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Abstract
We begin by investigating the physics one-dimensional interacting fermions.
We lay the foundation of previous methods which were used in understand-
ing these types of one-dimensional interacting systems as well as give a qual-
itative analysis of the system itself. We then proceed to use the Hubbard-
Stratonovich transformation in order to study the same system of interacting
fermions in one-dimension with the hopes of getting similar results to previ-
ous methods. After which, we then tried to generalize our approach to higher
dimensions where we realized that using the Hubbard Stratonovich transfor-
mation had proven useful in studying one-dimensional fermionic systems, as
well as, two-dimensional, anisotropic, interacting fermionic systems.
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Chapter 1

Introduction

Ever since 1986, one of the most exciting experimental discovery in con-
densed matter physics, was the first ever observation of superconductivity at
high-temperatures. Which occurred in a layered copper-oxide as mentioned
the paper by Bednorz et al.[2]. Since then, other copper-oxide compounds
which are identified by a layered structure of CuO2 planes, have been seen to
exhibit increasingly higher critical temperatures. This in fact, is well above
the expected temperature for materials to exhibit superconductivity as per
the Bardeen–Cooper–Schrieffer[BCS] theory which uses phonon-exchange as
the pairing mechanism[1], which is considered to be the mainstream physics
that describes the basic properties of superconductors. A huge amount of
effort has been put by both the experimental and theoretical community of
physicists in order to better understand the mystery behind the weird behav-
ior of copper-oxides-cuprates [8], which has currently no explanation within
the Fermi-liquid model. It is an ongoing endeavour and it encompasses the
challenges that physics of strongly interacting materials pose. We can see
that the peculiarities do not only lie within the superconducting phase of the
material. They lie in a phase which is known as the strange metal regime.
As we ought to guess, the said phase is characterized by a non-Fermi liquid
behavior which is shown from an anomalous temperature behavior of the
Hall angle [4] and by an anomalous T proportional resistivity of the material
[5, 3], even if super-conductivity is suppressed via a magnetic field[11].
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8 CHAPTER 1. INTRODUCTION

Figure 1.1: Strange metal phase diagram, Temperature versus Doping

We can see that there have been multiple attempts to model such high
critical-temperature cuprates, these are, for instance, the t−J models which
base themselves on the physics of the Mott insulator in the underdoped region
of the cuperate diagram[16, 20], the marginal Fermi liquid for describing the
optimally doped strange metal [15, 13] and stripe phases within high temper-
ature superconductors[26]. One technique that stands out is gauge/gravity
duality [6] which, is also called, AdS/CFT. This approach relates the re-
sponse of a strongly interacting system to a higher-dimensional gravitational
theory. Although this method originates in high-energy physics and cosmol-
ogy [18], it has proven itself to be a powerful tool in describing strongly corre-
lated condensed-matter systems, as well as being able to describe properties
which have been observed within copper-oxides, via angle resolve photo-
emission spectroscopy(ARPES) measurements [21]. In addition we can see
that, angle-resolved photo-emission spectroscopy measurements point to pos-
sible explanation of the phenomenology of the strange metal phase of the
cuprates, specifically in the presence of quantum critical phase which is to
be treated as local in space. This notion is well captured by the holographic
approach of a strongly interacting fermionic system [6] which itself repro-
duces the marginal Fermi-liquid results near the Fermi surface. As we move
away from the Fermi surface, these results retrieved from holography stop
giving completely featureless momentum scaling of said Fermi system and
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optimal doping, in fact they begin to predict momentum-dependent scaling
exponents [6].

These results represent a deviation from the current accepted power-law-
liquid (PLL) model as described in [21] of a momentum-independent self
energy, with an imaginary part that obeys ΣPL(ω) ∝ (ω2)α. Where in this
case α is to be considered as a scaling exponent which is increased with
doping, from an initial point α = 1

2 at optimal doping towards the Fermi-
liquid value, but evidently never reaching it[23]. The analysis of ARPES data
was done on each momentum distribution curve, that measures the spectral
function as a function of momentum with a fixed energy ℏω. It is known
that the PLL close to the Fermi surface predicts a Lorentzian lineshape for
the distribution peaks as

A(k;ω) = W (ω)
π

Γ(ω)/2
(k − k∗(ω))2 + (Γ(ω)/2)2 , (1.1)

where W (ω) is the intensity and Γ(ω) = 2ΣPLL(ω)/vF + G0(ω) is the full-
width at half maximum with G0(ω) describing contributions other than the
contributions to the electron self energy to the width in the data, e.g., due to
phonons, impurities and instrument sensitivity. In this case we see vF is the
renormalized Fermi velocity and k∗(ω) = kF +ω/vF where kF is to be consid-
ered as the Fermi wave number. A frequency dependent electronic self energy
is common for a large class of models which are proposed by gauge/gravity
duality. It is important to mention that the momentum dependence is in fact
located in the scaling exponent of the self energy. As mentioned by S. Smit
et al.[22] we can say that

Σ(k, ω) ∝ ω(−ω2)νk−1/2. (1.2)

It is worthwhile to also mention that ω = ω + i0. In their paper, S. Smit et
al.[23], they explicitly show that the self-energy, has a branch cut everywhere
on the real axis.

Σ(k, ω) ∝ ω(−ω2)α(1−(k−kF )/kF ). (1.3)

They also explain how this momentum dependence is peculiar, and reduces to
the PLL for that sharp distribution of peaks near the Fermi surface. But our
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goal is to stay away from AdS/CFT, such that we develop a more “condensed-
matter” approach to study these types of complicated systems, the cuperates.
In order to do so we begin by studying systems of one dimension, then
generalize our approach to higher dimensions.

1.1 One-Dimension
Problems of strongly correlated fermions in one-dimensional systems has at-
tracted the attention of many condensed-matter physicists. After Tomonaga
[25] who was the first to come up with the soluble model in 1950, more people
such as Luttinger [17] made great advancements in the field. Even though
the behavior of one-dimensional, highly correlated electrons were more or less
understood near the end of the 1970’s, Haldane’s famous paper[10] where
he developed the essentials of the bosonization technique, was a remark-
able breakthrough. Because this technique involved the one-to-one corre-
spondence of the fermionic annihilation and creation operators with bosonic
ones. We investigate the results of another method which “bosonizes” the
problem. This method is called the Hubbard-Stratonovich transformation,
which can be used to derive the Hartree-Fock theory by using a diagramtic
and perturbative approach, or even a zero-temperature variational method.
Our main goal is to show how we can use the Hubbard-Stratonovich method
to derive results which should be in accordance to results derived via stan-
dard bosonization techniques, like the ones of M. Khodas et al.[14], where
they evaluate the Green’s function of interacting electrons in one dimension.
Where the spectral function, which corresponds to the interacting Green’s
function of their system, displays a power-law singularity on the hole mass-
shell, the same way as a Luttinger liquid would.

Luttinger liquids, or non-Fermi liquid theory has been a really useful model
in describing one-dimensional quantum fluids in the limit of low energies.
This model bases itself on the linearization of the dispersion relation of the
particles near the Fermi points of the material. It is an interesting fact that
we are referring to points! This is true because we are working with a one
dimensional system. It is evident that these methods could and are applied
to spectrum of 1D fluid systems, such as 1D spin liquids as well as electrons
that exist within quantum wires and ultracold atoms which are confined in
one-dimensional traps. In this thesis our aim is to show that another way to
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achieve existing results in one dimension there exists a method which is also
a great candidate in predicting these results in higher dimensions as well.

1.2 Two-Dimensions
Since our ultimate goal is to have a method that would be able to describe
cuprates, in Chapter 3, we would like to jump to two dimension and try to ap-
ply our results to anisotropic 2-D systems. In this part of the thesis we will be
applying the Hubbard-Stratonovich method to study a 2-D square lattice sys-
tem with nearest-neighbor hopping. Experimental results show that in hole
and electron doped cuprates the polarization operator which is represented
via a Lindhard function, which gives rise to plasmonic modes. Plasmons
are considered to be found everywhere in condensed matter, which is mostly
due to the electric charge of the electron. Although these types of plasmon
modes are found using holography [7] which begin to provide a simplified ap-
proach to test experimental data, our aim in the third chapter of our thesis
is clear, to try and “find” these plasmons using the Hubbard-Stratonovich
transformation technique which we will use for the one-dimensional systems
in Chapter 2.
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Chapter 2

Theoretical Framework Of
One-Dimensional Systems

The problem of strongly correlated electrons in one-dimensional systems has
attracted the attention of theoretical physicists for some time now. After
Tomonaga’s [25] seminal paper where he suggested the first soluble model for
such systems another paper, by Luttinger, Mattis and Lieb,[17] followed on
the proposed model of Tomonaga with considerable contributions. The most
famous example of a paper trying to develop a comprehensive model was writ-
ten by Haldane in 1981 where the author developed the fundamentals of what
we have now come to call, bosonisation. Known as the operator approach,
the author rigorously showed how to get fermionic, anti-commuting operator
out of commuting, bosonic ones. In this chapter I will briefly give an example
of bosonisation, then I will talk about treating a Luttinger-Tomonaga liquid
using the operator formalism which will be mostly based on the approach
done by M. Khodas et al. [14]
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2.1 Luttinger-Liquid Theory: Green’s Func-
tion of Interacting One-Dimensional Fermionic
Systems

In order to study fermions in condensed matter, the notion of quasiparticles is
used, which are elementary excitations which in turn behave as free quantum
particles with a given energy spectrum. This spectrum in turn depends on
microscopic interactions. Low-energy aspects of the electronic structure of
metals in turn, are accurately described by the theory of the Fermi liquids
[19], since its elementary excitations are similar to free fermions. A nice way
to view quasiparticles and their interactions is to assume that they are states
that are evolving from free fermions when their interactions are turned on
adiabatically. It is important to note that quasiparticles are defined by their
momenta, specifically speaking their dispersion relation ξ(k) is momentum
dependent and differs from the free fermion case. An electron, for example,
can easily tunnel into a metal by disguising itself as a quasiparticle. In
the process of doing so, an electron entering a Fermi-liquid, creates a single
quasiparticle state with momentum k and its corresponding single particle
energy ξ(k). In the case of an electron tunneling out of the one dimensional
Fermi system it creates a hole which also bears a well defined corresponding
energy. In both cases the tunneling probability of an electron entering or
exiting a low dimensional Fermi system is directly given by the imaginary part
of its two point function ⟨T{ψ̂†(x, τ), ψ̂(x′, τ ′)}⟩, where ⟨ψ̂(x′, τ ′)ψ̂†(x, τ)⟩
accounts for the probability of finding a particle at x′ and τ ′ that was initially
added to the system at position and time x and τ and ⟨ψ̂†(x, τ)ψ̂(x′, τ ′)⟩
accounts for a hole in the opposite direction. The imaginary part of the
two-point function is the spectral function, A(k, ϵ) ∝ δ(ϵ − ξ(k)). In order
to account for residual interactions between quasiparticles a perturbative
expansion is necessary which in turn results in the broadening of its width,
to a Lorentzian, with a width proportional to its relaxation rate. In the
case where there is no momentum conservation the electron tunneling out of
the Fermi system leaves behind a superposition of states where these states
have the same energy ϵ. In momentum space, the points where the constant-
energy is defined is, ξ(k) = ϵ. This relation determines the density of states
our system[19],

ν(ϵ) ∝
∫
dkA(k, ϵ). (2.1)
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Similarly to free fermions, the tunneling density of states at the Fermi-level
in the Fermi liquid is finite. We can see that the both the free fermion and
an elementary excitation in a many-body system is marked by the narrow
width of A(k, ϵ) where the spectral weight is mainly concentrated around the
quasiparticle energy. This treatment sometimes works for higher dimensions
but it fails in the case of weakly interacting one-dimensional fermions. The
lowest order correction for the fermionic spectral function pushes the spec-
tral weight away from the mass shell, |ϵ − ξ(k)| ≪ |ξ(k)|. A magic bullet
in attempting to resolve the many difficulties of one-dimensional quantum
systems was proposed by Tomonaga [25]. It is assumed that replacing the
standard parabolic dispersion to a linear one,

ξ(k) = ±vF (k ∓ kF ), (2.2)

would simplify the many-particle system dynamics. It is also important to
note that the upper signs corresponds to right moving particles and the lower
signs for left moving ones and kF is the Fermi momentum. For free fermions
the corresponding single particle energy with a linear spectrum is E = vFk,
where k itself is the total momentum of the excitation. Tomonaga encoded
these excitations into non-interacting bosons[25]. The dispersion of these
bosonic fields are nothing more than acoustic phonons. In Chapter 3 we will
be attempting to retrieve theses phonon dispersions for one dimension! Our
method, in turn, is the Hubbard-Stratonivich transformation and Hartree
approximation of the quartic weak interactions between the fermions.

The evaluation of the propagator of a fermion along with its spectral function
A(k, ϵ) is rather complicated. At low energies and long-wavelengths the exci-
tations of non-interacting fermions are described by holes and particles with
respective momenta k in the region of the Fermi points, ±kF . Let’s study
the single-particle energy of right-moving particle near the Fermi point. We
have

ξ(k) = vF (k − kF ) + (k − kF )2

2m∗ , (2.3)

it is also the lowest-order expansion of the non-linear dispersion relation.
For the case of free fermions where we have Galilean symmetry, m∗ is to
be considered as the bare mass of the fermion. So the quadratic term in
this case could be scaled as ξ2/(m∗vF )2 . It was pointed out by Haldane[10]
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that the non-linear spectrum does not affect the long-range behavior of the
fermionic two-point function. This tranlates to the fact that we can map
gapless excitation spectra of one-dimensional systems at low energies to the
Luttinger-liquid theory. The Luttinger-liquid theory is the phenomenologi-
cal description of excitations at the long wavelength limit in one dimensional
systems[10]. After using this model on a real one-dimensional system the cor-
responding linear spectrum is of the form, ω(k) = v|k|, this linear spectrum
is associated to low-energy excitations of density waves[12], these excitations,
which propagate all along the axis, have fixed velocities ±v. Meaning a den-
sity perturbation which begins at some point x propagates without changing
its shape to x± vt.

2.1.1 Qualitative Analysis
Before moving on to analyse the perturbative aspect of our one-dimensional
system, I would like to take the time to give a qualitative analysis of the
system we are trying to study. Primarily, I would like to discuss the kinematic
edges of the single-particle energy in phase-space which is a two-dimensional
plane (p, ϵ). Most importantly give a qualitative framework in understanding
the spectral function. We proceed to define the spectral function using its
Lehmann representation,

A(k, ϵ) ∝
∑
|f⟩

| ⟨f |ψ†
R(k) |0⟩ |2δ(k − k|f⟩ + k|0⟩)δ(ϵ− E|f⟩ + E|0⟩). (2.4)

Another way of trying to understand equation 2.4, is by viewing it as the
probability of tunneling of a particle which, with respect to the origin, has
momentum pF + k and a corresponding energy eingenvalue which is ϵF + ϵ,
where ϵ and k are arbitrary values. An important note is that we only
consider right moving particles (their momenta are defined as pF + k > 0).
We would also like mention that |f⟩ and |0⟩ represent respectively, a final
state with corresponding energy E|f⟩ momentum k|f⟩ and an initial ground
state of the system with corresponding energy E|0⟩ and momentum k|0⟩. Due
to conservation of momentum the particle that is to be added must have
k as momentum, such that we can write, |f⟩ = ψ†

R(k) |0⟩. We can still
find regions where the spectral function has trivial values, these regions are
due to kinematic constraints. In order to have a straightforward and less
complicated analysis we focus on the low energy domain where |ϵ| ≪ ϵF and
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consequently momenta which range between −kF < k < kF . We can define
some of these final states via the following equations

|ψf⟩ = ψ†
R(k1)ψ†

R(k2)ψR(k3) |0⟩ , such that: k1 > 0, k2 > 0, k3 < 0, (2.5)

|ψf⟩ = ψ†
R(k1)ψ†

L(k2)ψL(k3) |0⟩ , such that: k1 > 0, k2 < 0, k3 > 0. (2.6)

We see that equation 2.5 gives us the following energy difference with respect
to the ground state energy,

E|f⟩ − E|0⟩ = v(k1 + k2 − k3) + 1
2m(k2

1 + k2
2 − k2

3). (2.7)

If we also take into account the conservation of momentum at k1+k2−k3 = k,
we get,

E|f⟩ − E|0⟩ = vk + 1
2m

[
k2

1 + k2
2 − (k1 + k2 − k)2

]
. (2.8)

These constraints on momenta, k1, k2 and k3 guarantee that we always have
k > 0. So the smallest possible value of the energy need to jump from
the ground state to an excited eigenstate for any given k should be when
k1 = k2 = 0 and k3 = −k. We proceed to get a better understanding of
equation 2.6, making similar considerations for it we get,

E|f⟩ − E|0⟩ = −vk + vk1 − k2

2m + k

m
(k1 + k2) − k1k2

m
. (2.9)

In this case, we see that for k < 0 we get the lowest energy when k1 = k2 = 0
and k3 = −k. We make a remarkable observation from the analysis we just
made that all the lowest energy configurations happen when all the particles
are at the Fermi level along with a single hole which is contributing the most
to the momentum. So we can see that the states 2.5 and 2.6 correspond to a
kinematic boundary ξ̃R(k) of the spectral function of a (ϵ > 0). We proceed
to combine equations 2.8 and 2.9 which, at k1 = k2 = 0 yields us

ξ̃R(k) = v|k| − k2

2m. (2.10)
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We would like to focus on the hole part of the spectrum, so we start by writing
down the corresponding spectral function in Lehmann representation,

A(k, ϵ) ∝
∑
|f⟩

| ⟨f |ψR(k) |0⟩ |2δ(k + P|f⟩ − P|0⟩)δ(ϵ+ E|f⟩ − E|0⟩). (2.11)

We can see that the momentum of the end state is relative to −pF . The
matrix elements of Eq. 2.11 are finite only when we have a single hole
excitation with k < 0. Considering the state,

|f⟩ = ψR(k1)ψL(k2)ψ†
L(k3) |0⟩ . (2.12)

In order to understand what the largest possible value for ϵ is for a given k,
we would like to look at the most stable energy configuration final state E|f⟩
in Eq.2.11, The energy spectrum can be written as,

E|f⟩ − E|0⟩ = v(−k1 + k2 − k3) − 1
2m(k2

1 + k2
2 − k2

3). (2.13)

Fermionic Algebra

Seeing that, ψ(k) and ψ†(k) are the fermionic annihilation and creation op-
erators, respectively, and ξ(k) is the single-particle energy. These operators
obey the following algebra,

{ψ†(k), ψ(k′)} = δ(k − k′),
{ψ†(k), ψ†(k′)} = {ψ(k), ψ(k′)} = 0.

(2.14)

We define the inverse Fourier transform of these field operators such that,

ψ(x) = 1√
N

∫ dk

2πe
ikxψ(k), (2.15)

and the corresponding Fourier transform,

ψ(k) = 1√
N

∫ dx

2πe
−ikxψ(x). (2.16)

Where k is to be considered as the momentum of the fermion and N the
number of lattice sites in our system. It is interesting to see that the field
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operator corresponding to creation is just the Hermitian conjugate of the
operator corresponding to annihilation. We then proceed by defining the
fermionic density operator in momentum space,

ρR(k) =
∫ dk′

2π ψ
†
R(k + k′)ψR(k′). (2.17)

These operators in some literature, are also called, shifting operators. For
example in Eq.2.17 we can consider that the operator that is defined shifts
a right moving fermion by a momentum k. Now is a good time to remind
ourselves that for low temperatures, all the states below the Fermi points are
filled, meaning all the states with |k| < kF . It is interesting for us to notice
that,

ρ†
R(k) = ρR(−k), (2.18)

meaning, that the Hermitian conjugate of the operator itself serves a means
to shift the system by a momentum −k. This type of operator behavior is
expected for bosonic operators! Let us consider the following commutation
relation,

[ρR(−k), ρ(k′)] = [ρ†
R(k), ρR(k′)] = kN

2π δ(k − k′). (2.19)

We can see that there is a subtle result of having k = k′, which gives us the
possibility of having an infinite number of states in the Fermi sea. We would
also like to focus on the commutation relation between the density operator
with the linearized non-interacting Hamiltonian,

[H, ρR(k)] =
∫ dk′dk′′

(2π)2 vFk
′[ψ†

R(k′)ψR(k′), ψ†
R(k′′ + k)ψR(k′′)] = vFkρR(k).

(2.20)
The qualitative results of having an infinite number of particles in the Fermi-
sea, along with the fact that these shifting/density operators follow a typical
bosonic algebra, will gives us two creation and annihilation renormalized
bosonic operators,

b†
R(k) = i

√
2π
kN

ρR(k),

bR(k) = −i
√

2π
kN

ρR(−k).
(2.21)
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As for the left-moving bosons,

b†
L(k) = −i

√
2π
kN

ρL(−k),

bL(k) = i

√
2π
kN

ρL(k).
(2.22)

It is straight forward for us to see that the following commutations pop-up
naturally,

[bR(k), b†
R(k′)] = δ(k − k′),

[H, b†
R(k)] = vFkb

†
R(k).

(2.23)

Using the results from equations, 2.23 and 2.22 we can define a non-interacting
bosonic Hamiltonian,

H =
∫ dk

2πvFk
(
b†
R(k)bR(k) + b†

L(k)bL(k)
)

+ πvF
N

(n2
R + n2

L), (2.24)

where the second term of the right-hand side accounts for zero-modes. The
integrand is where the physics actually is. These are in fact the terms that
describe the excitations.

Expressing Fermions As Bosons

Taking all the results in the previous section, we define the denistiy operator
in position space for the right and left movers,

ρR,L(x) = ψ†
R,L(x)ψR,L(x). (2.25)

Averaging over the the fermionic density operator for the right movers around
the ground state, we get,

⟨ρR(x)⟩ =
∫ dkdk′

(2π)2 e
ix(k′−k)⟨ψ†

R(k)ψR(k′)⟩ = ∞. (2.26)

This problem of infinity, arises because the electronic states in the Luttinger
model start from −∞ and extend into 0, ergo we have an infinite amount of
particles. This can be solved by taking the normal ordering, which means
we rearrange our operators in such a way that we take out the ground state,

: ρR(x) := ψ†
R(x)ψR(x) − ⟨ρR(x)⟩. (2.27)
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This is accomplished by moving our fermion operators to the right (k > 0)
and to the left (k ≤ 0). In this case we have a new definition for our density
operator,

∫ l

0
dxeikx : ρR(x) :=

∫ dk′

(2π) : ψ†
R(k + k′)ψR(k′) := ρR(k), (2.28)

but only for k ̸= 0 and when k = 0, the integral equalizes to nR. Taking the
inverse Fourier transform, we have the following expression for the fermionic
density operator, which is in terms of the bosonic creation and annihilation
operators,

: ψ†
R(x)ψR(x) := 1

L

∫ dk

2π
√
k
(
ibR(k)ei 2π

L
kx − ib†

Re
−i 2π

L
kx
)

+ nR
L
. (2.29)

Where L is the wire length. As for the left movers the exponents need to
have opposite signs. Now, we can define a typical bosonic field operator for
a right-moving particle, such that,

φR(x) = φR(0) + nRx

L
+
∫ dk

2π
1√
4πk

(
ei

2πk
L
xbR(k) + e−i 2πk

L
xb†
R(k)

)
. (2.30)

Using Eq.2.29 and Eq.2.30, we get a one to one correspondence of the bosonic
and fermionic fied operators,

: ρR,L(x) := 1√
π
∂xφR,L(x). (2.31)

This one-to-one correspondence which is shown in equation 2.31, is important
for the next section of this chapter, where we will be defining the Hamiltonian
of one dimensional quantum wire with length L, and we will use these bosonic
operators to describe the chiral fermions near the Fermi level.

2.1.2 Defining The Hamiltonian For Typical Interact-
ing Spinless Interacting Fermions: The Luttinger
Liquid

We would like to study the Luttinger liquid near the Fermi energy, we can
focus on the slow moving fermions in the latter part of this thesis, I will define
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my Hamiltonian for the Fermions which are interacting via weak Coulomb
repulsion. We see that,

H =
∑

ν∈{R,L}

∫
dxξν(k)ψ†

ν(x)ψν(x) + 1
L

∫
dxdx′ψ†

R(x)ψR(x)V (x− x′)ψ†
L(x′)ψL(x′)

+ 1
2L

∑
ν∈{R,L}

∫
dxdx′ψ†

ν(x)ψν(x)V (x− x′)ψ†
ν(x′)ψν(x′),

(2.32)

where ξ(k) is the single-particle energy. We would like to look at this Hamil-
tonian in Fourier space in order to get the momentum conservations and have
a better understanding of the system at hand. Taking the Fourier compo-
nents of all the terms in the Hamiltonian, we get,

H =
∑

ν∈{R,L}

∑
k,k′

∫
dxξν(k)ψ†

ν(k)e∓ikxψν(k′)e±ik′x

+ 1
L

∑
k,k′,k′′,k′′′

∑
q ̸=0

∫
dxdx′ψ†

R(k)e−ikxψR(k′)eik′xV (q)eiq(x−x′)

× ψ†
L(k′′)eik′′x′

ψL(k′′′)e−ik′′′x′

+ 1
2L

∑
ν∈{R,L}

∑
k,k′,k′′,k′′′

∑
q ̸=0

∫
dxdx′ψ†

ν(k)e∓ikxψν(k′)e±ik′x

× V (q)eiq(x−x′)ψ†
ν(k′′)e∓ik′′x′

ψν(k′′′)e±ik′′′x′

=
∑

ν∈{R,L}

∑
k

ξν(k)ψ†
ν(k)ψν(k) + 1

2L
∑
q ̸=0

(
2V (q)ρR(q)ρL(−q)

+
∑

ν∈{R,L}
V (q)ρν(q)ρν(−q)

)
.

(2.33)

In equation 2.33 we have written the Hamiltonian of the system in density
formalism in order to utilise the bosonic operators which were defined in the
previous section.

Adding Impurities To The Hamiltonian And Bosonizing The Fermi-
Level.

A typical way of trying to understand our system is to use a technique called
bosonization where we express our fermionic density operators in terms of
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bosonic operators. Our total Hamiltonian will be composed of interactions
between R and R, R and L and also R−d and L−d subbands. Our complete
Hamiltonian will have the form,

H = Hd +HR,L +Hd,R/L. (2.34)

It is also important to mention that particle-boson interactions typically
have small momenta transfer, which means we can approximate our interac-
tions into screened Coulomb potentials which are momentum independent,
or “constant”. Accounting for the effects of the deep, slow moving excitations
interacting with the Fermi-level particles are crucial for the evaluation of the
Green’s function of the d subband. The interaction between the R and L sub-
bands does not contribute to the logarithmic approximations of the Green’s
function, it is safe to neglect these terms for the rest of the thesis.[14] We
have,

HR,L =
∑
ν=r,l

∑
k

ξν(k)ψ†
ν(k)ψν(k),

Hd,R/L = V

L

∑
|q|<λk

ρd(q)ρR(−q) + V

L

∑
|q|<λk2/mv

ρd(q)ρL(−q).
(2.35)

Because of the strict wavelengths of density fluctuations it is safe to say that
the R and L subbands can be linearized[14]. Since both these subbands are
also contained near the Fermi level we can write their density or “shifting”
operators in terms of bosonic field operators. So we get the following form
for HR,L and Hd,R/L,

HR,L = 1
4πL

∑
|q|<λk

vq2|φR(q)|2 + 1
4πL

∑
|q|<λk2/mv

vq2|φL(q)|2,

Hd,R/L = −i V2πL
∑

|q|<λk
qρdqφR(−q) − i

V

2πL
∑

|q|<λk2/mv

qρd(q)φL(−q).
(2.36)

Notice that the upper cut-off for the R subband and d − R interactions is
λk and the cut-off for the L subband and d − L interactions is λk2

mv
. This

is due to a step similar to the renormalization group (RG) procedure done
by Haldane[9]. Where the method is based on the work of Khodas et al.
[14], after taking out the relatively high-energy states λk < |p − pF | and
λk2

mv
< |p + pF | where they define λ ≪ 1, using RG transformation they

reduce the energy bands of the system into three strips, where |p− pF | < λk
and |p+ pF | < λk2

mv
are the R band and L band respectively.
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Figure 2.1: The separation of momenta that describes the Hamiltonian 2.34
and is the result of the RG transformation procedure done by Khodas et al.
[14].

Behavior Of Gd(k|x, t)

Now that we have a complete understanding of which interactions are im-
portant for the evaluation of our Green’s function which describes the deep,
slow moving excitation, we can start with the evaluation of Gd(k|x, t), All
second order approximation of the self-energy can be disregarded since they
are small[14], hence, we would like to focus on the deep particle-hole alone.
Neglecting any interactions with the Fermi/level the Green’s function satis-
fies the following equation,

{
iℏ∂t − ξ(k) + iℏvd∂x

}
Gd(k|x, t) = −ℏδ(x)δ(t). (2.37)

It is important to note that the linearization of the d subband spectrum stems
from the fact that particle-boson interactions are associated with small trans-
fer momenta, this also extends to the fact that we have taken our interaction
potentials to be constants. Neglecting vertex corrections we can see that
the effect of bosonic field is merely to induce a slowly varying potential in
space-time where the d-fermions move. We express the potential as ϕ(x, t)
and our new interacting Green’s function obeys the following equation.

{
iℏ∂t − ξ(k) + iℏvd∂x + ϕ(x, t)

}
Gϕ
d(k|x, t) = −ℏδ(x)δ(t), (2.38)

Where the slow varying potential ϕ(x, t) can be expressed as a linear combi-
nation of the bosonic operators, ∂xφR and ∂xφL.
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2.2 Conclusion
In the next chapter, we will be attempting to reproduce Eq.2.38, using the
Hubbard-Stratonovich transformation, which is dubbed to be a more ele-
gant method of introducing a slow varying potential to our system. We will
then apply the same methodology for a two-dimensional system that carries
a four-fold symmetry, our hope will be to find plasmonic behavior for the
singularities of the Coulomb propagator.
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Chapter 3

Interactions In One Dimension
and The Hubbard Stratonovich
Transformation

In this chapter we will introduce the functional-integral formulation of quan-
tum field theory. We will do this in order to treat many-body systems in one
dimension. We will be tackling the interacting Green’s function of the system
that was discussed in Chapter 2. Since in general it is not an easy task to
determine the interacting Green’s function exactly, we begin by cancelling
the quartic, interaction terms of the action and add a new field, which will
become the field ϕ(x, t) which was discussed in Chapter 2, then via varia-
tional methods we will determine the averaged (with respect to the ϕ(x, t)
fields) Green’s function of the slow moving fermions. In this section we will be
adopting a different approach in trying to comprehensively describe quantum
wires with weak interactions. In Chapter 2 we had used second quantization
and Haldane’s[8] bosonization approach in order describe the interactions in
terms of non-interacting bosons. We find that the method that we will em-
ploy in this chapter is a more subtle and straightforward way of trying to
understand these one-dimensional systems. Our hope is to expand and try to
tackle two-dimensional square lattice systems in order to be able to describe
strange metals. The method we will be using is the Hubbard Stratonovich
transformation where later on we will also approximate our quantum field
theory to the Hartree theory. Before that, we would like to discuss which

27
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part of the propagator we would like to study. As previously stated it is our
intention to study the behavior of the a slow moving hole in a one dimensional
quantum wire, which means

⟨T{ψ̂d(x, τ)ψ̂†
d(x′, τ ′)}⟩

= θ(τ − τ ′)⟨ψ̂d(x, τ)ψ̂†
d(x′, τ ′)⟩ + θ(τ ′ − τ)⟨ψ̂†

d(x′, τ ′)ψ̂d(x, τ)⟩.
(3.1)

It is important to note that, ψ̂d and ψ̂†
d are the annihilation and creation

operators respectively[24]. So in our case we would like to study the second
term of the right hand side, which is considered to be the ⟨ψ†

d(x′, τ ′)ψd(x, τ)⟩
two-point function of a hole propagating.

3.1 Non-Interacting Green’s Function Of Dirac
Fermions

Before we tackle the interaction, as in the previous chapter, we would like
to first understand the behavior of the two-point function without any inter-
actions. This would gives a good understanding of the bare aspects of our
system, where later on we can introdcuce the quartic interacting terms in our
action which will in turn be problems when integrating over the fermionic
fields but that is why we will be using a transformation that will render our
integral into a simple gaussian with respect to those fermionic fields. Firstly,
since we are still working with fermions we would like to using Grassmann
field ψ whose algebra is mention in Appendix B. In order to better under-
stand our system at the Fermi/level which are located at ±pF we then, in an
approximate manner, split up our Grassmann field into 3 parts,

ψ(x) ≃
∫ Λ

−Λ

dp

2πe
i(p+pF )xψ(p+ pF ) +

∫ Λ

−Λ

dp

2πe
i(p−pF )xψ(p− pF )

+
∫ Λ

−Λ

dk

2πe
i(p+k)xψ(p+ k).

(3.2)

Where it is straightforward to see that each range of momenta are associated
with a given chiral fermion, ψR(p) = ψ(p + pF ), ψL(p) = ψ(p − pF ) and
ψd(k) = ψ(p+ k). This in turn gives us,

ψ(x) ≃ ψR(x)eipF x + ψL(x)e−ipF x + ψd(x)eikx (3.3)
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We now move on to a much more important point. That is linearizing the
spectrum in order to better understnad our system and try to replicate the
results using Hubbard-Stratonovich transformations. Here we can assume
that the free fermionic case has low-energy excitations and in 1 dimension
instead of having a Fermi surface they have 2 Fermi points at ±pF .

3.1.1 Linearizing The Spectrum

We first write down the standard action for a non-interacting, free fermionic
system with a parabolic approximation of its dispersion.

S =
∫ L

0
dx
∫ ℏβ

0
dτψ∗(x, τ)

(
ℏ
∂

∂τ
− ℏ2

2m
∂2

∂x2 − µ

)
ψ(x, τ), (3.4)

It is important to note that the length of the wire is L. We now would like
to write our field as the sum of three different grassmann fields, we will be
using the same definition, but in this case we will be studying our right and
left moving particles at the Fermi levels so we can write our fields such as:
ψR(pF ) and ψL(pF ), the action then takes the form of,

S0[ψ∗
R, ψR, ψ

∗
L, ψL, ψ

∗
d, ψd]

=
∫ L

0
dx
∫ ℏβ

0
dτψ∗

R(x, τ)e−ipF x

(
ℏ
∂

∂τ
− ℏ2

2m
∂2

∂x2 − µ

)
ψR(x, τ)eipF x

+
∫ L

0
dx
∫ ℏβ

0
dτψ∗

L(x, τ)eipF x

(
ℏ
∂

∂τ
− ℏ2

2m
∂2

∂x2 − µ

)
ψL(x, τ)e−ipF x

+
∫ L

0
dx
∫ ℏβ

0
dτψ∗

d(x, τ)e−ikx
(
ℏ
∂

∂τ
− ℏ2

2m
∂2

∂x2 − µ

)
ψd(x, τ)eikx

Taking the term which corresponds to ψd(k) and ψ∗
d(k), we can see that we

can re-write the dispersion relation by simply applying the derivative on the
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fields such that,
S0[ψ∗

d, ψd]

=
∫ L

0
dx
∫ ℏβ

0
dτψ∗

d(x, τ)e−ikx
{
ℏ
∂

∂τ
− ℏ2

2m
∂2

∂x2 − µ

}
ψd(x, τ)eikx

=
∫ L

0
dx
∫ ℏβ

0
dτψ∗

d(x, τ)e−ikx
{
ℏ
∂

∂τ
eikx − ℏ2

2m∂x
(
ikeikx + eikx∂x

)
− µeikx

}
ψd(x, τ)

=
∫ L

0
dx
∫ ℏβ

0
dτψ∗

d(x, τ)e−ikx
{
ℏ∂τeikx − ℏ2

2m
(
i2keikx∂x − k2eikx

)
− µeikx

}
ψd(x, τ)

=
∫ L

0
dx
∫ ℏβ

0
dτψ∗

d(x, τ)e−ikx
{
ℏ∂τ +

( ℏ2

2mk2 + i
ℏ2

m
k∂x

)
− µ

}
ψd(x, τ)eikx

=
∫ L

0
dx
∫ ℏβ

0
dτψ∗

d(x, τ)
{
ℏ∂τ +

(
ξ(k) − iℏvd∂x

)
− µ

}
ψd(x, τ),

(3.5)
where in the last line we took the limit of the momentum to be k → 0, which
implies that e±ikx → 1.

Figure 3.1: Graphical representation of linearizing the spectrum

Taking the time-dependent non interacting term for the slow moving fields
in the action we have,

S0[ψ∗
d, ψd] =

∫
dτdxψ∗

d(x, τ)
{
ℏ∂τ +

(
ξ(k) − iℏvd∂x

)
− µ

}
ψd(x, τ). (3.6)

Seeing that this in fact requires a lot of book-keeping we proceed to define
the following notation associated to the algebra of Grassmann variables and
their respective path integrals.

S0[ψ∗
d, ψd] = (ψd|ℏ∂τ +

(
ξ(k) − iℏvd∂x

)
− µ|ψd). (3.7)
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3.1.2 Computing The Non-Interacting Green’s Func-
tion For The Slow Moving Fermions

Seeing the form of the action that describes the slow-moving fermions it is
straightforward to see that the corresponding Green’s function in position
space satisfies the following equation,{

ℏ∂τ +
(
ξ(k) − iℏvd∂x

)
− µ

}
Gd(k;x, τ) = −ℏδ(x)δ(τ), (3.8)

where it is important to note the momentum dependence comes from lin-
earizing the spectrum and not any Fourier transformations. We proceed to
do a wick rotation in order to get this same equality but in real time, it reads,(

iℏ
∂

∂t
+ ivdℏ

∂

∂x
− ξR(k) + µ

)
Gd(k|x, t) = ℏδ(x)δ(t). (3.9)

We can actually solve this Green’s function, after Wick rotating and getting
our results in real time we get

G(k, ω) = 1
ω + vdk −

(
ξR(k)−µ

ℏ

) . (3.10)

It is straightforward to take the inverse Fourier transform of Eq.3.10, we get,

⟨ψ∗
d(x, τ)ψd(0, 0)⟩ = Gd(k|x, t) = lim

ϵ→0+

∫
dk
∫
dω

eikx−iω+t

ω + kvd −
(
ξR(k)−µ

ℏ

)
+ iϵ

=
∫
dk − iθ(t)eikx−ikvde

i

(
ξR(k)−µ

ℏ

)
t

= −iθ(t)δ(x− vdt)e
i

(
ξR(k)−µ

ℏ

)
t
.

(3.11)

As we can clearly see that in this section we have been able to deriveGd(k|x, t)
from Chapter 2. Which although describes how our slow moving fermions
propagate in our system, but it does not give us a good picture of how it
behaves while interacting with fermions which are located at Fermi level.
In Section 3.2 we would like to study these fermionic fields when they are
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interacting via, a Coulomb potential. Since the interaction terms are of
fourth-order we will also be adding a new field, via the Hubbard-Stratonovich
transformation which will cancel all quartic terms and leave us with a simple
Gaussian integral over the fermionic fields.

3.2 Interacting Green’s Function Via Coulomb
Potential

In the previous section, we derived the non-interacting Green’s function for a
slow moving fermion using the path integral formalism for quantum field the-
ory. In this section we will be using a technique which is called the Hubbard
Stratonovich transformation which will help us in deriving the interacting
Green’s function. We are able to use perturbation theory in order to expand
the interacting terms and use Feynman diagrams in order to better under-
stand the interactions, the lowest order contributions are then modified via
Hartree diagrams which give us a self-consistent Hartree theory. We can also
minimize our newly found effective action in order to get the Hartree theory.
In our case, we can see that we have three different fermionic field to account
for, which are in fact the right-moving and left-moving fields which are lo-
cated close to the Fermi level, and we are also taking into account the slow
moving field which has a single particle energy lower than the Fermi energy.
Z[J, J∗]

=
∫
d[ψ∗

R]d[ψR]d[ψ∗
L]d[ψL]d[ψ∗

d]d[ψd] exp
{

− 1
ℏ
[
(ψR|ℏ∂τ − iℏvF∂x|ψR)

+ (ψL|ℏ∂τ + iℏvF∂x|ψL) + (ψd|ℏ∂τ +
(
ξ(k) − iℏvd∂x

)
− µ|ψd)

+ ℏ(ψd|J) + ℏ(J |ψd) + 1
2(|ψR|2|V ||ψR|2) + 1

2(|ψL|2|V ||ψL|2)

+ 1
2(|ψd|2|V ||ψd|2) + (|ψR|2|V ||ψL|2) + (|ψR|2|V ||ψd|2) + (|ψL|2|V ||ψd|2)

]}
.

(3.12)
We would now like to study this fourth-order interaction between the slow
moving and Fermi level fermions via a collective Coulomb field, such as in
[14]. In order to do that we would like to multiply our path integral with
a real filed which is serves to describe said interaction and we define the
following integral,
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1 =
∫
d[ϕ] exp

[ 1
2ℏ(ϕ− V

∑
µ

|ψµ|2|V −1|ϕ− V
∑
ν

|ψν |2)
]

=
∫
d[ϕ] exp

[ 1
2ℏ(ϕ|V −1|ϕ) − 2(ϕ|

∑
µ

|ψµ|2) + (
∑
µ

|ψµ|2|V |
∑
ν

|ψν |2)
]
.

Such that {µ, ν} ∈ {R,L, d}. So when multiplying this unity to our path
integral the quartic interaction terms ought to cancel, leaving us with a
Gaussian equation with respect to the Coulomb field. We would also like to
mention that the Coulomb field is meant to replace the density field of all
three fermion fields. We then re-write Eq.3.12,

Z[J, J∗] =
∫
d[ψ∗

R]d[ψR]d[ψ∗
L]d[ψL]d[ψ∗

d]d[ψd]
∫
d[ϕ]

× exp
{

− 1
ℏ

[
(ψR|ℏ∂τ − iℏvF∂x|ψR) + (ψL|ℏ∂τ + iℏvF∂x|ψL)

+ (ψd|ℏ∂τ +
(
ξ(k) − iℏvd∂x

)
− µ|ψd) + ℏ(ψd|J) + ℏ(J |ψd)

+ 1
2(|ψR|2|V ||ψR|2) + 1

2(|ψL|2|V ||ψL|2) + 1
2(|ψd|2|V ||ψd|2)

+ (|ψR|2|V ||ψL|2) + (|ψR|2|V ||ψd|2) + (|ψL|2|V ||ψd|2)
]}

× exp
{

1
2ℏ

[
(ϕ|V −1|ϕ) − 2(ϕ|

∑
µ

|ψµ|2) + (
∑
µ

|ψµ|2|V |
∑
ν

|ψν |2)
]}
.

We can now group the linear terms of ϕ with terms which account for the
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non-interacting Green’s function which were treated in the previous section.

Z[J, J∗]

=
∫
d[ψ∗

R]d[ψR]d[ψ∗
L]d[ψL]d[ψ∗

d]d[ψd]
∫
d[ϕ]

× exp
{

− 1
ℏ
[
(ψR|ℏ∂τ − iℏvd∂x + ϕ(x, τ)|ψR) + (ψL|ℏ∂τ + iℏvF∂x + ϕ(x, τ)|ψL)

]}

× exp
{

− 1
ℏ
[
(ψd|ℏ∂τ +

(
ξ(k) − iℏvd∂x

)
− µ+ ϕ(x, τ)|ψd) + (J |ψd) + (ψd|J)

]}

× exp
{

1
2ℏ(ϕ|V −1|ϕ)

}
.

(3.13)

It is important to see that after collecting all the quadratic terms in the
fermionic fields we can identify the self-energy correction, Σϕ = Σ(x, x′; τ, τ ′|ϕ)
for the sake of simplicity we would like to set the x′ and τ ′ to 0. So taking
the terms which are quadratic in the fermionic fields we get the following
interacting Green’s function,

∑
ν∈{R,L,d}

(ψν | −G−1
ν, (x, τ ;ϕ)|ψν) =

∑
ν∈{R,L,d}

(
(ψν | −G−1

ν,0|ψν) + (ϕ|ψ∗
νψν)

)
.

(3.14)

We can re-write the second term of the right-hand side of Eq. 3.14 such as,(
ϕ|

∑
ν∈{R,L,d}

ψ∗
νψν

)
=
∫
dx
∫
dτdτ ′ϕ(x, τ)

∑
ν∈{R,L,d}

|ψν(x, τ)|2

=
∫
dxdx′

∫
dτϕ(x, τ)δ(x− x′)δ(τ − τ ′)

∑
ν∈{R,L,d}

ψ∗
ν(x′, τ ′)ψν(x′, τ ′)

=
∫
dxdx′

∫
dτdτ ′ ∑

ν∈{R,L,d}
ψ∗
ν(x′, τ ′)ϕ(x, τ)δ(x− x′)δ(τ − τ ′)ψν(x′τ ′),

where it is evident to see that ℏΣ(x, τ ;ϕ) = ϕ(x, τ)δ(x)δ(τ), and it is diagonal
in the chirality of the fermions.
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Integrating Over The Fermionic Fields

We would also like to integrate over the ψL(x, τ), ψR(x, τ) and slow mov-
ing, ψd(x, τ). It is important to note that the currents associated to the
right and left moving fermions have been set to 0, since we are only inter-
ested of the two point correlation function of the slow-moving, deep fermions,
⟨T [ψd(x, τ)ψ∗

d(x′, τ ′)]⟩, It is important to note that we will be studying the ad-
vanced two-point correlation function which is of the form, ⟨ψ∗

d(x′, τ ′)ψd(x, τ)⟩.
We can begin by writing our generating function with respect to our Hubbard-
Stratonovich field and the slow-moving fermionic fields,

Z[J, J∗] =
∫
d[ψ∗

d]d[ψd]
∫
d[ϕ] exp

{
−
[

log
(
ℏ∂τ + iℏvF∂x + ϕ(x, τ)

)]}

× exp
{

− Tr
[

log
(
ℏ∂τ − iℏvF∂x + ϕ(x, τ)

)]}

× exp
{

− 1
ℏ
[
(ψd|ℏ∂τ +

(
ξ(k) − iℏvd∂x

)
+ ϕ(x, t)|ψd)

}

× exp
{

(J |ψd) + (ψd|J) − 1
2(ϕ|V −1|ϕ)

]}
.

(3.15)

In order to retrieve the Green’s function corresponding to the slow-moving
ψd(x, τ) and ψ∗

d(x, τ), we ought to complete the square in the action such
that,

Z[J, J∗] =
∫
d[ψd]d[ψ∗

d]
∫
d[ϕ] exp

{
− Tr

[
log

(
ℏ∂τ + iℏvF∂x + ϕ(x, τ)

)]}

× exp
{

− Tr
[

log
(
ℏ∂τ − iℏvF∂x + ϕ(x, τ)

)]}

× exp
{

− 1
ℏ
[
(ψd +GdJ | −G−1

d (x, τ ;x′, τ ′)|ψd +GdJ)
}

× exp
{

− (J |Gd(x, τ ;x′, τ ′)|J) − 1
2(ϕ|V −1|ϕ)

]}
,

(3.16)
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Where it is clear for us to see that:

−1
ℏ
G−1
d (x, τ ;x′, τ ′|ϕ) =

{
ℏ∂τ +

(
ξ(k) − iℏvd∂x

)
+ ϕ(x, τ)

}
δ(x− x′)δ(τ − τ ′)

(3.17)

Taking the functional derivative of the path integral with respect to the
current J and J∗ respectively. Seeing that the functional integral has become
quadratic in terms of the fermionic fields we can integrate them out of the
integral and get the following,

⟨Gd(k|x, τ)⟩ϕ =
∫
d[ϕ]

{
ℏ∂τ +

(
ξ(k) − iℏvd∂x

)
+ ϕ(x, τ)

}−1

× exp
{

− Tr
(

log
[
ℏ∂τ + ξ(k) − iℏvd∂x + ϕ(x, t)

])}

× exp
{

− Tr
(

log
[
ℏ∂τ + iℏvF∂x + ϕ(x, τ)

])}

× exp
{

− Tr
(

log
[
ℏ∂τ − iℏvF∂x + ϕ(x, τ)

])
− 1

2(ϕ|V −1|ϕ)
}
.

(3.18)

The term in the exponent is now called the effective action which is solely
dependent on the Hubbard-Stratonovich field, ϕ(x, τ), we now can write the
effective action as,

Seff[ϕ] = −ℏTr
(

log
[
ℏ∂τ + ξ(k) − iℏvd∂x + ϕ(x, t)

])
− ℏTr

(
log

[
ℏ∂τ + iℏvF∂x + ϕ(x, τ)

])
− ℏTr

(
log

[
ℏ∂τ − iℏvF∂x + ϕ(x, τ)

])
+ 1

2ℏ(ϕ|V −1|ϕ).

(3.19)

Minimizing The Effective Action

We now proceed to minimize the effective action by putting ϕ(x, τ) = ⟨ϕ(x, τ)⟩+
ϕ′(x, τ) where we know the averaged ϕ term minimizes the effective action.
We then get the basis-independent formulation that gives us,

G−1 = G−1
0 − ⟨ϕ⟩

ℏ
− ϕ′

ℏ
. (3.20)
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This is actually a shift in our integration variables we can also proceed
to set, δSeff[ϕ]

δϕ(x,τ) = 0, we can also neglect any fluctuations, we then have the
Hartree treatment of our system, which in one equation can be written as
Z ∼ e− Seff[ϕ]

ℏ . All of this, in a basis independent notation, can be translated
to,

G−1 = GH−1 − Σ′ = GH−1(1 −GHΣ′), (3.21)

where it is straightforward to see, GH−1 = G−1
0 = ⟨ϕ⟩

ℏ as well as ℏΣ′(x −
x′, τ − τ ′) = ϕ′(x, τ)δ(x− x′)δ(τ − τ ′).

Here we would like to study the minimized effective action in order to try
and cancel out all the linear terms in ϕ′. It is important to mention that
for the continuation of the chapter we would be excluding the term which
accounts for the deep slow moving fermions described by the ψ∗

d(x, τ) and
ψd(x, τ) fields. So we’re left with,

Seff[ϕ] = −ℏTr(log(−G−1
R )) − ℏTr(log(−G−1

L )) + 1
2ℏ(ϕ|V −1|ϕ). (3.22)

Where we can see that G−1
R = G−1

R0 − ⟨ϕ⟩
ℏ − ϕ′

ℏ , here we find it convenient to
use the following basis independent notation:

G−1
R = G−1

R0 − Σ′ = GH−1
R (1 −GHΣ). (3.23)

We can now use the logarithmic expansion in order to get the following
equation

log(1 −GH
RΣ′) = −GH

RΣ′ − 1
2(GH

RΣ′GH
RΣ′) + ... (3.24)

We can now proceed to set all linear terms to zero such that,

−ℏTr[−GH
RΣ′] − (ϕ′|V H−1|⟨ϕ⟩) = 0 (3.25)

By setting these linear terms to zero we actually assume that ⟨ϕ⟩ is the
minimum and that the effective action actually contributes to the Hartree
selfenergy.
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We now proceed to apply this logarithimic expansion to the effective action
in ϕ′:

Seff[ϕ′] = 1
2(ϕ′|V −1|ϕ′) + ℏ

2Tr[GH
RΣ′GH

RΣ′] + ℏ
2Tr[GH

L Σ′GH
L Σ′] + ... (3.26)

We can now see that this quadratic term in full, we will only work on the
right handed electrons because applying this same method to the left handed
electrons should be trivial and straightforward.

Tr[GH
RΣ′GH

RΣ′]

=
∫
dτdτ ′dτ ′′dτ ′′′

∫
dxdx′dx′′dx′′′GH

R (x, τ ;x′, τ ′)

× Σ′(x′, τ ′;x′′, τ ′′)GH
R (x′′, τ ′′;x′′′, τ ′′′)Σ′(x′′′, τ ′′′;x, τ)

=
∫ ℏβ

0
dτ
∫
dx
∫ ℏβ

0
dτ ′

∫
dx′GH

R (x, τ, x′, τ ′)ϕ
′(x′, τ ′)
ℏ

GH
R (x′, τ ′, x, τ)ϕ

′(x, τ)
ℏ

,

(3.27)

where we can clearly see that ℏΣ′(x, τ, x′, τ ′;ϕ′) = ϕ′(x, τ)δ(x− x′)δ(τ − τ ′).

We briefly remind ourselves that,

GH−1
R (x, τ ;x′, τ ′) = −1

ℏ

(
ℏ∂τ − iℏvF∂x

)
δ(x− x′)δ(τ − τ ′). (3.28)

where in Fourier space we can write it as,

GH
R (q, iωn) = −ℏ

−iℏωn + ℏvF q
(3.29)

We now proceed to calculate the quadratic term of the effective action post
Fourier transform.

Seff[ϕ′] =
∑
q,n

ϕ′(q, iωn)
{

1
Vk

+
∫ dq

2πG
H
R (q′, iωn′)GH

R (q + q′, iωn + iωn′)

+
∫ dq

2πG
H
L (q′, iωn′)GH

L (q + q′, iωn + iωn′)
}
ϕ′(q, iωn).

(3.30)
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In this case we would like to study the polarization operators for both the
right movers and left movers which are located at the Fermi points kF and
−kF respectively. It is important to note that the polarization operators have
corresponding diagrams which are known to be bubble diagrams. The ana-
lytic expressions of these bubble diagrams are well known. We will proceed to
derive them from the generic Lindhard function, taking the long-wavelength
limit and taking into account we get the following.

ΠR[q, iωn] = 1
ℏβ

∫ dq′

2π
−ℏ

−iℏωn + ℏvF q

{
GH
R (q′ + q, iωn + iωn′) −GH

R (q′, iωn′)
}
.

(3.31)

Taking the first term of the right hand side of Eq. 3.31 we compute,

Π(1)
R (q, iωn) =

(
1

iωn − vF q

)∑
n′

∫ dq′

2π
−ℏ

−iℏ(ωn + ωn′) + ℏvF (q + q′)

=
(

1
iωn − vF q

)∫ dq′

2π
∑
n′

1
i(ωn + ωn′) − vF (q + q′)

=
(

1
iωn − vF q

)∫ dq′

2π NFD(q + q′).

(3.32)

And here the same can be applied to the second term and we would get the
following equation.

ΠR[q, iωn] =
(

1
iωn − vF q

)∫ dq′

2π

[
1

e
β

(
vF (q+q′)

)
+ 1

− 1

e
β

(
vF q′

)
+ 1

]
, (3.33)

and for the left moving particles we ought to get,

ΠL[q, iωn] =
(

1
iωn + vF q

)∫ dq′

2π

[
1

e
β

(
−vF (q+q′)

)
+ 1

− 1

e
β

(
−vF q′

)
+ 1

]
.

(3.34)
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We can now see that these ΠR and ΠL are to be summed such that we get
the following relations,

Π(q, ωn) = ΠR(q, ωn) + ΠL(q, ωn) = ν
v2
F q

2

ω2
n + v2

F q
2 . (3.35)

Where ν = 1
πvF

. We can set the renormalized velocity to be the following,

v = vF

(√
1 + V0

πvF

)
. (3.36)

So we can finally get the following propagator for the screened Coulomb

⟨ϕ(q, iωn)ϕ(−q,−iωn)⟩ = V0
ω2
n + v2

F q
2

ω2
n + v2q2 . (3.37)

which satisfies the following equation:

[
iωn − vdq

]
θ(q, iωn) = ϕ(q, iωn). (3.38)

We can now see that the formal solution for the deep green’s function can be
expressed as.

⟨Gd(k|x, τ)⟩ϕ = −Gd(k|x, τ) exp
[1
2⟨θ(x, τ) − θ(0, 0)⟩2

]
. (3.39)

Our Hubbard Stratonovich gave us the same exact Green’s function for the
ϕ field we get the following explicit equation for the Green’s function for the
deep field. Without loss of generality and for the sake of simplicity we will
be studying the averaged propagator of a slow moving hole which starts at
the origin of the wire,
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⟨Gd(k|x, τ)⟩ϕ

= Gd(k|x, τ) exp
[ ∫ dq

(2π)
∑
ωn

⟨ϕϕ⟩
(−iωn + vdq)2

(
1 − cos(qx− ωnτ)

)]

= Gd(k|x, τ) exp
[ ∫ dq

(2π)
∑
ωn

V0

(−iωn + vdq)2
ω2
n + v2

F q
2

ω2
n + v2q2

(
1 − cos(qx− ωnτ)

)]
= Gd(k|x, τ)

× exp
[ ∫ dq

2π
∑
ωn

V0

(−iωn + vdq)2

×
(

1 + v2
F/vq

−iωn + vq
+ v2

F/vq

iωn + vq

)(
1 − cos(qx− ωnτ)

)]
.

(3.40)

Before proceeding to solve this integral and sum we would like to take the
zero-temperature limit such that T → 0 where our Matsurbara frequencies
become continuous. ∑

n∈Z
iωn →

∫ idω

(2π) .

We first proceed to find the useful poles and they are, iω = ±vq where in
this case v is the renormalized velocity.

⟨Gd(k|x, τ)⟩ϕ = Gd(k|x, τ)

× exp
[ ∫ dqd(iω)

(2π)2
V0

(−iω + vdq)2

(
1 − cos(qx− ωτ)

)
+
∫ dqd(iω)

(2π)2
V0

(−iω + vdq)2
α(k)q

−iω + vq

(
1 − cos(qx− ωτ)

)
+
∫ dqd(iω)

(2π)2
V0

(−iω + vdq)2
α(k)q
iω + vq

(
1 − cos(qx− ωτ)

)]
,

(3.41)

where α = vF
kF

k
, where k = mv . We continue by using the residue theorem
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for the integral over the frequency.

⟨Gd(k|x, τ)⟩ϕ = Gd(k|x, τ) exp
[

− α(k)V0

(vd − v)2

∫ λk2
mv

0

dq

q

(
1 − cos((x+ vτ)q)

)
+ α(k)V0

(vd + v)2

∫ λk

0

dq

q

(
1 − cos((x− vτ)q)

)]
.

(3.42)

As per section 2.1.2 and Figure 2.1, it is important to see that we have set
cutoffs for our momenta which are |q| < λk2/mv for the L−d interactions and
|q| < λk for the R− d interactions. It is also important to note that because
the scalar field θ only enters when combined with δ(x−vdτ) the double-pole at
vdq does not show up in Eq. 3.42. For the long-wavelength/low-momentum,
spectrum we solely get the logarithmic contributions. Which is similar to the
results discussed in [14]. Using Mathematica we get,

⟨Gd(k|x, τ)⟩ϕ = Gd(k|x, τ) exp
{

− α(k)V0

(vd + v)2 log
[
λk2

mv
(x+ vτ)

]

− α(k)V0

(vd − v)2 log
[
λk(x− vτ)

]}
.

(3.43)

3.3 Conclusion
After applying the Hubbard-Stratonovich transformation to the system ex-
tensively discussed in Chapter 2, we evaluated the Green’s function by also
accounting for the slow varying potential ϕ(x, t) by minimizing it and apply-
ing the RPA method in order to deduce the its own averaged propagator.
The next step is to try and generalize this method of introducing a new field
in order to kill off the quartic terms in the action and leave us solely with a
Gaussian integrals over the interacting fields which can easily be calculated.



Chapter 4

ω ∼ √
q Singularities In 2+1

Dimensions Using Hubbard
Stratonovich Transformation

Newly found properties of two-dimensional systems such as the high-TC su-
perconducting phenomena of cuprates, is a really good candidate to investi-
gate in this final chapter of our thesis. After computing the Green’s function
for the slow moving excitations we move on and try to understand what our
technique has to say for systems that are anistoropic in two-dimensions. In
this chapter we will be studying a four-fold symmetric lattice with a near-
neighbor, tight-binding dispersion.

4.1 The Tight-Binding Theory
Materials that are mostly composed of closed-shell atomic or ionic lattices,
can not be treated by the parabolic approximation, or better yet the free
electron dispersion, instead it is more appropriate to use the tight-binding
model. We begin by taking an element with one atom place in each unit-cell,
where each atom is allowed one valence orbital to be defined as ϕn(r). We
take the a linear combination of a state such that it obeys Bloch’s theorem,

ψnk(r + R) = eikRψnk(r), (4.1)

where R is a translation vector, such that R ∈ R.

43
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4.1.1 Bloch’s Theorem
The theorem states that solutions to the Schrödinger equation in a periodic
potential take the form of a plane wave modulated by a periodic function.
Taking a linear combination of the orbitals we get the following equation,

ψnk(r) = 1√
N

∑
R
eikRϕn(r − R). (4.2)

Where N is the number of lattice sites and the factor 1√
N

is for normalizing
the state. Assume that R′ ∈ R we write,

ψnk(r − R′) = 1√
N

∑
R
eikRϕn(r − (R − R’)), (4.3)

we define R − R′ = R′′ such that we re-write Equation 4.3 as,

ψnk(r + R′) = 1√
N

∑
R′′

eik(R′+R′′)ϕn(r − R′′)

= eikR′ 1√
N

∑
R′′

eikR′′
ϕn(r − R′′)

= eikR′
ψnk(r)

(4.4)

4.1.2 s-band in a 2D lattice
We define the disperion relation to be,

ϵ(k) =
∫
drψ∗

k(r)Hψk(r)

= 1
N

∑
R

∑
R′
eik(R′−R)

∫
drϕs(r − R)Hϕs(r-R’)

= 1
N

∑
R

∑
R′
eik(R−R′)

∫
dxϕs(x)H(x)ϕs(r − R′),

(4.5)

where x = r − R and H is unchanged due to periodic boundary conditions
(i.e. H(r-R) = H(r)). Reminding ourselves of R − R′ = R′′, we get,

ϵ(k) = 1
N

∑
R

∑
R′′

eikR′′
∫
dxϕs(x)Hϕs(r − R′′)

=
∑
R′′

eikR′′
∫
dxϕs(x)Hϕs(x − R′′).

(4.6)
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The factor N comes from summing over R. The orbitals are tightly localized,
meaning that they are large for |r| ≪ 1 and decay rapidly away from r = 0.
Meaning that if the translation vector R′′ is large, then∫

dxϕs(x)Hϕs(x − R′′) ≈ 0. (4.7)

Setting R′′ to be not large we get,

ϵ(k) =
∑
R′′

eikR′′
∫
dxϕs(x)Hϕs(x − R′′)

= −γ(cos(kx) + cos(ky)).
(4.8)

Where −γ =
∫
dxϕs(x)Hϕs(x − R′′). We have absorbed the lattice constant

a in the momentum to make k = (kx, ky) a dimensionless entity.

4.2 Interacting Green’s function.
Therefore, we can define a non-interacting action,

S0[ψ∗, ψ] =
∫
dxdy

∫
dτψ∗(x, y; τ)

[
ℏ
∂

∂τ
+ ϵ(kx, ky) − µ

]
ψ(x, y; τ). (4.9)

For simplicity we can use the following notation:

S0[ψ∗, ψ] = (ψ|ℏ∂τ + ξ(kx, ky)|ψ).

Where ξ(kx, ky) = ϵ(kx, ky) − µ.(
ℏ
∂

∂τ
+ ξ(kx, ky)

)
Gk(x1 −x2; y1 − y2; τ − τ ′) = δ(x1 −x2)δ(y1 − y2)δ(τ − τ ′).

(4.10)
Here we can safely see that our non-interacting green’s function for the deep
electronic fields can be written as. We will now proceed to apply Hubbard-
Stratonovich transformation to density fields such that,

Z[J, J∗] =
∫
d[ψ∗]d[ψ] exp

{
− 1

ℏ

∫
dxψ∗(x, τ)(ℏ∂τ + ξ(kx, ky))ψ(x, τ)

}

× exp
{

1
2ℏ

∫
dxdx′ψ∗(x, τ)ψ∗(x′, τ)V (x− x′)ψ(x, τ)ψ(x′, τ)

}
,

(4.11)
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we now move on to apply a Hubbard-Stratonovich transformation to our
generating functional such that,

1 =
∫
d[ϕ] exp

[ 1
2ℏ(ϕ− V |ψ|2|V −1|ϕ− V |ψ|2)

]
=
∫
d[ϕ] exp

[ 1
2ℏ(ϕ|V −1|ϕ) − 2(ϕ||ψ|2) + (|ψ|2|V ||ψ|2)

]
.

Where V = V (x− x′). We multiply the unity that was previously defined to
the path integral of our system.

Z[J, J∗] =
∫
d[ψ∗]d[ψ] exp

{
− 1

ℏ

[ ∫
dxdτψ∗(x, τ)

(
ℏ∂τ + ξ(kx, ky)

)
ψ(x, τ)

+ 1
2

∫
dxdx′dτdτ ′ψ∗(x, τ)ψ∗(x′, τ ′)V ψ(x, τ)ψ(x′, τ ′)

]}

×
∫
d[ϕ] exp

{
1
2ℏ(ϕ|V −1

0 |ϕ) − 2(ϕ||ψ|2) + (|ψ|2|V ||ψ|2)
}

=
∫
d[ψ∗]d[ψ]

∫
d[ϕ] exp

[
− 1

ℏ
[
(ψ|

(
ℏ∂τ + ξ(kx, ky) + ϕ(x, y, τ)

)
|ψ)

+ (J |ψ) + (ψ|J) − 1
2(ϕ|V −1|ϕ)

]]
.

(4.12)

After this we integrate the fermions out of the action and we finally get,

Z[J, J∗] =
∫
d[ϕ] exp

{
− ℏTr log[ℏ∂τ + ξ(kx, ky) + ϕ(x, y, τ)] − 1

2(ϕ|V −1|ϕ)
}
.

(4.13)

Where it is clear for us to see that

−1
ℏ
G−1(x1, y1, τ, |ϕ) =

{
ℏ∂τ + ϵ(kx, ky) − µ+ ϕ(x1, y1, τ)

}
δ(x1 − x2)δ(y1 − y2)δ(τ − τ ′).

(4.14)
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Here we can see that the effective action can be written as,

Seff[ϕ] = −ℏTr
(

log
[
ℏ∂τ + ξ(kx, ky) + ϕ(x, y, τ)

])
) + 1

2ℏ(ϕ|V −1|ϕ). (4.15)

We now proceed to minimize the effective action by putting ϕ(x, y, τ) =
⟨ϕ(x, y, τ)⟩ + ϕ′(x, y, τ) where we know the averaged ϕ term minimizes the
effective action. In a basis independent notation, can be translated to,

G−1 = GH−1 − Σ′ = GH−1(1 −GHΣ′), (4.16)

where it is straightforward to see, GH−1 = G−1
0 = ⟨ϕ⟩

ℏ and that ℏΣ(x1 −
y1, x2 − y2; τ − τ ′)′ = ϕ′(x1, x2; τ)δ(x1 − y1)δ(x2 − y2)δ(τ − τ ′).

Now the main part to study is the minimized effective action. Where for the
sake of simpler book-keeping we neglect the deep field term.

Seff[ϕ] = −ℏTr(log(−G−1)) + 1
2ℏ(ϕ|V −1|ϕ), (4.17)

where we can see that G−1 = G−1
0 − ⟨ϕ⟩

ℏ − ϕ′

ℏ and this leads to the following
conclusion,

G−1 = G−1
0 − Σ′ = GH−1(1 −GHΣ). (4.18)

We can now use the logarithmic expansion in order to get the following
equation,

log(1 −GHΣ′) = −GHΣ′ − 1
2(GHΣ′GHΣ′). (4.19)

We can now proceed to set all linear terms to zero such that.

−ℏTr[−GHΣ′] − (ϕ′|V H−1|⟨ϕ⟩) = 0. (4.20)

By setting these linear terms to zero we actually assume that ⟨ϕ⟩ is the
minimum and that the effective action actually contributes to the Hartree
selfenergy.
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We now proceed to apply this logarithimic expansion to the effective action
in ϕ′:

Seff[ϕ′] = 1
2(ϕ′|V −1|ϕ′) + ℏ

2Tr[GHΣ′GHΣ′]. (4.21)

We can now see that this quadratic term in full, we will only work on the
right handed electrons because applying this same method to the left handed
electrons should be trivial and straightforward.

Tr[GHΣ′GHΣ′] =
∫
dτdτ ′dτ ′′dτ ′′′

∫
dx1dx2dx3dx4

∫
dy1dy2dy3dy4

×GH(x1 − x2, y1 − y2; τ − τ ′)Σ′(x2 − x3, y2 − y3, τ
′ − τ ′′)

×GH(x3 − x4, y3 − y4; τ ′′ − τ ′′′)Σ′(x4 − x1, y4 − y1; τ ′′′ − τ)

=
∫ ℏβ

0
dτdτ ′

∫
dx1dx2

∫
dy1dy2

×GH(x1 − x2, y1, y2; τ − τ ′)ϕ
′(x2, y2, τ

′)
ℏ

×GH(x2 − x1, y2 − y1; τ ′ − τ)ϕ
′(x1, y1; τ)

ℏ
,

(4.22)

where we can clearly see that Σ′(x1 − x2, y1 − y2; τ − τ ′) = 1
ℏϕ

′(x1, τ)δ(x1 −
x2)δ(y1 − y2)δ(τ − τ ′). We briefly remind ourselves that:

GH−1(x1 − x2, y1 − y2; τ − τ ′) = −1
ℏ

{
ℏ∂τ + ϵ(kx, ky) − µ+ ⟨ϕ(x1, y1; τ)⟩

}
× δ(x1 − x2)δ(y1 − y2)δ(τ − τ ′).

(4.23)

Due to positive background we get the following Green’s function in Fourier
space,

GH(k, iωn) = −ℏ
−iℏωn + ϵ(kx, ky) − µ

. (4.24)



4.2. INTERACTING GREEN’S FUNCTION. 49

We now proceed in order to determine the polarization operator which is also
sometimes called as a linear response function. We can rewrite this linear
response function as a difference between.

Π(q, ωn) =
∫ dk

(2π)2f(k)
[

1
−iℏωn − ϵk + ϵk−q

− 1
−iℏωn + ϵk − ϵk+q

]

= −1
iℏωn

∫ dkxdky
(2π)2

[
1 −

(
ϵk − ϵk−q

iℏωn

)
+
(
ϵk − ϵk−q

iℏωn

)2

−
(
ϵk − ϵk−q

iℏωn

)3

+
(
ϵk − ϵk−q

iℏωn

)4

− 1 +
(
ϵk+q − ϵk

iℏωn

)
−
(
ϵk+q − ϵk

iℏωn

)2

+
(
ϵk+q − ϵk

iℏωn

)3

−
(
ϵk+q − ϵk

iℏωn

)4]
.

(4.25)

We will be focusing on the contributions that actually stand out in terms of
four-fold symmetry. We can see that the contributions we get,

Π(2)(q, ωn) =
∫ dkxdky

(2π)2

(
γ

ℏωn

)2(
− 2q2

x + k2
xq

2
x + q4

x

6 + k2
yq

2
y − 2q2

y +
q4
y

6
)

= γ

2π
1

(ℏωn)2

(
− 8πq2

x + 4π3q2
x

3 + 2πq4
x

3 − 8πq2
y +

4π3q2
y

3 +
2πq4

y

3
)
.

(4.26)

As for the fourth order contributions we get,

Π(4)(q, ωn) = −4γ3

(ℏωn)4

(
− 8π3q4

x + 4π5q4
x − 2π7q4

x

3 + π9q4
x

27

− 16π3q2
xq

2
y + 4π5q2

xq
2
y − 4

15π
7q2
xq

2
y + 1

378π
9q2
xq

2
y − 8π3q4

y + 4π5q4
y

−
π7q4

y

3 +
π9q4

y

27

)

= −4γ3

(ℏωn)4

(
− 8π3(q2

x + q2
y)2 + 4π5(q4

x + q2
xq

2
y + q4

y)

− 2
15π

7(5q4
x + 2q2

xq
2
y + 5q4

y) + 1
378π

9(14q4
x + q2

xq
2
y + 14q4

y)
)
.

(4.27)
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4.3 Plasmonic Singularities of ⟨ϕ(q)ϕ(−q)⟩
We calculate the propagator for the Hubbard Stratonovich field, which can
be written in the following form,

⟨ϕ(q)ϕ(−q)⟩ = 1
1

V (q) + Π(q, ωn) = V (q)z4

z4 + V (q)χ1(q4)z2 + V (q)χ2(q4) , (4.28)

where we set:

χ1(q4) = γ

2π
(

− 8πq2
x + 4π3q2

x

3 + 2πq4
x

3 − 8πq2
y +

4π3q2
y

3 +
2πq4

y

3
)
,

χ2(q4) = −4γ3

(2π)
(

− 8π3(q2
x + q2

y)2 + 4π5(q4
x + q2

xq
2
y + q4

y)

− 2
15π

7(5q4
x + 2q2

xq
2
y + 5q4

y) + 1
378π

9(14q4
x + q2

xq
2
y + 14q4

y)
)
.

We now proceed to study each pole, meaning we take the poles at the long
wavelength limit in order to see how they behave. It is also important to
note that in two dimensions the Coulomb potential behaves inversely to the
transfer momentum, such that, V (q) ∼ 1

q
. So we know that the we have four

poles that show up and they are of the form,

ω = ±

√
V (q)χ1(q4) −

√
V (q)(−4χ2(q4) + χ2

1(q4))
√

2
, (4.29)

where for q → 0 these poles behave similar to plasmons, such that ω ∼ √
q.

4.4 Conclusion
In this chapter we have used the same methods that we had used in one
dimension. The calculation of the pole structure of the propagator of the
Hubbard Stratonovich field has given us plasmons for the long wavelength
limit. This in turn is well expected for two-dimensional anisotropic square
lattices where the fermions interact via a Coulomb potential.



Chapter 5

Conclusion and Future Outlook

High-TC superconductors are an interesting topic to study but new tools
are needed which give a physically intuitive approach to better understand
them and point experimentalists in the right direction. In chapter 3, we
tested to see if the Hubbard Stratonovich transformation is able to reproduce
results of other methods in 1D. After getting critical exponents in the Green’s
function of slow moving excitation in a quantum wire, we generalized our
approach to higher dimensions where we study the singularities of ⟨ϕϕ⟩ and
find plasmonic dispersions. This creates incentive to study the propagation
of an excitation in a two-dimensional four-fold symmetric system which is
similar to the atomic structure of high-TC superconductors.
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Appendix A

Gaussian Integrals

A.1 Real Variables
The most common type of distribution found in probability theory is the
Gaussian distribution.

Φ(x) =
√
α

π
exp{−αx2} (A.1)

Integrating over all-space gives us.∫
R
dx exp{−αx2} =

√
π

α

In order to determine averages we can use the following formula.

⟨x⟩ =
∫
R
dxx exp{−α(x− κ)2} = κ

For our cases it is convenient for us to write our parameter as −G−1

2 with
G<0∫

dx exp
{

1
2G

−1x2
}

=
√

−2πG =
√

2π exp
{

− 1
2 log(−G−1)

}
(A.2)

Generating Function
I would like to define now what a generating function could be, taking a
general Gaussian equation we add a linear term in x and multiply it by some
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variable called J which will later be defined as the current associated with
the variable itself such that we get:

Z(J) =
∫ dx√

2π
exp

{
1
2G

−1(x− κ)2 + Jx

}

=
∫ dx√

2π
exp

{
1
2G

−1(x+GJ)2 − 1
2GJ

2 + Jκ

}

= exp
{

− 1
2GJ

2 + Jκ− 1
2 log(−G−1)

} (A.3)

The good thing about this is that the expectation value of x can be easily
calculated by the following procedure.

⟨x⟩ = 1
Z(J)

d

dJ
Z(J)J=0 = κ (A.4)

so it is straightforward to see that

⟨x2⟩ = 1
Z(J)

d2

dJ2Z(J)J=0 = −G+ κ2 = −G+ ⟨x⟩2 (A.5)

And since we can always apply the following shift to our variables x → x+κ
so without loss of generality we set κ = 0. Some identities that I will add
without proof are,

⟨x2m+1⟩ =
∫
dxx2m+1 exp

{
1
2G

−1x2
}

= 1
Z(J)

d2m+1

dJ2m+1Z(J)J=0 = 0 (A.6)

And for even exponents we get the following result

⟨x2m⟩ = (2m− 1)!!(−G)m (A.7)



Appendix B

Grassmann Variables

B.1 Algebra
In this section we will be discussing everything we need to know about Grass-
mann Variables and their importance with our thesis. A Grassmann algebra
is defined by a set of Grassmann variables, these are seen to be as a generator
algebera, because they span a complex linear space by making a linear combi-
nation of these variables with complex coefficients. The simplest Grassmann
set can be {1, ψ}. The definition of the Grassmann variable ψ is that the
anticommutator becomes.

{ψ, ψ} = ψψ + ψψ = 0 (B.1)
It is best to think of the elements 1 and ψ as basis vector of a linear space.
We can assume that in terms of matrices

1 =
(

1 0
0 1

)
and ψ =

(
0 0
1 0

)
(B.2)

It is important to note that ϕ2 = 0 as well as the fact that the most general
function of ϕ can be written as

F (ψ) = f1 + f2ψ (B.3)
This can also be generalised to the complex set such that {1, ψ, ψ∗, ψψ∗},
through this set we can see that the algebra satisfies the following the anti-
commutation relation.

{ψ, ψ∗} = ψψ∗ + ψ∗ψ = 0 (B.4)
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We also remind ourselves of ψ2 = ψ∗2 = 0.

B.2 Differentiation
Let the function A(ψ∗, ψ) = a11 + a12ψ+ a21ψ

∗ + a22ψ
∗ψ differentiation with

Grassmnan variables look like.

∂

∂ψ
A(ψ, ψ∗) = a12 − a22ψ

∗ (B.5)

and
∂

∂ψ∗A(ψ, ψ∗) = a21 + a22ψ (B.6)

Furthermore we get,

− ∂2

∂ψ∂ψ∗A(ψ, ψ∗) = ∂2

∂ψ∗∂ψ
A(ψ, ψ∗) = −a22 (B.7)



Appendix C

Hubbard Stratonovich
Transformation

In this section we would like to discuss the power of the HS transformation.
We see that we can start with any action such as the one stateed in section
[]

S[ψ∗, ψ] =
∫ L

0
dxψ∗(x)

(
− ℏ2

2m
∂2

∂x2 − µ

)
ψ(x)

+
∫ L

0
dxdx′ψ∗(x)ψ(x)U(x− x′)ψ∗(x′)ψ(x′)

Here V (x− x′) is assumed to be the coulomb barrier which is often screened
by the media surrounding in this case our one-dimensional system. We can
proceed to define the Green function or our two-point function as the product
of our fermionic operators averaged over time ordering.

G(x, τ ;x′, τ ′) = ⟨ψ∗
ν(x, τ)ψν(x′, τ ′)⟩ (C.1)

So the formal form of the green’s function is in terms of a functional integral of
coherent states which are mathematically represented as grassmann variables.
Which as expressed in the previous section. We finally get the following
equation,

G(x, x′; τ, τ ′) =
∫
d[ψ∗]d[ψ]ψ∗(x, τ)ψ(x′, τ ′) exp

{
− S[ψ∗,ψ)]

ℏ

}
∫
d[ψ∗]d[ψ] exp

{
− S[ψ∗,ψ]

ℏ

} (C.2)
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We proceed to re-write these in terms of a different formalism where:

S[ψ∗, ψ] = (ψ|G−1
0 |ψ) + (|ψ|2|V ||ψ|2) (C.3)

Where J is the current associated with the fermionic field ψ and the last term
of the action is the all-space integral over the quartic interaction term. In
order to facilitate our calculations and render the path integral to a gaussian
integral we can multiply the path integral with the identity such that:

1 =
∫
d[κ] exp

[ 1
2ℏ(κ− V |ψ|2|V −1|κ− V |ψ|2)

]
=
∫
d[κ] exp

[ 1
2ℏ(κ|V −1|κ) − 2(κ||ψ|2) + (|ψ|2|V ||ψ|2)

]
(C.4)

Where we can see that the integration measure contains the factor exp{Tr[log(−V −1/ℏ)]/2}
which is then seen to be canceled with the result to of the Gaussian inte-
gral. We now proceed to calculate the path integral post multiplication of
the identity.

Z[J, J∗] =
∫
d[ψ∗]d[ψ]

∫
d[κ] exp

{
− 1

ℏ
S[ψ∗, ψ] + (J |ψ) + (ψ|J)

}

× exp
{

1
2ℏ(κ− V ψ∗ψ|V −1|κ− V ψ∗ψ)

}

=
∫
d[ψ∗]d[ψ]

∫
d[κ] exp

{
1
2ℏ(κ|V −1|κ)+(J |ψ)+(ψ|J)

}
×exp

{
(ψ|G−1

0 −Σ|ψ)
}

(C.5)

Where we define the Hartree channel self energy to be in the form of ℏΣ(x, τ ;x′τ ′|κ) =
δ(τ − τ ′)δ(x − x′)κ(x, τ). We can now discuss the resulting functional inte-
gral. We see that it has become quadratice in terms of the fermionic fields
which implies that the integral itself is a functional gaussian integral. We
now write the path integral:

Z[J, J∗] =
∫
d[κ] exp

{
1
2ℏ(κ|V −1|κ) + Tr[log(−G−1) − (J |G|J)]

}
(C.6)

Where, from the Dyson equation we can see that:

G−1(x, τ ;x′, τ ′) = G−1
0 (x, τ ;x′, τ ′) − Σ(x, τ ;x′, τ ′|κ)

= 1
ℏ

{
− ℏ

2m
∂2

∂x2 − µ+ κ(x, τ)
}
δ(x− x′)δ(τ − τ ′) (C.7)
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Which when multiplied to the path integral we get a Gaussian integral with
respect to the fermionic fields. This then gives us a path integral in terms of
the κ field such that we now get. So now the effective action after integrating
out the fermionic fields is:

Seff [κ] = −ℏTr
[

log
(

ℏ
2m

∂2

∂x2 − µ

)]
+ 1

2ℏ(κ|V −1|κ) (C.8)

Here we can see that the effective action is Gaussian in terms of the κ field.
the action itself describes.
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Appendix D

Powerful Theorems In Complex
Analysis

Here we talk about the basics of complex analysis we use this section to better
understand the Cauchy-Riemann equations as well as to better understand
Grassmann variables and our fermionic path integrals. Assume we have a

function ϕ that maps, ϕ : C → C. The first theorem that we will be writing
insures the differentiability of the function,

Theorem 1 Let ϕ(u, v) = u(x, y) + iv(x, y), if ϕ is complex differentiable,
then ϕ must obey the Cauchy-Riemann Equations, ∂xu = ∂yv and ∂yu =
−∂xv.

The next theorem will help us in solving integrals using the complex plane,
meaning that it is crucial to know for the sake of solving for the singularities
of the Coulomb propagator.

Theorem 2 The Residue Theorem states: An analytic function ϕ(z) that
has a Laurent series ,ϕ(z) = ∑∞

n=∞ an(z − z0)n can be integrated by contour
C which encircles the singularity z0, If the C encloses multiple poles then,∫
C dzϕ(z) = 2πi∑n Resϕ(zn).
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