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ABSTRACT 

Background: Radiotherapy (RT) is one of the most 

common therapeutic intervention for cerebral tumor, 

which also promotes changes in healthy brain structures, 

leading to cognitive decline in the majority of the patients. 

In this study, we aim to evaluate the changes in brain 

microstructure as a result of radiation delivery by means 

of diffusion MRI (dMRI).  

 

Methods: We selected 9 metastatic patients from the 

APRICOT trial who underwent both pre-RT and post-RT 

DWI and T1 scans. We estimated the diffusion metrics for 

a total of 31 white matter pathways and then evaluated 
their change as a function of the received dose (%/Gy). 

 

Results: The largest FA and AFD decreases were 
recorded in the Right Inferior Longitudinal Fasciculus, 

7,84 %/Gy and the Left Uncinate Fasciculus, 61,09 %/Gy. 

Regarding the diffusivities, the Right Corticospinal Tract 
increased the most for all three metrics, MD, AD and RD 

4,76 %/Gy, and 5,02 %/Gy and 7,47 %/Gy respectively. 

 

Conclusion: Diffusion metrics are susceptible to 

radiation delivery, AFD presenting the most notable 

changes. These findings imply the use of dMRI  in better 
understanding the mechanisms behind structural changes, 

which may lead to cognitive decline.    

I. INTRODUCTION 

 
Radiotherapy (RT) is one of the primary treatment 

options for brain malignancies based on the delivery of 

radiation to brain areas affected by tumour cells. RT is 

usually combined with surgery, which primary role is the 
reduction of tumour mass. First, if the location allows it, 

the majority of the tumour is removed via surgery. This 

procedure does not ensure that all affected cells have been 

removed. Therefore, in order to treat all remaining tumour 
cells and avoid a relapse on tumour growth, RT is 

employed.  

 
 

RT treatment is preceded by RT planning, a procedure 
where target areas, such as the gross tumour volume 

(GTV), are identified, and the dose delivery settings are 

defined. Furthermore, RT is not a selective treatment, 
meaning it damages both healthy and tumour cells alike, 

highlighting the importance of RT planning when 

defining beam trajectories.  
 

Regardless of radiation delivery precision, healthy 

tissue will always receive some amount of radiation, 

leading to various forms of tissue decay. Examples of 
physical changes include cortical thinning and white 

matter abnormalities, such as necrosis and demyelination 

[1]. Consequently, these effects on brain structure can 
result in cognitive decline, a radiotherapy side effect 

manifested in almost the entirety of patients that have 

undergone said procedure.  

 
The generalized cognitive decline, and consequent 

quality of life impairment, of RT patients emphasises the 

need for a better understanding of the effects of after 
radiation delivery to the brain. Previous research on the 

field of radiation-related cognitive decline has been 

mainly focused on measuring volumetric variations on 
grey matter (GM) by means of T1 MR image analysis. As 

a result, these studies are purely location-based, meaning 

that cognitive decline will be concluded if and only when 

a specific cortical area related to a task showcases a 
reduction in geometric measures, such as volume.  

 

Although these studies have gathered promising results 
[2], they are all failing to consider a key parameter, brain 

connectivity through white matter (WM). WM is 

responsible for connecting different GM areas and 
transmitting information from the cortex to other parts of 

the body. Therefore, solely focusing on a GM location-

based approach does not account for the changes in 

microstructure that might trigger further cognitive decline 
as a result of WM pathway decay. 

 

In this work, we evaluate the effect of RT on brain 
microstructure using diffusion magnetic resonance 

imaging (dMRI). We examine tissue changes per white 

matter pathways, which will shed some light on the 

previously unconsidered RT effects. 
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II. METHODS 

A. Patient Selection 

 
All patient data used in our study was provided by the 

APRICOT trial and acquired between October and 

December of 2021. Subjects underwent pre-surgery T1 
and DWI, treatment planning CT, and follow-up T1 and 

DWI scans three months after RT. A total of 16 eligible 

patients were identified. Furthermore, we selected 
subjects who had undergone a single RT session, resulting 

in 9 patients. All selected final subjects received very 

similar RT treatments: five of them 1x24 Gy, two 1x21 
Gy and one 1x18 Gy.  

 

B. Image Acquisition 

 
All MRI scans, T1 and DWI, were acquired on a 3T 

Philips Ingenia scanner (Philips Medical Systems). More 

specifically, the T1 scans were captured via non-enhanced 
3D turbo-spin echo (TSE) sequence (TR = 8.1 ms, TE = 

3.7 ms) with a voxel resolution of 1x1x1 mm.  

 
The DWI scans were acquired with spin-echo echo 

planar imaging (SE-EPI) (TR = 4.55 s, TE = 86 ms) and 

voxel resolution of 2x2x2 mm with 40 directions of 
b=1000 s/mm2 and 6 b=0 s/mm2 scans. 

  

 The planning CTs were acquired via the Brilliance Big 

bore scanner (Philips Medical Systems) using a matrix 
size of 512 × 512 and 0.65x0.65x1 mm voxel size. 

 

C. Image Pre-processing 

 
All images were pre-processed with FMRIB Software 

Library (FSL) [3], Computational Anatomy Toolbox 

(CAT12) [4], Statistical Parametric Mapping (SPM) [5], 
ExploreDTI [6] and MRIToolkit [7].  

 

First, the field of view (FOV) of the T1 images were 
reduced to contain only the head using FSL's “robustfov”. 

Next, we ran the “affine pre-processing pipeline” of 

CAT12 on the FOV-reduced T1 images with the default 

settings, which include bias-field, noise and global 
intensity corrections. Last, baseline and follow-up 

anatomical T1 scans were rigidly coregistered with 6 

degrees-of-freedom, defining a common space for the 
analysis to take place. 

 

Next, the pre-processing of the diffusion scans was 
conducted, which consisted on performing MP-PCA 

denoising [8] followed by Subject Motion, Eddy Current 

and Susceptibility-Distortion correction [9]. 
Susceptibility-distortion correction was conducted based 

on the coregistered T1 images, consequently transforming 

the processed DWI scan into the coregistered T1 space. 

Any rotation of the DW images were subsequently 
followed by realigning the B-matrices as well [10]. 

 

Furthermore, the CT images were cropped as well to 
improve the registration outcome and reduce 

computational time. As a result, the neck, shoulders, and 

any other treatment equipment (e.g.: head position 
fixture) was excluded from the FOV. This exact 

procedure was repeated and applied for the dose and 

tumour volume (TV) maps for each patient. Finally, we 

rigidly registered the CT, GTV and dose information to 
the already pre-processed T1 space to ensure spatial 

coherence throughout all the data. Moreover, based on the 

RT planning data, we calculated the equivalent dose in 2 
Gy per fraction (EQD2), which will later be used to 

calculate the mean dose received by each tract.  

 

D. Modelling and Tractography 

 
First, we performed the DTI fit based on the Ordinary 

Least Squares method. Next, in order to compute the 
tractography, we modelled the diffusion signal using the 

Generalised Richardson Lucy (GRL) algorithm [11] to 

estimate the fibre orientation distribution (FOD) in each 
voxel. GRL has shown improved performance compared 

to other models such as Diffusion Tensor Imaging (DTI), 

providing superior detection capability for crossing fibres 

and computing automatic tissue segmentation as 
showcased in Figure 1.  

 

Moreover, GRL is proficient in accounting for free 
water components, succeeding to model the diffusion 

signal even in the presence of edema. Figure 2 further 

depicts this property. 

Figure 1:Tissue segmentation based on diffusion data 
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Figure 2: DTI and GRL comparison for fibre crossing detection 

 

After the calculation of the FODs, the tractography was 

computed. By anatomical definition, white matter 
pathways connect grey matter regions through white 

matter, meaning there should not be any tracts outside of 

those bounds. Based on this principle, GRL can terminate 
the tracts on the GM-CSF interface to ensure anatomical 

accuracy as seen on Figure 3. As a result, we obtained a 

GRL-based and anatomically constrained whole brain 
tractography (WBT). 

 

 

 
 

 

 
 

E. Brain Parcellation 

 
Brain parcellation is a key step that will enable the 

detection of 181 different GM/WM via Freesurfer (FS) 

[12] brain regions which will be used as input for the 

eventual automatic region-based tract segmentation.  
 

 However, when dealing with not-healthy participants 

like the current patient population, the data presents 
multiple lesions corresponding to tumour and edema, 

hindering the proper parcellation of the brain. The 

presence of lesions lead to abnormal brain structures or a 
change in local T1 contrast, either darkening or lightening 

the intensities of otherwise healthy tissue. As a result, the 

default parcellation algorithm is not able of recognizing 

these lesion-affected areas as brain tissue and the 
parcellation cannot be fully completed. 

 

In order to solve this problem, Virtual Brain Grafting 
(VBG) [13] is used, which replaces the lesion-affected 

areas with synthetic healthy brain tissue from a template 

brain, consequently aiding the FS algorithm to perform a 
successful parcellation. By the end of the FS based 

parcellation, the artificially inserted areas are replaced 

with the original (‘lesion’) label. 

 
 As shown in the parcellation pipeline on Figure 4, the 

VBG algorithm together with FS succeeded on 

performing a satisfactory parcellation of GM and WM 
regions of the brain. The resulting map contains 181 

labels based on the Destrieux atlas [14] corresponding to 

different brain regions and a specific label representing 

the abnormalities.  
 

 

Figure 3: Tract clean-up based on GM/CSF border 
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Figure 4: A) Incorrect parcellation due to tissue abnormalities.       

B) Correct parcellation due to tissue replacement 

F. Automatic Region-Based Tract Segmentation 

 
The whole brain tractography and parcellation were 

combined in a MATLAB algorithm that enables the 
extraction of 50 white matter tracts based on anatomical 

connectivity. We designed the algorithm based on a set of 

inclusion/exclusion criteria [15] that defined the 

connectivity between brain regions through white matter 
pathways.  

 

This principle of tract segmentation ensures all 
resulting tracts are anatomically accurate and connect 

functionally related brain regions.  

 

Figure 5 showcases the example of the Premotor 
Corpus Callosum (CC), which segmented tracts define the 

right-left hemispherical connectivity between regions 

such as the Caudal Middle Frontal and Superior Frontal 
Gyrus, displayed in green. Moreover, exclusion regions, 

coloured red, include the Brainstem and CC subsections 

of the Splenium, Isthmus and Genu to ensure the 
elimination of stray tracts. 

 

G. Statistical Analysis 

 
Out of the segmented 50 white matter tracts, 19 were 

rejected due to reconstruction inaccuracies as a result of 

poor data quality and overall detection difficulty of the 

tracts. Thus, the statistical analysis has been conducted on 
31 tracts per patient and timepoint.  

 

Aiming to analyse the unique effect of dose on brain 
microstructure, we eliminated those instances of tracts 

that might have been directly affected by the tumour, 

edema, or surgery from the analysis. This step ensured 

that all measured changes would be a consequence of 
solely the radiation delivery.  

 

By means of the automatic tract segmentation 
algorithm, we computed the diffusion metrics for each 

individual tract, mean FA, MD, AD, RD and AFD for 

instance.  

 
 

 

 

Figure 5: Example of NOT and YES region usage for automatic tract segmentation of the Premotor CC 
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Next, we defined the exact radiation received by each 

tract. We achieve this by mapping the dose information 

into the segmented tracts, as shown in Figure 6.  

 

 
Figure 6: Dose mapping along segmented Occipital CC 

 
As displayed in the previous figure, a single tract can 

have various hotspots of dose delivery while other areas 
barely receive any radiation. Taking this into account, 

instead of evaluating dose effect on diffusion metrics for 

the entirety of the pathway, we opted to perform an along-
the-tract statistical analysis [16] to make sure focal effects 

were not averaged out. 

 
This approach is based on collapsing the entire tract 

into a single mean fibre and then resampling that into 

many discrete sections. In our case, we decided to 

resample all tracts into 86 points, which corresponds to 
the average path length of all our subjects. Figure 7 further 

depicts this method. 

 
 

 

 

 

 

 

 
Figure 7: Mean fibre and sampling of the CST 

 

Next, we performed a regression analysis to estimate 
the diffusion parameter change before and after RT as a 

function of received dose per Gy in each of the sampled 

86 points for all tracts and subjects. 
 

 

 
Figure 8: Regression of 1 of 86 segments on the R-ILF 

 

 In conclusion, Figure 9 summarizes the entire 

pipeline described in this section. 
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Figure 9: Methods pipeline 

III. RESULTS 

 
Using a p-value of 0.05 as the threshold for statistical 

significance, relevant segments of each tract were 

identified to interpret the results from. As a result, we 

show that FA and AFD decreased in 56% and 75% of the 
tracts, while MD, AD and RD increased in 52%, 56% and 

56% instances respectively. Table 1 displays the 

percentages of the tracts that showed significant change. 

For instance, the PMCC showed a decrease in FA in 12,79 
% of the tract, while no increasing regions were recorded.  

 

 

 

Moreover, the following Table 2 presents the mean 

changes recorded in the statistically significant regions of 
the tracts.  

Table 2: Percentage of significant change along tracts. Blue: 
largest increase. Red: Largest decrease 

Table 1: Mean change along tracts as a funciton of dose. 
Blue: Largest increase. Red: largest decrease. 
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As portrayed in the tables above, the majority of the 

tracts presented both an increase and decrease in 

parameters along their trajectory. The following Figure 10 

displays some examples of tracts that changed both ways, 
such as, FA in the Right Corticospinal Tract (4) and MD 

in the Left Arcuate Fasciculus (1) and others that only 

presented a single direction of change like AD in the 
Premotor and supplementary motor CC (2) and RD in the 

Left Cingulate Cingulum (3).  
 

 
Figure 10: Mean tracts mapped with respective FA, MD, AD and RD 

changes 

 
Focusing on the most notable absolute changes on 

parameters, we discovered the Left Arcuate Fasciculus 

presented the biggest increase in FA, with 6,84 %/Gy 

while the Right Inferior Longitudinal Fasciculus suffered 
the largest decrease, 7,84 %/Gy. Moreover, regarding the 

diffusivities, MD increased the most in the Right 

Corticospinal Tract by 4,76 %/Gy while the biggest 

decline was registered in the Left Uncinate Fasciculus 
with 8,08 %/Gy. AD displayed the most prominent 

increase in the Right Corticospinal Tract, 5,02 %/Gy 

whereas the Left Whole Pyramidal Tract decreased by 
11,98 %/Gy. Moreover, the RD registered the biggest 

increase in the Right Corticospinal Tract with 7,47 %/Gy 

and the most notable decrease in the Left Uncinate 
Fasciculus with 8,51 %/Gy. At last, AFD increased the 

most in the Left Superior Thalamic Radiation by 241,33 

%/Gy, while decreasing by 61,09 %/Gy in the Left 

Uncinate Fasciculus.  
 

 

 
 

 

 

IV. DISCUSSION 

 
In this study, we analyzed the effect of RT dose 

delivery on brain microestructure. Current research on 

dose-tissue interaction has related RT with cognitive 

decline as a result of GM volume loss [17], demyelination 
[18] and axonal decay [19]. However, the exact 

mechanisms that lead to cognitive decline remain unclear. 

Further information on WM susceptibility to dose is 

paramount towards developing new dose delivery 
techniques that reduce cognitive side effects.  

 

We evaluated the change in FA, MD, AD, RD and AFD 
as a function of the received dose on 31 WM tracts. The 

results revealed AFD is the most affected parameter by 

radiation. This metric consistently recorded both the 
biggest percentage of tract effect and the most notable 

mean change.  

 

Previous studies regarding WM variation in the 
presence of dose report a decrease in FA [20] and AFD 

[21] contrasted by increasing MD, AD and RD [22]. 

These reports are consistent with our results regarding the 
general direction of change on these five parameters as a 

result of dose delivery and is best represented in tracts 

such as the Left MLF of the PMCC. 
 

However, regional differences have also been recorded. 

These discrepancies might be related to modelling and the 

sample size of the study. Although statistical significance 
has been found and the confidence intervals proved to be 

narrow, 9 subjects might just not be enough to definitively 

showcase the effect of radiation on diffusion parameters. 
The limited number of subjects also implies the imbalance 

on dose distribution, effect that could be counteracted 

with more patient inclusions.   

 
We considered a linear model to perform the regression 

analysis, which might not reflect the real relationship 

between these parameters. Further development of the 
model would be beneficial to achieve a more accurate 

representation. 

 
Moreover, this study was conducted on “low-grade” 

diffusion data with a basic acquisition of b=1000. New 

methods, such as multi-shell acquisition [23] allow for a 

more specific characterization of the brain microestruture, 
which may improve the modelling of the diffusion signal. 
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V. CONCLUSION 

 
In this thesis, we evaluated the radiation-induced 

changes in the brain microstructure by means of dMRI 

along 31 WM tracts in a metastatic patient population. 

The results indicate radiation effects can be traced on 
diffusion metrics and affect each WM tract in a unique 

manner. We cannot determine whether these changes 

lead to cognitive decline, but further neurological 

exams may reveal the relationship between the changes 
recorded in this study and cognitive impairment.  

VI. ABBREVIATIONS 

 

AF L Arcuate Fasciculus L 

AF R Arcuate Fasciculus R 

CC L Cingulate Cingulum L 

CC R Cingulate Cingulum R 

CST L CorticoSpinal tract L 

CST R CorticoSpinal tract R 

FA L Frontal Aslant L 

FA R Frontal Aslant R 

IFOF L Inferior fronto-occipital fasciculus L 

IFOF R Inferior fronto-occipital fasciculus R 

ILF L Inferior longitudinal fasciculus L 

ILF R Inferior longitudinal fasciculus R 

MLF L Middle longitudinal fasciculus L 

MLF R Middle longitudinal fasciculus R 

OCC Occipital CC 

PCC Parietal CC 

PTR L Parietal thalamic radiation L 

PMCC Prefrontal CC 

PSMCC Premotor and supplementary motor CC 

STR L Superior thalamic radiation L 

STR R Superior thalamic radiation R 

SMPT L Supplementaty motor pyramidal tract L 

SMPT R Supplementaty motor pyramidal tract R 

TPCB L 
TemporalParahippocampal cingulum 

Bundle L 

TPCB R 
TemporalParahippocampal cingulum 

Bundle R 

UF L Unciate fasciculus L 

UF R Unciate fasciculus R 

WPT L Whole Pyramidal tract L 

WPT R Whole Pyramidal tract R 

WSLF L Whole superior longitudinal fasciculus L 

WSLF R Whole superior longitudinal fasciculus R 

 
 

 
 

 

VII. LAY’S SUMMARY 

 

Radiotherapy (RT) is a cancer treatment therapy based 
on delivering high levels of radiation to areas affected by 

tumour cells. However, RT also affects healthy tissue, 

which leads to cognitive decline in the majority of the 

patients that undergo the treatment. Current research on 
the topic of radiation-induced cognitive decline is mostly 

focused on the volumetric changes that occur within grey 

matter. However, these studies often overlook the effect 
that RT has on white matter, which, if measured, could be 

the key to better understand the mechanisms that lead to 

cognitive decline after RT. In conclusión, in this study we 

evaluated the effect of radiation delivery in white matter 
microestructure. 
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