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Abstract 

Major depressive disorder (MDD) is one of the leading contributors to global disease burden. 
There are several mechanisms that might affect MDD. First of all, several neurotransmitters 
are involved in MDD; reduced levels of serotonin, dopamine noradrenaline, norepinephrine, 
epinephrine and GABA are associated with MDD. Contrarily, excessive levels of glutamate 
can aggravate depressive symptoms. Besides neurotransmitters, levels of brain-derived 
neurotrophic factor (BDNF) are reduced in MDD patients. Furthermore, MDD is characterized 
by a hyperactive hypothalamic-pituitary-adrenal (HPA) axis. Lastly, inflammation seems to 
aggravate depressive symptoms. The gut-brain axis has been demonstrated to be involved in 
the pathogenesis of depression. First of all, gut microbes can regulate the synthesis of 
neurotransmitters, which can signal the vagus nerve or enter the blood circulatory system. 
Furthermore, the gut can produce metabolites that affect the brain, most prominently short-
chain fatty acids (SCFAs). Lastly, gut microbes can have (anti-)inflammatory effects on the 
host. Although gut microbes can affect the brain via the gut-brain axis, there is no clear shift in 
the microbiome composition of MDD patients, as literature reports are conflicting. Nonetheless, 
probiotic studies indicate that Lactobacillus and Bifidobacterium can alleviate depressive 
symptoms. A vegetarian diet decreased Bifidobacterium species and Lactobacillus 
amylovorus, suggesting a disadvantageous effect of a vegetarian diet on MDD. Meat 
consumption enhances serotonin and tryptophan (serotonin precursor) levels in the gut. 
However, this does not necessarily enhance serotonergic neurotransmission in the brain. 
Besides serotonin, tryptophan is also a precursor for kynurenine. Kynurenine can induce a 
neurotoxic effect. Meat consumption may inhibit kynurenine pathway by increasing 
Lactobacillus. However, meat-induced inflammation may upregulate the neurotoxic pathway 
of kynurenine. Besides tryptophan, tyrosine might also affect MDD. Tyrosine is a precursor for 
dopamine, epinephrine and norepinephrine. Tyrosine is synthesized in the gut. However, 
dietary tyrosine did not induce antidepressant effects. Thus, the effect of tyrosine metabolism 
on MDD remains unclear. Vitamins might affect MDD as well. Both vitamins abundant in a 
vegetarian diet (folate) as well as in an omnivorous diet (B12) could enhance monoaminergic 
neurotransmission. Moreover, meat, which is high in sulfide and zinc, seems to stimulate 
GABAergic neurotransmission and inhibit glutamergic neurotransmission. D-amino acids, 
which are abundant in a vegetarian diet, may stimulate glutamatergic neurotransmission, whilst 
folate seems to reduce it. Moreover, both a vegetarian and omnivorous diet can result in 
metabolites that enhance BDNF levels. Lastly, it is important to emphasize that an omnivorous 
diet induces inflammation, which could aggravate MDD. Hence, through different metabolites, 
a vegetarian and omnivorous diet are able to either positively or negatively impact MDD. The 
conflicting results might suggest there is no direct relation between a vegetarian diet and MDD. 
Nonetheless, ambiguous results might also suggest the need for additional research, as the 
relation between diet, the gut microbiome and cognitive functioning is very complex. 
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Layman’s summary 

Major depressive disorder (MDD) is one of the leading contributors to global disease burden.  
There are several mechanisms that might affect MDD. First of all, several neurotransmitters 
are involved; reduced levels of serotonin, dopamine noradrenaline, norepinephrine, 
epinephrine and GABA are associated with MDD. Contrarily, excessive levels of glutamate 
can aggravate depressive symptoms. Besides neurotransmitters, several neuroprotective 
peptides and proteins are reduced in MDD patients. The most important one being brain-
derived neurotrophic factor (BDNF). Furthermore, MDD is often elicited or exacerbated by 
chronic stress. The hypothalamic-pituitary-adrenal (HPA) axis, the primary stress system in 
humans, seems to be hyperactive in MDD patients. Lastly, inflammation seems to aggravate 
depressive symptoms. Microbes in the gut might impact MDD by communicating with the 
central nervous system. This communication is also known as the gut-brain axis. Gut microbes 
can regulate the synthesis of neurotransmitters, which can then signal to the brain. Besides 
neurotransmitters, gut microbes can produce other compounds that might affect brain 
functioning. The most important one of these compounds are short-chain fatty acids (SCFAs). 
Lastly, gut microbes can also have (anti-)inflammatory effects on the host. Although gut 
microbes can affect the brain via the gut-brain axis, there is no clear shift in the microbiome 
composition of MDD patients, as literature reports are conflicting. However, ingestion of certain 
microbes does seem to affect MDD; Lactobacillus and Bifidobacterium are bacterial species 
that alleviate depressive symptoms. A vegetarian diet decreased Bifidobacterium species and 
Lactobacillus amylovorus. This suggests a disadvantageous effect of a vegetarian diet on 
MDD. Furthermore, the effects of the macro- and micronutrients in a vegetarian or omnivorous 
diet are discussed. Gut microbes can metabolize tryptophan to serotonin. Meat consumption 
can enhance tryptophan and serotonin levels in the gut. However, this does not necessarily 
mean serotonin levels in the brain are enhanced. Besides serotonin, tryptophan can also be 
metabolized into kynurenine. Enhanced kynurenine levels may have a neurotoxic effect. Meat 
protein may reduce kynurenine levels by increasing Lactobacillus species. Conversely, meat 
can also induce inflammation, which might enhance kynurenine levels. Besides tryptophan, 
tyrosine might also affect MDD. Tyrosine can be metabolized into dopamine, epinephrine and 
norepinephrine. Gut microbes can synthesize tyrosine. However, dietary tyrosine did not 
induce antidepressant effects. Thus, the effect of tyrosine metabolism on MDD remains 
unclear. Vitamins might affect MDD as well. Both vitamins abundant in a vegetarian diet (folate) 
as well as in an omnivorous diet (B12) could enhance neurotransmitters that might alleviate 
depressive symptoms. Moreover, both a vegetarian and omnivorous diet can result in 
metabolites that enhance BDNF. Lastly, it is important to emphasize that a meat-based diet 
generally seems to induce more inflammation, which could negatively impact depressive 
symptoms. Hence, through different metabolites, a vegetarian and omnivorous diet seem to 
be able to either positively or negatively impact MDD. The conflicting results might suggest 
there is no direct relation between a vegetarian diet and MDD. Nonetheless, ambiguous results 
might also suggest the need for additional research, as the relation between diet, the gut 
microbiome and cognitive functioning is very complex.  
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Introduction 

Major depressive disorder (MDD) is a leading contributor to global disease burden. The WHO 
ranks depressive disorders as the single largest contributor to non-fatal health loss globally 
[1]. In 2020, the global prevalence of MDD was estimated at approximately 3153 cases per 
100.000 population. During the COVID-19 pandemic, a major increase in disease prevalence 
could be observed. A systemic literature review and meta-analysis of 46 studies estimated an 
increase of approximately 28% [2]. Patients with MDD are dying 5 to 10 years earlier; due to 
maladaptive health risk behaviors patients often develop medical disorders such as vascular 
disease, diabetes, chronic obstructive pulmonary disease and cancer [3–5]. MDD is 
characterized by a depressed mood, loss of interest or pleasure (anhedonia), feeling of 
worthlessness, indecisiveness, significant weight or appetite alteration, insomnia or 
hyposomnia, psychomotor agitation or retardation, fatigue, diminished ability to concentrate 
and suicidality [6]. To be classified as MDD, five or more symptoms are requires to be present 
during a two-week period and should cause impairment of functioning [7].  
 
The underlying pathophysiological mechanisms of MDD remains somewhat elusive. Evidence 
suggests depression is caused by a cumulative effect of environmental stress and genetics 
[8,9]. Nonetheless, as this review focuses on diet, genetics are disregarded. Chronic stress 
can lead to dysfunctions in monoaminergic systems, neurotrophic factors, synaptic plasticity 
and the hypothalamus-pituitary-adrenal axis (HPA axis). These dysfunctions induce neuronal 
atrophy in several regions of the brain, most notably the hippocampus and prefrontal cortex 
[10]. Nonetheless, the heterogeneity of MDD makes it difficult to clarify the exact 
pathophysiology. Diagnosis of MDD is not etiologically derived but based solely on symptoms. 
Hence, it is proposed depression might result from multiple pathogeneses, making it difficult 
to illuminate the definite mechanisms involved [11].  
 
Nonetheless, there is accumulating evidence that the gut microbiome can modulate brain 
activity and is involved in development of neuropsychiatric disorders, including MDD. The gut 
microbiome has a bidirectional communication with the central nervous system; the gut-brain 
axis [12]. Gut microbes might be involved in the pathophysiology of MDD through neural, 
endocrine or immune pathways. Dietary patterns substantially impact the gut microbiota. 
Hence, dietary patterns might exacerbate or alleviate the risk of developing MDD. As food 
components in a vegetarian diet generally differ from that of an omnivorous diet, it is proposed 
there might be an effect on the development of depressive symptoms [13]. Hence, this leads 
to the question: what is the effect of a vegetarian diet compared to an omnivorous diet on the 
gut microbiome and the pathophysiology of major depressive disorder? This thesis will discuss 
several contemporary theories on the pathophysiology of MDD, mechanisms of the gut-brain 
axis, differences in gut microbiome composition and the effect of metabolites of an omnivorous 
or vegetarian diet on cognitive functioning.  
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Chapter 1: Etiology of major depressive disorder 

The exact etiology of MDD is still unclear. However, literature reports several hypotheses. The 
most relevant include: 1) the monoaminergic hypothesis, 2) the neuroplasticity hypothesis, 3) 
disruption of the stress response in the HPA axis and 4) cytokine hypothesis. The following 
chapter will briefly explain these theories.  
 
1.1 Monoaminergic hypothesis 
The monoaminergic hypothesis is one of the oldest hypotheses on the development of MDD. 
Abnormalities of monoamines have long been recognized in the pathophysiology of MDD. 
These monoamines include noradrenaline, serotonin, norepinephrine and dopamine [14]. Most 
contemporary antidepressants are still using mechanisms to increase these monoamines at 
the synapse, either by inhibiting neuronal uptake or by increasing their release [15]. Possible 
involvement of all neurotransmitters in development of MDD will be briefly discussed. 
 
Noradrenaline 
Noradrenaline is involved in several physiological processes in the brain, including learning 
and memory, sleep, arousal and adaptation [16]. Even before the monoaminergic hypothesis, 
the catecholamine hypothesis suggested major symptoms of depression arise due to 
noradrenaline deficiency [17]. The role of noradrenaline in MDD has been confirmed in animal 
studies with tyrosine hydroxylase, a rate-limiting enzyme in the biosynthesis of noradrenaline. 
In knockout mice without a tyrosine hydroxylase gene, noradrenaline levels decreased 
significantly in several brain regions. These mice displayed depressive-like behavior comapred 
to healthy controls, suggesting involvement of noradrenaline is MDD development [18]. As its 
importance has been recognized for some time, there are alreadye several antidepressants 
that have a stimulating effect on noradrenaline concentrations [19]. Nonetheless, the 
catecholamine hypothesis has been revised over time, as the importance of serotonin became 
more apparent. Hence, the hypothesis changed into the monoaminergic theory of depression.  
 
Serotonin  
The involvement of serotonin in the etiology of MDD has long been recognized. The link 
between lowered serotonin levels and depression was first suggested in 1960 [20]. Mice with 
impaired hippocampal serotonin receptor expression showed more depressive behavior [21]. 
The serotonergic system may be more involved in aspects of behavior; modulating sexual 
function, appetite, and impulsiveness. At both the brain level and the spinal cord level, 
serotonin is involved in the etiology of some physical and emotional symptoms of depression 
[14,22]. Serotoninergic stimulation is also associated with neurogenesis, synaptic plasticity 
and can induce dopamine release [22,23]. 
 
Norepinephrine 
The noradrenergic system may be involved in motivation; modulating energy, interest, and 
concentration. At both the brain level and the spinal cord level, these neurotransmitter systems 
are involved in the etiology of some physical and emotional symptoms of depression [14,22]. 
Moreover, norepinephrine is involved in neurogenesis and synaptic plasticity [22]. 

 
Dopamine  
Depression is characterized by an increase of negative emotions and a reduce ability to 
experience pleasure. Dopamine is involved in the latter. Dopamine is one of the major 
neurotransmitters that is involved in reward-motivated behavior [24][25]. Depressed patients 
often display a reduced ability to experience pleasure, also known as anhedonia. Anhedonia 
has been linked to dysfunctions in the dopamine system [26,27]. Chronic stress can interfere 
with dopamine functioning [27]. The role of dopamine in MDD remains somewhat elusive as 
the field has mostly focused on serotonergic and noradrenergic mechanism [28]. There are 
some reports of antidepressants altering dopaminergic transmission [29,30]. The role of 
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dopaminergic transmission has also been receiving more attention in development of new 
antidepressants, including ketamine, which interferes with dopamine dysfunction [30]. In 
animal models, dopamine transporter knockout mice chronically elevated extracellular 
dopamine levels. Remarkably, dopamine knockout animal models displayed more depressive 
symptoms than serotonin or norepinephrine knockouts, suggesting a prominent role of 
dopamine in the pathophysiology of MDD [31].   

 
1.2 Neuroplasticity hypothesis  
So far, the majority of MDD research and antidepressant development has focused on the 
monoaminergic hypothesis. However, currently only 50-60% of patients directly respond to 
antidepressant treatment [32]. Moreover, the currently used antidepressants take several 
weeks to achieve their therapeutic effects. This is remarkable, as the antidepressants have an 
effect on the monoamine availability within hours [33]. Hence, this indicates other mechanisms 
also come into play in the pathophysiology of MDD. More recently, a new hypothesis has 
evolved; the neuroplasticity hypothesis. This hypothesis entails that mood disorders can be 
elicited by maladaptive neuroplasticity [34]. This hypothesis was supported by animal studies, 
where maladaptive plasticity in the hippocampus was reversed by antidepressants [35,36]. 
Glutamate, the main excitatory neurotransmitter in the brain, is present in very high 
concentrations in synaptic vesicles, suggesting an important role in neuroplasticity [34,37].  
Hence this hypothesis focusses mainly on the balance of the main excicitory neurotransmitter 
glutamate and the main inhibitory neurotransmitter GABA. Both will be discussed in this 
section. Moreover, neuroplasticity is impacted by neurotrophic factors, a protein family involved 
in synapse formation, neuronal growth, differentiation, maturarion and survival [38,39]. 
 
Glutamate  
Glutamergic transmission is very important in synaptic plasticity and there are implications that 
MDD is associated with abnormal glutamatergic transmission. The glutamate hypothesis was 
first proposed in 1990, when it was found an antagonist of the glutamate receptor N-methyl-D-
aspartate (NMDA) had an antidepressant effect [40]. Glutamergic excess can contribute to cell 
damage or even cell death [41]. Stress can enhance glutamate levels in the prefrontal cortex 
and hippocampus [42]. Expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid (AMPA) receptor, another glutamate receptor, is elevated after exposure to stress as well 
[43].  
 
GABA 

Γ-aminobutyric acid (GABA) is the principal inhibiting neurotransmitter in the brain MDD [44].  

GABAergic transmission seems to be downregulated in MDD patients [45–49]. It is suggested 
GABA may facilitate monoaminergic transmission, in particular serotonergic transmission, 
which can suppress depressive symptoms [50,51]. Chronic stress can reduce abundance and 
function of GABA receptors in the cerebral cortex and hippocampus [52–54]. Inactivation of a 
GABA receptor subunit in animal models resulted in reduced hippocampal neurogenesis, 
which is associated with depressive behavior [55]. Suppressed neurogenesis is associated 
with an increased HPA-axis response after exposure to stress, thus creating a positive 
feedback loop [56]. This was confirmed in animal models, where deficits in GABA receptors 
caused hyperactivity of the HPA axis [57].  
 
Neurotrophic factors 
Impaired neuroplasticity can be a result of reduced levels of neurotrophic factors. The 
neurotrophic factor that has been most prominent in MDD studies is brain-derived neurotrophic 
factor (BDNF). Reduced BDNF levels have been associated with MDD patients [58–60]. 
 
BDNF seems to elicit a neuroprotective effect; it promotes neuroplasticity and survival and 
differentiation of neurons [38,39]. The neuroprotective abilities of BDNF result from its 
activation of the mTOR pathway [61–63]. BDNF binds to tyrosine kinase B (TrkB) receptors, 
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which enhances the mTOR signaling pathway. Activation of this pathway can promote 
neurogenesis and neuroplasticity [64,65]. Besides its neuroprotective effects, BDNF can also 
enhance serotonin and GABA neurotransmission [66–68].  
 
Besides BDNF, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor 
signaling can also induce activation of the mTOR pathway [61–63]. Activation of the NMDA 
receptor inhibits the mTOR signaling pathway (figure 1) [63].  
 
 
 

 
Figure 1. Simplified neuronal mTOR signaling pathway. Synaptic brain-derived neurotrophic factor (BDNF) 
activates tyrosine receptor kinase B, leading to mTOR activation and hence protein translation. The N-methyl-D-
aspartate (NMDA) receptor inhibits mTOR activation.  

 
 
1.3 Glucocorticoid hypothesis 
Mood disorders are often elicited or exacerbated by acute or chronic stress [69]. The HPA axis 
is one of the primary stress systems in humans [70]. An environmental stressor stimulates 
corticotropic-releasing hormone (CRH) in the hypothalamus. This results in the pituitary 
releasing adrenocorticotropic hormone (ACTH). When ACTH reaches the adrenal, cortisol (or 
corticosterone in animals) is released. This system is regulated by a negative feedback loop; 
when cortisol is transported back to the hypothalamus and pituitary, it acts as a suppressor. It 
binds to glucocorticoid and mineralocorticoid receptors (GRs and MRs). These receptors result 
in down-regulation of CRH and ACTH until a state of homeostasis is reached (figure 2) [70]. 
However, long-term stress and elevation of cortisol levels, has been suggested to result in GR 
resistance, due to decreased sensitivity and decreased number of GRs [71,72]. This leads to 
consistently elevated cortisol levels, associated with fatigue, a bad mood and impaired 
cognitive functioning [72,73]. However, some discrepancies in literature arise; both elevated 
and blunted cortisol levels have been described in MDD patients [74,75]. Hyperactivation of 
the HPA axis can result in its inability to adequately respond to subsequent stressors, going 
from a hyper- to a hypo-responsive system [76].  



 7 

 
Figure 2. Stress response in the HPA axis of healthy individuals. Stress stimulates corticotropin-releasing 
hormone (CRH), which stimulates adrenocorticotropic hormone (ACTH). ACTH stimulates the release of cortisol. 
Cortisol inhibits glucocorticoid and mineralocorticoid receptors (GRs and MRs), creating a negative feedback loop. 
 

Moreover, the HPA axis affects other systems involved in the etiology of MDD, including the 
monoaminergic system. Chronic stress decreased serotonin receptor expression and affected 
binding of serotonin to its receptor [77]. Inhibition of serotoninergic transmission decreases GR 
and MR gene expression in the hippocampus. Moreover, serotonin caused release of ACTH 
and corticosteroids. Hence the relation between serotonin and the HPA axis seems 
bidirectional [78]. HPA axis activation is also associated with BDNF dysfunction as well. GRs 
and MRs can regulate transcription of neurotrophic factors, including BDNF [79].  
 
1.4 Neuroinflammation hypothesis 
Inflammation has been implicated in the pathophysiology of depression. MDD patients exhibit 

increased serum levels of pro-inflammatory cytokines compared to healthy controls [80–83]. 
There are several implications of the involvement of inflammatory responses in the etiology of 
MDD. These will be briefly discussed.  
 
Inflammation and tryptophan metabolization  
Tryptophan can be metabolized into serotonin, but it can also be synthesized into kynurenine 
[23,84,85]. The kynurenine pathway can be dysregulated by pro-inflammatory cytokines, 
resulting in neurotoxicity and less availability of tryptophan for serotonin synthesis [86–90]. 
More details on the kynurenine pathway can be found in section 2.1.  
 
Inflammation and neuroplasticity 
Pro-inflammatory cytokines can enhance glutamate release, but also inhibit glutamate uptake 
[91,92]. This exxagerated glutamate release and failed synaptic clearance can result in 
synaptic dysfunction [93].  Besides glutamate, BDNF plays an important role in neuroplasticity 

as well [38]. Inflammation results in decreased levels of BDNF in several brain regions, 

including the hippocampus [94].  
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Inflammation and the HPA axis  
The immunosuppressive effects of glucocorticoids have long been recognized [95]. However, 
there are implications this interaction is bidirectional, as glucocorticoids can also elicit a pro-
inflammatory response [96]. Moreover, the interaction seems bidirectional. Pro-inflammatory 

cytokines can stimulate the HPA axis by increasing glucocorticoid or ACTH levels [97].  

 
The effect of inflammation on mood disorders is a highly complex proces. Further details are 
beyond the scope of this thesis. For an extensive review see Loftis et al. [11] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 9 

Chapter 2: The gut-brain axis  

Gut microbiota are receiving increasing emphasis in the pathophysiology of MDD. The 
importance of gut microbes is evident from animal studies; germ-free mice show less 
depressive symptoms than controls [98]. The gut microbiome has a bidirectional 
communication with the  central nervous system; the gut-brain axis [12]. Disruptions of the gut 
microbiome have been associated with several neuropsychiatric disorder, including MDD. This 
chapter will focus on the mechanism of this gut-brain axis and how these might be involved in 
the pathophysiology of MDD. Gut microbes can affect cognitive functioning in several ways. 
First of all, gut microbes can regulate the synthesis of neurotransmitters, which can signal the 
vagus nerve or can enter the blood circulatory system. Furthermore, the gut can produce 
metabolites that affect the brain, most prominently SCFAs. Lastly, gut microbes can have 
inflammatory or immunosuppressive effects on the host, which is also regulated by the HPA 
axis (figure 3).  
 

 
Figure 3. The gut-brain axis. Gut microbiota can be involved in the pathophysiology of MDD through neural, 
endocrine and immune pathways. Gut microbes produce neurotransmitters and SCFAs, which regulate cognitive 
functioning though vagus nerve stimulation or via the blood circulatory system. Gut microbes can induce an (anti-) 
inflammatory response as well, affecting brain functioning as well. The HPA axis can regulate an inflammatory 
response.   

 
2.1 Neurotransmitter modulation 
Gut bacteria are able to produce a range of mammalian neurotransmitters. A summary is 
provided in table 1. These neurotransmitters can signal the vagus nerve, which provides a 
connection to the central nervous system [99]. Fibers of the vagus nerve do not cross the 
epithelial layer, so they are not directly in contact with the gut luminal microbiota [100]. Hence, 
these fibers of can only sense signals from the microbiome through diffusion of bacterial 
metabolites or neurotransmitters [101]. Vagus nerve activation can modify serotonin, 
norepinephrine, GABA and glutamate concentrations in the brain [102–105]. Hence, 
dysregulation of the nerve can cause neurodegenerative disorders [106].  
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Table 1. Neurotransmitter producing bacteria in the gut.  
The majority of this table was adapted from [107]. 

Neurotransmitter Bacterial strain 

Dopamine 

Bacillus cereus [108] 

Bacillus mycoides [108] 

Bacillus subtilis [108] 

Escherichia coli [108] 

Escherichia coli (K-12) [109] 
Hafnia alvei (NCIMB, 11999) [110] 
Klebsiella pneumoniae (NCIMB, 673) [110] 
Morganella morganii (NCIMB, 10466) [110] 
Proteus vulgaris [108] 

Serratia marcescens [108] 

Staphylococcus aureus [108] 

Norepinephrine 

Bacillus mycoides [108] 

Escherichia coli (K-12) [109] 
Proteus vulgaris [108] 

Serratia marcescens [108] 

Serotonin 

Escherichia coli (K-12) [109] 

Hafnia alvei (NCIMB, 11999) [110] 
Klebsiella pneumoniae (NCIMB, 673) [110] 
Lactobacillus plantarum (FI8595) [111] 
Lactococcus lactis subsp. cremoris (MG 1363) [111] 
Morganella morganii (NCIMB, 10466) [110] 
Streptococcus thermophilus (NCFB2392) [111] 

GABA 

Bifidobacterium adolescentis (DPC6044) [112] 
Bifidobacterium angulatum (ATCC27535) [113]  
Bifidobacterium dentium (DPC6333) [112] 
Bifidobacterium infantis (UCC35624) [112] 
Lactobacillus brevis (DPC6108) [112] 
Lactobacillus buchneri (MS) [114] 
Lactobacillus paracasei (NFRI) (7415) [115] 
Lactobacillus plantarum (ATCC14917) [116] 
Lactobacillus reuteri (100–23) [113] 
Lactobacillus rhamnosus (YS9) [116] 
Lactobacillus. delbrueckiisubsp. bulgaricus (PR1) [116] 
Monascus purpureus (CCRC 31615) [117] 

Streptococcus salivarius subsp. thermophilus (Y2) [118] 

 
 
Tryptophan metabolism 
Tryptophan is the precursor for serotonin. It is an essential amino acid that cannot be produced 
by the host [119,120]. Approximately 95% of the body’s serotonin is synthesized in the gut 
[121]. Low concentrations of tryptophan were found to be correlated with more severe 
depressive symptoms [122,123]. Synthesis of serotonin is mediated via SCFAs; acetate, 
propionate and butyrate signal to enterochromaffin cells to produce serotonin [124–126]. 
 
Besides serotonin, tryptophan can also be synthesized into kynurenine, which is also regulated 
by gut microbes. This reduces the availability of tryptophan for serotonin synthesis [23,84,85]. 
Kynurenine is metabolized into a glutamate NMDA receptor agonist, which increases 
glutamate neurotransmission and has a neurotoxic effect. However, kynurenine can also be 
metabolized into an NMDA receptor antagonist, which inhibits glutamergic transmission and 
has a neuroprotective effect [127]. Upregulation of the kynurenine pathway has been reported 
in MDD patients and animal studies [86,123,128]. The kynurenine pathway is significantly 
upregulated in response to inflammation, thus decreasing tryptophan availability for serotonin 
synthsis [86][87][88][89]. Moreover, inflammation enhances the neurotoxic pathway of 
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kynurenine as well, resulting in a higher synthesis of NMDA receptor agonists [89].   
 
Moreover, tryptophan is also metabolized to skatole and indole by gut microbes [129]. Low 
host indole levels were also correlated with more severe depressive symptoms [122]. Indoles 
are proposed to demonstrate an anti-inflammatory effect; in obese patients, high levels of 
indoles were negatively correlated with inflammatory markers [130]. Skatole, on the other 
hand, may induce an inflammatory effect [131].  
 

 
Figure 4. Overview of tryptophan metabolism pathways in the gut. Tryptophan can be metabolized into 
serotonin, kynurenine, indole and skatole. Serotonin synthesis is regulated through enterochromaffin cells in the 
gut. The kynurenine pathway can cause either a neuroprotective or neurotoxic effect through modulation of 
glutamergic transmission.  

 
Tyrosine metabolism 
Tyrosine is the precursor for dopamine, epinephrine and norepinephrine. However, tyrosine is 
not an essential amino acid and can also be produced by the host in vivo [132]. Tyrosine 
biosynthesis is also regulated by gut microbes. Dialister invisus seems to be a main driver in 
this synthesis [133]. Literature on the effect dietary tyrosine on MDD is conflicting. Some 
studies suggest dietary tyrosine elicits an antidepressant effect and it can raise dopamine and 
norepinephrine levels in the brain [134–136]. However, other studies observe no significant 
effect [137–140]. Thus, it is ambiguous if the gut microbiome is imperative in regulating host 
tyrosine levels.   
 
Norepinephrine is produced as a quorum sensing molecule by gut microbes [141]. Escherichia 
coli O157:H7, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter cloacae, 
Shigella sonnei, and Staphylococcus aureus have an improved growth rate in the presence of 
norepinephrine [142,143]. In vitro, it was found that E. coli, Proteus vulgaris, Serratia 
marcescens, Bacillus subtilis, and Bacillus mycoides have relatively high levels of 
norepinephrine in their biomass [108].  
 
Mainly Bifidobacteria and Lactobacilli are able to produce GABA (table 1). GABA has also 
been found to be consumed by several bacteria, as they use it as an energy source [144]. 
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Germ free mice have substantially reduced luminal and serum levels of GABA. However, the 
cerebral levels of GABA were not substantially reduced [145].  
 
Germ free mice also display decreased dopamine levels [146]. Dopamine is mainly produced 
by several Proteobacteria or Firmicutes species (table 1). However, the incentive of dopamine 
production for the gut microbes undetermined [107].   
 
However, elevated neurotransmitter levels in the gut do not automatically implicate elevated 
host levels. Nevertheless, in vivo it was also found the gut microbiome influences host 
norepinephrine levels; in germ free animals substantially reduced levels of norepinephrine 
were found in the lumen as well as the brain [146,147]. Hence, the microbiome influences 
norepinephrine levels. This effect on the monoaminergic levels of the host was also confirmed 
with GABA, as probiotics with Lactobacillus rhamnosus were able to elevate brain GABAergic 
transmission [148].  
 
2.2 Short chain fatty acid regulation 
Short-chain fatty acids (SCFAs) are fatty acids derived from fermentation in the gut [149,150]. 
There are several types of SCFAs, but in this thesis the main focus will mainly be on butyrate, 
propionate, acetate, pyruvate and valerate. SCFAs have a pivotal part in gut-brain 
communication, as they can cross the blood-brain barrier [151]. SCFAs have been associated 
with the pathophysiology of MDD. Butyrate, propionate, pyruvate and valerate seem to be 
negatively associated with depressive symptoms, whilst acetate showed a positive association 
[152–154]. SCFAs can stimulate vagus nerve signaling or reach the brain by entering the blood 
circulatory system [155,156].  
 
Histone deacetylase regulation 
Histone deacetylase can regulate gene expression by epigenetic modulation. SCFAs can 
inhibit histone deacetylase, thus altering epigenetic gene expression and increasing 
accessibility for DNA transcription factors [157–160]. Inhibition of histone deacetylase has 
been suggested as a therapeutic target for depressive symptoms [161]. Histone deacetylase 
seems involved in serotonin and BDNF expression as inhibition of the enzyme decreased 
depressive symptoms, serotonin levels and BDNF expression [162,163]. Butyrate seems to be 
the most potent inhibitor, but propionate and pyruvate also affect histone deacetylase 
[157,159,164]. It is suggested Firmicutes and Actinobacteria might positively effect BDNF 
expression through SCFA regulation, whilst γ-proteobacteria and Bacteroidetes might reduce 
BDNF expression [165].   
 
2.3 Immune regulation 
As discussed in chapter 1, there are several ways an inflammatory response might affect 
cognitive functioning. Gut microbes can either have an immunosuppressive or inflammatory 
effect. These will be briefly discussed.  
 
MAMPs 
All microbes possess a specific microbe-associated-molecular pattern (MAMP) [166]. Pattern-
recognition receptors in the lumen can register these MAMPs. These receptors signal to the 
enteric nervous system and transmit information about the microbial environment to the host, 
which could enable a specific immunological host response [167]. Microbes can either trigger 
an inflammatory or anti-inflammatory response. For example, mutualistic bacteria, like 
Bifidobacterium infantis, can enhance secretion of anti-inflammatory cytokines by triggering 
pattern-recognition receptors [168]. Other species, like Coprococcus, Pseudobutyrivibrio, 
Dorea and Trichuris muris, seem to be associated with  a pro-inflammatory response [169] 
[170,171]. In the Enterobacteriacea family are several inflammogenic species as well 
[172,173]. 
 
Gut epithelium integrity 



 13 

A defect in the epithelial barrier, results in a leaky gut and inflammation [174]. Gut microbes 
can have a protective effect on the epithelial barrier but can also induce an inflammatory 
response. A leaky gut can be exacerbated by a hyperactive HPA axis. First implications on the 
effect the gut microbiome has on the HPA axis arise from studies of germ-free mice. In germ-
free mice, exposure to stress induced an excessive ACTH and corticosterone release 
compared to controls [175]. Elevated cortisol levels, as found in MDD patients, can dysregulate 
the integrity of the gut epithelium, which triggers an inflammatory immune response 
[172,174,176]. Some microbial species are able to restore the integrity of the gut epithelium; 
several Lactobacillus species, including L. helveticus, L. rhamnosus and L. farciminus, could 
supress stress-induced hyperpermeability and inflammation [170,177]. Moreover, 
Akkermansia mucinphila and Bifidobacterium longum elicit an anti-inflammatory as well [178].  
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Chapter 3: Microbiome composition and biomarkers  

The gut microbiome composition of MDD patients seems to be different from that of healthy 
controls. Chapter 2 focused on the mechanisms of the gut-brain axis and its involvement in 
the pathophysiology of MDD. This chapter will focus on the microbiome composition of MDD 
patients. Moreover, this chapter will also focus on the gut microbiome composition of 
vegetarians compared to omnivores.  
 
3.1 Gut microbiome composition of MDD patients 
Shifts in the gut microbiome composition of MDD patients are summarized in table 2 and 3. 
Remarkably, literature reports seem to be contradictory. Especially at phylum level variations 
are difficult to differentiate. For example, some seem to report an increase in in Bacteroidetes 
[179–181], whilst others report a decrease [182–185]. At family level results are less 
conflicting. Several species in the phylum of Actinobacteria seem to be higher in abundance 
in MDD patients [182,184]. In the Bacteroidetes phylum only Porphyromonadaceae seems 
increased [180]. In the Firmicutes phylum, Eubacteriaceae, Fusobacterium, Streptococcaceae 
and Thermoanaerobacteraceae are increased [180,181,184]. In the Bacteroidetes phylum, a 
decrease of Chitinophagaceae, Marinilabiliaceae and Prevotellaceae is established 
[180,182,186,187]. In the Firmicutes phylum, Oscillospiraceae and Veillonellaceae are 
decreased [180,182,184,187]. Of the Proteobacteria, only Sutterellaceae is decreased 
[182,184,187]. However, as literature seems to be conflicting on the gut microbiome shift of 
MDD patients, the accuracy of the observations depicted in table 2 and 3 could be debatable.  

 

Table 2. Higher abundance of bacterial taxa in MDD patients compared to healthy 
controls  
This table was partially adapted from [187]. 

Phylum Family Genus 

Actinobacteria [182,184,185] 1 

Actinomycetaceae [182,184]   

Coriobacteriaceae [184] Eggerthella [186] 

Nocardiaceae [182]  

Streptomycetaceae [182]  

Bacteroidetes [179–181] 1 
 

Bacteroidaceae [180] 1 Bacteroides  [179,180] 1 

 Prevotella [179,183] 1 

 Paraprevotella [179,186,187] 

Porphyromonadaceae [180]  

Rikenellaceae [180] 1 Alistipes [180][181] 1 

 Parabacteroides [169,180] 1 

Firmicutes 
[182][183][183] 1 

Acidaminococcaceae [180] 1 Phascolarctobacterium [180] 

Clostridiaceae [182] 1 
Candidatus Arthromitus [188] 

Clostridium [169,180,183,184] 1 

Erysipelotrichaceae [182,184] 1 Bulleidia [189] 

Eubacteriaceae [184]  

Fusobacterium [180] 
 

Lachnospiraceae [185] 1 
Anaerostipes [183] 

Blautia [180,184] 1 

Lactobacillus [184,188] 1 
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Roseburia [180] 1 

Unidentified genera [180] 1 

Dorea [184] 1 

 
Anaerofilum [186] 

Oscillibacter [180,181]  

 Peptostreptococcus [189] 

Ruminococcaceae [182,184] 1  

Streptococcaceae [184] Streptococcus [183]  

Thermoanaerobacteraceae [181] Gelria [186] 

 
Megamonas [186] 1 

 
Parvimonas [184,189] 

 
Dialister [179] 1 

Veillonella [179] 

 
Gemella [189] 

 
Holdemania [186] 

Turicibacter [186] 

Proteobacteria 
[180] 1 

 Enterobacteriaceae [180]  1 Klebsiella [183]  

 Parasutterella [180] 

 Haemophilus [179] 

 Oxalobacter [189] 

  Pseudomonas [189] 

Fusobacteria [180]   

1. Results in literature are conflicting; other studies also report a decrease of these species in MDD patients (see table 3).   
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Table 3. Lower abundance of bacterial taxa in MDD patients compared to healthy 
controls 
This table was partially adapted from [187]. 

Phylum Family Genus 

Actinobacteria [180] 1 
  
  Bifidobacterium [179,187,190] 

Bacteroidetes [182–185] 1 
 

Bacteroidaceae [180,184] 1 Bacteroides [169,180] 1 

 Barnesiella [179] 

 Butyricimonas [179] 

Chitinophagaceae [182]  

Marinilabiliaceae [182]  

 Odoribacter [179] 

 Parabacteroides [179] 

Prevotellaceae [180,182,186,187] Prevotella [180,186] 1 

Rikenellaceae [184] 1 Alistipes [179,184] 1 

Firmicutes [189][179][180] 1 
 

Acidaminococcaceae [184] 1 Phascolarctobacterium [184] 

Clostridiaceae [189] 1 
Clostridium [179,184] 

Faecalibacterium [180,187,189]  

Unidentified species [188] 

Erysipelotrichaceae [180] 1   

  
Anaerovorax [188] 

Christensenella [188] 

Lachnospiraceae [180,181,189] 1 

 

Blautia [189][179] 1 

Coprococcus [179,184,187,188,191] 

Dorea [189] 1 

Lactobacillus [188,190] 1 

Marvinbryantia [188] 

Roseburia [179,184] 1 

Oscillospiraceae [182] Oscillibacter [179] 

Ruminococcaceae [180,189] 1 Acetivibrio [179] 

Ruminococcus [179,180,187,189] 

 Megamonas [179,184] 1 

 Mitsuokella [179] 

Veillonellaceae [180,184,187] Dialister [180,186] 1 

 Faecalibacterium [179,180,184,189] 

Proteobacteria [182] 1 
 

 Enterobacteriaceae [182] 1  Escherichia [179,180,187]  

Sutterellaceae [182,184,187] Sutterella [179]  

 Comamonas [179] 

 Psychrobacter [188] 



 17 

 Gemmiger [179] 

 Vampirovibrio [179] 

Fusobacteria   Fusobacterium [179] 

1. Results in literature are conflicting; other studies also report an increase of these species in MDD patients (see table 2).   

 
 
Probiotics 
As results of studies on gut microbiome composition are inconsistent, probiotics might provide 
further insights on species involved in the pathophysiology of MDD. There are implications 
probiotics can have potential applications for mood disorders.  
 
Probiotics positively affecting MDD mainly contained Lactobacillus or Bifidobacterium species. 
In animal studies, administration of probiotics containing Lactobacillus helveticus, 
Lactobacillus rhamnosus, Bifidobacterium longum or Mycobacterium vaccea reversed 
depressive symptoms [148,171,192–196]. In human studies, probiotics have been reported to 
induce mood changes as well. Several Lactobacillus species, including Lactobacillus 
helveticus, Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus casei, Lactobacillus 
salivarius, Lactobacillus lactis, Lactobacillus casei Shirota and Lactobacillus gasseri 
substantially reduced depressive symptoms compared to controls receiving a placebo 
[192,197–199]. Furthermore, Bifidobacterium species, including Bifidobacterium longum, 
Bifidobacterium bifidum and  Bifidobacterium lactis, also improved depressive symptoms 
[192,197].  
 
3.2 Gut microbiome composition of vegetarians and omnivores 
Literature on the effects of a vegetarian on the gut microbiome composition diet seems less 
contradictory. A vegetarian diet seems to decrease diversity of the gut microbiome. Several 
Veillonella, Haemophilus and Aggregatibacter species seem to increase in a vegetarian diet 
compared to an omnivorous diet  [200]. A vegetarian diet decreases the relative abundance of 
several Bacteroides, Prevotella, Clostridium and Desulfovibrio species (table 4 and 5) [200–
203].  
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Table 4. Higher abundance of bacterial taxa in a vegetarian diet compared to an 
omnivorous diet. 
This table was adapted from [204]. 

Phylum Family Genus Species 

Bacteroidetes [205,206] 

Bacteroidaceae [206] 1 Bacteroides [201] 1  

 Prevotella [201,202] Prevotella copri [202] 
 Capnocytophaga [200]  

 Porphyromonas [200]  

Firmicutes [207] 

  Blautia hydrogenotrophica  [200] 
 

 
Clostridium ramosum  [200] 

 Clostridium symbiosum  [200] 
 Faecalibacterium [207]  

 Lachnospira [205]  

 Peptoniphilus [200] Peptoniphilus duerdenii [200] 
 Roseburia [207]  
 Staphylococcus [200] 1  
  Streptococcus peroris  [200] 
 

Veillonella  [200] 

Veillonella dispar  [200] 
 Veillonella parvula [200] 

 Veillonella atypica [200] 

Actinobacteria 

 Actinobacillus  [200]  

 Atopobium  [200]  
 Actinoplanes  [200]  
 Cryptobacterium  [200]  

 Micrococcus  [200] Micrococcus luteus  [200] 

Proteobacteria 

 
Aggregatibacter  [200] 

Aggregatibacter segnis  [200] 

 
Aggregatibacter 
actinomycetemcomitans  [200] 

 Aeromonas /Pseudomonas [201]  
  Campylobacter concisus  [200] 
 

Haemophilus  [200] 

Haemophilus haemolyticus  [200] 

 Haemophilus influenzae  [200] 

 Haemophilus parainfluenzae  [200] 
  Klebsiella pneumoniae [202] 

 Neisseria  [200] Neisseria mucosa  [200] 

1. Results in literature are conflicting; other studies also report a decrease of these species in a vegetarian diet (see table 5).   
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Table 5. Lower abundance of bacterial taxa in a vegetarian diet compared to an 
omnivorous diet 

This table was adapted from [204]. 

Phylum Family Genus Species 

Bacteroidetes 

Bacteroidaceae [202] 1   

Rikenellaceae [202] Alistipes [202]  

 

Bacteroides [202,208,209] 1 

Bacteroides vulgatus [202] 

 Bacteroides fragilis [201] 

 Bacteroides dorei [202] 

 Bacteroides thetaiotaomicron [202] 

 Bacteroides uniformis [202]  

 Bacteroides finegoldii [200] 

 Bacteroides stercoris [200] 

Porphyromonadaceae 
[202] 

 Porphyromonas gingivalis [200] 

 Parabacteroides [202] Parabacteroides distasonis  [202] 

  

Prevotella buccalis [200] 

Prevotella oris [200] 

Prevotella tannerae [200] 

Firmicutes 

 Acetobacterium [200]  

  Anaerostipes caccae [200] 

Bacillaceae [207]   

 Bulleidia [200]  

  Blautia hansenii [200] 

 Caldanaerobacter [200]  

  

Clostridium Clostridioforme [202] 
Clostridium kluyveri [200] 
Clostridium coccoides-E. rectale 
[210] 

Clostridium innocuum [203] 

Clostridium paraputrificum [203] 

 Desulfitobacterium [200]  

 Dialister [200] Dialister invisus [200] 

 Dorea [200,207] Dorea longicatena [200] 

  Enterococcus faecium [200] 

  Finegoldia magna [200] 

 Holdemania [200]  

  Lactobacillus amylovorus  [200] 

 Phascolarctobacterium  [200] 
Phascolarctobacterium 
succinatutens  [200] 

Planococcaceae [207]   
 Peptostreptococcus [203]  
 Streptococcus [211]  
Ruminococcaceae 
[207] 

Ruminococcus [205] Ruminococcus torques [200] 

 
 

Roseburia Eubacterium rectale 
[210] 

Staphylococcus [212] 1  

  
Thermoanaerobacter pseudo 
ethanolicus [200] 

Actinobacteria 

 Bifidobacterium [208]  

 Corynebacterium [212]  
  Parascardovia denticolens [200] 
 Eggerthella [200]  

 Mobiluncus [200] Mobiluncus curtisii 

Proteobacteria 
  Acinetobacter baumannii [200] 

 Bilophila [200] Bilophila wadsworthia [200] 
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 Campylobacter [200]  

Comamonadaceae 
[207] 

  

 

Desulfovibrio [200] 
Desulfovibrio piger [200] 

 Desulfovibrio alaskensis [200] 
 Desulfovibrio aespoeensis [200] 

  Edwardsiella ictaluri/ tarda  [200] 

 Escherichia Escherichia hermannii [202] 

 Halomas [207]  

 Oxalobacter [200]  

 Ralstonia [200]  

 Ruegeria [200]  

 Succinivibrio [207]  

 Syntrophobacter [200] 
Syntrophobacter fumaroxidans 
[200] 

 Taylorella [200]  

Euryarchaeota  Methanosphaera [200] 
Methanosphaera stadtmanae 
[200] 

Chloroflexi  Dehalogenimona [200] 
Dehalogenimona 
lykanthroporepellens [200] 

Fusobacteria 
 Streptobacillus [200]  
  Fusobacterium ulcerans  [200] 

Verrucomicrobia 

Verrucomicrobiaceae 
[202] 

  

 Akkermansia [202]  

1. Results in literature are conflicting; other studies also report a decrease of these species in a vegetarian diet (see table 4).   

 
 
Lactobacillus and Bifidobacterium species appear to positively affect depressive symptoms, 
as was suggested in the probiotic studies. The abundance of Bifidobacterium is decreased in 
a vegetarian diet [208]. Moreover, one Lactobacillus species (Lactobacillus amylovorus) is 
decreased in a vegetarian diet as well [200]. This suggests a meat-based diet might be 
beneficial in averting or alleviating depressive symptoms. However, in MDD an increase of 
Porphyromonadaceae and Streptococcaceae is observed as well [180,184]. The abundance 
of Porphyromonadaceae appears to be reduced in vegetarians [202]. Nevertheless, within the 
Porphyromonadaceae  family, an increase in the Porphyromonas genus is observed in 
vegetarians [200]. Of the Streptococcaceae family, the genus Streptococcus is decreased in 
vegetarians [211]. Abundance of Prevotellaceae and Veillonellaceae species is reduced in 
MDD patients [180,182,184,186,187]. Several Prevotella species are relatively lower in 
abundance in vegetarians than in omnivores [200]. However, several Veillonella species are 
higher in abundance in vegetarians [200]. Hence, as some species associated with MDD 
patients are in relative higher abundance in vegetarians, but others are decreased in 
abundance, there seems to be no clear association between a vegetarian diet and the 
microbiome composition of MDD patients. 
 
Moreover, as the gut-brain axis is bidirectional, it cannot be concluded these species have a 
causative role in the pathophysiology of MDD. Hence, the next chapter will establish the impact 
of a vegetarian or omnivorous diet on metabolic pathways of the gut microbiome that might 
impact the etiology of MDD.  
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Chapter 4: Effect of metabolites in of omnivorous and vegetarian diet  

There is emerging evidence of the impact of dietary patterns on the risk of developing MDD. 
However,  findings on the relation of meat consumption to MDD are inconsistent. Some studies 

report that vegetarians are depressed more often than non-vegetarians [213–215]. 
Nonetheless, other meta-analyses indicate meat consumption is associated with higher risk of 
MDD [216,217]. Hence, findings are inconclusive and the relation still remains very complex 
as it is affected by many confounding factors. Moreover, it is not clear if the relation between 
a vegetarian diet and MDD is causative, as other factors might influence mental health status 
as well. Thus, this chapter attempts to further elucidate the mechanisms behind meat 
consumption and MDD. The chapter will discuss the effect of: 1) animal-based proteins 
compared to plant-based proteins, 2) fatty acids in omnivorous diets compared to vegetarian 
diets 3) dietary fibers and 4) vitamins and minerals. This thesis will not report on the specific 
effects of fish and seafood, but will focus on red meat and poultry. 
 
4.1 Protein and gut microbiome composition 
Animal-based diets are higher in total protein intake [13]. The amount, but also type of protein 
consumption can affect the gut microbiome composition and metabolism, which in turn might 
affect cognitive function. The most important effects of meat consumption on protein 
metabolism will be briefly discussed.  
 
Tryptophan metabolism 
Meat protein seems to increases serotonin levels in the gut compared to a diet containing soy 
protein [125]. There are several ways dietary protein may affect tryptophan metabolism and 
serotonin production.  
 
First of all, dietary proteins can affect the gut microbial composition, which changes SCFA 
production [125]. Acetate, propionate and butyrate can induce production and secretion of 
serotonin from enterochromaffin cells [125,126]. SCFA production was significantly elevated 
in mice fed with pork protein compared to mice fed with soy protein. Pork protein increased 
butyrate, isovalerate and valerate levels by promoting Odoribacter growth or by inhibiting 
Romboutsia and Turicibacter growth. The soy protein diet decreased propionate, valerate and 
isobutyrate levels by promoting growth of Prevotellaceae Ga6A1 and Escherichia Shigella 
[125]. Secondly, meat protein is high in tryptophan levels [125,129]. Tryptophan is a precursor 
for serotonin and it is an essential amino acid that cannot be produced by the host in vivo 
[119,120]. Hence, tryptophan is essential in serotonin production. However, although meat 
may generate high levels of tryptophan and serotonin in the gut, the tryptophan and serotonin 
in the brain not necessarily correspond. To cross the blood-brain barrier, a carrier protein must 
transport tryptophan. Tryptophan is in competition with other amino acids to bind the carrier 
protein. As meat is very abundant in several amino acids, there is more competition to bind 
the carrier protein [218]. This is confirmed by several studies, where a protein rich diet 
decreased brain tryptophan levels [219–221].  
 
Dietary protein might affect the kynurenine pathway as well. Probiotics can effect kynurenine 
synthesis. Several probiotics with Lactobacillus species, including Lactobacillus Plantarum, 
Lactobacillus johnsonii and Lactobacillus helveticus, and Bifidobacterium longum decreased 
kynurenine levels and improved depressive symptoms [222–224]. The abundance of 
Lactobacillus species was increased in rats fed with a meat protein diet compared to rats fed 
with a soy protein diet [225,226]. However, it is not evident if the abundance of these specific 
Lactobacillus species are enhanced after meat consumption or if other Lactobacillus species 
might affect kynurenine synthesis and depressive symptoms.  
 
Besides serotonin, tryptophan is also metabolized to skatole and indole by gut microbes [129]. 
Diets high in pork and chicken protein elevated Lactobacillus and Desulfovibrio abundance, 
which are presumed to be involved in production of indole and skatole [129]. Indoles are 
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proposed to be anti-inflammatory, whilst skatoles are proposed to be inflammatory [130,131]. 
In general meat is presumed to induce inflammation [129,200,227–230], although there are 
also some reports meat is not associated with inflammation [231,232]. Hence, the anti-
inflammatory effect of indole might be nullified by other components of meat products.   
 
Tyrosine metabolism 
Dialister invisus is a main driver in of tyrosine biosynthesis [133]. Dialister species are less 
abundant in vegetarians [200]. Moreover, a vegetarian diet decreased serum tyrosine levels 
as well [233]. Hence, it is suggested meat might enhance tyrosine levels. However, as 
literature is conflicting on the antidepressant effect of dietary tyrosine, it is not certain meat 
consumption can affect the pathophysiology of MDD through tyrosine metabolism [137–140]. 
 
D-amino acids 
Amino acids can exist in two stereoisomeric forms: the L-form and the D-form. L-amino acids 
serve as building blocks for polypeptides and are usually higher in abundance. However, in 
the gut, D-amino acids are more evident as microbes are a substantial source of D-amino acid 
synthesis [234]. D-serine and D-aspartate stimulate NMDA receptor-mediated 
neurotransmission, which could suggest a part in neurotoxicity and neuronal cell death 
[235,236]. Plant-based diets generally contain higher levels of D-amino acids than meat-based 
diets [237]. However, when D-amino acids are orally administered, they are immediately 
metabolized, thus declining its bioavailability [238]. Nonetheless, administration of a prebiotic 
with soluble fiber resulted in higher levels of hippocampal D-serine [239]. Thus, direct 
administration might not elevate D-amino acid levels in the brain, but through microbial 
synthesis these levels can be elevated, although the exact mechanisms remain unclear. As 
vegetarian diets are usually high in fiber (see section 4.3), this might suggest a stimulating 
effect on D-amino acid production. D-amino acids are mainly produced by Acetobacter, 
Lactobacillus, Micrococcus and Streptococcus [211]. Micrococcus prevalence seems higher in 
a vegetarian diet than an omnivorous diet [200]. On Streptococcus literature reports mixed 
results [183,211]. Literature reports associating D-amino acids with cognitive functioning are 
limited. However, D-amino acids could be of considerable significance in the pathophysiology 
of MDD. Hence, additional research could provide further insights into the impact of dietary 
mediation on D-amino acids and development of depressive symptoms.  
 
Carnitine 
Carnitine is an amino acid derivative and can be metabolized from the amino acids lysine and 
methionine [240,241]. However, although the ammonium compound can be produced in vivo, 
diet still remains an important source. Carnitine is mostly abundant in meat. The compound 
can be metabolized into trimethylamine-N-oxide (TMAO). Vegetarians indeed were shown to 
produce less TMAO than meat-consumers [242]. Serum TMAO levels are positively correlated 
with depressive symptoms [243]. TMAO can contribute to neurodegeneration by causing 
inflammation and increasing oxidative stress [244]. Gut microbiota regulate TMAO 
metabolism. A positive association with TMAO levels and the family Lachnospiraceae, the 
order Clostridiales and the genus Ruminococcus was found [245].  
 
Sulfur-containing amino acids 
Meat contains an abundance of sulfur-containing amino acids and taurine, which can be 
metabolized to hydrogen sulfide. In a controlled feeding study in humans, significantly higher 
levels of sulfide generation by gut bacteria were found in the group consuming a meat-rich diet 
compared to a control group [246]. The genus of Desulfovibrio bacteria are main fermenters 
of sulfur-containing amino acids. In animal studies, hydrogen sulfide seems to exhibit an 
antidepressant effect, which might be due to its ability to upregulate BDNF expression and 
GABAergic neurotransmission and the ability to protect neurons from oxidative stress [247–
250].  
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4.2 Lipids and gut microbiome composition 
In an animal-based diet total fat intake is substantially higher than in a vegetarian diet [13]. 
The type of fatty acids can affect gut microbiome composition and have an impact on 
neuropsychiatric disorders, mainly through inflammatory pathways.  
 
Saturated and unsaturated fatty acids 
A diet high in saturated fat can cause inflammation [251]. Moreover, a diet high in saturated 
fat reduces BDNF expression and impairs neurogenesis [252,253]. Conversely, unsaturated 
fatty acids can alleviate inflammation [254]. An animal-based diet contains mainly saturated 
fatty acids, whilst a plant-based diet contains mainly unsaturated fatty acids [211].  High intake 
of saturated fatty acids is associated with an increase in Clostridium bolteae and Blautia. 
Monounsaturated fatty acids are associated with an increase in Parabacteroides, Prevotella, 
Turucibacter, Enterobacteriaceae and Blautia as well. A diet high in polyunsaturated fatty acids 
increased Tenericutes [255]. A diet supplemented with polyunsaturated fatty acids decreased 
abundance of Streptococcus and Clostridium. Moreover, the diet decreased genera within the 
Enterobacteriaceae family, including Escherichia, Pantoea, Serratia and Citrobacter [256].  
 
Most fatty acids can be produced in vivo, but n-3 polyunsaturated fatty acids are essential 
fatty acids [257]. Red meat is considered an important source of n-3 polyunsaturated fatty 
acid [257]. Around 43% of adult n-3 PUFA intake comes from beef, poultry and game. 48% 
comes from fish and seafood [258]. There is a positive correlation between n-3 PUFA intake 
and BDNF levels [259,260].  
 
Bile 
An animal-based diet, which is high in fat intake, causes more bile acids to be secreted [261].  
This increases the abundance of several bile-tolerant microbes, including Alistipes putredinis, 
Bilophila wadsworthia and Bacteroides species [13]. Abundant bile acid levels decrease the 
levels of several Firmicutes species that mainly metabolize dietary plant polysaccharides, 
including Roseburia, Eubacterium rectale and Ruminococcus bromii [13]. Moreover, it 
decreases an unidentified Peptostreptococcaceae species as well [188]. Bile acid metabolism 
seems hyperactive during development of depression, as some bile-tolerant species cause 
intestinal inflammation [188,262].  
 
 
4.3 Dietary fiber and gut microbiome composition 
Humans lack the enzymes to degrade the majority of dietary fibers. Hence, these fibers pass 
through the gastrointestinal tract to the cecum and large intestine, where they are fermented 
by anaerobic microbiota, resulting in synthesis of SCFAs [149,150]. Fiber can have an 
antidepressant effect. A prebiotic containing soluble fiber increased BDNF expression, 
reduced cortisol levels and depressive symptoms [239,263]. 
 
In a diet exclusively based on protein, animal proteins stimulated SCFA synthesis more than 
a soy-protein diet [125]. However, in a fully balanced vegetarian SCFA was enhanced 
compared to an omnivorous diet  [200,264]. This is due to the high fiber intake of a vegetarian 
diet compared to an animal-based diet [13]. A prebiotic containing soluble fiber increased 
BDNF expression, reduced cortisol levels and depressive symptoms [239,263]. Species that 
are associated with fiber fermentation are several Firmicutes species, including 
Lachnospiraceae, Ruminococcaceae, Veinellaceae, Veillonellaceae, Clostridiaceae and an 
unidentified Clostridiales species. Moreover, Prevotella, Treponema and an unidentified 
species of Bacteroidetes were also associated with fiber fermentation [265].   
 
 
4,4 Vitamins, minerals and food contaminants 
There are several differences in the vitamin and mineral content of an omnivorous compared 
to a vegetarian diet. The most important differences will be discussed here. 
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Zinc  
Meat is an important source of zinc, hence vegetarians are at higher risk of zinc deficiency 
[266,267]. Chronic deficiency in zinc, an essential trace mineral, is associated with MDD [268]. 
It has been shown to exhibit antidepressant activity in animal studies [269]. Zinc deficiency can 
excacerbate excessive glutamergic neurotransmission by modulating AMPA and NMDA 
receptors and it can impair GABAergic neurotransmission [270,271]. Moreover, activation of 
the zinc receptor can elevate BDNF levels [272,273]. Gut microbiota seem to play a role in 
regulating host zinc levels. Germ-free mice required nearly twice as little zinc as normal 
controls [274]. However, the exact involvement of the gut microbiome in zinc deficiency 
remains ambiguous. Nontheless, it suggested the gut microbiome might be able to contribute 
to host zinc deficiency. At species level, Ruminococcus lactaris, an unclassified Enterococcus 
species, Clostridium lactatifermentans and Clostridium clostridioforme seem to increase zinc 
serum levels of the host. Clostridium indolis and an unclassified member of Bacteroidales 
seems to negatively impact serum zinc levels of the host [275]. However, the exact 
involvement of the gut microbiome regulation of zinc levels in relation to MDD remains 
somewhat elusive.  
 
Vitamin B12 
Meat is an important source of vitamin B12. Hence omnivores are shown to consume more of 
the vitamin than vegetarians [276,277]. A meta-analysis found a significantly positive 
association between low B12 levels and depressive symptoms. [278]. Moreover, B12 
supplementation in combination with antidepressants significantly improved depressive 
symptoms compared to antidepressant treatment without the vitamin [279]. There are 
implications vitamin B12 is involved in serotonin, dopamine and norepinephrine synthesis 

[280]. Diet is the main source of vitamin B12, as there are not many bacterial species reported 

with the ability to synthesize the vitamin [281]. However, several gut microbiome species are 
reported to consume B12, thus might creating competition between the host and gut microbes 
for bioavailabilty of the vitamin. Several species from the Firmicutes phylum, including Blautia, 
Faecalibacterium, Fusicatenibacter, Lachnospira and Lachnospiraceae, were increased after 
administration of B12 supplementation, indicating these species as possible consumers of B12 
[282]. However, this is a presumption, as there is no direct association between host serum 
levels of B12 and gut microbes. 
 
Folate  
Vegetarians consume more of the vitamine folate than omnivores [276,277]. A meta-analysis 
found a significantly positive association between low folate and depressive symptoms [278]. 
Folate can regulate the serotonergic and noradrenergic system [283]. Moreover, the vitamin is 
involved in inhibition of NMDA receptors or an increase in hippocampal BDNF levels [283]. 
The gut microbiome seems to be a pivotal source of folate. There are several gut commensals 
that are folate producers, including several Bifidobacteria and Lactobacilli [284–286]. A 
probiotic formula with folate-producing Bifidobacteria increased plasma folate levels in rats, 
thus confirming these species can produce the vitamin in vivo [287].  
 
PAHs 
Polycyclic aromatic hydrocarbons (PAHs) are food contaminants that arise by heating foods 
to high temperatures. Ingestion of grilled meat is one of the main sources of exposure to PAHs 
[288,289]. In a study comparing the gut microbiome composition of participants consuming 
either an animal-based or plant-based diet, only in the animal-based diet increased expression 
of genes of gut microbes involved in the degradatin of PAHs [13]. PAHs are associated with 
MDD, as they can cause oxidative stress and inflammation, enhancing neurodegeneration 
[290–292]. PAH exposure enhances several pro-inflammatory microbes belonging to the 
Alcaligenaceae, Turibacter, Bacteroidaceae, Porphyromonadaceae Erysipelotrichaceae or 
Paraprevotellaceae family. It reduces Lactobacillaceae, Lachnospiraceae, Muscispirillum, 
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Verrucomicrobiaceae and Ruminococcaceae populations [293]. This might partially explain the 
inflammatory effects of meat consumption.  
 
4.5 Summary 
This chapter discussed several ways the gut microbiome might affect cognitive functioning. A 
summary of the main effects of a vegetarian or omnivorous diet is provided in table 6.  
 
 
 
Table 6. The effect of gut microbiome metabolites in a vegetarian and omnivorous 
diet on MDD pathophysiology  

Meat-based diet Metabolite  Effect Vegetarian diet Metabolite  Effect 

Odoribacter SCFAs + Serotonin 1 

Acetobacter 
Lactobacillus 
Micrococcus 
Streptococcus 

D-amino 
acids 

+ Glutamergic 0. 
0. transmission 

Bifidobacterium longum 
Lactobacillus helveticus 
Lactobacillus johnsonii  
Lactobacillus Plantarum 

- Kynurenine 

- Kynurenine 
+ Serotonin  
- Glutamergic   
0.transmission  

Blautia 
Enterobacteriaceae 
Parabacteroides 
Prevotella 
Turucibacter  
Tenericutes 

Unsaturated 
fatty acids  

- Inflammation 

Desulfovibrio 
Lactobacillus 

Indole  - Inflammation 

Bacteroidetes spp. 
Clostridiaceae 
Clostridiales spp. 
Lachnospiraceae 
Prevotella 
Ruminococcaceae 
Treponema 
Veinellaceae 
Veillonellaceae  
 

SCFAs 
+ BDNF  
- Cortisol 
 

Desulfovibrio 
Lactobacillus 

Skatole + Inflammation 
Bifidobacteria 
Lactobacilli 

Folate 

+ Serotonergic/ 
0.noradrenergic 
0.transmission 
- Glutamergic 
0.transmission 
+ BDNF  
 

Dialister invisus Tyrosine 
+ Dopaminergic/ 
0.norepinephrinergic 
0.transmission1 

   

Clostridiales 
Lachnospiraceae 
Ruminococcus 

TMAO + Inflammation  
+ Oxidative stress  

   

Desulfovibrio Sulfide  

+ BDNF  
+ GABA receptor 
0.modulation 
- Oxidative stress  

   

Blautia 

Clostridium bolteae  

Saturated fatty 
acids 

- BDNF  
+ Inflammation 

   

 
n-3 
polyunsaturated 
fatty acid 

+ BDNF     

Alistipes putredinis  
Bacteroides spp. 
Bilophila wadsworthia  

Bile + Inflammation 2    

Clostridium 
clostridioforme 

Zinc  
- Glutamergic 
0.transmission 
+ GABAergic 0.  
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Clostridium 
lactatifermentans 
Enterococcus  
Ruminococcus lactaris 

0.transmission 
+ BDNF 

 B12 
+ Serotonin  
+ Dopamine  
+ Norepinephrine 

   

Alcaligenaceae 
Bacteroidaceae 
Erysipelotrichaceae  
Paraprevotellaceae 
Porphyromonadaceae 
Turibacter 

PAHs 
+ Oxidative stress 
+ Inflammation  

   

1. Serotonin levels are elevated in the gut, but not in the brain. 
2. Conflicting results 
3. Inflammation is not an effect of bile secretion, but of bile-tolerant microbes.  
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Discussion 

Epidemiological studies associating meat consumption with MDD are conflicting. Some studies 
report vegetarians to being depressed more often, whilst others report meat consumption is 
associated with higher incidence of MDD. As results are inconsistent, this thesis attempted to 
give an overview of the effects of a vegetarian diet on the gut microbiome and the 
pathophysiology of MDD. 
 
Even though many studies have explored the pathophysiological mechanisms of MDD, the 
heterogeneity of MDD still makes it difficult to clarify the precise mechanisms involved, 
especially since MDD might be a result of multiple pathogeneses. This complicates 
determination of the impact of the gut microbiome on depressive symptoms. Literature reports 
on shifts in the microbiome composition of MDD patients seem to be contradictory. 
Inconsistencies in literature might arise from differences in methodologies in analyzing 
microbiome compositions. Moreover, there could be several confounding factors in these 
studies, like age or diet of the participants. Several of the studies reported a high risk of bias. 
There seems to be no clear association between the gut microbiome composition of 
vegetarians compared to the gut microbiome of MDD patients; some microbial species that 
are associated with MDD are higher in abundance in vegetarians, whilst others are lower.  
 
Research on probiotics clarifies the effect of gut microbes to some extent. Lactobacillus and 
Bifidobacterium species seem to alleviate depressive symptoms. A vegetarian diet decreased 
Bifidobacterium species and Lactobacillus amylovorus. This suggests a disadvantageous 
effect of a vegetarian diet. Moreover, animal studies suggest meat-protein to enhance 
Lactobacillus abundance when compared to soy-protein. However, although this gives some 
first implications, additional studies are needed to substantiate the effect of meat on 
Lactobacillus and Bifidobacterium species. 
 
The gut microbiome may affect cognitive functioning though several mechanisms. First of all, 
through the tryptophan pathway, an omnivorous diet seems to increase gut microbiome 
species that enhance serotonin and tryptophan levels in the gut. However, tryptophan levels 
in the brain are not elevated and are even suggested to decrease. Hence, via the blood 
circulatory system, an omnivorous diet does not seem to enhance serotonergic 
neurotransmission. Nonetheless, a meat-based diet may still affect serotoninergic neurons 
through vagus nerve stimulation. Meat consumption may inhibit the kynurenine pathway and 
reduce glutamergic neurotransmission, as meat protein may increase Lactobacillus. 
Lactobacillus species seem to reduce the kynurenine pathway. However, meat does induce 
inflammation, which might upregulate the neurotoxic pathway of kynurenine and enhance 
glutamergic neurotransmission.  
 
Tyrosine synthesis is downregulated in vegetarians, which might affect dopamine and 
norepinephrine levels. However, dietary tyrosine was not found to elicit an antidepressant 
effect, suggesting no direct effect of meat on dopaminergic or norepinephrinergic 
neurotransmission. The enhanced folate consumption of vegetarians can also increase 
monoaminergic transmission. However, the vitamin B12 in meat products can enhance 
monoaminergic neurotransmission as well. 
 
D-amino acids, which seem more abundant in a vegetarian diet, stimulate glutamergic 
neurotransmission. Conversely, the enhanced folate consumption of vegetarians might reduce 
glutamergic neurotransmission. Zinc, which is abundant in meat, can inhibit the glutamate 
neurotransmission pathway. Meat seems to stimulate GABAergic neurotransmission, as both 
sulfide and zinc seem to have a positive effect. Both a vegetarian and meat-based diet seem 
to result in metabolites that can enhance BDNF levels of the host. Lastly, it is important to 
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emphasize that a meat-based diet generally seems to induce more inflammation and oxidative 
stress, which could negatively impact depressive symptoms.  
 
Hence, neither analysis of the gut microbiome composition or microbial metabolites generates 
conclusive results on the effect of a vegetarian or omnivorous diet on the pathogenesis of 
MDD. Through different pathways a vegetarian and omnivorous diet seem to be able to either 
positively or negatively impact MDD. The ambiguous results suggest the need for additional 
research on the effect of a vegetarian diet on the gut microbiome composition, as well as the 
impact of gut microbes in the pathogenesis of MDD. However, the conflicting results might also 
suggest there is no direct relation between a vegetarian or omnivorous diet and MDD.  
 
Some limitations of this literature review should be reported. This thesis did not differentiate 
between beef, pork or poultry. The type of meat may substantially differ in its effect on the gut 
microbiome. Moreover, not all food components were considered within this thesis. Other 
vitamins, which were not discussed in this thesis, may affect the pathophysiological 
mechanisms of MDD as well.    
 
MDD is one of the leading contributors to global disease burden and prevalence is only 
increasing. The gut-brain axis has been demonstrated to be involved in the pathogenesis of 
depression. Dietary intervention may provide a novel approach to alleviate depressive 
symptoms. However, contemporary literature reports on the effect of gut microbes on cognitive 
functioning and the effect of meat consumption on gut microbes remains undetermined, as 
these relations are very complex and may be affected by many confounding factors. Hence, 
additional research on the effect of a vegetarian diet on the gut microbiome and MDD is 
required.  
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