
UTRECHT UNIVERSITY

Faculty of Science

Department of Information and Computing Sciences

MSc Computing Science

EVIDENCE BASES FOR DECISION SUPPORT IN
PHARMACEUTICAL SCIENCES

A THESIS BY

Yue Shi
6904818

Contents

1 Introduction 1

2 Related Work 3

2.1 Decision Support System . 3

2.1.1 Frame work of a DSSs . 4

2.1.2 Application of DSS . 4

2.2 Process Modeling . 5

2.3 Process mining . 10

2.3.1 Event Data . 10

2.3.2 Process discovery . 11

2.3.3 Conformance checking . 12

2.3.4 Process enhancement . 13

2.4 Process Querying . 13

2.4.1 Process Model Repositories Query . 13

2.4.2 Event Log and Process Model Querying . 17

2.4.3 Graph Database and its Query Language . 22

3 Problem Statement 25

4 System Description 27

4.1 Data model design . 27

4.2 System function module design . 30

4.2.1 Query . 30

4.2.2 View . 31

5 System Implementation 33

5.1 Database . 34

5.1.1 data model schema . 34

5.1.2 instances of classes . 36

5.2 Software System and User Interface . 37

5.2.1 Query . 38

5.2.2 Node detail and modification . 39

5.2.3 View . 41

6 Evaluation of the system 45

3

4 CONTENTS

7 Application 47

7.1 System Configuration . 47

7.2 Instruction of using the system . 47

7.2.1 Query . 48

7.2.2 Node and relationship modification . 48

7.2.3 View . 51

8 Conclusions and Future Work 53

8.1 Future Work . 53

Chapter 1

Introduction

Pharmaceutical Sciences encompass a wide variety of scientific disciplines concerned with the dis-

covery, development, and manufacture of pharmaceutical goods. Before any medicine is released

to the market, clinical studies of various compositions are done. This experimental information is

crucial for medication development decisions. Pharmaceutical sciences are constantly evolving and

decision support systems (DSS) are increasingly being utilized to support clinical decision-making

related to drug therapy. The e↵ectiveness of DSS depends heavily on the quality and reliability of

the evidence that underpins it. Process querying is a method used to analyze data generated during

the clinical drug trial process to identify patterns, trends, and potential issues that require further

investigation.

The field of pharmaceutical sciences is constantly evolving, and healthcare professionals face in-

creasingly complex decisions related to drug therapy. Decision support systems (DSS) have emerged

as an important tool for supporting clinical decision-making in pharmacy practice. Clinical drug

trials are indeed a process that involves multiple stages and requires close monitoring and evaluation

to ensure the safety and e�cacy of the drug being tested. If we think of a clinical trial as a process, it

is divided into di↵erent steps, and each step will generate data records. Process models and process

queries are critical components of decision support systems (DSS) in pharmaceutical sciences. The

records of each step of the clinical trial, and the results of each step will become evidence to support

decision makers in making decisions.

The motivation for building a pharmaceutical science decision support system with process query-

ing is to provide a more e�cient, e↵ective, and evidence-based approach to decision-making in this

complex and dynamic industry. It can provide a centralized repository for data or we can call it

the evidence for decision support that can be accessed and utilized by all stakeholders involved in

the decision-making process. This can lead to better collaboration, data sharing, and integration of

diverse data sources.

This faces many challenges. Data sources in pharmaceutical science are heterogeneous and lack

a unified framework to integrate them. Therefore, it is necessary to construct a data model of drug

clinical trials to include as much data information as possible in pharmaceutical science and connect

them. At the same time, this model preferably has the characteristics of a process model, which

can be divided into a step-by-step process, and can clearly indicate the data used and the results

produced by each step. The second di�culty is the design of the process query function. Existing

1

2 CHAPTER 1. INTRODUCTION

process query languages have their own applicable database and process models. However, these

process query languages and the adapted environments are mostly used in the fields of business

process management and the like. Therefore, it is also di�cult to select an existing process query

language and successfully transplant it into our system.

Our main contribution is the design and implementation of an evidence bases for decision support

in pharmaceutical sciences. It includes a data model that can store drug clinical trial data, and the

data model is implemented in the neo4j graph database. It also includes a software system that can

provide query functions and use the database view as a decision-making model. Also includes a user

interface that provides data visualization capabilities.

The remainder of this thesis is organized as follows. In section 2 we will discuss the related work

involved in the thesis. In this part we will introduce the background and application related to

decision support system and background related to process model and process query. In section 3,

we give a specific description of the problems that the thesis needs to solve. Section 4 introduces

the design of the structure and function of the system. Section 5 describes how the system is

implemented. Section 6 evaluates the usability of the system. Section 7 is the application section,

which describes how to use this system. Finally the conclusion section, we summarized the thesis

and discussed the directions in which the system can be improved in the future.

Chapter 2

Related Work

Three portions of background information on all the technologies relevant to our work will be covered

in this discussion. In the first section, we will cover pertinent information on decision support systems

and associated applications in the context of healthcare. The second part includes information

related to process mining, and the third part contains information related to process query.

2.1 Decision Support System

A decision support system is an information system that assists in business-level or organizational-

level decision-making activities, generally concentrated on middle and high-level management, sup-

porting decision-making at the organization’s internal management, operation, and planning levels.

DSSs assist in decision-making on rapidly changing and challenging to predict problems, typically

non-structured and semi-structured decision problems.[38] Our goal is to build a decision support

system that supports decision makers in deciding whether a drug can be put on the market, so the

framework of the decision support system will be the framework of our project.

It was known from the beginning that DSSs might be developed to help decision-makers at any

level inside an organization. Over the years, many of the most intriguing DSS have been geared

toward middle and senior management.

There are three major characteristics of a DSS[33]:

• DSS are created to facilitate decision-making.

• Decision making should be supported rather than automated by DSS.

• Decision-makers’ needs are likely to change over time, and DSS should be able to adapt quickly.

Based on the three fundamental characteristics of DSSs, DSSs have some requirements that must be

met. DSSs should be equipped with a knowledge base, the capacity to retain knowledge, the ability

to articulate knowledge ad hoc in various customized ways and also in normalized documents, and

the option to pick a preferred subset of stored knowledge for either demonstration or for extracting

new knowledge, and it must be built to come into direct contact with a decision maker in a way

that provides the user a versatile choice and sequential knowledge-management activities.

3

4 CHAPTER 2. RELATED WORK

2.1.1 Frame work of a DSSs

A decision support system contains three fundamental components:[35]

• Database Management Subsystem contains a database with information pertinent to the is-

sues for which the DSS was created. The software manages the database called a database

management system (DBMS). A DBMS can be linked to the group’s data warehouse and data

marts. Users are kept apart from the physical structure and processes of the database by a

database management system (DBMS). Additionally, it should be able to tell the user what

kinds of data are accessible and how to get them.

• Model Management Subsystem: The roles of model bases management systems are comparable

to that of database management systems. It has a model base containing models for di↵erent

fields that give DSS analytical skills. The Model base Management System (MBMS), which

controls the model base, is also included. An MBMS’s function is to apply models to the

data from the DBMS to transform it into knowledge. The MBMS should be able to guide the

user in the model building because many of the issues that a DSS user will deal with may be

unstructured.

• User Interface Subsystem: It encompasses every aspect of the interaction between a user and

various DSS components. DSSs ought to have user-friendly interfaces since many of their users

are managers who are not computer literate. These interfaces support the creation of models

as well as interactions with them.

With the development of artificial intelligence technology, many technologies like knowledge base,

natural language processing, and so on can be added to the decision support system to improve

performance. Hence a new field was created called: Intelligent Decision Support Systems. Arti-

ficial intelligence (AI) techniques are utilized in decision support systems, which are collaborative

computer-based systems that assist decision makers in dealing with complex, ambiguous, and un-

structured challenges. For example, data mining and neural networks are the AI techniques that

focus on knowledge discovery, whereas fuzzy logic and expert systems concentrate on knowledge in

the form of rules. [37]

Besides the above-mentioned fundamental components, an Intelligent DSS has a Knowledge

Management Subsystem. It is necessary to convert information into knowledge after it has been

identified, gathered, and managed. This calls for categorization, evaluation, and synthesizing, all

of which need human input. Technology cannot produce knowledge. Data mining, OLAP, machine

learning, and artificial intelligence are some of the tools and technologies that convert and filter the

information/knowledge for this stage of the knowledge management process.[39]

2.1.2 Application of DSS

DSS research may be roughly divided into three categories: application development, DSS theory

development, and reference discipline research. The results or benefits of DSS research activities are

DSS applications. As a consequence, it is crucial to regularly review DSS applications in order to

track the development of the DSS field and to determine the course of future research.[14]

Decision support systems (DSSs) have made a significant and ongoing contribution to healthcare.

2.2. PROCESS MODELING 5

The first area DSSs contribute to is Quality. The foundation of healthcare decision-making

continues to be quality. Most early studies used information technology to extract data from medical

records[46], further refining and standardization resulted in the use of DSSs to evaluate the e�cacy

of medical decision-making[12]. The use of administrative discharge data by DSSs to analyze factors

that a↵ect patient care quality, such as the frequency of complications, readmission, and mortality,

has advanced. Decision-makers identify clinical treatment procedures that produce desired outcomes

using past discharge data. Patient satisfaction with services received while in the hospital is a subject

of growing attention.[24]

Several examples of the application of DSSs in healthcare help improve quality. For example,

using data mining to successfully transform vast amounts of datainin Personal Health Record (PHR)

and other systems into quality improvements.[7] A collection of best practices known as evidence-

based medicine may be developed by doctors using these kinds of information systems or decision

support systems. Another determinant of the quality of healthcare is patient satisfaction. Exam-

ples of DSSs applications that can improve patient satisfaction include: CPOE integrated systems

recommending less expensive drug options or minimizing test duplication.[9]This kind of DSSs can

be cost-e↵ective for healthcare through clinical interventions

Another area DSSs can contribute to is Risk Mitigation. Clinical DSSs are frequently used in

strategies to decrease drug mistakes. For example, drug safety software protections for medicating,

duplication of treatments, and checking drug-drug interactions are now incorporated into CPOE

systems.[21] Electronic drug dispensing systems (EDDS) and bar-code point-of-care (BPOC) medi-

cation administration systems are other methods that aim to improve patient safety. Each procedure

stage (prescribing, transcribing, dispensing, and administering) is automated and takes place inside

a linked system when integrated to produce a ”closed loop.”[27]

We discussed the application of DSSs in the direction of healthcare in the last part. DSSs also

have many applications in other fields. Another very representative field is Marketing. Marketing

management support systems (MMSSs), marketing decision support systems (MDSSs), or intelli-

gent MDSSs are terms used to describe systems that support marketing choices (IMDSSs).[18]They

can help marketing management with a variety of tactical planning and decision-making processes.

For example, by facilitating marketing tools through visualizations, calculations, rapid iterative de-

velopment, and user guidance; and facilitating group scheduling with better-focused consultations,

better common understanding, and greater consensus on strategic choices, a decision support system

have the potential to improve strategic marketing planning. Action research was used to build and

implement this decision assistance system in several South African businesses.[13]

In addition, DSSs also have many application cases in Investment, Forest Management, Network

Security, Etc., permeating all aspects of our lives.

2.2 Process Modeling

The abundance of process modeling notations that are currently accessible is a clear indication of

the importance of process modeling. It’s possible that some companies merely make use of informal

process models when it comes to structuring talks and documenting processes.

Through the provision of insight and the documentation of processes, process models contribute

to the management of complexity. The configuration and operation of information systems must be

6 CHAPTER 2. RELATED WORK

led by clear and specific instructions. Cross-organizational procedures are only able to operate as

intended if there is widespread consensus about the kinds of interactions that are necessary. As a

direct consequence of this, companies in the modern day make extensive use of process models.[1]

This section does not intend to o↵er a comprehensive review of the process modeling notations

that are currently in use. Only the notations that will be necessary for the rest of the discussion are

discussed here.

The process model’s representation and precision are determined by the discovery technique and

the type of visualization used. Next we will discuss four di↵erent process models.

Directly-follows graph:

The essential representation of the process models is a Directly-Follows Graph (DFG). Each node

in a DFG can be seen as an activity, and the arcs define the relationship between the activities.

The directly-follows graph in a process model generally has a source and sink that stand in for

the beginning and end activities. An arc in the DFG of a specific process denotes that the sink

activity in the event log instantaneously follows the source activity.[43] Figure 1.1 shows the result

of constructing the directly-follows graph based on traces in table 1.1.

Figure 2.1: Directly-follows graph based on the event log in Table 1.1.

The graph provides a wealth of information, like repeating the pattern ”Update Tickets.” For all

traces, they ended with the activity ”Update Ticket.”

BPMN

BPMN 2.0 (Business Process Model and Notation) is a popular framework that enables the creation

of concise and intelligible process models. Subprocesses, data flows, and resources may all be in-

corporated inside a single BPMN diagram, in addition to the workflow perspective. Also, because

the control flow view may be combined with data and resource perspectives derived from event logs,

BPMN appeals to both process miners and business users.[23]

A business process is a series of actions or a flow of organizational operations with the purpose

of carrying out work, as defined by the Business Process Model and Notation of the Object Man-

agement Group (BPMN v2.0 of OMG).[29] A process model built on the BPMN standard can be

conceptualized as a directed typed attributed labeled graph. Following is an example of a simplified

loan handling process model in BPMN notations.

2.2. PROCESS MODELING 7

Figure 2.2: Banking Business Process in BPMN Notation[6]

”Event” is represented by a circle and refers to something that happens. There are two types of

events: Start event and End event. The Start event acts as a trigger for the process; it is marked with

a thin single line and can only be ”captured”, so it appears as a hollow icon. End event represents

the result of the process, it is marked with a thick single line and can only be ”thrown”, so it is

displayed as a solid icon. “Activity” is represented by a round triangle describes the kind of work

that must be done. For example, the activity ”Customer applies for real-estate credit” in the figure.

A diamond is used to represent the ”Gateway”, and the conditions shown define how pathways will

branch and merge.

All the components we mentioned above belong to control objects. There is another type of

objects in the figure called data objects like”Record(present)”. It is a mechanism to demonstrate

how activities require or generate data.

The third type of components is flow objects. Control flow is represented by a solid line. It shows

how activities are connected in the process. Data flow is represented by a dashed line. It shows how

data, text and other artifacts are associated.

Petri Nets

The place/transition (PT) nets(Petri Nets) are the earliest and most well-researched process mod-

eling language that supports concurrent modeling. A Petri net is a bipartite network with two

elements: places and transitions, shown as white circles and rectangles. Places can have unlimited

tokens, which are represented as black circles. If all sites connected to it as inputs have at least one

token, the transition is activated.[30]

8 CHAPTER 2. RELATED WORK

Figure 2.3: An example of the Petri Net

The simple Petri Net shown above can be described by a triplet N Æ (P, T, F). P is a finite set of

places, and T is a finite set of transitions. The flow relation, abbreviated F, is a collection of directed

arcs. So in the example of the Petri Net, we can see P = {P1, P2, P3, P4}, T = {T1, T2, T3}, and
F = {(P1, T1), (T1, P2), (T1, P3), (P2, T2), (P3, T3), (T2.P4), (T3, P4)} A transition is enabled if

each input place of a transition has a su�cient number of tokens. When a transition is allowed, the

transition fires, the tokens for the input place are consumed, and tokens are produced for the output

place.

OpenSLEX

As mentioned in the previous section, Based on attributes like timestamp, event identifier, Etc., an

event can be identified from other events. A process is the ordering of events with the overarching

purpose of achieving a state, where a state is a defining feature of the system’s current situation. A

trace is a procedure that totalizes a sequence of events. A behavior is a collection of processes that

may repeat itself several times to indicate that it has been or can be observed repeatedly.

Unlike the process model we talked about in the previous section, Open SQL Log Exchange

(OpenSLEX) is a meta-model that provides a model not only in the process perspective but also in

the event data perspective.

2.2. PROCESS MODELING 9

Figure 2.4: ER diagram of the OpenSLEX connected meta model.[17]

In figure 2.4, we can see that the datamodel and process are the highest abstract entities in the

meta model. At the intermediate level of abstraction, each of these components can be divided into

smaller parts. So we can see cases are formed with events, and objects can relate to several object

versions. Both events and object versions show various states of a top-level abstraction (cases or

objects) at di↵erent time points.

The figure shows a connected meta model which enables the connections between all the entities in

the meta model. In this model, events can be connected to object versions, which have relationships.

These connections are examples of relationships in a data model. This is comparable in database

systems to understanding which events are related to each table row and utilizing foreign keys to

convey table rows.

Process Modeling is an essential part of our project. But when building a process model, we did

not choose an existing (discussed above) process model. For Direct-follows graph, BPMN, and Petri

Nets, they just show what activities we need to take if we want to accomplish a task. These activities

have not yet happened. For the OpenSLEX model, it considers both the process aspect and the

event log aspect, but does not give the input required to complete an activity in the process, the

output generated by this activity, and other entities related to this activity. information. Therefore,

in our project, we will use our own designed database scheme to store the required information,

10 CHAPTER 2. RELATED WORK

which will be described in the problem statement chapter

2.3 Process mining

To facilitate the analysis of operational processes based on event logs, a family of techniques known

as ”process mining” links the fields of data science and process management. Process mining is to

produce insight and guidance from event data. Process mining is an essential component of data

science, driven by the availability of event data and a desire to improve processes.

Process mining provides a wide range of methods to understand better and improve processes,

such as process discovery, conformance and compliance checking, performance analysis, process

monitoring and prediction, and operational support. Although our work does not involve part of

the technology of process mining, the data and models related to process mining are closely related.

Most of these techniques rely on the existence of event logs.

2.3.1 Event Data

Events, which show the occurrence of a particular activity, are the minor units of event data we

could use to undertake a process mining investigation.

An event log typically details the behavior of a certain process as it has been observed. Such

activity may be captured and abstracted in a process model. Graphs are used in process models to

show the causal connections between process activities.

Process discovery techniques applied to event logs result in a visual representation of a process.

A process discovery algorithm like the ↵-algorithm produces a process model according to the event

log.[1]

Three fundamental attributes define an event: timestamp, an activity name, and case identifi-

cation.[42] The timestamp showed when the event occurred. The type of activity that was carried

out can be inferred from the activity name. A case identifier, the last step, identifies the instance

of the underlying process to which this event belongs. While the case identifiers give a mechanism

to correlate events per process instance or trace, the timestamps of a collection of events give the

collection some sequence.

Table 2.1: Event log example obtained from the database of a movie ticket selling system

Event Case CustomerID BookingID TicketID Activity Timestamp

1 1 100 Insert Customer 2020-10-20 15:50:05

2 1 100 101 011 Make Booking 2020-10-20 15:55:25

3 2 110 Insert Customer 2020-10-20 15:58:32

4 1 101 Update Booking 2020-10-20 15:58:55

5 1 100 012 Update Ticket 2020-10-20 16:01:30

6 1 100 013 Update Ticket 2020-10-20 16:03:49

7 3 111 103 031 Make Booking 2020-10-20 16:05:12

8 2 103 021 Make Booking 2020-10-20 16:07:29

9 2 110 102 022 Update Ticket 2020-10-20 16:09:36

10 3 102 032 Update Ticket 2020-10-20 16:12:18

2.3. PROCESS MINING 11

Table 2.1 shows an example of an event log according to a movie ticket booking system. There are

di↵erent kinds of events in the table corresponding to the system actions like making bookings(Make

Booking), booking information update(Update Booking), customer inserted(Insert customer), and

so on. Each event has a timestamp. Besides the three fundamental attributes of the event log, there

are other attributes, such as CustomID in the table and BookingID in the table in various scenarios.

Process mining techniques can make use of all of these attributes.

2.3.2 Process discovery

Process discovery techniques identify process models that describe the behavior of systems as ob-

served in event data. Di↵erent process discovery algorithms use other representations, each having

di↵erent characteristics.

↵-algorithm

This algorithm is aimed at reconstructing causality from a set of sequences of events. It can create

a workflow net from the event log based on the relationships between the di↵erent activities in

the event log. The ↵-algorithm can be served as the foundation for numerous subsequent process

discovery methods. In order to obtain the process model from the event logs, it is essential to get

the relationship between event logs.

There are four types of relationships used in the ↵-algorithm.

• direct succession e1 > e2 If and only if event e1 is promptly followed by event e2. For example,

in figure2.1, the event ”Make Booking” is followed by the event ”Update ticket.”

• causality e1 ! e2 If and only if e1 > e2, not e2 > e1.

• parallel e1||e2 If and only if e1 > e2, and e2 > e1.

• unrelated e1e2 If and only if not e1 > e2, and not e2 > e1. For example, there is no trace e1e2

and no trace e2e1 in the event log base.

With these relationships, the ↵-algorithm can be defined as follow: An event log is first transformed

by the alpha miner into directly-follows, sequence, parallel, and choice relations, which are then used

to build a Petri net outlining the process model. The program starts by creating a footprint matrix.

One may build a process model using the footprint matrix and the pattern previously illustrated.

The first footprint-based matrix is found based on the four relations previously discussed. Places

are found using the footprint-based matrix. In order to limit the number of locations, each site is

designated by a pair of sets of activities.

Heuristic mining

A process model’s control-flow perspective is mined using the Heuristics Miner Plug-in. It merely

considers the sequence of events within a case to do this.[45] When creating a process model, heuristic

mining algorithms consider the frequencies of events and sequences. The fundamental tenet is that

infrequent pathways should not be included in the model.

The Heuristic miner makes some improvements based on the ↵-algorithm. It considers the events

frequency and detects short loops in the process model. The first step of Heuristic mining is to build

12 CHAPTER 2. RELATED WORK

a directly-follows frequency matrix. Then the directly-follows frequency matrix can be used to build

the dependency matrix. As we mentioned above, event e1 is followed directly by e2 can be defined

as e1 > e2. The dependency between e1 and e2 can be calculated as

|a > b|� |b > a|
|a > b|+ |b > a|+ 1

This frequency-based measure expresses how convinced we are that two events A and B have a

dependence relationship. A high value of this metric is to indicate there is a dependency relation

between two activities. According to this metric, we can construct the dependency graph of the

process model.

Genetic process mining

The genetic algorithm is a method of searching that imitates the process of evolution that occurs

naturally in biological systems. These algorithms evaluate current points, use mutation to create

new points, or combine existing points to locate a solution in the search space. These methods rely

on randomization to discover new options and are not deterministic.[28]

This algorithm includes the following steps:

The first step of a generic algorithm is to create the initial population. For process mining, the

initial population is the collection of some randomly created Petri nets.

Then we need to calculate fitness for all occurrences in a population. The fitness function can be

defined as

fitness(�, N) =
1

2
(1� m

c
) +

1

2
(1� r

p
)

Where m is the number of missing tokens, c is the number of consumed tokens, r is the tokens left

over when something reaches the output place, and p is the number of produced tokens.

The next step is to keep the ”best ones” and use the ”survived” instances as parents to generate the

next generation. For generating the ”children,” there are two essential concepts:

• cross-over: The process of merging various Petri nets (these Petri-nets are already good solu-

tions)

• mutation: Adding some random changes for diversifying.

The Genetic Process Miner is far more noise resistant, allowing for gradual progress, and may

be integrated with other algorithms.

2.3.3 Conformance checking

The goal of conformance checking is to compare a process model to an event log for the same process.

It is used to determine whether the actual execution of a process, as recorded in the event log, is

consistent with the process model. [2]

Rarely does the observed behavior of a process exactly match the predicted behavior in practice.

Multiple factors could be responsible for this, including fraud, noise, and flexible approaches. Cor-

rectly relating event data to the process model used as a reference for addressing the conformance

and compliance problems is one of the challenges. Using reliable statistics to give the user valuable

diagnostics presents another challenge.

2.4. PROCESS QUERYING 13

2.3.4 Process enhancement

There are di↵erent techniques for process enhancement. These techniques can be divided into two

groups: Process repair and Process extension.[26] Repair is a type of enhancement that involves

changing the model to represent reality better. For instance, the model may be adjusted to reflect

that two actions depicted sequentially might occur in any sequence.

Extension, or adding a new perspective to the process model by cross-correlating it with the log,

is another improvement. The inclusion of qualities that are related to the events is necessary for the

expansion of process models so that they can accommodate diverse perspectives. Process extension

techniques like Model-Aligned Event Logs[10] require replaying the event-log traces on the process

model. So the missing parts of the process model can be found.

2.4 Process Querying

Process querying is an emerging concept that is constantly refined through an iterative process of

adopting and solving practical problems for obtaining and trying to manipulate process models and

process-related artifacts. In general, a process query is defined as follows:

Query processing is the procedure used to respond to an inquiry made to a database or information

system. It typically entails understanding the query, searching the area where data is stored, and

retrieving the results that fulfill the request.

Process querying aims to recognize foundational algorithms, assessment, and analytics over pro-

cesses to encourage their centralized development and improvement for later reuse in practical sit-

uations involving the administration of processes and process-related objects such as resources,

knowledge, and information.[41] Such core process-related computations are referred to as process

querying methods. Process querying increases the impact of process querying methods in various

scenarios exponentially and prevents such practices from being reinvented in di↵erent contexts.

In this part, we will discuss two di↵erent methods of process query. The first is toquery for

process model, and the second is the query language that can query both event data and process

model

2.4.1 Process Model Repositories Query

In this section we will discuss three di↵erent languages for query flow models. Di↵erent from the

above query language for querying process data, most process models are mined from event data

through process discovery technology. Process models are abstract.

BPMN-Q:Visual Business Processes Query Language

As mentioned in the previous section, BPMN is a popular framework for process models. It is

pretty valuable for provide process model designers with a query engine for utilizing previously built

business process models (by themselves or others).

BPMN-Q is a visual language based on notations from Business Process Modeling Notation(BPMN).[5]

This language can be seen as an abstract syntax extension of BPMN as BPMN is a standard visual

notation for modeling business processes.

14 CHAPTER 2. RELATED WORK

Usually, we can know to query a subgraph isomorphism of a graph, which is an NP-complete

problem.[19] in reality, the business process repository is huge, and the relationship between the

components in the process model is very complex.

This query language is built on relational database management systems(RDBMSs) to address

time and complexity challenges. It stores the graph-based models of the business process repository

using a fixed mapping storage method. The core idea is to design a suitable matching schema for

the process model and process repository.[36]

There are four tables to do the relational encoding to transfer the process models into the

relational database[6]:

• BPModel(ModelID, ModelName, ModelDescription).

• BPElements(ModelID, ElementID, ElementName, ElementType).

• BPEdges(ModelID, EdgeID, SElementID, DElementID, EdgeType).

• BPPaths(ModelID, PathID, SElementID, DElementID, ElementList)

Elements are represented by tuples stored on a single table. The same is true for the edges,

stored in a single table in the format of a tuple. Therefore, query the process model’s subgraph is

not like the traditional subgraph query. Each node has its type and set of properties. BPMN-Q

query nodes can also be polymorphic, which means they can be matched to nodes of multiple kinds.

There are two phases for BPMN-Q queries. In the beginning, there is a filtering phase. All the

candidates that match the input query structure will be identified in the repository. For example:

if we would like to find a subgraph contains a set of nodes in size n called QE, and a set of edges in

size m called QS.

Figure 2.5: Template for the filtering step of BPMN-Q queries in SQL.[6]

Each referenced table Ei in this template denotes a specific instance from the table BPElements

and translates the data of a single element of the collection of query nodes QE. The information

of one edge from the set of query edges is mapped to each referenced table Sj , which represents

an instance from the database BPEdges. The mapping function between each QE element and its

corresponding BPElements table instance Ei is f .

The second phase is to verify the candidates. This phase is optional. It is only applied when the

query contains Path, Negative, and Negative Sequence Flow. The two processing phases can prune

the not required part e↵ectively and e�ciently.

APQL:Semantic Process-Model Query Language

Several query languages like BPMN-Q to query the process model are based on the syntactic re-

lationships between tasks. Unlike this kind of query language, A Process-model Query Language

2.4. PROCESS QUERYING 15

(APQL) focuses on the semantic relationship between tasks. It is independent of the actual process

modeling language, which means it can be applied to various modeling languages in practice. Also,

the APQL is designed to exploit the semantics of the process model when querying.[40]

To discuss the syntax of the language, there are twenty basic predicates in the process model to

capture the occurrences of process activities. The primary function of these predicates is to capture

the semantics relationships between tasks in a process model like posoccur(t, r). There is some ex-

ecution of r when at least one occurrence of t happens. The exclusive and concurrent relationships

between task occurrences are captured by the following two predicates. exclusive(t1, t2, r) means it

is never feasible for instances of t1 and t2 to co-occur during any execution of r. concur(t1, t2, r) :

In every execution of r, if an instance of t1 happens, then an instance of t2 occurs, and vice versa.

However, t1 and t2 are not causally coupled. Then, we take into account di↵erent kinds of interrela-

tions between task occurrences. Precedence(pred) or succession(succ) can be used to describe the

relationship in which one activity may happen right away or gradually come before or after another

activity. It could be valid for any or all instances of the jobs in any or all process executions. There

are 20 types of predictors in APQL.

The syntax of APQL is abstract, so it can avoid dedicating ourselves too early to certain keyword

selections or the arrangement of di↵erent assertions. A basic query in APQL is a collection of

Assignments with a Predicate. Those process models that meet the predicate are the outcome. When

processing the Predicate, each variable is replaced with the relevant TaskSet that the Assignment

assigned to it. A TaskSet may be created over other TaskSets by construction or application, or it

may be an enumeration of tasks. It can also be defined using a TaskSetVar variable.

We can use an example to illustrate the query language. if we would like to choose every model of

a process where task A occurs during some process executions and task B occurs during all process

executions. This query can be represented by a grammar tree:

Figure 2.6: Grammar tree of the example APQL query[40]

A predicate can comprise a straightforward TaskPos with the semantics defined by the funda-

mental Predicate posoccur. It will select the process model where Task A occurs during some process

executions.

a TaskAlw specifies what the fundamental Predicate alwoccur means in its intended semantics.

It will select the process model where Task B occurs during all process executions.

A TaskRel can be defined recursively as a binary or unary Predicate by using logical operators,

16 CHAPTER 2. RELATED WORK

with the intended meaning that all process models meeting that particular relation should be re-

trieved. In this query example, the logical operator is ”And,” which means the result needs to satisfy

both predicates.

The APQL can also deal with more complex problems like Choosing all process models where task

H’s immediate predecessors are task B’s immediate successors during some process execution. This

question involves two task sets: task H’s immediate predecessors and task B’s immediate successors.

So we need to use the Assignment part in the query.

Figure 2.7: Grammar tree of the example APQL query[40]

As we said previously, a query can be divided into an assignment and predicate parts. In this

query example, we will find the two task sets in the assignment part, and each task set has a variable

name. When evaluating the predicate part, this variable name will be replaced by the actual task

set.

APQL is distinct from other languages. Its abstract syntax and semantics are independent of

process modeling languages (such as BPEL or BPMN). This allows APQL and its query evaluation

mechanism to be implemented in other process modeling languages. APQL may describe all poten-

tial temporal-ordering connections (precedence/succession, concurrence, and exclusivity) between

individual tasks.

Querying Workflow with VsTrails

VisTrails is a system to assist in involving data exploration via workflows.[8] The idea of the prove-

nance of processes is a brand-new idea presented with VisTrails.

A most important feature of the VisTrails system is the sophisticated provenance structure.

Similar to a database transaction log, VisTrails keeps track of how workflows are implemented.

These modifications adequately identify the source of data products and provide insight into how

processes develop over time.[16]

The query mechanism of Vistrails is not like the text text-based languages. As the workflows

always display as graphs, using text-based language for querying needs to encode the graph to text.

Vistrails adopts a query-by-example mechanism. Users construct queries precisely like they would

construct individual pieces in a workflow model. Also, users can set a set of specific parameters to

filter. The query results will be displayed visually.

The core part of querying is to compute the di↵erence between di↵erent workflows. VisTrails

has a visual di↵erence feature that allows users to distinguish between two processes by coloring

components and links di↵erently depending on which workflow corresponded.

2.4. PROCESS QUERYING 17

Workflow analogies mitigate these changes we mentioned above by dynamically modifying pro-

cesses based on a change-based template. There are three steps to obtain the workflow analogies.

• Workflow Di↵erences. The most basic method to compute the di↵erence between workflows

is to compare two di↵erent workflows. As we mentioned in the previous section, according to

the sequence changes, it is easy in the Vistaril system to determine the distinction between

the two linked workflows.

• Workflow Matching. Another important thing to get the workflows analogies is to find a re-

lationship between the two starting workflows. This is not easy. Because the workflows are

directed acyclic graphs in Vistaril, this problem is analogous to graph matching, which is an

NP-Hard problem. It is hard to be estimated quickly and e↵ectively within a subpolynomial

factor.[20] Nevertheless because modules include well semantics, we can represent this proba-

bilistically with a high likelihood of success. The key is to balance the regional compatibility

between modules with global topology similarity.

• Applying the Analogy. After computing the di↵erence and mapping the start workflows, the

next step is translating the di↵erence based on the matching. To accomplish this, we must

interpret each unique modification using the derived matching. For example, if one change is

to link components a and b, and the matching indicates that a and b in pipeline A are equal

to components c and d in pipeline C, the change turns connecting modules c and d. The

interpreted changes are then implemented in C, resulting in the creation of a new pipeline, D.

The ability of workflow systems to employ analogies and queries by example can enable knowledge

reuse in building complicated processes. As a result, they may be used in real-world scenarios such

as cosmology, environmental monitoring systems, bioinformatics, and medical treatment planning.

2.4.2 Event Log and Process Model Querying

In this section, we will discuss about the query language that can provide the functionalities to query

both event log and process model.

Data-Aware Process Oriented Query Language

There are di↵erent approaches to query event data.

A Data-Aware Process Oriented Query Language called DAPOQ-Lang enables users to process

and query data that is stored in a way that is consistent with the OpenSLEX meta model. Data

models, objects, and object versions from databases are combined with events, logs, and processes

from process mining as first-class citizens in OpenSLEX. It is feasible to design queries in the

process mining area that are enhanced with data features with less complexity than in other general

purpose query languages like SQL due to DAPOQLang’s consideration of the same first-class citizens

as OpenSLEX.[31]

Next, we will introduce this query language’s essential elements and syntax.

18 CHAPTER 2. RELATED WORK

Figure 2.8: Hierarchy of DAPOQ-Lang types in UML. Arrows show subtype relationships.[31]

As we said before, all the components in the meta model can be seen as first-class citizens for

the query language. They are called MetaModelElements(MME) in the query language. It is

the union of all the subtypes elements. There are two di↵erent types of elements in the model: the

element at the next level of the MME.

• stored elements (StoredElement) The feature of such elements is that they can be found directly

in the meta model, like activities, events, objects, and so on.

• computed elements (ComputedElements) Thtis type of elements are the elements determined

on the basis of rest, temporal periods of cases, and temporal periods of events

The query language provides the functions operated on the MMEs, to obtain the specific subtypes

elements in the model. Also, the results of the queries belong to MME sets. Based on the meta

model, there are 57 essential query functions, and they are divided into five blocks. These functions

formed the syntax of the query language.

The first block is the syntax to query terminal meta model elements. There are 13 functions to

obtain the whole set of the corresponding type in the meta model. For example, allRelationships

to query the stage of all class relationships, allProcesses to query the set of all processes.

The second block contains 14 functions. These functions accept a collection of elements of the

same type as input and provide a set of elements linked to them of the type matching the function’s

return type. For example, attributesOf(es) will return a set the set of attributes related to the

input es.

The third block focuses on the elements with temporal properties. There are eight functions to

deal with the period or duration query. For example, Duration.ofDays to query the duration of

the specified days.

The functions in the fourth block focused on the relationships between the time intervals, like

Allen’s interval algebra, which describes a calculus for temporal reasoning to define possible relations

between time intervals.[3] The blocks’ functions will compute and create periods in Allen’s interval

algebra format. For example, starts(a, b) describes if and only if a and b both start at the same

time, but a is shorter.

The functions in the fifth block enable users to obtain the attribute values of elements in the

meta model. For example, the process getAttributeEvent will returns the value for an attribute of

an event.

We can use an example to show how this query language works. Suppose we would like to

change a customer’s address from ”Fifth Avenue” to ”Sunset Boulevard” due to an event that

occurred between two dates.

2.4. PROCESS QUERYING 19

Figure 2.9: An example of DAPOQ-Lang Query[31]

This query includes the functions like allClasses in the first syntax block, Caseof ,Eventsof in

second syntax block, createPeriod in the third syntax block, ETC. We can use the grammar tree to

show how this query to be evaluated.

Figure 2.10: Grammar Tree of the DAPOQ-Lang Query example[31]

The grammar of DAPOQ-Lang query language is similar to APQL we mentioned in the previous

section. It also includes two parts in the grammar tree. The assignment part shows how to create

the period and it has a variable name to represent the period. When the query is being evaluated,

the variable name will be replaced by the actual value of the period. Unlike the APQL can only

select the elements based on constraints. DAPOQ-Lang supports the function of changing the value

of the selected element like the AttributeChange component in the grammar tree.

Celonis PQL: A Query Language for Process Mining

The software architecture of Celonis includes Celonis PQL as a key element. This language is used

by all Celonis apps to query data from a data model. Along with the actual data from the source

systems, the data model also includes metadata such as schema details and the connections between

the tables that use foreign keys.[44]

Celonis Process Query Language (Celonis PQL) is a domain-specific language for business users

suited for a particular process data model. More than 150 expressions, spanning from process-specific

20 CHAPTER 2. RELATED WORK

operations to machine learning and mathematical operators, are covered by Celonis PQL. Although

it has a syntax similar to SQL, it is tailored for process-related queries.[44]

Celonis PQL aims to provide a query language to perform process mining tasks(like process

discovery, conformance checking, ETC.) based on the event data. This query language is based on

a relational data model.

SQL serves as the basis for Celonis PQL, and there are some di↵erences between the two query

languages. These di↵erences can reflect the features of Celoins PQL.

The varied language scope between SQL and Celonis PQL is a crucial distinction. Therefore, not

all of the SQL operators are supported by Celonis PQL. This is because only the operators required

for the intended use cases are implemented, and user requirements drive language development.

The absence of a data manipulation language and data definition language support is another

significant deviation from SQL. There is no need to manually change and update the data using the

query language in the process mining scenario because all updates should originate from the source

systems.

Unlike SQL, Celonis PQL is domain-specific and provides a variety of process mining operators

that are not o↵ered in SQL. As a result, Celonis PQL e↵ortlessly connects the process view with the

data. There are four basic operators for process mining in Celonis PQL: SOURCE and TARGET,

VARIANT, and CONFORMANCE.

SOURCE and TARGET operators can be applied to connect one event to another immediately

after or eventually by figuring out the variance of the relevant timestamps. TARGET refers to the

event’s immediate aftermath, whereas SOURCE always refers to the actual occurrence. Therefore,

an event and its subsequent event can be combined in the same row in a table using SOURCE and

TARGET.

There is an example of throughput time computation using SOURCE and TARGET operators.

Figure 2.11: an example calculation of throughput time using the SOURCE and TARGET operators

SOURCE and TARGET receive a column in a table as the input, MINUTES BETWEEN will

operate on each element in the column. And the results will be displayed in a column.

Process mining requires the calculation of variations to be successful. Most process discovery

algorithms employ them as input rather than the raw events and cases to significantly speed up the

calculation, such as the Inductive Miner[25] or the Heuristics Miner[45]. When computing variations,

Celonis PQL o↵ers the VARIANT operator, which compiles all case events into a string that denotes

the case’s variant.

There is an example of the variant operator.

2.4. PROCESS QUERYING 21

Figure 2.12: VARIANT operator example with and without decreased self-loops

However, in other applications, it is not essential how frequently an activity is repeated, but

rather whether or not there is a self-loop. In such circumstances, the VARIANT operator can be

wrapped by the SHORTENED command, which limits the number of repetitions of self-loops. It

is feasible to abstract from recurring actions in this way, reducing the number of di↵erent versions.

An optional parameter specifies the maximum length of the self-loops. The maximum cycle length

is set at 2 by default.

The Celonis PQL is a query langauge can deal with both event log side and process model side.

The operator SOURCE and TARGET demonstrates the language’s ability to handle event logs, and

the VARIANT operator demonstrates that the language can also take care of the process model

aspect.

Another significant process mining approach that links a process model to an event log is con-

formance checking, which is used in addition to process discovery.[11] Celonis PQL provides confor-

mance checking capability through the CONFORMANCE operator. This operator takes a column of

activities and a description of the process model as the input. It repeats the names of the activities

from the input column. As an outcome, the activity table receives a temporary integer column. A

row’s value in this new column shows whether or not there is a conformance problem. Additionally,

the process model’s associated activities and the violation’s kind are contained in this value.

In this section, we discuss the query principles of four query languages and a scientific workflow

system. These query languages can be divided into two types. According to the model based on

the query language, they can be divided into query according to relational data model and query

according to semantics. For example, BPMN-Q and Celoins QL query languages are based on

relational data model for query. The data is stored in the table. Although APQL and DAPOQ-

22 CHAPTER 2. RELATED WORK

Lang are based on di↵erent data storage models, the same thing is that they both build their own

complete grammatical structure for the query language.

2.4.3 Graph Database and its Query Language

A graph database is a storage system representing and storing data using graph topologies with

nodes and edges.[32] A (labeled) property graph model is the most often used graph model in the

area of graph databases.[34]

The property graph comprises linked entities (nodes) that may store an unlimited number of

properties (attributes) represented as key-value pairs. Labels can be assigned to nodes and edges to

indicate their various responsibilities in the application domain. The label is referred to as the type

in specific techniques. Labels can also associate metadata—such as index or constraint informa-

tion—with particular nodes. Relationships connect two nodes by providing directed, semantically

meaningful connections (edges). A relationship always has a starting point and an ending point.

Relationships, like nodes, can have any attributes. Relationships frequently have quantitative fea-

tures like weight, cost, distance, ratings, or time intervals. Properties make nodes and edge more

informative and valuable. Unique identification is assigned to each node and edge. Because con-

nections are e↵ectively stored, two nodes can share any number of di↵erent types of relationships

without a↵ecting performance. It is essential to note that, while they are directed, relationships may

constantly be handled regardless of direction. The property graph model is concerned with data

structures known as labeled and directed attributed multigraphs in graph theory.

We will use Neo4j, a successful graph database system, as an example to illustrate the storage

mechanism of the graph database. Data is stored in Neo4j as nodes and relationships. Both nodes

and relationships can have key-value attributes. Values can be either a primitive or an array of

primitives of the same type. Nodes are frequently used to represent entities, although relationships

may also be used for this purpose, depending on the domain. Internal unique identities for nodes and

edges can be utilized for data search. Nodes cannot directly refer to themselves[22]. The semantics

can be stated by introducing directed node relationships. Graph processing in Neo4j involves random

mainly data access, which is inconvenient for Big Graphs. Graphs that cannot fit in main memory

may need additional disk accesses, substantially impacting graph processing.

Figure 2.13: Graph Database Example Provide by Neo4j

2.4. PROCESS QUERYING 23

Cypher: Graph Query Language

Query capabilities are essential for every DBMS. Of course, those employed in graph databases are

derived from the accompanying graph model.[4]. Graph databases are frequently supplied with a

declarative query language. Cypher, which works with the Neo4j database, is today’s most well-

known graph declarative query language. Cypher uses the Neo4j data model of property graphs,

which we covered before. Cypher commands are ad hoc graph data queries loosely based on SQL

syntax.

A Cypher query accepts a property graph as input and returns a table as output. These tables

may o↵er bindings for parameters that observe specific patterns in a graph, along with some further

processing. Queries are structured linearly by Cypher. Users can conceive of query processing as

commencing at the beginning of the query text and moving linearly to the finish.[15] In Cypher, the

projection is declared as RETURN after the query rather than at the beginning. Cypher extends the

linear query stream to query composition. The projected table from the query part before WITH

serves as the driving table for the query component after using WITH. The same projections as

RETURN are permitted by the WITH clause, including aggregations.[15]

Cypher is unusual because it allows for the visible matching of patterns and relations. Cypher

has an ASCII-art syntax in which (nodes)-[: ARE CONNECTED TO] rounded brackets represent

!(other nodes) for circular (nodes) and -[:ARROWS]! for relationships. When you create a query,

you make a graph pattern out of your data. The MATCH clause in Cypher employs such a pattern

and inserts new rows (synonymous with records) into the queried graph with bindings to the matched

occurrences of the pattern. For example, if we use ”MATCH (n1)-[r]!(n2) RETURN r, n1, n2

LIMIT 5” querying a graph, it will return a table with five node-to-node relationships.

Figure 2.14: MATCH Query Example

Cypher has a powerful tracking language for altering the graph. Updating clauses employ the

same visual graph pattern language as Cipher’s rest and give the same straightforward, top-down

semantic paradigm. CREATE is used to create new nodes and relationships, DELETE is used to

remove entities, and SET is used to edit properties. For example, ”CREATE (friend: Person name:

’Mark’)” will create a node in the graph with the label Person and property name:’Mark.’

Cypher is a well-established powerful query language for the property graph model that is see-

ing increased acceptance in various businesses and initiatives. The language adds new capabilities,

exceptional support for numerous graphs, and query composition. It is presently being published

as a fully-specified standard that may be independently implemented utilizing multiple architec-

tures and variable storage and query optimization algorithms under the auspices of the openCypher

24 CHAPTER 2. RELATED WORK

Implementers Group.[15]

Chapter 3

Problem Statement

Think about we have an infinite set of attribute names A, an infinite set of atomic values V. An

attributeis a pair < a, v > where a 2 A, v 2 V. So the there is an infinite set of attributes P denoted

as P = A⇥ V .
Definition 1 An entity is a tuple

< id, P >

, where id is a string used as an identifier, and P ⇢ P contains the attributes of this entity.

An entity can be anything that exists in real life. For example, it could be a person, so the

attributes of the person entity could be ”name: Tom,” ”age: 18,” ETC.

To record the start and end times of each activity, we assume there is an ordered time domainT . A

time interval between two time points t start and t end denoted as [t start,t end], where t start 2 T
and t end 2 T .

Definition 2 An activity can be denoted as a tuple

< id, subactivities, inputDataset, outputDataset, Implements, period >

Where id is the identifier, subactivities is a sequence of activities. Both inputDataset and outputDataset

are sequence of Dataset. Implements contains a process id to indicate which process this activity

belongs to, and period is a time interval between two time points.

An activity could be a collection of subactivities during a specific period. For example, ”Com-

position Analysis” could be an activity. It includes the events like ”Sampling,” ”Spectral Analysis,”

”Impurity Analysis,” Etc.

There is a big di↵erence between Activity and Process. The Activity is a real-time object. It

can be identified by the id and the specific period. Process is not a real-time object. It can only be

determined by id.

Definition 3 An process p is a tuple denoted as

< id, subProcess >

where id is the identifier of an event, subProcess is a sequence of processes.

Each activity calls for a dataset to be provided as the source information, and each activity will

25

26 CHAPTER 3. PROBLEM STATEMENT

produce a dataset to keep track of the outcomes of that action.

Definition 4 A dataset is a tuple

< id, version, name, type, host, port, username, password, directory >

. id is the identifier of the dataset. version is a number that can indicate how many times the

dataset has changed. name is a display value to show what the dataset is about. type is to show

what type of repository it is. The value of type could be: HDFS, MySQL, PgSQL, FS, MongoDB,

ETC,. host is the IP address, localhost or domain name for user to retrieve the dataset. username

and passwaord are the username and password to connect to the repository. According to the type

of the dataset, if it is the FS or HDFS, directory is the full path of the directory. If the type of

dataset is the MySQL or PgSQL, directory is the DB name.

Table 3.1: Model Classes in Database
Model Classes
Object(type: Class)

Entity{
type: Class
isA: Object
}

Process{
type: Class
isA: Object
id: string
subProcess: a sequence of Processes

}

Activity{
type: Class
isA: Entity
id:string
subActivities: a sequence of Activities

input: a sequence of Datasets
output: a sequence of Datasets
implements: Process
period : [t1, t2]
}

Dataset{
type: Class
isA: Entity
id: string
version: integer
type: HDFS, MySQL, PgSQL, FS
host: IP address, local host, or domain name
port: integer
username: string
password: string
directory: full path of the directory or the database name
}

The information about the database that was just shown can store information on di↵erent

processes, the outcomes of these processes, Etc.We hope to build a new data model that integrates

the information of drug clinical testing with the concept of process model, and can store drug clinical

trial information in the database. The information stored in the database will be used as evidence

to provide decision support for users.

We also hope that the system can provide users with the function of process query about the

new data model. We discussed in related work that process query can be divided into process model

query and log query. We need to design and implement the query function of the system to solve

the above problems.

As a decision support system, we need to provide users with the basic functions of the decision

model: allows users to store decision models and obtain decision support

Chapter 4

System Description

Our system is can be divided into three parts. We designed a data model stored in the database to

describe the various information needed in pharmaceutical sciences. A software part implements the

main functions of the system. As a decision support system, it can provide two main functions for

users. The first function is to query the data model and instances information. The second function

is to use view as a decision model. The third part of the system is the user interface. It can visualize

the data to the user, and at the same time accept the user’s instruction and pass it to the software

part.

In this chapter, we mainly introduce the design of the data model and the design of the system

function.

4.1 Data model design

The model needs to include all the information contained in the clinical trials. The establishment

of the model mainly refers to the information provided by the clinicaltrials.gov website. Clini-

calTrials.gov is a Web-based resource that enables patients, their families, health care providers,

researchers, and the general public quick access to information on o�cially and privately funded

clinical trials on a variety of diseases and ailments. All the elements are defined with respect to

classes in the data model.

27

28 CHAPTER 4. SYSTEM DESCRIPTION

Figure 4.1: Data Model

In addition to the object, entity, process, dataset, and other parts discussed in the problem

statement, in order to better describe the process of drug testing, some other parts have been added

to the model.

The element Activity/Study contains following attributes:

• nct number: Each clinical trial registered on ClinicalTrials.gov is assigned a unique identifica-

tion code called NCT number.

• o�cial title: The formal title of a protocol used to identify a clinical investigation or a brief

title expressed in layman’s terms.

• Status: The current recruiting status or the enhanced access status is shown by this attribute.

• study phase: According to FDA standards, the stage of a clinical trial in which a medication or

biological product is being studied (FDA). The phase is determined by the study’s purpose, the

number of participants, and other factors. The phases are as follows: Early Phase 1 (formerly

known as Phase 0), Phase 1, Phase 2, Phase 3, and Phase 4. Not Applicable is used to describe

studies that do not have FDA-defined stages, such as device trials or behavioral therapies.

• study type: This attribute explains what a clinical trial is like. Interventional studies, com-

monly known as clinical trials, observational studies (including patient registries), and in-

creased access are examples of study types.

• expanded access: A means of obtaining a medicinal product that has not received FDA ap-

proval for people with significant illnesses or conditions who are unable to take part in research

trials (FDA). Likewise known as compassionate usage. There are several sorts of increased ac-

cess. Available: Patients who are not participants in the clinical research may be able to obtain

access to the medication, biologic, or medical device under study. Extended access is presently

4.1. DATA MODEL DESIGN 29

o↵ered for this experimental treatment. No longer available: Extended access was formerly

accessible for this intervention, but it is not now and won’t be in the future. Temporarily

not available: This intervention does not yet have expanded access, but it should do so in

the future. Approved for marketing: The U.S. Food and Drug Administration has given the

intervention public use approval.

• start date: The precise day that the first participant in clinical research was signed up. The

researchers ”estimated” study start date is the day they anticipate the investigation to begin.

• end date: The final data collection date for the primary outcome measures, secondary outcome

measures, and adverse events in a clinical trial is the date of the final participant’s visit, which

is also known as the last visit date.

• has results: This attribute indicates whether the current experiment has results.

The central component of the data model is the study, to which many other components are con-

nected. For instance, research may contain certain interventions as well as some diseases.

The intervention in the data model means an activity or procedure that is the subject of a clinical

investigation. Drugs, equipment, treatments, vaccinations, and other goods that are either under

development or currently on the market are interventions. Non-invasive methods like education or

altering a diet and exercise routine can also be used in interventions. It has the following attributes:

• interventions type: This attribute is used to describe the type of intervention. It could be

drugs, medical devices, procedures, vaccines, and other products.

• name: This attribute used to identify the intervention

• description: Interpret and describe this intervention

The disease in the data model is the ailment, problem, syndrome, condition, or damage that is the

subject of study. It can also refer to other aspects of health, such as longevity, quality of life, and

health risks.

The subject set class is used in the data model to describe the input and output required by

activities. In the problem description section, we describe the inputs and outputs of activities as

datasets. This is a broader expression of the same idea. In our data model, we use arm and study

outcome to more specifically describe the input and output of the study.

The arm in the data model means a group or subset of clinical trial participants who get a

specific intervention/treatment, or no intervention, based on the study protocol. It has the following

attributes:

• arm group label: This attribute used to identify di↵erent arm group

• arm group type: A basic briefly describe of the clinical trial arm. It specifies the function of

the intervention provided to participants. Arms are classified as experimental arm, active arm,

placebo arm, sham arm, or no intervention.

• description: Interpret and describe this arm group

30 CHAPTER 4. SYSTEM DESCRIPTION

A predetermined assessment used in clinical trials to assess the impact of an intervention or treat-

ment on participants is stated in the protocol. a measurement or observation used in observational

research to characterize the distribution of illnesses or features, or relationships between exposures,

risk factors, or treatments. There are two di↵erent types of study outcomes: primary outcome and

secondary outcome. The attributes of the primary outcome are:

• measure: The most significant intended outcome measure in a clinical trial protocol for evalu-

ating the e�cacy of an intervention/treatment. The majority of clinical trials have one primary

outcome measure, but some have many.

• time frame: The time frame is the precise period of time point or time window during which

you will be gathering participant-specific data for each outcome measure.

• description: Interpret and describe the results.

The attributes of the secondary outcome are almost the same. The di↵erence is the interpretation

of the attribute measure. It is not as significant as the primary outcome measure for assessing the

e↵ectiveness of an intervention, but it is still worth considering.

4.2 System function module design

This decision support system has two main functions. One function is to query based on the attribute

information of the object, and the other function is to create views as decision models.

4.2.1 Query

Each element in the data model has its own properties. The function of this part is to query the object

and all information related to this object required in the database according to the combination of

attributes entered by the user. This query function can not only query schema classes in the data

model. At the same time, the instance of the class can also be queried as the target object.

This function can be divided into the following steps:

1. The user enters the desired combination of attributes in key-value format.

2. Convert the attributes set into a query statement and transmit it to the database to obtain

the target data node

3. According to the identification of the target data node, retrieve all the properties of the target

object and all other objects related to it in the database

4. Display the attributes and relationships information of the target data node to the user as the

query result

For example, We want to query an instance of the primary study outcome. It needs to have specific

properties: time frame : 6months and measure : variation in grades of mucositis. The system

receives the user’s input, transforms the attribute information into a query, and sends it to the

database. The database then sends back to the system all the information related to the queried

4.2. SYSTEM FUNCTION MODULE DESIGN 31

instance, including the attribute and relationship details, and the system then demonstrates the

above information to the user.

The design of the query function does not create a new query language, but only allows users

to input key-value pairs of attribute information to query specific objects. When displaying the

query results, not only the attribute information of the queried object will be displayed, but also

its relationships information will be displayed to achieve the purpose of the process query. As

we discussed before, process querying aims to recognize foundational algorithms, assessment, and

analytics over processes to encourage their centralized development and improvement for later reuse

in practical situations[41]. But in the face of the actual situation of this system, only one data model

is involved in our database, and the structure of the data model is simple and clear. By returning the

relationships of the characteristic node, we can achieve the purpose of our required process query.

For example, if we query a specific study outcome, we can see which study produced such a result,

or if we query a certain drug, we can see which clinical trials have been performed on this drug, etc.

This functional design simplifies the input method, and it can be used without the need for users to

learn a new query language, which is more convenient.

4.2.2 View

Database views are named queries that are kept in the database and may be used to save commonly

performed, sophisticated queries. We design to store these views in the database to form our decision

model. Next, we will introduce the decision model of the system in detail.

For each query of the database, we can regard it as a simple decision model. For example: Are

there more than three trials for the drug Placebo? It can be disassembled into two parts. The

first part: queries the number of all experiments involving the drug Placebo, and the second part:

determines whether the number of experiments is greater than three. Therefore, a simple view in

the system contains the following attributes:

• name: the name of the view, can be used as an identification.

• expression:

Q(query) + operation symbol + {result set}

The operation symbol includes>,<,=, and �

The expression for the above simple view example is Q(the number of all experiments involving the

drug Placebo) > 3. This expression can be thought of as a boolean expression. When it is evaluated,

it will return a true or false result. The result set can be the number in the above example or a

collection of values of any attribute. At this time, we use the following method to evaluate the

expression: the return value of the Q (query) part can be a set, which is di↵erent from the operation

symbol to judge the relationship between the returned set and the result set. When the operation

symbol is� or >, if the result set is a subset or proper subset of the set returned by the query, then

the expression returns true, otherwise, it returns false. When the operation symbol is or <, if the

set returned by the query is a subset or proper subset of the result set, then the expression returns

true, otherwise, it returns false.

A general decision model will eventually produce a true/false result, and when we evaluate a

Boolean expression, it will also produce a true/false result. Having a simple view, we designed a more

32 CHAPTER 4. SYSTEM DESCRIPTION

complex view to simulate a more complex decision model by using boolean operands and, or, not.

This kind of view in the system contains the following attributes:

• name: the name of the view, can be used as an identification.

• expression: a boolean expression containing simple view as parameters.

Some decisions may require more than one simple view to construct, for example, experiments

involving the drug Placebo require more than three items, and the organizations conducting these

experiments must be certain specific organizations. In this way, we cannot use a simple view to

build a decision-making model. But if we have simple view1 to describe the experiments involving

the drug Placebo require more than three items, and simple view2 to describe the organizations

conducting experiments involving the drug Placebo must be a subset of certain specific organizations.

Using simple view1 and simple view2 as parameters, build a Boolean expression ”simple view1 and

simple view2”. When evaluating this expression, we can get the desired result. If both simple view1

and simple view2 can be satisfied at the same time, then return true

Whenever the user loads the view function page or edits a certain view in the database, the

system will evaluate all the views in the database according to their expression, and get a true or

false result, providing decision-making assistance for the user.

Figure 4.2: View Functional Flowchart

Chapter 5

System Implementation

We implemented a decision support system in pharmaceutical science to query and modify data and

views. The system is divided into three parts: database, software system, and user interface. We use

the Neo4j graph database for storage. The software system is partially implemented in the python

environment. It consists of three parts. The relationship between each part of the system is shown

in the figure below

Figure 5.1: System Structure

33

34 CHAPTER 5. SYSTEM IMPLEMENTATION

5.1 Database

We use the neo4j graph database to implement the database part of the system. In a graph database,

data is stored in the form of nodes and edges. Relationships and nodes can both have key-value

characteristics. Values may be a single primitive or an array of similar primitives.

The nodes in the neo4j database have a special attribute label, which is used to implement

di↵erent classes in the data model. A node in the neo4j graph database will contain the following

information:

• identity: Each node in the database has a unique id. The identities in neo4j usually are a

string of numbers.

• labels: Labels classify nodes into sets, with all nodes with the same label belonging to the

same set. A node can have one or more labels.

• properties: Properties are key-value pairs used to store information on nodes.

The relationships specify the connections between a source and a destination node. A relationship

has the following characteristics:

• connects a source and a target node.

• Has one direction.

• It must have a type (at least one type) to define (classify) the kind of connection.

• Properties (key-value pairs) can be used to store information in the connection

Cypher is a declarative query language for retrieving and manipulating data in graph databases

like Neo4j. It is straightforward and expressive in design, allowing users to create complicated

queries in a succinct and natural manner. Filtering, sorting, aggregating, and altering data, as well

as adding, updating, and removing nodes and relationships in the graph database, are all supported

by Cypher. It is an extremely e↵ective tool for studying and altering complicated data connections

in graph databases.

5.1.1 data model schema

The schema nodes in the database have two labels, one of which is schema, which can indicate that

these nodes are all schema nodes, and the other label is the class name of these nodes. In addition,

the properties will also store the names of other attributes of this object as keys, and the value part

is the format or possible value of this attribute.

5.1. DATABASE 35

Model Classes Attributes

Entity{
type: Class

isA: Object

}

Subject set{
Type: class

IsA: entity

}

Arm{
Type: Class

IsA: subject set

arm group type: String

arm group label: String

}

Dataset{
Type: Class

Version: timestamp

IsA: subject set

}

Study/Trial{
Type: Class

IsA: Entity

NCT: String

O�cial Title: String

Status:

Active, Suspended, Terminated, or Completed

Study Phase: 1, 2, 3, or 4

Study type:

interventional study, observational study, or

expanded access

Expanded Access:

Available, No longer available, Temporarily

not available or Approved for marketing

Start Date: string

End Date: string

Has Result: True/False

}

Location{
Type: Class

IsA: Entity

LocationType:

HDFS, MySQL, PgSQL, or FS

Host:

IP address, local host, or domain name

port: integer

username: string

password: string

directory: full path of the directory or the

database name

}

Primary outcome{
Type: Class

IsA: Subject set

Time frame: String

Measure: String

Description: String

}

Secondary outcome{
Type: Class

IsA: Subject set

Time frame: String

Measure: String

Description: String

}

Interventions/Treatment{
Type: Class

isA: Entity

Interventions Type:

Drug, Device, or Behavioral

Name: String

Description: string

}

Condition(disease){
Type: Class

IsA: Entity

Name: String

}

We can use the relationships in the neo4j database to realize the connection between schema

nodes, and use type to define the name of the relationship.

When building this part of the database, we use the cypher language to create this part of the

nodes and relationships in the database. For example, create a Condition schema node with its

attributes in the database:

CREATE(a:schema:Condition) WHERE a.Name = ’String’

The above statement creates a node in the database with two labels, schema and condition, and

creates an attribute Name for this node after the SET statement, and the value is String. To create

a relationship between two nodes in the database, we can use the following statement:

MATCH(a:schema:Entity)

MATCH(b:schema:Drug)

CREATE (b)- [:isA] !(a)

In the data model diagram of the previous section, we can see that there is a relationship between

subclasses and parent classes between classes. We use the form of relationship in the database to

show this relationship. In the above cypher statement example, we created a relationship of type

isA between the point with label schema and Entity and the point with label schema and Drug.

The direction is from the schema drug node to the schema Entity node. In this way, the connection

between the subclass and the parent class between the nodes is established.

This statement first finds the two nodes to create a relationship through MATCH, and then

36 CHAPTER 5. SYSTEM IMPLEMENTATION

creates a relationship through CREATE. Through the above two examples of cypher statements, we

can implement the schema of the data model described above in the neo4j graph database.

5.1.2 instances of classes

The schema section describes the structure of the data in the database. The actual data is stored

in the instances created by the classes. The label of each instance is the class to which it belongs.

Store the attribute information of the instance in properties. Connections between instances are

also represented by relationships in the database.

The instance information in the system is downloaded from the clinicaltrials.gov website. The

raw data is in the format of a JSON file. However, the amount of data is huge. If we use cypher

statements to insert node and relationship data one by one, the workload will be huge. Therefore,

in order to import existing data into the database, we wrote a simple script to import data in

python language combined with Apoc library. The Apoc library’s Load JSON operations collect

information from URLs or maps and convert it into one or more map values that Cypher may use.

Nested data may easily be converted into graphs because to Cypher’s support for deconstructing

nested documents using dot syntax, slices, UNWIND. Each list may be broken down into individual

rows using the UNWIND clause. These lists may consist of passed-in arguments, previously gathered

results, or other list expressions.

Figure 5.2: Sample data provided by the clinicaltirals website

In a study data record provided by the clinical trials website, if we want to enter the secondary

outcome into the database, we can execute the following cypher statement

CALL apoc.load.json(”file path”)

YIELD value

UNWIND value.clinical study.secondary outcome AS outcome

CREATE (n:Secondary outcome)

SET n.time frame = outcome.time frame

SET n.measure = outcome.measure

5.2. SOFTWARE SYSTEM AND USER INTERFACE 37

SET n.description = outcome.description

The creation of instance information and relationship between instances in the database is done

in the same way. Use Apoc.load.json to read the data first, and then create it through the CREATE

clause

5.2 Software System and User Interface

The software part mainly has three modules, all of which run in the python environment. The back-

end part uses the back-end server of the flask, which is mainly responsible for data transmission

with the user interface and other software modules.

The database API module is mainly responsible for the data transmission between the database

and query, update, and other functions. This part mainly uses the Neo4j Python Driver library.

When the system starts, the database API part will create a driver instance (provided by the neo4j

library) to connect to the database. The process of collaboration between the database api part and

the backend server is as follows:

1. When the system starts, create a neo4j driver instance to connect to the database.

2. The front-end will send a request to the back-end server according to the url port of the

back-end server and the route required by the sent request.

3. When the backend server receives the request, according to di↵erent route it calls di↵erent

APIs according to di↵erent requests, and passes the received data to the API.

4. After the API receives the data, it translates it into corresponding cypher statements according

to di↵erent functions

5. The driver creates a session to execute the translated cypher statement

6. The API obtains and parses the results after running the session, and returns the data required

by the user to the backend server

7. The backend passes the data to the frontend, and finally displays it to the user

The boolean praser is mainly used to process the expression in the view and obtain a true or

false result. As we described in the previous section, there are two types of view expressions. A

simple view is a query statement, an operation symbol, and a result set. A complex view expression

is a Boolean expression composed of simple view names as variables. The boolean parser is only

responsible for evaluating Boolean expressions in complex views. When calling the boolean parser,

in addition to passing the boolean expression, the parameters and values contained in the boolean

expression also need to be transmitted together. The boolean parser part is mainly implemented by

the boolean-parser library and the eval() function in python

38 CHAPTER 5. SYSTEM IMPLEMENTATION

5.2.1 Query

Figure 5.3: User Interface for Query Function

The query interface mainly includes four parts. There is an text input filed for user to entering

attributes key-value pairs. A table called conditions is used to store all the attributes entered by the

user.Pressing the remove button in this part will delete all the attributes selected by the checkbox

in the table. Pressing the execute button will send all the attributes in the table to the software

part for query function. On the right side of this part is a text box. When the user presses the

suggestion button, a prompt message will be given in this text box. The bottom part is the result

of the query, which will display the id and name attributes of the nodes that match the user input

attributes to the user. The ID part is also a link, and the user clicks the ID in the table to jump to

the detailed information page of this node.

When the user presses the execute button, the attributes key-value pairs to be queried in the

condition table are sent through the javascript http get function. This fucntion needs the url and

port number of the backend server and route as parameter. The route will pass the request to the

corresponding processing module in the backend. For example, if our backend server is deployed at

127.0.0.1, the port number is 2000, and the route for processing query requests is ”/query”, then

the parameter of the get function is http://127.0.0.1:2000/query.

The query module in the backend server will call the query function in the database API and

forward the data sent by the frontend. The driver will create a session, and we need to write the

attribute name (key) and attribute value in the data into a cypher query statement. Run the cypher

query statement through the session, get the result and send it back to the user interface. Then close

the session. The function of this part is mainly used in ”MATCH” in cypher. The MATCH clause

lets you define the patterns Neo4j should look for in the database. The idea of writing the conditions

(key-value pairs) sent by the user to the backend into the cypher query statement is as follows: In

this way, we use a loop to write all the properties that need to be queried into the MATCH query

statement of cypher.

5.2. SOFTWARE SYSTEM AND USER INTERFACE 39

Input: key value table
1 query = ” MATCH(n) WHERE”
2 for key, value in table: do
3 if key == ”label”: query = query + ”label(n) =” + value
4 else query = query + ”n.” + key + ”=” + value
5 end
6 query = query + ”RETURN n”
7 session.run(query)

5.2.2 Node detail and modification

When this user interface is opened, a node id is received as a parameter in the front end. When the

user interface is loaded, the back end will pass all the information of the node with the id to the

front end. This page will contain the attribute and relationship information of the object queried by

the query. After loading into this page, the system can provide users with the function of modifying

the current object attributes and relationship information.

In this user interface, the attribute and relationship information of this node will be displayed,

and if it is a shcema node, its superclass, subclass and instance information will also be displayed.

Figure 5.4: Node detail 1

The above is the part of the node detail user interface, and the information displayed by the

nodes of di↵erent colors in the graph part is as follows:

• Gray nodes: Gray node: the node displayed on the current page

• Green node: The superclasses of the current node

• Brown node: The subclasses of the current node

• Blue node: The node whose relationship direction is inward with the current node

• Beige node: The node whose relationship direction is outward with the current node

40 CHAPTER 5. SYSTEM IMPLEMENTATION

Each node in the figure is a link, when the user clicks on one of the nodes will be redirected to the

information page of the node.

Attributes update and remove

In the attribute table of the current node, our design allows users to click on the value of the attribute

in the table to change it by entering the value. In the attribute table of the current node, our design

allows users to click on the value of the attribute in the table to change it by entering the value. The

name of the attribute cannot be changed, but the user can delete the node attribute by selecting

the checkbox on the left of the attribute and pressing the remove button below. There is an Add

button on the upper right of the table, and after the user presses it, a blank new row will be added

to the table, and the user can enter a new attribute name and value to add a new attribute to the

current node. After adding attributes to the table or modifying attribute values, you need to press

the update button below to send the update information to the backend. The back-end processing

flow of deleting or updating node attributes is the same.

The process of forwarding the user request to the backend by the front end is the same as the for-

warding process of the previous query function. The di↵erence is that the route of the parameter part

of the front-end get request is di↵erent, and the route of this part is http://127.0.0.1:2000/update attribute.

The front end sends the updated attribute table and the ID of the current node to the update attribute

module of the back end through this route. The module calls the database API, and the correspond-

ing update attribute part of the database API writes the attribute table and node ID as a cypher

query, and the driver creates a session to process the query, and finally the attributes are successfully

updated.

Input: id, attributes table
1 query = ” MATCH(n) WHERE id(n) = id”
2 for for key, value in attributes table: do
3 query = query + ”SET n.” + key + ”=” + value
4 end
5 query = query + ”RETURN n” session.run(query)

The cypher statement algorithm for constructing and updating attributes is also building a string

of cypher query statements and hand it over to the session for processing. To deal with the delete

attributes task we only need to replace the SET part with DELETE

Relationships and Superclasses update and remove

Our design only allows users to change the relationship with the current node relationship is super-

class or the direction is outgoing. And the system only allows nodes to modify the relationship to

existing nodes in the database.

5.2. SOFTWARE SYSTEM AND USER INTERFACE 41

Figure 5.5: Node detail 2

The design of the superclasses and relationships tables of the user interface is roughly the same

as that of the attributes table. You can modify the data by clicking the corresponding row. The

Add button on the top right of the table can add a new blank row to the table, and you can delete

the relationship (or superclasses) by selecting the checkbox and pressing the remove button. You

can also update the information through the update button.

The process of passing the request from the front end to the back end is no di↵erent from the

previous description. The processing method of the backend database api after receiving the request

is di↵erent from that of node attribute update. The backend uses the node id in the received table

as an index to find nodes in the database through the MATCH clause. If the node does not exist,

it will directly send a prompt message of failure to update the relationship (or superclasses) to the

front end. And it prompts that the class does not exist on the footer of the current information

page. When updating a node’s superclasses, we directly create an isA relationship between two

nodes. When updating the node relationship, we create the relationship between nodes according

to the type column in the table.

Input: id, relationship table
1 query = ” MATCH(n) WHERE id(n) = id”
2 for for neighbor id, type in relationship table: do
3 query += ”MATCH(m) WHERE id(m) =” +neighbor id
4 query += ”CREATE(n)-[:”+type+”]! (m)”
5 session.run(query)
6 end

The di↵erence from the previous algorithm idea is that when updating data, the entire table data

is written into a cypher statement before execution. The relationship creation needs to run one by

one cypher statement until the entire table is traversed.

5.2.3 View

The views in the system are also stored in the neo4j graph database. Therefore, the implementation

of the view function will also call the database API. The di↵erence is that in order to parse the view

expression, the boolean parser in the system is also required.

42 CHAPTER 5. SYSTEM IMPLEMENTATION

Figure 5.6: View Dashboard

The interface of the view part is mainly divided into two parts. The upper part contains two

text input fields for entering the name and expression of the view. There is also an update button

to update the entered information to the database. If the input view name already exists, update

the view information. If the entered view name does not exist, create a new view. If the input is

an expression of a complex view, and the expression contains a variable (simple view) that does not

exist in the database, then a corresponding prompt message will appear in the footer of this part,

and the update fails.

The bottom half of the page shows all views and their expressions in the current database. If

the view’s expression evaluates to False, it will be displayed in red. The lower part of the page also

provides users with filter functions, including two text input fields and two buttons. Allows users to

filter based on the name of the view and the keywords contained in the expression.

The function of filtering by view name and view expression keyword is implemented through the

following steps:

1. Store the keyword to be used for filtering in a variable.

2. Traverse the entire table, if the view name (or expression) contains the keyword we stored,

keep it, otherwise remove it from the table.

The filtering function is implemented on the front end and does not communicate with the software

system.

There is a checkbox at the far right of each view in the table, and a remove button at the bottom

of the table. After pressing the remove button, the view selected by the checkbox will be deleted

from the page and database.

When the view dashbaord is loaded, the software part will run as follows:

1. The user interface makes a request to the backend server

2. The backend server forwards the corresponding request to the database API

5.2. SOFTWARE SYSTEM AND USER INTERFACE 43

3. The neo4j driver creates a session and sends a request to the database to obtain all view

information, including the name and expression of the view

4. Evaluate simple view expressions

5. Call the boolean parser in the API to get the evaluation result of expression for each complex

view

6. Send the information of views and the result of expression evaluate to the user interface

Whenever views in the database are updated, it may cause the evaluate value of expressions in

other views to be changed. Therefore, whenever the view update is successful, the view table will

be reloaded once to get the latest results.

The view is also stored in the neo4j database in the form of nodes in the system. Whether it

is a complex view or a simple view, it will have the same label ”view”. There are two attributes

in the node’s attributes, one is name, which is used to store the name of the view, and the other is

the expression used to store the view by expression. The method of modifying the properties of the

view nodes in the software system is not di↵erent from the method of modifying the properties of

the nodes described above. It is processed by constructing a cypher statement used in conjunction

with MATCH and SET. In this part we mainly introduce how to implement the evaluation of view.

The expression of the view returned from the database is in the form of string. In the previous

section we introduced that the expression of a simple view consists of three parts.

Q(query) + operation symbol + {result set}

The operation symbol includes>,<,=, and �
For the query part of the expression, we directly use the cypher query statement to implement

it. Therefore, when evaluating the expression of a simple view, we first extract the query part of

the expression. To extract the query part, we can use the regular expression (.+?) in python to

extract the expression to match. Combined with python’s findall function, for example expression

= ”Q(query) > {result set}”

Output: string between ”(” and ”)”
1 import re
2 expression = ”Q(query) > {result set}”
3 result = re.findall(r”((.+?))”,expression)

In the same way, we can construct a regular expression to extract the operation symbol and

result set. After extracting the query part, we hand it over to the driver for execution, and store

the returned result set in the set data type of python. Also store the extracted result set in

the set data type. The set data type in python supports direct comparison with operation symbols

(>,<,=, and �) and returns True or False. In this way, our simple view completes the evaluation.

After completing the evaluation of all simple views, we can evaluate complex views. The ex-

pression of the complex view contains the name of the simple view as a parameter, and the entire

expression is a Boolean expression.

The evaluation of complex views can be divided into the following steps

44 CHAPTER 5. SYSTEM IMPLEMENTATION

• Use regular expressions to extract the parameters in the expression (the name of the simple

view)

• According to the evaluated result of the simple view, assign values to these extracted param-

eters.

• Evaluate boolean expressions with the eval() function in python.

Chapter 6

Evaluation of the system

An essential component in assessing a system’s performance is its response time. A system’s response

time is the amount of time it takes to react to a user’s request. It is a crucial element in assessing

a system’s quality and directly a↵ects user satisfaction.We imported the part of the data provided

by the clinicaltrials website into the system as a test.

Our front-end and back-end communicate through javascript post/get. In order to test the

response time, get the current time before sending the request, get the current time in the function

that gets the response after successful sending, and calculate the response time by subtraction. Each

result in the table is the average of ten tests.

1 var sendDate = (new Date()).getTime();
2 $.get({
3 success: function(){
4 var receiveDate = (new Date()).getTime();
5 var responseTimeMs = receiveDate - sendDate;
6 }
7 });

The three functions in the table below are tested based on the secondary outcome schema node.

It has the most instances in the database at 1613

action response time(ms)

query 120

reload node detail page 140

Next, we will explain how each function is tested and how to obtain the results:

• Query: We have performed query tests on all label type nodes in the database, and took the

longest response time as the result. When querying the node whose label is secondary outcome,

the returned node id is the most, and the response time is the longest.

• For the test of reload node detail page, we still choose the schema node of secondary outcome

as the test node. Because this node has the most instances, the amount of data transmission

between the front and back ends is the largest

45

46 CHAPTER 6. EVALUATION OF THE SYSTEM

We tested the three functions of update(and remove) attribute, relationship and superclasses of the

secondary outcome schema node. Since their working mechanism is the same, the response time of

the test is also exactly the same. For columns named 1, 5, 10 means, the response time for processing

update (or delete) 1, 5, and 10 rows of data.

Action 1 5 10

update node detail 32 ms 70 ms 94 ms

remove node detail 32 ms 68 ms 90 ms

The response time of reload view dashboard and remove views depends on the number of views

in the database. The columns named 1 view, 5 views, and 10 views mean the response time when

the database contains 1 view, 5 views, and 10 views. Our test results are as follows:

Action 1 view 5 views 10 views

reload view dashboard 37 ms 90 ms 112 ms

remove views 30 ms 74 ms 96 ms

The test of view update does not depend on the number of view nodes. Each view update action

can only operate on one node. We tested the average response time for 10 times. The average

response time is 32ms.

Users seldom contribute more than 10 pieces of data using the system’s user interface under

normal conditions; the quantity of data typically varies from 1 to 5 to 10, and the system’s reaction

time does not significantly increase. Thus, the system’s functionality meets user demands.

Chapter 7

Application

7.1 System Configuration

The following environment needs to be completed in advance to use the system:

• Install the neo4j graph database, version 4.2.1.

• Install the python operating environment, the python version is 3.9.

• Install the python flask package

The system contains a file named configuration. It includes the following information.

• flask server: http://localhost:2000

• neo4j server: bolt://localhost:7687

• ner4j user name: neo4j

• neo4j password: 123

The above environment configuration is the default configuration of the system. Users can modify

the environment configuration of the system by changing the content of the configuration file. The

user needs to restart the system after modifying the configuration file.

7.2 Instruction of using the system

In this part we will introduce the usage process of each function

47

48 CHAPTER 7. APPLICATION

7.2.1 Query

Figure 7.1: User Interface for Query Function

Using the query function of the system is divided into the following steps:

• Enter the attribute name and value to be queried in the input box on the upper left of the

user interface in the format of attribute:value

• Click append button next to the input box, and add the entered attribute to the table below

• If you want to get the prompt information of the input attribute, you can enter label: la-

bel name in the input box, press the suggestion button next to the input box, and all the

attribute information that can be queried by this type of node will appear in the information

box on the right

• The Condition table contains all the attribute information entered by the user. There is a

checkbox on the right side of each attribute. The user can select the checkbox of the undesired

attribute and press the remove button below to remove it in the table delete

• Press the execute button below the table, all the attributes in the condition table will be sent

to the backend for query

• The queried node information is displayed in the form of node id and node name attributes in

the bottom table. If the queried node has no name, it will be displayed as null. Each node ID

in the table is a link, clicking on the ID will open the information interface of the node

7.2.2 Node and relationship modification

This user interface mainly displays the attribute and relationship information of a node in the

database. It has the following functions:

• Add, modify and delete the properties of node

7.2. INSTRUCTION OF USING THE SYSTEM 49

• Add, modify and delete the outgoing relationships of the node

• Add, modify and delete the superclasses of the node

Figure 7.2: Node detail 1

The top of the page shows the id of the current node, and below the id is the attribute table of the

node. The right side of the attribute table is the superclasses table of the current node. There is a

graph card under the superclasses table. This figure takes the current node as the core, showing the

relationship nodes of the current node, the superclass and subclass of the current node.

• Gray nodes: The node displayed on the current page

• Green node: The superclasses of the current node

• Brown node: The subclasses of the current node

• Blue node: The node whose relationship direction is inward with the current node

• Beige node: The node whose relationship direction is outward with the current node

Each node in the figure is a link. After clicking, the current page will be redirected to the information

page of the clicked node.

50 CHAPTER 7. APPLICATION

Figure 7.3: Node detail 2

The lower part of the page contains a table of node relationship information, a table of node

subclasses information and node Instances table.

Node properties, superclasses and relationship information have the same function button design.

The steps to delete the attributes of nodes, superclasses and relationship information are the same:

There is a checkbox on the left side of each row in the table. After selecting the checkbox of the

row you want to delete, press the remove button below to delete the attributes (or relationships,

superclasses) of the selected node in the database.

The steps to modify and add node attributes, relationships and superclasses are roughly the

same, but the details are di↵erent. To add a new attribute(relationship or superclasses), the user

need to press the Add button on the upper right of the table. After pressing, a blank row will be

added to the list, and the user can enter the information to be added. To modify the information

displayed in the table, the user can directly click on the part to be modified in the table to modify.

After modifying or adding information, the user needs to press the update button below to pass the

updated information to the backend.

Some of the di↵erent details are:

• The attribute names already displayed in the table cannot be modified, only the value of the

attribute can be modified

• The superclasses table can only be operated on when the current node is a schema node.

Instances node cannot operate on superclass

• If the id entered in the relationships table and superclass table does not exist in the database,

the update failure will be displayed after the user presses the update button

7.2. INSTRUCTION OF USING THE SYSTEM 51

7.2.3 View

Figure 7.4: View Dashboard Interface

The user interface of view can provide users with the functions of adding, modifying and deleting

views.

The view part’s interface can be split into two sections. Two text input areas for the view’s name

and expression may be seen in the upper section. The user can enter the view name and expression

and press the update button to update the view information. Update the view data if the input

view name already exists. Create a new view if the view name you specified does not already exist.

A matching prompt message will show in the footer of this section and the update will fail if the

input is an expression of a complex view that contains a variable (simple view) that is not present

in the database.

All views and their expressions in the current database are displayed in the page’s bottom half.

The expression of the view will be highlighted in red if it evaluates to False. Users can filter by

view name and view expression. There are two input boxes and two buttons on the top of the view

dashboard table, which are used to filter by view name and view expression respectively. The user

enters the keyword to be filtered and presses the corresponding button. The table will display views

that contain the keyword in the view name (or expression).

Each view in the table has a checkbox located right of it, and there is a delete button at the

bottom. The checkbox-selected view will be erased from the page and database after pressing the

remove button.

52

Chapter 8

Conclusions and Future Work

We provide an evidence base for making decisions assistance in pharmaceutical sciences in this thesis.

Initially, ideas like process models, process inquiries, and decision support systems are investigated.

We then define the data model that our system needs and the functionality that the system must

implement.

We created and implemented the data model in the Neo4j graph database by fusing the idea of

the process model with the data utilized in pharmacological clinical trials. All information stored

in the data model can be used as evidence for decision support for users. The decision support

system we design and implement includes a software system and a user interface in addition to the

data model and database. The system can provide the query function based on node attributes, the

visualization function of node information, and modification of node relationship and attributes. The

system also provides users with a mechanism to use the view of the database as a decision-making

model. At the same time, the decision model composed of this view can be evaluated.

We use response time as an indicator. From the time when the user makes an action on the user

interface, until the entire system completes the action and transmits the data from the back end to

the front end, a simple test is carried out on the various functions of the system. The test results

prove that the system can meet the user’s needs.

8.1 Future Work

This system can continue to be improved in the future. Our data model is only based on clinical

trials of drugs, but making decisions about the drug development process will involve more and more

responsible experimental information. Therefore the data model can be extended in the future.

The current system only supports users to query nodes through the combination of attributes. In

the future, the system can provide the similarity query between the name and value of the attribute

when querying. If the data model is extended, due to many data sources and di↵erent data source

structures, there may be a problem that the attribute names of di↵erent nodes are di↵erent but very

similar, and these attributes describe related information, but they will not be queried. Querying

based on attribute similarity may be a solution

53

54

Bibliography

[1] Wil van der Aalst. “Process Modeling and Analysis”. In: Process Mining: Data Science in

Action. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 55–88. isbn: 978-3-662-49851-

4. doi: 10.1007/978-3-662-49851-4_3. url: https://doi.org/10.1007/978-3-662-

49851-4_3.

[2] Wil M. P. van der Aalst. “Conformance Checking”. In: Process Mining: Discovery, Confor-

mance and Enhancement of Business Processes. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2011, pp. 191–213. isbn: 978-3-642-19345-3. doi: 10.1007/978-3-642-19345-3_7. url:

https://doi.org/10.1007/978-3-642-19345-3_7.

[3] James F Allen. “Maintaining knowledge about temporal intervals”. In: Communications of the

ACM 26.11 (1983), pp. 832–843.

[4] Renzo Angles and Claudio Gutierrez. “Survey of graph database models”. In: ACM Computing

Surveys (CSUR) 40.1 (2008), pp. 1–39.

[5] Ahmed Awad. “BPMN-Q: A language to query business processes”. In: Enterprise modelling

and information systems architectures–concepts and applications (2007).

[6] Ahmed Awad and Sherif Sakr. “Querying graph-based repositories of business process models”.

In: International Conference on Database Systems for Advanced Applications. Springer. 2010,

pp. 33–44.

[7] David W Bates and Atul A Gawande. “Improving safety with information technology”. In:

New England journal of medicine 348.25 (2003), pp. 2526–2534.

[8] Louis Bavoil et al. “Vistrails: Enabling interactive multiple-view visualizations”. In: VIS 05.

IEEE Visualization, 2005. IEEE. 2005, pp. 135–142.

[9] Stacy Calloway, Hameed A Akilo, and Kyle Bierman. “Impact of a clinical decision support

system on pharmacy clinical interventions, documentation e↵orts, and costs”. In: Hospital

pharmacy 48.9 (2013), pp. 744–752.

[10] Josep Carmona, Boudewijn van Dongen, and Matthias Weidlich. “Conformance Checking:

Foundations, Milestones and Challenges”. In: Process Mining Handbook. Ed. by Wil M. P. van

der Aalst and Josep Carmona. Cham: Springer International Publishing, 2022, pp. 155–190.

isbn: 978-3-031-08848-3. doi: 10.1007/978-3-031-08848-3_5. url: https://doi.org/10.

1007/978-3-031-08848-3_5.

[11] Josep Carmona et al. “Conformance checking”. In: Switzerland: Springer.[Google Scholar]

(2018).

55

56 BIBLIOGRAPHY

[12] Enrico Coiera. “Clinical communication: a new informatics paradigm.” In: Proceedings of the

AMIA Annual Fall Symposium. American Medical Informatics Association. 1996, p. 17.

[13] Elizabeth Daniel, Hugh Wilson, and Malcolm McDonald. “Towards a map of marketing infor-

mation systems: an inductive study”. In: European Journal of Marketing (2003).

[14] Sean B Eom et al. “A survey of decision support system applications (1988–1994)”. In: Journal

of the Operational Research Society 49.2 (1998), pp. 109–120.

[15] Nadime Francis et al. “Cypher: An evolving query language for property graphs”. In: Proceed-

ings of the 2018 International Conference on Management of Data. 2018, pp. 1433–1445.

[16] Juliana Freire et al. “Managing rapidly-evolving scientific workflows”. In: International Prove-

nance and Annotation Workshop. Springer. 2006, pp. 10–18.

[17] Eduardo González López de Murillas, Hajo A Reijers, and Wil MP Van Der Aalst. “Connecting

databases with process mining: a meta model and toolset”. In: Software & Systems Modeling

18.2 (2019), pp. 1209–1247.

[18] Mike Hart. “Systems for supporting marketing decisions”. In: Handbook on Decision Support

Systems 2. Springer, 2008, pp. 395–417.

[19] Juris Hartmanis. “Computers and intractability: a guide to the theory of np-completeness

(michael r. garey and david s. johnson)”. In: Siam Review 24.1 (1982), p. 90.

[20] Johan Hastad. “Clique is hard to approximate within n/sup 1-/spl epsiv”. In: Proceedings of

37th Conference on Foundations of Computer Science. IEEE. 1996, pp. 627–636.

[21] Pieter J Helmons et al. “Drug-drug interaction checking assisted by clinical decision support: a

return on investment analysis”. In: Journal of the American Medical Informatics Association

22.4 (2015), pp. 764–772.

[22] Judith Hurwitz et al. Big data for dummies. Vol. 336. John Wiley & Sons Hoboken, NJ, 2013.

[23] Anna A Kalenkova et al. “Process mining using BPMN: relating event logs and process mod-

els”. In: Software & Systems Modeling 16.4 (2017), pp. 1019–1048.

[24] Rajiv Kohli and Frank Piontek. “DSS in healthcare: Advances and opportunities”. In: Hand-

book on Decision Support Systems 2 (2008), pp. 483–497.

[25] Sander JJ Leemans, Dirk Fahland, and Wil MP Van Der Aalst. “Discovering block-structured

process models from event logs-a constructive approach”. In: International conference on ap-

plications and theory of Petri nets and concurrency. Springer. 2013, pp. 311–329.

[26] Massimiliano de Leoni. “Foundations of Process Enhancement”. In: Process Mining Handbook.

Ed. by Wil M. P. van der Aalst and Josep Carmona. Cham: Springer International Publishing,

2022, pp. 243–273. isbn: 978-3-031-08848-3. doi: 10.1007/978-3-031-08848-3_8. url:

https://doi.org/10.1007/978-3-031-08848-3_8.

[27] Charles D Mahoney et al. “E↵ects of an integrated clinical information system on medication

safety in a multi-hospital setting”. In: American Journal of Health-System Pharmacy 64.18

(2007), pp. 1969–1977.

[28] Ana Karla A de Medeiros, Anton JMM Weijters, and Wil MP van der Aalst. “Genetic process

mining: an experimental evaluation”. In: Data mining and knowledge discovery 14.2 (2007),

pp. 245–304.

BIBLIOGRAPHY 57

[29] Business Process Model. “Notation (BPMN) version 2.0”. In: OMG Specification, Object Man-

agement Group (2011), pp. 22–31.

[30] Tadao Murata. “Petri nets: Properties, analysis and applications”. In: Proceedings of the IEEE

77.4 (1989), pp. 541–580.

[31] Eduardo Gonzalez Lopez de Murillas, Hajo A Reijers, and Wil MP van der Aalst. “Data-Aware

Process Oriented Query Language”. In: Process Querying Methods. Springer, 2022, pp. 49–83.

[32] Jaroslav Pokorný. “Graph Databases: Their Power and Limitations”. In: Computer Informa-

tion Systems and Industrial Management. Ed. by Khalid Saeed and Wladyslaw Homenda.

Cham: Springer International Publishing, 2015, pp. 58–69. isbn: 978-3-319-24369-6.

[33] Daniel J. Power. “Decision Support Systems: A Historical Overview”. In: Handbook on Deci-

sion Support Systems 1: Basic Themes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,

pp. 121–140. isbn: 978-3-540-48713-5. doi: 10.1007/978-3-540-48713-5_7. url: https:

//doi.org/10.1007/978-3-540-48713-5_7.

[34] Ian Robinson, JimWebber, and Emil Eifrem. Graph databases: new opportunities for connected

data. ” O’Reilly Media, Inc.”, 2015.

[35] Andrew P Sage. Decision support systems engineering. Wiley-Interscience, 1991.

[36] Sherif Sakr. “Storing and querying graph data using e�cient relational processing techniques”.

In: International United Information Systems Conference. Springer. 2009, pp. 379–392.

[37] Pedro A. C. Sousa, João Paulo Pimentão, and Rita Almeida Ribeiro. “Intelligent decision

support tool for priorotizing equipement repairs in critical/disaster situations”. In: 2006.

[38] Ralph H Sprague Jr. “A framework for the development of decision support systems”. In: MIS

quarterly (1980), pp. 1–26.

[39] Ahmad Tariq and Khan Rafi. “Intelligent decision support systems-A framework”. In: Infor-

mation and Knowledge Management. Vol. 2. 6. Citeseer. 2012, pp. 12–20.

[40] Arthur HM Ter Hofstede et al. “APQL: A process-model query language”. In: Asia-Pacific

Conference on Business Process Management. Springer. 2013, pp. 23–38.

[41] Wil Van Der Aalst. Process mining: data science in action. Vol. 2. Springer, 2016.

[42] Wil Van Der Aalst. “Process mining: Overview and opportunities”. In: ACM Transactions on

Management Information Systems (TMIS) 3.2 (2012), pp. 1–17.

[43] Wil MP Van Der Aalst. A practitioner’s guide to process mining: limitations of the directly-

follows graph. 2019.

[44] Thomas Vogelgesang et al. “Celonis PQL: A query language for process mining”. In: Process

Querying Methods. Springer, 2022, pp. 377–408.

[45] AJMM Weijters, Wil MP van Der Aalst, and AK Alves De Medeiros. “Process mining with the

heuristics miner-algorithm”. In: Technische Universiteit Eindhoven, Tech. Rep. WP 166.July

2017 (2006), pp. 1–34.

[46] Robert S Wigton. “Use of linear models to analyze physicians’ decisions”. In: Medical decision

making 8.4 (1988), pp. 241–252.

