
Using the web to explain claims

Master Thesis

Nick van Bremen (5953790)

A thesis presented for the degree of
Master of Information Science

First supervisor: Dr. I.R. Karnstedt-Hulpus

Second supervisor: Dr. A. Gatt

Department of Information and Computing Sciences

Utrecht University

The Netherlands

February 2023

Using the web to explain claims

Master Thesis

Nick van Bremen

Abstract

An important part of human interaction is argumentation. Arguments can be
found anywhere and have been studied in various disciplines, going all the way back
to ancient times. With the rise of the world wide web, and more specifically the social
web, researchers have gained access to a seemingly endless resource of arguments.
The study of argumentation has also gained interest in the field of computer science,
where researchers have made it their objective to automatically detect arguments
in natural language and store them in a structured way. This area of research is
known as argument mining. In order to understand an argument, one often needs
reasoning, commonsense, and contextual knowledge. Sometimes an argument is
based on believes and assumptions that are not known to someone. For a system
that performs an argument mining task, it may also be beneficial to receive more
information than just the text that makes up the argument. To help people as well as
computers to better understand an argument, multiple systems have been proposed
that try to capture the implicit parts of an argument and make them explicit. This
has for instance been done by training machine learning models with annotated
datasets and by the use of structured knowledge graphs. We expect that many of the
underlying believes and assumptions of an argument can be found in unstructured
natural language on the internet. Therefore, in this thesis, a pipeline is proposed
that may help in explaining an argument by retrieving text fragments from the web
using different techniques from the field of Natural Language Processing (NLP). The
performance of the pipeline is analysed through a user study, in which people had
to choose between the explanation of the pipeline and a baseline. Results show that
the task of choosing the best explanation is somewhat ambiguous, making it unclear
whether the proposed system outperforms a baseline. The process of building the
pipeline has also made it clear that certain NLP tasks still need some progress to
be used in a downstream task like this.

2

Contents

1 Introduction 5

1.1 Problem statement . 6

1.2 Contributions . 6

1.3 The pipeline . 7

1.4 Layout . 8

2 Related Literature 9

2.1 The structure of arguments . 9

2.1.1 The Toulmin Model . 10

2.1.2 Argumentation schemes . 10

2.1.3 Structures in Argument Mining 11

2.2 Argument Mining . 12

2.3 Using background knowledge . 13

2.3.1 Argument identification . 13

2.3.2 Relation identification . 14

2.4 Making implicit knowledge explicit 14

2.4.1 Annotation of implicit knowledge 14

2.4.2 Enthymeme reconstruction . 15

2.4.3 Claim matching . 16

2.4.4 Explicitation . 16

3 Background 18

3.1 Phrase extraction . 18

3.1.1 Part-of-Speech tagging . 18

3.1.2 Dependency parsing . 19

3.2 Web querying . 19

3.2.1 Crawled datasets . 20

3.2.2 Search engine APIs . 20

3.2.3 Web scraping . 21

3.3 Snippet extraction . 21

3.3.1 Rhetorical Structure Theory 21

3.3.2 Discourse markers . 22

3.4 Text summarization . 22

3.5 Stance detection . 23

3.6 Clustering . 23

3

Using the web to explain claims

4 Implementation 25
4.1 Phrase extraction . 25
4.2 Web querying . 28
4.3 Snippet extraction . 29

4.3.1 Summarization . 31
4.4 Stance detection . 31
4.5 Snippet ranking . 32

5 Evaluation 33
5.1 Set up . 33

5.1.1 The baseline . 33
5.1.2 Data gathering . 33
5.1.3 The annotation site . 35

5.2 Results . 36
5.2.1 Descriptive statistics . 38
5.2.2 Inter-annotator agreement . 38
5.2.3 Performance . 39

5.3 Discussion . 46

6 Conclusion 49

A Argument structure 56

B Task description 57
B.1 Introduction . 57
B.2 The task . 57
B.3 Important terms . 58
B.4 How the data is stored . 59

C Planning 60

4 Chapter 0 Nick van Bremen

Chapter 1

Introduction

For probably as long as mankind has existed, people have been expressing their
views and opinions, have tried to persuade each other, and have sought to sort
conflicts. This has been done with the use of arguments [44]. Expressing these
believes may be done through gestures or facial expressions, but argumentation is
mostly considered to be written or spoken [71]. Scholars from all sorts of disciplines
have been interested in argumentation for millennia [45, 51, 30, 77], with the most
famous traditional work coming from Aristotle [71, 44]. After him, many others
have tried to capture a definition and model of arguments. Most models have in
common that an argument is made up of one or multiple premises that relate to a
certain claim [73, 28, 77, 30].

Besides classical fields of research like law, logic, and philosophy, argumentation
also became a subject of interest in the field of computer science. The automatic
retrieval of arguments from unstructured natural language became a new area of re-
search known as argumentation mining [45]. The structure of arguments has become
an important aspect in this area, as computational implementation requires some
sort of formalization [77]. Early advances in argumentation mining were made in the
legal field, as the retrieval of arguments from precedent cases is an important aspect
in judging a current case [51]. This, in combination with the relatively structured
nature of legal cases, made the legal field a good starting point for argumentation
mining and the use of argumentation schemes [77, 20].

Apart from court decisions, argumentation can be found in plenty of places,
like scientific papers, medical texts, patent requests, and so on [51]. The rise of the
World Wide Web in the past decades, and specifically the coming of social media, has
given researchers access to a seemingly endless resource of arguments. A difference
between arguments found online and arguments found in the aforementioned texts,
is that online arguments often do not have a clear structure and may lack all the
information necessary to completely understand the argument.

With the coming of large language models like BERT, tasks within argument
mining and Natural Language Processing (NLP) have made impressive performance
gains. But it is argued that these language models do not have a real understanding
of the meaning of what they produce and merely work with superficial features de-
rived from the text [17, 55]. Furthermore, it was found that most tasks in argument
mining will benefit from the use of background knowledge [44].

5

Using the web to explain claims

1.1 Problem statement

Arguments that lack one or multiple premises, or even the conclusion, are called
enthymemes [77]. Enthymemes pose a difficult problem in argumentation mining,
as it requires a system to reason and understand the context to make sense of an
argument. Besides the argument missing certain parts, there may be other informa-
tion that is assumed to be known by the one asserting the argument. This may be
commonsense knowledge, believes, assumptions, or just simple facts.

All this implicit information may not be known by a human, and certainly not by
a computer. Therefore, it might be interesting to find a way to automatically make
explicit the implicit parts of an argument. Gathering the information underlying
an argument has been tried in multiple ways. Most research focuses on finding
this information in structured knowledge bases or unstructured factual sources like
Wikipedia. In this study, we assume that important implicit information does not
have to be factual or stored in knowledge graphs, but may very well be believes and
assumptions that are not necessarily true. Therefore we want to use unstructured
natural language from sources found on the internet that may help in explaining the
underlying assumptions in an argument.

In this research, the main aim will be to explore whether our approach produces
good results and can be used as an alternative way to make implicit parts of an
argument explicit. This leads to the main research question:

Research Question: How can arguments be explained using text sources
from the web?

This research question can be divided into two sub questions. First, a means is
needed to automatically retrieve fragments of text from the internet. To this end,
the following question is posed:

Sub Question 1: How can potential explanations for an argument be
retrieved from the web?

In order to answer this question, a pipeline will be proposed using multiple exist-
ing methods and techniques from the fields of argument mining and NLP. Different
approaches will be tried and a qualitative assessment will be done on the different
components, modifying the component where needed. As a final step, the system
as a whole should be evaluated. As the text snippets that will be retrieved may
be anything, it is not possible to use a dataset to analyse the performance of the
pipeline. The pieces of text are unstructured and content may be retrieved one
would not have thought of in advance. It would be insufficient to judge the output
of the pipeline on one or a few references [14]. Therefore, a method is needed to
thoroughly analyse the pipeline, leading to the second sub question:

Sub Question 2: What methods can be used for analysis of the proposed
solution?

1.2 Contributions

The main contributions of this research are the following: 1) an alternative ap-
proach to finding explanations for arguments that is not restricted to a specific kind

6 Chapter 1 Nick van Bremen

Using the web to explain claims

of explanation and may result in information on believes and assumptions that is
not modelled in knowledge bases, 2) a pipeline for finding these explanations, that
takes as input a claim, topic, and stance, and outputs multiple text fragments that
explain the connection between the topic and claim, and 3) a means of analyzing
the unstructured output of the pipeline in a quantitative way.

1.3 The pipeline

In this section, the different components of the proposed pipeline will briefly be
introduced. This is done to provide an overview of the rest of the document. Pointers
will be given to where information can be found on the background of the task
(Chapter 3) and on the implementation of the component (Chapter 4).

Extract
phrases

Query
web

Extract
snippets

Determine
stance

Rank
snippets

Figure 1.1: High-level overview of the proposed pipeline. It takes as input a claim,
topic, and stance, and outputs text snippets.

Figure 1.1 shows the main components of the pipeline. The pipeline takes as
input a claim, a corresponding topic, and the stance of the claim towards the topic.
In the first step, important words and phrases are extracted from the claim and the
topic which will be used in subsequent steps. This will be done by means of Part-
of-Speech (POS) tagging and dependency parsing for which background is given
in Section 3.1. The implementation is explained in Section 4.1. Next, the web
will be searched for relevant articles. Some background on the multiple considered
approaches is given in Section 3.2, while the final implementation is described in
Section 4.2. After the articles have been collected, an algorithm is needed to extract
relevant pieces of text from the full document. The created algorithm makes use of
simple word matching, using the terms extracted in the first step, while taking into
account paragraph boundaries. The full implementation is detailed in Section 4.3,
while some background on used and considered techniques is given in Section 3.3. As
the algorithm sometimes extracts lengthy snippets, a sub task of this component is to
summarize snippets that are deemed too long. Some background on summarization
is given in Section 3.4. Now that all snippets have been gathered, the stance towards
the topic will be determined for every snippet. Stance detection will further be
explained in Section 3.5, while the used model is presented in Section 4.4. As a last
step, a selection of relevant snippets has to be made. This is done by clustering
all the snippets that have the same stance towards the topic as the claim and then
extracting the snippet closest to the centroid of the cluster, which will be explained
in Section 4.5 with some background in Section 3.6. This leaves us with a number
of snippets which is equal to the number of clusters. As a last step, the snippets are
ranked based on the size of the cluster they are found in.

Chapter 1 Nick van Bremen 7

Using the web to explain claims

1.4 Layout

In the following chapter, related literature will be presented. The chapter starts with
a broad overview of the structure of arguments (Section 2.1) after which the field
of argumentation mining is introduced (Section 2.2). Then, the use of background
knowledge in different argumentation mining tasks is discussed (Section 2.3) and the
chapter ends with the specific task of making implicit knowledge explicit (Section
2.4). Background on the different methods and techniques used in the pipeline
is given in Chapter 3, after which the implementation is specified in Chapter 4.
Chapter 5 first presents the approach for evaluation of the pipeline, after which the
results of the evaluation are given, and ends with a discussion of the results. Lastly,
in Chapter 6, the thesis is concluded.

8 Chapter 1 Nick van Bremen

Chapter 2

Related Literature

In this chapter, an overview of the related literature is given. First, the structure of
an argument will be discussed and the different terms used in the field of argument
mining, followed by an overview of this field. Then, studies that use background
knowledge will be discussed followed by studies on the task of making implicit knowl-
edge explicit.

2.1 The structure of arguments

There are two main levels of detail at which one can look at the structure of argu-
ments: the micro-structure and macro-structure. At the micro-structure level, an
argument is split into different argumentative units (also referred to as argumenta-
tive discourse units or argument components) that have a relation to one another.
At the macro-structure level, arguments as a whole are considered, and the relations
between different arguments is examined. Within these two granularity levels, Ben-
tahar, Moulin, and Bélanger [18] define three perspectives: monological, dialogical,
and rhetorical. The monological perspective is concerned with the internal structure
of an argument and looks at the different components that make up a single argu-
ment and the relations between these components, and is thus at the micro-structure
level of argumentation. The dialogical and rethorical perspective both consider the
macro-structure of arguments and therefore how complete arguments relate to each
other. The difference is, that the dialogical perspective is more concerned with for-
mal relations between arguments, whereas the rethorical perspective is concerned
with convincing an audience and discursive techniques to do so. In this study, we
are concerned with single arguments and are thus interested in the monological per-
spective of arguments. Therefore, the rest of this section will deal with models on
the micro-structure of arguments.

There are different ways to explain the micro-structure of an argument. A clas-
sical way to explain an argument which has been used since the time of Aristotle is
by separating the argument into premise and conclusion [73, 71]. The premises can
than be divided into minor premise and major premise, where the minor premise
refers to a specific case, while the major premise asserts a generalization. A famous
example of such an argument is the following:

Socrates is a man;
Every man is mortal;
Therefore, Socrates is mortal.

9

Using the web to explain claims

An important aspect of the classical logic, is that a conclusion is accepted when
both premises are assumed to be true, like in the case of the example. This kind
of argument is called a syllogism [73, 71]. By means of deductive reasoning, the
argument can be accepted or disproved. This view has been adopted by logicians
and was seen as a good way to test whether an argument is sound. A problem with
this view is that an argument may only be true for certain cases, or may be made
tentatively and be refuted with the coming of new information. An argument that
does not hold indefinitely, is called defeasible [71, 77].

2.1.1 The Toulmin Model

Using traditional inference to either accept or reject an argument has its problems.
Toulmin argues that pure syllogisms are not common in everyday argumentation and
believes that the representation of arguments using two premises and a conclusion
does not suffice [73]. At the core of his criticism lies the form of the major premise
in what he calls an analytic argument, which is either “All A’s are B’s” or “No A’s
are B’s”. He asserts that in most cases this does not hold and that this premise
generally has the form of “Most A’s are B’s” or “Barely any A’s are B’s”. Using
traditional inference, no certain conclusion can be drawn from the last two forms of
premises. An argument that does not implicitly or explicitly hold its conclusion in
its premises, Toulmin calls substantial.

He then goes on to describe a more fine-grained structure that may be used to
model substantial arguments. In this model, he also uses some sort of premise and
conclusion, which he calls data and claim. To make the inference from some piece
of data to a claim, one or multiple warrants are needed. To support a warrant,
a backing may be added. Where data can be compared to the minor premise, a
warrant together with backing can be considered the major premise. Two more
elements are now added to the model: the qualifier and rebuttal. The qualifier is
used to indicate the certainty of the inference from data to claim, whereas one or
multiple rebuttals may be added to present exceptions on the inference. A much
cited example of the complete model from Toulmin [73] can be seen in Figure 2.1.

When writing his book, Toulmin set out to challenge the view that any argument
can be formally described in some sort of model, specifically the syllogism. It was
never his intention to produce a new model for argumentation. However, the terms
proposed in his book to describe an argument have come to be known as the Toulmin
model which has been widely used in various disciplines, among which computer
science. Especially in the field of argument mining, numerous variations of the
Toulmin model have been applied, as will become clear in Section 2.1.3.

2.1.2 Argumentation schemes

The classical model and Toulmin model mentioned in the previous sections are
relevant to model arguments in general. But there are multiple types of arguments.
A comprehensive overview of the structure of different types of arguments has been
given in Walton, Reed, and Macagno [77]. They describe sixty-five schemes in terms
of premise and conclusion. Depending on the scheme, different types of premises
are used. They may use a structure in the classical sense, with a major and minor
premise, or add more premises and just number them. In some cases, premises

10 Chapter 2 Nick van Bremen

Using the web to explain claims

D: Harry
was born in
Bermuda

Q: So, presumably,

Since

W: A man born in
Bermuda will gen-
erally be a British
subject

On account of

B: The following
statutes and other
legal provisions:

Unless

R: Both his parents
were aliens/he has
become a naturalised
American/...

C: Harry is a
British subject

Figure 2.1: Example of the complete model taken from Toulmin [73]. Where D
stands for data, W for warrant, B for backing, Q for qualifier, R for rebuttal, and
C for conclusion.

may have specific names. For instance, for the argument from analogy, besides the
major and minor premise, they define a relevant similarity premise to complete the
scheme.

Besides the premise and conclusion structure, every scheme has corresponding
critical questions. The questions can be used to determine whether an argument
that fits in a certain scheme is sound or whether it is fallacious. Argumentation
schemes have been widely used in computer science and may help in the automatic
analysis of arguments.

2.1.3 Structures in Argument Mining

In the field of argument mining (which will be further discussed in Section 2.2), the
model by Toulmin [73] and the more specif schemes by Walton, Reed, and Macagno
[77] have often been used. Apart from these models, other ways of describing and
structuring argumentation have also been used. These structures are often inspired
by the Toulmin model or the classical model of argumentation, where an argument
always at least consists of a premise and a conclusion. But, since most authors
choose to use different terms, it can become quite confusing what is actually being
referred to. For this reason, a table was created that can be found in Appendix
A. In this table, we took the classical and Toulmin model as the basis, and tried
to connect terms used in other papers to these models. This table is based on
our interpretation of how the authors described the terms they were using, and
does not try to suggest all these terms have a one-on-one relation or are entirely
interchangeable. It is merely for clarification.

This table only takes into account the micro-structure of an argument. Certain
papers further use the term topic [39, 67, 63, 20, 38, 68, 29, 7] to which an argument
has a certain stance. Furthermore, not all papers are concerned with the full micro-
structure of an argument and only refer to a specific part of an argument (e.g.
claim [38, 7]).

Looking at Table A.1, it seems most structures are mainly concerned with some

Chapter 2 Nick van Bremen 11

Using the web to explain claims

sort of premise and a claim (or conclusion). The qualifier and rebuttal present in
the model by Toulmin [73] do not seem to be of importance in other structures. In
general we can say that an argument consists of premises and a conclusion. The
premise overlaps with the minor and major premise in the classical model, and
with the data, warrant, and (sometimes) backing in the Toulmin [73] model. The
conclusion is also referred to as the claim.

For the purpose of this study, we will mainly be concerned with the claim (or
conclusion) of an argument and how it relates to a certain topic. Now that it has
been clarified how arguments are structured, which terms are used, and how they
relate, we can go on to discuss argumentation within computer science.

2.2 Argument Mining

The research area of argument (or argumentation) mining, is mainly concerned
with deriving arguments from unstructured natural language and storing them in
a structured way [45]. But this is not just one unified task. To go from natural
language to structured data, multiple tasks have to be conducted that all have their
separate sub- and supporting tasks. Now, on the basis of an overview paper by Lippi
and Torroni [45] and the a book by Stede and Schneider [71], an overview will be
given of the different tasks that encompass argument mining. A typical argument
mining system would roughly consist of three main tasks: finding argumentative
text, finding argument components, and relating the argument components and
complete arguments.

Given multiple natural language texts, the first task would be to determine for
each text, whether it includes arguments at all. This may be done by classifying
texts as argumentative or not, but could also be done by detecting whether a text
is opinionated, or whether it is subjective or objective. After this first classification
of full texts, the same may be done for individual sentences or for larger fragments
of text.

Now that it is established which sentences contain (parts of) arguments, the
next task would be to determine what argumentative components are present in the
sentences, and where each component begins and ends. Depending on the chosen
argument model, different components may be identified, but generally speaking a
system will look for a claim and premises. Although finding claims and premises is
often done in parallel, Stede and Schneider [71] also describe the tasks separately
(using the term statements for all argument components that are not the claim). A
statement belonging to a claim is usually thought of as supporting the claim, but it
may as well be an opposing statement. Looking at the model by Toulmin, this may
for instance be a rebuttal.

Finally, the relation between all argumentative units and arguments themselves
has to be predicted. There are different schemes to annotate arguments. Simpler
schemes only use support and attack relations to describe how arguments or ar-
gumentative units are linked. Others are more fine-grained and divide the attack
relation in rebuttal and undercut. Some will take into account only full arguments,
while others will relate arguments via their different components. Lippi and Torroni
[45] say that this is the most challenging task that may require knowledge of the
context that is not present in the arguments.

12 Chapter 2 Nick van Bremen

Using the web to explain claims

The previous paragraphs have given a high level overview of a hypothetical ar-
gument mining system, but these are not the only tasks within the field of argument
mining. Although the complete task of argument mining has now been split up into
more manageable parts, some of these separate tasks are still hard to accomplish
and may require a complete system on their own. There are also multiple supporting
tasks that may help one or more of the main tasks. The task of stance detection
may for instance be helpful to determine whether a premise is against or in favor
of a certain claim. Enthymeme reconstruction may help in completing an argument
so that a downstream task can better relate the different argumentative units. And
all these tasks may benefit from the use of background knowledge to improve their
results [44].

In this study, we are interested in explaining arguments by finding what con-
nects a claim to a topic using unstructured sources from the internet. This extra
information may help a human better understand an argument and may improve
downstream tasks. The remainder of this chapter is divided into two main parts:
first, studies that use background knowledge to improve an argument mining task
will be discussed, after that, research will be discussed that specifically focuses on
finding this implicit knowledge and making it explicit.

2.3 Using background knowledge

In this section, two main tasks of the argument mining pipeline will be discussed
that may benefit from the use of contextual knowledge.

2.3.1 Argument identification

The task of argument identification is one of the first tasks in a typical argument
mining pipeline and is described as the task of finding premises and conclusion of
an argument in a text [45]. This task may benefit from the use of background
knowledge.

In their paper, Fromm, Faerman, and Seidl [29] show that taking into account the
topic when detecting arguments may improve the task of argument identification.
They claim that most argument search engines only rely on the sentence itself to
determine whether it is an argument to a certain topic. In these search engines, the
assumption is made that everything is relevant to the topic, as the search is based
on a certain query that holds the topic. However, Fromm, Faerman, and Seidl [29]
prove that including the topic in the identification task improves the results, and
argue that adding extra context with the use of knowledge graphs may further boost
the task.

Using knowledge graphs in combination with a topic and a sentence was done
by Abels et al. [1]. Their task was similar to that of the previous paper: given a
topic and a sentence, determine whether the sentence is an argument towards the
topic. They believed the use of contextual knowledge could enhance the system. To
find this knowledge, entities were extracted from the topic and the sentence, and the
structured knowledge graph Wikidata was used to find what connects these entities.
This would give a starting point for building a topic related knowledge graph, that
would further be augmented by extracting triples from a web search. Adding this

Chapter 2 Nick van Bremen 13

Using the web to explain claims

knowledge graph as input to a classifier, together with the topic and the sentence,
improved the classification.

For our research, especially the last study is relevant, as it not only demon-
strates the usefulness of contextual knowledge for an argument mining task, but it
also shows a method for retrieving this knowledge from structured as well as un-
structured data. Specifically the extraction of entities from the topic and sentence
with which the web is queried, is similar to our research. A difference is that we
are not concerned with a specific task (in this case argument identification) and we
take into account the stance of the sentence towards the topic.

2.3.2 Relation identification

Finding the relations between argumentative units or complete arguments is known
as relation identification (also referred to as relation prediction and relation classi-
fication) [45, 44, 71]. The aim is to determine for two arguments, whether they are
in a support or attack relation, but more fine-grained classifications may be used as
well. In a typical argument mining pipeline, this is seen as one of the last, and more
complex tasks [45, 71].

To improve this task, contextual or commonsense knowledge may be needed. To
this end, Kobbe et al. [39] made use of knowledge graphs, such as ConceptNet and
DBpedia, as extra input to a Siamese Neural Network that classifies the relation
of pairs of argumentative units. The knowledge graphs are used by linking all
entities in a pair of arguments to the knowledge graph, and then extracting paths
(up to a length of three) between every entity pair from both argumentative units.
The relations themselves, together with some features derived from the paths, are
then added to the input of the classifier. The experiments conducted in the study
prove that augmenting a classifier with this background knowledge improves the
performance compared to a non-augmented baseline.

2.4 Making implicit knowledge explicit

Different tasks have been proposed to uncover the underlying premises that help
explain an argument. These tasks have in common that the assumption is made
that not all information needed to understand an argument is present within the
argument [13]. Various terms are used to describe what is missing in an argument
and the search for these implicit parts has been conducted in multiple ways. Whereas
in the previous sections tasks have been discussed that use some sort of external
knowledge to improve the task, we will now discuss research that is specifically set
out to make implicit information explicit.

2.4.1 Annotation of implicit knowledge

It is often mentioned in literature that there are few large datasets for argumentation.
This is considered a problem, as a lot of data is needed to train a machine learning
model [58]. To counter this, multiple studies propose methods for annotating implicit
knowledge and various annotated datasets have been published.

Becker, Korfhage, and Frank [13] propose a structured way of annotating implicit
knowledge to pairs of argumentative units (from the Microtexts Corpus [58]). They

14 Chapter 2 Nick van Bremen

Using the web to explain claims

claim that most annotation studies are too unstructured, making the differences in
annotations added by different annotators too big. Therefore a multi-step annota-
tion process is proposed in which annotators review each others annotations [16].
The argumentative units in the dataset as well as the added implicit knowledge are
then further annotated using semantic clause types and commonsense relations.

Another annotation study that uses a structured representation to add the im-
plicit knowledge that connects a premise to a claim, was proposed by Singh et
al. [66]. They derive what they call action and outcome entities from claims and
premises, and then add implicit causal knowledge that explains the step from premise
to claim. To structure this, they add the relation between the income entity, the
implicit causal knowledge, and the outcome entity. This is either a cause or sup-
press relation. The relations are added because the authors believe that only adding
the implicit knowledge does not tell enough about how the premise and claim are
related.

A task that is closely linked to uncovering knowledge that is left implicit in an
argument, is the reasoning comprehension task as introduced by Habernal et al. [31].
Given a reason and a claim, the task is to find the warrant connecting them, choosing
from two opposing warrants. To this end, a dataset is constructed consisting of a
claim, reason, and two warrants. One warrant is correct, while the other is the
opposite.

The problem with implicit knowledge is that it may come in any form. It may
be warrants or causal relations, but it can also be facts, believes or other arguments
that are assumed to be known. Therefore, uncovering implicit knowledge using
datasets can be limiting, although it does facilitate a good evaluation.

2.4.2 Enthymeme reconstruction

Most arguments do not explicitly state everything that is needed to understand
the argument. Often, certain argument components are missing. Arguments from
which a premise, multiples premises, or even the conclusion is missing, are called
enthymemes [77, 76, 71]. For the understanding of arguments by a system or a
person, it is useful to have all the argumentative components explicit, as well as any
extra information that is relevant. This task is called enthymeme reconstruction.

A first step in reconstructing an enthymeme was taken by Rajendran, Bollegala,
and Parsons [60]. They created a binary classifier that could distinguish between
implicit and explicit opinions. They argue that an implicit opinion is closely related
to an argument with a missing premise. A dataset with opinions about hotel rooms
is augmented with either the conclusion that the reviewer is in favour of (an aspect
of) the hotel, or against. Furthermore, for every statement it is annotated whether
it is implicit or explicit.

But finding an enthymeme is only the first part. Chakrabarty, Trivedi, and
Muresan [24] try to generate an unstated premise by using a commonsense model.
They use a dataset that contains two observations and a hypothesis connecting the
observations. They use one observation as the explicit premise, the other observation
as the claim, and the hypothesis as the implicit premise. Their goal is to automat-
ically generate the implicit premise using a pre-trained language model, fine-tuned
on the aforementioned dataset and a commonsense knowledge model. The com-
monsense model returns a commonsense inference for a given sentence. Adding this

Chapter 2 Nick van Bremen 15

Using the web to explain claims

commonsense knowledge for the explicit premise as input for the model gave better
results compared to only inputting the explicit premise and the claim.

This study is especially interesting, as it not only makes explicit an implicit
part of the argument, but also demonstrates the benefits of using commonsense in
this task. The difference between the task of enthymeme reconstruction and our
research, is that we are not concerned with specifically finding premises to complete
an argument. We want to find anything, specifically believes and assumptions, that
may help in explaining an argument. Of course, this may include missing premises.

2.4.3 Claim matching

Boltužić and Šnajder [20] argue that user-generated claims found online are often
noisy and do not have a clear structure. As lots of claims are made online, there
is a need to group claims together. This may be done using superficial information
like text similarity, but it may be that two claims arguing for the same point use
totally different wordings. To match a claim to a main claim, the authors propose
to create a dataset consisting of claims, main claims, and premises that connect the
claim to the main claim. It was found that the premises help in correctly matching
user-generated claims to overarching main claims. The problem is that there will
not always be a dataset with premises for all the user-generated claims. Therefore,
there should be a way of automatically finding these premises, which makes the
approach to claim matching somewhat similar to that of enthymeme reconstruction.
The authors also provide a preliminary attempt to do this, but do not outperform
the baseline model.

2.4.4 Explicitation

The task of argument explicitation was proposed by Hulpus et al. [35] and defined
as the task of providing information that explains the implicit parts of an argument
to help either a person or system better understand and interpret a given argument.
These implicit parts may be anything, it could be missing premises, relevant facts,
or information that connects entities within or between arguments. The authors
divide the task into two sub-tasks: argument analysis and argument reconstruction.
The first sub-task is mainly about understanding the structure of the argument
and identifying argument components (also referred to as argumentative units).
The second sub-task is about adding any information in an argument that may be
missing.

In the study, three types of knowledge are mentioned that may be used to analyse
and reconstruct arguments: 1) knowledge that is captured within the text of an
argument itself, this is quite shallow knowledge that uses e.g. word embeddings or
discourse markers, 2) knowledge about argumentation, for instance the structure of
arguments or the relation between them, and lastly 3) background knowledge, which
may be anything that explains the argument.

Some other sub-tasks of argument mining are discussed in the paper, of which
knowledge enhancement-based explicitation is the most relevant task for our study.
This task is similar to enthymeme reconstruction, but it differs in that all kinds
of knowledge and facts may be added to the argument, as opposed to enthymeme

16 Chapter 2 Nick van Bremen

Using the web to explain claims

reconstruction, where specifically missing parts of an argument (premises or conclu-
sion) are to be found and added.

Implicit parts of an argument may also be commonsense knowledge. In order to
make this knowledge explicit, Becker et al. [15] propose a framework that creates
paths of commonsense knowledge between concepts from two sentences. Instead
of using static knowledge bases like ConceptNet to find relations, the authors use
relation classification and target prediction to dynamically create knowledge paths
between concepts. This results in the addition of highly structured information that
helps in understanding what connects two sentences. The aim of our study, finding
information that further explains a claim by for instance connecting it to the topic,
is somewhat similar, but it is done with unstructured data.

Chapter 2 Nick van Bremen 17

Chapter 3

Background

In this chapter, some background information will be given on the different methods
and techniques used in the pipeline. The description of the implementation of the
various components can be found in Chapter 4. It is not the aim of this study to
improve the techniques mentioned here, but to combine them and use them to try
and solve a downstream problem.

3.1 Phrase extraction

In the first step of the pipeline, relevant words and phrases are extracted from the
topic and claim which are to be used in other steps. To extract these words and
phrases, two techniques from the field of NLP are used: Part-of-Speech tagging and
dependency parsing. These will now briefly be explained.

3.1.1 Part-of-Speech tagging

Understanding the function of a word in a sentence is an important task that forms
the basis of many other NLP tasks [50, 25]. Assigning labels (or tags) to words to
describe their grammatical function in a sentence is called Part-of-Speech (POS) tag-
ging. The idea behind POS tagging is that all parts of a sentence can be categorized
in a certain class. Examples of these classes are “noun”, “verb”, and “adjective” [74,
25].

Although every natural language makes use of word classes to distinguish words
in a sentence, there are differences between the used classes and the number of
classes [65]. The Universal Dependencies1 project brings together the annotation for
many different languages and is based on existing schemes. It provides an overview
of 17 POS tags which they name the universal part-of-speech tags [49].

The automated tagging of words in a sentence is not entirely straightforward, as
natural language is ambiguous [50]. Multiple approaches have been tried for POS
tagging. Early work focused on rule-based approaches, but creating the rules is
time-consuming, requires linguistic knowledge, and is prone to error [25, 12].

With the help of these early methods started the annotation of large corpora,
like the Brown corpus [74]. Annotated corpora could then be used in stochastic
methods for POS tagging. These methods make use of statistical information and

1https://universaldependencies.org/

18

Using the web to explain claims

probability to assign a tag to a word and are implemented based on models like the
Hidden Markov Model and the Maximum Entropy [50, 12, 25]. Furthermore classic
Machine Learning and Deep Learning approaches are used for POS tagging [25].
State-of-the-art performance in many NLP tasks, and thus also in POS tagging, is
achieved with Transformer models like BERT [47].

3.1.2 Dependency parsing

Related to POS tagging is the task of dependency parsing. A sentence is not a
random collection of words, but a coherent structure of connected parts [41]. With
dependency parsing, the aim is to make this structure explicit by finding the relations
between words. The output of a dependency parser is a set of directed edges going
from the parent word (or head) to the child word (or dependent). These edges have
labels describing the grammatical relation between the two words [49, 32].

To train a model for dependency parsing, large annotated datasets, called tree-
banks, are often needed. Manually annotating this data is time consuming. Famous
large datasets are the Penn Treebank and the Brown Corpus, which contain anno-
tations on dependencies as well as POS-tags [78]. The earlier mentioned Universal
Dependencies project was set out to create a standard for linguistic treebank anno-
tation. Based on efforts by Stanford and Google, a universal standard for annotating
dependencies has been created [56].

Generally, models for dependency parsing can be divided into two broad classes:
graph-based and transition-based, which Zhang [78] further divides into two broad
approaches: the statistical and neural approach. The models have a comparable
performance, but require large annotated treebanks. Other approaches have there-
fore focused on unsupervised dependency parsing, although these do often rely on
the availability of POS-tags [32].

3.2 Web querying

In order to find relevant pieces of text, the internet has to be searched for relevant
articles. To do this, a web search engine, like Google [22], can be used. These search
engines generally consist of three main components [10]. The first component is a
crawler that starts at a certain web page and searches for links to other web pages
where it will continue the process. This way, all the different web pages on the
internet can be mapped [37]. The second component is the indexer. After having
found all the links to web pages, it is important to understand what a web page is
about. This is done by processing all information on a web page and storing it in
a database that is easy to be searched [69]. The final component, which may be
divided into two components, is the query engine. Here, web pages are retrieved
based on some query. As a high number of pages may fit the query, part of this
component is to rank the pages [10].

Services like Google are built for human users that will search for something and
open one or a few links from the results page to read, and not for computer systems
that try to obtain as many URLs from the results page as possible. As existing
search engines do not make it easy to programmatically use them, and it is not
feasible to implement a complete web search engine in this project, other ways have
to be explored. Three approaches have been considered which all have their pros

Chapter 3 Nick van Bremen 19

Using the web to explain claims

and cons. Firstly, available crawled datasets can be used to index and build a search
engine on top of to retrieve relevant articles. Another option would be to use and
API from and existing search engine. Lastly, a web scraper can be built to scrape
an existing search engine. All three approaches will now shortly be discussed.

3.2.1 Crawled datasets

Big commercial search engines do not publicize the crawled, and certainly not the
indexed, data, as it is the core of their business. Open source initiatives have been
set up that do make this data available which can be used to build your own search
engine on top of. One such project is Common Crawl2, a non-profit that makes vast
amounts of crawled data accessible to everyone. This provides a way to bypass the
commercially available search engines, although the data does still require a custom
search engine to extract any relevant information.

The advantage of using this approach is that you have a lot of control over
what information is retrieved and there are no limitations on the amount of results
that can be retrieved or number of queries that can be made. But there are major
downsides. First of all, you are dependent on the amount of the crawled data,
which is often lower than that of the big commercial search engines. Secondly,
computational power may be lacking to index the enormous amounts of data that
is available. Lastly, the results of a search will most likely not be as good as the
results of a big commercial search engine, as they constantly work on bettering their
algorithms.

ChatNoir3 is a freely accessible search engine that has indexed publicly avail-
able crawled datasets [19]. This search engine is especially interesting, as it offers
unrestricted API access. This means no custom search engines has to be made.
Although the performance of ChatNoir seems to be sufficient, a disadvantage is that
the latest indexed data is from 2015.

3.2.2 Search engine APIs

An Application Programming Interface (API) provides an easy access point for one
program to communicate with a another one [61]. Most commercially available
search engines provide an API which offers a way to programmatically obtain search
results in a structured way, bypassing the user interface.

Search engines like Google4 and Bing5 provide such APIs. This would be the
ideal solution, as it gives the quality of the results of a commercial search engine,
while offering it in a structured way. The problem is that most of the API’s are
either payed or very limited. For example, the Google API only retrieves the first
100 results of a query and allows a maximum of 100 API calls per day. One API call
will always at maximum provide 10 results, which means 10 calls are needed to get
the first 100 results of one query, effectively only allowing 100 results for 10 queries
per day. After this, it will cost $5 per 1,000 API calls.

2https://commoncrawl.org/
3https://www.chatnoir.eu/
4https://developers.google.com/custom-search/v1/overview
5https://www.microsoft.com/en-us/bing/apis/bing-web-search-api

20 Chapter 3 Nick van Bremen

Using the web to explain claims

3.2.3 Web scraping

To programmatically get data from the internet, web pages can be scraped. This is
the process of loading a web page and going through the HTML code to extract the
needed data based on some search command [79]. Scraping a search engine can be
done by performing a query, loading the results page, and extracting all URLs from
the page.

Although this is a bit of a workaround compared to using the API, as a web
scraper has to be built, the advantage is that there are no limitations in the number
of results or requests that can be done. The downside is that a scraper may break
when the search results page is altered. Furthermore, search engines, especially
Google, do not want bots to scrape their search results. Therefore, if a scraper is
detected, chances are that the IP address will be blocked. To counter this, proxy
servers can be used, although the available free proxies have often already been
blocked or are highly unreliable in general.

3.3 Snippet extraction

To extract relevant pieces of text from full articles simple word matching can be
used. The problem is that it is now unclear what the boundaries of the piece of text
should be. The size of a piece of text may be anything from a few words, to multiple
paragraphs. It may help to figure out the structure of an article to find coherent
pieces of text. Furthermore, apart from using word matching to find pieces of text,
there may also be certain signal words that help in finding more relevant parts.
Therefore, in the following sections a brief overview will be given on Rhetorical
Structure Theory and Discourse markers.

3.3.1 Rhetorical Structure Theory

Just like sentences are not an arbitrary collection of words (see Section 3.1.2), neither
are complete texts. Rhetorical Structure Theory (RST) is based on the idea that a
text can be divided into non-overlapping parts (referred to as text spans) through
a tree like structure starting at the full text and ending with parts of sentences
(referred to as Elementary Discourse Units (EDU) [23]). Text spans have relations
to each other which can be used to uncover the structure of a text. Examples
of relations that can hold between two text spans, are for instance “evidence”,
“summary”, or “contrast” [48].

To aid the development of automated RST parsing systems, Carlson, Marcu, and
Okurowski [23] created the RST Discourse Treebank (RST-DT). This is a dataset
consisting of 385 articles from the Wall Street Journal that were taken from the Penn
Treebank (see Section 3.1) and annotated with discourse structure as described in
RST. In order to do so, the text needs to be split up in EDUs, which is the starting
point of any RST parser [72].

Hou, Zhang, and Fei [34] divide the implementations of RST parsing systems
into four approaches: cue phrase-based, rule-based, shallow machine learning-based,
and deep learning-based. Some of the machine learning and deep learning-based
approaches have been implemented into one system by Neumann [54], who has made

Chapter 3 Nick van Bremen 21

Using the web to explain claims

them publicly available via a website6 and through the use of Docker containers.

3.3.2 Discourse markers

Cue phrases, from the cue phrase-based approaches (see Section 3.3.1), are defined
as words that signal a relation between two text spans [34]. They are also referred
to as Discourse Markers (DM) and multiple indexes of these kind of words have
been created. Examples of DMs are “although”, “because”, and “nevertheless”.

Although DMs explicitly express the relation between two text spans, the func-
tion of a single word may be ambiguous or vague [70]. This makes it hard to to
simply apply DMs in tasks like RST parsing. In an effort to increase the accessibility
of available lexicons from different languages, Connective-Lex7 has been created. It
provides a user interface that makes it easy to search for specific types of words in
different languages and gives pointers to where the structured lexicons are stored.

3.4 Text summarization

The output of the snippet extraction component should be concise, as the goal of a
single snippet is to give one possible explanation or piece of background. It might
happen that long pieces of text are extracted anyway. Therefore, a sub-task of the
snippet extraction is to summarize snippets deemed too long. This section gives a
brief overview of the different methods of automatic text summarization.

There exist two main approaches to automatic text summarization: extractive
and abstractive. Extractive summarization is based on extracting relevant sentences
from a text in order to form a summary, while with abstractive summarization, new
text is generated to create a summary of a larger text [6]. As may be apparent, ex-
tractive summarization methods are more straightforward to implement, as it does
not require the complex task of text generation. For that reason, early summariza-
tion systems were mainly extractive. Abstractive summarization has especially risen
to prominence with the coming of large language models [36].

A typical extractive summarization system consists of three main components.
First, the text to be summarized needs some sort of abstract representation, which
can for instance be done by looking at word frequency to determine important
words. Next, using this representation, the sentences of a text are scored based on
the occurrence of words in the sentence. Lastly, based on some threshold, a number
of sentences are selected to create the summary [6]. An obvious problem with this
type of summarization is that it does not necessarily result in a coherent story, as
sentences from all over a document may be put together to form the summary [36].

Abstractive summarization consists of two main tasks. Like with extractive sum-
marization, a structured representation of a text is needed. The second step is to use
this representation to generate a summary using a natural language generation tech-
nique. Abstractive summarization may be done through graph-, rule- or template-
based systems, but most recent work focuses on the use of deep-learning [36], as is
the case with many tasks within NLP [46].

6https://rst-workbench.arne.cl/
7http://connective-lex.info/

22 Chapter 3 Nick van Bremen

Using the web to explain claims

3.5 Stance detection

The goal of the proposed pipeline is to extract text that not only provides some
background to a claim, but moreover, explains why a claim is made. This could
be factual background information, or assumptions and believes that underlie a
claim. Most importantly, the goal of this study is not to retrieve counter arguments
to get a broad overview of a discussion, but rather supporting evidence to gain a
deeper understanding of a claim. Therefore, stance detection may be an interesting
technique to add to the pipeline.

The goal of stance detection is to find out whether a piece of text is for or against
a certain target, or neither [42]. Sometimes, apart from the for, against, and neither
class, a neutral class is added [53]. In other systems, only the for and against class
are used.

Earlier work on stance detection often used supervised machine learning for the
classification task. For these implementations, large annotated datasets are needed.
A widely used dataset is that of the SemEval-2016 task [52]. A problem with these
systems is unseen topics. Generally, for every target, a classifier would be trained
to predict the stance of a piece of text towards that target [43]. Unsupervised
approaches have also been attempted, for which no annotated datasets are needed.
Still, these implementations would often also be topic specific [3].

Ideally, a system would be topic-independent, but creating a topic-independent
stance detection system has challenges, as the used vocabulary between topics can
greatly differ [3]. Interesting results have been achieved using pre-trained trans-
former models like BERT, although there exist differences in performances on dif-
ferent topics [62].

3.6 Clustering

Chances are that multiple hundreds snippets are found in the first steps of the
proposed pipeline. As the goal is to provide a few pieces of information on the
given claim and topic, a means is needed to reduce the number of snippets. The
assumption is made that there will be groups of snippets that contain roughly the
same information, but it is not clear up front what this information will be, how
many different subjects the set of snippets cover, and how much snippets will cover
one subject. Therefore, clustering will be used.

The goal of clustering is to find groups of data in a multidimensional dataset
based on similarity [57]. This similarity is calculated using some similarity measure
like Euclidean distance or cosine similarity. Clustering algorithms can be grouped
into two categories: hierarchical and partitional techniques [64].

Hierarchical clustering methods start out with all items of a dataset in the same
cluster and split up the clusters until every item has their own separate cluster, or the
other way around. This means there is no need to determine the number of clusters
beforehand, but these algorithms are also computationally expensive. Partitional
clustering techniques on the other hand divide the data into a given number of
clusters using some criterion. Typically, a partitional algorithm randomly creates
a given amount of centroids and then computes for every item in the dataset to
which centroid it belongs. It then recalculates the cluster centroids until a stopping
criterion is met. Partitional clustering techniques are generally more popular, from

Chapter 3 Nick van Bremen 23

Using the web to explain claims

which the k -means algorithm is most commonly used [57].
Determining the number of clusters beforehand may not be a problem, for in-

stance if a dataset needs to be split up in a known number of categories. However,
it may not always be clear beforehand how many clusters should be found in the
data, for instance when exploring unseen data. Therefore, measures are needed to
determine the number of clusters. Multiple variations of existing algorithms have
been proposed that determine the optimal amount of clusters. However, instead
of having to set a fixed number of clusters, these algorithms often require other
parameters to be set [57].

Other methods to determine the optimal number of clusters rely on the algorithm
being run multiple times with different cluster sizes and calculating some score for
each run. A well known method is the elbow method, which calculates the distortion
for a fixed number of runs and relies on there being a turning point in the fall of this
distortion score. Plotting this in a graph, the turning point looks somewhat like an
elbow. The problem is that this point is not always present [40].

In order to cluster text, an important step it to create a numeric representation
of the text to be clustered [5]. This can for instance be done by using Bag-of-Words
or Term-Frequency Inversed-Document-Frequency. Although these simpler methods
preform well with larger texts, short texts may require a more sophisticated method
that captures the semantics of the words as well, because similar short texts may
use different words, which would be overlooked using the more shallow methods.
Pre-trained language models may help in capturing these semantics [2].

24 Chapter 3 Nick van Bremen

Chapter 4

Implementation

In this chapter, the implementation of the different components of the pipeline is
explained. Where applicable, the initial approach of the component is discussed
including the reasons for changing it. The high-level overview of the pipeline from
the introduction is provided again in Figure 4.1. In Chapter 3 some background on
the different tasks that make up the components is given.

Extract
prhases

Query
web

Extract
snippets

Determine
stance

Rank
snippets

Figure 4.1: High-level overview of the proposed pipeline. It takes as input a claim,
topic, and stance, and outputs text snippets.

The input of the pipeline is a claim, the topic of the claim, and the stance of the
claim towards the topic. To illustrate every step of the pipeline, a running example
is created using the following input:

Topic: Bombing Hiroshima and Nagasaki
Claim: Soviet victories in Manchuria were core cause of Japanese surrender.
Stance: CON

4.1 Phrase extraction

The first task of the pipeline is to extract relevant terms and phrases from the
topic and claim which will be used in subsequent components. The input of this
component is the topic and claim, and the output is two lists: one with words from
the topic, and one with words and phrases from the claim. The extracted words will
be used to search articles for relevant parts. Extracting these terms will be done
with the help of POS tagging and dependency parsing. More specifically, spaCy will
be used, which is an open source Python library that has pre-trained transformer
models for the mentioned tasks1. Claims are often well-formed, complete sentences.
A topic on the other hand may not be a full sentence and could in some cases be
just one word. Therefore, two different methods are used to extract the terms.

1https://spacy.io/usage/v3

25

Using the web to explain claims

To decide which words of the topic are relevant, the function of the word in the
sentence is determined by POS tagging all the words. By examining the explanations
on POS tags provided by the Universal Dependencies project2, a list was created with
tags that a word must have to be extracted from the topic. Most importantly, words
like “the”, “a”, and “on” should not be included. The list contains the following
POS tags: adjective (ADJ), adverb (ADV), interjection (INTJ), noun (NOUN),
numeral (NUM), pronoun (PRON), proper noun (PROPN), symbol (SYM), verb
(VERB), or other (X). Table 4.1 shows the extraction and selection for the example
topic.

Table 4.1: All words from the topic together with the POS tag and whether the
word is selected based on this POS tag. POS tagging was done using spaCy.

Word POS-tag Selected

Bombing PROPN ✓

Hiroshima PROPN ✓

and CCONJ ✗

Nagasaki PROPN ✓

To get relevant phrases from the claim, noun chunks are extracted. Noun chunks
can be described as a noun together with the words describing a noun. A noun chunk
can consist of one or multiple words. For the example claim, the noun chunks are
“Societ victories”, “Manchuria”, “core cause”, and “Japanese surrender”.

But when using only the noun chunks, not all useful parts of the claim may
be extracted. For instance, the root of a sentence may convey an action that is
important to the context of the claim. Furthermore, a noun chunk may consist of
three or more words which hold multiple other phrases that make perfect sense to
look for in an article. Therefore, phrases are added based on two more criteria.
First, if the root of the sentence has a POS tag that appears in the POS tag list as
described above, it is added to the list of extracted noun chunks. For the second
check, a list was created consisting of dependencies by reading the descriptions
as provided by the Universal Dependencies project3 as well as by going through
different claims and examining the output. If a word in the claim has a dependency
that is present in the list, it is added to the list of extracted noun chunks, and if
applicable, the root. The selected dependencies are adverbial modifier (advmod),
adjectival modifier (amod), compound (compound), and prhasal verb particle (prt).
The main criterion for choosing a dependency was that the two words combined
should make a coherent phrase that may help in searching an article for relevant
parts.

To illustrate the added steps, take the following claim as an example:

Universal health care systems incentivize improving patient health.

When only considering the noun chunks, the following phrases are extracted:
“Universal health care systems” and “patient health”. The first noun chunk consists
of four words, which may contain other valuable phrases that help in extracting

2https://universaldependencies.org/u/pos/
3https://universaldependencies.org/u/dep/

26 Chapter 4 Nick van Bremen

Using the web to explain claims

snippets. In this case, the extra step extracts the phrases “universal systems”,
“health care”, and “care systems”, which are all relevant in the context of this
claim. Table 4.2 shows for every word in the claim its dependency relation, the head
of the relation, and whether the phrase is selected based on the criteria. The phrase
“patient health” is also selected, but this one was already extracted as a noun chunk.
Furthermore, the word “incentivize” is the root of the sentence, which signals an
action that is at the core of the claim, it would make sense to also use this word
for extracting text from articles. As the POS tag of the root is “VERB”, which is
present in the POS tag list, it can be added to the extracted noun chunks.

Table 4.2: The dependency relation of all words from the claim together with the
head of the dependency and whether it is chosen based on the criteria

Word Dependency Head Selected

Universal amod systems ✓

health compound car ✓

care compound systems ✓

systems nsubj incentivize ✗

incentivize ROOT incentivize ✗

improving xcomp incentivize ✗

patient amod health ✓

health dobj improving ✗

. punct incentivize ✗

In the process of extracting words and phrases from the topic and claim, steps
are taken to prevent that any words that have nothing to do with the actual content
of the topic and claim are extracted. This mostly concerns so called stop words,
words that have no significance to the meaning of a sentence [9]. As a final step in
the component of entity extraction, any stop words that have somehow slipped in
anyway, will be removed. This is done by using the stop words list from the NLTK4

python library. Although it was found that stop words are rarely extracted, this step
is still crucial, as using stop words in the snippet extraction phase greatly changes
the type and number of extracted snippets.

Initial approach For the claim, only specific noun chunks were extracted. A
list with relevant dependencies was created and only noun chunks that had one of
these dependencies were used. The dependency relations were chosen based on their
description on the Universal Dependencies website and a qualitative assessment of
the extracted phrases. After a more elaborate analysis of the extracted noun chunks,
it was found that not enough important phrases were extracted. Therefore, all noun
chunks were extracted and a new list of dependencies was created to extract even
more relevant phrases. This also resulted in the addition of the stop word removal
step, as in some cases stop words were extracted as well.

4https://www.nltk.org/

Chapter 4 Nick van Bremen 27

Using the web to explain claims

4.2 Web querying

In this component, a web search engine is used to scrape articles from the internet.
The input of this component is the topic and the claim, and the output is a list of
web links. The links will be used to extract snippets from in the snippet extraction
component. The used search engine is Bing5.

In order to scrape URLs, a search query has to be created. This is done by
combining the topic and the claim and appending “language:en” at the end of the
query, which should ensure that all retrieved articles are in English6. Using the
example topic and claim, the query looks like this:

bombing hiroshima and nagasaki soviet victories in manchuria were core
cause of japanese surrender language:en

It is possible that the claim contains words that are also found in the topic. In
these cases, the double words are deleted from the topic while the claim stays the
same. It was chosen to do this as the claim often forms a complete sentence, while
the topic is just one or a few words. Therefore, it seemed better to keep the claim
intact.

Using the created query, the results page of Bing is scraped. Bing retrieves ten
results per page, this means that for every ten results, a request has to be made.
Ideally, all results retrieved by Bing for a given query should be extracted. But
not only will this take a lot of time in this step, every following step will also take
considerably more time. Although we are not concerned with the efficiency of the
pipeline, there are certain boundaries. In the end it was decided to scrape the results
of 25 pages, which should lead to the extraction of 250 links. The number of 25 was
chosen rather arbitrarily, and could have also been 20 or 30. The results page is
then scanned for every element with the class called “b algo”, which in Bing holds
one result7. From this result, the URL is extracted and added to a list with every
unique URL found in any of the results pages.

Even though 250 URLs are expected to be found, the scraper never actually
retrieves all of them. This may have to do with the fact that there are duplicate
links, which are not stored, but more likely it has to do with the fact that scraping a
search engine is highly unreliable. If the URL list did contain 250 results, these would
all be “Bing URLs”, which are URLs that lead to a Bing page before redirecting to
the actual result. Although all of these links would be unique, they often all lead to
the same few results.

It was found that running the scraper again and again with the same query,
would eventually lead to getting URLs, even if no results were found the first few
times. Therefore, if less than 25 or exactly 250 articles are found, the scraper runs
again until it retrieves anything between 25 and 250 results. This will ensure that
the next steps can be executed.

5https://www.bing.com/
6https://support.microsoft.com/en-us/topic/advanced-search-keywords-ea595928-5d63-4a0b-

9c6b-0b769865e78a
7This is currently (January 2023) the case, but may change in the future, if Bing decides to

update their results page and change class names.

28 Chapter 4 Nick van Bremen

Using the web to explain claims

Initial approach Besides scraping, other approaches have been considered. These
are explained in Section 3.2 together with their advantages and disadvantages. But
also within the scraping approach some changes were made. At first, the goal was
to scrape Google. But is was soon found that Google actively monitors for scraping
bots, and blocks IP addresses. To bypass this, free proxy servers were tried. A list
of free proxy servers would be scraped from a website and the scraper would rotate
through these proxies so that every request would come from a different IP address.
Unfortunately, Google had already blocked most of these proxies, which made them
useless. Therefore, the final implementation was built using Bing.

The creation of the query has also changed. In first instance, it was decided to
use advanced search operators, with which one has more control over the retrieved
web pages. The idea was to use the words and phrases extracted in the entity
extraction component to retrieve articles that contained exactly these words. The
example topic and claim would produce the following query:

“bombing” AND “hiroshima” AND “nagasaki” AND (“soviet victories”
OR “manchuria” OR “japanese surrender”)

Having the terms between quotation marks and using search operators like
“AND” and “OR” would make sure that every retrieved article contains exactly
all words from the topic, plus at least one phrase from the claim. This idea was
later dropped, as Bing does not support these operators. Furthermore, search en-
gines already do a lot of processing of the query, so it is unnecessary to do the
processing yourself. Only the language constraint has been added to the query, as
only English text should be retrieved, although it is unclear to which extent Bing
supports this8.

4.3 Snippet extraction

In this component, snippets are extracted from the web pages found in the previous
component. The component takes as input a list of URLs (from the web querying
component), a list of words from the topic, and a list of phrases from the claim
(both from the phrase extraction component). First, a basic web scraper is used
that extracts all the text from a web page, after which an algorithm goes over all
the sentences of an article to find relevant pieces of text.

The scraper takes a URL of the list and retrieves the HTML of the web page. It
then extracts all the text inside the HTML p element. Every block is considered to
be a paragraph. This is important, as the algorithm created for snippet extraction
uses paragraph boundaries to determine the length of a snippet. An article is stored
as a list of paragraphs with each paragraph containing a list of sentences.

As said, only the text between p elements will be extracted. A problem with
this approach is that there may be text on the web page that is not extracted, since
it is not between a p element. However, it was found most text in HTML is written
within a p block. Furthermore, it also means no headings are extracted, as these
are in heading blocks (h1 to h6). Since the aim is to find coherent pieces of text,
headings are not relevant, therefore this is a good thing.

8Bing claims to support advanced search queries, but the results tell otherwise.

Chapter 4 Nick van Bremen 29

Using the web to explain claims

But apart from missing certain text on a page, another problem is that too
much may be extracted. Since all text within p elements is extracted, this means
text from for instance the footer of a web page may also be extracted, which mostly
holds general information about a website and is often irrelevant to the topic and
claim. However, during the extraction of the snippets, the algorithm should ensure
no irrelevant text is extracted from the articles, so this should not have to be a
problem.

Using the retrieved content from a web page, the algorithm will go over the text
and extract pieces of text based on a few rules. The most important factor in the
extraction of a snippet is a phrase from the list of claim phrases (from here on referred
to as claim phrase). If a sentence contains a claim phrase, the sentence including
any surrounding sentences will no matter what be extracted as a snippet. The size
of the snippet depends on the length of the paragraph. If the paragraph consists of
just one sentence, the last sentence from the previous and the first sentence from the
next paragraph will be combined to form a snippet. If the paragraph has a maximum
of four sentences, the complete paragraph will be extracted as a snippet. In case the
paragraph has more than four sentences, the sentence containing the claim phrase
plus two surrounding sentences in the same paragraph will be extracted. If a word
from the topic list (from here on refered to as topic word) is in the proximity of
the sentence with a claim phrase, a snippet will be formed from the sentence with
the topic word to the sentence containing the claim phrase. Otherwise, the previous
and next sentence are chosen.

In order to extract more snippets that may be relevant to the topic and claim,
without them containing any words from either, discourse markers are used. If
the beginning of the opening sentence of a paragraph that comes directly after a
snippet contains a discourse marker, a snippet will be created with this sentence.
The idea is that this discourse marker signals that something is being written that
somehow relates to the previous part of the text. The used discourse markers were
taken from the Connective-Lex website9. Here, a collection of discourse markers is
given for different languages [70]. The used lexicon was presented by Das et al. [26]
who made a structured version publicly available10. This file makes it possible to
effortlessly traverse the different types of discourse markers, although in this study
no distinction is made between the different types.

Initial approach In the first implementation, the retrieved articles would be
stored as a list of sentences, with disregard of paragraphs. Snippets would be ex-
tracted based on the proximity of a sentence with a claim phrase to a sentence with
a topic word. Only if these sentences were near each other, a snippet would be
extracted. The idea was that this would ensure that the snippet was relevant to the
claim in relation to the topic. A dataset was created for testing using the example
claim and topic. After examining the output of this first implementation, a few
interesting observations were made.

First of all, it was found that topic words occurred considerably more often in
the articles than claim phrases. In the used dataset, an article contained on average
4 sentences with a claim phrase, while having 47 sentences with topic words. This
makes sense, as words from the topic are often more general while phrase from the

9http://connective-lex.info/
10https://github.com/discourse-lab/en dimlex/blob/master/en dimlex.xml

30 Chapter 4 Nick van Bremen

Using the web to explain claims

claim are more specific. Furthermore it was found that sentences with claim phrases
often held more important information regarding the claim and topic than sentences
with topic words. Because of these observations, it was decided that sentences with
claim words should always be extracted while putting less emphasis on sentences
with topic words.

Secondly, the decision on snippet boundaries was rather arbitrary. This could
be seen in the extracted snippets, that sometimes seemed to miss sentences to make
a point, or had extra sentences that did not add to the main point of the snippet.
Therefore it was decided to take into account paragraph boundaries in the extraction
of snippets. This may help in extracting more coherent snippets.

Lastly, through examination of the text surrounding an extracted snippet, it was
determined that sentences and paragraphs following a snippet often held relevant
information to the claim. To better understand how the different parts of a text
relate, it was attempted to use RST parsing (see Section 3.3.1). Unfortunately,
existing systems for RST parsing were not as readily available as hoped. Still this
theory contributed to a change in the algorithm, as discourse markers (see Section
3.3.2) were now added to extract extra snippets.

4.3.1 Summarization

This is a sub task of the snippet extraction component. Because of the used methods
to extract snippets, it may happen that a snippet becomes quite long. This is
unwanted, as the goal is to have a short statement as explanation as opposed a long
paragraph. Therefore, as part of the extraction, snippets that are deemed too long
will be summarized. A brief background on summarization can be found in Section
3.4.

The length of a snippet is measured in sentences and a threshold was set by
manually going through the retrieved snippets. A snippet is deemed too long if it
has more than seven sentences. A main problem with this measure is the variability
in sentence length. A snippet may consist of ten short sentences or five lengthy ones.
Furthermore, the seven sentence mark is chosen rather arbitrarily, and could just as
well be six or eight. In future implementations, a different measure could be used.

If a snippet has more than seven sentences, it will be summarized. To do this, an
implementation from the Hugging Face11 library is used. Hugging Face has brought
together all kinds of different models and datasets and made them easily accessible.
Pre-trained models can be loaded for different tasks. For summarization, the T5
model has been used as proposed by Raffel et al. [59]. This model has been trained
to perform a number of NLP tasks, among which summarization. The input snippet
is tokenized using the same model.

4.4 Stance detection

In this component, the stance of a snippet towards the give topic is determined.
Only snippets that hold the same stance towards the topic as the claim will be
selected and used in subsequent steps.

11https://huggingface.co/

Chapter 4 Nick van Bremen 31

Using the web to explain claims

The DeBERTa large model was used for stance detection. DeBERTa is based
on BERT [33]. The model was trained on a dataset scraped from Debatepedia,
as described in Kobbe, Hulpus, , and Stuckenschmidt [38]. The dataset consists of
claims with a corresponding topic and the stance of the claim towards the topic. The
system predicts whether a given input text is in favor of (PRO) or against (CON)
a given topic.

4.5 Snippet ranking

In this component, the snippets are clustered and ranked, as the execution of the
previous components may result in a list of multiple hundreds of snippets. In the
end, the goal is to have a few pieces of text that provide an explanation. Therefore,
the snippets will be grouped using a clustering technique and ranked based on the
size of the cluster. In order to apply a clustering technique , a numeric representation
of the snippets is needed.

The snippets are cleaned by making the words lowercase, removing punctuation
and digits, stemming the words, and removing stop words. As the snippets are
extracted based on certain words and phrases, these words and phrases will be
present in most of the snippets. This will probably not help with the clustering, and
therefore, these words and phrases are also removed. The words that are left are
tokenized using the tokenizer from the NLTK library and subsequently vectorized.
The vectorization is done with a pre-trained Word2Vec model from the Gensim
library12.

The vectorized snippets are provided as input to a k -means clustering algorithm
from the scikit learn library13. It is not clear in advance how many clusters of snip-
pets will be found. Therefore, the optimal number of clusters has to be established
first. This is done by running the algorithm multiple times, starting with two clus-
ters, and ending with twenty. Of every run, the distortion is stored which is used to
perform an automated version of the elbow method. Once the optimal number of
cluster (the optimal K) is found, clustering is performed one more time using this
K.

The snippet closest to the centroid of a cluster is chosen to represent that cluster.
This leaves us with a number of snippets equal to the number of clusters. These are
subsequently ranked based on the size of the cluster. Two assumptions are made
in this step: snippets from the same cluster cover roughly the same subject, and a
subject of which more snippets are found is more important than a subject of which
less snippets are found.

A problem that was found when selecting the snippet closest to every centroid,
is that this snippet does not necessarily belong to the cluster to which the centroid
belongs. This sometimes results in the same snippet being selected for two clusters.

Initial approach To create a numeric representation of the snippet, Term Frequency-
Inverse Document Frequency (TF-IDF) has been tried. This method seemed to
shallow to really capture the semantics of the snippets, therefore in the final imple-
mentation, a pre-trained Word2Vec model was used.

12https://radimrehurek.com/gensim/models/word2vec.html
13https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

32 Chapter 4 Nick van Bremen

Chapter 5

Evaluation

In this chapter, the evaluation of the pipeline will be discussed. To evaluate the
performance of the pipeline, the output will be compared to a baseline. The pipeline
will be used to gather snippets for a number of claim - topic pairs. For every snippet,
a baseline will be created for comparison. The task of the annotators will be to, given
a claim - topic pair, choose whether the pipeline snippet or the baseline explains the
claim and topic best. First, the setup of the evaluation will be explained, after which
the results are analysed. The chapter concludes with a discussion of the results.

5.1 Set up

In this section, the set up of the user study is described. As the output of the pipeline
will be compared to a baseline, it is first explained how the baseline is created. Then,
the process of gathering all necessary data is outlined, and the section ends with a
description of the website used in the study.

5.1.1 The baseline

To gather snippets, the pipeline uses a web search engine (in this case Bing) to
find articles, which is queried using the topic and the claim. To create the baseline
snippets with which the pipeline snippets will be compared, the same query is used
on Bing. But, instead of extracting text from as many articles as possible and going
through the text using specific terms and signal words to find relevant pieces, only
the first search page is queried and the preview text that is visible on the overview
page is used to create snippets. An example of which texts will be extracted can be
seen in Figure 5.1. As these preview texts are often not complete sentences, the full
text from the article is used to find the paragraph from which the preview text is
taken. The surrounding sentences are then added to create a baseline snippet.

5.1.2 Data gathering

To gather the snippets and baseline for the annotation study, claim - topic pairs
are needed together with the stance of the claim towards the topic, as this is the
input for the pipeline. To this end, the dataset1 created by Kobbe, Hulpus, , and
Stuckenschmidt [38] was used. This dataset consists of arguments scraped from the

1https://github.com/dwslab/StArCon/blob/master/data/datasets/debate.txt

33

Using the web to explain claims

Figure 5.1: Screen capture of the Bing search page using the query based on the
example topic and claim. The text extracted for the baseline is outlined in red.

debating platform Debatepedia, which has since gone offline. A selection of the
complete dataset was made by manually filtering the claim - topic pairs based on a
few loosely defined criteria.

Criteria for dropping a claim:

• Claim and topic are only relevant for United States. Most annotators
will not have a lot of experience with it. Although annotators do not need to
have any previous knowledge on the claim and topic, it does make the process
more interesting if a claim / topic is understood.

• Claim is too general or obvious. In this case background information is
not needed or cannot be found because of the vagueness of the remark.

• Claim does not provide any information and is purely emotional.
Although emotional claims may be good candidates for explanations on why
someone feels that way, there are claims that solely rely on emotion and provide
no extra information.

• Claim is generally not good. This is a tricky criterion and should be used
with caution so personal preferences do not interfere, but some claims cannot
be taken seriously.

• Claim starts with “General statements in favor of/against”. This is
noise in the dataset because of the means of scraping, as it is not a claim in
itself, but a collection of statements/claims.

34 Chapter 5 Nick van Bremen

Using the web to explain claims

Example of claim that is both focused on US and is too general:

Topic: Pickens US energy plan
Claim: The Pickens Plan is generally not viable.

Example of a claim that does not provide any information and is purely emotional:

Topic: Assisted suicide
Claim: Most people that believe euthanasia is wrong never sat by a bed side

Example of generally bad claim:

Topic: European Union Expansion
Claim: European Union should include all of Europe; it’s in their name.

Furthermore, in this study we are more interested in bigger societal and ide-
ological topics. Therefore all claims of certain topics are dropped, like the topic:
“Banning vuvuzela horns at the 2010 World Cup”. A random selection from the
remaining topic - claim pairs was used for the annotation study.

The pipeline and baseline snippets are gathered by randomly selecting claims
from the filtered dataset. The system was prepared in such a way that it would
extract snippets as described in Chapter 4 and a baseline as described in Section
5.1.1. For every randomly selected claim, multiple snippets are gathered as well as
multiple baselines. The top three snippets are paired with the three top results from
Bing and stored in a database together with the topic and claim.

In the end, 49 unique claims were selected covering 38 topics, for which a total
of 144 snippet - baseline pairs were gathered. A quick examination of the length
of the snippets (in words) showed that there was one extreme outlier as can be
seen in Figure 5.2a. Upon closer examination it was found that this snippet did
not contain any punctuation, therefore it was treated as one sentence. The baseline
does not have these extreme outliers as is visible in Figure 5.2b. In the boxplot of
the snippets, more outliers can be seen, which are still quite far out, even though
the most extreme outlier makes it seem like they are not to far off. Therefore it
was decided to drop the most extreme outliers from the snippets by calculating the
interquartile range and setting the boundaries at 1.5 times the upper and lower
quartile [75]. The pipeline snippets are generally longer than the baseline snippets,
with an average of respectively 123 and 69 words.

5.1.3 The annotation site

The snippet - baseline pairs that have been collected as described in the previous
section are used for the annotation study. All information is stored in a database
consisting of the tables “snippets”, “annotators”, and “annotations”. The snippets
table contains for every snippet - baseline pair a unique ID, the text of the snippet,
the text of the baseline, the topic, and the claim. The annotator table is made of
just one column which is the unique annotator ID. The annotations table consists
of a unique annotation ID, an annotator ID which refers to the annotator table,
a snippet ID which refers to the snippet table, and the choice that the annotator
made for that snippet.

This database is used for the website that has been created for the annotation
study. When a user starts annotating, a cookie is set on the device of the user

Chapter 5 Nick van Bremen 35

Using the web to explain claims

(a) Snippets (b) Baseline

Figure 5.2: Boxplot figures of the length (in words) of the gathered snippets and
baseline for evaluation

containing a unique ID. This unique ID is stored in the annotator table. This way,
if someone decides to take a break from annotating snippets and closes the website,
this person can come back to the website anytime without problems. The system
will still know which snippets have been annotated by this user, which is necessary
for the evaluation and ensures that someone does not get the same item twice. It was
chosen to use cookies instead of for instance creating an account to make the process
as convenient as possible for the user. A potential problem with this approach is
that one person may use different devices or that a browser is used that does not
store cookies.

Before a cookie is created, the user first arrives at the homepage, which gives a
detailed description of the task. The homepage can be seen in Figure 5.3 and the
full description can also be read in Appendix B. A short description of the task is
given in the next paragraph.

During the annotation, a random snippet is selected from the database and
presented to the annotator. The screen displays the topic and claim, followed by
two pieces of text that might give extra information on the claim, as can be seen
in Figure 5.4. The user has to select which text is deemed a better explanation.
It may be that both explanations do not provide any relevant information, in this
case the “None” option could be chosen. Another option that is not one of the two
explanations is the “Skip” option. This option should be chosen if both are too
similar or provide equally good information. The choice of the annotator is thus
either snippet, baseline, skip, or none. This is stored in the annotations table.

5.2 Results

In this section, the results from the annotation study will be discussed. The annota-
tion website has been open from Monday the 23rd of January until Sunday the 29th
2023. As no specific knowledge was required to perform the task, anyone with a
sufficient knowledge of English could participate. Therefore, the link to the site has
been sent out to friends, family, and colleagues. In the following section an overview
of the gathered data will be provided, after which the inter annotator agreement

36 Chapter 5 Nick van Bremen

Using the web to explain claims

Figure 5.3: Screen capture of the home page of the annotation website with the
explanation of the project and task.

Figure 5.4: Screen capture of an annotation page containing a topic, claim, and two
snippets to choose from.

Chapter 5 Nick van Bremen 37

Using the web to explain claims

will be given and the final results of the annotation itself will be discussed.

5.2.1 Descriptive statistics

In total, 138 annotations have been performed by 14 annotators, giving an average
of around 10 annotations per annotator. The minimum number of annotations given
was 1, which occurred only once, and the highest number was 31. The median lies
at 6.5.

The 138 annotations cover a total of 47 items of which 44 received at least
three annotations. The four choices were snippet, baseline, skip, and none. Snippet
was chosen 59 times, baseline 64 times, skip 6 times, and none 9 times. In total,
there were 140 items in the database. It was decided that at least 25 items had to be
annotated at least three times. The system was designed in such a way that it would
randomly pick an item from the database out of the first 25 items that had not yet
been annotated by the current annotator and that had less than three annotations.
If no snippets fulfilled these requirements, the first snippet in the database that did
not yet have three annotations would be presented to the annotator. This ensures
every snippet gets exactly three annotations.

However, it was found that three snippets had a total of four annotations, which
should not have been possible given the constraints. The most likely explanation
is that two people were performing the task at the same time while the first 25
items had already been finished. This would result in them getting the same item
at the same time, which in both cases passed the criteria, because both had not yet
submitted their choice.

5.2.2 Inter-annotator agreement

Before proceeding to the analysis on the performance of the pipeline, the inter-
annotator agreement should first be established. This measure helps in understand-
ing to what extent different annotators agree with each other. A high agreement
among annotators gives more confidence in the correctness of the made annotations.

There are different approaches to calculating the inter-annotator agreement. Co-
hen’s κ is an often used approach, but it can only be used to calculate the agreement
between two annotators. In this study, multiple annotators are used that did not all
annotate every single item, instead, every item has been annotated a fixed number of
times. Therefore, Fleiss’ κ is used, which calculates the agreement between multiple
annotators [11, 27]. All items have to be annotated the same number of times, this
is mostly the case, except for the earlier mentioned items that were annotated four
times. As a result, the last annotation of these items has been removed, so they also
have three annotations.

The value of Fleiss’ κ ranges from -1 to 1 and is determined by calculating how
the given annotations differ from chance. A score of exactly 1 means that their is
full agreement on every annotation while a score of 0 means it is no different than
chance. A score of -1 signals complete disagreement between the annotators.

The Fleiss’ κ value for this study is 0.06. This is a poor score, meaning the
annotators did not often agree. There may be multiple reasons for such a low
score. It may be the case that the instructions were not clear or that the task was
ambiguous. Furthermore, the content of the topic, claim, and explanations may have

38 Chapter 5 Nick van Bremen

Using the web to explain claims

influenced the choice made by an annotator. Although it was explicitly mentioned
that this should not influence the choice, it may still have been hard at times to
totally set it aside.

It may also be the case that there are outliers in the group of annotators. To
further investigate this, Fleiss’ κ will be calculated for multiple combinations of an-
notators, with the condition that there should always be at least 25 items with three
annotations. Given this constraint, there are exactly 600 possible combinations of
annotators, but none of these combinations have a sufficient inter-annotator agree-
ment. The highest score is 0.17, which is still poor, which indicates that there is
absolutely no consensus on the given annotations.

5.2.3 Performance

As the inter-annotator agreement is low, no good quantitative analysis can be per-
formed with the data. Therefore, a qualitative assessment will be done on the
snippets that have been gathered through the pipeline. This has given some insight
on the different types of snippets that were extracted, and six different types have
been defined. Using these categories, the results of the user study will be exam-
ined to get an idea of what choices have been made in which category and how the
baseline may have affected the annotation.

Snippet assesment

Examining the snippets that have been annotated at least three times (44 in total)
gave some interesting insights. Different types of snippets have been extracted and
there are different levels at which a snippet can be evaluated. Only around eight
snippets can be considered good explanations, as they provide new information that
further explains the given claim. Other snippets might help somewhat in under-
standing the claim or topic, but can not be considered great explanations. The
different categories that have been defined can be found in Table 5.1, together with
the number of snippets belonging to that category.

Category Number of snippets

Unrelated 3
Roughly related to topic 9

Opposing stance 4
General background 11

Same stance 9
Good explanation 8

Table 5.1: Different types of snippets found during the qualitative assessment in-
cluding the number of snippets found per category.

In the remainder of this section, we will go over the different types of snippets
found, including examples of the type of snippet. In the worst case, a snippet is
unrelated and tells absolutely nothing about the topic or claim. Take the following
example:

Chapter 5 Nick van Bremen 39

Using the web to explain claims

Topic: Driftnet ban
Claim: An effective driftnet ban must go beyond international waters into coun-
tries’ Exclusive Economic Zones.
Snippet: Well our Gate1 16 day romantic Amalfi with lake region and Rome was
fantastic. Firstly, our tour guide Remo was so good and we had so much fun with
him. His knowledge of geography and history was incredible. I certainly would like
to have him as a tour guide again on another Gate1 trip sometime. Our hotels were
first class, the bus drivers were all very professional, our meals included were very
good and all the sights we saw were very enjoyable. You can never get enough of
Rome.

This snippet is totally unrelated to the claim and even to the broader topic. In
the studied snippets, this happened three times. Apart from these, snippets gener-
ally covered at least the topic. Although, sometimes a snippet would not cover the
given topic per se, but a related or broader topic. Take the following snippet that
is roughly related to the topic:

Topic: Greece bailout
Claim: Bailing out Greece is a necessary evil
Snippet: With regards to Europe, Roubini predicted that Italy, and possibly a
series of other eurozone countries (Portugal, Spain, Greece) might have to exit the
eurozone if they did not implement ”serious economic reforms”. ”[It] is not a fore-
gone conclusion but, if Italy does not reform, an exit from EMU within 5 years is
not totally unlikely. Indeed, like Argentina, Italy faces a growing competitiveness
loss given an increasingly overvalued currency and the risk of falling exports and
growing current account deficit.

This snippet is concerned with a topic related to the bailout of Greece, namely
the economic situation of Italy and their position in the eurozone. However, it does
not provide any extra information on the bailout of Greece or why it is a necessary
evil. In a few instances a position is taken in the snippet, but it has an opposing
stance to that of the claim. In these cases, either some background is given that
argues for an opposing point, or a counter argument is presented. Take the following
example:

Topic: Polygamy
Claim: Recognizing polygamy would cause a host of legal problems.
Snippet: Polyamory is a fact . People are living in group relationships today. The
question is not whether they will continue on in those relationships. The ques-
tion is whether we will grant to them the same basic recognition we grant to other
adults: that love makes marriage, and that the right to marry is exactly that, a right.

The snippet does not necessarily counter the given claim, but it does give an
argument with an opposing view. In the following example, the snippet provides a
brief history of the Falkland Islands, which is some general background to the
topic, but does not explain anything about the affect of the Nookta Sound conven-
tion on Britains rights to the islands:

40 Chapter 5 Nick van Bremen

Using the web to explain claims

Topic: Falkland Islands, return of
Claim: The Nookta Sound convention did not affect Britains rights to the islands
as they already had an agreement with Spain where both nations rights were secured
in 1771
Snippet: Controversy exists over the Falklands’ discovery and subsequent colonisa-
tion by Europeans. At various times the islands have had French, British, Spanish,
and Argentine settlements. Britain reasserted its rule in 1833, but Argentina main-
tains its claim to the islands. In April 1982 Argentine military forces invaded the
islands. British administration was restored two months later at the end of the
Falklands War.

The background given in this snippet is factual and does not take a stance. How-
ever, various times an argument has been extracted that holds the same stance as
the claim, but gives a different perspective. In the following example, the snippet is
also in favour of phasing out fossil fuel subsidies, but for different reasons than the
claim:

Topic: Phasing out fossil fuel subsidies
Claim: Ending oil subsidies is good for air quality, human health.
Snippet: Supporters of oil subsidies contend that oil subsidies are necessary be-
cause clean energy is not yet viable and the economy remains dependent on oil.
Yet, it is precisely these subsidies that make it impossible for renewable energy to
compete and perpetuate the dependence on oil. Subsidies are, therefore, a self-
fulfilling-prophecy in this regard.

The snippet gives extra reasons as to why fossil fuel subsidies should be phased
out, but does not provide background on the claim. Lastly, some retrieved snippets
do provide good explanations for the claim and contribute to a better understand-
ing of the claim and topic. In the following example, the snippet exactly aligns with
the claim and provides background information to back up the claim. This is a good
example of what the system is expected to retrieve.

Topic: Gene patents
Claim: Gene patents do not incentivize innovation
Snippet: Staunch defenders of gene patents have also argued that the basic tenet of
the patent system to require disclosure of the invention serves to promote follow-on
research post initial gene discovery. 34 However, a rigorous probing of this question
indicated that rather than promoting research, gene patents have an inhibitory effect
on future knowledge production. Specifically, the study, conducted by Fiona Murray
and Kenneth Huang at MIT, examined more than 1,000 gene discoveries and found
that follow-on genetic researchers forego approximately one in ten research projects
because of the causal impact of gene patents. 35 Moreover, this trend was found to
be exacerbated in situations when patents are broad in scope, privately owned, or
where the patented genes are closely linked to human disease, and especially cancer.

Although multiple snippets give explanations like this, it is not sufficient to con-
clude that the pipeline performs well. There are also some other general problems
with the retrieved texts. One problem, that can be seen in the last example, is

Chapter 5 Nick van Bremen 41

Using the web to explain claims

that text from the internet may contain certain formatting that does not add to the
actual content of the text. In the last example, these are the number 34 and 35
that seem to appear randomly in the text. A quick look at the web page where the
snippet was found revealed that these are links that show a popup with extra infor-
mation. The following example comes from a web page that is formatted as a quiz,
containing different cards with questions and answers. This creates an incoherent
snippet:

Topic: DC handgun ban
Claim: If the 2nd amendment was to protect an individual right it would have
clearly expressed it
Snippet: Heller, case in which the U.S. Supreme Court on June 26, 2008, held
(54) that the Second Amendment guarantees an individual right to possess firearms
independent of service in a state militia and to use firearms for traditionally lawful
purposes, including self-defense within the home. What is the significance of the
Supreme Court’s District of Columbia v Heller 2008 ruling quizlet? Heller, 554 U.S.
570 (2008), was a landmark case in which the Supreme Court of the United States
held in a 5-4 decision that the Second Amendment to the United States Constitution
applies to federal enclaves and protects an individual’s right to possess a firearm for
traditionally lawful purposes, such as self-defense ... How did District of Columbia
v Heller impact states rights quizlet? Ruling: Yes. The Court held that the Sec-
ond Amendment protects an individual right to possess a firearm unconnected with
service in a militia, and to use that firearm for traditionally lawful purposes, such
as self- defense within the home. Which of the following explains the outcome and
significance of the District of Columbia vs Heller case?

Apart from the formatting, snippets may also be hard to understand because
they are taken out of context. In some cases, the text refers to something mentioned
earlier or the snippet starts at an odd point, although this seems to have improved
compared to the version of the system where paragraphs were not taken into account.

User study results

Looking at the given annotations, the authors fully agreed in eleven instances. It is
interesting to see that the agreement would only be on baseline or snippet, and never
on none or skip. In eight instances, all three annotators chose a different option. The
other 25 times the choice was two-to-one. Based on the rough classification presented
in the previous section, the choices made in the user study will be examined. Mainly,
it will be reviewed in what cases the pipeline snippet has been chosen compared to
the baseline snippet. Although it may be expected that the snippets that according
to the qualitative analysis offer a good explanation are chosen more than the other
snippets, this totally depends on the baseline snippet to which it is compared.

First, the snippets that are deemed totally unrelated are inspected. These
should be the most straightforwards, as the “None” and “Skip” option were added
to prevent a participant from having to choose between two unrelated pieces of text.
Therefore, these snippets should never have been chosen. Interestingly though, for
one item, all three annotators agreed that the pipeline snippet was the best expla-
nation, while it seems to be totally irrelevant to the claim and topic. Moreover, in
this case the baseline snippet seems to give an okay explanation, even though it may

42 Chapter 5 Nick van Bremen

Using the web to explain claims

require some background knowledge.

Topic: Big government
Claim: Small government produces less healthy societies
Pipeline: Demands of other domestic programs, international conditions, and state
of economic health of our Nation are only a few of the major influences upon the
specific budget for space in a given fiscal year. Despite the highly variable nature of
these influences, which produces a corresponding increasing uncertainty in projec-
tions of resource availability, it is important far planning purposes to look into the
future and forecast the general nature of funding required to support decisions on
content and pace of the program. Two basic questions arise.
Baseline: No more. When you compare the U.S. with Canada, Western Europe
and Japan, the news is sobering. Our child-poverty and infant-mortality rates are
the highest, our life expectancy is the lowest, our budget deficit as a share of gross
domestic product (GDP) is the highest, and our 15-year-olds rank among the lowest
on tests of math and science.

The pipeline snippet is about the budget for a space program and does not men-
tion anything about a big or small government, while the baseline snippet compares
the United States to other countries based on a few factors related to health. The
United States is generally considered to have a small government and little social
security, especially compared to the countries referred to in the baseline snippet. It
may be that this information was not known by the participants, but even then, why
would the explanation that covers a space program be chosen and not the “none”
option? In another case where the pipeline snippet was deemed totally unrelated,
the annotators made three different choices, none of them the pipeline snippet, while
in the last case, the pipeline snippet was chosen once, and the baseline twice.

Next, there are the snippets that covered a related, broader, or more specific
topic than the given topic, which we name a roughly related topic. These ex-
planations can still not be considered sufficient. The choices of the annotators were
mostly divided. In only one case did two out of three pick the pipeline snippet,
while in the other eight cases the pipeline snippet was either chosen once or not at
all. In the following instance, the pipeline snippet was chosen twice:

Topic: Democratic peace theory
Claim: Democracies mostly only engage in defensive wars with non-democracies.
Pipeline: As mentioned, V-Dem is only one of the leading approaches to measure
democracy. And its electoral democracy index is only one main measure it provides
alongside other, more comprehensive indices of democracy. Yet, using another ap-
proach or V-Dem index to measure democracy shows a similar development from
a highly undemocratic world in the 18th and 19th century, to high democratic in-
equality in the earlier 20th century, and a much more democratic, and more equally
democratic, world in recent decades. You can see so for yourself by exploring the
four charts below, which use the Polity projects democracy index and V-Dems lib-
eral democracy index. Taken together, the democratic political systems of many
countries show that a world where people have much more say in how they are gov-
erned is possible.
Baseline: Democratic Party officials often trace its origins to the Democratic-

Chapter 5 Nick van Bremen 43

Using the web to explain claims

Republican Party, founded by Thomas Jefferson, James Madison and other influ-
ential opponents of the conservative Federalists in 1792. [21][59] That party died
out before the modern Democratic Party was organized[citation needed]; the Jef-
fersonian party also inspired the Whigs and modern Republicans[citation needed].
Historians argue that the modern Democratic Party was first organized in the late
1820s with the election of Andrew Jackson. [13] It was predominately built by Mar-
tin Van Buren, who assembled a wide cadre of politicians in every state behind war
hero Andrew Jackson of Tennessee, making it the world’s oldest active political party.

In this case, the pipeline snippet does concern democracies, but does not mention
anything about peace and war, but instead deals with an approach to measuring
democracy. The third annotator marked this item as “None”, which makes sense as
the baseline snippet is about the Democratic Party in the United States.

In four cases, a snippet was found that provides a counter argument, or at least
information that supports an argument with an opposing stance, to the given
claim. In one case, all three annotators agreed that the pipeline snippet provided
the best explanation. This is interesting, as the snippet is totally incoherent, due
to the formatting of the website it was extracted from. This can be seen at the
end of the previous section where the relevant snippet is quoted as an example of
an incoherent snippet. However, as far as it can be understood, it does provide
information about the 2nd amendment being an individual right. Although it seems
to convey that the Supreme Court has decided that the 2nd amendment is indeed
and individual right, which opposes the claim.

Another category of snippets that has been defined is snippets that give some
general background information about the overall topic. Here, one pipeline snip-
pet is found twice, but with a different baseline snippet for comparison. This is due
to the selection of a snippet from each cluster based on the centroid, as sometimes,
one snippet would be the closest to the centroid of two different clusters, while not
belonging to the second cluster. In one case, all three annotators agreed on the
pipeline snippet, while in the other case, two chose the pipeline and one chose the
baseline. Interestingly, only one participant has scored both items, and it was this
participant that made a different choice the second time.

Topic: Oil sands
Claim: Oil sands take more energy to extract, so emit more
Pipeline: For these reasons, lifting extra-heavy oil consumes copious amounts of en-
ergy, making it highly carbon-intensive to extract. The Carnegie Endowment rates
Venezuelas Merey grade, which is the primary export blend, as one of the most
carbon-intensive oil varieties produced globally, emitting 604 kilograms of green-
house gases per barrel produced. Venezuelas Tia Juana and Hamaca grades pro-
duce even more greenhouse gas emissions to extract, with only Canadas oil sands
ranked as more carbon-intensive. Heavy sour crude oil blends like Merey, which
has an API gravity of 16 degrees and 2.45% sulfur content, are costly, complex and
carbon-intensive to refine into high-grade low emission fuels.
Baseline 1: Crude bitumen production (mined and in situ) totaled about 2.8 mil-
lion barrels per day (bbl/d) in 2017. Source: Alberta Energy Regulator (AER) ST
98, ST39 and ST53 reports.
Baseline 2: Technological advancements in the oil sands have helped create more

44 Chapter 5 Nick van Bremen

Using the web to explain claims

energy efficient practices and to decrease GHG emissions in the oil sands. One of
the most important mechanisms used to achieve this is co-generation. This is a pro-
cess where steam and electricity is produced simultaneously. By converting energy
and by-product into electricity that would otherwise be waste, co-generation has
contributed significantly to the 30% decrease in per barrel GHG emissions seen in
the oil sands since 1990. Find out more about the work CanmetENERGY is doing
to further reduce GHG emissions in the oil sands.

Although the pipeline snippet is not very straightforwards, it can be deduced
that extracting oil sands produces high greenhouse gas emissions. It makes sense
that the first baseline was not chosen as a good explanation by anyone. The second
baseline snippet is more directly concerned with oil sands, however, it provides more
of a counter argument to the given claim than an explanation.

Another observation made in the eleven pipeline snippets that have been cate-
gorized as being general background information, is that not once has the skip or
none option been chosen. Four of the eleven times all participants agree, while for
the remaining items they are divided. That the none option is never chosen makes
sense, as the pipeline snippet already conforms to the minimum requirement, namely
providing some background information. If the baseline snippet has a higher qual-
ity or is more specific, this one is chosen. So generally, there is no need to choose
none. For the skip option though, it may have been the case that both pieces of
text provide some general background, so this might have been chosen.

Apart from providing (background for) a counter argument, some snippets also
provide an argument that has the same stance as the claim, but offers different
reasons. In nine instances a snippet like this was found, and in only one instance did
all three annotators agree. In four instances there is absolutely no agreement, while
in the remaining four there is a two-to-one division. Take the following example:

Topic: Cellulosic ethanol
Claim: There is not enough land too grow sufficient cellulosic ethanol
Pipeline: Finally, ethanol must be delivered. A motivation to develop cellulosic
ethanol is the high delivery cost of corn grain ethanol from the Midwest to the coasts,
since ethanol can’t be delivered cheaply through pipelines, but must be transported
by truck, rail, or barge (Yacobucci 2003). The whole cellulosic ethanol enterprise
falls apart if the energy returned is less than the energy invested or even one of
the major stumbling blocks can’t be overcome. If there isn’t enough biomass, if the
residues can’t be stored without exploding or composting, if the oil to transport
low-density residues to biorefineries or deliver the final product is too great, if no
cheap enzymes or microbes are found to break down lignocellulose in wildly varying
feedstocks, if the energy to clean up toxic byproducts is too expensive, or if organ-
isms capable of tolerating high ethanol concentrations aren’t found, if the barriers
in Appendix A can’t be overcome, then cellulosic fuels are not going to happen.
Baseline: Because of the difference in energy density, you need about 1.5 L of
ethanol to replace a liter of gasoline. So the yearly requirement for ethanol would
be about 780 billion L. A hectare of switchgrass can supply about 4700 L of ethanol
a year, so the United States would need to devote roughly 170 million hectares (420
million acres) to it. That’s an enormous quantity of land almost as much as the
country now devotes to farming.

Chapter 5 Nick van Bremen 45

Using the web to explain claims

The pipeline snippet has the same stance towards the topic as the given claim,
but it offers different reasons. On the other hand, the baseline snippet does not take
an explicit stance, but does express that a lot of land is needed for ethanol, although
it is not clear whether this also applies to cellulosic ethanol. It is no surprise then,
that three different choices have been made: baseline, pipeline, and skip.

Lastly, the choices regarding the pipeline snippets that are deemed good ex-
planations will be examined. Ideally, the pipeline snippet would always be chosen,
but this of course depends on the quality of the baseline snippets. However, it is
expected that for these items, none is never chosen, as the pipeline snippet already
offers a good explanation. This is indeed the case, but there is little agreement
among the annotators. In the eight instances, only once are the three choices the
same, in which case the baseline is perceived better.

Topic: Free trade
Claim: Free markets and trade benefit the environment
Pipeline: In this way Mexico’s environment would be enhanced by opening up
trade. Furthermore, companies typically expect rising environmental standards in
developing-country markets, so they tend to introduce state of the art technology
initially. One GATT report published early last year cited cases in which firms gain a
competitive edge by investing first in clean technologies. A Conflict of Visions If the
environmental arguments against freer trade are so flawed, why are they nevertheless
held so tenaciously? One reason is the intellectual framework of many environmen-
tal activists. Broadening trade runs against the environmental vision, particularly
that of local self-reliance and a return to a simpler, low-technology world. Consider
the argument of David Morris of the Institute for Local Self-Reliance: ’Most people
believe that a global economy is the only path to a higher standard of living as well
as the inevitable next step in economic evolution.
Baseline: 5. Free market economies regulate themselves naturally. Supply and
demand principles govern a free market economy, which means the decisions that
people make enable a process of self-regulation. If goods or services don’t meet the
ethical standards that consumers have for their transactions, then a choice to avoid
those items will put pressure on the organization to make changes. Misleading peo-
ple about the quality of an item or the availability of services causes circumstances
that could force the company into bankruptcy or worse.

It seems weird that the baseline has been chosen by all participants, as the
pipeline snippet specifically mentions how the environment benefits from a free mar-
ket, while the baseline snippet is more general about how companies make ethical
decisions in a free market. Apart from this one, the other seven items were two-
to-one, with three times a majority for the pipeline snippet and four times for the
baseline.

5.3 Discussion

In this section, a quick recap of the results of the user study will be given, after which
the implications of these results are discussed. Limitations of the overall research as
well as the annotation study are given and finally some recommendations for future

46 Chapter 5 Nick van Bremen

Using the web to explain claims

research are made.

The results indicate that the task of finding explanations that help in under-
standing claims is a difficult task on multiple levels. The low agreement between
the different annotators shows that choosing which piece of text provides the best in-
formation is not trivial. The qualitative assessment of the retrieved snippets further
confirmed that it was not always clear what a snippet exactly communicates and
whether it is sufficient to help in understanding an argument. This was somewhat
expected, as the process of building the pipeline revealed that certain techniques are
not yet as advanced or widely available as expected.

Although the results show that the pipeline does not perform great, it can not
be said that this approach does not work. This is because this research has been
exploratory in two main ways. First of all, instead of finding facts or specific kinds of
premises to augment an argument, in this study, the focus was on finding any kind
of information that may help explain an argument, like assumptions and beliefs.
Secondly, instead of restricting oneself to a specific kind of (structured) data, in
this study, all available text on the internet was used. The results show that this
approach does offer a way of finding information to help understand a claim, but
the implementation is not sufficient yet. A more advanced implementation of the
different components and the use of other methods and techniques may improve the
performance.

This study provides a baseline for future research to build on top of. This has
been a first step towards using unstructured natural language from web sources to
find information that explains a claim, and can therefore be used as a guide and
baseline to improve the task in future research.

The reliability of the results of the user study is impacted by multiple factors.
First of all, only a limited number of people has participated in the study and for
every snippet only three people have given their assessment. Secondly, these partic-
ipants were chosen based on convenience sampling. Although no prior knowledge is
needed for the task, choosing between explanations may be more difficult depending
on the level of English of an annotator or the affiliation with a certain topic and
claim. Lastly, the task may have been too vague and ambiguous, which may result
in different interpretations of the task.

Although it was specifically the goal to find a wide variety of information to
explain an argument, it may also have been a limitation during the building of
the pipeline and the evaluation study. If a more specific definition of the kind of
explanations that should be found was given, it might have helped in implementing
the different components of the pipeline as well as in choosing the best explanation
during the evaluation.

In future research, the different methods and techniques used in the pipeline
could all individually be improved, as the current implementation is sometimes a
bit shallow. The words and phrases that are extracted from the topic and claim
and used to search articles could for instance be expanded using synonyms and
other related words. To this end, language models can be used or knowledge bases
containing this data. Further, it would be interesting to see how a technique like
topic modeling can be used to make an initial grouping of the documents extracted
through the web search. This may help the clustering in the last step as well. The
extraction of snippets may be improved by using Rhetorical Structure Theory. This
may greatly help in determining the boundaries of a snippet. Furthermore, the

Chapter 5 Nick van Bremen 47

Using the web to explain claims

structure of a text can be used to understand how certain parts of the text relate
to other parts, so a more focused search to relevant snippets can be conducted. A
possibility would be to find the given claim in a text and then through RST find
how the different parts of the text relate to the part where the claim is found.

48 Chapter 5 Nick van Bremen

Chapter 6

Conclusion

This researched was set out to discover how natural language sources from the
internet can be used to explain arguments, as is stated in the main research question.
Two sub questions were created to help answering this question.

The first question is concerned with what is needed to extract relevant informa-
tion from the internet to explain claims. To this end a pipeline is proposed consisting
of five main tasks. Qualitative assessment of the different components during the
development of the pipeline has shown that these five broad tasks may indeed aid
in extracting relevant information, but that there is also more work needed on the
different components to increase performance.

A structured and quantitative analysis of the pipeline is needed to determine
the performance, which is the subject of the second sub question. A user study has
been organized in which participants had to choose between two explanations for a
given claim - topic pair. This study did not generate conclusive results, indicating
that the task may have been too ambiguous.

Although the performance can not properly be confirmed using the results of
the evaluation study, a qualitative assessment on the extracted snippets has been
done to determine whether the pipeline has been successful. Overall, it can be said
that a more advanced implementation of the components is needed, but that using
the plethora of information found on the web is a promising approach in explaining
claims.

This research has explored an alternative way to augment claims with back-
ground information in order to clarify the claim. Multiple methods and techniques
have been combined to create a pipeline that can function as a baseline for subse-
quent research in this field.

49

Bibliography

[1] Patrick Abels et al. “Focusing knowledge-based graph argument mining via
topic modeling”. In: arXiv preprint arXiv:2102.02086 (2021).

[2] Majid Hameed Ahmed et al. “Short Text Clustering Algorithms, Application
and Challenges: A Survey”. In: Applied Sciences 13.1 (2022), p. 342.

[3] Abeer ALDayel and Walid Magdy. “Stance detection on social media: State of
the art and trends”. In: Information Processing & Management 58.4 (2021),
p. 102597.

[4] Fatima Alkhawaldeh, Tommy Yuan, and Dimitar Lubomirov Kazakov. “War-
rant generation through deep learning”. In: Seventh International Conference
on Natural Language Computing (NATL 2021), Proc. of. AIRCC Publishing
Corporation, 2021, pp. 53–75.

[5] Mehdi Allahyari et al. “A brief survey of text mining: Classification, clustering
and extraction techniques”. In: arXiv preprint arXiv:1707.02919 (2017).

[6] Mehdi Allahyari et al. “Text summarization techniques: a brief survey”. In:
arXiv preprint arXiv:1707.02268 (2017).

[7] Milad Alshomary et al. “Belief-based generation of argumentative claims”. In:
arXiv preprint arXiv:2101.09765 (2021).

[8] Milad Alshomary et al. “Target inference in argument conclusion generation”.
In: Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics. 2020, pp. 4334–4345.

[9] Rajaraman Anand and Ullman Jeffrey David. Mining of massive datasets.
Cambridge University Press, 2011.

[10] Arvind Arasu et al. “Searching the web”. In: ACM Transactions on Internet
Technology (TOIT) 1.1 (2001), pp. 2–43.

[11] Ron Artstein. “Inter-annotator agreement”. In: Handbook of linguistic anno-
tation (2017), pp. 297–313.

[12] Jamilu Awwalu, Saleh El-Yakub Abdullahi, and Abraham Eseoghene Evwiek-
paefe. “Parts of speech tagging: a review of techniques”. In: Fudma Journal
of Sciences 4.2 (2020), pp. 712–721.

[13] Maria Becker, Katharina Korfhage, and Anette Frank. “Implicit knowledge in
argumentative texts: an annotated corpus”. In: arXiv preprint arXiv:1912.10161
(2019).

50

Using the web to explain claims

[14] Maria Becker, Siting Liang, and Anette Frank. “Reconstructing implicit knowl-
edge with language models”. In: Proceedings of Deep Learning Inside Out
(DeeLIO): The 2nd Workshop on Knowledge Extraction and Integration for
Deep Learning Architectures. 2021, pp. 11–24.

[15] Maria Becker et al. “CO-NNECT: A Framework for Revealing Commonsense
Knowledge Paths as Explicitations of Implicit Knowledge in Texts”. In: arXiv
preprint arXiv:2105.03157 (2021).

[16] Maria Becker et al. “Enriching argumentative texts with implicit knowledge”.
In: International Conference on Applications of Natural Language to Informa-
tion Systems. Springer, 2017, pp. 84–96.

[17] Emily M. Bender and Alexander Koller. “Climbing towards NLU: On meaning,
form, and understanding in the age of data”. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. 2020, pp. 5185–
5198.

[18] Jamal Bentahar, Bernard Moulin, and Micheline Bélanger. “A taxonomy of
argumentation models used for knowledge representation”. In: Artificial Intel-
ligence Review 33.3 (2010), pp. 211–259.

[19] Janek Bevendorff et al. “Elastic chatnoir: Search engine for the clueweb and
the common crawl”. In: Advances in Information Retrieval: 40th European
Conference on IR Research, ECIR 2018, Grenoble, France, March 26-29, 2018,
Proceedings 40. Springer, 2018, pp. 820–824.

[20] Filip Boltužić and Jan Šnajder. “Fill the gap! analyzing implicit premises
between claims from online debates”. In: Proceedings of the Third Workshop
on Argument Mining (ArgMining2016). 2016, pp. 124–133.

[21] Teresa Botschen, Daniil Sorokin, and Iryna Gurevych. “Frame-and entity-
based knowledge for common-sense argumentative reasoning”. In: Proceedings
of the 5th Workshop on Argument Mining. 2018, pp. 90–96.

[22] Sergey Brin and Lawrence Page. “The anatomy of a large-scale hypertextual
web search engine”. In: Computer Networks and ISDN Systems 30.1-7 (1998),
pp. 107–117.

[23] Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski. “Building a discourse-
tagged corpus in the framework of rhetorical structure theory”. In: Current
directions in discourse and dialogue 22 (2003), pp. 85–112.

[24] Tuhin Chakrabarty, Aadit Trivedi, and Smaranda Muresan. “Implicit Premise
Generation with Discourse-aware Commonsense Knowledge Models”. In: arXiv
preprint arXiv:2109.05358 (2021).

[25] Alebachew Chiche and Betselot Yitagesu. “Part of speech tagging: a system-
atic review of deep learning and machine learning approaches”. In: Journal of
Big Data 9.1 (2022), pp. 1–25.

[26] Debopam Das et al. “Constructing a lexicon of English discourse connectives”.
In: Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue.
2018, pp. 360–365.

[27] Joseph L. Fleiss and Jacob Cohen. “The equivalence of weighted kappa and
the intraclass correlation coefficient as measures of reliability”. In: Educational
and psychological measurement 33.3 (1973), pp. 613–619.

Chapter 6 Nick van Bremen 51

Using the web to explain claims

[28] James B. Freeman. Argument Structure:: Representation and Theory. Vol. 18.
Springer Science & Business Media, 2011.

[29] Michael Fromm, Evgeniy Faerman, and Thomas Seidl. “TACAM: topic and
context aware argument mining”. In: 2019 IEEE/WIC/ACM International
Conference on Web Intelligence (WI). IEEE, 2019, pp. 99–106.

[30] Rob Grootendorst and Frans H. Van Eemeren. A systematic theory of ar-
gumentation: The pragma-dialectical approach. Cambridge University Press,
2004.

[31] Ivan Habernal et al. “The argument reasoning comprehension task: Identifica-
tion and reconstruction of implicit warrants”. In: arXiv preprint arXiv:1708.01425
(2017).

[32] Wenjuan Han et al. “A survey of unsupervised dependency parsing”. In: arXiv
preprint arXiv:2010.01535 (2020).

[33] Pengcheng He et al. “Deberta: Decoding-enhanced bert with disentangled at-
tention”. In: arXiv preprint arXiv:2006.03654 (2020).

[34] Shengluan Hou, Shuhan Zhang, and Chaoqun Fei. “Rhetorical structure the-
ory: A comprehensive review of theory, parsing methods and applications”. In:
Expert Systems with Applications 157 (2020), p. 113421.

[35] Ioana Hulpus et al. “Towards Explaining Natural Language Arguments with
Background Knowledge.” In: PROFILES/SEMEX@ ISWC. 2019, pp. 62–77.

[36] Wafaa S. El-Kassas et al. “Automatic text summarization: A comprehensive
survey”. In: Expert Systems with Applications 165 (2021), p. 113679.

[37] Md Abu Kausar, V. S. Dhaka, and Sanjeev Kumar Singh. “Web crawler: a re-
view”. In: International Journal of Computer Applications 63.2 (2013), pp. 31–
36.

[38] Jonathan Kobbe, Ioana Hulpus, , and Heiner Stuckenschmidt. “Unsupervised
stance detection for arguments from consequences”. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP).
2020, pp. 50–60.

[39] Jonathan Kobbe et al. “Exploiting background knowledge for argumentative
relation classification”. In: 2nd Conference on Language, Data and Knowledge
(LDK 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[40] Trupti M. Kodinariya and Prashant R. Makwana. “Review on determining
number of Cluster in K-Means Clustering”. In: International Journal 1.6
(2013), pp. 90–95.

[41] Sandra Kübler, Ryan McDonald, and Joakim Nivre. “Dependency parsing”.
In: Synthesis lectures on human language technologies 1.1 (2009), pp. 1–127.

[42] Dilek Küçük and Fazli Can. “A tutorial on stance detection”. In: Proceedings of
the Fifteenth ACM International Conference on Web Search and Data Mining.
2022, pp. 1626–1628.

[43] Dilek Küçük and Fazli Can. “Stance detection: A survey”. In: ACM Computing
Surveys (CSUR) 53.1 (2020), pp. 1–37.

52 Chapter 6 Nick van Bremen

Using the web to explain claims

[44] Anne Lauscher et al. “Scientia Potentia Est–On the Role of Knowledge in
Computational Argumentation”. In: arXiv preprint arXiv:2107.00281 (2021).

[45] Marco Lippi and Paolo Torroni. “Argumentation mining: State of the art and
emerging trends”. In: ACM Transactions on Internet Technology (TOIT) 16.2
(2016), pp. 1–25.

[46] Yang Liu and Mirella Lapata. “Text summarization with pretrained encoders”.
In: arXiv preprint arXiv:1908.08345 (2019).

[47] Artem A. Maksutov et al. “The Transformer Neural Network Architecture
for Part-of-Speech Tagging”. In: 2021 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering (ElConRus). IEEE, 2021,
pp. 536–540.

[48] William C. Mann and Sandra A. Thompson. Rhetorical structure theory: A
theory of text organization. University of Southern California, Information Sci-
ences Institute Los Angeles, 1987.

[49] Marie-Catherine De Marneffe et al. “Universal dependencies”. In: Computa-
tional linguistics 47.2 (2021), pp. 255–308.

[50] Angel R. Martinez. “Part-of-speech tagging”. In: Wiley Interdisciplinary Re-
views: Computational Statistics 4.1 (2012), pp. 107–113.

[51] Marie-Francine Moens. “Argumentation mining: Where are we now, where do
we want to be and how do we get there?” In: Post-Proceedings of the 4th
and 5th Workshops of the Forum for Information Retrieval Evaluation. 2013,
pp. 1–6.

[52] Saif Mohammad et al. “Semeval-2016 task 6: Detecting stance in tweets”.
In: Proceedings of the 10th international workshop on semantic evaluation
(SemEval-2016). 2016, pp. 31–41.

[53] Saif M. Mohammad, Parinaz Sobhani, and Svetlana Kiritchenko. “Stance and
sentiment in tweets”. In: ACM Transactions on Internet Technology (TOIT)
17.3 (2017), pp. 1–23.

[54] Arne Neumann. “Using and comparing Rhetorical Structure Theory parsers
with rst-workbench”. In: Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: System Demonstra-
tions. 2021, pp. 1–6.

[55] Timothy Niven and Hung-Yu Kao. “Probing neural network comprehension
of natural language arguments”. In: arXiv preprint arXiv:1907.07355 (2019).

[56] Joakim Nivre et al. “Universal dependencies v1: A multilingual treebank col-
lection”. In: Proceedings of the Tenth International Conference on Language
Resources and Evaluation (LREC’16). 2016, pp. 1659–1666.

[57] Mahamed GHOmran, Andries P. Engelbrecht, and Ayed Salman. “An overview
of clustering methods”. In: Intelligent Data Analysis 11.6 (2007), pp. 583–605.

[58] Andreas Peldszus and Manfred Stede. “An annotated corpus of argumentative
microtexts”. In: Argumentation and Reasoned Action: Proceedings of the 1st
European Conference on Argumentation, Lisbon. Vol. 2. 2015, pp. 801–815.

Chapter 6 Nick van Bremen 53

Using the web to explain claims

[59] Colin Raffel et al. “Exploring the limits of transfer learning with a unified
text-to-text transformer”. In: The Journal of Machine Learning Research 21.1
(2020), pp. 5485–5551.

[60] Pavithra Rajendran, Danushka Bollegala, and Simon Parsons. “Contextual
stance classification of opinions: A step towards enthymeme reconstruction in
online reviews”. In: Proceedings of the Third Workshop on Argument Mining
(ArgMining2016). 2016, pp. 31–39.

[61] Martin Reddy. API Design for C. Elsevier, 2011.

[62] Myrthe Reuver et al. “Is Stance Detection Topic-Independent and Cross-topic
Generalizable?–A Reproduction Study”. In: arXiv preprint arXiv:2110.07693
(2021).

[63] Ruty Rinott et al. “Show me your evidence-an automatic method for con-
text dependent evidence detection”. In: Proceedings of the 2015 conference on
empirical methods in natural language processing. 2015, pp. 440–450.

[64] Lior Rokach and Oded Maimon. “Clustering Methods”. In: Clustering meth-
ods. (2005).

[65] Paul Schachter and Timothy Shopen. “Parts-of-speech systems”. In: Language
typology and syntactic description 1 (1985), pp. 3–61.

[66] Keshav Singh et al. “Annotating Implicit Reasoning in Arguments with Causal
Links”. In: arXiv preprint arXiv:2110.13692 (2021).

[67] Keshav Singh et al. “Exploring Methodologies for Collecting High-Quality
Implicit Reasoning in Arguments”. In: Proceedings of the 8th Workshop on
Argument Mining. 2021, pp. 57–66.

[68] Keshav Singh et al. “Improving evidence detection by leveraging warrants”.
In: Proceedings of the Second Workshop on Fact Extraction and VERification
(FEVER). 2019, pp. 57–62.

[69] Niko Solihin. “Search engine optimization: a survey of current best practices”.
In: (2013).

[70] Manfred Stede, Tatjana Scheffler, and Amália Mendes. “Connective-lex: A
web-based multilingual lexical resource for connectives”. In: Discours.Revue de
linguistique, psycholinguistique et informatique.A journal of linguistics, psy-
cholinguistics and computational linguistics 24 (2019).

[71] Manfred Stede and Jodi Schneider. “Argumentation mining”. In: Synthesis
Lectures on Human Language Technologies 11.2 (2018), pp. 1–191.

[72] Milan Tofiloski, Julian Brooke, and Maite Taboada. “A syntactic and lexical-
based discourse segmenter”. In: Proceedings of the ACL-IJCNLP 2009 confer-
ence short papers. 2009, pp. 77–80.

[73] Stephen E. Toulmin. The uses of argument. Cambridge university press, 2003.

[74] Atro Voutilainen. Part-of-speech tagging. Vol. 219. The Oxford handbook of
computational linguistics, 2003.

[75] Steven Walfish. “A review of statistical outlier methods”. In: Pharmaceutical
Technology 30.11 (2006), p. 82.

54 Chapter 6 Nick van Bremen

Using the web to explain claims

[76] Douglas Walton and Chris A. Reed. “Argumentation schemes and enthymemes”.
In: Synthese 145.3 (2005), pp. 339–370.

[77] Douglas Walton, Christopher Reed, and Fabrizio Macagno. Argumentation
schemes. Cambridge University Press, 2008.

[78] MeiShan Zhang. “A survey of syntactic-semantic parsing based on constituent
and dependency structures”. In: Science China Technological Sciences 63.10
(2020), pp. 1898–1920.

[79] Bo Zhao. “Web scraping”. In: Encyclopedia of big data (2017), pp. 1–3.

Chapter Nick van Bremen 55

Appendix A

Argument structure

Table A.1 provides an overview of the different terms used in the research field
of argument mining to describe argumentative units (also referred to as argument
components or argumentative discourse units). The first two structures from the
left are the classical structure and the Toulmin [73] model, to which the structures
used in other papers are related.

Classic (as
used by

Rajendran,
Bollegala,

and Parsons
[60] and
Walton,

Reed, and
Macagno

[77])

Toulmin [73] Hulpus et al.
[35] and

Alshomary
et al. [8]

Habernal
et al. [31],
Singh et al.
[66, 67],
Botschen,

Sorokin, and
Gurevych
[21], and

Alkhawaldeh,
Yuan, and
Kazakov [4]

Rinott et al.
[63]

Boltužić and
Šnajder [20]

and
Chakrabarty,
Trivedi, and
Muresan [24]

Singh et al.
[68]

Minor
Premise

Data
Premise

Reason/Premise
Premise

Major Premise
Warrant Warrant

CDE1 Warrant
Backing Evidence
Qualifier
Rebuttal

Conclusion Claim Conclusion Claim Claim Claim Claim

Table A.1: Relation between different terms to define the structure of an argument.

56

Appendix B

Task description

Below, the task description can be found exactly as it was presented on the anno-
tation website.

B.1 Introduction

First of all: thank you for participating in this study! My name is Nick van Bremen
and I am following the Master’s programme Business Informatics at Utrecht Uni-
versity. As final part of my study, I have to conduct research and write a thesis. My
thesis is concerned with understanding arguments made in a discussion. More
specifically, the goal is to research whether a system (from here on referred to as the
pipeline) can be built that automatically finds relevant pieces of text (snippets) from
the internet that may help people in understanding why a certain claim is made.
This means the found snippets do not necessarily have to be factually correct, but
may also express a believe or assumption that is implicit in the made claim.

In short: the pipeline takes as input a claim, a corresponding topic, and the
stance of the claim towards the topic (the terms in italic are further explained
below). The output of the pipeline are pieces of text of a few sentences, referred to
as snippets, that may help in understanding why the claim given as input is made.
To evaluate the performance of this pipeline, the gathered snippets have to be
compared to some baseline. For that reason, this annotation study has been set up.

B.2 The task

As mentioned above, the goal is to compare the snippets gathered with the pipeline
to a baseline in order to evaluate the performance of the system. A dataset consisting
of snippets relating to a certain claim has been created and each snippet is paired
with a baseline. For every claim - topic pair, multiple snippets have been gathered.
So you may see the same claim - topic pair multiple times, but the snippets will
always be different.

The task of the annotator is to, given a topic, corresponding claim, and two
snippets (one found by the pipeline, one baseline), select which snippet best explains
why the given claim is made. A snippet should at least cover the same overall subject
as the topic and/or claim to be chosen. If it is impossible for you to make a decision,
an item can be skipped by clicking the Skip button and no choice has to be made.

57

Using the web to explain claims

If both explanations are are totally irrelevant, and cover neither the claim or more
general topic, it is possible to choose the option None.

In the ideal case, one snippet does not hold any relevant information while the
other offers a perfect explanation. However, the snippets will probably mostly both
contain information that may be deemed relevant. Therefore, the following points
should be taken into account when making a choice:

• If snippet 1 gives information that is relevant to the claim, while snippet 2
gives information that is only relevant to the broader topic, choose the more
specific one, in this case, snippet 1.

• If snippet 1 contains information that makes it clearwhy a certain claim would
be made (e.g. by providing an assumption that is made, a believe that is held,
or a piece of factual information that helps in understanding the claim and
overall topic), and snippet 2 only holds information that doesn’t necessarily
explain the why, snippet 1 should be chosen.

• If both snippets offer different information on the question why someone would
make a claim, choose the snippet that provides the most new information
that cannot easily be inferred from the topic and the claim.

• If both snippets contain new or similar information, choose the most coher-
ent snippet (e.g. the one that handles one specific piece of information and
which is understandable from that piece of text alone).

• If both snippets are too similar to choose, Skip the item. If they are both
totally irrelevant (e.g. not even cover the overall subject of the topic),
choose the None option.

It is important to remember that it is not necessary to have any previous
knowledge on the topic and the claim. The goal of the pipeline is to provide extra
information on the topic and claim, which may or may not be factual. The task for
the annotator is to choose the snippet that makes most sense to them and provides
the best information, and not to choose the “correct” snippet. Furthermore, whether
you agree or disagree with a certain snippet should not influence your choice.

The dataset contains approximately 140 items. Feel free to annotate as many as
you like, it does not matter if you only do a few, or all of them.

B.3 Important terms

Claim: the conclusion of an argument that expresses a certain stance towards a
topic
Topic: a subject of discussion, this can be a specific discussion or a broad theme
Stance: expresses whether a claim agrees or disagrees with the topic. The stance
of a claim towards a topic is either pro or con
Snippet: piece of text of a few sentences that should provide extra information on
the claim and topic

58 Chapter B Nick van Bremen

Using the web to explain claims

B.4 How the data is stored

To keep track of which items have been completed by which annotator, this system
makes use of cookies. A randomly generated ID is used to identify your device,
so that if you decide to come back later, the system will recognize you and make
sure to give you items that you have not yet had. I would therefore like to ask you
to not use different devices/browsers to annotate snippets, as it will otherwise not
be possible to track who has annotated what, which might lead to you getting the
same snippets. Apart from this random anonymous ID, no other information will
be stored. If you decide to proceed, you accept the cookies.

Lastly, the text that is found on this page will always be available during the an-
notation process by clicking the information button on the top right of the screen. If
you have any further questions, feel free to email me at j.a.vanbremen@students.uu.nl.

Chapter B Nick van Bremen 59

Appendix C

Planning

Phase 2 of the project will run from August 29th to January 23rd. Table C.1 gives
an overview with the tasks to be completed per week.

Week Dates Tasks

1 29-08 / 02-09 Set up project, implement entity extraction
2 05-09 / 09-09 Start implementing web scraper
3 12-09 / 16-09 Finish implementing web scraper
4 19-09 / 23-09 Start implementing classifier for filtering opinionated arti-

cles
5 26-09 / 30-09 Finish classifier
6 03-10 / 07-10 Start implementing snippet extractor
7 10-10 / 14-10 Finish implementing snippet extractor
8 17-10 / 21-10 Start implementing stance detection
9 24-10 / 28-10 Finish implementing stance detection
10 31-10 / 04-11 Start implementing clustering algorithm
11 07-11 / 11-11 Finish clustering algorithm and ranking
12 14-11 / 18-11 Set up experiment and retrieve snippets
13 21-11 / 25-11 Set up annotation study for analysis
14 28-11 / 02-12 Perform annotation study
15 05-12 / 09-12 Round up annotation study and start quantitative and

qualitative analysis
16 12-12 / 16-12 Finish analysis
17 19-12 / 23-12 Start writing or catch up on any delays
18 02-01 / 06-01 Write report
19 09-01 / 13-01 Write report
20 16-01 / 20-01 Finish up report

Table C.1: Weekly planning of Phase 2

60

