the results in the Goodness of Fit and Omnibus Test in table 4.13 stated that 
the data fits the model well and is significantly better than the intercept-only model respectively - the 
entire SPSS output can be found in the appendix at 4.13. Thus, due to these satisfying results, the 
parameter estimates in table 4.13 can be further analyzed.  
 

Table 4.13 Analysis of pedestrian intensity during afternoon rush-
hours 
Model parameters β   SE IRR 
(Intercept) 8.720 ** 3.1031 6123.189 
Daily new COVID-19 cases Canada 0.171 *** 0.0464 1.186 
Stringency Index Ontario -0.069 *** 0.0115 0.933 
Temperature 0.029   0.0219 1.030 
Precipitation -0.064   0.0426 0.938 
Windspeed 0.019   0.0143 1.019 
Population density 0.074 *** 0.0222 1.077 
Females % 0.042   0.0648 1.043 
Age weighted average -0.128 *** 0.0384 0.880 
Income 2020 weighted average 0.003   0.0037 1.003 
Arterial dominant crossings 0.270   0.2404 1.311 
Local dominant crossings -0.577 * 0.2808 0.562 
Goodness of Fit Value df Value/df 
Pearson Chi-Square 132.179 133 0.994 
Log Likelihood -1058.181     
AIC 2142.363     
BIC 2181.149     
Omnibus Test Value df Sig. 
Likelihood Ratio Chi-Square 120.432 11 0.000 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001 

 
As was the same for every previous pedestrian-oriented result regarding COVID-19 related variables, 
Daily new COVID-19 cases Canada (B = 0.171, SE = 0.0464) was a significant and positive predicto. For 
every thousand added COVID-19 cases the incident rate of pedestrian count during PM rush-hour 
increases by 18.6 percent. Likewise for Stringency Index Ontario (B = -0.069, SE = 0.0115), which was 
again a significant and negative predictor where for every one unit increase in policy strictness the 
incident rate of afternoon rush-hour pedestrian counts decreased by 6.7 percent.  
 
Weather related variables did not contain a single significant predictor, to the contrary of population 
characteristics where both Population density (B = 0.074, SE = 0.0222) and Age weighted average (B = -
0.128, SE = 0.0384) are conceived as significant predictors of the incidence rate of PM pedestrian 
volumes. For every thousand unit increase in population density the incidence rate of pedestrian counts 
between 4:00 PM and 6:00 PM increases by 7.7 percent. The effect of age is reverse as the PM 
pedestrian incidence rate decreases by 12 percent when average age is risen by one year.  
 
Lastly, Local dominant crossings (B = -0.577, SE = 0.2808) was the only significant (negative) predictor 
for road classification when it was referred to collector dominant crossings. On local dominant 
crossings, the incidence rate of pedestrian volume during the PM rush-hour decreases by 43.8 percent 
when compared to the reference category of collector dominant crossings. 
  



 - 39 - 

§4.4 Cyclists-oriented models 
The second and last active mode that will be analyzed is the modal usage of bikes in Toronto in March 
2019 and March 2022. First, the total modal volumes will be analyzed regardless of period of day after 
which cyclists’ intensity will be analyzed in three different daytime periods: AM rush-hour, between 
AM and PM rush-hour and PM rush-hour.  
 
§4.4.1 Cyclists: total traffic intensity 
The thirteenth model of this analysis will be the first cyclists-oriented model. In this model, cycling 
intensity will be analyzed between the hours of 7:00 AM and 6:00 PM. The modal structure of choice 
is the model including both COVID-19 related variables due to having lower AIC and BIC scores (see 
appendix 4.1). With this model, a negative binomial regression was run (see appendix 4.14 for entire 
SPSS output). The results indicate that the data fits the model well (Goodness of Fit in table 4.14) while 
the model also is significantly better than the null model which solely incorporates the intercept 
(Omnibus Test in table 4.14). Therefore, the parameters in table 4.14 can be used for analysis.  
 

Table 4.14 Analysis of total cycling intensity 
Model parameters β   SE IRR 
(Intercept) 15.890 *** 3.3763 7956964.921 
Daily new COVID-19 cases Canada 0.327 *** 0.0479 1.387 
Stringency Index Ontario -0.060 *** 0.0112 0.942 
Temperature 0.102 *** 0.0233 1.108 
Precipitation -0.126 *** 0.0347 0.882 
Windspeed 0.010   0.0149 1.010 
Population density 0.071 ** 0.0232 1.074 
Females % -0.231 *** 0.0711 0.793 
Age weighted average -0.021   0.0415 0.979 
Income 2020 weighted average 0.001   0.0042 1.001 
Arterial dominant crossings 0.318   0.2316 1.375 
Local dominant crossings -0.105   0.2702 0.900 
Goodness of Fit Value df Value/df 
Pearson Chi-Square 191.731 133 1.442 
Log Likelihood -756.059     
AIC 1538.119     
BIC 1576.906     
Omnibus Test Value df Sig. 
Likelihood Ratio Chi-Square 119.458 11 0.000 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001 

 
Firstly, while focusing upon the COVID-19 related variables, the model states that Daily new COVID-
29 cases Canada (B = 0.327, SE = 0.0479) is a significant and positive predictor: for every increase of 
COVID-19 cases by thousand, the incidence rate of total cyclists increases by 38.7 percent. 
Additionally, the Stringency Index Ontario (B = -0.060, SE = 0.0112) is also a significant predictor 
although the effect is reversed as a one unit increase in policy strictness will lead to 5.8 percent drop 
in the incidence rate of cyclists between 7:00 AM and 6:00 PM. Thus, it is important to note that, even 
though both COVID-19 related variables are significant predictors for total cycling intensity, the 
direction of effect are opposite: positive with daily case counts but negative for stringency.  
 
Moving on to the controlling variables. Starting with the weather-related variables, where both 
Temperature (B = 0.102, SE = 0.0233) and Precipitation (B = -0.126, SE = 0.0347) are significant 
predictors. For every increase in temperature by 1 degree Celsius, the incidence rate of total cyclists 
increases by 10.78 percent. When precipitation increases by 1 millimeter, the same incidence rate 
drops by 11.81 percent. The population characteristics of Population density (B = 0.071, SE = 0.0232) 
and Females% (B = -0.241, SE = 0.0711) were significant predictors, the first being positive of nature 
and the latter negative. When population density is increased by a thousand units, the incidence rate 
of total cyclists increases by 7.4 percent.  The effect is reverse for the relative share of females, as for 
every 1 percent increase in female share the incidence rate drops by 20.7 percent.  
 
Lastly, the road classification variables did not provide a single significant predictor. Thus, the specific 
road classification structure of a crossing at the counting location was not significantly related to 
volumes of cyclists between 7:00 AM and 6:00 PM. 
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§4.4.2 Cyclists: AM rush-hour traffic intensity 
To analyze the bike counts during the AM rush-hours, between 7:00 AM and 10:00 AM, the fourteenth 
negative binomial regression model was run. Both COVID-19 related variables were included as this 
composition provided the lowest values for AIC and BIC (see appendix 4.1). The entire SPSS output of 
this model can be found in the appendix at 4.15. In table 4.15 the Goodness of Fit indicates that this 
model contains data that fits well while the Omnibus Test states that the model also is significantly 
better than the intercept-only (null) model. Consequently, the model parameters in table 4.15 can be 
analyzed to assess the modal usage of bikes during the morning rush-hour.  
 

Table 4.15 Analysis of cycling intensity during morning rush-hours 
Model parameters β   SE IRR 
(Intercept) 16.880 *** 3.6538 21425770.559 
Daily new COVID-19 cases Canada 0.318 *** 0.0525 1.375 
Stringency Index Ontario -0.071 *** 0.0121 0.931 
Temperature 0.110 *** 0.0259 1.116 
Precipitation -0.144 *** 0.0408 0.866 
Windspeed 0.008   0.0161 1.008 
Population density 0.027   0.0262 1.028 
Females % -0.269 *** 0.0727 0.764 
Age weighted average -0.018   0.0467 0.983 
Income 2020 weighted average 0.001   0.0042 1.001 
Arterial dominant crossings 0.120   0.2597 1.127 
Local dominant crossings -0.103   0.3011 0.903 
Goodness of Fit Value df Value/df 
Pearson Chi-Square 216.916 133 1.631 
Log Likelihood -543.014     
AIC 1112.028     
BIC 1150.814     
Omnibus Test Value df Sig. 
Likelihood Ratio Chi-Square 98.650 11 0.000 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001 

 
Once again, the COVID-19 related variables provided significant predictors, being the positive 
predictor of Daily new COVID-19 cases Canada (B = 0.318, SE = 0.0525) and the negative predictor of 
Stringency Index Ontario (B = -0.071, SE = 0.0121). For every 1000 increase in COVID-19 cases, the 
incidence rate for AM cyclists count increase by around 37.5 percent. The negative predictive nature 
of mitigating policy implies that for every 1 unit increase in strictness, the incidence rate for morning 
rush-hour cyclists declines by 6.9 percent.  
 
Temperature (B = 0.010, SE = 0.0259) is the first significant predictor for weather variables. Being 
positive of nature, a one-degree Celsius increase relates to an increase in the incidence rate for AM 
cyclists by 11.6 percent. On the other hand, Precipitation (B = -0.144, SE = 0.0408) is a significant 
weather predictor as well. Since precipitation is negative of nature, more rainfall is associated with less 
cycling: for every 1-millimeter increase in precipitation causes a 13.4 percent decline in the counts of 
cyclists between 7:00 AM and 10:00 AM.  
 
Regarding population characteristics in the proximity of counting locations, only Females% (B = -0.269, 
SE = 0.0727) is a significant predictor. Being a negative predictor, every 1 percent increase in female 
share of the total neighborhood population leads the incidence rate of cyclists’ volume during the 
morning rush-hour to drop by 23.6 percent.  
 
Lastly, the road classification structure of crossings did not provide any significant predictors in 
comparison to the reference category of collector dominant crossings. 
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§4.4.3 Cyclists: traffic intensity during off-peak hours 
This section will analyze bike counts between the hours of 10:00 AM - 4:00 PM and will provide this 
research with the ability to analyze the modal usage of cycling between rush-hours. The entire SPSS 
output of the fifteenth negative binomial regression model can be found in Appendix 4.16. For this 
model, the AIC and BIC values were lowest for the model including both COVID-19 cases and policy 
stringency (see appendix 4.1). This model, as the Goodness of Fit in table 4.16 makes visible, contains 
data that fits well to the model. Furthermore, as Omnibus Test in table 4.16 shows, the current model 
is superior to the intercept-only (null) model. Due to satisfying results in these two tables, the model 
parameters in table 4.16 can be analyzed to assess off-peak cycling volumes.  
 

Table 4.16 Analysis of cycling intensity during off-peak hours 
Model parameters β   SE IRR 
(Intercept) 12.430 *** 3.2860 250195.225 
Daily new COVID-19 cases Canada 0.287 *** 0.0468 1.333 
Stringency Index Ontario -0.050 *** 0.0110 0.951 
Temperature 0.080 *** 0.0233 1.083 
Precipitation -0.112 ** 0.0380 0.894 
Windspeed 0.009   0.0146 1.009 
Population density 0.083 *** 0.0224 1.087 
Females % -0.185 ** 0.0695 0.831 
Age weighted average -0.023   0.0399 0.977 
Income 2020 weighted average 0.003   0.0041 1.003 
Arterial dominant crossings 0.425   0.2246 1.530 
Local dominant crossings -0.086   0.2725 0.918 
Goodness of Fit Value df Value/df 
Pearson Chi-Square 163.059 133 1.226 
Log Likelihood -635.370     
AIC 1296.739     
BIC 1335.526     
Omnibus Test Value df Sig. 
Likelihood Ratio Chi-Square 110.141 11 0.000 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001 

 
Focusing on COVID-19, both variables are significant. Daily new COVID-19 cases Canada (B = 0.287, 
SE = 0.0468) is a positive predictor where an increase of COVID-19 cases by a thousand will cause a 
33.3 percent increase in the incidence rate of cyclists between 10:00 AM and 4:00 PM. The other 
COVID-19 related variable of Stringency Index Ontario (B = -0.050, SE = 0.0110), although it was also 
significant, was a negative predictor of nature as every one unit increase in strictness causes the 
incidence rate of cyclists in between the rush-hours to drop by 4.9 percent approximately.  
 
Regarding climatological conditions, Temperature (B = 0.080, SE = 0.0233) was a significant positive 
predictor: for every one-degree Celsius increase in temperature, the incidence rate of in between rush-
hours cyclists rises by 8.3 percent. Precipitation (B = -0.112, SE = 0.0380) was a significant negative 
predictor as for every 1-millimeter increase in precipitation the incidence rate of cyclists between 10:00 
AM and 4:00 PM decreases by 10.6 percent.  
 
Two out of four population characteristics variables were significant predictors of off-peak cycling: 
Population density (B = 0.080, SE = 0.0224) and Females% (B = -0.185, SE = 0.0695). The positive 
predictor of density reports an estimate effect size where every increase in population density by a 
thousand will lead to an increase in the incidence rate of in between rush-hour cyclists by 8.7 percent. 
The share of females is a negative predictor on the same incidence rate: for every 1 percent increase 
in the female share among the population leads to a 16.9 percent decrease. 
 
Road classification did not provide any significant predictors, even though the p-value of arterial 
dominant crossings came close (p = 0.059) it still was not below the 0.05 significancy level. Thus, road 
classification has no significant on the incidence rates of in between rush-hours cyclists when both 
arterial and local dominant crossings are compared to the reference category of collector dominant 
crossings. 
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§4.4.4 Cycling: PM rush-hour traffic intensity 
Being the last cyclist and active mode-oriented model, as well as the final model of the entire analysis, 
this studies’ sixteenth negative binomial regression model will analyze cycling volumes during the PM 
rush-hour (4:00 PM – 6:00 PM). Alike the modal structure of all the previous analysis on active modal 
intensity, this model includes both COVID-19 variables of cases and stringency as it provided the 
lowest AIC and BIC values (see appendix 4.1). The entire SPSS output is visible in appendix 4.17. This 
model, according to the Goodness of Fit and Omnibus Test in table 4.17, suits the data well and is 
significantly superior to the intercept-only (null) model respectively. Therefore, the model parameters 
can be analyzed to assess cycling volumes during the afternoon rush-hour. 
 

Table 4.17 Analysis of cycling intensity during afternoon rush-hours 
Model parameters β   SE IRR 
(Intercept) 16.474 *** 3.8263 14280478.468 
Daily new COVID-19 cases Canada 0.395 *** 0.0550 1.485 
Stringency Index Ontario -0.068 *** 0.0127 0.935 
Temperature 0.122 *** 0.0255 1.129 
Precipitation -0.133 *** 0.0408 0.876 
Windspeed 0.008   0.0167 1.008 
Population density 0.073 ** 0.0259 1.076 
Females % -0.247 ** 0.0805 0.781 
Age weighted average -0.040   0.0474 0.961 
Income 2020 weighted average -0.001   0.0048 0.999 
Arterial dominant crossings 0.279   0.2584 1.322 
Local dominant crossings -0.259   0.3016 0.772 
Goodness of Fit Value df Value/df 
Pearson Chi-Square 189.150 133 1.422 
Log Likelihood -596.572     
AIC 1219.144     
BIC 1257.931     
Omnibus Test Value df Sig. 
Likelihood Ratio Chi-Square 119.891 11 0.000 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001 

 
Once again, both COVID-19 related variables are significant predictors and with the same directional 
estimates of effect size as Daily new COVID-19 cases Canada (B = 0.395, SE = 0.0550) is a positive 
predictor while the Stringency Index Ontario (B = -0.068, SE = 0.0127) is a predictor of negative nature. 
The estimate of effect size of COVID-19 cases can be interpreted that for every 1000 cases increase in 
daily COVID-19 cases, the incidence rate of PM rush-hour cyclists counts increases by 48.5 percent. 
Regarding mitigating policy, every one unit increase in strictness leads to a 6.5 percent decrease in the 
PM rush-hour incidence rate of cyclists.  
 
Temperature (B = 0.122, SE = 0.0127) and Precipitation (B = -0.133, SE = 0.0408, p = 0.001) showed that 
these variables are significant predictors of afternoon rush-hour cycling volumes, being of positive and 
negative nature respectively. When the values of the significant predictors increase by one unit, the 
incidence rates of PM rush-hour cycling increase by 12.9 percent in the case of rising temperature, 
while these rates drop by 12.4 percent due to more precipitation.  
 
The first predictor of population characteristics that is significant is Population density (B = 7.323E-05). 
Being positive of nature, every increase in density by one thousand people per square kilometer will 
lead to an increase in the incidence rate of PM cyclists counts by 7.6 percent. Females% (B = -0.247, 
SE = 0.0805) is the second negative predictor. For this variable is a positive predictor, every 1 percent 
increase in female share relates to a 21.9 percent decline in the incidence rate of afternoon rush-hour 
counts of cyclists.  
 
Lastly, road classification did not provide any significant predictors. Thus, it can be concluded that the 
incidence rates of PM rush-hour cyclists cannot be significantly predicted by the road class structure 
of crossings when compared to the reference category of collector dominant crossings.  
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§4.5 Comparison of analysis results with hypotheses  
Now all the 16 negative binomial regression models have been discussed in the previous paragraphs, 
this paragraph will compare the analysis results with the hypotheses which were formulated 
beforehand in the methodology chapter at §3.6 (see table 3.7). Table 4.18 presents an overview of the 
analysis results is upon which the hypotheses will be either accepted or rejected per counting category. 
 
Table 4.18: Overview table of analysis results on significancy (Sig.), incidence rate ratio (IRR) and one unit increase 
effect (OUIE) 
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Sig. * *               ** *** 
IRR 0.938 0.986 1.001 0.972 1.008 1.016 1.035 1.006 1.003 1.439 0.528 

OUIE -6.2% -1.4% +0.1% -2.8% +0.8% +1.6% +3.5% +0.6% +0.3% +43.9% -47.2% 

AM total 
Sig. * **   *** *       * * *** 
IRR 0.940 0.983 1.015 0.928 1.020 0.995 1.039 0.990 1.004 1.355 0.586 

OUIE -6.0% -1.7% +1.5% -7.2% +2.0% -0.5% +3.9% -1.0% +0.4% +35.5% -41.4% 

IB total 
Sig. *                 ** *** 
IRR 0.936 0.989 0.994 0.994 1.002 1.024 1.029 1.021 1.002 1.500 0.506 

OUIE -6.4% -1.1% -0.6% -0.6% +0.2% +2.4% +2.9% +2.1% +0.2% +50.0% -49.4% 

PM total 
Sig. * *               * *** 
IRR 0.943 0.985 1.004 0.969 1.009 1.020 1.040 0.999 1.003 1.416 0.512 

OUIE -5.7% -1.5% +0.4% -3.1% +0.9% +2.0% +4.0% -0.1% +0.3% +41.6% -48.8% 

Cars total 
Sig. ***                 ** *** 
IRR 0.895 0.995 0.983 1.005 1.001 1.039 1.037 1.001 1.511 0.532 

OUIE -10.5% -0.5% -1.7% +0.5% +0.1% +3.9% +3.7% +0.1% +51.1% -46.8% 

Cars AM 
Sig. ***     **           ** *** 
IRR 0.893 1.005 0.941 1.014 0.990 1.050 1.025 1.002 1.491 0.562 

OUIE -10.7% +0.5% -5.9% +1.4% -1.0% +5.0% +2.5% +0.2% +49.1% -43.8% 

Cars IB 
Sig. ***                 ** *** 
IRR 0.896 0.990 1.002 1.001 1.006 1.035 1.042 1.001 1.537 0.510 

OUIE -10.4% -1.0% +0.2% +0.1% +0.6% +3.5% +4.2% +0.1% +53.7% -49.0% 

Cars PM 
Sig. ***                 ** *** 
IRR 0.895 0.995 0.983 1.007 1.003 1.035 1.040 1.001 1.485 0.534 

OUIE -10.5% -0.5% -1.7% +0.7% +0.3% +3.5% +4.0% +0.1% +48.5% -46.6% 

Peds total 
Sig. *** ***       **   ***       
IRR 1.179 0.936 1.025 0.945 1.018 1.068 1.025 0.886 1.002 1.317 0.631 

OUIE +17.9% -6.4% +2.5% -5.5% +1.8% +6.8% +2.5% -11.4% +0.2% +31.7% -36.9% 

Peds AM 
Sig. *** *** * *** *     ***       
IRR 1.162 0.935 1.050 0.893 1.030 1.037 1.017 0.871 1.005 1.084 0.871 

OUIE +16.2% -6.5% +5.0% -10.7% +3.0% +3.7% +1.7% -12.9% +0.5% +8.4% -12.9% 

Peds IB 
Sig. *** ***       ***   *     * 
IRR 1.181 0.938 1.011 0.976 1.014 1.078 1.014 0.907 1.000 1.441 0.561 

OUIE +18.1% -6.2% +1.1% -2.4% +1.4% +7.8% +1.4% -9.3% – +44.1% -43.9% 

Peds PM 
Sig. *** ***       ***   ***     * 
IRR 1.186 0.933 1.030 0.938 1.019 1.077 1.043 0.880 1.003 1.311 0.562 

OUIE +18.6% -6.7% +3.0% -6.2% +1.9% +7.7% +4.3% -12.0% +0.3% +31.1% -43.8% 

Bike total 
Sig. *** *** *** ***   ** ***         
IRR 1.387 0.942 1.108 0.882 1.010 1.074 0.793 0.979 1.001 1.375 0.900 

OUIE +38.7% -5.8% +10.8% -11.8% +1.0% +7.4% -20.7% -2.1% +0.1% +37.5% -10.0% 

Bike AM 
Sig. *** *** *** ***     ***         
IRR 1.375 0.931 1.116 0.866 1.008 1.028 0.764 0.983 1.001 1.127 0.903 

OUIE +37.5% -6.9% +11.6% -13.4% +0.8% +2.8% -23.6% -1.7% +0.1% +12.7% -9.7% 

Bike IB 
Sig. *** *** *** **   *** **         
IRR 1.333 0.951 1.083 0.894 1.009 1.087 0.831 0.977 1.003 1.530 0.918 

OUIE +33.3% -4.9% +8.3% -10.6% +0.9% +8.7% -16.9% -2.3% +0.3% +53.0% -8.2% 

Bike PM 
Sig. *** *** *** ***   ** **         
IRR 1.485 0.935 1.129 0.876 1.008 1.076 0.781 0.961 0.999 1.322 0.772 

OUIE +48.5% -6.5% +12.9% -12.4% +0.8% +7.6% -21.9% -3.9% -0.1% +32.2% -22.8% 
* P ≤ 0.05  |  ** P ≤ 0.01  | *** P ≤ 0.001  

 
§4.5.1 H1: Higher daily new COVID-19 cases in Canada will negatively predict car volumes 
As the results of the four car-oriented models show, daily new COVID-19 cases in thousands was a 
significant predictor. With IRR ranging between 0.896 (Cars PM) and 0.893 (Cars AM), COVID-19 cases 
was a negative predictor amongst all car-oriented models. This in in line with previous studies found 
similar effects where COVID-19 cases had a negative impact on car volumes (see supporting literature 
of H1 in table 3.7). Thus, hypothesis 1 is accepted.   
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§4.5.2 H2: Higher daily new COVID-19 cases in Canada will positively predict active 
modal volumes 
Although COVID-19 cases negatively predicted cars, previous studies have shown that during the 
COVID-19 pandemic active modes of travel have grown in terms of volumes and modal share (see 
supporting literature H2 in table 3.7). This study provides similar results, as there were significantly 
more pedestrians and cyclists counted on days containing more daily confirmed COVID-19 cases. For 
walking, the IRR varied between 1.162 (Peds AM) and 1.186 (Peds PM) while it ranged between 1.333 
(Bike IB) and 1.485 (Bike PM) for cycling. Therefore, hypotheses 2 is accepted as COVID-19 cases was 
a significant and positive predictor of active modal volumes. 
 
§4.5.3 H3: Higher Stringency Index scores in Ontario will negatively predict car volumes 
Since the inclusion of the independent variable Stringency Index Ontario did not provide lower AIC 
and BIC scores (see table 3.5), the third hypotheses of this study cannot be tested. 
 
§4.5.4 H4: Higher Stringency Index scores in Ontario will positively predict active modal 
volumes 
Previous research has argued that during the COVID-19 pandemic people have been using active travel 
options more (see supporting literature H4 in table 3.7). However, our results indicate the opposite 
effect: higher stringency index scores significantly and negatively predict traffic volumes of both 
pedestrians and cyclists. With pedestrians’ IRRs ranging from 0.938 (Peds IB) and 0.933 (Peds PM) and 
cyclists’ IRRs lying between 0.951 (Bike IB) and 0.931 (Bike AM), the Stringency Index Ontario 
significantly and negatively predicted all volumes of models focused on active modal usage.  
 
Although both COVID-19 cases and Stringency Index 
proved to be significant predictors, the direction of 
effect is opposite. This requires explanation, which is 
provided by figure 4.19. In this figure, it becomes 
visible that during March 2022 the Stringency Index 
value decreased - indicating that mitigating measures 
were lifted somewhere between 10 and 22 March 
2022. On the other hand, daily confirmed COVID-19 
cases did not decrease during the month of March 
2022. In fact, there is a trend with higher daily case 
counts towards the end of March 2022.  
 
As is seen in figures 4.20 and 4.21, there are higher 
counting day averages of both walking and cycling 
towards the end of March 2022 as well. This explains 
why COVID-19 cases is a positive predictor: near the 
end of the month there are higher daily confirmed 
cases and higher counting day averages for the active 
modes of walking and cycling. The reason for the 
Stringency Index Ontario being a predictor of 
negative nature lies in the fact that the policy 
becomes less strict during March 2022 while average 
counting day volumes of pedestrians and cyclists 
increase towards the end of March 2022.  
 
However, despite this explanation of why the 
direction of effects differ from each individual 
COVID-19 related independent variable, the fourth 
hypothesis of this study will be rejected.  
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Figure 4.19: COVID-19 related variable values on 
March 2022 counting days in Toronto
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Figure 4.20: March 2022 counting day average of total 
pedestrian intensity in Toronto
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Figure 4.21: March 2022 counting day average of total 
cycling intensity in Toronto
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§4.5.5 H5: Higher temperature will positively predict active modal volumes 
Previous studies analyzing the impact of temperature on active modal usage patterns have argued that 
higher temperatures are related to higher volumes of active travel modes (see supporting literature H5 
in table 3.7). When looking at the results of this study, the same pattern is seen with pedestrian volumes 
during the morning rush-hours: the higher the average counting day temperature, the more pedestrians 
are counted between the hours of 7 AM and 10 AM. The same pattern is seen with cyclists regardless 
the time of day as temperature was a significant and positive predictor of cycling during all four bike-
oriented models. Thus, hypotheses 5 can be accepted for all bike-oriented models but not for every 
pedestrian-oriented model as only morning rush-hours pedestrian volumes is significantly predicted 
by a higher temperature.  
 
§4.5.6 H6: More precipitation will negatively predict active modal volumes 
With active modal users being less protected from precipitation, previous studies have shown that on 
days with precipitation there are less people walking and cycling than on clear days (see supporting 
literature H6 in table 3.7). Regarding the pedestrian-oriented models, more precipitation was only a 
significant and negative predictor for morning rush-hour pedestrian volumes. For cycling, precipitation 
proved to be a significant predictor of negative nature in all the four cycling-oriented models. 
Therefore, hypothesis 6 can only be accepted for morning rush-hour pedestrian volumes and for all 
models focusing on cycling volumes.  
 
§4.5.7 H7: Higher windspeed will negatively predict active modal volumes 
Alike precipitation, previous research have shown that higher windspeeds is associated with less 
volumes of pedestrians and cyclists (see supporting literature H7 in table 3.7). However, our study 
results show a opposite pattern: for every active mode counting category where windspeed was 
significant, windspeed was a positive predictor. Hence, the seventh hypothesis of this study is rejected 
for all counting categories.  
 
§4.5.8 H8: Higher population density will positively predict traffic volumes all counting 
categories 
Previous studies have shown that densely populated areas contain more traffic than less dense areas 
(See supporting literature H8 in table 3.7). Looking at the results of this study, this the case for all active 
mode-oriented models except the models looking at pedestrian and cycling volumes during the 
morning rush-hour. Thus, hypothesis 8 is accepted for active modal intensities between the peak hours, 
during the afternoon rush-hour and between 7 AM and 6 PM. The same hypothesis is rejected for all 
car-oriented models and AM rush-hour active modal volumes.  
 
§4.5.9 H9: Higher share of females in population will negatively predict active modal 
volumes 
Areas containing a higher share of females among its population was a significant and negative 
predictor for all cycling-oriented models. This is in line with previous studies who found higher cycling 
volumes in areas with a higher share of male inhabitants (see supporting literature H9 in table 3.7). 
Hence, regarding cycling, hypothesis 9 is accepted while it is rejected for the active mode of walking 
as it did not prove to be a significant predictor for that mode.  
 
§4.5.10 H10: Higher average age in population will negatively predict active modal 
volumes 
Scholars have previously argued that areas housing younger people depict higher volumes of 
pedestrians and cyclists (see table 3.7 for supporting literature H10). In the analysis of this study, the 
same was the case for pedestrians as all pedestrian-oriented models show that a higher weighted 
average age in the counting location area is associated with less volumes of pedestrians. Regarding 
cycling, age did not prove to be a significant predictor. Thus, hypothesis 10 is accepted for pedestrians 
but rejected for cyclists.  
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§4.5.11 H11: Higher average income in population will positively predict car volumes 
The results of this study show that income was only a significant predictor for the counting category 
of AM total, depicting the total traffic intensity during the morning rush-hour between 7 AM and 10 
AM. Being a significant predictor of positive nature, counting areas earning a higher total income per 
person in 2020 contain higher total traffic volumes during the morning rush-hour period. This is in line 
with previous studies indicating that richer areas contain more traffic (see table 3.7 for supporting 
literature H11). Hence, the eleventh hypothesis of this study is only accepted for total traffic volumes 
during the morning rush-hour. Thus, the hypothesis is rejected for total traffic volumes during the entire 
counting day (7 AM – 6 PM), during the off-peak hours and PM rush-hours as well as for all car-oriented 
counting categories.  
 
§4.5.12 H12: Higher average income in population will negatively predict active modal 
volumes 
Despite previous research arguing that income is related to active modal volumes (for supporting 
literature of H12, see table 3.7), this study has not found similar effects when analyzing the modal 
volumes of walking and cycling. Consequently, hypothesis 12 is rejected for all active mode-oriented 
models.  
 
§4.5.13 H13: Arterial dominant crossings will positively predict traffic volumes across all 
counting categories 
Previously, studies have provided results that roads which are higher in hierarchy contain more traffic 
intensity regardless of travel mode (see supporting literature H13 in table 3.7). In this study, the same 
effect is found in the models looking at total traffic intensity and all car-oriented models. Therefore, 
hypothesis 13 is accepted for these beforementioned models but is rejected for the models focusing on 
pedestrians and cyclists as arterial dominant crossings was not a significant predictor. 
 
§4.5.14 H14: Local dominant crossings will negatively predict traffic volumes across all 
counting categories 
Scholars have argued that roads of less hierarchy contain lower overall traffic volumes (see table 3.7 
for supporting literature of H14). In this study, the same effect is found in the models looking at total 
traffic intensity, all car-oriented models and pedestrian volumes during the off-peak period and 
afternoon rush-hour. For these models, local dominant crossings contained predicted significantly less 
traffic than on the reference category of collector dominant crossings. Hence, hypothesis 14 is accepted 
for these models but is rejected in the case of total pedestrian intensity, morning rush-hour pedestrian 
volumes and for all cycling-oriented models. 
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5. CONCLUSION 
 
Since the beginning of the COVID-19 pandemic in early 2020, many studies have observed significant 
changes in mobility patterns (Bert et al., 2021; Kim et al., 2021; Paul et al., 2022). Most notably were 
the changes in modal usage patterns as people were using more cars and active modal options (walking 
& cycling) during the pandemic as opposed to the pre-pandemic period (Abdullah et al., 2020; Ehsani 
et al., 2021; Lee & Eom, 2022; Shaer & Haghsenas, 2021; Van der Drift et al., 2021). However, most of 
these studies were conducted in times characterized by imposed mitigating measures like lockdowns, 
social distancing and stay-at-home policies. Although these studies provided the much-needed insight 
on how modal usage patterns was influenced during the 2020-2021 peak years of the pandemic, there 
is more understanding required on the persistence of these changes, specifically during times less 
affected by the pandemic and its side-effects. 
 
Since the Omicron coronavirus variant became dominant at the 2021-2022 turn of the year, 
policymakers have started to lift their mitigating measures – making the travel choices, options and 
behavior of people the freest since the start of the pandemic. This development and change in the 
pandemic situation provides a window of opportunity for this study in which the pre-pandemic and 
post-lockdown differences in modal usage patterns can be investigated. To evaluate the post-lockdown 
influence of COVID-19 on modal usage patterns, this study has analyzed traffic count data in Toronto 
during the pre-pandemic month of March 2019 and the post-lockdown month of March 2022. The 
traffic count data, which were obtained through the open data portal of the City of Toronto (Toronto 
Transportation Services, 2022), was analyzed through four modal categories: total traffic intensity, cars, 
pedestrians and cyclists. These four categories where once more divided into categories based upon 
the time of day, being the entire counting day (7 AM – 6 PM), morning rush-hour (7 AM – 10 AM), off-
peak period (10 AM – 4 PM) and afternoon rush-hour (4 PM – 6 PM). This allowed this study to analyze 
traffic volumes per mode and per daytime period.  
 
To capture the influence of COVID-19, both daily confirmed COVID-19 cases in Canada (Ritchie et al., 
2022) and the daily value of the Stringency Index in Ontario (Blatvatnik School of Government & 
University of Oxford (2022) were included in models analyzing total traffic, pedestrian and cyclist 
volumes. Regarding car volumes, only daily COVID-19 cases was included as it provided lower AIC 
and BIC scores. Apart from COVID-19 related variables, this study included other independent 
variables based upon previous literature and research findings. These variables included counting day 
related weather statistics in Toronto (temperature, precipitation & windspeed), population 
characteristics in proximity of the counting location (density, female share, age & income) and the road 
classification of the counting location (arterial, collector or local dominant crossings).  
 
In total, this study analyzed daily traffic count data of 146 counting locations in Toronto, which included 
69 counting days in March 2019 and 77 counting days in March 2022. By running a negative binomial 
regression model for each of the 16 counting categories (four modal categories divided in four temporal 
categories), while accounting for other potentially relevant variables to travel mode intensity, this study 
intended to fulfill its aim to examine the impact of the COVID-19 pandemic on modal usage volumes. 
With the values of the COVID-19-related variables at a constant zero during March 2019, the different 
daily values of the same variables during post-lockdown month of March 2022 allowed this study to 
see whether COVID-19 had a significant impact on modal usage volumes and if this impact was positive 
or negative in nature as opposed to the pre-pandemic month of March 2019. Now the analysis has 
been conducted and discussed in the previous chapter, this study is now able to formulate an answer 
to the main research question: 
 

How did COVID-19 daily confirmed cases and policy strictness influence the modal volumes of cars, 
pedestrians and cyclists in Toronto? 
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Starting with cars, where the daily amount of newly confirmed COVID-19 cases in Canada proved to 
be a significant and negative predictor in all car-oriented models. This indicates that on days containing 
more daily confirmed COVID-19 cases there are significantly less cars counted during the entire 
counting day, including morning and afternoon rush-hours and the off-peak period. Thus, the pandemic 
negatively influenced the traffic volumes of cars.   
 
Moving onto active modal volumes, this study provides results that indicate that the COVID-19 
pandemic had a significant influence on the modal volumes of walking and cycling regardless the time 
of day. However, the direction of the influence of the included COVID-19-related variables were 
opposite: daily COVID-19 cases positively predicted active modal volumes while the Stringency Index 
was a negative predictor. The reason for these differing outcomes can be found when the March 2022 
trends for active modal volumes, daily COVID-19 cases and Stringency Index is analyzed (see §4.5.4 
and figures 4.19 – 4.21). Due to the higher infectious nature of the then dominant coronavirus strain 
Omicron, COVID-19 cases were rising as March 2022 progressed. At the same time, Omicron posed a 
lower risk to public health allowing for mitigating measures to be less strict resulting in less barriers for 
mobilitiy (Daria & Islam, 2022; Taylor, 2022; Wang & Han, 2022). By combining the viral characteristics 
of Omicron and its associated policy adaptations with the trend of higher active modal volumes 
towards the end of March 2022 explains the dichotomy in direction of effects of COVID-19 cases and 
policy strictness.  
 
Al this taken into consideration, this study summarizes and concludes regarding the main research 
question that the COVID-19 pandemic had a significant influence on volumes of cars, pedestrians and 
cyclists. However, the direction of effect differs per travel mode and per COVID-19 related variable 
while it was not affected by time of day. While daily confirmed cases of COVID-19 significantly 
predicted less volumes of cars, significantly higher volumes of active modes were counted on days 
containing (more) confirmed cases. Regarding the strictness of the policy aiming to mitigate harmful 
effects of COVID-19, the study results argue that stricter policy is significantly associated with less 
volumes of active modes. Thus, this study concludes that COVID-19 cases had a positive effect on 
active modal volumes while policy strictness negatively influenced the traffic intensity of cars, 
pedestrians and cyclists.  
 

6. DISCUSSION 
 
Now this study has answered its main research question and formulated its final conclusions, this 
chapter will form the closing piece of this study. First, findings of this study will be put in perspective 
towards results from other related studies and theory whereafter relevant implications of the results of 
this study will be discussed. Thereafter, there will be reflected upon this study, including its limitations. 
Lastly, this study closes off by providing suggestions for future research. 
 
§6.1 Study findings in perspective to previous research 
Notwithstanding that, as of late 2022, it still is too soon to formulate final conclusions on the degree, 
direction and magnitude of the lasting impact of COVID-19, an increasing amount of literature and 
scholars have argued that the pandemic is likely to have enduring (long-term) consequences and 
influence on travel mobility, most notably on modal usage patterns with increasing volumes of active 
modes (Paul et al., 2022). Most mobility experts feel the same way, as a study by Zhang et al. (2021) 
displayed that the lion’s share of participating experts (64.8%), specialized in mobilities or other related 
disciplines, supported the view that the COVID-19 pandemic will induce significant changes in mobility 
policy within five years. Apart from policymakers, the perspective of the public is important as people 
have gotten acquainted and accustomed to different mobility behaviors during the pandemic.  
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Kellerman (2022), after doing research on possible post-COVID mobility patterns, concluded that:  
 

Post-COVID mobilities will presumably reflect people’s basic needs or triggers for 
mobilities, their pre-COVID, and COVID mobility experiences, as well as some societal-
economic forces pushing for mobility changes.  

Kellerman (2022, p.12) 
 
This study provides similar evidence as its results indicate that COVID-19 had a significant impact on 
modal usage patterns. However, if these changes continue to exist in the post-pandemic era is 
uncertain: previous crises have shown that travel mobility can recover and sometimes even surpass 
pre-crises levels (Li et al., 2010; Novelli et al., 2018). Hence, there currently is no scientific consensus 
on whether this will be the case for the COVID-19 pandemic even though there is a general agreement 
over the fact that the COVID-19 pandemic had an unprecedented impact on travel mobility (Kim et al., 
2021). However, the temporal extend and severity of this impact is unknown as scholars have either 
not ruled or are supportive of the idea that the pandemic induced significant changes in mobility that 
will endure on the long run (Das et al., 2021; De Haas et al., 2020; Griffiths et al., 2021; Kellerman, 2022; 
Zhang et al., 2021).Loa et al., (2021) describes and explains both perspectives on the persistence of the 
pandemic induced changes as follows: 
 

On the one hand, a global pandemic is certainly significant enough to bring about long-
term changes (…) Such a change would likely lead to an increased preference for 
individual modes and a reduced propensity for using public transit. On the other hand, 
given that the pandemic is effectively an external shock, the cessation of the pandemic 
could result in people returning to their pre-pandemic modality profile.  

Loa et al. (2021, p 81) 
 

Considering all this, whether this study has provided evidence of a significant long-term change 
in mobility patterns remains to be seen and proven in the future. Nevertheless, the results of this 
study are alike previous scientific research indicating more people traveling on foot or by bike 
than before the COVID-19 pandemic (Abdullah et al., 2020; Ehsani et al., 2021; Lee & Eom, 2022; 
Shaer & Haghsenas, 2021; Van der Drift et al., 2021). Furthermore, the results indicate that the 
pandemic modal usage patterns continue during the early stages of the post-lockdown period in 
which mitigating measures are lifted. When people continue to prefer using more active travel 
modes than before has consequences. These will be discussed in the following paragraph.  
 
§6.2 Implications of this study 
The results of this study imply several indications for society and its policymakers. First, the data shows 
that policymakers have an effective tool in hand with regard to decreasing total traffic intensity, most 
notably on pedestrians and cyclists volumes - a result which has also been found in previous research 
(Askitas et al., 2021; Awad-Núñez et al., 2021; Jenelius & Cebecauer, 2020; Shaer & Haghshenas, 2021). 
By adapting the strictness of their policy based upon the changing dynamic a current ongoing crisis, in 
this case the COVID-19 pandemic, policymakers can significantly affect the mobility of its people when 
deemed necessary.  
 
Second, the data shows that the March active modal usage patterns had increased during the COVID-
19 pandemic as daily cases were a significant and positive predictor of pedestrians and cyclists counts. 
This fact is thought-provoking. Despite the decreasing influence of teleworking, online education and 
stay-at-home policy in March 2022, meaning there were less motivations to travel than in March 2019, 
there were more active travel mode users counted on days with more COVID-19 cases on that day. If 
the trend of rising volumes of pedestrians and cyclists continues to exist in the future adaptation is 
required from both society and the policymakers. More active modal users means more vulnerable 
travelers are sharing the road with other (quicker) modes like cars. Thus, raising societal awareness 
and enhancing the road safety of these active modes should become the focal point of future mobility 
policy. This is particularly the case in car-dominant cities, like Toronto and other Northern-American 
cities, as in these cities motorists are not yet accustomed to sharing the roads with more vulnerable 
active mode users (Greene et al., 2022; Paul et al., 2022). Policymakers should act upon this as soon as 
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possible as times with less mobility restricting measures could be accompanied by a rise in overall 
traffic meaning that even more active modal users are sharing the road with rising numbers of 
commuter traffic. This also includes motorists who were previously teleworking and have not yet been 
accustomed to more pedestrians and cyclists in traffic. Thus, there is a strong incentive for 
policymakers to focus upon what changing modal usage patterns implies for their jurisdictions.  
 
Lastly, as our results indicate a rising trend of active modal usage during the COVID-19 pandemic, this 
trend can act as a window of opportunity for policymakers to promote active modes even further. 
Stimulating active modes will help policymakers and society as it can reduce congestion, 
environmental pollution and the consumption of space that are associated with motorized travel modes 
which are dependent on finite sources of fossil fuels (Jasiński, 2022; Moreno, Allam, Chabaud, Gall & 
Pratlong, 2021). For people to continue their more active modal pandemic mobility patterns or even 
further increase the modal share of active modes, scholars have argued that policymakers should invest 
more in improving the infrastructure to accommodate rising numbers of pedestrians and cyclists. Apart 
from creating more bike lanes and walking paths (Ehsani et al., 2021; Pan, Geertman, Deal, Jiao & 
Wang, 2022; Zubair, Karoonsoontawong & Kanitpong, 2022) active travel should become more 
attractive in financial terms. This can be achieved through subsidies while non-active private modal 
usage are discouraged at the same time (Das et al., 2021; Griffiths et al., 2021). Thus, policymakers can 
capitalize on the window of opportunity provided by the COVID-19 pandemic induced trend of more 
active modal traffic. There lies a unique chance to make travelling more sustainable, environmentally 
friendly, less space-consuming and healthy.  
 
§6.3 Study reflection, limitations & future research recommendations 
Reflecting on the process and results of this research, this study argues that analyzing modal usage 
patterns is both as difficult as it is necessary. The difficulty in analyzing quantitative traffic volumes 
originates from limited availability of quality and up-to-date traffic databases. Hence, only Toronto was 
elected as the city of analysis as it was the only city containing adequate traffic data which was recent 
enough to study traffic in times less restricted by the COVID-19 pandemic and its related policy 
measures. Preferably, the same analysis was conducted in multiple, different study areas as this enables 
for comparisons between results (Lee & Eom, 2022; Zhao et al., 2020). As of now, this study only 
considers Toronto which makes it difficult to generalize these results. Thus, this study stresses the need 
for future studies analyzing traffic volumes in several places so that potential patterns or differences 
between places can be assessed. 
 
Furthermore, due to data constraints, this study was only able to compare one month (March) during 
the pre-pandemic and pandemic. This makes it difficult to make assumptions for other months or time 
period, including the post-pandemic era. Moreover, despite the decreases in policy stringency in March 
2022, it still was a month which was influenced by the COVID-19 pandemic and the remaining 
mitigating measures. Hence, this study wishes for future studies to conduct research on longer 
timeframes. Studies conducted ruing times which are even less affected by COVID-19 will t be able to 
tell whether pre-pandemic, pandemic and post-lockdown mobility patterns differ significantly from 
post-pandemic mobility patterns (Borkowski et al., 2021; De Haas et al., 2020). For example, this study 
encourages research to be conducted during March 2023 in Toronto.  
 
As time passes on, more and more cities will be able to provide the needed traffic data necessary for 
the same analysis which was conducted for Toronto. Nevertheless, this study will be able to provide 
policymakers insight in how modal usage patterns have changed from the pre-pandemic era to times 
which were less impeded by the COVID-19 pandemic. However, as of late 2022 and early 2023, it is 
too soon to conclude whether the pandemic period can be understood as a divider of eras in which 
significant differences exist between pre-pandemic and post-pandemic periods. Hence, this study, in 
accordance with other scholars, accentuates the need for continuous research on similarities and 
dissimilarities between pre- and post-pandemic eras (Lee & Eom, 2022). In doing so, policymakers can 
become better equipped to make future mobility safer, smarter, healthier, and environmentally friendly. 
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Appendix 
 
3.1 List of followed cities to be potentially analyzed based on their data-availability 
and quality 
 

Amsterdam Chicago Madrid Rotterdam 
Antwerp Cologne Manchester San Francisco 
Barcelona Copenhagen Melbourne Seattle 
Berlin Düsseldorf Miami Seoul 
Birmingham Hamburg Milan Sydney 
Boston Hong Kong Montreal Toronto 
Bristol Houston Munich Tokio 
Brussels  London New York Vancouver 
Calcary Los Angeles Paris  

 
 
 
3.2 Statistics of selected independent variables (total) 
 

 

Daily new 
COVID-19 
cases Canada 

Stringency 
Index Ontario 

Temperatur
e 

Precipitatio
n Windspeed 

Population 
density Females% 

Age 
weighted 
average 

Income 2020 
weighted average 

N Valid 146 146 146 146 146 146 146 146 146 

Missing 0 0 0 0 0 0 0 0 0 

Mean 3686.79 16.7824 .382 .7019 26.270 7372.1383 51.8595% 42.2912 75398.0172 

Variance 15044123.162 271.303 15.057 5.632 57.165 28719280.012 3.521 12.080 1108744109.652 

Skewness .456 .051 -.698 7.040 .844 1.682 -1.107 -.074 1.935 

Std. Error of 
Skewness 

.201 .201 .201 .201 .201 .201 .201 .201 .201 

Kurtosis -1.196 -1.888 .975 57.010 .803 2.700 1.704 -.168 4.792 

Std. Error of 
Kurtosis 

.399 .399 .399 .399 .399 .399 .399 .399 .399 

Minimum 0 .00 -10.2 .00 16.7 523.61 44.74% 33.40 30767.12 

Maximum 10976 35.19 9.4 22.16 51.4 27040.91 54.59% 48.49 195600.00 
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3.3 Statistics of selected independent variables (by counting year) 
 
 
 
year 

Daily new 
COVID-19 
cases Canada 

Stringency 
Index Ontario 

Temperatur
e 

Precipitatio
n 

Windspee
d 

Population 
density Females% 

Age weighted 
average 

Income 2020 
weighted 
average 

2019 N Valid 69 69 69 69 69 69 69 69 69 
Missing 0 0 0 0 0 0 0 0 0 

Mean .00 .0000 .823 1.3675 22.375 8138.5253 51.1303% 41.0394 58622.6138 
Variance .000 .000 22.343 10.958 52.060 29963656.084 3.844 11.298 218404448.77

2 
Std. Error of 
Skewness 

.289 .289 .289 .289 .289 .289 .289 .289 .289 

Std. Error of 
Kurtosis 

.570 .570 .570 .570 .570 .570 .570 .570 .570 

Minimum 0 .00 -10.2 .00 16.7 523.61 44.74% 33.40 30767.12 
Maximum 0 .00 6.2 22.16 40.4 26254.08 54.12% 47.33 93212.09 
Skewness   -.996 4.993 1.449 1.230 -.965 -.411 .099 
Kurtosis   .386 27.791 .906 .886 1.332 -.361 -.947 

2022 N Valid 77 77 77 77 77 77 77 77 77 
Missing 0 0 0 0 0 0 0 0 0 

Mean 6990.53 31.8212 -.013 .1055 29.760 6685.3758 52.5129% 43.4129 90430.5214 
Variance 5303787.410 32.770 8.402 .178 36.375 26972676.480 2.363 10.242 1435508556.7

37 
Std. Error of 
Skewness 

.274 .274 .274 .274 .274 .274 .274 .274 .274 

Std. Error of 
Kurtosis 

.541 .541 .541 .541 .541 .541 .541 .541 .541 

Minimum 3197 22.22 -6.3 .00 22.2 1123.47 47.29% 37.08 35959.89 
Maximum 10976 35.19 9.4 2.58 51.4 27040.91 54.59% 48.49 195600.00 
Skewness .541 -1.118 -.080 5.483 1.813 2.241 -1.269 .362 1.512 
Kurtosis -1.100 -.771 2.428 30.748 4.115 5.615 2.681 -1.189 2.335 
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3.4 Statistics of selected independent variables (by crossing type) 
 
Statistics 

CrossingType 

Daily new 
COVID-19 
cases Canada 

Stringency 
Index Ontario 

Temperat
ure 

Precipitati
on 

Windspe
ed 

Population 
density 

Females
% 

Age 
weighted 
average 

Income 2020 
weighted average 

Arterial dominant 
crossing 

N Valid 84 84 84 84 84 84 84 84 84 
Missing 0 0 0 0 0 0 0 0 0 

Mean 3233.45 12.1920 .175 1.1074 25.732 7462.7557 51.8055
% 

42.5959 77454.3691 

Variance 17520481.96
2 

228.215 16.979 9.243 79.323 29928779.17
6 

3.741 15.827 1565302263.413 

Skewness .784 .567 -.621 5.499 1.055 1.710 -.769 -.187 1.588 

Std. Error of 
Skewness 

.263 .263 .263 .263 .263 .263 .263 .263 .263 

Kurtosis -1.003 -1.480 1.110 33.874 .480 2.756 .398 -.636 2.463 

Std. Error of Kurtosis .520 .520 .520 .520 .520 .520 .520 .520 .520 

Minimum 0 .00 -10.2 .00 16.7 1123.47 45.57% 33.40 30767.12 

Maximum 10976 35.19 9.4 22.16 51.4 27040.91 54.17% 48.49 195600.00 

Collector 
dominant 
crossing 

N Valid 30 30 30 30 30 30 30 30 30 
Missing 0 0 0 0 0 0 0 0 0 

Mean 3939.30 19.3847 1.347 .2127 27.123 9140.6586 51.2950
% 

41.0050 65081.7787 

Variance 14072763.52
8 

277.195 11.785 .378 34.982 37264645.00
5 

4.558 7.164 253756494.735 

Skewness .360 -.257 -.416 3.488 .049 1.085 -1.518 -.375 -.057 

Std. Error of 
Skewness 

.427 .427 .427 .427 .427 .427 .427 .427 .427 

Kurtosis -1.107 -1.919 -.090 11.328 .040 1.114 2.519 .784 -1.341 

Std. Error of Kurtosis .833 .833 .833 .833 .833 .833 .833 .833 .833 

Minimum 0 .00 -6.3 .00 16.7 523.61 44.74% 34.33 40500.00 

Maximum 10561 35.19 6.2 2.44 40.4 27040.91 53.99% 46.99 93212.09 

Local dominant 
crossing 

N Valid 32 32 32 32 32 32 32 32 32 
Missing 0 0 0 0 0 0 0 0 0 

Mean 4640.06 26.3925 .022 .0963 26.881 5476.2796 52.5303
% 

42.6970 79671.5668 

Variance 8736525.931 239.678 12.795 .186 20.405 12580502.48
6 

1.409 5.405 624403295.371 

Skewness -.660 -1.212 -1.180 5.519 -.615 2.717 -.274 .445 3.225 

Std. Error of 
Skewness 

.414 .414 .414 .414 .414 .414 .414 .414 .414 

Kurtosis -.877 -.570 .687 30.879 -.392 9.421 .865 .401 15.217 

Std. Error of Kurtosis .809 .809 .809 .809 .809 .809 .809 .809 .809 

Minimum 0 .00 -9.0 .00 16.7 1123.47 49.07% 37.34 43686.52 

Maximum 8355 35.19 6.2 2.44 33.2 20109.43 54.59% 47.53 195600.00 
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3.5 Road classification statistics by year 
 

year 
Arterial dominant 
crossings 

Local dominant 
crossings CrossingType 

2019 N Valid 69 69 69 
Missing 0 0 0 

Mean .71 .12 1.41 

Variance .209 .104 .480 

Skewness -.947 2.453 1.442 

Std. Error of Skewness .289 .289 .289 

Kurtosis -1.137 4.136 .663 

Std. Error of Kurtosis .570 .570 .570 

Minimum 0 0 1 

Maximum 1 1 3 

2022 N Valid 77 77 77 
Missing 0 0 0 

Mean .45 .31 1.86 

Variance .251 .217 .756 

Skewness .186 .829 .285 

Std. Error of Skewness .274 .274 .274 

Kurtosis -2.018 -1.348 -1.630 

Std. Error of Kurtosis .541 .541 .541 

Minimum 0 0 1 

Maximum 1 1 3 

 
 
Arterial dominant crossings 
year Frequency Percent Valid Percent Cumulative Percent 
2019 Valid 0 20 29.0 29.0 29.0 

1 49 71.0 71.0 100.0 
Total 69 100.0 100.0  

2022 Valid 0 42 54.5 54.5 54.5 
1 35 45.5 45.5 100.0 
Total 77 100.0 100.0  

 
 
Local dominant crossings 
year Frequency Percent Valid Percent Cumulative Percent 
2019 Valid 0 61 88.4 88.4 88.4 

1 8 11.6 11.6 100.0 
Total 69 100.0 100.0  

2022 Valid 0 53 68.8 68.8 68.8 
1 24 31.2 31.2 100.0 
Total 77 100.0 100.0  

 
 
CrossingType 
year Frequency Percent Valid Percent Cumulative Percent 
2019 Valid Arterial dominant crossing 49 71.0 71.0 71.0 

Collector dominant crossing 12 17.4 17.4 88.4 
Local dominant crossing 8 11.6 11.6 100.0 
Total 69 100.0 100.0  

2022 Valid Arterial dominant crossing 35 45.5 45.5 45.5 
Collector dominant crossing 18 23.4 23.4 68.8 
Local dominant crossing 24 31.2 31.2 100.0 
Total 77 100.0 100.0  
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4.1 Comparison of AIC and BIC values among models including both COVID-19 
dependent variables, only COVID-19 cases and only Stringency Index.  
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Total all modes (both C19 variables) 2980.223 3019.010
Total all modes (cases) 2983.522 +3.299 3019.326 +0.316
Total all modes (stringency) 2984.270 +4.047 3020.073 +1.063
AM total (both C19 variables) 2562.198 2600.985
AM total (cases) 2567.743 +5.545 2603.546 +2.561
AM total (stringency) 2565.738 +3.540 2601.538 +0.553
IB total (both C19 variables) 2757.491 2757.491
IB total (cases) 2759.060 +1.569 2794.863 +37.372
IB total (stringency) 2761.710 +4.219 2797.514 +40.023
PM total (both C19 variables) 2628.335 2667.122
PM total (cases) 2632.650 +4.315 2668.454 +1.332
PM total (stringency) 2631.444 +3.109 2667.248 +0.126
Cars total (both C19 variables) 2918.416 2957.202
Cars total (cases) 2917.055 -1.361 2952.859 -4.343
Cars total (stringency) 2929.830 +11.414 2965.633 +8.431
Cars AM (both C19 variables) 2509.469 2548.255
Cars AM (cases) 2509.425 -0.044 2545.228 -3.027
Cars AM (stringency) 2518.472 +9.003 2554.276 +6.021
Cars IB (both C19 variables) 2697.311 2736.097
Cars IB (cases) 2695.654 -1.657 2731.457 -4.640
Cars IB (stringency) 2708.492 +11.181 2744.295 +8.198
Cars PM (both C19 variables) 2556.446 2595.233
Cars PM (cases) 2554.859 -1.587 2590.662 -4.571
Cars PM (stringency) 2568.736 +12.290 2604.540 +9.307
Peds total (both C19 variables) 2471.309 2510.096
Peds total (cases) 2501.839 +30.530 2537.642 +27.546
Peds total (stringency) 2481.896 +10.587 2517.700 +7.604
Peds AM (both C19 variables) 2018.342 2057.129
Peds AM (cases) 2050.532 +32.190 2086.336 +29.207
Peds AM (stringency) 2026.875 +8.533 2062.678 +5.549
Peds IB (both C19 variables) 2238.495 2277.282
Peds IB (cases) 2266.191 +27.696 2301.994 +24.712
Peds IB (stringency) 2248.905 +10.410 2284.709 +7.427
Peds PM (both C19 variables) 2142.363 2181.149
Peds PM (cases) 2172.883 +30.520 2208.686 +27.537
Peds PM (stringency) 2153.034 +10.671 2188.837 +7.688
Bike total (both C19 variables) 1538.119 1576.906
Bike total (cases) 1562.593 +24.474 1598.396 +21.490
Bike total (stringency) 1575.091 +36.972 1610.894 +33.988
Bike AM (both C19 variables) 1112.028 1150.814
Bike AM (cases) 1141.510 +29.482 1177.313 +26.499
Bike AM (stringency) 1143.133 +31.105 1178.936 +28.122
Bike IB (both C19 variables) 1296.739 1335.526
Bike IB (cases) 1314.249 +17.510 1350.052 +14.526
Bike IB (stringency) 1327.192 +30.453 1362.995 +27.469
Bike PM (both C19 variables) 1219.144 1257.931
Bike PM (cases) 1242.666 +23.522 1278.469 +20.538
Bike PM (stringency) 1259.278 +40.134 1295.081 +37.150
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4.2 Total all modes negative binomial regression SPSS output 
 
Model Information 
Dependent Variable Total all modes 
Probability Distribution Negative binomial (MLE) 
Link Function Log 
 
 
Case Processing Summary 
 N Percent 
Included 146 100.0% 
Excluded 0 0.0% 
Total 146 100.0% 
 
 
Continuous Variable Information 
 N Minimum Maximum Mean Std. Deviation 
Dependent Variable Total all modes 146 276 44240 13415.61 9721.969 
Covariate Daily COVID-19 cases Canada (in 

thousands) 
146 .00 10.98 3.6868 3.87868 

Stringency Index Ontario 146 .00 35.19 16.7824 16.47129 
Temperature 146 -10.2 9.4 .382 3.8804 
Precipitation 146 .00 22.16 .7019 2.37309 
Windspeed 146 16.7 51.4 26.270 7.5608 
Population density (thousand people / 
square km) 

146 .52 27.04 7.3721 5.35904 

Females% 146 44.74% 54.59% 51.8595% 1.87650% 
Age weighted average 146 33.40 48.49 42.2912 3.47565 
Income 2020 weighted average (in 
thousands CAN$) 

146 30.77 195.60 75.3980 33.29781 

Arterial dominant crossings 146 0 1 .58 .496 
Local dominant crossings 146 0 1 .22 .415 

 
 
Goodness of Fita 
 Value df Value/df 
Deviance 154.511 133 1.162 
Scaled Deviance 154.511 133  
Pearson Chi-Square 146.436 133 1.101 
Scaled Pearson Chi-Square 146.436 133  
Log Likelihoodb -1477.111   
Akaike's Information Criterion (AIC) 2980.223   
Finite Sample Corrected AIC (AICC) 2982.980   
Bayesian Information Criterion (BIC) 3019.010   
Consistent AIC (CAIC) 3032.010   
Dependent Variable: Total all modes 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population density 
(thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local 
dominant crossingsa 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 
 
 
 
Omnibus Testa 
Likelihood Ratio Chi-Square df Sig. 
95.884 11 <.001 
Dependent Variable: Total all modes 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population density 
(thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local 
dominant crossingsa 
a. Compares the fitted model against the intercept-only model. 
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Tests of Model Effects 

Source 
Type III 
Wald Chi-Square df Sig. 

(Intercept) 14.640 1 <.001 
Daily COVID-19 cases Canada (in thousands) 6.312 1 .012 

Stringency Index Ontario 5.368 1 .021 
Temperature .007 1 .933 
Precipitation 1.569 1 .210 
Windspeed .870 1 .351 
Population density (thousand people / square km) 1.341 1 .247 

Females% .819 1 .365 
Age weighted average .077 1 .781 
Income 2020 weighted average (in thousands CAN$) 2.547 1 .110 

Arterial dominant crossings 6.864 1 .009 
Local dominant crossings 15.235 1 <.001 
Dependent Variable: Total all modes 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population density 
(thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local 
dominant crossings 

 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence Interval 
for Exp(B) 

Lower Upper 
Wald Chi-
Square df Sig. Lower Upper 

(Intercept) 7.155 1.8700 3.490 10.820 14.640 1 <.001 1280.615 32.782 50026.714 

Daily COVID-19 cases 
Canada (in thousands) 

-.064 .0254 -.113 -.014 6.312 1 .012 .938 .893 .986 

Stringency Index Ontario -.014 .0059 -.025 -.002 5.368 1 .021 .986 .975 .998 

Temperature .001 .0135 -.025 .028 .007 1 .933 1.001 .975 1.028 

Precipitation -.028 .0225 -.072 .016 1.569 1 .210 .972 .930 1.016 

Windspeed .008 .0084 -.009 .024 .870 1 .351 1.008 .991 1.024 

Population density 
(thousand people / square 
km) 

.016 .0136 -.011 .042 1.341 1 .247 1.016 .989 1.043 

Females% .034 .0380 -.040 .109 .819 1 .365 1.035 .961 1.115 

Age weighted average .006 .0229 -.039 .051 .077 1 .781 1.006 .962 1.053 

Income 2020 weighted 
average (in thousands 
CAN$) 

.003 .0019 -.001 .007 2.547 1 .110 1.003 .999 1.007 

Arterial dominant 
crossings 

.364 .1390 .092 .637 6.864 1 .009 1.439 1.096 1.890 

Local dominant crossings -.638 .1635 -.958 -.318 15.235 1 <.001 .528 .384 .728 

(Scale) 1a 
         

(Negative binomial) .353 .0391 .284 .438 
      

Dependent Variable: Total all modes 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population density 
(thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local 
dominant crossings 

a. Fixed at the displayed value. 
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4.3 AM total negative binomial regression SPSS output 
 
Model Information 
Dependent Variable AM total 
Probability Distribution Negative binomial (MLE) 
Link Function Log 
 
Case Processing Summary 
 N Percent 
Included 146 100.0% 
Excluded 0 0.0% 
Total 146 100.0% 
 
 
Continuous Variable Information 
 N Minimum Maximum Mean Std. Deviation 
Dependent Variable AM total 146 60 11968 3135.51 2441.414 
Covariate Daily COVID-19 cases Canada (in 

thousands) 
146 .00 10.98 3.6868 3.87868 

Stringency Index Ontario 146 .00 35.19 16.7824 16.47129 
Temperature 146 -10.2 9.4 .382 3.8804 
Precipitation 146 .00 22.16 .7019 2.37309 
Windspeed 146 16.7 51.4 26.270 7.5608 
Population density (thousand people / 
square km) 

146 .52 27.04 7.3721 5.35904 

Females% 146 44.74% 54.59% 51.8595% 1.87650% 
Age weighted average 146 33.40 48.49 42.2912 3.47565 
Income 2020 weighted average (in 
thousands CAN$) 

146 30.77 195.60 75.3980 33.29781 

Arterial dominant crossings 146 0 1 .58 .496 
Local dominant crossings 146 0 1 .22 .415 

 
 
Goodness of Fita 
 Value df Value/df 
Deviance 154.691 133 1.163 
Scaled Deviance 154.691 133  
Pearson Chi-Square 146.134 133 1.099 
Scaled Pearson Chi-Square 146.134 133  
Log Likelihoodb -1268.099   
Akaike's Information Criterion (AIC) 2562.198   
Finite Sample Corrected AIC (AICC) 2564.955   
Bayesian Information Criterion (BIC) 2600.985   
Consistent AIC (CAIC) 2613.985   
Dependent Variable: AM total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population density 
(thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local 
dominant crossingsa 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 
 
 
Omnibus Testa 
Likelihood Ratio Chi-Square df Sig. 
86.991 11 <.001 
Dependent Variable: AM total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population density 
(thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local 
dominant crossingsa 
a. Compares the fitted model against the intercept-only model. 
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Tests of Model Effects 

Source 
Type III 
Wald Chi-Square df Sig. 

(Intercept) 10.409 1 .001 
Daily COVID-19 cases Canada (in thousands) 5.762 1 .016 

Stringency Index Ontario 7.689 1 .006 
Temperature 1.173 1 .279 
Precipitation 13.371 1 <.001 
Windspeed 4.949 1 .026 
Population density (thousand people / square km) .149 1 .700 

Females% 1.051 1 .305 
Age weighted average .193 1 .661 
Income 2020 weighted average (in thousands CAN$) 5.283 1 .022 

Arterial dominant crossings 4.645 1 .031 
Local dominant crossings 10.425 1 .001 
Dependent Variable: AM total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial 
dominant crossings, Local dominant crossings 

 
 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence 
Interval for Exp(B) 

Lower Upper 
Wald Chi-
Square df Sig. Lower Upper 

(Intercept) 6.024 1.8672 2.365 9.684 10.409 1 .001 413.331 10.640 16057.148 

Daily COVID-19 cases 
Canada (in thousands) 

-.062 .0258 -.113 -.011 5.762 1 .016 .940 .894 .989 

Stringency Index 
Ontario 

-.017 .0060 -.029 -.005 7.689 1 .006 .983 .972 .995 

Temperature .015 .0139 -.012 .042 1.173 1 .279 1.015 .988 1.043 

Precipitation -.075 .0205 -.115 -.035 13.371 1 <.001 .928 .891 .966 

Windspeed .020 .0089 .002 .037 4.949 1 .026 1.020 1.002 1.038 

Population density 
(thousand people / 
square km) 

-.005 .0138 -.032 .022 .149 1 .700 .995 .968 1.022 

Females% .038 .0374 -.035 .112 1.051 1 .305 1.039 .966 1.118 

Age weighted average -.010 .0227 -.055 .035 .193 1 .661 .990 .947 1.035 

Income 2020 weighted 
average (in thousands 
CAN$) 

.004 .0020 .001 .008 5.283 1 .022 1.004 1.001 1.008 

Arterial dominant 
crossings 

.304 .1409 .028 .580 4.645 1 .031 1.355 1.028 1.786 

Local dominant 
crossings 

-.535 .1657 -.860 -.210 10.425 1 .001 .586 .423 .810 

(Scale) 1a          

(Negative binomial) .357 .0397 .288 .444       

Dependent Variable: AM total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, 
Population density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), 
Arterial dominant crossings, Local dominant crossings 

a. Fixed at the displayed value. 
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4.4 IB total negative binomial regression SPSS output 
 
 
Model Information 
Dependent Variable IB total 
Probability Distribution Negative binomial (MLE) 
Link Function Log 
 
 
Case Processing Summary 
 N Percent 
Included 146 100.0% 
Excluded 0 0.0% 
Total 146 100.0% 
 
 
Continuous Variable Information 

 N Minimum Maximum Mean Std. Deviation 
Dependent Variable IB total 146 142 20658 6237.53 4651.462 
Covariate Daily COVID-19 cases Canada (in thousands) 146 .00 10.98 3.6868 3.87868 

Stringency Index Ontario 146 .00 35.19 16.7824 16.47129 
Temperature 146 -10.2 9.4 .382 3.8804 
Precipitation 146 .00 22.16 .7019 2.37309 
Windspeed 146 16.7 51.4 26.270 7.5608 
Population density (thousand people / square km) 146 .52 27.04 7.3721 5.35904 
Females% 146 44.74% 54.59% 51.8595% 1.87650% 
Age weighted average 146 33.40 48.49 42.2912 3.47565 
Income 2020 weighted average (in thousands 
CAN$) 

146 30.77 195.60 75.3980 33.29781 

Arterial dominant crossings 146 0 1 .58 .496 
Local dominant crossings 146 0 1 .22 .415 

 
 
Goodness of Fita 
 Value df Value/df 
Deviance 155.017 133 1.166 
Scaled Deviance 155.017 133  
Pearson Chi-Square 147.633 133 1.110 
Scaled Pearson Chi-Square 147.633 133  
Log Likelihoodb -1365.746   
Akaike's Information Criterion (AIC) 2757.491   
Finite Sample Corrected AIC (AICC) 2760.249   
Bayesian Information Criterion (BIC) 2796.278   
Consistent AIC (CAIC) 2809.278   
Dependent Variable: IB total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population density 
(thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local 
dominant crossingsa 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 
 
 
Omnibus Testa 
Likelihood Ratio Chi-Square df Sig. 
99.514 11 <.001 
Dependent Variable: IB total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population density 
(thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local 
dominant crossingsa 
a. Compares the fitted model against the intercept-only model. 
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Tests of Model Effects 

Source 
Type III 
Wald Chi-Square df Sig. 

(Intercept) 10.171 1 .001 
Daily COVID-19 cases Canada (in thousands) 6.502 1 .011 

Stringency Index Ontario 3.596 1 .058 
Temperature .215 1 .643 
Precipitation .054 1 .816 
Windspeed .086 1 .769 
Population density (thousand people / square km) 2.872 1 .090 

Females% .537 1 .464 
Age weighted average .737 1 .391 
Income 2020 weighted average (in thousands CAN$) 1.432 1 .231 

Arterial dominant crossings 8.030 1 .005 
Local dominant crossings 16.446 1 <.001 
Dependent Variable: IB total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population density 
(thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local 
dominant crossings 

 
 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence Interval 
for Exp(B) 

Lower Upper 
Wald Chi-
Square df Sig. Lower Upper 

(Intercept) 6.151 1.9286 2.371 9.931 10.171 1 .001 469.179 10.707 20559.237 

Daily COVID-19 cases 
Canada (in thousands) 

-.066 .0260 -.117 -.015 6.502 1 .011 .936 .889 .985 

Stringency Index Ontario -.012 .0061 -.023 .000 3.596 1 .058 .989 .977 1.000 

Temperature -.006 .0139 -.034 .021 .215 1 .643 .994 .967 1.021 

Precipitation -.006 .0245 -.054 .042 .054 1 .816 .994 .948 1.043 

Windspeed .002 .0084 -.014 .019 .086 1 .769 1.002 .986 1.019 

Population density 
(thousand people / square 
km) 

.024 .0139 -.004 .051 2.872 1 .090 1.024 .996 1.052 

Females% .029 .0394 -.048 .106 .537 1 .464 1.029 .953 1.112 

Age weighted average .020 .0236 -.026 .067 .737 1 .391 1.021 .974 1.069 

Income 2020 weighted 
average (in thousands 
CAN$) 

.002 .0020 -.002 .006 1.432 1 .231 1.002 .998 1.006 

Arterial dominant 
crossings 

.405 .1430 .125 .686 8.030 1 .005 1.500 1.133 1.985 

Local dominant crossings -.680 .1678 -1.009 -.352 16.446 1 <.001 .506 .364 .704 

(Scale) 1a          

(Negative binomial) .373 .0413 .300 .463       

Dependent Variable: IB total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population density 
(thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local 
dominant crossings 

a. Fixed at the displayed value. 
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4.5 PM total negative binomial regression SPSS output 
 
 
Model Information 
Dependent Variable PM total 
Probability Distribution Negative binomial (MLE) 
Link Function Log 
 
 
Case Processing Summary 
 N Percent 
Included 146 100.0% 
Excluded 0 0.0% 
Total 146 100.0% 
 
 
Continuous Variable Information 
 N Minimum Maximum Mean Std. Deviation 
Dependent Variable PM total 146 74 14124 4042.58 2943.784 
Covariate Daily COVID-19 cases Canada (in 

thousands) 
146 .00 10.98 3.6868 3.87868 

Stringency Index Ontario 146 .00 35.19 16.7824 16.47129 
Temperature 146 -10.2 9.4 .382 3.8804 
Precipitation 146 .00 22.16 .7019 2.37309 
Windspeed 146 16.7 51.4 26.270 7.5608 
Population density (thousand people / 
square km) 

146 .52 27.04 7.3721 5.35904 

Females% 146 44.74% 54.59% 51.8595% 1.87650% 
Age weighted average 146 33.40 48.49 42.2912 3.47565 
Income 2020 weighted average (in 
thousands CAN$) 

146 30.77 195.60 75.3980 33.29781 

Arterial dominant crossings 146 0 1 .58 .496 
Local dominant crossings 146 0 1 .22 .415 

 
 
Goodness of Fita 
 Value df Value/df 
Deviance 154.601 133 1.162 
Scaled Deviance 154.601 133  
Pearson Chi-Square 144.659 133 1.088 
Scaled Pearson Chi-Square 144.659 133  
Log Likelihoodb -1301.168   
Akaike's Information Criterion (AIC) 2628.335   
Finite Sample Corrected AIC (AICC) 2631.093   
Bayesian Information Criterion (BIC) 2667.122   
Consistent AIC (CAIC) 2680.122   
Dependent Variable: PM total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossingsa 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 
 
 
Omnibus Testa 
Likelihood Ratio Chi-Square df Sig. 
98.650 11 <.001 
Dependent Variable: PM total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossingsa 
a. Compares the fitted model against the intercept-only model. 
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Tests of Model Effects 

Source 
Type III 
Wald Chi-Square df Sig. 

(Intercept) 10.264 1 .001 
Daily COVID-19 cases Canada (in 
thousands) 

5.307 1 .021 

Stringency Index Ontario 6.415 1 .011 
Temperature .110 1 .740 
Precipitation 1.986 1 .159 
Windspeed 1.152 1 .283 
Population density (thousand people / 
square km) 

2.064 1 .151 

Females% 1.035 1 .309 
Age weighted average .001 1 .977 
Income 2020 weighted average (in 
thousands CAN$) 

2.192 1 .139 

Arterial dominant crossings 6.305 1 .012 
Local dominant crossings 16.760 1 <.001 
Dependent Variable: PM total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, 
Temperature, Precipitation, Windspeed, Population density (thousand people / square km), Females%, 
Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossings 
 
 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence 
Interval for Exp(B) 

Lower Upper 
Wald Chi-
Square df Sig. Lower Upper 

(Intercept) 5.994 1.8711 2.327 9.662 10.264 1 .001 401.188 10.249 15704.451 

Daily COVID-19 cases 
Canada (in thousands) 

-.058 .0253 -.108 -.009 5.307 1 .021 .943 .898 .991 

Stringency Index Ontario -.015 .0060 -.027 -.003 6.415 1 .011 .985 .974 .997 

Temperature .004 .0135 -.022 .031 .110 1 .740 1.004 .978 1.031 

Precipitation -.032 .0224 -.075 .012 1.986 1 .159 .969 .927 1.012 

Windspeed .009 .0084 -.007 .025 1.152 1 .283 1.009 .993 1.026 

Population density 
(thousand people / square 
km) 

.020 .0136 -.007 .046 2.064 1 .151 1.020 .993 1.047 

Females% .039 .0382 -.036 .114 1.035 1 .309 1.040 .965 1.120 

Age weighted average -.001 .0231 -.046 .045 .001 1 .977 .999 .955 1.046 

Income 2020 weighted 
average (in thousands 
CAN$) 

.003 .0019 -.001 .007 2.192 1 .139 1.003 .999 1.007 

Arterial dominant 
crossings 

.348 .1385 .076 .619 6.305 1 .012 1.416 1.079 1.858 

Local dominant crossings -.669 .1634 -.989 -.349 16.760 1 <.001 .512 .372 .706 

(Scale) 1a          

(Negative binomial) .353 .0392 .284 .438       

Dependent Variable: PM total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossings 

a. Fixed at the displayed value. 
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4.6 Cars total negative binomial regression SPSS output 
 
 
Model Information 
Dependent Variable Cars total 
Probability Distribution Negative binomial (MLE) 
Link Function Log 
 
 
Case Processing Summary 
 N Percent 
Included 146 100.0% 
Excluded 0 0.0% 
Total 146 100.0% 
 
 
Continuous Variable Information 
 N Minimum Maximum Mean Std. Deviation 
Dependent Variable Cars total 146 148 37920 10710.22 8066.815 
Covariate Daily COVID-19 cases Canada (in 

thousands) 
146 .00 10.98 3.6868 3.87868 

Temperature 146 -10.2 9.4 .382 3.8804 
Precipitation 146 .00 22.16 .7019 2.37309 
Windspeed 146 16.7 51.4 26.270 7.5608 
Population density (thousand people / 
square km) 

146 .52 27.04 7.3721 5.35904 

Females% 146 44.74% 54.59% 51.8595% 1.87650% 
Age weighted average 146 33.40 48.49 42.2912 3.47565 
Income 2020 weighted average (in 
thousands CAN$) 

146 30.77 195.60 75.3980 33.29781 

Arterial dominant crossings 146 0 1 .58 .496 
Local dominant crossings 146 0 1 .22 .415 

 
 
Goodness of Fita 
 Value df Value/df 
Deviance 154.860 134 1.156 
Scaled Deviance 154.860 134  
Pearson Chi-Square 138.104 134 1.031 
Scaled Pearson Chi-Square 138.104 134  
Log Likelihoodb -1446.528   
Akaike's Information Criterion (AIC) 2917.055   
Finite Sample Corrected AIC (AICC) 2919.401   
Bayesian Information Criterion (BIC) 2952.859   
Consistent AIC (CAIC) 2964.859   
Dependent Variable: Cars total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Temperature, Precipitation, Windspeed, Population density (thousand people / square km), 
Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local dominant crossingsa 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 
 
 
Omnibus Testa 

Likelihood Ratio Chi-Square df Sig. 
92.392 10 <.001 
Dependent Variable: Cars total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Temperature, Precipitation, Windspeed, Population density (thousand people / square km), 
Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local dominant crossingsa 

a. Compares the fitted model against the intercept-only model. 
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Tests of Model Effects 

Source 
Type III 
Wald Chi-Square df Sig. 

(Intercept) 9.246 1 .002 
Daily COVID-19 cases Canada (in thousands) 32.364 1 <.001 

Temperature .163 1 .687 
Precipitation .564 1 .453 
Windspeed .470 1 .493 
Population density (thousand people / square km) .010 1 .920 

Females% .976 1 .323 
Age weighted average 2.721 1 .099 
Income 2020 weighted average (in thousands CAN$) .446 1 .504 

Arterial dominant crossings 8.547 1 .003 
Local dominant crossings 15.158 1 <.001 
Dependent Variable: Cars total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Temperature, Precipitation, Windspeed, Population density (thousand people / square km), 
Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local dominant crossings 

 
 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence Interval 
for Exp(B) 

Lower Upper 
Wald Chi-
Square df Sig. Lower Upper 

(Intercept) 5.681 1.8685 2.019 9.344 9.246 1 .002 293.369 7.533 11424.808 

Daily COVID-19 cases 
Canada (in thousands) 

-.111 .0195 -.149 -.073 32.364 1 <.001 .895 .861 .930 

Temperature -.006 .0137 -.032 .021 .163 1 .687 .995 .968 1.022 

Precipitation -.017 .0223 -.060 .027 .564 1 .453 .983 .941 1.027 

Windspeed .005 .0079 -.010 .021 .470 1 .493 1.005 .990 1.021 

Population density 
(thousand people / square 
km) 

.001 .0134 -.025 .028 .010 1 .920 1.001 .975 1.028 

Females% .038 .0383 -.037 .113 .976 1 .323 1.039 .964 1.119 

Age weighted average .037 .0223 -.007 .081 2.721 1 .099 1.037 .993 1.084 

Income 2020 weighted 
average (in thousands 
CAN$) 

.001 .0019 -.003 .005 .446 1 .504 1.001 .997 1.005 

Arterial dominant 
crossings 

.413 .1412 .136 .689 8.547 1 .003 1.511 1.146 1.993 

Local dominant crossings -.632 .1622 -.949 -.314 15.158 1 <.001 .532 .387 .731 

(Scale) 1a          

(Negative binomial) .367 .0406 .295 .456       

Dependent Variable: Cars total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Temperature, Precipitation, Windspeed, Population density (thousand people / square 
km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local dominant crossings 

a. Fixed at the displayed value. 
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4.7 Cars AM negative binomial regression SPSS output 
 
 
Model Information 
Dependent Variable CarsAM 
Probability Distribution Negative binomial (MLE) 
Link Function Log 
 
 
Case Processing Summary 
 N Percent 
Included 146 100.0% 
Excluded 0 0.0% 
Total 146 100.0% 
 
 
Continuous Variable Information 
 N Minimum Maximum Mean Std. Deviation 
Dependent Variable CarsAM 146 25 9466 2606.08 2016.546 
Covariate Daily COVID-19 cases Canada (in 

thousands) 
146 .00 10.98 3.6868 3.87868 

Temperature 146 -10.2 9.4 .382 3.8804 
Precipitation 146 .00 22.16 .7019 2.37309 
Windspeed 146 16.7 51.4 26.270 7.5608 
Population density (thousand people / 
square km) 

146 .52 27.04 7.3721 5.35904 

Females% 146 44.74% 54.59% 51.8595% 1.87650% 
Age weighted average 146 33.40 48.49 42.2912 3.47565 
Income 2020 weighted average (in 
thousands CAN$) 

146 30.77 195.60 75.3980 33.29781 

Arterial dominant crossings 146 0 1 .58 .496 
Local dominant crossings 146 0 1 .22 .415 

 
 
Goodness of Fita 
 Value df Value/df 
Deviance 155.160 134 1.158 
Scaled Deviance 155.160 134  
Pearson Chi-Square 136.326 134 1.017 
Scaled Pearson Chi-Square 136.326 134  
Log Likelihoodb -1242.713   
Akaike's Information Criterion (AIC) 2509.425   
Finite Sample Corrected AIC (AICC) 2511.771   
Bayesian Information Criterion (BIC) 2545.228   
Consistent AIC (CAIC) 2557.228   
Dependent Variable: CarsAM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Temperature, Precipitation, Windspeed, Population density (thousand people / 
square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local dominant 
crossingsa 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 
 
 
Omnibus Testa 
Likelihood Ratio Chi-Square df Sig. 
86.358 10 <.001 
Dependent Variable: CarsAM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Temperature, Precipitation, Windspeed, Population density (thousand people / square 
km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local dominant crossingsa 

a. Compares the fitted model against the intercept-only model. 
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Tests of Model Effects 

Source 
Type III 
Wald Chi-Square df Sig. 

(Intercept) 4.525 1 .033 
Daily COVID-19 cases Canada (in thousands) 33.077 1 <.001 

Temperature .109 1 .742 
Precipitation 8.540 1 .003 
Windspeed 2.910 1 .088 
Population density (thousand people / square km) .533 1 .465 

Females% 1.652 1 .199 
Age weighted average 1.212 1 .271 
Income 2020 weighted average (in thousands CAN$) 1.584 1 .208 

Arterial dominant crossings 7.749 1 .005 
Local dominant crossings 12.126 1 <.001 
Dependent Variable: CarsAM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Temperature, Precipitation, Windspeed, Population density (thousand people / square 
km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local dominant crossings 

 
 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence 
Interval for Exp(B) 

Lower Upper 
Wald Chi-
Square df Sig. Lower Upper 

(Intercept) 4.018 1.8888 .316 7.720 4.525 1 .033 55.581 1.371 2252.644 

Daily COVID-19 cases 
Canada (in thousands) 

-.113 .0196 -.151 -.074 33.077 1 <.001 .893 .860 .928 

Temperature .005 .0139 -.023 .032 .109 1 .742 1.005 .978 1.032 

Precipitation -.060 .0207 -.101 -.020 8.540 1 .003 .941 .904 .980 

Windspeed .014 .0083 -.002 .031 2.910 1 .088 1.014 .998 1.031 

Population density 
(thousand people / square 
km) 

-.010 .0139 -.037 .017 .533 1 .465 .990 .963 1.017 

Females% .049 .0380 -.026 .123 1.652 1 .199 1.050 .975 1.131 

Age weighted average .024 .0222 -.019 .068 1.212 1 .271 1.025 .981 1.070 

Income 2020 weighted 
average (in thousands 
CAN$) 

.002 .0020 -.001 .006 1.584 1 .208 1.002 .999 1.006 

Arterial dominant 
crossings 

.400 .1436 .118 .681 7.749 1 .005 1.491 1.126 1.976 

Local dominant crossings -.576 .1654 -.900 -.252 12.126 1 <.001 .562 .406 .777 

(Scale) 1a          

(Negative binomial) .373 .0414 .300 .464       

Dependent Variable: CarsAM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Temperature, Precipitation, Windspeed, Population density (thousand people / 
square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local dominant 
crossings 

a. Fixed at the displayed value. 
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4.8 Cars IB negative binomial regression SPSS output 
 
Model Information 
Dependent Variable CarsIB 
Probability Distribution Negative binomial (MLE) 
Link Function Log 
 
 
Case Processing Summary 
 N Percent 
Included 146 100.0% 
Excluded 0 0.0% 
Total 146 100.0% 
 
 
Continuous Variable Information 
 N Minimum Maximum Mean Std. Deviation 
Dependent Variable CarsIB 146 87 18353 4995.14 3920.239 
Covariate Daily COVID-19 cases Canada (in 

thousands) 
146 .00 10.98 3.6868 3.87868 

Temperature 146 -10.2 9.4 .382 3.8804 
Precipitation 146 .00 22.16 .7019 2.37309 
Windspeed 146 16.7 51.4 26.270 7.5608 
Population density (thousand 
people / square km) 

146 .52 27.04 7.3721 5.35904 

Females% 146 44.74% 54.59% 51.8595% 1.87650% 
Age weighted average 146 33.40 48.49 42.2912 3.47565 
Income 2020 weighted average (in 
thousands CAN$) 

146 30.77 195.60 75.3980 33.29781 

Arterial dominant crossings 146 0 1 .58 .496 
Local dominant crossings 146 0 1 .22 .415 

 
 
Goodness of Fita 
 Value df Value/df 
Deviance 155.364 134 1.159 
Scaled Deviance 155.364 134  
Pearson Chi-Square 143.190 134 1.069 
Scaled Pearson Chi-Square 143.190 134  
Log Likelihoodb -1335.827   
Akaike's Information Criterion (AIC) 2695.654   
Finite Sample Corrected AIC (AICC) 2698.000   
Bayesian Information Criterion (BIC) 2731.457   
Consistent AIC (CAIC) 2743.457   
Dependent Variable: CarsIB 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Temperature, Precipitation, Windspeed, Population density (thousand 
people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, 
Local dominant crossingsa 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 
 
 
Omnibus Testa 

Likelihood Ratio Chi-Square df Sig. 
94.956 10 <.001 
Dependent Variable: CarsIB 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Temperature, Precipitation, Windspeed, Population density (thousand 
people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, 
Local dominant crossingsa 
a. Compares the fitted model against the intercept-only model. 
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Tests of Model Effects 

Source 
Type III 
Wald Chi-Square df Sig. 

(Intercept) 6.693 1 .010 
Daily COVID-19 cases Canada (in thousands) 29.246 1 <.001 

Temperature .526 1 .468 
Precipitation .010 1 .920 
Windspeed .025 1 .876 
Population density (thousand people / square km) .191 1 .662 

Females% .742 1 .389 
Age weighted average 3.276 1 .070 
Income 2020 weighted average (in thousands CAN$) .313 1 .576 

Arterial dominant crossings 8.833 1 .003 
Local dominant crossings 16.386 1 <.001 
Dependent Variable: CarsIB 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Temperature, Precipitation, Windspeed, Population density (thousand 
people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, 
Local dominant crossings 
 
 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence 
Interval for Exp(B) 

Lower Upper 
Wald Chi-
Square df Sig. Lower Upper 

(Intercept) 4.970 1.9213 1.205 8.736 6.693 1 .010 144.075 3.336 6222.643 

Daily COVID-19 cases 
Canada (in thousands) 

-.109 .0202 -.149 -.070 29.246 1 <.001 .896 .862 .933 

Temperature -.010 .0140 -.038 .017 .526 1 .468 .990 .963 1.017 

Precipitation .002 .0240 -.045 .049 .010 1 .920 1.002 .956 1.051 

Windspeed .001 .0080 -.014 .017 .025 1 .876 1.001 .986 1.017 

Population density 
(thousand people / 
square km) 

.006 .0137 -.021 .033 .191 1 .662 1.006 .979 1.033 

Females% .034 .0396 -.043 .112 .742 1 .389 1.035 .957 1.118 

Age weighted average .041 .0229 -.003 .086 3.276 1 .070 1.042 .997 1.090 

Income 2020 weighted 
average (in thousands 
CAN$) 

.001 .0020 -.003 .005 .313 1 .576 1.001 .997 1.005 

Arterial dominant 
crossings 

.430 .1447 .146 .714 8.833 1 .003 1.537 1.158 2.041 

Local dominant 
crossings 

-.673 .1661 -.998 -.347 16.386 1 <.001 .510 .369 .707 

(Scale) 1a 
         

(Negative binomial) .386 .0427 .311 .480 
      

Dependent Variable: CarsIB 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Temperature, Precipitation, Windspeed, Population density (thousand people 
/ square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local 
dominant crossings 

a. Fixed at the displayed value. 
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4.9 Cars PM negative binomial regression SPSS output 
 
 
Model Information 
Dependent Variable CarsPM 
Probability Distribution Negative binomial (MLE) 
Link Function Log 
 
 
Case Processing Summary 
 N Percent 
Included 146 100.0% 
Excluded 0 0.0% 
Total 146 100.0% 
 
 
Continuous Variable Information 
 N Minimum Maximum Mean Std. Deviation 
Dependent Variable CarsPM 146 36 10479 3109.00 2302.709 
Covariate Daily COVID-19 cases Canada (in 

thousands) 
146 .00 10.98 3.6868 3.87868 

Temperature 146 -10.2 9.4 .382 3.8804 
Precipitation 146 .00 22.16 .7019 2.37309 
Windspeed 146 16.7 51.4 26.270 7.5608 
Population density (thousand 
people / square km) 

146 .52 27.04 7.3721 5.35904 

Females% 146 44.74% 54.59% 51.8595% 1.87650% 
Age weighted average 146 33.40 48.49 42.2912 3.47565 
Income 2020 weighted average (in 
thousands CAN$) 

146 30.77 195.60 75.3980 33.29781 

Arterial dominant crossings 146 0 1 .58 .496 
Local dominant crossings 146 0 1 .22 .415 

 
 
Goodness of Fita 
 Value df Value/df 
Deviance 154.916 134 1.156 
Scaled Deviance 154.916 134  
Pearson Chi-Square 131.964 134 .985 
Scaled Pearson Chi-Square 131.964 134  
Log Likelihoodb -1265.429   
Akaike's Information Criterion (AIC) 2554.859   
Finite Sample Corrected AIC (AICC) 2557.204   
Bayesian Information Criterion (BIC) 2590.662   
Consistent AIC (CAIC) 2602.662   
Dependent Variable: CarsPM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Temperature, Precipitation, Windspeed, Population density (thousand 
people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossingsa 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 
 
 
Omnibus Testa 

Likelihood Ratio Chi-Square df Sig. 
93.105 10 <.001 
Dependent Variable: CarsPM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Temperature, Precipitation, Windspeed, Population density (thousand 
people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, 
Local dominant crossingsa 

a. Compares the fitted model against the intercept-only model. 
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Tests of Model Effects 

Source 
Type III 
Wald Chi-Square df Sig. 

(Intercept) 5.948 1 .015 
Daily COVID-19 cases Canada (in thousands) 33.386 1 <.001 

Temperature .111 1 .739 
Precipitation .622 1 .430 
Windspeed .672 1 .412 
Population density (thousand people / square km) .064 1 .801 

Females% .834 1 .361 
Age weighted average 3.080 1 .079 
Income 2020 weighted average (in thousands CAN$) .074 1 .786 

Arterial dominant crossings 7.972 1 .005 
Local dominant crossings 15.213 1 <.001 
Dependent Variable: CarsPM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Temperature, Precipitation, Windspeed, Population density (thousand people / 
square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local dominant 
crossings 
 
 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence 
Interval for Exp(B) 

Lower Upper 
Wald Chi-
Square df Sig. Lower Upper 

(Intercept) 4.517 1.8522 .887 8.148 5.948 1 .015 91.603 2.428 3455.531 

Daily COVID-19 cases 
Canada (in thousands) 

-.111 .0192 -.148 -.073 33.386 1 <.001 .895 .862 .929 

Temperature -.005 .0136 -.031 .022 .111 1 .739 .995 .969 1.022 

Precipitation -.017 .0221 -.061 .026 .622 1 .430 .983 .941 1.026 

Windspeed .006 .0079 -.009 .022 .672 1 .412 1.007 .991 1.022 

Population density 
(thousand people / 
square km) 

.003 .0133 -.023 .029 .064 1 .801 1.003 .978 1.030 

Females% .035 .0381 -.040 .109 .834 1 .361 1.035 .961 1.116 

Age weighted average .039 .0224 -.005 .083 3.080 1 .079 1.040 .995 1.087 

Income 2020 weighted 
average (in thousands 
CAN$) 

.001 .0019 -.003 .004 .074 1 .786 1.001 .997 1.004 

Arterial dominant 
crossings 

.396 .1401 .121 .670 7.972 1 .005 1.485 1.129 1.955 

Local dominant 
crossings 

-.628 .1610 -.943 -.312 15.213 1 <.001 .534 .389 .732 

(Scale) 1a          

(Negative binomial) .362 .0403 .291 .450       

Dependent Variable: CarsPM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Temperature, Precipitation, Windspeed, Population density (thousand people / 
square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local dominant 
crossings 

a. Fixed at the displayed value. 
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4.10 Pedestrians total negative binomial regression SPSS output 
 
Model Information 
Dependent Variable Pedestrians total 
Probability Distribution Negative binomial (MLE) 
Link Function Log 
 
 
Case Processing Summary 
 N Percent 
Included 146 100.0% 
Excluded 0 0.0% 
Total 146 100.0% 
 
 
Continuous Variable Information 
 N Minimum Maximum Mean Std. Deviation 
Dependent Variable Pedestrians total 146 7 25798 2593.07 4127.960 
Covariate Daily COVID-19 cases Canada (in 

thousands) 
146 .00 10.98 3.6868 3.87868 

Stringency Index Ontario 146 .00 35.19 16.7824 16.47129 
Temperature 146 -10.2 9.4 .382 3.8804 
Precipitation 146 .00 22.16 .7019 2.37309 
Windspeed 146 16.7 51.4 26.270 7.5608 
Population density (thousand people / 
square km) 

146 .52 27.04 7.3721 5.35904 

Females% 146 44.74% 54.59% 51.8595% 1.87650% 
Age weighted average 146 33.40 48.49 42.2912 3.47565 
Income 2020 weighted average (in 
thousands CAN$) 

146 30.77 195.60 75.3980 33.29781 

Arterial dominant crossings 146 0 1 .58 .496 
Local dominant crossings 146 0 1 .22 .415 

 
 
Goodness of Fita 
 Value df Value/df 
Deviance 166.238 133 1.250 
Scaled Deviance 166.238 133  
Pearson Chi-Square 135.219 133 1.017 
Scaled Pearson Chi-Square 135.219 133  
Log Likelihoodb -1222.654   
Akaike's Information Criterion (AIC) 2471.309   
Finite Sample Corrected AIC (AICC) 2474.066   
Bayesian Information Criterion (BIC) 2510.096   
Consistent AIC (CAIC) 2523.096   
Dependent Variable: Pedestrians total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossingsa 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 
 
 
Omnibus Testa 

Likelihood Ratio Chi-Square df Sig. 
115.275 11 .000 
Dependent Variable: Pedestrians total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossingsa 

 

a. Compares the fitted model against the intercept-only model. 
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Tests of Model Effects 

Source 
Type III 
Wald Chi-Square df Sig. 

(Intercept) 12.217 1 <.001 
Daily COVID-19 cases Canada (in thousands) 13.443 1 <.001 

Stringency Index Ontario 36.094 1 <.001 
Temperature 1.319 1 .251 
Precipitation 1.732 1 .188 
Windspeed 1.756 1 .185 
Population density (thousand people / square km) 9.203 1 .002 

Females% .152 1 .697 
Age weighted average 10.244 1 .001 
Income 2020 weighted average (in thousands CAN$) .371 1 .542 

Arterial dominant crossings 1.375 1 .241 
Local dominant crossings 2.885 1 .089 
Dependent Variable: Pedestrians total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossings 

 
 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence 
Interval for Exp(B) 

Lower Upper 
Wald Chi-
Square df Sig. Lower Upper 

(Intercept) 10.568 3.0235 4.642 16.494 12.217 1 <.001 38869.646 103.760 14561066.704 

Daily COVID-19 cases 
Canada (in thousands) 

.164 .0449 .077 .252 13.443 1 <.001 1.179 1.080 1.287 

Stringency Index Ontario -.066 .0110 -.088 -.045 36.094 1 <.001 .936 .916 .956 

Temperature .025 .0213 -.017 .066 1.319 1 .251 1.025 .983 1.069 

Precipitation -.057 .0432 -.141 .028 1.732 1 .188 .945 .868 1.028 

Windspeed .018 .0136 -.009 .045 1.756 1 .185 1.018 .991 1.046 

Population density 
(thousand people / 
square km) 

.066 .0216 .023 .108 9.203 1 .002 1.068 1.023 1.114 

Females% .025 .0629 -.099 .148 .152 1 .697 1.025 .906 1.159 

Age weighted average -.121 .0377 -.195 -.047 10.244 1 .001 .886 .823 .954 

Income 2020 weighted 
average (in thousands 
CAN$) 

.002 .0036 -.005 .009 .371 1 .542 1.002 .995 1.009 

Arterial dominant 
crossings 

.276 .2350 -.185 .736 1.375 1 .241 1.317 .831 2.088 

Local dominant 
crossings 

-.460 .2707 -.990 .071 2.885 1 .089 .631 .372 1.073 

(Scale) 1a          

(Negative binomial) .890 .0929 .725 1.092       

Dependent Variable: Pedestrians total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossings 

a. Fixed at the displayed value. 
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4.11 Pedestrians AM negative binomial regression SPSS output 
 
Model Information 
Dependent Variable PedestriansAM 
Probability Distribution Negative binomial (MLE) 
Link Function Log 
 
 
Case Processing Summary 
 N Percent 
Included 146 100.0% 
Excluded 0 0.0% 
Total 146 100.0% 
 
 
Continuous Variable Information 
 N Minimum Maximum Mean Std. Deviation 
Dependent Variable PedestriansAM 146 0 8942 504.62 1055.684 
Covariate Daily COVID-19 cases Canada (in 

thousands) 
146 .00 10.98 3.6868 3.87868 

Stringency Index Ontario 146 .00 35.19 16.7824 16.47129 
Temperature 146 -10.2 9.4 .382 3.8804 
Precipitation 146 .00 22.16 .7019 2.37309 
Windspeed 146 16.7 51.4 26.270 7.5608 
Population density (thousand 
people / square km) 

146 .52 27.04 7.3721 5.35904 

Females% 146 44.74% 54.59% 51.8595% 1.87650% 
Age weighted average 146 33.40 48.49 42.2912 3.47565 
Income 2020 weighted average (in 
thousands CAN$) 

146 30.77 195.60 75.3980 33.29781 

Arterial dominant crossings 146 0 1 .58 .496 
Local dominant crossings 146 0 1 .22 .415 

 
 
Goodness of Fita 
 Value df Value/df 
Deviance 166.975 133 1.255 
Scaled Deviance 166.975 133  
Pearson Chi-Square 152.727 133 1.148 
Scaled Pearson Chi-Square 152.727 133  
Log Likelihoodb -996.171   
Akaike's Information Criterion (AIC) 2018.342   
Finite Sample Corrected AIC (AICC) 2021.099   
Bayesian Information Criterion (BIC) 2057.129   
Consistent AIC (CAIC) 2070.129   
Dependent Variable: PedestriansAM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, 
Population density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands 
CAN$), Arterial dominant crossings, Local dominant crossingsa 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 
 
 
Omnibus Testa 

Likelihood Ratio Chi-Square df Sig. 
99.009 11 <.001 
Dependent Variable: PedestriansAM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, 
Population density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), 
Arterial dominant crossings, Local dominant crossingsa 

a. Compares the fitted model against the intercept-only model. 
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Tests of Model Effects 

Source 
Type III 
Wald Chi-Square df Sig. 

(Intercept) 11.014 1 <.001 
Daily COVID-19 cases Canada (in thousands) 11.125 1 <.001 

Stringency Index Ontario 38.962 1 <.001 
Temperature 4.947 1 .026 
Precipitation 10.195 1 .001 
Windspeed 4.597 1 .032 
Population density (thousand people / square km) 2.719 1 .099 

Females% .077 1 .781 
Age weighted average 13.950 1 <.001 
Income 2020 weighted average (in thousands CAN$) 1.656 1 .198 

Arterial dominant crossings .114 1 .735 
Local dominant crossings .262 1 .609 
Dependent Variable: PedestriansAM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossings 

 
 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence Interval 
for Exp(B) 

Lower Upper 
Wald Chi-
Square df Sig. Lower Upper 

(Intercept) 10.013 3.0170 4.100 15.926 11.014 1 <.001 22312.883 60.317 8254147.245 

Daily COVID-19 cases 
Canada (in thousands) 

.150 .0449 .062 .238 11.125 1 <.001 1.162 1.064 1.268 

Stringency Index Ontario -.068 .0108 -.089 -.046 38.962 1 <.001 .935 .915 .955 

Temperature .048 .0217 .006 .091 4.947 1 .026 1.050 1.006 1.095 

Precipitation -.113 .0355 -.183 -.044 10.195 1 .001 .893 .833 .957 

Windspeed .030 .0139 .003 .057 4.597 1 .032 1.030 1.003 1.059 

Population density 
(thousand people / square 
km) 

.036 .0220 -.007 .079 2.719 1 .099 1.037 .993 1.083 

Females% .017 .0616 -.104 .138 .077 1 .781 1.017 .902 1.148 

Age weighted average -.138 .0370 -.211 -.066 13.950 1 <.001 .871 .810 .936 

Income 2020 weighted 
average (in thousands 
CAN$) 

.005 .0036 -.002 .012 1.656 1 .198 1.005 .998 1.012 

Arterial dominant 
crossings 

.080 .2378 -.386 .546 .114 1 .735 1.084 .680 1.727 

Local dominant crossings -.138 .2694 -.666 .390 .262 1 .609 .871 .514 1.477 

(Scale) 1a          

(Negative binomial) .887 .0942 .720 1.092       

Dependent Variable: PedestriansAM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population density 
(thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, 
Local dominant crossings 

a. Fixed at the displayed value. 
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4.12 Pedestrians IB negative binomial regression SPSS output 
 
Model Information 
Dependent Variable PedestriansIB 
Probability Distribution Negative binomial (MLE) 
Link Function Log 
 
 
Case Processing Summary 
 N Percent 
Included 146 100.0% 
Excluded 0 0.0% 
Total 146 100.0% 
 
 
Continuous Variable Information 
 N Minimum Maximum Mean Std. Deviation 
Dependent Variable PedestriansIB 146 7 9284 1196.65 1760.526 
Covariate Daily COVID-19 cases Canada (in 

thousands) 
146 .00 10.98 3.6868 3.87868 

Stringency Index Ontario 146 .00 35.19 16.7824 16.47129 
Temperature 146 -10.2 9.4 .382 3.8804 
Precipitation 146 .00 22.16 .7019 2.37309 
Windspeed 146 16.7 51.4 26.270 7.5608 
Population density (thousand people 
/ square km) 

146 .52 27.04 7.3721 5.35904 

Females% 146 44.74% 54.59% 51.8595% 1.87650% 
Age weighted average 146 33.40 48.49 42.2912 3.47565 
Income 2020 weighted average (in 
thousands CAN$) 

146 30.77 195.60 75.3980 33.29781 

Arterial dominant crossings 146 0 1 .58 .496 
Local dominant crossings 146 0 1 .22 .415 

 
 
Goodness of Fita 
 Value df Value/df 
Deviance 166.688 133 1.253 
Scaled Deviance 166.688 133  
Pearson Chi-Square 137.212 133 1.032 
Scaled Pearson Chi-Square 137.212 133  
Log Likelihoodb -1106.248   
Akaike's Information Criterion (AIC) 2238.495   
Finite Sample Corrected AIC (AICC) 2241.253   
Bayesian Information Criterion (BIC) 2277.282   
Consistent AIC (CAIC) 2290.282   
Dependent Variable: PedestriansIB 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial 
dominant crossings, Local dominant crossingsa 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 
 
 
Omnibus Testa 

Likelihood Ratio Chi-Square df Sig. 
117.005 11 .000 
Dependent Variable: PedestriansIB 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossingsa 

a. Compares the fitted model against the intercept-only model. 
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Tests of Model Effects 

Source 
Type III 
Wald Chi-Square df Sig. 

(Intercept) 9.325 1 .002 
Daily COVID-19 cases Canada (in thousands) 13.233 1 <.001 

Stringency Index Ontario 32.200 1 <.001 
Temperature .251 1 .616 
Precipitation .224 1 .636 
Windspeed 1.074 1 .300 
Population density (thousand people / square km) 11.835 1 <.001 

Females% .048 1 .826 
Age weighted average 6.166 1 .013 
Income 2020 weighted average (in thousands CAN$) .002 1 .963 

Arterial dominant crossings 2.311 1 .128 
Local dominant crossings 4.442 1 .035 
Dependent Variable: PedestriansIB 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, 
Population density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), 
Arterial dominant crossings, Local dominant crossings 

 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence 
Interval for Exp(B) 

Lower Upper 
Wald Chi-
Square df Sig. Lower Upper 

(Intercept) 9.438 3.0906 3.380 15.495 9.325 1 .002 12552.61
0 

29.375 5364081.483 

Daily COVID-19 cases 
Canada (in thousands) 

.166 .0458 .077 .256 13.233 1 <.001 1.181 1.080 1.292 

Stringency Index 
Ontario 

-.064 .0113 -.086 -.042 32.200 1 <.001 .938 .918 .959 

Temperature .011 .0219 -.032 .054 .251 1 .616 1.011 .969 1.055 

Precipitation -.024 .0513 -.125 .076 .224 1 .636 .976 .883 1.079 

Windspeed .014 .0137 -.013 .041 1.074 1 .300 1.014 .987 1.042 

Population density 
(thousand people / 
square km) 

.075 .0219 .032 .118 11.835 1 <.001 1.078 1.033 1.125 

Females% .014 .0646 -.112 .141 .048 1 .826 1.014 .894 1.151 

Age weighted average -.098 .0393 -.174 -.021 6.166 1 .013 .907 .840 .980 

Income 2020 weighted 
average (in thousands 
CAN$) 

.000 .0038 -.008 .007 .002 1 .963 1.000 .993 1.007 

Arterial dominant 
crossings 

.365 .2404 -.106 .837 2.311 1 .128 1.441 .900 2.308 

Local dominant 
crossings 

-.578 .2744 -1.116 -.041 4.442 1 .035 .561 .328 .960 

(Scale) 1a          

(Negative binomial) .921 .0962 .751 1.130       

Dependent Variable: PedestriansIB 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial 
dominant crossings, Local dominant crossings 

a. Fixed at the displayed value. 
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4.13 Pedestrians PM negative binomial regression SPSS output 
 
Model Information 
Dependent Variable PedestriansPM 
Probability Distribution Negative binomial (MLE) 
Link Function Log 
 
 
Case Processing Summary 
 N Percent 
Included 146 100.0% 
Excluded 0 0.0% 
Total 146 100.0% 
 
 
Continuous Variable Information 
 N Minimum Maximum Mean Std. Deviation 
Dependent Variable PedestriansPM 146 0 10206 891.79 1532.876 
Covariate Daily COVID-19 cases Canada (in 

thousands) 
146 .00 10.98 3.6868 3.87868 

Stringency Index Ontario 146 .00 35.19 16.7824 16.47129 
Temperature 146 -10.2 9.4 .382 3.8804 
Precipitation 146 .00 22.16 .7019 2.37309 
Windspeed 146 16.7 51.4 26.270 7.5608 
Population density (thousand people 
/ square km) 

146 .52 27.04 7.3721 5.35904 

Females% 146 44.74% 54.59% 51.8595% 1.87650% 
Age weighted average 146 33.40 48.49 42.2912 3.47565 
Income 2020 weighted average (in 
thousands CAN$) 

146 30.77 195.60 75.3980 33.29781 

Arterial dominant crossings 146 0 1 .58 .496 
Local dominant crossings 146 0 1 .22 .415 

 
 
Goodness of Fita 
 Value df Value/df 
Deviance 168.114 133 1.264 
Scaled Deviance 168.114 133  
Pearson Chi-Square 132.179 133 .994 
Scaled Pearson Chi-Square 132.179 133  
Log Likelihoodb -1058.181   
Akaike's Information Criterion (AIC) 2142.363   
Finite Sample Corrected AIC (AICC) 2145.120   
Bayesian Information Criterion (BIC) 2181.149   
Consistent AIC (CAIC) 2194.149   
Dependent Variable: PedestriansPM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, 
Population density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), 
Arterial dominant crossings, Local dominant crossingsa 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 
 
 
Omnibus Testa 

Likelihood Ratio Chi-Square df Sig. 
120.432 11 .000 
Dependent Variable: PedestriansPM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, 
Population density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), 
Arterial dominant crossings, Local dominant crossingsa 

a. Compares the fitted model against the intercept-only model. 
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Tests of Model Effects 

Source 
Type III 
Wald Chi-Square df Sig. 

(Intercept) 7.897 1 .005 
Daily COVID-19 cases Canada (in thousands) 13.543 1 <.001 

Stringency Index Ontario 36.168 1 <.001 
Temperature 1.810 1 .178 
Precipitation 2.266 1 .132 
Windspeed 1.813 1 .178 
Population density (thousand people / square km) 11.045 1 <.001 

Females% .426 1 .514 
Age weighted average 11.172 1 <.001 
Income 2020 weighted average (in thousands CAN$) .765 1 .382 

Arterial dominant crossings 1.266 1 .261 
Local dominant crossings 4.223 1 .040 
Dependent Variable: PedestriansPM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population density 
(thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local 
dominant crossings 

 
 
Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence Interval 
for Exp(B) 

Lower Upper 
Wald Chi-
Square df Sig. Lower Upper 

(Intercept) 8.720 3.1031 2.638 14.802 7.897 1 .005 6123.189 13.985 2681043.313 

Daily COVID-19 cases 
Canada (in thousands) 

.171 .0464 .080 .262 13.543 1 <.001 1.186 1.083 1.299 

Stringency Index Ontario -.069 .0115 -.091 -.046 36.168 1 <.001 .933 .913 .955 

Temperature .029 .0219 -.013 .072 1.810 1 .178 1.030 .987 1.075 

Precipitation -.064 .0426 -.148 .019 2.266 1 .132 .938 .863 1.020 

Windspeed .019 .0143 -.009 .047 1.813 1 .178 1.019 .991 1.048 

Population density 
(thousand people / square 
km) 

.074 .0222 .030 .117 11.045 1 <.001 1.077 1.031 1.125 

Females% .042 .0648 -.085 .169 .426 1 .514 1.043 .919 1.184 

Age weighted average -.128 .0384 -.204 -.053 11.172 1 <.001 .880 .816 .948 

Income 2020 weighted 
average (in thousands 
CAN$) 

.003 .0037 -.004 .010 .765 1 .382 1.003 .996 1.010 

Arterial dominant 
crossings 

.270 .2404 -.201 .742 1.266 1 .261 1.311 .818 2.099 

Local dominant crossings -.577 .2808 -1.127 -.027 4.223 1 .040 .562 .324 .974 

(Scale) 1a          

(Negative binomial) .945 .0997 .769 1.162       

Dependent Variable: PedestriansPM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population density 
(thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local 
dominant crossings 

a. Fixed at the displayed value. 
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4.14 Cyclists total negative binomial regression SPSS output 
 
Model Information 
Dependent Variable Cyclists total 
Probability Distribution Negative binomial (MLE) 
Link Function Log 
 
 
Case Processing Summary 
 N Percent 
Included 146 100.0% 
Excluded 0 0.0% 
Total 146 100.0% 
 
 
Continuous Variable Information 
 N Minimum Maximum Mean Std. Deviation 
Dependent Variable Cyclists total 146 0 1098 112.32 182.015 
Covariate Daily COVID-19 cases Canada (in 

thousands) 
146 .00 10.98 3.6868 3.87868 

Stringency Index Ontario 146 .00 35.19 16.7824 16.47129 
Temperature 146 -10.2 9.4 .382 3.8804 
Precipitation 146 .00 22.16 .7019 2.37309 
Windspeed 146 16.7 51.4 26.270 7.5608 
Population density (thousand people / 
square km) 

146 .52 27.04 7.3721 5.35904 

Females% 146 44.74% 54.59% 51.8595% 1.87650% 
Age weighted average 146 33.40 48.49 42.2912 3.47565 
Income 2020 weighted average (in 
thousands CAN$) 

146 30.77 195.60 75.3980 33.29781 

Arterial dominant crossings 146 0 1 .58 .496 
Local dominant crossings 146 0 1 .22 .415 

 
 
Goodness of Fita 
 Value df Value/df 
Deviance 168.381 133 1.266 
Scaled Deviance 168.381 133  
Pearson Chi-Square 191.731 133 1.442 
Scaled Pearson Chi-Square 191.731 133  
Log Likelihoodb -756.059   
Akaike's Information Criterion (AIC) 1538.119   
Finite Sample Corrected AIC (AICC) 1540.876   
Bayesian Information Criterion (BIC) 1576.906   
Consistent AIC (CAIC) 1589.906   
Dependent Variable: Cyclists total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossingsa 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 
 
 
Omnibus Testa 
Likelihood Ratio Chi-Square df Sig. 
119.458 11 .000 
Dependent Variable: Cyclists total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossingsa 
a. Compares the fitted model against the intercept-only model. 
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Tests of Model Effects 

Source 
Type III 
Wald Chi-Square df Sig. 

(Intercept) 22.148 1 <.001 
Daily COVID-19 cases Canada (in thousands) 46.546 1 <.001 

Stringency Index Ontario 28.828 1 <.001 
Temperature 19.335 1 <.001 
Precipitation 13.134 1 <.001 
Windspeed .425 1 .515 
Population density (thousand people / square km) 9.348 1 .002 

Females% 10.580 1 .001 
Age weighted average .264 1 .607 
Income 2020 weighted average (in thousands CAN$) .097 1 .756 

Arterial dominant crossings 1.889 1 .169 
Local dominant crossings .151 1 .698 
Dependent Variable: Cyclists total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial 
dominant crossings, Local dominant crossings 

 
 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence 
Interval for Exp(B) 

Lower Upper 
Wald Chi-
Square df Sig. Lower Upper 

(Intercept) 15.890 3.3763 9.272 22.507 22.148 1 <.001 7956964.92
1 

10636.871 5952247475.0
40 

Daily COVID-19 cases 
Canada (in thousands) 

.327 .0479 .233 .421 46.546 1 <.001 1.387 1.262 1.523 

Stringency Index 
Ontario 

-.060 .0112 -.082 -.038 28.828 1 <.001 .942 .921 .962 

Temperature .102 .0233 .057 .148 19.335 1 <.001 1.108 1.058 1.159 

Precipitation -.126 .0347 -.194 -.058 13.134 1 <.001 .882 .824 .944 

Windspeed .010 .0149 -.019 .039 .425 1 .515 1.010 .981 1.040 

Population density 
(thousand people / 
square km) 

.071 .0232 .025 .117 9.348 1 .002 1.074 1.026 1.124 

Females% -.231 .0711 -.371 -.092 10.580 1 .001 .793 .690 .912 

Age weighted average -.021 .0415 -.103 .060 .264 1 .607 .979 .902 1.062 

Income 2020 weighted 
average (in thousands 
CAN$) 

.001 .0042 -.007 .009 .097 1 .756 1.001 .993 1.009 

Arterial dominant 
crossings 

.318 .2316 -.136 .772 1.889 1 .169 1.375 .873 2.165 

Local dominant 
crossings 

-.105 .2702 -.634 .425 .151 1 .698 .900 .530 1.529 

(Scale) 1a          

(Negative binomial) .935 .1040 .752 1.163       

Dependent Variable: Cyclists total 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossings 

a. Fixed at the displayed value. 
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4.15 Cyclists AM negative binomial regression SPSS output 
 
Model Information 
Dependent Variable CyclistsAM 
Probability Distribution Negative binomial (MLE) 
Link Function Log 
 
 
Case Processing Summary 
 N Percent 
Included 146 100.0% 
Excluded 0 0.0% 
Total 146 100.0% 
 
 
Continuous Variable Information 
 N Minimum Maximum Mean Std. Deviation 
Dependent Variable CyclistsAM 146 0 365 24.80 52.330 
Covariate Daily COVID-19 cases Canada (in 

thousands) 
146 .00 10.98 3.6868 3.87868 

Stringency Index Ontario 146 .00 35.19 16.7824 16.47129 
Temperature 146 -10.2 9.4 .382 3.8804 
Precipitation 146 .00 22.16 .7019 2.37309 
Windspeed 146 16.7 51.4 26.270 7.5608 
Population density (thousand 
people / square km) 

146 .52 27.04 7.3721 5.35904 

Females% 146 44.74% 54.59% 51.8595% 1.87650% 
Age weighted average 146 33.40 48.49 42.2912 3.47565 
Income 2020 weighted average (in 
thousands CAN$) 

146 30.77 195.60 75.3980 33.29781 

Arterial dominant crossings 146 0 1 .58 .496 
Local dominant crossings 146 0 1 .22 .415 

 
 
Goodness of Fita 
 Value df Value/df 
Deviance 168.124 133 1.264 
Scaled Deviance 168.124 133  
Pearson Chi-Square 216.916 133 1.631 
Scaled Pearson Chi-Square 216.916 133  
Log Likelihoodb -543.014   
Akaike's Information Criterion (AIC) 1112.028   
Finite Sample Corrected AIC (AICC) 1114.785   
Bayesian Information Criterion (BIC) 1150.814   
Consistent AIC (CAIC) 1163.814   
Dependent Variable: CyclistsAM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, 
Population density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands 
CAN$), Arterial dominant crossings, Local dominant crossingsa 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 
 
 
Omnibus Testa 
Likelihood Ratio Chi-Square df Sig. 
100.369 11 <.001 
Dependent Variable: CyclistsAM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, 
Population density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), 
Arterial dominant crossings, Local dominant crossingsa 
a. Compares the fitted model against the intercept-only model. 
 
 
 
 
 
 
 
 
 
 
  



 - 94 - 

Tests of Model Effects 

Source 
Type III 
Wald Chi-Square df Sig. 

(Intercept) 21.344 1 <.001 
Daily COVID-19 cases Canada (in thousands) 36.810 1 <.001 

Stringency Index Ontario 35.064 1 <.001 
Temperature 17.919 1 <.001 
Precipitation 12.393 1 <.001 
Windspeed .245 1 .621 
Population density (thousand people / square km) 1.099 1 .294 

Females% 13.654 1 <.001 
Age weighted average .141 1 .707 
Income 2020 weighted average (in thousands CAN$) .090 1 .764 

Arterial dominant crossings .213 1 .644 
Local dominant crossings .116 1 .733 
Dependent Variable: CyclistsAM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial 
dominant crossings, Local dominant crossings 

 
 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence 
Interval for Exp(B) 

Lower Upper 
Wald Chi-
Square df Sig. Lower Upper 

(Intercept) 16.880 3.6538 9.719 24.041 21.344 1 <.001 21425770.5
59 

16628.248 27607457629.
934 

Daily COVID-19 cases 
Canada (in thousands) 

.318 .0525 .216 .421 36.810 1 <.001 1.375 1.241 1.524 

Stringency Index 
Ontario 

-.071 .0121 -.095 -.048 35.064 1 <.001 .931 .909 .953 

Temperature .110 .0259 .059 .161 17.919 1 <.001 1.116 1.061 1.174 

Precipitation -.144 .0408 -.224 -.064 12.393 1 <.001 .866 .800 .938 

Windspeed .008 .0161 -.024 .040 .245 1 .621 1.008 .977 1.040 

Population density 
(thousand people / 
square km) 

.027 .0262 -.024 .079 1.099 1 .294 1.028 .976 1.082 

Females% -.269 .0727 -.411 -.126 13.654 1 <.001 .764 .663 .881 

Age weighted average -.018 .0467 -.109 .074 .141 1 .707 .983 .897 1.077 

Income 2020 weighted 
average (in thousands 
CAN$) 

.001 .0042 -.007 .009 .090 1 .764 1.001 .993 1.010 

Arterial dominant 
crossings 

.120 .2597 -.389 .629 .213 1 .644 1.127 .678 1.876 

Local dominant 
crossings 

-.103 .3011 -.693 .488 .116 1 .733 .903 .500 1.628 

(Scale) 1a          

(Negative binomial) 1.063 .1317 .834 1.355       

Dependent Variable: CyclistsAM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossings 

a. Fixed at the displayed value. 
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4.16 Cyclists IB negative binomial regression SPSS output 
 
Model Information 
Dependent Variable CyclistsIB 
Probability Distribution Negative binomial (MLE) 
Link Function Log 
 
 
Case Processing Summary 
 N Percent 
Included 146 100.0% 
Excluded 0 0.0% 
Total 146 100.0% 
 
 
Continuous Variable Information 
 N Minimum Maximum Mean Std. Deviation 
Dependent Variable CyclistsIB 146 0 327 45.74 65.341 
Covariate Daily COVID-19 cases Canada (in 

thousands) 
146 .00 10.98 3.6868 3.87868 

Stringency Index Ontario 146 .00 35.19 16.7824 16.47129 
Temperature 146 -10.2 9.4 .382 3.8804 
Precipitation 146 .00 22.16 .7019 2.37309 
Windspeed 146 16.7 51.4 26.270 7.5608 
Population density (thousand people 
/ square km) 

146 .52 27.04 7.3721 5.35904 

Females% 146 44.74% 54.59% 51.8595% 1.87650% 
Age weighted average 146 33.40 48.49 42.2912 3.47565 
Income 2020 weighted average (in 
thousands CAN$) 

146 30.77 195.60 75.3980 33.29781 

Arterial dominant crossings 146 0 1 .58 .496 
Local dominant crossings 146 0 1 .22 .415 

 
 
Goodness of Fita 
 Value df Value/df 
Deviance 168.088 133 1.264 
Scaled Deviance 168.088 133  
Pearson Chi-Square 163.059 133 1.226 
Scaled Pearson Chi-Square 163.059 133  
Log Likelihoodb -635.370   
Akaike's Information Criterion (AIC) 1296.739   
Finite Sample Corrected AIC (AICC) 1299.497   
Bayesian Information Criterion (BIC) 1335.526   
Consistent AIC (CAIC) 1348.526   
Dependent Variable: CyclistsIB 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, 
Population density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), 
Arterial dominant crossings, Local dominant crossingsa 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 
 
 
Omnibus Testa 

Likelihood Ratio Chi-Square df Sig. 
110.141 11 .000 
Dependent Variable: CyclistsIB 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, 
Population density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), 
Arterial dominant crossings, Local dominant crossingsa 

a. Compares the fitted model against the intercept-only model. 
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Tests of Model Effects 

Source 
Type III 
Wald Chi-Square df Sig. 

(Intercept) 14.309 1 <.001 
Daily COVID-19 cases Canada (in thousands) 37.640 1 <.001 

Stringency Index Ontario 20.734 1 <.001 
Temperature 11.651 1 <.001 
Precipitation 8.739 1 .003 
Windspeed .383 1 .536 
Population density (thousand people / square km) 13.748 1 <.001 

Females% 7.076 1 .008 
Age weighted average .339 1 .560 
Income 2020 weighted average (in thousands CAN$) .520 1 .471 

Arterial dominant crossings 3.579 1 .059 
Local dominant crossings .100 1 .752 
Dependent Variable: CyclistsIB 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossings 

 
 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence 
Interval for Exp(B) 

Lower Upper 
Wald Chi-
Square df Sig. Lower Upper 

(Intercept) 12.430 3.2860 5.990 18.870 14.309 1 <.001 250195.22
5 

399.224 156798383.84
8 

Daily COVID-19 cases 
Canada (in thousands) 

.287 .0468 .196 .379 37.640 1 <.001 1.333 1.216 1.461 

Stringency Index Ontario -.050 .0110 -.072 -.029 20.734 1 <.001 .951 .931 .972 

Temperature .080 .0233 .034 .125 11.651 1 <.001 1.083 1.034 1.133 

Precipitation -.112 .0380 -.187 -.038 8.739 1 .003 .894 .830 .963 

Windspeed .009 .0146 -.020 .038 .383 1 .536 1.009 .981 1.038 

Population density 
(thousand people / 
square km) 

.083 .0224 .039 .127 13.748 1 <.001 1.087 1.040 1.135 

Females% -.185 .0695 -.321 -.049 7.076 1 .008 .831 .725 .953 

Age weighted average -.023 .0399 -.102 .055 .339 1 .560 .977 .903 1.057 

Income 2020 weighted 
average (in thousands 
CAN$) 

.003 .0041 -.005 .011 .520 1 .471 1.003 .995 1.011 

Arterial dominant 
crossings 

.425 .2246 -.015 .865 3.579 1 .059 1.530 .985 2.376 

Local dominant 
crossings 

-.086 .2725 -.620 .448 .100 1 .752 .918 .538 1.565 

(Scale) 1a          

(Negative binomial) .886 .1057 .702 1.120       

Dependent Variable: CyclistsIB 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossings 

a. Fixed at the displayed value. 
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4.17 Cyclists PM negative binomial regression SPSS output 
 
Model Information 
Dependent Variable CyclistsPM 
Probability Distribution Negative binomial (MLE) 
Link Function Log 
 
 
Case Processing Summary 
 N Percent 
Included 146 100.0% 
Excluded 0 0.0% 
Total 146 100.0% 
 
 
Continuous Variable Information 

 N Minimum Maximum Mean Std. Deviation 
Dependent Variable CyclistsPM 146 0 416 41.78 71.922 
Covariate Daily COVID-19 cases Canada (in 

thousands) 
146 .00 10.98 3.6868 3.87868 

Stringency Index Ontario 146 .00 35.19 16.7824 16.47129 
Temperature 146 -10.2 9.4 .382 3.8804 
Precipitation 146 .00 22.16 .7019 2.37309 
Windspeed 146 16.7 51.4 26.270 7.5608 
Population density (thousand people / 
square km) 

146 .52 27.04 7.3721 5.35904 

Females% 146 44.74% 54.59% 51.8595% 1.87650% 
Age weighted average 146 33.40 48.49 42.2912 3.47565 
Income 2020 weighted average (in 
thousands CAN$) 

146 30.77 195.60 75.3980 33.29781 

Arterial dominant crossings 146 0 1 .58 .496 
Local dominant crossings 146 0 1 .22 .415 

 
 
Goodness of Fita 
 Value df Value/df 
Deviance 167.783 133 1.262 
Scaled Deviance 167.783 133  
Pearson Chi-Square 189.150 133 1.422 
Scaled Pearson Chi-Square 189.150 133  
Log Likelihoodb -596.572   
Akaike's Information Criterion (AIC) 1219.144   
Finite Sample Corrected AIC (AICC) 1221.902   
Bayesian Information Criterion (BIC) 1257.931   
Consistent AIC (CAIC) 1270.931   
Dependent Variable: CyclistsPM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial 
dominant crossings, Local dominant crossingsa 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 
 
 
 
 
 
Omnibus Testa 

Likelihood Ratio Chi-Square df Sig. 
119.891 11 .000 
Dependent Variable: CyclistsPM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population 
density (thousand people / square km), Females%, Age weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant 
crossings, Local dominant crossingsa 

a. Compares the fitted model against the intercept-only model. 
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Tests of Model Effects 

Source 
Type III 
Wald Chi-Square df Sig. 

(Intercept) 18.538 1 <.001 
Daily COVID-19 cases Canada (in thousands) 51.672 1 <.001 

Stringency Index Ontario 28.429 1 <.001 
Temperature 22.773 1 <.001 
Precipitation 10.610 1 .001 
Windspeed .250 1 .617 
Population density (thousand people / square km) 7.995 1 .005 

Females% 9.397 1 .002 
Age weighted average .706 1 .401 
Income 2020 weighted average (in thousands CAN$) .054 1 .817 

Arterial dominant crossings 1.165 1 .280 
Local dominant crossings .735 1 .391 
Dependent Variable: CyclistsPM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population density (thousand people / square km), Females%, Age 
weighted average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local dominant crossings 
 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Exp(B) 

95% Wald Confidence 
Interval for Exp(B) 

Lower Upper 
Wald Chi-
Square df Sig. Lower Upper 

(Intercept) 16.474 3.8263 8.975 23.974 18.538 1 <.001 14280478.468 7903.137 25803938804.463 

Daily COVID-19 
cases Canada (in 
thousands) 

.395 .0550 .287 .503 51.672 1 <.001 1.485 1.333 1.654 

Stringency Index 
Ontario 

-.068 .0127 -.092 -.043 28.429 1 <.001 .935 .912 .958 

Temperature .122 .0255 .072 .172 22.773 1 <.001 1.129 1.074 1.187 

Precipitation -.133 .0408 -.213 -.053 10.610 1 .001 .876 .808 .948 

Windspeed .008 .0167 -.024 .041 .250 1 .617 1.008 .976 1.042 

Population density 
(thousand people / 
square km) 

.073 .0259 .022 .124 7.995 1 .005 1.076 1.023 1.132 

Females% -.247 .0805 -.405 -.089 9.397 1 .002 .781 .667 .915 

Age weighted 
average 

-.040 .0474 -.133 .053 .706 1 .401 .961 .876 1.055 

Income 2020 
weighted average 
(in thousands 
CAN$) 

-.001 .0048 -.011 .008 .054 1 .817 .999 .990 1.008 

Arterial dominant 
crossings 

.279 .2584 -.228 .786 1.165 1 .280 1.322 .796 2.194 

Local dominant 
crossings 

-.259 .3016 -.850 .332 .735 1 .391 .772 .428 1.394 

(Scale) 1a 
         

(Negative 
binomial) 

1.092 .1306 .864 1.381 
      

Dependent Variable: CyclistsPM 
Model: (Intercept), Daily COVID-19 cases Canada (in thousands), Stringency Index Ontario, Temperature, Precipitation, Windspeed, Population density (thousand people / square km), Females%, Age weighted 
average, Income 2020 weighted average (in thousands CAN$), Arterial dominant crossings, Local dominant crossings 

a. Fixed at the displayed value. 

 


