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Abstract—A need to label vast amounts of data in medical
image analysis makes supervised algorithms time-consuming
and raises concerns about incorrectly annotated pathologies.
Unsupervised anomaly detection algorithms, which employ Gen-
erative Adversarial Networks (GANs), exist to tackle this issue.
Such methods are supposed to detect unseen abnormal data by
learning the distribution of the normal one. However, the norm is
considered unified for a given task and does not account for any
variability between samples, which may make its bounds vaguer.
We assume that reckoning for external information about an im-
age under examination can resolve this issue. This paper studies
whether conditional GANs are suitable for patch-wise anomaly
detection on brain MR images. We propose incorporating such
attributes as age and patch position to better account for inter-
patient variability. We train two GANs using 64× 64 images of
chairs rotated by different angles from the RC-49 dataset and
32×32×32 patches from T1 weighted brain scans from the IXI
dataset. We then reconstruct normal and abnormal samples with
a modified image projection technique and use the obtained style
vectors and the external attributes to assign anomaly scores to the
images. On the test chair images, our approach achieves accuracy
values of 88.4%, and we found it applicable to the 2D case.
Nevertheless, on the brain patches, it shows a lower accuracy
value of 64.3% for the test samples, indicating its inefficiency
when applied to the 3D MR data in the proposed form. We also
discuss the potential causes of the failed experiment and possible
future avenues for improvement of the proposed approach.

Index Terms—Anomaly detection, generative adversarial net-
works, brain MRI

I. INTRODUCTION

When properly processed, medical images should enable
radiologists to determine a patient’s health status and locate the
lesions accurately if present. However, according to [1], around
40 million diagnostic errors still occur every year worldwide,
with an average error rate from 3% to 5%. Various deep-
learning algorithms exist to address this issue and to assist ra-
diologists [2]. Some of the algorithms mean to identify specific
lesions and involve supervised learning. They require correct
labeling of significant amounts of data and the assumption that
the user knows what exactly to search for, which can pose
considerable time limitations in their use. The introduction
of Generative Adversarial Networks (GANs), which involve
unsupervised learning, contributed to medical image analysis
by resolving these limitations.

A conventional GAN has two components: a generator
and a discriminator. The generator maps latent noise vectors
to the image space, while the discriminator differentiates

between real (training) and fake (generated) images. Through
an iterative process, the discriminator improves its ability to
recognize fake samples, compelling the generator to create
more realistic ones. Several unsupervised anomaly detection
algorithms using a GAN as their foundation have been recently
introduced [3] [4] [5] [6]. They imply training a GAN to
learn the distribution of the images considered normal in the
analyzed modality. With an additional encoder trained to map
images to the latent space, they can reconstruct unseen sam-
ples, analyze the reconstructions, and assign anomaly scores.
The details, such as loss functions, network architectures, etc.,
can vary broadly from one method to another.

We assume that one potential limitation of these methods
is that they may not account for inter-patient variability in
the norm, which can lead to losing information and missing
anomalies. An example of such variability is normal aging in
healthy people which comes with changes in brain structure,
such as a decrease in cortical thickness or an increase in
ventricular width [7]. Also, when using a patch-wise anomaly
detection approach, the norm varies depending on the location
of the patches. Not accounting for it can lead to implicitly
misinterpreting an anomaly as a healthy tissue from a different
location. That is why we believe that reckoning for external
conditions can improve the performance of those unsupervised
anomaly detection methods.

Conditional GANs are widely used to learn conditional
distributions, but there are not many of those that allow
for using continuous labels, which often appear in medical
images. Several recently developed techniques exist to adapt
conditional GANs to be compatible with such labels.

The one proposed in [8] introduced hard vicinal and soft
vicinal discriminator losses and a novel method for label
embedding. According to its findings, a conventional discrete
conditional GAN does not apply to the continuous case,
and the proposed loss functions can make the network learn
the smooth transition. Unfortunately, it does not provide an
option for using multiple labels, which would be a loss for a
conditional anomaly detection method.

Another GAN that incorporates continuous conditions and
allows for multiple labels is a modification of StyleGAN2
proposed in [9]. The GAN is supposed to achieve an explic-
itly controllable disentangled latent space through contrastive
training. The idea lies in forcing the generator to provide out-
puts with the same or different value of an attribute depending
on whether the given latent vectors do or do not share the sub-
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space related to this attribute. Each controllable parameter has
an encoder trained to map its human-interpretable form to the
corresponding latent sub-space. Also, StyleGAN2 has been
extended to 3D and trained on full MR brain images in [10].

This paper aims to utilize StyleGAN2 for 3D patch-wise
anomaly detection in brain MRI, focusing on incorporating
such external information as age and patch position. The pro-
posed approach involves finding a latent vector that generates
a given image via projecting and examining the reconstruction,
extracting the information on the normality of that image.
We first test the method’s ability to decide on the normality
of images on a 2D dataset of chairs rotated by different
angles. We then conduct the main experiment with patches
from T1-weighted MR images. Through this method, we study
the applicability of the aforementioned external conditions to
patch-wise anomaly detection in brain MRI.

II. METHODS

A. Explicitly Controllable GAN

We use the approach proposed by [9] as a basis. Its two
key ideas are to train a StyleGAN2 with a disentangled latent
space with sub-spaces related to specific attributes and provide
a way to explicitly control the human-interpretable ones by
mapping them to the corresponding sub-spaces. This paper
modifies the method to apply to 3D brain patches. We describe
the summarized steps of the used approach in the following
sections.

1) Disentanglement: Similarly to the original article, both
latent spaces Z and W are divided into N + 1 separate
sub-spaces, {Zk}N+1

k=1 and {Wk}N+1
k=1 . Each sub-space has

its own 8-layer MLP, which maps latent noise vectors zk

to style vectors wk. However, only the first N of them
are associated with attributes, and the last is responsible for
the rest non-controllable properties. Then, the style vector
w = (w1w2...wN+1) is fed into the generator. During
training, disentanglement is achieved by using a factorized
contrastive loss

Lc =

N∑
k=1

[
c+k ⟨l

+
k (Ii, Ij)⟩i ̸=j,zk

i =zk
j
+ c−k ⟨l

−
k (Ii, Ij)⟩zk

i ̸=zk
j

]
l+k (Ii, Ij) = max(dk(Ii, Ij)− τ+k , 0)

l−k (Ii, Ij) = max(τ−k − dk(Ii, Ij), 0)

, where zi is the ith sample in a latent noise batch, Ii =
G(zi) is the image generated from that sample, c±k are
weighting coefficients, τ±k are per-attribute thresholds asso-
ciated with same and different sub-vectors, and dk(Ii, Ij) =
dist(Mk(Ii),Mk(Ij)) with Mk : I → RDk being a differ-
entiable mapping function for the kth attribute, e.g., a neural
regressor or an encoder, and dist being a distance metrics,
e.g., L1, L2, or euclidean distance. In this work, the mapping
functions are all neural networks, and we will further refer to
them as auxiliary networks. Also, the distances are supposed
to range from 0 to 1.

Each training latent noise batch is constructed following
the rule based on the one from the original paper [9], i.e.,
containing pairs that share only 1 sub-vector zk attributed to

a controllable feature k ∈ {1, ..., N}. The difference from the
original approach is that if there is a pair zi and zj that share
kth1 sub-vector, none of them need to share any kth2 sub-vector
with another sample in the batch if k2 ̸= k1. Formally, in a
batch of size NB = 2log2NB with log2NB ∈ Z

∀k ∈ {1, ..., N},∀i ∈ {1, ..., NB} : (i mod 2k) ∈ {1, ..., 2k−1}

∃!j = i+ 2k−1 : zk
i = zk

j

The concept is shown in figure 1.

Fig. 1: A sketch of the generator training method inspired
by [9] but focused on how we construct latent noise batches.
Latent or style vectors that share one sub-space have the same
color in the corresponding column. Mappings are painted in
the original latent sub-vector’s color. Elements in the distance
matrices are green for the distances to minimize and red for
the opposite.

2) Explicit Control: To control specific attributes, we use
the approach from the original article without any changes. N
distinct datasets {{wk

i , y
k
i }

Ns
i=1}Nk=2 are created by generating

images Ns images with style vectors {wi}Ns
i=1 mapped from

latent noise samples {zi}Ns
i=1 and predicting their attributes

{yki }
Ns
i=1. Then, N − 1 encoders (controllers) are trained to

reconstruct a style vector from a human-interpretable attribute.
The first sub-space has no controller since, in this work, the
sub-space W1 is always linked to the object’s identity in an
image. Even though ID is a valid parameter, it can only be
compared between two or more images and has no explicit
mathematical representation y1. That is why the only possible
encoder for it is just its MLP used during training which is
supposed to map latent noise vectors to style vectors of specific
IDs, and it is not considered a controller.

B. Anomaly Detection

This work uses a patch-wise or image-wise anomaly de-
tection approach, implying that anomaly scores are assigned
not to each pixel (or voxel in 3D case) but to the whole
patches. We can then produce an anomaly map by overlapping
the patch-size images of the corresponding anomaly score
intensities. The first step of the proposed method is to train
an explicitly controllable GAN, which also implies training
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the networks used as mapping functions for the factorized
contrastive loss. Then, drawing a connection between the
image space and the style space is necessary. To do this,
we use the image projection approach from [9] with some
modifications.

1) Projection: As said in [11], training an encoder may
result in poor generalization beyond the train set, which is
why we reconstruct images using the projection method for
the StyleGAN2. The proposed approach involves optimizing
a style vector to find the one that maps to a given image. We
expand the sub-vectors related to ID and other non-controllable
features the same way as in the original method, which means
that one for each resolution is optimized independently. Since
we suppose that the controllable attributes of the images are
known, in this work, the sub-vectors attributed to them are
not optimized but encoded by the corresponding MLP. Also,
to prevent style vectors from going too far from the learned
distributions, we modify the method so that their principal
components divided by the corresponding standard deviation
are optimized instead. During the optimization, the vectors are
penalized for being longer than three, which is the same as
being more than three standard deviations far from the mean
point. This length-related penalty is

Lr = max(0, r1 − 3) +max(0, rN+1 − 3)

rk = |Akwk −wk|
, where Ak is a matrix of the transformation to the PCA space
of style vectors of kth ID-related or non-controllable attribute.
It is supposed to improve the stability of the projection
technique.

We also make one change in the approach when working
with the 3D images. Instead of reconstructing with a percep-
tual loss usually based on a VGG network, a negative structural
similarity index measure (SSIM) in combination with L2 loss
is applied.

2) Anomaly Score: The lengths r1 and rN+1 are analyzed
to assign anomaly scores to reconstructed images. NA

s nor-
mal and abnormal images are projected using the described
method, and a dataset {r1i , r

N+1
i , {yki }Nk=2}

NA
s

i=1 of distances
and controllable features is obtained. Then, a random forest
classifier is fit to predict if a given sample is from an abnormal
image. This classifier can then be applied to any images
reconstructed by projection and assign anomaly scores which
are just probabilities of the distances and the attributes to
belong to the anomaly-related class.

III. DATA AND EXPERIMENTS

In this study, we conduct two experiments to test the perfor-
mance of the proposed approach. The first aims to evaluate the
method’s ability to learn the conditional distribution of small
2D images and decide on the normality of unseen samples.
For this experiment, a dataset of rotating chairs is chosen
to provide results that can be easier visually interpreted. The
second one studies whether the method applies to 3D patches
from T1-weighted brain MR scans and whether it is possible to
reconstruct a full brain image out of the generations and locate
anomalies by these means. It also focuses on augmenting the
data to generalized for multiple scanners.

(a) normal (b) abnormal

Fig. 2: Example of training images from RC-49 dataset

A. RC-49 Dataset

1) Data: The first dataset used in this work is the RC-49
dataset introduced in [8] includes images of chairs belonging
to 49 types. Each image depicts a chair at a specific angle
ranging from 0.0° to 359.9°, with a step of 0.1°. We use 40
types of chairs for training and reserve the remaining nine for
testing. No validation and hyperparameter tuning is performed.
We only use angles from 0.0° to 89.9° in the experiment,
resulting in a training subset of 36000 images and a test subset
of 8100 images. The examples of training images are shown
in figure 2a. This dataset serves as a simplified case to test the
proposed approach, similar to how Fashion MNIST is used in
[5]. Its primary purpose is to evaluate the method on a simple
example of 2D images.

2) Preprocessing: Data augmentation is applied to the
images to train the angle-predicting network. It includes
randomly changing the hue of the images, adding padding,
and then randomly cropping to the original size, resulting
in the chairs shifting in the field of view. It is followed by
adding Gaussian noise with a randomly selected but restricted
standard deviation, clipping the image to the original intensity
ranges, and finally normalizing the image intensities to a
range between −1 and 1. The same steps are applied for
the recognition network, except for the hue-changing since
it makes it hard to tell if two images of one chair rotated
at different angles are still the same chair. We apply no
augmentation for training the explicitly controllable GAN. We
only normalize the images to the mentioned intensity range.

3) Experiment:
a) Auxiliary networks: For the case of rotating chairs, we

use N = 2 controllable parameters for calculating factorized
contrastive loss. The first is their ID, i.e., their type, and the
second is the angle they rotated by. In theory, there can be an
infinitely large number of distinctive chairs, so we consider the
ID parameter continuous, which involves training a recognition
network. For that, we use a network based on ResNet18 2D
torchvision architecture [12] that outputs a 128-dimensional
embedding. We train it for ten epochs with a triplet loss [13]
with a margin of 0.5. Its training involves semi-hard negative
mining introduced in [14], which means the network is only
trained on the triplets with a loss lower than the margin but
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greater than zero. The used optimizer is gradient descent with
Nesterov momentum.

Then, the angle-predicting regression network based on the
same architecture is trained for 50 epochs with L2 distance as
the loss function and the same optimizer.

We use a batch size of 32 for both the mentioned networks.
b) GAN: After that, the StyleGAN2 with a disentangled

latent space is trained. The sizes of the latent sub-spaces as
well as the parameters for the factorized contrastive loss can be
seen in table I. The generator has 16, 32, 64, 128, 256 channels
from 4× 4 to 64× 64 image sizes, and the discriminator has
32, 64, 128, 256, 256 channels from 64× 64 to 4× 4 image
sizes. Adam optimizer with the same adjustments as in [9]
is used. The batch size is 32, and the network is trained for
300000 steps.

TABLE I: Contrastive loss parameters. RC-49 dataset

attribute latent dim τ+ τ− dist D

ID 48 0.05 0.35 Euclidean 128
Angle 48 0.03 0.15 L1 1
Other 32 N/A N/A N/A N/A

When the training ends, one fully connected angle-to-style
encoder is trained on Ns = 32000 for 100 epochs with L1

reconstruction loss and the same optimizer settings as used
for the mapping networks.

Finally, we reconstruct NA
s = 5000 training chair images

and the same number of unseen ones from the test dataset.
One-half of each set consists of normal images such as the
ones depicted in figure 2a. The other contains the same but
with anomalous blots of random color added to a random
location. The example can be observed in figure 2b.

As the five ID-related per-resolution style sub-vectors and
five non-controllable attribute-related ones are obtained with
the projection technique, we calculate their lengths in the
standardized PCA spaces. The 12 features, including the
known angles and L1 reconstruction errors, are used to fit
a random forest classifier. We find optimal parameters for it
with a grid search involving a cross-validation technique.

B. IXI Dataset

1) Data: IXI dataset includes 600 MR images of normal
and healthy subjects acquired using various protocols. How-
ever, only T1-weighted scans of 563 patients with known
ages are used in this work for ease. The images come from
three different scanners. We divide the dataset into train
and test subsets with 300 and 263 images, respectively. No
hyperparameter tuning is performed.

2) Prepocessing: The brain images are first skull-stripped
using the HD-BET tool [15]. As an output, it provides both
skull-stripped images and their masks. Then the images are
registered to the SRI space [16] using affine registration
from SimpleElastix [17] extension of SimpleITK [18]. Their
resulting size (Z×Y ×X) is 155×240×240. The masks are
registered using the same transforms as their corresponding
images and then binarized with a threshold of 0.5. After that,
we apply to them a binary opening with a radius of 2.

Since the data comes from only three hospitals, augmenting
the images to generalize to multiple scanners is suggested.
For that purpose, we use an approach proposed by [19] with
some modifications. Images are considered a Gaussian Mixture
with K components where K = 3 for the T1-weighted scans
(Cerebrospinal Fluid, Gray Matter, and White Matter). The
unmodified augmentation includes the steps below.

Let θn be the parameters of a mixed Gaussian distribution
for the nth image under its mask

θn = (µ1,n, ..., µK,n, σ
2
1,n, ..., σ

2
K,n)

Shifts per parameter are sampled from a multivariate uniform
distribution

∆θ ∼ U(−σ(θ),+σ(θ))

and added to the initial parameters to get the augmented ones

θ′
n = θn +∆θ

Then, the intensity of the masked voxels is transformed

x′ =

K∑
k=1

pn(C = k|x)
[
x− µk,n

σk,n
σ′
k,n + µ′

k,n

]
, where pn(C = k|x) is a probability of a voxel with the
intensity of x belonging to the class k in the nth image under
its mask.

In this work, we use a modified version of the described
approach. The main difference from the original paper is
that the parameters are not considered independent. Instead,
PCA is fitted, and all the changes happen in the space of the
principal components.

A∆θ ∼ U(−σ(Aθ),+σ(Aθ))

∆θ = A−1A∆θ

, where A is the matrix of a linear transformation to the
principal component space. With this change, the augmented
images are less likely to go beyond the norm, which we
assume to be essential for anomaly detection tasks. Then, we
apply z-score normalization to the masked voxels and fill the
background of the images with Gaussian noise.

The images of two preprocessed brains can be observed in
figure IV.

In this work, we train networks on 3D image patches of size
32× 32× 32, which have not more than 50% background. At
the beginning of each epoch, a certain number of patches are
sampled, with center points randomly selected from a mask
of the SRI brain atlas. The patches undergo the prepossessing
steps described above as complete images, i.e., using precal-
culated statistics.

3) Experiment:
a) Auxiliary networks: In the case of brain patches, we

use N = 3 controllable parameters for calculating factorized
contrastive loss. The first is the patients’ ID, the second is
their age, and the third is the patch position. A network based
on ResNet18 3D MONAI architecture [20] with pre-trained
weights that outputs a 128-dimensional embedding is trained

https://brain-development.org/ixi-dataset/
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Fig. 3: Examples of the central slices of brain images after
preprocessing.

for 30 epochs with a triplet loss with a margin of 0.5. Semi-
hard negative mining [14] is used in the same way it is applied
in the first experiment.

Then, the age-predicting regression network based same
architecture is trained for 40 epochs with L2 distance as the
loss function.

The final network necessary for the contrastive loss is the
patch position-predicting one. It is trained for 40 epochs also
with L2 distance as the loss function.

We use a batch size of 32 to train all three networks.
b) GAN: After that, we train the StyleGAN2 with a

disentangled latent space. The sizes of the latent sub-spaces
and the parameters for the factorized contrastive loss can be
seen in table II. The generator has 32, 64, 128, 256 channels
from 4×4×4 to 32×32×32 image sizes, and the discriminator
has 64, 128, 256, 256 channels from 32×32×32 to 4×4×4
image sizes.

The used batch size is 32, and the training lasts for 100000
steps.

TABLE II: Contrastive loss parameters. IXI dataset.

attribute latent dim τ+ τ− dist D

ID 64 0.05 0.45 Euclidean 128
Age 32 0.02 0.18 L1 1

Position 128 0.02 0.22 L1 3
Other 32 N/A N/A N/A N/A

After the training, two fully connected age-to-style and
position-to-style encoders are trained for 100 epochs with L1

reconstruction loss.
Lastly, 2000 training brain patches and 1000 unseen ones

from the test dataset are reconstructed. In the same way
as in the case of chairs but in 3D, one-half of each set
consists of normal images, and the other contains the same but
with anomalous blots of random intensity added to a random
location.

The four ID-related per-resolution sub-style vectors and
four non-controllable attributes related ones are obtained for
one patch with the projection technique and undergo the
same transformations to the PCA spaces as in the RC-49
dataset experiment. All the patches of one brain are optimized
independently, and the only style sub-vector that all the patches

(a) Training (b) Test

(c) Generated

Fig. 4: Distributions of distances between embeddings of two
images of the same chair rotated by different angles and of
distances between ones of two images of different chairs.

share is the one that determines the patient’s age. In total, 11
features, including age and patch coordinates, are acquired to
fit a random forest classifier on them.

IV. RESULTS

A. RC-49 Dataset

1) Auxiliary networks: We test the trained recognition
network’s performance on the training, test, and generated
images. The percentages of the successfully separated triples
and of those separated at least by the margin are depicted
in table III, with d being a euclidean distance, a, p, and n
being the embeddings of anchor, positive and negative images
respectively, and m = 0.5 being a margin. One can observe
that the ratios are generally lower for the test data. The
distributions of distances between embeddings of two images
of the same and different chair types are shown in 4. For the
generated data, we use z1

1 = z1
2 and zk

1 ̸= zk
2 ,∀k ∈ {2, 3}

to create a pair images of the same class. The distributions
for the training and test samples are visually different, and the
latter ones seem to be separated worse.

TABLE III: Recognition network performance. RC-49 dataset

P (d(a, p) < d(a, n)),% P (d2(a, p) < d2(a, n)−m),%

Training 100.0 100.0
Test 95.6 85.8

Generated 99.4 97.5

The trained angle-predicting network shows an average L1

error between predictions and target angles of 0.5° and 2.4°
for training and test images, respectively. The distribution of
the first two principal components of the angle-related sub-
vectors {w2

i }
Ns
i=1 mapped from {z2

i }
Ns
i=1 ∼ N (0, 1) is depicted

in figure 5 with color showing the angles in degrees predicted
from the generations with corresponding style vectors. They
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explain 82% and 8% of the total variance. The trained con-
troller (encoder) allows for generating images of chairs rotated
by given angles. The images generated with it (6) demonstrate
gradual changes in angles and preserved chair types, which
means that identity does not correlate with the angle-related
sub-space and confirms successful disentanglement.

Fig. 5: Two first principle components of the angle-related
style sub-vectors. The color shows the angles in degrees pre-
dicted from the generations with corresponding style vectors.

Fig. 6: Chairs generated with given angles from 0° to 90°.

2) Image Reconstruction: We reconstruct the seen and
unseen images with the projection technique to obtain the 10
style sub-vectors. Examples of the resulting reconstructions
are shown in figure 7. We alter the angle-related sub-vectors
with the controller to yield the angle of 30° to see whether
the images preserve chair appearance or overfitting occurs.

3) Anomaly Detection: Just utilizing simple thresholding
for L1 distances and choosing the optimal threshold value of
0.107 based only on the training samples, it is possible to
achieve an accuracy of 85.5% for training and of 77.0% for
test images. Altering that value for each dataset independently,
one can obtain received operating characteristic (ROC) curves

(a) To reconstruct (b) Reconstructed (c) ”Rotated” by 30°

Fig. 7: Image projection on RC-49 Dataset. T and V mean the
row depicts train and test images respectively. N and A stand
for normal and anomalous w.r.t. the images in the row.

with the area under the curve (AUC) of 0.937 for training and
test cases.

Concerning the analysis of the 12 obtained parameters, the
optimal settings for the used random forest classifier found
with a grid search with cross-test only on the training sample
are the maximum depth of 11 and the number of estimators
of 100. This combination yields a training accuracy of 98.9%
and a test accuracy of 88.4%. With varying thresholds for the
predicted probabilities, it is possible to obtain ROC curves
shown in figure 8. The ROC AUC is 0.999 for the training
samples and 0.957 for the test ones.

Fig. 8: ROC curves for the random forest classifier. RC-49
dataset.

B. IXI Dataset

1) Auxiliary networks: The performance of the recognition
network is shown in table IV. The distributions of euclidean
distances between embeddings of brain patches from one
and two patients are shown in figure 9. There is no visual
difference between the distributions for the training and the
test data.

TABLE IV: Recognition network performance. IXI dataset

P (d(a, p) < d(a, n)),% P (d2(a, p) < d2(a, n)−m),%

Training 97.1 93.0
Test 96.4 91.7

Generated 95.1 86.1

The trained age-predicting network shows an average L1

error between prediction and target age of 5.5 and 6.9 years for
training and test patches, respectively. The distribution of the
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(a) Training (b) Test

(c) Generated

Fig. 9: Distributions of distances between embeddings of
two different brain patches from the same patient and those
between the ones of two brain patches from different patients.

first two principal components of the age sub-vectors {w2
i }

Ns
i=1

responsible for the age and mapped from {z2
i }

Ns
i=1 ∼ N (0, 1)

is shown in figure 10. They explain 63% and 8% of the total
variance.

Fig. 10: Two first principle components of the age-related style
sub-vectors. The color shows the ages in years predicted from
the generations with corresponding style vectors.

The patch position-predicting network gives predictions that
are, on average, 2.9 voxels far from the real ones for the
training images and 3.0 voxels far for the test ones. For the
position-related sub-vectors {w3

i }
Ns
i=2, the top five principle

components explain 26%, 25%, 19%, 14%, and 1% of the
total variance. Taking this into consideration, along with the
fact that the position is a 3D vector, it is not possible to show
the whole picture. One can observe the distribution of only
the first two components with color-coded axial coordinates
in figure 11.

The trained age-to-style and patch position-to-style encoders
make generating whole-brain images with given ages possible.
One can do it by choosing specific coordinates for the patch
centers, generating patches with centers at those coordinates
by encoding, and reconstructing the whole-brain image by

Fig. 11: Two first principle components of the patch position-
related style sub-vectors. The color shows the axial coordinates
predicted from the generations with corresponding style vec-
tors.

averaging. Figure 12 shows an example of the images obtained
with this technique.

Fig. 12: Example of brains generated using the same ID-
related and non-controllable features-related sub-vectors for
all patches in a brain (ID). The patch centers are sampled
with a stride of 16 for all axes.

2) Image Reconstruction: Using the projection method, we
reconstruct brain patches and obtain the eight style sub-vectors
per patch. It is unrepresentative to show 3D reconstructed
patches, so the central brain slices obtained by averaging the
patches are shown in figure 13 instead. For that, centers are
sampled with strides 30, 29 and 25 for Z, Y , and X axis,
respectively. We choose strides comparable to the patch size
and do not reconstruct some parts of the brain due to the
extremely long time required to project one patch.

3) Anomaly Detection: One can achieve an accuracy of
62.3% for the training and 60.5% for the test brain patches by
simply applying thresholding based on the L1 distances and
selecting the optimal threshold value of 0.444. By varying the
threshold value for each dataset, one can generate ROC curves
with an AUC of 0.669 for the training case and 0.658 for the
test case.
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Fig. 13: The central slices of a projected brain image from the
test dataset belongs to a patient around 83 years old.

After examining all the 11 parameters, a grid search with
cross-validation on the training sample determines that the
optimal settings for the random forest classifier are a maximum
depth of 3 and 100 estimators. This combination resulted in a
training accuracy of 67.1% and a test accuracy of 64.3%. By
modifying the threshold for the predicted probabilities, ROC
curves are generated and illustrated in figure 14. ROC AUC is
0.733 for the training samples and 0.733 for the test samples.

Fig. 14: ROC curves for the random forest classifier. IXI
dataset.

V. DISCUSSION

This study demonstrates that the proposed version of Style-
GAN2 succeeds in the tasks original to [9], which are the
disentangled latent space and an ability to control the attributes
of images. In the experiment with the chair images, the angles
are controllable and do not correlate with the chair types.
The same applies to the experiment with brain patches. In
the latter, one can appreciate the features similar between two
brains generated with the same age. Among those features
is the size of the ventricles, which is expected since existing
works show that it correlates with age [7]. In the latter, we
also show that one can reconstruct whole-brain images by

overlapping patches at the desired positions. Nevertheless,
the performance of the proposed reconstruction method is
questionable. It provides visually worse reconstructions of
the unseen chairs, which we believe ensues overfitting of the
auxiliary networks. Speculating on the cause of this overfitting,
we can assume that the networks cannot generalize well from
the 40 chairs in the training set. Either more chair types
or a stronger augmentation may be required to resolve this
issue. The obtained brain patches do not perfectly match when
overlapped to create a whole-brain image. We reckon that
some unidentified problems in training the auxiliary networks
may be a potential reason for this. Utilizing a random forest
classifier to assign anomaly scores to the reconstructed images
outperforms simple thresholding of the reconstruction errors.
The accuracy and ROC AUC values show that the anomaly
detection method works decently on the 2D chairs but is
inefficient for the 3D brain patches on the used artificial
anomalies.

A. Limitations
The method’s final performance is influenced by many fac-

tors starting from how well the auxiliary networks are trained
and ending with the choice of the significant number of hyper-
parameters for the contrastive loss. If one network overfits or
one latent sub-space does not disentangle, it can be impossible
for the GAN to reconstruct unseen samples. Furthermore,
this fact complicates determining where the existing problems
originate. Also, since the method is sensitive to errors in its
compounds, it requires a considerable amount of time to adapt
it to a new task. We also do not perform validation in this work
because of time limitations. For example, on the used GPU,
which is NVIDIA TITAN X with 12 GB of memory, training
a StyleGAN2 for 100000 steps to generate brain patches of
size 32 × 32 × 32 takes about 15 days. With such a slow
training process, fine-tuning all the hyperparameters that can
significantly influence the results becomes immensely hard.
Not only training part is time-limiting, but the fact that it
requires generating around 400 brain patches to only achieve
a stride of 16 and that it takes about 45s to project one patch
makes it not applicable to processing large amounts of data.

Another weakness of the study is not testing the proposed
approach on real anomalies and the lack of a comparison
with other state-of-the-art methods for unsupervised anomaly
detection in brain MRI. However, we think that the artificial
case already shows the method’s inefficiency for this task.

B. Future prospects
Sticking to the proposed method, one can try improving the

results by using an extra sub-space responsible for contrast-
related parameters manipulated in the augmentation. It can
prevent the possible leak of these features into some control-
lable sub-spaces. This change can facilitate generating full
brain images without optimizing as many ID-related sub-
vectors as there are patches to reconstruct. Using more data
and eliminating the need for augmentation can also help.

We do not use adaptive discriminator augmentation in this
paper, but modifying it for a 3D case and adding it to the
method can probably reduce any overfitting.
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One can lower the patch size to reduce the time needed to
train the networks. However, it requires considering its influ-
ence on the performance of the attribute-predicting networks
since the less information one patch contains, the worse the
achievable results.

Additionally, moving away from the patch-based approach
can eradicate any need for using the patch position as one of
the controllable parameters making the distribution of the brain
scans less variable. However, in that case, the localization of an
anomaly will have to be identified by analyzing the activation
maps (or using other methods) since the proposed approach
is strongly patch-based and can give only one anomaly score
per image.

Finally, one can also revise the reconstruction method and
adapt metrics more suitable than the used SSIM loss.

C. Clinical applicability
The proposed approach has no potential use in the clinic to

assist radiologists in its current form. Even though we only
test it on artificial anomalies, the resulting accuracy values
are too low and close to random guessing. The discussed
time limitations also prevent it from applying to real clinical
problems. Nevertheless, it introduces a way to incorporate
external attributes for anomaly detection tasks. The existing
methods do not provide this option. The study demonstrates
the weaknesses of the approach one should overcome. Further
research can use these findings and adapt the method to study
its performance compared to the existing anomaly detection
algorithms.

VI. CONCLUSION

In this work, we attempted to utilize controllable Style-
GAN2 for anomaly detection in brain MRI. We showed that
the method originally proposed in [9] works for such small
images as the rotating chairs from the RC-49 dataset, and in
combination with the new modified projection technique is
capable of detecting ”spoiled” images. We also demonstrated
that using a random forest classifier provides better accuracy
than just thresholding the reconstruction errors. However,
when applied to real brain MR data, the method was in-
effective in the proposed form and with the used hyper-
parameters. Despite that, in both cases, the method was shown
to successfully reconstruct and manipulate unseen samples and
modify their parameter, even though no adaptive discriminator
augmentation was used and the datasets were relatively small.
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