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Abstract

Kagome materials received profound attention in recent years, becoming some of the most prominent
structures in condensed matter theory. They have been proposed as hosts for a large variety of
quantum phases, such as spin liquids, unconventional superconductivity and topological phases
of matter. At specific lattice filling the electronic bands have a semimetallic structure with a
vanishing density of states, hosting Dirac, massless quasiparticles. This paradigm is well known in
other materials, among which graphene stands first. When specific effects are taken into account,
however, a gap is opened at the Dirac points and the quasiparticles become massive: a semimetal-
insulator phase transition occurs. Such perturbations in graphene have been widely studied from
different perspectives. Instead, the plethora of gap-opening terms in kagome lacks an established
classification, and, in most cases, a clear physical interpretation. Recent work however indicates
candidate kagome materials as strongly interacting compared to graphene. This suggests that mass
terms are more likely to spontaneously originate, motivating interest in this research.

In this work we map the sixteen gap-opening terms of kagome materials into physical effects,
leveraging information on the relative broken and preserved symmetries. The general features of
kagome instabilities are then discussed with reference to graphene ones, picturing a complex and
multifaced relation. The anomalous Hall effect and the spin-Hall effect, originally proposed for the
honeycomb lattice, find a prominent host in kagome structures: contrarily to graphene, they are
already relevant for nearest-neighbour hoppings, which generally represent the leading contribution.
Remarkably, lattice deformation instabilities reflect one property of the model, namely that kagome
lattice at 1/3 filling (Dirac points) can be mapped into a dimer model on the hexagonal lattice.
Consistently, gap-opening distortions of lattice sites in one structure find a related bond-distortion
in the other structure, and viceversa. The staggered, on-site potential which makes graphene an
insulator has a dimerization pattern of alternating bonds as the corresponding mass in kagome, and
similar mappings are found in more sophisticated distortions as Kekulé patterns. Lastly, honeycomb
materials are known to have antiferromagnetic instability which leads to a trivial, insulating phase;
instead, kagome materials suffer from magnetic frustration. At 1/3 filling however, orderings are
possible thanks to the empty sites. Antiferromagnetic phases at the Dirac points are therefore
gapped in both materials, with one difference: graphene AFM has a simple magnetic cell, while
kagome AFM can be realised with enlarged magnetic cell. In conclusion, the established ground of
graphene works as one additional benchmark, giving indications about the relevant instabilities of
the two structures.
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Chapter 1

Introduction

In crystalline materials, the component ions are arranged in regular patterns. Such periodical struc-
tures are remarkable for their symmetric aspect and for how these symmetries can be incorporated
into the theoretical description. Among these structures, some allow the formation of single-layer
crystals, which live in two dimensions. The first 2D material observed in nature was graphene
(carbon), isolated in 2004 by Novoselov and Geim [12]. Both theoretical and experimental research
on such material has seen tremendous success, with a consequent effort in developing and studying
other 2D structures: more than a thousand monolayer materials have been predicted. The focus of
this work is on two 2D crystal arrangements, honeycomb lattice and kagome lattice. In this ven-
ture, we will shed light on the interesting relationship between materials with these two structures,
discussing the similarities and differences.

1.1 Insulators, metals and semimetals

Much of the properties of solid materials are encoded in the behaviour of the valence and conduction
electrons. While core electrons are strongly bounded to the nuclei, the former are generally displaced
among different crystal sites, and possibly free to move. Electronic band theory studies the energy
levels which can, or cannot be accessed by valence electrons. It is necessarily rooted in the quantum-
mechanical framework when low-energy regimes are considered and Pauli’s exclusion principle plays
a crucial role. Its formulation relies on the periodicity of the crystal: quantum wavefunctions of free
electrons in a periodic potential are periodic functions modulated by plane waves (Bloch’s theorem):

ψi,k(x) = ui(x)e
ikx

Therefore, momentum k is a good quantum number, provided that wavefunctions ψ enjoy the
same periodicity of the crystal (described by the reciprocal lattice vector K): ψi,k = ψi,k+K The
momentum space can therefore be restricted to the Brillouin zone, and the Hamiltonian can be
block-diagonalized, where each block Hk (named Bloch Hamiltonian) has a dimension equal to
the number of the periodic function ui(x). Each i-th eigenvalue εi(k) of the Bloch Hamiltonian
changes continuously with k, and is called electronic band[2]. When the chemical potential sits
within the energy range of one band, electrons can increase their energy for an arbitrarily small
electric field. This is the case with metals. Instead, if the chemical potential lies in the gap between
two bands, the material is an insulator: to excite electrons a finite amount of energy is required.
A possible configuration lies in between: in semimetals, two bands touch at a finite number of
points where the density of states is vanishing, as shown in Figure 1.1 This is the case of graphene
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1.2. MOTIVATIONS AND STUDY OVERVIEW CHAPTER 1. INTRODUCTION

and kagome materials when electrons are considered non-interacting and the chemical potential is
specifically tuned. In particular such materials host bands that touch at points where they can
be approximated as two corner-sharing cones. The linearized Hamiltonian around these points
(named Dirac points) is the Dirac equation of Weyl quasiparticles (massless, chiral fermions)[1,
3, 6, 7, 9]. Such excitations behave as relativistic, massless fermions with the Fermi velocity vF
taking the role of the speed of light c 1 . Despite the strong difference in energy scale, the physics
of these quasiparticles has intrinsic relativistic properties. An interesting example is given by the
Klein paradox[1], which explains the surprisingly strong tunnelling through a potential barrier for
relativistic fermions. In graphene and kagome such phenomenon prevents backscattering of the
massless fermions emerging at the Dirac points [15, 16].

 

µ

µ M

K K Ka s e

Figure 1.1: (a)Metallic, (b) insulating and (c) semimetallic band structures. The orange line indicates
the chemical potential

1.2 Motivations and study overview

Kagome metals received profound attention in recent years, becoming some of the most prominent
condensed-matter structures. They have been proposed as hosts for quantum spin liquids [19, 20],
unconventional superconductivity[21], topological phases of matters[57], showing a wide spectrum of
exotic quantum phases[59]. One reason for such variety and richness lies in the non-trivial geometry,
which is responsible for an intriguing band structure. The presence of one flat band in momentum
space (corresponding to charge localisation in real space) makes kagome metals an interesting
setup for phenomena of strongly correlated electrons [22]. Although its conduction behaviour is
generally metallic, at specific filling the bands show semimetallic structure with a vanishing density
of state [11, 23], hosting Dirac, massless quasiparticles. Another important aspect deriving from
its geometry is the presence of magnetic frustration. Structurally made of triangles, kagome is a
perfect example of lattice geometry which strongly hinders antiferromagnetic order, as sketched in
Figure 1.2. Remarkably, magnetic phases with fascinating features emerge from frustration [19].

In the present work, we focus on the semimetallic limit, where an effective Dirac theory emerges:
specifically tuning the chemical potential, kagome materials become semimetals, and the effective
Hamiltonian describes massless Dirac fermions. This paradigm is well known in other materials [10,

1The presence of Weyl quasiparticles is at the origin of the incorrect nomenclature used for graphene and kagome
semimetals, which are often named as Weyl semimetals. However, as we discuss in the next section, certain perturba-
tions open a gap at the Dirac points, and chirality is no more a good quantum number. In Weyl semimetals instead,
perturbations can uniquely change the position of the Weyl nodes in the Brillouin zone, but not directly open a gap.
In this case, the only way to annihilate Weyl nodes is to bring together a couple with opposite chirality[18, 42].

2
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Figure 1.2: Antiferromagnetic ordering on the square lattice, and magnetic frustration on the triangular
lattice. The energy of this last is degenerate with respect to the spin direction in the upper corner.

11], among which graphene stands first. Experimentally realised in 2004 [12], graphene has seen
tremendous success, both theoretically and experimentally. Its popularity is rooted in its astonishing
mechanical and transport properties. Extreme flexibility, low weight and remarkable strength are
among its main characteristics[15]. A σ bond of the sp2 hybridization is created between carbon
atoms, making the structure particularly robust and creating the trigonal planar configuration. An
additional p orbital, perpendicular to the plane, participates in a π bond, which is only half-filled.
The two electrons involved in these bonds (the main actors in this thesis work) are responsible for
graphene conduction properties. When considered non-interacting, these two electrons behave as
Dirac quasiparticles, with linear dispersion relations at the Dirac points. Backscattering is prevented
in this approximation, resulting in good transmission of heat and electric charges. However, specific
effects are responsible for semimetal-insulator phase transition: if taken into account a gap is opened
at the Dirac points, and the quasiparticles become massive (for this reason, these terms are named
“mass terms”). This transition is usually associated with time-reversal or chiral symmetry breaking.
The gap-opening perturbations in graphene have been partially classified in terms of symmetries
[33], and widely studied from different perspectives [34–41, 46–48]. One viewpoint is the research
line on topological phases of matters. Under particular interactions graphene shows quantum (spin)
Hall effects [36], and conducting features of a topological insulator [57], a phase marked by gapped
bulk and metallic states on the surface. One second, popular track concerns deformations of the
lattice. Motivated by engineering applications such as carbon nanotubes[17, 38], lattice distortions,
bending, straining, or twisting have been widely explored [39, 40, 42–44].

A semimetal-insulator phase transition is possible in kagome materials too, with equal mech-
anism at the fundamental level. Compared to graphene, however, the plethora of gap-opening
terms in kagome lacks an established classification, and, in most cases, a clear physical inter-
pretation. Filling this gap is motivated by two main reasons. Mazin et al. [23] showed that
Sc-Herbertsmithite (kagome lattice) is strongly interacting compared to graphene, with a three
times larger fine-structure constant2. Two possible conclusions appear to be in contrast. On one
side, this fact indicates kagome materials as candidates for investigating phenomena of strongly
correlated Dirac fermions. On the other side, it suggests that gap-opening effects are more likely

2The fine structure constant quantifies the strength of the Coulomb interaction, in the vacuum as in a medium.
In the latter case, it is defined as the quantity

α =
e2

4πϵ0ϵr

1

ℏvF
where ϵr is the relative permittivity of the medium, e the elementary charge, vF the Fermi velocity of the electrons.

3



1.3. TIGHT-BINDING MODEL OF GRAPHENE CHAPTER 1. INTRODUCTION

to spontaneously originate, making the system an insulator. Identification and classification of
these terms, and investigations about their spontaneous generation is one possible way to untie this
knot. The second reason concerns the non-trivial relation between graphene and kagome materials.
These two enjoy equal lattice symmetries, encoded in the p6m wallpaper group. They both host
massless quasiparticles at the Dirac cones, which existence is protected by time reversal and chiral
symmetries. In principle, one would expect a similar correspondence between the two families of
gap-opening terms. Surprisingly, however, many differences are present: kagome is made of three
sublattices instead of two, with strong consequences on the relevant instabilities that might arise. A
canonical example is the emergence of magnetic configuration: while graphene is a perfect host for
antiferromagnetic structure (which makes the system an insulator), kagome materials suffer from
frustration, which discourages ordering. One underlying narrative of this thesis is to shed light on
these analogies and disparities.

Our work is structured as follows. In the remaining part of this chapter, we introduce the tight-
binding model, which describes non-interacting electrons hopping on the honeycomb and kagome
lattice. We show the underlying mechanism leading to the semimetal-insulator phase transition,
shared by all the gap-opening terms. In the second chapter, we define the theoretical framework
to represent symmetries in quantum mechanics (and in field theory), with specific attention to
graphene and kagome materials. We implement operators for reflection and rotation symmetries of
these two lattices, along with symmetry operators of the respective free-electrons quantum theory.
We leverage these tools as classifiers for the gap-opening terms, with reference to the broken or
preserved symmetries. In the following chapter, we identify each mass term with a physical effect,
for both considered lattices. Lacking an accurate overview in this framework, Chapter 3 is an
alternation of literature-reviewing sections - predominant for graphene - and contributions of the
present author, more consistent instead for kagome materials. Finally, we qualitatively discuss the
spontaneous emergence of a few of these terms.

The main goals of this thesis can therefore be resumed as follows: (i) the identification of bilinear
terms leading to a gap opening, i.e. a quantum transition between a semimetallic and an insulating
phase; (ii) classification of mass terms according to symmetry arguments (iii) mapping of such
instabilities into physical phenomena, both for graphene and kagome materials; (iv) discussion of
fundamental analogies and differences between these two families. This investigation is a crucial
step to address the relevance of such contributions and to establish whether they spontaneously
arise from Coulomb interaction.

1.3 Tight-binding model of graphene

The tight-binding (TB) Hamiltonian describes the hoppings of free electrons. For the spinless case,
it can be written in second quantization as

H = −t
∑
⟨i,j⟩

ψ†
iψj (1.1)

The summation is taken between nearest-neighbouring sites, and the parameter t represents the
matrix element between two neighbouring orbitals:

−t = tij =

∫
dxϕ∗j (x)U(x)ϕi(x) (1.2)

where U(x) is the periodic potential. This quantity, also named hopping amplitude, takes the value
t ≈ 2.8eV in graphene[15]. The sign of t is generally determined by the potential U(x), according to

4



1.3. TIGHT-BINDING MODEL OF GRAPHENE CHAPTER 1. INTRODUCTION

Eq.1.2: attractive potentials typically result in a negative sign of the integral. The energy spectrum
depends linearly on t: a sign flip, therefore, relates particles with holes. If the Hamiltonian enjoys
particle-hole symmetries, its spectrum is unchanged by the transformation t→ −t. 3
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Figure 1.3: (a) Honeycomb lattice and (b) it’s Brullouin zone. Sublattice vectors δi and Dirac points are
drawn in orange and green respectively.

The kagome lattice of graphene is made of two intersecting Bravais lattices, which we label as
A and B (see Figure 1.3a). The lattice vectors, connecting sites on the same sublattice, are given
by

α1 =
ℓ

2

(
3,
√
3
)

α2 =
ℓ

2

(
3,−

√
3
)

α3 = α1 − α2 = ℓ
(
0,
√
3
)

(1.3)

We study electrons hopping on this structure, described by fermionic field operators ai or bi,
depending on the considered sublattice. The TB Hamiltonian takes the following form [14]

H = −t
∑
xi∈A

(
a†i bi+δ1 + a†i bi+δ2 + a†i bi+δ3

)
+ h.c. (1.4)

where the sublattice vectors are

δ1 =
ℓ

2

(
1,
√
3
)

δ2 =
ℓ

2

(
1,−

√
3
)

δ3 = ℓ (−1, 0) (1.5)

and ℓ is the lattice spacing. We exploit translational symmetry by Fourier transformation of the
field operators:

ai =
1√
N/2

∑
k∈B

eikxiak (1.6)

3In the continuum the sign of kinetic energy is constrained by stronger reasons: the kinetic operator p2

2m
has

positive spectrum, it is bounded from below but not from above, therefore is sign cannot be inverted. Any discrete
version of the Laplacian is instead bounded from below and above, removing such constrain.

5



1.3. TIGHT-BINDING MODEL OF GRAPHENE CHAPTER 1. INTRODUCTION

The sum runs over the Brillouin zone, which is depicted in Figure 1.3b, and N is the number of
lattice sites. The reciprocal of the kagome lattice is given by a honeycomb rotated of π/2.

H = − t

N/2

∑
xi∈A

∑
k,k′

eixi(k−k′)
(
a†kbk′eik

′δ1 + a†kbk′eik
′δ2 + a†kbk′eik

′δ3
)
+ h.c.

= −t
∑
k

∑
j

a†kbke
ikδj + h.c.

(1.7)

where we used that
∑

xi∈A e
ixi(k−k′) = N

2 δk,k′ . Defining the field operator Ψk = (ak, bk)
T

This
expression can be written in matrix notation as

H = −t
∑

k∈BZ

Ψ†
k

(
0

∑
j e

ikδj∑
j e

−ikδj 0

)
Ψk (1.8)

Two electronic bands are encoded in the two eigenvalues of the Bloch Hamiltonian:

ϵ±(k) = ±t

√√√√3 + 2 cos
(√

3ℓky

)
+ 4 cos

(√
3ℓ

2
ky

)
cos

(
3ℓ

2
kx

)
(1.9)

The two energy bands are symmetric with respect to ϵ = 0, which is a feature of the sublattice
(chiral) symmetry A↔ B, and charge (particle-hole) symmetry. In addition, the two bands touch
each other at single points of the Brouillon zone, named Dirac points. We count six in total, of
which only two belong to the reciprocal unit cell since the others are part of neighbouring cells.
These two points, taken from different sublattices, are independent and are usually named valleys.
A possible choice is

KD1 =

(
2π

3ℓ
,

2π

3
√
3ℓ

)
KD2 =

(
2π

3ℓ
,− 2π

3
√
3ℓ

)
(1.10)

Figure 1.4:
Electronic bands of graphene in the Brillouin zone

1.3.1 Low energy expansion

This model has in fact semimetallic band structure, with a vanishing density of state at the band
junction. A low energy expansion around these nodes (E ≈ 0) reveals the Dirac nature of this
semimetal: in the vicinity of Dirac points electrons behave as massless particles propagating at the

6
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Fermi velocity vF = − 3
2ℓt. The Bloch Hamiltonian for KD1 + q takes indeed the form of a Dirac

Hamiltonian:

h(KD1 + k) = −3

2
ℓt

(
0 kx + iky

kx − iky 0

)
= vF (kxτ1 − kyτ2) (1.11)

h(KD2 + k) = −3

2
ℓt

(
0 kx − iky

kx + iky 0

)
= vF (kxτ1 + kyτ2) (1.12)

where τi are the Pauli matrices. It’s worth noticing that the Fermi velocity depends on the con-
sidered material. We can include the degree of freedom encoded in the valleys by rewriting the
Hamiltonian as

H(k) = vF (kx σ0 ⊗ τ1 + ky σ3 ⊗ τ2) (1.13)

where σi are the Pauli matrices acting on the valley subspace. Until now, we considered a spinless
system. For a general spinful system the Hamiltonian becomes

H(k) = vF (kx s0 ⊗ σ0 ⊗ τ1 + ky s0 ⊗ σ3 ⊗ τ2) (1.14)

Here, τi, σi, and si are the Pauli matrices acting on the sublattice, valley and spin subspace
respectively. The full field operator in this space is given by

Ψq =
(
aq↑+ bq↑+ aq↑− bq↑− aq↓+ bq↓+ aq↓− bq↓−

)T
(1.15)

1.4 Tight-binding model on the kagome lattice
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Figure 1.5: (a) Kagome lattice and (b) it’s Brullouin zone. Sublattice vectors δij and Dirac points are
drawn in orange and green respectively.

The tight-binding model Hamiltonian for spinful particles reads

H = −t
∑

⟨i,j⟩,s

ψ†
isψjs (1.16)

7



1.4. TIGHT-BINDING MODEL ON THE KAGOME LATTICE CHAPTER 1. INTRODUCTION

where the summation is taken between near-neighbors ⟨i, j⟩, and over the spin index s. The kagome
lattice has three sub-lattices A,B,C. The respective field operators are

Ψis = (ais, bis, cis)
T

(1.17)

and the three sublattice vectors are shown in figure 1.5a:

δab = ℓ(1, 0)T δbc =
ℓ

2
(1,

√
3)T δcd =

ℓ

2
(−1,

√
3)T (1.18)

We follow the procedure of the previous section to block-diagonalize the TB Hamiltonian in
momentum space. After Fourier transformation indeed, the Hamiltonian reads[25]

H = − t

N/3

∑
s

∑
xi∈A

∑
k,k′

eixi(k−k′)
[
a†ksbk′s

(
eik

′δab + e−ik′δab

)
+

+ a†ksck′s

(
eik

′δac + e−ik′δac

)
+ b†ksck′s

(
eik

′δbc + e−ik′δc
) ]

+ h.c.

= −2t
∑
s

∑
k

cos (k · δab) a†ksbks + cos (k · δac) a†kscks + cos (k · δbc) b†kscks + h.c.

(1.19)

Again, the Hamiltonian can be written in the matrix form as

H =
∑
s

∑
k∈B

Ψ†
s(k)h(k)Ψs(k) (1.20)

The Bloch Hamiltonian is

h(k) = −2t

 0 cos (k · δab) cos (k · δac)
cos (k · δab) 0 cos (k · δbc)
cos (k · δac) cos (k · δbc) 0

 (1.21)

and where Ψs(k) =
(
as(k), bs(k), cs(k)

)T
are the annihilation operators in momentum space, and

the summation in k = (kx, ky)
T runs over the first Brillouin zone, represented in Figure 1.5b. This

Hamiltonian has three bands:

E(k) =

{
−t
(
1±

√
3 + 2

∑
i cos (2k · δi)

)
2t

(1.22)

The two lower bands have a structure similar to graphene, with six Dirac points. One additional
flat band sits on top at energy 2t. Dirac points belong to the reciprocal lattice, which has a
honeycomb structure, made of two sublattices. Three of the six Dirac points belong to one sub-
lattice, and three to the other. However, among the six, only two (one from each sub-lattice) belong
to the unit cell, because of the periodicity of the crystal. These two points take the name of valleys.
The low energy expansion (see next paragraph) is mildly affected by the choice of the two points,
in the following sense: the theories which emerge in linear approximation at the different Dirac
points are equivalent, up to a gauge transformation. Such a relation ensures equivalent spectrum
properties. However, transformations of the Hamiltonian that mix these 6 points require extra care.
This will be investigated in more depth in section 2.2.1.

8
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Figure 1.6:
Electronic bands of graphene in the Brillouin zone

1.4.1 Low energy expansion

We expand h(k) up to linear terms, at the Dirac points KD1 and KD4:

KD1 =

(
2π

3ℓ
, 0

)T

KD4 =

(
−2π

3ℓ
, 0

)T

(1.23)

The matrix elements can be approximated as

cos [(KD1 + k) · δab] ≃ −1

2
−

√
3

2
ℓkx cos [(KD4 + k) · δab] ≃ −1

2
+

√
3

2
ℓkx (1.24)

cos [(KD1 + k) · δac] ≃
1

2
−

√
3

4
ℓkx − 3

4
ℓky cos [(KD4 + k) · δac] ≃

1

2
+

√
3

4
ℓkx +

3

4
ℓky (1.25)

cos [(KD1 + k) · δbc] ≃
1

2
−

√
3

4
ℓkx +

3

4
ℓky cos [(KD4 + k) · δbc] ≃

1

2
+

√
3

4
ℓkx − 3

4
ℓky (1.26)

The linearized Bloch Hamiltonian therefore reads

h(KD1 + k) = −t

 0 1 +
√
3ℓkx −1 +

√
3
2 ℓkx + 3

2ℓky

1 +
√
3ℓkx 0 −1 +

√
3
2 ℓkx − 3

2ℓky

−1 +
√
3
2 ℓkx + 3

2ℓky −1 +
√
3
2 ℓkx − 3

2ℓky 0


h(KD4 + k) = h(KD1 − k)

(1.27)

1.4.2 Flat band decoupling

We transform the linearized Hamiltonian in order to decouple the flat band from the other two,
at the Dirac point. To do that, we consider the matrix U that diagonalises h(KD1) = h(KD4)
Eq.1.27, meaning that it decouples the three bands at the Dirac point. In principle, one could
find a k-dependent transformation Uk, to diagonalise the Bloch Hamiltonian at each point in the

9
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(a) (b)

Figure 1.7: (a) Electronic bands of graphene (top) and kagome (bottom) tight-binding model and (b)
their linear approximation at the Dirac points.

Brillouin zone. The two lower bands touch at the Dirac points: consistently, h(KDi) is doubly
degenerated. The choice of basis vectors in this subspace is arbitrary.

U =

 1√
2

0
1
1

 , 1√
6

 2
−1
1

 , 1√
3

−1
−1
1

 =
[
Ã, B̃, C̃

]
(1.28)

Another transformation becomes useful. We define two new momenta:

k1 =
1

2
(kx −

√
3ky) (1.29)

k2 =
1

2
(
√
3kx + ky) (1.30)

The transformed linearized Hamiltonian reads

h̃(KD1 + k) = Uh(KD1 + k)U−1 =

−t− vfk1 −vfk2 vf√
2
k2

−vfk2 −t+ vfk1
vf√
2
k1

vf√
2
k2

vf√
2
k1 2t

 (1.31)

h̃(KD4 + k) = h̃(KD1 − k) (1.32)

where vf =
√
3ℓt can be seen as the effective Fermi velocity. The 2x2 block in the left-upper corner

describes the two low-energy bands, while the other terms describe the coupling of these lasts with
the flat band E = 2t. The flat band contributes to the low-energy theory with terms of order O(k2)

10
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and can be therefore neglected. In the subspace of low-energy bands (2x2, left-upper block), the
Hamiltonian reads

H̃(k) = h̃(KD1 + k) = −t1 − vf (k1 τ3 + k2 τ1) (1.33)

where τi is the i-th Pauli matrix acting on the sublattice subspace. For the other valley KD4,
k enters with a minus sign. We absorb the term proportional to the identity into the chemical
potential, i.e. we consider 1/3 lattice filling. Including the valley degree of freedom, the Hamiltonian
reads:

H̃(k) = −vf (k1 σ3 ⊗ τ3 + k2 σ3 ⊗ τ1) (1.34)

where σi is the i-th Pauli matrix acting on the valley subspace. We can include the spin degree
of freedom in our picture, using that H̃(k) is spin-independent:

H̃(k) = −vf (k1 s0 ⊗ σ3 ⊗ τ3 + k2 s0 ⊗ σ3 ⊗ τ1) (1.35)

where si is the i-th Pauli matrix acting on the spin subspace.

1.4.3 Hilbert space of the model

In the following sections, we are going to consider possible bilinear terms (or mass terms), asking
whether they open a gap at the Dirac cones, and which symmetries they preserve or break. Since
the most general mass term may involve spin or valley dependence, we will take bilinear operators
acting on the following Hilbert space:

H3 ≡ C2︸︷︷︸
Spin space

⊗ C2︸︷︷︸
Valleys sp.

⊗ C3︸︷︷︸
Sublattices sp.

(1.36)

In this thesis, we are interested in the vicinity of the Dirac points E ≈ −t (often referred to as
low energy theory). We therefore project these operators in H2 subspace of H3, which describes
the two low-energy bands:

H2 ≡ C2︸︷︷︸
Spin space

⊗ C2︸︷︷︸
Valleys sp.

⊗ C2︸︷︷︸
Low-en. bands

(1.37)

1.5 2D Semimetal-insulator phase transition

We study bilinear terms that open a gap at the Dirac points, separating the two low-energy bands
and making the system an insulator. We address the problem within the Dirac formalism, consid-
ering a two-dimensional Hilbert space. A generalisation to larger dimensional spaces (e.g. if one
includes spin and valley) is straightforward. We start with the following Dirac Hamiltonian:

H = p1α1 + p2α2 +mM (1.38)

where p1,2 are the momenta operator in two directions, and α1,2 Pauli matrices (or, more generally,
some D-dimensional matrices satisfying fermionic commutation relations {αi, αj} = 2δij). To find
the conditions for m to be a mass scale and M to be a gap-opening matrix, we consider the square
of the Hamiltonian:

H2 = p21 + p22 +mp1 {α1,M}+mp2 {α2,M}+m2M2 (1.39)

11
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If the mass terms satisfy the following relations

{αi,M} = 0 M2 = 1 (1.40)

we obtain

H2 = p21 + p21 +m2M2 (1.41)

which yields the dispersion relation of Dirac particle with mass m:

ϵp = ±
√
p2 +m2 (1.42)

From now on, we refer to terms satisfying Eq.1.40 as gap terms, because of the gap of amplitude
2 |m| opening at the Dirac point. A graphical sketch of the gapless (m = 0) and gapped dispersion
relation Eq.1.42 are reported in Figure 1.8.

Figure 1.8: Semimetal-insulator phase transition: a gap opens at the Dirac points, and the fermionic
quasiparticles acquire a finite mass.

1.5.1 Graphene

Low-energy approximation of the TB Hamiltonian in graphene is an operator which belongs to the
following Hilbert space:

H2 ≡ C2︸︷︷︸
Spin space

⊗ C2︸︷︷︸
Valleys sp.

⊗ C2︸︷︷︸
Sublattices sp.

(1.43)

The general mass term in this theory is therefore an operator of the kind

Mijk = si ⊗ σj ⊗ τk (1.44)

si, σi, τi are identity matrices (i = 0) and Pauli matrices (i = 1, 2, 3). Between the 64 operators
forming a basis for H2, 16 anti-commute with the graphene Hamiltonian Eq. 1.14. The list can be
found in Table 2.2, and it corresponds (up to a change of basis) to the list obtained in [33].

12
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1.5.2 Kagome

Mass terms in the low-energy theory of kagome are operators acting on H2. We name them

Mijk = si ⊗ σj ⊗ τk (1.45)

where i, j, k run in {0, 1, 2, 3}. These operators do not involve couplings with the flat band. We
embed the gap terms in the full space H3 in the following way:

M̃ijk = si ⊗ σj ⊗

 τk
0
0

0 0 0

 (1.46)

We have 64 possible mass terms, but only 16, reported in Tab.2.2, anti-commute with the Hamil-
tonian opening a gap. At the time of writing, such classification is not present in the literature on
kagome metals.

Note that we are working in the decoupled representations, in which the Hamiltonian is diagonal
at the Dirac points. The mass term in the original representation (same as Eq. 1.21) are obtained
using

Mijk = U−1M̃ijkU (1.47)

Coupling with the flat band One may wonder if a gap can be opened by the coupling between
the low-energy bands |ψ1,2⟩, and the flat band |ψ3⟩.We refer to operators acting on H3 (in the
representation Eq.1.31):

Ṽ =

 0 0 a
0 0 b
a∗ b∗ c

 (1.48)

In perturbation theory, the first-order corrections to the low-energy bands vanish:

E
(1)
1 = ⟨ψ1| Ṽ |ψ1⟩ = 0 (1.49)

E
(2)
1 = ⟨ψ2| Ṽ |ψ2⟩ = 0 (1.50)

A finite contribution comes from second-order corrections

E
(2)
1 =

∣∣∣⟨ψ1| Ṽ |ψ3⟩
∣∣∣2

t− 2t
= −|a|2

t
(1.51)

E
(2)
2 =

∣∣∣⟨ψ2| Ṽ |ψ3⟩
∣∣∣2

t− 2t
= −|b|2

t
(1.52)

If |a|2 ̸= |b|2 a gap opens. However, we notice that this gap is proportional to 1
t , and therefore can

be neglected.

1.5.3 On the choice of Dirac points

Note: For conciseness we set the following discussion for one structure. We choose kagome
lattice because it requires one additional passage, namely the flat band decoupling. An equivalent
(and simpler) derivation can be obtained for the honeycomb lattice.
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In the previous section we considered the low-energy expansion of the TB hamiltonians, around
two Dirac points of the kagome bands, KD1 and KD4. This choice however is arbitrary, as far as
the two points are taken from different sublattices (referring to Fig.1.5b, one point needs to have an
even index, and the other odd index). For instance, the low-energy hamiltonians around KD1 and
KD3 are said to be equivalent, because these two points are related by reciprocal lattice vectors.
In this section we address this correspondence, and we discuss how it applies to the gap-opening
terms. For the following discussion, we label the low-energy Hamiltonian H with two upper indices
(ij), that indicate the two chosen Dirac points (according to Fig. 1.5b). For example, Hamiltonian
Eq.1.35 is labeled as H(14). When only one index is present, we refer to the hamiltonian acting on
one single valley.

As we anticipated in the previous section, expanding around different points results in different
Hamiltonians, which however share the same spectral properties. This is not accidental. A gauge
transformation4 relates the different expansions. In particular, the 3x3 Hamiltonian expanded
around KD1 is related to the one around the equivalent Dirac points via

H(1) = G1H
(3)G−1

1 H(1) = G2H
(5)G−1

2 (1.54)

where

G1 = diag (1,−1, 1) G2 = diag (−1, 1, 1) (1.55)

The 3x3 Hamiltonian expanded around KD4 is instead related with the other two equivalent points
as

H(4) = G2H
(2)G−1

2 H(4) = G1H
(6)G−1

1 (1.56)

We then characterised the equivalence of Dirac points with a gauge symmetry, which is reflected
in equal spectral properties. We show one explicit example to clarify the discussion. The linearized
hamiltonians at the Dirac point KD1 and KD3 are

h(KD1 + k) ≃

 0 −1−
√
3kx 1−

√
3
2

(
kx +

√
3ky
)

−1−
√
3kx 0 1 +

√
3
2

(
−kx +

√
3ky
)

1−
√
3
2 (kx + 3ky) 1 +

√
3
2

(
−kx +

√
3ky
)

0



h(KD3 + k) ≃

 0 1 +
√
3kx 1−

√
3
2

(
kx +

√
3ky
)

1 +
√
3kx 0 −1−

√
3
2

(
−kx +

√
3ky
)

1−
√
3
2 (kx + 3ky) −1−

√
3
2

(
−kx +

√
3ky
)

0


(1.57)

The two are equal up to a transformation of the field operatorsakbk
ck

 →

 ak
−bk
ck

 (1.58)

which corresponds indeed to the gauge transformation G1 defined in Equation 1.55.

4We name G a “gauge” transformation because it can be written as the following transformation on the second
quantized fields:

ĉ′j = eiϕj ĉj (1.53)

where ĉj are the creation operators on the sublattices A,B,C. Note that this relation resembles the usual gauge

transformation ψ′(x) = eiΛ(x)ψ(x).
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We discuss now how this symmetry applies to the gap opening terms. We know that “equivalent”
hamiltonians are related via one precise gauge transformation. This implies that the respective mass
terms (i.e. the additional anti-commuting terms) are related by the same gauge transformation5.
The implication of this finding is that each mass term corresponds to a family of gap-opening
terms, which are gauge related. Even more: all these related mass terms enjoys or breaks the same
symmetries. In our future discussion, we can therefore drop the indices ij, and refer to a generic
mass term Mabc, being aware it corresponds to a family of gauge-related operators in the original
representation.

This discussion needs extra-care in kagome materials, because the additional passage of decou-
pling the flat-band is required. For each H(ij) indeed one can find a unitary transformation that
(1) decouples the flat band and (2) transforms the Hamiltonian into H(14) Eq.1.35. This last point
is allowed by the degenerate nature of the low-energy subspace. At the Dirac point indeed there
is a two-dimensional subspace associated with the same eigenvalue, and one is able to choose the
basis of eigenvectors which gives that precise form of the Hamiltonian H̃. For each H(ij), we define
U(ij) as this precise unitary operator, i.e. the operator such that

U(ij)H
(ij)U−1

(ij) = H̃ (1.59)

The form of the transformation U(ij) depends on the particular Dirac points ij, but again the gauge
symmetry relates them6.

5Mass terms of gauge-related hamiltonians are related by the same gauge transformation: if H(i) = GH(j)G−1

and {H(j),M(j)} = 0 then we can define M(i) = GM(j)G−1, which anti-commutes with H(i):

{H(i),M(i)} = G{H(j),M(j)}G−1 = 0

6The relation between the operators U(ij) can be obtained as follows:{
H(ij) = U−1

(ij)
H̃U(ij)

H(ij) = GH(kl)Uij

=⇒ Hkl = U−1
kl H̃Ukl = G−1HijG = G−1U−1

ij H̃UijG (1.60)

Therefore
Ukl = UijG (1.61)
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2.1 Anti-unitary symmetries

Symmetries constitute a powerful tool in quantum mechanics. The formulation of a generic QM
problem can be largely simplified when its symmetries are exploited, thanks to a dimensional
reduction [26, 28]. In quantum mechanics, symmetries are represented by unitary or anti-unitary
operators1. Symmetry transformations are indeed required to preserve probability densities. Quan-
tities such as |⟨ψ|ϕ⟩|2 must be invariant under a symmetry transformations |ψ⟩ → |Uψ⟩, and this
is only possible if ⟨Uψ|Uϕ⟩ = ⟨ψ|ϕ⟩ (U unitary operator) or instead ⟨Uψ|Uϕ⟩ = ⟨ψ|ϕ⟩∗ = ⟨ϕ|ψ⟩ (U
anti-unitary operator).

When tackling a QM problem (i.e. finding eigenvalues and eigenstates of the Hamiltonian) the
typical procedure is to find unitary operators U that commute with the Hamiltonian: [U,H] =
0. If U exists, there exists a basis of the Hilbert space in which H and U are simultaneously
block-diagonal2. Each block is associated with an eigenvalue of U , and it is called an irreducible
representation (irrep) of the symmetry. One can repeat this procedure for all the unitary operators
Ui which commute with H, producing the finest block structure. One may wonder if something can
be said about the structure of each block. Since unitary symmetries are already taken into account,
a possible answer comes from the anti-unitary ones.

Figure 2.1: Block-diagonalization of the Hamiltonian into irreps of a symmetry operator. Image taken

from [28].

In the next chapter, we define two anti-unitary symmetries, time-reversal T and charge (particle-
hole) C, that respectively commute and anti-commute with the Hamiltonian[28]. We sketch an argu-
ment to prove that these two are exhaustive [29]: T and P describe all the anti-unitary symmetries,
up to multiplication by a unitary operator. Moreover, we describe one last symmetry (chirality),
which is unitary, but it anti-commutes with the Hamiltonian (instead of commuting). In conclusion,
we apply this formalism to the relevant examples: the tight-binding model on graphene and the
kagome lattice.

1An operator U is said to be unitary if

• it is linear

• U† = U−1, or alternatively ⟨Uψ|Uϕ⟩ = ⟨ψ|ϕ⟩.
An operator U is said to be anti-unitary if

• it is anti-linear (i.e. Uα |ψ⟩ = α∗U |ψ⟩)
• ⟨Uψ|Uϕ⟩ = ⟨ψ|ϕ⟩∗.

2More precisely, U is diagonal and H is block-diagonal
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2.1.1 Time reversal

Time reversal operator T is the transformation which inverts the time axis direction. It is anti-
unitary since

T xT −1 = x T pT −1 = −p (2.1)

and therefore

T iT −1 = ℏT [x, p] T −1 = −ℏ [x, p] = −i

It can therefore be written as

T = UT · K (2.2)

where K is the complex conjugation operator3, and UT is unitary4. It can be seen from Eqs.2.1
that T flips the direction of the angular momentum. In the same way, also the spin (that can be
seen as a magnetic momentum) is flipped:

T sT −1 = −s (2.3)

The Hamiltonian is said to be T -invariant if

T HT −1 = H → UTH
∗U−1

T = H (2.4)

i.e. if T commutes with H. Using that time-reversal flips the momentum and commutes with the
hamiltonian, we obtain this last relation in momentum space:

UTh
∗
kU

−1
T = h−k

The square of the time reversal operator T 2 = UTKUTK = UTU
∗
T has two possible eigenvalues5:

λT 2 =

{
+1 spinless / integer spin

−1 half integer spin
(2.6)

Example: spin 1/2 We are interested now to write explicitly the form of UT in the case of a spin
1/2 particle6. One can immediately see that the complex conjugation flips the y component of the
spin σy, and leaves untouched the others. UT therefore must commute with σy, and anti-commute
with σx, σz. A solution is given by

UT = −iσy (2.7)

3The action of the complex conjugation on the operators is as follows:

KUK−1 = U∗

4It can be proven that any anti-unitary operator can be written as a composition of a unitary operator and
complex conjugation.

5The reason is that U = UTU
∗
T is a unitary (then linear) map from the irrep (the Hilbert subspace represented

by the Hamiltonian sub-block) to itself. Therefore by Schur’s Lemma, it must be a multiple of the identity U =
UTU

∗
T = eiϕ1. Then

U∗
TUTU

∗
T = U∗

T e
iϕ = e−iϕU∗

T (2.5)

which only solution is eiϕ = ±1
6We consider uniquely the spin degree of freedom. The Hilbert space of the system is therefore given by H = C2.
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where one can explicitly see that T 2 = −1. A general solution for any spin s is given by a rotation
of π around the y axis:

UT = exp (−iπsy) (2.8)

Kramer’s degeneracy If the Hamiltonian is time-reversal symmetric and λT 2 = −1, it imme-
diately follows that any energy eigenstate |n⟩ is (at least) doubly degenerate: there exists another
state T |n⟩ with the same energy

HT |n⟩ = T H |n⟩ = ϵnT |n⟩ (2.9)

We sketch now a proof that |n⟩ and T |n⟩ are distinct states. Suppose |n⟩, T |n⟩ to be the same
state. Then we would have T |n⟩ = eiα |n⟩. Therefore

T 2 |n⟩ = T eiα |n⟩ = e−iαT |n⟩ = e−iαeiα |n⟩ = |n⟩

which implies T 2 = 1, contradicting our hypothesis.

2.1.2 Charge (particle-hole) symmetry

Charge (or particle-hole) is an anti-unitary symmetry that relates a particle excitation with a hole
excitation. Multiple definitions can be found in literature, often interchanging the two names.
This variety seems to arise from the presence of two different concepts, which are in fact strongly
related. Charge symmetry, inherited from the high-energy context, relates an excitation of charge
+q and energy +ϵ with an excitation of opposite charge −q and opposite energy −ϵ. Particle-
hole symmetry instead, relates an excitation of charge +q and energy +ϵ with an excitation of
opposite charge −q but equal energy7. These two concepts are strongly related, and therefore often
interchanged. In this venture, we consider charge symmetry, since more popular in literature.

Given its anti-unitarity, C can be written as

C = UC · K (2.10)

A Hamiltonian is said to be charge-symmetric if

CHC−1 = −H → UCH
∗U−1

C = −H

i.e. C anti-commutes with H. In momentum space, this relation reads

UCh
∗
kU

−1
C = −h−k

where we used that anti-unitary symmetries flip the momentum. The anti-commutation relation
has a strong consequence on the spectrum. For each energy level +ϵ indeed, another with opposite
energy is guaranteed:

HC |ϵ⟩ = −CH |ϵ⟩ = −ϵC |ϵ⟩ (2.11)

Given the same arguments used for T , we can assert that C2 has two possible eigenvalues λC2 = ±1.

7An example is given by the filled Fermi sphere of non-interacting electrons in presence of a positively charged
background. One can obtain two excitations with equal energy by adding an electron or by removing one (adding a
hole).
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2.1.3 Exhaustivity

we show now that these two symmetries are exhaustive, meaning that we can write all the anti-
unitary symmetries in terms of T and C, and other unitary symmetries[29]. First, notice that
T and C are not equivalent, since (when present) the first commutes with H, while the second
anti-commutes.

Let’s suppose the existence of a second anti-unitary operator, H-commuting. We name T1 and
T2 the original and the new time-reversal operator respectively. Then we can define T12 ≡ T1T2 =
UT1

U∗
T2
. Because product of two anti-unitary operators, T12 is unitary and it commutes with H:

[T12, H] = T1 [T2, H] + [T1, H] T2 = 0

If not already done, T12 can be used to refine the block-diagonalization of the Hamiltonian, and the
new time-reversal operators can be written as

T2 = ±T1T12

Therefore, all the possible anti-unitary operators that commute with H, are related through multi-
plication by unitary operators that commute with the Hamiltonian. We say that they are equivalent
modulo (left) right-multiplication by a unitary operator. A similar procedure can be done for any
new anti-unitary operator C2 that anti-commutes with H, using that

[C12, H] = C1 {C2, H} − {C1, H} C2 = 0

After refining the block structure of H, there is no additional insight by considering different time-
reversal (anti-unitary, H-commuting) or charge operators (anti-unitary, H-anticommuting). We
can therefore safely consider just one T and one C.

2.1.4 Chirality (sublattice), a particular unitary symmetry

Following the previous discussion, one may be convinced we exhausted the possible symmetries.
There is however another one. Chirality (or sublattice), defined as the product of time-reversal and
charge symmetry, is unitary (since the product of two anti-unitary) and anti-commutes with H.

S = T C = UTU
∗
C (2.12)

Sometimes, chirality is also defined as S = CT . These two versions are equivalent, up to a change
of basis. Chirality is indeed a distinct kind of symmetry, compared for example to T12 or C12. The
reason is that, if the system is chiral-symmetric S anti-commutes with the Hamiltonian (instead of
commuting):

SHS−1 = −H (2.13)

This last relation can be written in momentum space by realising that momentum is unchanged by
chiral symmetry (which is indeed the composition of two momentum-flipping transformations):

ShkS−1 = −hk (2.14)

S, therefore, cannot be included in the group of symmetry used to block-diagonalise the Hamilto-
nian. Again, we can consider only one chiral symmetry because any other unitary operator that
anti-commutes withH is equivalent to S up to a multiplication by a unitary operator that commutes
with H (following the procedure explained in section 2.1.3).
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In chiral-symmetric systems, for each energy eigenvalue, another with an opposite value is
present:

HS |ϵ⟩ = −SH |ϵ⟩ = −ϵS |ϵ⟩

By Schur’s Lemma, the square of the chiral operator is a multiple of the identity:

S2 = eiα1 (2.15)

Nothing can be said about the phase α. This because S = UTU
∗
C and the phases of UT , UC are

arbitrary. Therefore, we only distinguish the case in which chirality is present (S2 = 1) or not
(S2 = 0).

2.1.5 The Ten-Fold Way

Name property symm. relation classification labels

Time-reversal anti-unitary [T , H] = 0 T 2 = 0,±1

Charge anti-unitary {C, H} = 0 C2 = 0,±1

Chirality unitary {S, H} = 0 S2 = 0, 1

Table 2.1: Additional symmetries of a quantum system. T , C,S are all the remaining symmetries left after

exploiting all possible unitary and H-commuting symmetries that block-diagonalize the Hamiltonian.

We now have some tools to classify quantum Hamiltonians in terms of these symmetries. For
time-reversal, we have three possible cases: the symmetry is present (T 2 = ±1) or not (T 2 = 0).
The same holds for charge symmetry. For each of these 3× 3 cases, chiral symmetry is completely
determined by the other two, excluding one: if T 2 = C2 = 0 we could have S2 = 0 either S2 = 1.
This last case happens when neither time reversal nor charge is present, but their composition is
satisfied. We then have 9 + 1 = 10 possibilities, giving rise to the Ten-Fold Way of classification.

2.1.6 Symmetries in second quantization

So far, we have described symmetries as operators acting on the first-quantized Hamiltonian. For
interacting theories, however, it becomes convenient to express symmetries in second quantization.
Because this formulation goes beyond the scope of this thesis, we are only going to sketch the main
principles. We define symmetries in terms of their action on the field operators[29].

Unitarily realised symmetries which commute with the Hamiltonian act as

Û ψ̂i Û−1 =
∑
j

U†
ij ψ̂j Û ψ̂†

i Û−1 =
∑
j

ψ̂†
jUjI (2.16)

where U is the respective first-quantized symmetry operator. These transformations reduce to the
first quantized one (UHU−1 = H) when the theory is non-interacting.
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Time reversal symmetry is given by

T̂ ψ̂i T̂ −1 =
∑
j

(U†
T )ij ψ̂j T̂ ψ̂†

i T̂ −1 =
∑
j

ψ̂†
j (UT )ji (2.17)

Such transformation is antiunitary, as in first quantization.

Charge symmetry requires some extra care. This transformation relates particles with holes,
transforming creation into annihilation operators (and viceversa):

Ĉ ψ̂i Ĉ−1 =
∑
j

(U†
C)

∗
ij ψ̂

†
j Ĉ ψ̂†

i Ĉ−1 =
∑
j

ψ̂j(UC)
∗
ji (2.18)

Surprisingly, charge conjugation is unitary in second quantization, but anti-unitary in first quanti-
zation, as one can check applying Eq2.18 to a non-interacting Hamiltonian.

Chirality (or sublattice) relates particles with holes. However, contrarily to charge conjugation,
it is anti-unitary in second quantization:

Ŝ ψ̂i Ŝ−1 =
∑
j

(U†
S)

∗
ij ψ̂

†
j Ŝ ψ̂†

i Ŝ−1 =
∑
j

ψ̂j(US)
∗
ji (2.19)

Symmetries operations which interchange particles with holes, are unitary in first quantization when
anti-unitary in the second, and viceversa.

2.1.7 Tight-binding model in graphene

We apply the first-quantization formalism described above to the tight-binding model of spin 1/2
particles hopping on the honeycomb lattice (graphene).

This system has two bands that touch at two independent Dirac points (valleys). By low-energy
expansion around these points, one obtains a Hamiltonian that acts on the following Hilbert space:

H2 ≡ C2︸︷︷︸
Spin space

⊗ C2︸︷︷︸
Valleys sp.

⊗ C2︸︷︷︸
Sublattices sp.

(2.20)

The full Hamiltonian in second quantization is given by

H =
∑
k

Ψ†
k h(k) Ψk (2.21)

where

Ψ = (A↑+, B↑+, A↑−, B↑−, A↓+, B↓+, A↓−, B↓−, )
T

(2.22)

A,B are annihilation (creation) operators of the two distinct sublattices, the arrow index labels the
spin degree of freedom, and the ± index labels the valley.

The single-particle Hamiltonian in momentum space is given by

h(k) = −vf (s0 ⊗ σ3 ⊗ τ1 kx + s0 ⊗ σ0 ⊗ τ2 ky) (2.23)

where si, σi, τi are Pauli matrices for i = 1, 2, 3, and the two-dimensional identity matrix for i = 0.
They act on spin, valley and sublattice Hilbert spaces, respectively.
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Time-reversal: Time reversal flips the spin and inverts the momenta, exchanging the two valleys.
The two sublattices A,B are instead left unchanged. We therefore have:

T = is2 ⊗ σ1 ⊗ τ0 · K → UT = is2 ⊗ σ1 ⊗ τ0 (2.24)

where K is the complex conjugation operator, and UT is unitary. The Bloch Hamiltonian h(k) is
time-reversal symmetric since [h(k), T ] = 0. One can also verify that T 2 = −1.

Chirality (sublattice) Before moving to charge, we first construct the sublattice (chirality)
symmetry, and we derive charge conjugation in second place. Graphene is manifestly sublattice
symmetric: its dispersion relation is made of two bands, symmetric w.r.t. the chemical potential
µ = 0. Sublattice flips the sign of one orbital w.r.t. to the other, leaving intact spin. The aspect of
the operator in the valley degree of freedom requires extra care since the aspects of the Hamiltonian
Eq.2.23 in the two valleys are not trivially related. One however can do a basis transformation for
the fields Ψ → Ψ′:

Ψ′ = (B↑+, A↑+, A↑−, B↑−, B↓+, A↓+, A↓−, B↓−, )
T

(2.25)

which results in a simpler form of the Hamiltonian:

h′(k) = −vf s0 ⊗ σ3 ⊗ (τ1 kx + τ2 ky) (2.26)

In this basis, it becomes immediate that the chiral symmetry has to pick up the respective signs of
the Hamiltonians on each valley. Its form in the new and in the original basis is respectively

S ′ = s0 ⊗ σ3 ⊗ τ3

S = s0 ⊗ σ0 ⊗ τ3
(2.27)

The Bloch Hamiltonian h(k) is sublattice symmetric since {h(k),S} = 0. One can also verify that
S2 = 1.

It is instructive to neglect for a moment spin and valley degrees of freedom. In the sublattice
space, the Hamiltonian becomes

h(k) = −vf (kxτx + kyτy) (2.28)

Thanks to the properties of Pauli matrices, it is immediate to see the existence of a third matrix
(chirality matrix) τz which anti-commute with the Hamiltonian8. The situation would be drastically
different for a system in 3+1 dimensions, with a generalised Hamiltonian h(k) = kxτx+kyτy+kzτz.
A fourth anti-commuting matrix is not present, and we obtain massless fermions with a single
chirality[18] at one Dirac point. By adding the valley degree of freedom chirality can be restored,
obtaining nodes with opposite chirality. Differently from graphene, there is no possibility to gap
out Dirac cones, since perturbation can only move them. The only way to obtain a gap is to join
and annihilate the two nodes with opposite chirality. This is an example of a Weyl semimetal.

8Since the particles are massless, chirality and helicity are equivalent. One could indeed formulate the problem
in terms of the helicity matrix which commute with the Hamiltonian, given by the projection of the sublattice
pseudo-spin Σ = (τx, τy) in the direction of motion:

η =
Σ · k⃗
k
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Charge: We can finally obtain charge conjugation by inverting relation 2.12:

C = T −1 · S = −is2 ⊗ σ1 ⊗ τ3 · K → UC = is2 ⊗ σ1 ⊗ τ3 (2.29)

where K is the complex conjugation operator, and UC is unitary. One can verify that {h(k), C} = 0,
i.e. also charge symmetry is satisfied. Moreover, C2 = −1. It is instructive to look at the action of
C on the Schrodinger equation, when the system is coupled to an electromagnetic field, i.e. when
the eigenvalue problem reads

−vf
[
s0 ⊗ σ3 ⊗ τ1 (−i∂x − eAx) + s0 ⊗ σ0 ⊗ τ2 (−i∂y − eAy)

]
ψ = Eψ (2.30)

The two terms of the Hamiltonian transform under charge conjugation as:

UC [s0 ⊗ σ3 ⊗ τ1 (−i∂x − eAx)]
∗
U−1
C = UC [s0 ⊗ σ3 ⊗ τ1]U

−1
C (i∂x − eAx)

= s0 ⊗ σ3 ⊗ τ1 (i∂x − eAx)

UC [s0 ⊗ σ0 ⊗ τ2 (−i∂y − eAy)]
∗
U−1
C = UC [−s0 ⊗ σ0 ⊗ τ2]U

−1
C (i∂y − eAy)

= s0 ⊗ σ0 ⊗ τ2 (i∂y − eAy)

since [s0 ⊗ σ3 ⊗ τ1, UC ] = 0 and {s0 ⊗ σ0 ⊗ τ2, UC} = 0. The energy instead transforms as

CEC−1 = E

The total transformation then reads

−vf
[
s0 ⊗ σ3 ⊗ τ1 (−i∂x + eAx) + s0 ⊗ σ0 ⊗ τ2 (−i∂y + eAy)

]
ψ′ = −Eψ′ (2.31)

where ψ′ = Cψ. The charge-conjugate of ψ is therefore a field ψ′ with opposite charge (−e → e)
and opposite energy (E → −E). Its explicit form in the sublattice fields is

CΨ = (A↓−,−B↓−, A↓+,−B↓+, A↑−,−B↑−, A↑+,−B↑+, )
T

(2.32)

Note: We just showed how the low-energy expansion of the TB Hamiltonian in graphene is charge
and chiral symmetric. However, this is the case when the chemical potential is tuned at µ = 0. The
filling of the lattice plays indeed an important role for the symmetries of the Hamiltonian and its
ground state.

2.1.8 Tight-binding model on kagome lattice

Time reversal symmetry In the Hilbert space H3 time-reversal can be written as

T = UT · K = is2 ⊗ σ1 ⊗ 13 · K (2.33)

The Hamiltonian is is T -invariant since

T H(k)T −1 = H(−k) → UTH∗(k)U−1
T = H(−k)

The form of T in the low-energy subspace is immediately found:

T = is2 ⊗ σ1 ⊗ τ0 · K (2.34)

where τ0 is the identity operator.
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Chirality (sublattice) symmetry Differently from graphene, the full kagome Hamiltonian does
not enjoy chiral symmetry, nor charge symmetry. The third, flat band makes the spectrum unsym-
metrical under a sign flip. However, if the chemical potential is specifically tuned at the middle of
the two symmetric bands (1/3 filling if the flat band sits on top, either 2/3 if it sits on the bottom)
and only low-energy effects are considered, one can neglect the coupling with the flat band. The
deriving low energy theory is, under this approximation, charge and chiral symmetric. We focus on
such a case, working in the Hilbert space H2 in the decoupled representation (denoted with a Tilde
in section 1.4.2), where the low-energy Hamiltonian has the form

h(k) = −vf s0 ⊗ σ3 ⊗ (k1 τ3 + k2 τ1) (2.35)

The chiral operator is proportional to τ2 in the sublattice Hilbert space, spin-independent and it
takes the respective signs in the two valleys:

S = s0 ⊗ σ3 ⊗ τ2 (2.36)

Charge (particle-hole) symmetry Charge symmetry C (often labelled as particle-hole symme-
try) can be obtained by the combination of time-reversal and the inverse of sublattice symmetry:

C = T · S−1

The simplest form is obtained in the low-energy subspace H2, where

C = UC · K = s2 ⊗ σ2 ⊗ τ2 · K (2.37)

The Bloch Hamiltonian is charge-symmetric since

Ch(−k)C−1 = −h(k) → UCh
∗(−k)U−1

C = −h(k)

Note again that these relations for C and S hold only if we specifically set the chemical potential
and we neglect the coupling flat band. Extra care is needed if one wants to work in H3.
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2.2 Lattice symmetries: p6m wallpaper group

Both honeycomb and kagome lattice symmetries are encoded in the wallpaper group p6m: these
consist of 6 reflection axis, 1 rotation centre of order six, 2 of order three, and 3 of order two [27].

2.2.1 Reflections
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Figure 2.2: Reflection symmetries of the honeycomb lattice (a), its Brullouin zone (b), the kagome
lattice (c) and (d) its Brullouin zone.

The general procedure to construct reflections is the following. One performs first a parity
transformation (inversion), and subsequently a rotation of π around an axis n⃗ perpendicular to the
one of reflection. The spin s⃗ is invariant under parity and transforms as a spin under the rotation
around n⃗:

Rn⃗(θ) = exp (−iθn⃗ · s⃗) = 1 cos

(
θ

2

)
− in⃗ · s⃗ sin

(
θ

2

)
(2.38)
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In two dimensions, one could figure the reflection uniquely as a rotation of π around the reflection
axis. This procedure however flips the z component perpendicular to the x− y plane, which is not
consistent with a reflection. In addition, the spin would not transform correctly. The reader can
convince himself of the difference with a simple experiment: he has to give one side to a mirror,
and use one hand to simulate a spin in one direction parallel to the mirror plane (see Figure 2.3).
He will observe the hand of his reflected twin spinning in the opposite direction. This is correctly
described by π-rotation of the spin around one axis perpendicular to the mirror, and not parallel
to it.

Figure 2.3: A spin parallel to a mirror plane gets reverted by reflection. We thank E. Muzzin for the
drawing.
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Geometrical symmetries in low-energy approximation require extra care: one has indeed to
be careful about the origin of the expansion, and how it transforms under the symmetry. Let’s
consider an example: E1 transforms KD1 into KD3 for honeycomb lattice, and KD1 into KD4 for
kagome lattice; E2 instead transforms KD1 into KD6 in graphene, and keeps KD1 unchanged in
kagome (See Fig. 2.2). In general, these operations transform the Hamiltonian expanded around
two Dirac points - let’s say KDi,KDj - into a Hamiltonian expanded around two different Dirac
points KDk,KDl. While the full Hamiltonian has all the symmetry of the model (any of these
transformations sends H → H), its low-energy approximations are “less symmetric”, meaning that
any of these might be transformed one into another under symmetry operations: Hij → Hkl.

E1

Reflection E1 with respect to the y-axis transforms the spin with a rotation of π around the x-
axis: Rx⃗(π) = −is1. Its action on the momenta sends k = (kx, ky) → (−kx, ky). The valleys
are untouched in graphene and swapped in kagome. Sublattices transform as A → B, B → A in
honeycomb lattice, and as A→ B, B → A, C → C in kagome. Its operators are given by

E7
1 = −is1 ⊗ σ0 ⊗ τ1 (2.39)

EC
1 = −is1 ⊗ σ1 ⊗

0 1 0
1 0 0
0 0 1

 (2.40)

The low energy Hamiltonians transform as

7 : E1H14(kx, ky)E
−1
1 = H14(−kx, ky)

C : E1H14(kx, ky)E
−1
1 = H36(−kx, ky)

E2

Reflection E2 with respect to the x-axis transforms the spin with a rotation of π around the y-axis:
Ry⃗(π) = −is3. Its action on the momenta sends k = (kx, ky) → (kx,−ky), so that the valleys are
swapped in graphene and untouched in kagome.

E7
2 = −is2 ⊗ σ1 ⊗ τ0 (2.41)

EC
2 = −is2 ⊗ σ0 ⊗

0 1 0
1 0 0
0 0 1

 (2.42)

The kagome Hamiltonian transforms as

7 : E2H14(kx, ky)E
−1
2 = H14(kx,−ky)

C : E2H14(kx, ky)E
−1
2 = H36(kx,−ky)

E3

Reflection E3 transforms the kagome sublattices as A → A, C → B, B → C, and as A ↔ B in

graphene. Its action on the momenta sends k = (kx, ky) → k′ =
(

kx

2 +
√
3
2 ky,

√
3
2 kx − ky

2

)
. The
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spin transforms under a rotation of π around the axis parallel to the vector n⃗ = (−1/2,
√
3/2). Its

operators are given by

E7
3 = − i

2

(
−s1 +

√
3sy

)
⊗ σ0 ⊗ τ1 (2.43)

EC
3 = − i

2

(
−s1 +

√
3sy

)
⊗ σ1 ⊗

1 0 0
0 0 1
0 1 0

 (2.44)

The Hamiltonians transform as

7 : E3H14(kx, ky)E
−1
3 = H14(k

′
1, k

′
2)

C : E3H12(kx, ky)E
−1
3 = H12(k

′
1, k

′
2)

E4

Reflection E4 transforms the momenta as k = (kx, ky) → k′ =
(

kx

2 −
√
3
2 ky,

−
√
3

2 kx − ky

2

)
. The

spin transforms under a rotation of π around the axis parallel to the vector n⃗ = (1/2,
√
3/2). Its

operators are given by

E7
4 = − i

2

(
s1 +

√
3sy

)
⊗ σo ⊗ τ1 (2.45)

EC
4 = − i

2

(
s1 +

√
3sy

)
⊗ σ1 ⊗

0 0 1
0 1 0
1 0 0

 (2.46)

Expanding the Hamiltonian around KD1 and KD6, one can show that the symmetry holds since

7 : E4H36(kx, ky)E
−1
4 = H36(k

′
1, k

′
2)

C : E4H16(kx, ky)E
−1
4 = H16(k

′
1, k

′
2)

E5

Reflection E5 transforms the momenta as k = (kx, ky) → k′ =
(
−kx

2 +
√
3
2 ky,

√
3
2 kx +

ky

2

)
. The

spin transforms under a rotation of π around the axis parallel to the vector n⃗ = (−
√
3/2, 1/2). Its

operators are given by

E7
5 = − i

2

(
−
√
3s1 + sy

)
⊗ σ1 ⊗ τ0 (2.47)

EC
5 = − i

2

(
−
√
3s1 + sy

)
⊗ σ0 ⊗

0 0 1
0 1 0
1 0 0

 (2.48)

One can show that the symmetry holds since

7 : E5H12(kx, ky)E
−1
5 = H12(k

′
1, k

′
2)

C : E5H52(kx, ky)E
−1
5 = H52(k

′
1, k

′
2)
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E6

Reflection E6 transforms the momenta as k = (kx, ky) → k′ =
(
−kx

2 −
√
3
2 ky,−

√
3
2 kx +

ky

2

)
. The

spin transforms under a rotation of π around the axis parallel to the vector n⃗ = (
√
3/2, 1/2). Its

operators are given by

E7
6 = − i

2

(√
3s1 + sy

)
⊗ σ1 ⊗ τ0 (2.49)

EC
6 = − i

2

(√
3s1 + sy

)
⊗ σ0 ⊗

1 0 0
0 0 1
0 1 0

 (2.50)

The Hamiltonians transform as

7 : E6H32(kx, ky)E
−1
6 = H32(k

′
1, k

′
2)

C : E6H36(kx, ky)E
−1
6 = H36(k

′
1, k

′
2)

2.2.2 Rotations

 

B A
A

B

c

Figure 2.4: Rotation centre of order six in honeycomb and kagome lattice

In this section, we consider rotation around the centre of the hexagons (centre of order six).

R11: rotation of π/3

This rotation exchanges the graphene sublattice and transforms the kagome ones as A→ C, B → A,

C → B. Its action on the momenta sends k = (kx, ky) → k′ =
(

kx

2 +
√
3
2 ky,−

√
3
2 kx +

ky

2

)
. The full

operator is given by

R711 =
1

2

(√
3s0 − is3

)
⊗ σ1 ⊗ τ1 (2.51)

RC11 =
1

2

(√
3s0 − is3

)
⊗ σ1 ⊗

0 0 1
1 0 0
0 1 0

 (2.52)
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The Hamiltonians transform

7,C : R11H14(k)R
−1
11 = H25(k

′)

R12: rotation of 2π/3

The action on the momenta sends k = (kx, ky) → k′ =
(
−kx

2 +
√
3
2 ky,−

√
3
2 kx − ky

2

)
. The full

operator is given by

R712 =
1

2

(
s0 − i

√
3s3

)
⊗ σ0 ⊗ τ0 (2.53)

RC12 =
1

2

(
s0 − i

√
3s3

)
⊗ σ0 ⊗

0 1 0
0 0 1
1 0 0

 (2.54)

The Hamiltonian H14 transform under R12 as

7,C : R12H14(k)R
−1
12 = H36(k

′)

R13: rotation of π

This particular transformation inverts the momenta k → −k.

R713 = −is3 ⊗ σ1 ⊗ τ1 (2.55)

RC13 = −is3 ⊗ σ1 ⊗ 13 (2.56)

The Hamiltonian transforms as

7,C : R13H14(k)R
−1
13 = H14(−k)

R14, R15

The operators for rotations of −2π/3 and −π/3 are respectively given by

R714 =
1

2

(
s0 + i

√
3s3

)
⊗ σ1 ⊗ τ1 (2.57)

RC14 =
1

2

(
s0 + i

√
3s3

)
⊗ σ0 ⊗

0 0 1
1 0 0
0 1 0

 (2.58)

R715 =
1

2

(√
3s0 + is3

)
⊗ σ0 ⊗ τ0 (2.59)

RC15 =
1

2

(√
3s0 + is3

)
⊗ σ1 ⊗

0 1 0
0 0 1
1 0 0

 (2.60)

Note that these operators remind us of R11 and R12 respectively, but with the opposite valley
relation (swapped instead of untouched, or viceversa). The symmetry relations are the same as
R11, R12, but with k → −k′.
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2.3 Symmetries of the mass terms

We finally have all the tools to classify the bilinear mass terms, according to the symmetries they
break or preserve. Table 2.2 shows such classification for graphene and kagome lattice, respectively.
These results are partially present in literature for graphene[33]. A similar classification for kagome
mass terms, however, was not known at the time of writing.

Honeycomb lattice (graphene)

Idx ijk Parity T-rev Char Chiral E1 E2 E3 E4 E5 E6 R11 R12 R13 R14 R15

{0,0,3} × ✓ × × × ✓ × × ✓ ✓ × ✓ × ✓ ×
{0,1,1} ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
{0,2,1} × ✓ ✓ ✓ ✓ × ✓ ✓ × × × ✓ × ✓ ×
{0,3,3} ✓ × ✓ × × × × × × × ✓ ✓ ✓ ✓ ✓
{1,0,3} × × ✓ × × × × × × × × × ✓ × ×
{2,0,3} × × ✓ × ✓ ✓ × × × × × × ✓ × ×
{3,0,3} × × ✓ × ✓ × ✓ ✓ × × × ✓ × ✓ ×
{1,1,1} ✓ × × ✓ ✓ × × × × × × × × × ×
{2,1,1} ✓ × × ✓ × ✓ × × × × × × × × ×
{3,1,1} ✓ × × ✓ × × × × × × ✓ ✓ ✓ ✓ ✓
{1,2,1} × × × ✓ ✓ ✓ × × × × × × ✓ × ×
{2,2,1} × × × ✓ × × × × × × × × ✓ × ×
{3,2,1} × × × ✓ × ✓ × × ✓ ✓ × ✓ × ✓ ×
{1,3,3} ✓ ✓ × × × ✓ × × × × × × × × ×
{2,3,3} ✓ ✓ × × ✓ × × × × × × × × × ×
{3,3,3} ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Kagome lattice

Idx ijk Parity T-rev Char Chiral E1 E2 E3 E4 E5 E6 R11 R12 R13 R14 R15

{0,0,2} ✓ × ✓ × × × × × × × ✓ ✓ ✓ ✓ ✓
{0,1,0} ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
{0,2,0} × ✓ ✓ ✓ × ✓ × × ✓ ✓ × ✓ × ✓ ×
{0,3,2} × ✓ × × ✓ × ✓ ✓ × × × ✓ × ✓ ×
{1,1,0} ✓ × × ✓ ✓ × × × × × × × × × ×
{2,1,0} ✓ × × ✓ × ✓ × × × × × × × × ×
{3,1,0} ✓ × × ✓ × × × × × × ✓ ✓ ✓ ✓ ✓
{1,2,0} × × × ✓ × × × × × × × × ✓ × ×
{2,2,0} × × × ✓ ✓ ✓ × × × × × × ✓ × ×
{3,2,0} × × × ✓ ✓ × ✓ ✓ × × × ✓ × ✓ ×
{1,0,2} ✓ ✓ × × × ✓ × × × × × × × × ×
{2,0,2} ✓ ✓ × × ✓ × × × × × × × × × ×
{3,0,2} ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
{1,3,2} × × ✓ × ✓ ✓ × × × × × × ✓ × ×
{2,3,2} × × ✓ × × × × × × × × × ✓ × ×
{3,3,2} × × ✓ × × ✓ × × ✓ ✓ × ✓ × ✓ ×

Table 2.2: Graphene and kagome gap terms and their symmetries.
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3.1. GRAPHENE MASSES AND THEIR SYMMETRIES CHAPTER 3. MASS TERMS

3.1 Graphene masses and their symmetries

In this section, we are going to explore the variety of graphene mass terms, and link them to physical
phenomena. We will carry out detailed derivation for the most significant ones.

3.1.1 Staggered potential

One simple term is given by an on-site potential which takes two different values V = ±µ on the
two sublattices A,B. This term was proposed in 1984 by Semenoff, who was studying 2+1 QED
theories and their anomalies, and naturally looked at graphene as a prominent condensed matter
realization [35]. The staggered potential corresponds to M003, which consistently preserves time-
reversal symmetry but breaks sublattice (chiral) and charge symmetry. The resulting phase is a
trivial insulating phase, with a gap at the 6 Dirac points.

3.1.2 Haldane mass and the anomalous quantum Hall effect

 

i
r

i y

A

Figure 3.1: Haldane model on graphene lattice: arrows indicate hopping direction with a positive phase.
NN hoppings acquire a null phase, since the flux through the unit cell is zero.

In 1987 Haldane proposed a model of the quantum Hall effect (QHE) on graphene, character-
ized by no magnetic flux through the unit cell [36]. This realisation can be obtained by placing one
magnetic moment at the centre of each unit cell, ferromagnetically aligned in the direction perpen-
dicular to the 2D plane. We investigate how this magnetic field affects the TB Hamiltonian. Using
Peierls substitution, the nearest-neighbour (NN) hopping amplitude t acquires a phase t → teiθ,
which is proportional to the integral of the vector potential along the hopping path ξ:

θ =
q

ℏ

∫
ξ

A(r) · dr (3.1)
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A closed path made of only NN hoppings results in an overall phase in the hopping amplitude
ϕtot = Nϕ (N here is the number of NN hops) which is proportional to the integral of A(r) along
the closed path. The closed-path integral is equal to the flux of the magnetic field through the area
enclosed by the path (Stokes theorem). Such area is (an integer multiple of) the unit cell, which is
traversed by a null flux:

Nθ =
q

ℏ

∮
ξ

A(r) · dr =
q

ℏ

∫
Σ

(∇×A) · d2Σ =
q

ℏ

∫
Σ

(B) · d2Σ = 0 (3.2)

In conclusion, the nearest-neighbour hopping amplitude is not affected by such kind of magnetic
fields. However, if one includes second-nearest neighbour hoppings (with amplitude t2), one has to
take into account the non-zero flux enclosed by their path. This results in the hopping amplitude
gaining a phase t2 → t2e

±iϕ, which sign depends on the hopping direction (see Figure 3.1). The
resulting contribution to the TB Hamiltonian becomes

HQHE = t2
∑
i

[
e−iϕ

(
a†iai+α1 + a†iai+α2

)
+ eiϕ

(
a†iai−α1 + a†iai−α2

)]
+ a↔ b, ϕ↔ −ϕ (3.3)

= t2
∑
k

[
eiϕ
(
eikα1 + eikα2

)
+ e−iϕ

(
e−ikα1 + e−ikα2

)]
a†kak + a↔ b, ϕ↔ −ϕ (3.4)

= 2t2
∑
k

cosϕ∑
j

cos (k · αj)− sinϕ
∑
j

sin (k · αj)

 a†kak + a↔ b, ϕ↔ −ϕ (3.5)

= 2t2
∑
k

a†k
b†k

T cosϕ∑
j

cos (k · αj) τ0 − sinϕ
∑
j

sin (k · αj) τ3

(ak
bk

)
(3.6)

We expand this Hamiltonian around the two Dirac points KD1,2 using that ∀j

cos (KD1 · αj) = −1

2
cos (KD2 · αj) = −1

2
(3.7)

sin (KD1 · αj) = −
√
3

2
sin (KD2 · αj) =

√
3

2
(3.8)

Including spin and valley degrees of freedom, the low-energy Hamiltonian becomes

HQHE = −2t2 cosϕ [s0 ⊗ σ0 ⊗ τ0]−
√
3t2 sinϕ [s0 ⊗ σ3 ⊗ τ3] (3.9)

While the first term (proportional to M000) can be seen as a shift of the chemical potential, the
second term opens a gap at the Dirac points, and it corresponds to M033. In the presence of
this magnetic field, time-reversal is broken, while inversion symmetry is preserved. All reflection
symmetries are broken, while all rotations are preserved, as one can check by the sketch in Figure
3.1.

Chern insulator on the honeycomb lattice When Haldane’s model and the staggered po-
tential are simultaneously introduced, the parameters can be tuned to close the gap exclusively at
one of the two Dirac points. As result, a conducting state appears on the surface, while the bulk
remains gapped [36]. Such configuration resembles the Quantum Hall Effect, even though the total
magnetic flux is zero. For this reason, it has been named “Anomalous Quantum Hall Effect”. This
phase is topologically protected: The conducting surface state is a global property, and it’s therefore
protected by local perturbation. The transverse conductance is indeed quantized and related to a
topological feature, the Berry curvature. This phase cannot be adiabatically deformed into a trivial
insulating one, without closing the gap in the bulk.
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3.1.3 Spin orbit coupling and the quantum spin Hall effect

Figure 3.2: Spin-orbit coupling on the hexagonal lattice: arrows indicate hopping direction with a positive
factor +λ for a spin up (reversed for a spin down). NN hoppings have no angular momentum, as one can
prove by reflecting the plane with respect to the NN axis.

Spin-orbit coupling (SOC) emerges for spinful electrons in motion through an electrostatic field,
when a non-zero angular momentum is present. Assuming SO interaction to open a gap, we expect
the corresponding mass term to be time-reversal invariant. In addition, we expect all the lattice
rotation symmetries to be preserved in the planar configuration. In Table 2.2, the only spin-
dependent mass terms which are T -invariant are Mj33, for j = 1, 2, 3. In this section, we are going
to derive the microscopic form of the intrinsic SO interaction, and show it corresponds to these
terms. Following the work of Kane and Mele [37], we’ll relate SO interaction with the quantum
spin Hall effect.

In the lattice description, we consider the electrostatic potential generated by the nuclei’s peri-
odic arrangement and its effect on the spinful, hopping electrons. For the honeycomb lattice, it’s
simple to observe that such interaction vanishes for nearest neighbour (NN) hoppings. Taking any
NN bond as a reflection axis, the lattice is transformed into itself, indicating a vanishing angular
momentum. A finite contribution comes instead from next-nearest neighbours (NNN) hoppings:
the path αij connecting two NNN sites ij corresponds to the angular momentum

Lij = sin (θikj) δik × δkj =
ℓ2
√
3

2
δ̂ik × δ̂kj

where δik, δkj are the two NN traversed vectors of length ℓ, and δ̂ik, δ̂kj the corresponding versors.
In a planar setup, the angular momentum always points orthogonal to the plane, therefore only the
z spin component is retained. The Hamiltonian is:

Hsoc = iλ
∑

⟨⟨i,j⟩⟩

∑
ν

(
Lν
ij · sναβ

)
ψ†
iαψjβ

= iλ
∑

⟨⟨i,j⟩⟩

νij

(
ψ†
i↑ψj↑ − ψ†

i↓ψj↓

) (3.10)

where we absorbed the factor
√
3ℓ2

2 into the SOC amplitude λ. The sign of the contribution is
contained in νij = ±1. For fixed spin and reversed path the contribution changes sign, so that
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νij = −νji. The hopping directions for a positive contribution to a up-spin are drawn in Figure 3.2.
Defining as αj the NNN vectors, the Hamiltonian takes the form

Hsoc = iλ
∑
i∈A

3∑
j=1

[
a†i,↑ai+αj ,↑ − a†i,↓ai+αj ,↓

]
− a↔ b (3.11)

After Fourier transform:

Hsoc = −λ
∑
k

∑
j

a†kak sin (k · αj)− a↔ b

= −λ
∑
k

Φ†
k

[
s3 ⊗

(∑
j sin (k · αj) 0

0 −
∑

j sin (k · αj)

)]
Φk

(3.12)

At the Dirac points the Hamiltonian results in the mass term M333:

Hsoc ≃ −λ [s3 ⊗ σ3 ⊗ τ3] (3.13)

As previously stated, the SO coupling is time-reversal invariant but breaks sublattice symmetry.
From the geometric perspective, all the rotations and reflection symmetries are preserved. While
rotation invariance it’s intuitive, Figure 3.2 seems to indicate a reflection symmetry breaking: all
the arrows on the NNN hoppings are reversed by such transformations. However, one has to keep
in mind that a reflection in the x − y plane reverses the z component of the spin (the reader is
encouraged to use a mirror to get convinced of this fact). In conclusion, a spin-flip together with the
arrow inversion does not affect the SOC contribution. The presence of eventual curvature results
in non-zero x and y components of the angular momentum. Contributions proportional to the
gap-opening terms M133 and M233 appear in such a case.

We compare the SOC term M333 and the Haldane’s mass M033, Section 3.1.2. Taking spin
up or down separately, the SO coupling resembles Haldane’s mass term and violates time-reversal
symmetry. We, therefore, expect a similar emergence of a topological phase, with quantized trans-
verse conductance and edge states. It has been proven this is the case [37]. However, the different
gap signs for the two spin orientations result in currents with opposite directions J↑, J↓ for the two
spins. The emerging total spin current Js =

ℏ
2e (J↑ − J↓) is distinct from the charge current deriving

by the AHE of Haldane’s model. While the latter is derived on each Hamiltonian sub-block (H↑,
H↓), the former results from the interplay of the two sub-blocks. This study promoted the research
of a new class of Hall effect, named “Quantum Spin Hall Effect”.

3.1.4 Kekulé dimerization

We review a study by Claudio Chamon, who considered a specific variation of the hopping param-
eter resulting in a O-type Kekulé dimerization pattern (see Figure 3.3) [38–40]. Different lattice
distortions have been considered, however, the gap-opening is not guaranteed. For example, it has
been shown that Y-type Kekulé dimerization has gapless excitations [41].

The distortion of interest is obtained by adding to the Hamiltonian the following perturbation:

δH =
∑
i∈A

∑
j

δtijψ
†
iψj (3.14)

where

δtij =
∆

3
eiKD·δijeiG·xi (3.15)
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Figure 3.3: O-type Kekulé dimerization pattern on the honeycomb lattice. Orange lines indicate enhanced
bonds.

The periodicity of the hopping parameter is given by the reciprocal of G = KD −K ′
D, and ∆ is a

complex number, which phase infers the dimerization pattern direction. By Fourier transformation,
this equation becomes

δH =
∆

3

∑
i∈A

∑
k,k′

a†kbk′eixi·(k−k′+G)
∑
j

ei(k
′+KD)·δj + h.c.

=
∆

3

∑
k

a†kbk+G

∑
j

ei(k+KD+G)·δj + h.c.

=
∆

3

∑
k

(
a†k
b†k

)T (
0

∑
j e

i(k+KD+G)·δj∑
j e

−i(k+KD+G)·δj 0

)(
ak
bk

) (3.16)

A low-energy expansion around the Dirac point K ′
D gives

δH =
∆

3

(
a†KD

b†KD

)T (
0

∑
j e

i2KD·δj∑
j e

−i2KD·δj 0

)(
aK′

D

bK′
D

)

=
∆

3

(
a†KD

b†KD

)T (
0 3

2 − i
√
3
2

3
2 + i

√
3
2 0

)(
aK′

D

bK′
D

) (3.17)

In fact, such perturbation mixes the two valleys. Including the spin degrees of freedom, and requiring
the Hamiltonian to be hermitian, we see that

δH =
1

2
Re(∆)M011 +

1

2
Im(∆)M021 +

1

2
√
3
Re(∆)M012 −

1

2
√
3
Im(∆)M022 (3.18)

The first two terms open a gap at the Dirac points. Remarkably, M011 preserves all the considered
symmetries, while M012 breaks some geometrical ones. Time reversal, charge and chiral symmetry
are however preserved. Such gap-opening is one example of Dirac-cones merging: the two valleys
are located at two equivalent points (i.e. related by a reciprocal lattice vector), the two cones are
merged and the gap is open without symmetry breaking [42].
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3.1.5 Spin-orbit coupling in Kekulé distorted graphene

When O-type Kekulé distortion is present, the reflection symmetry w.r.t. a NN bond is broken.
The spin-orbit coupling in the NN hoppings becomes therefore relevant, with an amplitude strength
λij that has the same periodicity of the dimerization pattern (see Figure 3.3). This can be written
in analogy to Equation 3.15

λij = ±λ
3
eiKD·δijeiG·xi (3.19)

where the ± stands for spins up/down in the z direction. Following the same derivation of the
previous section, we get that

δH = ±λ
3

(
a†KD

b†KD

)T (
0 3

2 − i
√
3
2

3
2 + i

√
3
2 0

)(
aK′

D

bK′
D

)
(3.20)

which corresponds to

δH =
1

2
Re(λ)M311 +

1

2
Im(λ)M321 +

1

2
√
3
Re(λ)M312 −

1

2
√
3
Im(λ)M322 (3.21)

Again, the first two terms open a gap at the Dirac points. Sublattice symmetry is preserved, and
time reversal is broken by M321.

3.1.6 Anti-ferromagnetism
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Figure 3.4: Antiferromagnetic pattern on graphene

The Heisenberg model is a well-established model for magnetism, which is based on the spin-spin
interaction of localized particles [48]. The Hamiltonian takes the form

H =
1

2

∑
i,j

JijSi · Sj (3.22)
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where Si = (Sx
i , S

y
i , S

z
i ) is the spin degree of freedom sitting at the site i. We consider the specific

case of interaction between nearest neighbours only, with uniform interaction strength.

H =
J

2

∑
⟨i,j⟩

Si · Sj =
J

2

(
Sz
i S

z
j +

1

2
S+
i S

−
j +

1

2
S−
i S

+
j

)
(3.23)

Depending on the sign of J , the interaction is ferromagnetic (J < 0) or antiferromagnetic (J > 0).
We focus on spin 1/2 systems, where the Hamiltonian takes the following field theory form:

H =
J

8

∑
⟨i,j⟩

∑
ν

= ψ†
iαs

ν
αβψiβ ψ

†
jγs

ν
γδψjδ (3.24)

here sν is the ν-th Pauli matrix. The interaction is quartic in the fields. We thus make some
approximations to include it in our picture, where all terms are quadratic in the fields.

Mean field approximation We consider the expansion of the spin around its expectation value,
and we neglect the second-order terms in the fluctuations ( mean field approximation:

Si = ⟨Si⟩+ δSi = ⟨Si⟩+ (Si − ⟨Si⟩) (3.25)

H =
J

2

∑
⟨i,j⟩

Si · Sj ≈
J

2

∑
⟨i,j⟩

(
⟨Si⟩ ⟨Sj⟩+ Si ⟨Sj⟩+ Sj ⟨Si⟩ − ⟨Si⟩ ⟨Sj⟩

)

= J
∑
⟨i,j⟩

Si ⟨Sj⟩
(3.26)

Note that this approximation corresponds to the diagonal part Ux,x,y,y of the Hartree approxima-
tion1. In Hamiltonian Equation 3.24, the MF treatment Equation 3.26 takes the form:

HMF = J
∑
⟨i,j⟩

∑
σ,σ′

Uσ,σ′ψ†
iσψ

†
jσ′ψjσ′ψiσ

≈ J

4

∑
⟨i,j⟩

∑
ν

∑
σ,σ′

sνσ,σs
ν
σ′,σ′ψ

†
iσψiσ

〈
ψ†
jσ′ψjσ′

〉
=
J

4

∑
⟨i,j⟩

[
ψ†
i↑ψi↑

〈
ψ†
j↑ψj↑

〉
+ ψ†

i↓ψi↓

〈
ψ†
j↓ψj↓

〉
− ψ†

i↑ψi↑

〈
ψ†
j↓ψj↓

〉
− ψ†

i↓ψi↓

〈
ψ†
j↑ψj↑

〉]

=
J

2

∑
⟨i,j⟩

(
ψ†
i↑ ψ†

i↓

)(mj 0
0 −mj

)(
ψi↑
ψi↓

)
(3.28)

where mj = 1
2

〈
ψ†
i↑ψi↑ − ψ†

i↓ψi↓

〉
is the expectation value of the magnetization at the site j. Our

approximation neglects any exchange term, both in the lattice sites (i, j) and in the spin (↑, ↓).
1The Hartree - or direct - approximation has the general form:∑

x,x′,y,y′
Ux,x′,y,y′ ψ†

xψ
†
yψy′ψx′ ≈

1

2

∑
x,x′,y,y′

Ux,x′,y,y′ ψ†
xψx′

〈
ψ†
yψy′

〉
(3.27)

where the lower index (x) represents any collection of quantum numbers.
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Graphene is made of two identical sublattices, labelled A and B. Equation 3.28 becomes

HMF =
J

4

∑
⟨i,j⟩

[
a†i↑ai↑

〈
b†j↑bj↑

〉
+ a†i↓ai↓

〈
b†j↓bj↓

〉
− a†i↑ai↑

〈
b†j↓bj↓

〉
− a†i↓ai↓

〈
b†j↑bj↑

〉
+ a↔ b

]
=
J

2

∑
⟨i,j⟩

[(
a†i↑ a†i↓

)(mB
j 0
0 −mB

j

)(
ai↑
ai↓

)
+ a↔ b

]
(3.29)

where the operator ai (bi) is the field operator on the sublattice A (B). The goal now is to make
the magnetization expectation values on the two sublattices, using geometrical arguments. The
honeycomb lattice is a good candidate for antiferromagnetic ordering since it’s free from frustration.
One can in fact draw an antiferromagnetic ground state in which all the spins are pointing up on
one sublattice and down on the other. This ground state is unique up to an overall spin rotation.
Under this consideration, we assume the following:

• The expected magnetization values mA
j , m

B
j are independent of the site j

• mA and mB differ only from a sign: mA = −mB = m

Making use of these results and translational symmetry we can transform the Hamiltonian in
Fourier space. The resulting expression for the Hartree Hamiltonian is:

HMF =
J

4

∑
k

[ (
a†k↑ a†k↓

)(m 0
0 −m

)(
ak↑
ak↓

)
− a↔ b

]

=
Jm

4

∑
k

(
a†k↑ b†k↑ a†k↓ b†k↓

)
s3 ⊗ τ3


ak↑
bk↑
ak↓
bk↓


(3.30)

where si, and τi are the i-th Pauli matrices in spin and sublattice spaces respectively. Expanding
the Hamiltonian around two inequivalent Dirac points KD, K ′

D we obtain a low-energy theory with
an additional degree of freedom (valley). Since the Hamiltonian is independent of k, we obtain

HMF =
Jm

4
s3 ⊗ σ0 ⊗ τ3 (3.31)

where the i-th Pauli matrix σi acts on the valley space (±), and the full field operator is given by
Equation 1.15 In conclusion, the direct contribution corresponds to M303 which opens a gap at
the Dirac points. A similar derivation has been previously conducted by Yazyev [47]. Moreover,
it has been indicated that antiferromagnetic interaction might emerge from Coulomb interaction
[47]. We postpone investigations about spontaneous generation to the next section. It’s important
to stress that the full Hamiltonian Eq.3.23 is time-reversal symmetric, but a generic mean-field
approximation is not. In particular, the ground state of the full Hamiltonian (the saddle point of
the mean-field expansion) represents a spontaneous symmetry-breaking. This argument indicates
why M303 breaks both time-reversal T and sublattice (chiral) S symmetry. Consistently, however,
the product of the two C = T S (charge symmetry) is preserved. Its action indeed consists of the
exchange of the two sublattices and a spin-flip, which brings to the initial configuration.
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3.2 Kagome masses and their symmetries

Although honeycomb and kagome lattices share several properties, their gap terms are generally
hard to be related. Kagome lattice indeed is made of three sublattices, and the low-energy fields
Eq.1.28 are delocalized on such sublattices: the new variables giving rise to a Dirac Hamiltonian are
obtained through a linear combination of the original, site-related fields. We make use of unitary
transformation to represent these terms in real space and symmetry arguments to map each mass
term into a physical phenomenon. On other occasions instead, we derive a matrix form from
first-principle calculations.

Interestingly, not all gap-opening terms in graphene open a gap in kagome, and viceversa.
One simple example is given by a staggered potential on the three sublattices (µa, µb, µc), which
corresponds to a linear combination of M000, M001 and M003 in the low-energy subspace. None
of these mass terms results in a semimetal-insulator phase transition. Kagome gap terms are off-
diagonal in the sublattice space, either in the valleys.

3.2.1 Haldane’s model on kagome lattice
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Figure 3.5: (a)Kagome unit cell, with nearest neighbour (NN, orange) and second-nearest neighbour (SNN,
purple) bonds. Arrows mark the direction of positive phase hopping when Haldane’s periodic magnetic field
is present. A dotted, grey line encloses a surface of vanishing magnetic flux. (b) Magnetic fluxes through
the triangles and the hexagons and the spin-chiral arrangement on the kagome lattice background. When
electron spins are perfectly aligned to the nuclei spins (strong Hund’s coupling), this chiral background
order acts effectively as Haldane’s magnetic field.

In this section, we consider the effect of a magnetic field B(r) = B(r)z perpendicular to the 2D
plane, with zero flux through the unit cell. Following the path of Haldane’s work[36], we consider
a magnetic field with the periodicity of the lattice. This configuration can for instance be obtained
by placing magnetic dipoles at the centre of each hexagon[50]. Using Peierls substitutions we
absorb the effect of the magnetic field in the hopping amplitude t, which acquires a complex phase:
t → tei±θ. Differently from graphene, θ is finite since kagome geometry results in a finite flux of
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B through NN hoppings closed paths. Defining Φ as the flux of the magnetic field through the
triangles we compute the phase considering an anti-clockwise path, and by using Stokes theorem:

3θ = − e
ℏ

∮
∂△

A(r) · dr = − e
ℏ

∫
△
B(r) · d2s → θ =

e

3ℏ
Φ (3.32)

The sign of the acquired phase depends on the path direction, as shown in Figure 3.5: hoppings as
A→ B, B → C, C → A will gain a phase +θ, while a phase −θ is obtained for opposite hoppings.

The TB Hamiltonian between nearest neighbours becomes

Hθ = t
∑
i∈A

e−iθ
[
a†i bi±δab

+ b†i+δab
ci±δac

+ 5c†i±δac
ai

]
+ h.c. (3.33)

After Fourier transform, we obtain

Hθ = 2t
∑
k

e−iθ
[
cos (k · δab) a†kbk + cos (k · δbc) b†kck + cos (k · δac) c†kak

]
+ h.c. (3.34)

= 2t
∑
k

a†kb†k
c†k

T  0 e−iθ cos (k · δab) eiθ cos (k · δac)
eiθ cos (k · δab) 0 e−iθ cos (k · δbc)
e−iθ cos (k · δac) eiθ cos (k · δbc) 0

akbk
ck

 (3.35)

We consider a low-energy approximation evaluating this Hamiltonian at the two Dirac pointsKD1,4,
where

cos (KD1 · δab) = −1/2 cos (KD1 · δac) = cos (KD1 · δbc) = 1/2

cos (KD4 · δij) = cos (KD1 · δij)

Including spin and valley degree of freedom the low-energy Hamiltonian becomes

Hθ =t cos θ

s0 ⊗ σ0 ⊗

 0 −1 1
−1 0 1
1 1 0

+

− t sin θ

s0 ⊗ σ0 ⊗

0 −i −i
i 0 i
i −i 0

 (3.36)

The first term is equal to the TB Hamiltonian in absence of magnetic field, multiplied by a factor
cos θ. The second term instead corresponds to M002, which opens a gap at the Dirac points. The
strength of this perturbation is −t sin θ. Since θ is proportional to the flux of B(r), the Hamiltonian
3.36 reduces to the original TB form when B(r) = 0, and a gap of size ∆ =

∣∣t√3 sin θ
∣∣ opens at the

Dirac points when the magnetic field is switched on.
One can additionally include second-nearest neighbour hoppings (SNN), with amplitude t2.

Again, the hopping amplitude acquires a phase ϕ which sign depends on the direction of motion.
The phase ϕ is different from θ, as one can show by considering the flux through the area surrounded
by a closed path of SNN hoppings. In particular, we define Φ′ as the flux through the triangle
enclosed by one SNN bond, and two NN bonds. We have that

ϕ =
e

ℏ
Φ′ + 2θ (3.37)

We define the vectors connecting second-nearest neighbours:

αab =
(
0,
√
3
)

αac =
1

2

(
3,−

√
3
)

αbc =
3

2

(
3,
√
3
)

(3.38)
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The derivation for such Hamiltonian is identical to the one shown above, after the substitution
t→ t2, δij → αij and θ → −ϕ. At the two Dirac points KD1,4, we have

cos (KD1 · αij) = cos (KD4 · αij) = −1/2 ∀i ̸= j ∈ {a, b, c}

Including spin and valley degree of freedom the low-energy Hamiltonian is

Hϕ = −t2

s0 ⊗ σ0 ⊗

 0 eiϕ e−iϕ

e−iϕ 0 eiϕ

eiϕ e−iϕ 0

 (3.39)

The imaginary part of Hamiltonian 3.39 corresponds to M002, with a proportionality factor of
−t2 sinϕ. Since θ and ϕ have the same sign, one can easily see that SNN hoppings enforce our

previous conclusion, resulting in a larger gap at the Dirac points: ∆ =
∣∣∣t√3 sin θ + t2√

3
sinϕ

∣∣∣ As
in the graphene case, the Haldane’s mass term breaks time-reversal and chiral symmetry, keeping
intact charge symmetry. From a geometrical perspective, all the reflections are broken, while all
the rotations are preserved, as one can check from Figure 3.5.

Hund’s coupling and spin chirality In a previous section, we pointed out the relation between
Haldane’s model and the anomalous Hall effect (AHE). So far, we considered the emergence of
Haldane’s mass by artificially applying an external, well-tuned magnetic field. The AHE however
has been experimentally observed in different materials, promoting several studies to address the
origin of such effect [51]. One prominent explanation relates the AEH to the interplay between
conducting electrons and a non-trivial magnetic background [53, 54]. In particular, conducting
electrons strongly coupled to the nuclei spins (Hund’s coupling) acquire a Berry phase if their
spin is twisted to align to the background spins: a configuration of tilted spins in the underlying
structure acts as an effective magnetic field [52]. Such structures are obtained, for example, in
frustrated ferromagnets [54]. Kagome lattice promotes one interesting spin configuration, with
pattern of alternating spin-chirality [55], represented in Figure 3.5. The effective magnetic field
resulting from this background configuration is identical to the magnetic field of Haldane’s model
and is responsible for the same2 gap-opening in the spectrum. It is shown that such interaction is
responsible for the anomalous quantum Hall effect, as described in Section 3.1.2 for graphene.

3.2.2 Spin-orbit coupling and the topological insulator

Differently from graphene, intrinsic spin-orbit coupling (SOC) in kagome becomes relevant for
nearest-neighbour hoppings too. The symmetry argument used in Section 3.1.3] is no longer valid
here: a NN hop is associated with a SO coupling with amplitude ±iλ, which sign depends on
the spin and hopping direction, as shown in Figure 3.5. Guo and Franz [57] explored a similar
interaction, considering instead hoppings between next-nearest neighbors. We expect however the
SOC in NN hops to carry a more significant contribution. The SOC Hamiltonian is given by

Hsoc = ±iλ
2

∑
⟨i,j⟩

ψ†
iαψjβ (s3)αβ = ±iλ

2

∑
⟨i,j⟩

(
ψ†
i↑ψj↑ − ψ†

i↓ψj↓

)
(3.40)

2In this last work, an infinite Hund’s coupling is considered. The electron spin is always aligned to the background,
and its variations when the site is changed are entirely absorbed into the Berry phase. The electrons become therefore
fully fledged spinless.
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where the ± is related to the hopping direction pictured in Figure 3.5, and s3 is the z Pauli matrix
in spin space. The explicit form in terms of the sublattice fields is

Hsoc = i
λ

2

∑
xi∈A

(
a†i,↑bi±δab,↑ + b†i+δab,↑ci±δac,↑ + c†i±δac,↑ai,↑ − ↑ ↔ ↓

)
+ h.c. (3.41)

After Fourier transform, this reads

Hsoc = iλ
∑
k

Φ†
k

s3 ⊗
 0 cos (k · δab) − cos (k · δac)
− cos (k · δab) 0 cos (k · δbc)
cos (k · δac) − cos (k · δbc) 0

Φk (3.42)

where Φk =
(
ak↑ bk↑ ck↑ ak↓ bk↓ ck↓

)T
. Expanding around the Dirac points one gets

Hsoc = i
λ

2
s3 ⊗ σ0 ⊗

0 −1 −1
1 0 1
1 −1 0

 (3.43)

which corresponds to the gap-opening term M302. SO coupling for second-nearest neighbours
hopping corresponds to the same mass term [57], with a different SOC amplitude λ′, which enlarges
the gap. As one would expect from spin-orbit coupling, time-reversibility is ensured. In addition,
all reflections and rotations are preserved. No x or y spin couplings are present in the case of planar
kagome lattice, because of the ẑ → −ẑ reflection symmetry. If curvature is present, however, the
angular momentum vector acquires non-zero components in the x and y directions, resulting in
additional terms M102 and M202. Such couplings enjoy time-reversal symmetry but break certain
lattice symmetries which were preserved in the planar case. Guo and Franz demonstrated the
presence of edge gapless states in the SO phase, which characterize it as a topological insulator [57].

3.2.3 (Resonating) Plaquette ordered phases
 

Figure 3.6: O-type Kekulé dimerization pattern on kagome lattice, also referred as plaquette ordered phase.

Within the list of gap terms, the only off-diagonal in the valleys are instead diagonal in sublattice
space. Such terms live on the lattice sites, rather than on the bonds. In this section, we address
two families of mass terms which have the peculiarity to be off-diagonal in valley space.

The first family is composed by M010 and M020, which are spin-independent. In the previous
section, we derived valley-mixing terms from O-type Kekulé distortion of the lattice. Although in
this case, hopping amplitude anisotropy due to such distortion is not responsible for gap-opening.
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However, when the coupling within the rings is strong, the emerging charge order results in a
mean-field, on-site potential of the form:

V (r) = Re (ξ) cos (r ·G) + Im(ξ) sin (r ·G) (3.44)

which is Fourier transformed into

δH =
Re(ξ)

2

∑
k

[
a†kak−G + a†kak+G

]
+

Im(ξ)

2i

∑
k

[
a†kak−G − a†kak+G

]
+

+ a↔ b + a↔ c

(3.45)

This term takes the desired form at the Dirac points, and a gap is open. All the quantum symmetries
(time-reversal, charge, chiral symmetry) are preserved. The valley mixing results indeed in merging
the two Dirac points [42], as discussed in the previous section for Kekulé dimerization of graphene.

The second family resembles the first while showing an additional spin dependence: Mj10

and Mj20 are its members, where j = 1, 2, 3. These terms break time reversal and charge while
preserving chiral symmetry. We present two fascinating phases of strongly interacting electrons
on kagome lattice, explored by Pollmann et al. [59], which give rise to these terms in a mean-
field treatment. In second quantization language, Coulomb interaction can be approximated in the
extended Hubbard model, which takes into account on-site and NN repulsions. The Hamiltonian is
given by

H = −t
∑
σ,σ′

∑
⟨ij⟩

ψ†
iσψjσ′ + U

∑
i

ψ†
i↑ψi↑ψ

†
i↓ψi↓ + V

∑
σ,σ′

∑
⟨ij⟩

ψ†
iσψiσψ

†
jσ′ψjσ′

= −t
∑
σ,σ′

∑
⟨ij⟩

ψ†
iσψjσ′ + U

∑
i

ni↑ni↓ + V
∑
σ,σ′

∑
⟨ij⟩

niσnjσ′

(3.46)

In the strong coupling limit, where 0 < t≪ V < U two main contributions approximate the Hamil-
tonian. The first is a ring-exchange term of three electrons occupying non-NN sites on hexagons,

and it describes charge fluctuations. The amplitude of such interaction is given by g = 6t3

V 2 . The sec-
ond contribution describes a spin-exchange term, and takes the form of a NN Heisenberg interaction

with amplitude J = 2t2

U−V + 2t3

V 2 :

Hs =
∑
⟨ij⟩

[
Si · Sj −

1

2
ninj

]
(3.47)

Two observations are in order. Firstly, we notice that the two amplitudes are independent. Secondly,
taking the two contributions separately results in two distinct ground states. When spin fluctuations
dominate over charge fluctuations, the lowest energy is reached when electrons form loops with
shorter possible length [59]. This corresponds to the so-called “short loop phase”, sketched in figure
3.6. Spin ordering within the hexagonal loop depends on the sign of J : for t > 0 antiferromagnetic
ordering appears, while both ferromagnetic and antiferromagnetic exchanges are possible for t < 0.
Such phase resembles a O-type Kekulé dimerization pattern with spin dependence, and periodicity
given by a wave vector G = KD1 − KD4, which results in a valley mixing. When instead charge
fluctuations dominate, electrons are disposed as sketched in Figure 3.7: three electrons resonating on
the hexagons are surrounded by three localised ones. Spin exchange lifts the ground state degeneracy
favouring the depicted antiferromagnetic pattern. A mean-field treatment of such interactions
results in the desired terms, with freedom in the choice of spin direction.
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I
a

T

7
I

Figure 3.7: Kagome lattice at 1/3 filling of strongly interacting electrons is in a resonating plaquette phase
[59]. An antiferromagnetic perturbation lifts the spin-degeneracy of the ground state, favouring a magnetic
ordering: three resonating, parallel spins form a 3/2 spin on the hexagon, surrounded by localised spins
pointing in the opposite direction.

Figure 3.8: Trimerization pattern of the kagome lattice. Thick (thin) lines depict stronger (weaker) bonds.
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3.2.4 Dimerization and trimerization

We consider a trimerized phase[61], represented in Figure 3.8. Such structure is given by bonds
with alternating values of hopping amplitude t→ t± η, and it is often named “breathing kagome”
phase. After Fourier transform, the Hamiltonian becomes

Htr = HTB + 2ηi
∑
k

a†kb†k
c†k

T  0 sin (k · δab) sin (k · δac)
− sin (k · δab) 0 sin (k · δbc)
− sin (k · δac) − sin (k · δbc) 0

akbk
ck

 (3.48)

A second term is added to the original TB Hamiltonian, which can be expanded around Dirac
points, obtaining:

Hη = 2ηi

s0 ⊗ σ3 ⊗

 0 1 1
−1 0 −1
−1 1 0

 (3.49)

where the spin and valley degrees of freedom have been included. This Hamiltonian corresponds to
the gap-opening term M032, which breaks sublattice symmetry while keeping time-reversal intact.

We consider in addition a more generic case of lattice distortion, in which we allow the hopping
amplitude variation to be orientation-dependent. In particular we consider η = (ηab, ηac, ηbc). In
such case the additional Hamiltonian becomes

Hη = 2i

s0 ⊗ σ3 ⊗

 0 ηab ηac
−ηab 0 −ηbc
−ηac ηbc 0

 (3.50)

This Hamiltonian corresponds to the same gap terms M032, given that η ̸= (0, 0, 0). We conclude
that dimerization patterns (obtained with one non-zero component of η) open a gap too. In the
next section, we will address the spontaneous emergence of dimerization patterns from Coulomb
interactions, explored in a recent work [61].

3.2.5 Spin-orbit coupling in trimerized kagome lattice

Figure 3.9: Spin-orbit coupling in the trimerized phase (breathing anisotropy), where thick (thin) lines
represent strong (weak) bonds. Arrows mark the direction of positive amplitudes hopping +λ1,2 for a
spin-up. Down spins have reversed arrows. The alternating amplitude pattern λ1,2 can be decoupled into
a regular SOC arrow pattern and a contribution of the anisotropy (first and second term on the RHS
respectively).

48



3.3. REMARKS CHAPTER 3. MASS TERMS

We investigate how the trimerization pattern named “breathing kagome” affects spin-orbit cou-
pling (SOC). Such anisotropy, characterised by stronger (weaker) bonds between up(down)-facing
triangles, has been taken into account in the previous section. In that context we investigated the
effect of this bonding pattern from the point of view of the hopping amplitude t, proving that a
gap is open because of the M032 mass term appearing in the Hamiltonian. In this section, we look
at how this ordering affects a spinful system with SOC.

Following the procedure of Section 3.2.2 we look at the SOC in this configuration: the anisotropy
is translated in two different SOC amplitudes[62] ±λ1 and ±λ2, when they are associated to a
stronger or weaker bond respectively [51]. Again, the sign of such amplitudes depends on the
hopping direction and on the electron spin pointing up (or down). As shown in Figure 3.9, one can
introduce the following hopping amplitudes:

λ =
λ1 + λ2

2
δλ =

λ1 − λ2
2

(3.51)

With this transformation, one can decouple the spin-orbit interaction into a regular SOC pattern
with strength given by the average of λ1, λ2 and a hopping pattern which takes into account the
trimerization effects. The first contribution is equal to Equation 3.40, and therefore corresponds to
the gap term M302. The second instead is substantially different, as we show below.

The anisotropy effects on the SOC can be expressed as

δHsoc = i
δλ

2

∑
xi∈A

(
a†i,↑bi+δab,↑ − a†i,↑bi−δab,↑ − b↔ c − a↔ c − ↑ ↔ ↓

)
+ h.c. (3.52)

where we stress that for a fixed spin (up or down) the trimerization results in an alternating pattern
of SOC strength. After Fourier transformation the Hamiltonian reads

δHsoc = iδλ
∑
k

Φ†
k

s3 ⊗
 0 sin (k · δab) − sin (k · δac)
− sin (k · δab) 0 sin (k · δbc)
sin (k · δac) − sin (k · δbc) 0

Φk (3.53)

This Hamiltonian is odd in k: the expansion around the two Dirac points results in opposite signs.

δHsoc = i
δλ

2
s3 ⊗ σ3 ⊗

 0 1 −1
−1 0 −1
1 1 0

 (3.54)

which corresponds to the gap-opening term M332. As one can see from Table 2.2 and Figure
3.9 (second contribution, pattern of arrows), such term is invariant under rotations of ± 2π

3 and
under certain reflections. When the effect of trimerization is taken into account both for hopping
amplitude and spin-orbit coupling (M032 and M332 respectively), all reflection symmetries are
broken.

Again, a non-planar setup gives rise to x and y components in the spin-coupling, which corre-
spond to the gap-opening terms M132 and M232.

3.3 Remarks

Tables 3.1, 3.2 resume the physical nature of the mass terms. We observe strong analogies between
certain masses in the two lattices. Haldane’s model [36] for instance, originally proposed on the
honeycomb lattice, can be promoted in the kagome lattice with equivalent consequences: the gap is
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opened, and a phase transition to a topological phase occurs. The related anomalous quantum
Hall effect (AHE) can be extended on the kagome lattice with an interesting remark: in the
latter, the effect becomes relevant already for nearest neighbour hoppings, while the original model
on graphene needs to incorporate second-nearest sites. These same arguments are applicable to
the spin-orbit coupling, and the related quantum spin-Hall effect. This phenomenon, in fact,
proposed in first place on graphene by Kane and Mele [37], has been transposed on the kagome
lattice by Guo and Franz [57]. The two cited studies consider second-nearest neighbours hopping.
In this work, however, we show that nearest-neighbour hoppings are relevant for SOC in kagome
lattice, and they possibly represent the leading contribution. This fact might indicate kagome
materials as more promising candidates to observe such kind of topological phases, compared to
graphene.

A different scenario regards instead lattice deformations. The simplest patterns which open
a gap while keeping intact the size of the unit cell are substantially different in the two lattices.
Semenoff showed in 1984 that a staggered potential, which takes different values on the two sublat-
tices of graphene, drives the system to a trivial insulating phase. Such deformation has no direct
match in the collection of kagome mass terms. In the latter, however, a dimerization pattern of
bonds with alternating strengths takes its respective place. One interpretation of such difference
can be given in the following terms. kagome lattice at 1/3 filling can be mapped into a dimer model
on the honeycomb lattice [59]. Quantum states (along with bilinear terms) which are localised on
the sites are mapped into states which live on the bonds, and viceversa. This can also be seen in
more sophisticated distortions, as O-type Kekulé patterns. Such lattice modifications enlarge the
unit cell and are described by a periodicity which mixes the two valleys in momentum space. In
graphene the related hopping-amplitude distortion opens a gap at the Dirac points [38]. In kagome
materials instead, the gap is opened by the effective on-site potential which has such periodicity.
Again, a mass term living on the bonds of one lattice (graphene) is mapped into one living on the
sites of the other lattice (kagome). It is reasonable to consider such masses as characteristics of
different regimes. The Kekulé dimerization mass of graphene is finite at any small deviation of the
hopping amplitude. Instead, the corresponding effective potential which opens a gap in kagome
materials is a significant description only for strongly-dimerized configurations. A different way to
see such discrepancy is to compare the weak and the strong coupling limits. In the former regime,
the physics is dominated by hopping phenomena, and hopping amplitude distortions are relevant.
In the latter limit instead, the hopping exchange is typically treated as a perturbation acting on a
state of localised charges, and small hopping deviations are negligible compared to on-site poten-
tials. A side note is in order here: the Kekulé pattern opens a gap in the two materials by merging
the two independent Dirac points and preserving all the quantum symmetries. Contrarily, all the
other masses break either time reversal, charge, or chiral symmetry3.

One interesting comparison concerns antiferromagnetic ordering. Graphene is a good can-
didate for Néel ordering at 1/2 filling because composed of two sublattices, and therefore free of
frustration. One can draw a spin pattern with a magnetic cell which corresponds to the lattice
unit cell. A mean-field treatment of such ordering indicates a gapped and trivial insulating phase.
While the kagome lattice at 1/2 filling frustrates antiferromagnetic ordering, there is some chance
when the chemical potential is tuned at the Dirac points (1/3 filling). In specific, we explored the
resonating plaquette phase, described by a mean-field, spin-dependent potential that mixes the two
valleys. Such antiferromagnetic ordering opens a gap at the Dirac points, enlarging however the
unit cell of three times.

3Such exceptional mechanism of Dirac points merging represents the unique way to open a gap in Weyl semimetals.
For these reasons, the semimetallic phase is strongly protected in these last materials.
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Honeycomb lattice (graphene)
Idx ijk Parity T-rev Char Chiral Instability Section

{0,0,3} × ✓ × × Staggered potential 3.1.1
{0,1,1} ✓ ✓ ✓ ✓ Kekulé dimerization 3.1.4
{0,2,1} × ✓ ✓ ✓ Kekulé dimerization
{0,3,3} ✓ × ✓ × Haldane’s model 3.1.2
{1,0,3} × × ✓ × Anti-ferromagnet - x 3.1.6
{2,0,3} × × ✓ × Anti-ferromagnet - y
{3,0,3} × × ✓ × Anti-ferromagnet - z
{1,1,1} ✓ × × ✓ SOC in Kekulé 3.1.5
{2,1,1} ✓ × × ✓ SOC in Kekulé
{3,1,1} ✓ × × ✓ SOC in Kekulé
{1,2,1} × × × ✓ SOC in Kekulé
{2,2,1} × × × ✓ SOC in Kekulé
{3,2,1} × × × ✓ SOC in Kekulé
{1,3,3} ✓ ✓ × × Spin-orbit coupling - x 3.1.3
{2,3,3} ✓ ✓ × × Spin-orbit coupling - y
{3,3,3} ✓ ✓ × × Spin-orbit coupling - z

Table 3.1: Graphene mass terms and their physical interpretation.

Kagome lattice
Idx ijk Parity T-rev Char Chiral Instability Section

{0,0,2} ✓ × ✓ × Haldane’s model (spin-chiral) 3.2.1
{0,1,0} ✓ ✓ ✓ ✓ Plaquette phase (rings) 3.2.3
{0,2,0} × ✓ ✓ ✓ Plaquette phase (rings) 3.2.3
{0,3,2} × ✓ × × Lattice dimerization & trimerization 3.2.4
{1,1,0} ✓ × × ✓ Resonating plaquette phase - x 3.2.3
{2,1,0} ✓ × × ✓ Resonating plaquette phase - y
{3,1,0} ✓ × × ✓ Resonating plaquette phase - z
{1,2,0} × × × ✓ Resonating plaquette phase - x
{2,2,0} × × × ✓ Resonating plaquette phase - y
{3,2,0} × × × ✓ Resonating plaquette phase - z
{1,0,2} ✓ ✓ × × Spin-orbit coupling - x 3.2.2
{2,0,2} ✓ ✓ × × Spin-orbit coupling - y
{3,0,2} ✓ ✓ × × Spin-orbit coupling - z
{1,3,2} × × ✓ × SOC in trimerized latt. x 3.2.5
{2,3,2} × × ✓ × SOC in trimerized latt. y
{3,3,2} × × ✓ × SOC in trimerized latt. z

Table 3.2: Kagome mass terms and their physical interpretation.
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Chapter 4

Spontaneous mass generation

So far, we managed to classify and identify all the mass terms, without addressing whether they
spontaneously emerge. In the present section, we review different studies on spontaneous mass
generation, which makes kagome materials and graphene two insulators. Specifically, we look at
Coulomb repulsion between electrons as a possible source for some of the interactions studied
above. In the first part, we derive antiferromagnetic interaction from the Hubbard model with
simple perturbative arguments, and we report similar results previously obtained on the kagome
lattice [59]. In the second part, we review one study which makes use of self-consistent, field theory
calculation to measure the gap. In this last case, the phase transition is analyzed as a function of
the interaction strength, making it possible to determine the potential occurrence in real materials.

4.1 Antiferromagnetism

4.1.1 From the Hubbard model to the Heisenberg interaction: a simple
approach to antiferromagnetism

In this section, we derive the Heisenberg antiferromagnetic interaction from the Hubbard model
using perturbative arguments, proposed by Cleveland in 1976 [63]. The Hubbard model mimics
Coulomb interaction on a discrete lattice in the simplest approximation possible, i.e. when repulsion
between electrons occurs only within each site. The Hubbard Hamiltonian is

H = −t
∑
σ

∑
⟨i,j⟩

c†iσcjσ + U
∑
i

ni↑ni↓ (4.1)

where niσ = c†iσciσ is the occupation number of electrons on the site i, with spin σ. We focus on

the strong coupling limit, where t≪ U and the hopping term (in the following named T̂ ) is treated
as a perturbation. At half-filling (when the number of electrons equals the number of lattice sites
N) the ground state of the unperturbed Hamiltonian (t = 0) has exactly one electron for lattice
site. The degeneracy of the ground state is 2N , that is the number of possible spin arrangements
one can obtain. The perturbation T̂ however can lift this degeneracy.

In the following part, we consider just two neighbouring sites i and j, and we ignore any other
lattice site; we expand our lattice landscape in the last part of the present section. The unperturbed
ground state is four times degenerate, and it’s represented by the states |↑ ↑⟩ , |↑ ↓⟩ , |↓ ↑⟩ , |↓ ↓⟩,
where the two spins sit at the two different sites i, j. The first-order energy correction is clearly
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vanishing. We, therefore, focus on second-order terms. Because of the Pauli principle, electrons
can hop only towards neighbours with opposite spin:

T̂ |↑ ↑⟩ = T̂ |↓ ↓⟩ = 0

T̂ |↑ ↓⟩ = −t (| ↑↓⟩ − |↑↓ ⟩)
T̂ |↓ ↑⟩ = +t (| ↓↑⟩ − |↓↑ ⟩)

(4.2)

The second-order corrections to the four degenerate states are

E
(2)
↑↑ = E

(2)
↓↓ = 0

E
(2)
↑↓ = − 1

U

∣∣∣ ⟨ ↓↑| T̂ |↑ ↓⟩
∣∣∣2 − 1

U

∣∣∣ ⟨↓↑ | T̂ |↑ ↓⟩
∣∣∣2 = −2t2

U

E
(2)
↓↑ = − 1

U

∣∣∣ ⟨ ↓↑| T̂ |↓ ↑⟩
∣∣∣2 − 1

U

∣∣∣ ⟨↓↑ | T̂ |↓ ↑⟩
∣∣∣2 = −2t2

U

(4.3)

We conclude that anti-aligned neighbouring spins are favoured by the T̂ because they allow for
hopping exchanges. We can rewrite the problem in a different manner. The relations for the
second-order corrections to the ground-state energy is

H = ⟨g.s.| T̂
∑
n ̸=0

|n⟩ ⟨n|
E

(0)
0 − E

(0)
n

T̂ |g.s.⟩ (4.4)

The n-summation, which generally runs over the entire spectrum, can be restricted here to the first
excited states since all the other matrix elements are automatically vanishing. Alternatively, one
can keep the entire summation and substitute −U to the energy difference (denominator). The
case n = 0 is added to the summation since ⟨g.s.| T̂ |g.s.⟩ = 0:

H = − 1

U
⟨g.s.| T̂

(∑
n

|n⟩ ⟨n|

)
T̂ |g.s.⟩ = − 1

U
⟨g.s.| T̂ 2 |g.s.⟩ (4.5)

The second-order correction to the energy corresponds indeed to the eigenvalues of −T̂ 2/U in the
ground-energy subspace. We can therefore write an effective Hamiltonian as this last operator, pro-

jected in the low-energy subspace: Heff = P0

(
−T̂ 2/U

)
P−1
0 . Its matrix elements can be obtained

from the following equations:

T̂ 2 |↑ ↑⟩ = T̂ 2 |↓ ↓⟩ = 0

T̂ 2 |↑ ↓⟩ = 2t2 (|↑ ↓⟩ − |↓ ↑⟩)

T̂ 2 |↓ ↑⟩ = 2t2 (|↓ ↑⟩ − |↑ ↓⟩)

And then

Veff = − 1

U

∑
n,n′∈g.s.

(
⟨n| T̂ 2 |n′⟩

)
|n⟩ ⟨n′| =

= −2t2

U

[
|↑ ↓⟩ ⟨↑ ↓|+ |↑ ↓⟩ ⟨↑ ↓| − |↑ ↓⟩ ⟨↓ ↑| − |↓ ↑⟩ ⟨↑ ↓|

] (4.6)
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We rewrite the effective Hamiltonian for the two neighbouring sites i, j in second quantization:

Veff = P0

(
−T̂ 2/U

)
P−1
0 = P0

(
−2t2

U

∑
σ

c†iσcjσ
∑
η

c†jηciη

)
P−1
0

= −2t2

U
P0

∑
ση

c†iσciη

(
δση − c†jηcjσ

)
P−1
0

=
2t2

U
P0

∑
σ

(
c†iσciσc

†
jσcjσ + c†iσci−σc

†
j−σcjσ − c†iσciσ

)
P−1
0

(4.7)

Now we use that

P0

(
Sz
i S

z
j

)
P−1
0 = P0

(
1/4

∑
ab

σz
aaσ

z
bbc

†
iaciac

†
jbcjb

)
P−1
0

= P0

1/4
∑
a

c†iaciac
†
jacja − 1/4

∑
a̸=b

c†iaciac
†
jbcjb

P−1
0

(4.8)

and that the second term is proportional to the identity in the ground-state subspace:

P0

∑
a̸=b

c†iaciac
†
jbcjb

P−1
0 = P0 1 P−1

0 (4.9)

We conclude that the first term in equation 4.7 is

P0

(∑
a

c†iaciac
†
jacja

)
P−1
0 = P0 (4S

z
1S

z
2 + 1)P−1

0 (4.10)

The second term in Eq. 4.7 correspond to ladder operators:∑
σ

c†iσci−σc
†
j−σcjσ = S+

i S
−
j + S−

i S
+
j (4.11)

Using that
∑

σ c
†
iσciσ = 1 at half filling (third term in Eq. 4.7), the effective Hamiltonian

becomes

Veff =
2t2

U
P0

(
2Sz

i S
z
j + S+

i S
−
j + S−

i S
+
j − 1/2

)
P−1
0 =

2t2

U
P0

(
S⃗i · S⃗j − 1/2

)
P−1
0

(4.12)

which is the Heisenberg Hamiltonian with anti-ferromagnetic coupling, restricted in the ground-
state subspace. In conclusion, the hopping Hamiltonian in the strong coupling limit of the Hubbard
model acts as an antiferromagnetic interaction. States with anti-aligned neighbouring spins are
favoured since they allow hopping phenomena, as sketched in Figure 4.1.

Lattice generalization

So far we considered only two lattice sites. However, all our arguments can be generalised in a
straightforward manner to lattices without frustration. When we can draw a spin pattern of anti-
aligned neighbours we say that the magnetic ordering is commensurate to the lattice, meaning
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Figure 4.1: Hopping phenomena contributing to second-order corrections of the strong-coupling hamilto-
nian. Pauli’s principle enforces these terms to vanish in ferromagnetic configurations: antiferromagnetic
ordering is energetically favoured and the ground-state degeneracy is relieved.

that the periodicity of the atoms and the periodicity of the magnetic order are commensurate. In
such case, perturbation lifts the degeneracy of the ground state selecting these anti-aligned spin
patterns, where each couple of sites i,j can be treated separately, in the same manner explained
before. The effective Hamiltonian will be a summation of Hamiltonian Eq.4.12, over all the couples
⟨i, j⟩ of neighbouring sites, resembling exactly the Heisenberg Hamiltonian. On the contrary, when
a spin pattern of anti-aligned neighbours cannot be drawn we say that the antiferromagnet is
frustrated by the lattice geometry. The perturbation selects a large number of states, none of
which is optimal: the ground state of the effective Hamiltonian is highly degenerate, and some
neighbour spins might be aligned. In this case, we say that magnetic ordering and the lattice are
incommensurate. Generalising the effective Hamiltonian to these models can be hard. However,
the previous derivation for a single couple of sites holds, and it gives crucial insight regarding the
interaction at the fundamental level, which is antiferromagnetic.

Graphene Honeycomb lattice at half filling is a perfect host for antiferromagnetic ordering since
commensurate magnetic order can exist. It’s therefore reasonable to expect the spontaneous mass
generation of M303 in graphene when Coulomb electron-electron repulsion becomes relevant. Nu-
merical simulations allowed to detect the phase transition between the insulating and semimetallic
phase, for hopping amplitude t in the interval 4 ≤ U/t ≤ 5. Rough estimations of U and t in
graphene result in U/t ∼ 2 − 4, indicating the absence of the gap. We notice however that the
regime is close to the phase transition, suggesting that slight modification of the model might result
in a spontaneous gap opening.

In a recent work Semenoff expanded the previous argument of the Hubbard model to a long-
range Coulomb interaction [45]:

V = α
∑
i̸=j

ρi
1

|xi − xj |
ρj ρi = c†i ci − 1 (4.13)

Combining analytical arguments and numerical simulations, the predictions of the Hubbard model
on the effective interaction are confirmed: the first relevant correction is the Heisenberg AFM
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Hamiltonian. The ground state and the excitation (particle-hole pair) of the two models correspond.
In the Hubbard model however, the excitation energy does not depend on the distance between the
hole and the excited electron, while in the Coulomb interaction the two attract each other. This
makes the ground state of the Coulomb interaction more stable.

4.1.2 The extended Hubbard model in kagome metals promotes the res-
onating plaquette phase

Kagome lattice at half filling belongs to the second category of lattices: its geometry frustrates
the anti-ferromagnetic ordering. In the context of this thesis work we consider however low-energy
interaction at the Dirac points, and we focus on 1/3 filling. In this last case, certain periodic
orderings are possible. We review a recent work by Pollmann, where the extended Hubbard model
on the kagome lattice is considered [59]. Compared to the standard Hubbard model, repulsion
between electrons at neighbouring sites is included, making the model a better approximation of
the Coulomb interaction on a discrete lattice.

H = −t
∑
σ

∑
⟨i,j⟩

c†iσcjσ + U
∑
i

ni↑ni↓ + V
∑
σ,η

∑
⟨i,j⟩

niσnjη (4.14)

As long as U > V > 0 the argument line of the previous section remains consistent. The ground
state for t = 0 is given by electrons sitting at different sites. The extension of the Hubbard
model (repulsion between NN) ensures 2 electrons for each triangle, in order to lower the overall
repulsion energy. This unperturbed ground state is highly degenerate: the usual spin degeneracy
gets multiplied by the additional freedom of placing two electrons on each triangle, which grows
exponentially with the size of the system. The authors use the same methods of the previous
section, including perturbatively the hopping Hamiltonian to lift the degeneracy. Perturbations in
t/V and t/(U − V ) are considered. Again, first-order corrections vanish. Second and third-order
perturbations are taken into account, resulting in two effective Hamiltonians: The Heisenberg
interaction, and the ring exchange. The former is given by

Hspin = J
∑
⟨ij⟩

(
S⃗i · S⃗j −

1

2
ninj

)
J =

2t2

U − V
+

2t3

V 2
(4.15)

The latter describes the simultaneous hopping of three electrons on the hexagon, sitting on every
other site:

Hring = g
∑
7

∑
σ,σ′σ′′

c†iσcjσc
†
kσ′clσ′c†mσ′′cnσ′′ + h.c. g =

6t3

V 2
(4.16)

where i, j, k, l,m, n are sites oriented clockwise on the hexagon 7.
The two interactions have different perturbative orders in t, but they both may be relevant,

depending on the relative values of U and V . Note indeed that the two amplitudes g and J are
independent, because of the freedom on U and V . For t > 0 the spin exchange is always anti-
ferromagnetic. Depending on which interaction dominates, the ground states might look different
(compare Figures 3.6,3.7). When ring interaction wins, three spins resonate on each hexagon, oc-
cupying every other site and pointing in the same direction. Anti-aligned spins sit at the corners
outside of the hexagon. The resulting spin ordering has a larger magnetic cell, which is a multiple
of the lattice unit cell. We then conclude that kagome lattice at 1/3 filling can show commensurate
magnetic order. The two phases correspond to spin-dependent mass terms when treated in mean
field theory. Since the (extended) Hubbard model mimics a repulsion between electrons we expect
this mass to spontaneously emerge when the Coulomb interaction is large enough.
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Is the strong-coupling limit relevant? The calculations considered in the first part of the
present section rely on the strong coupling limit, where interactions between electrons are much
larger than the hopping amplitude. The framework of the present thesis is placed instead on the
opposite limit, where interaction effects are added perturbatively to a theory of free electrons. One
may wonder whether is meaningful to look at the former limit while being rooted in the latter.
The answer is two-fold. The strong coupling limit gives a powerful insight about the interaction
when other effects are weak. This can be extremely useful to picture the interaction features at the
fundamental level. Additionally, since the phase transition between the semimetallic and insulating
phases sits in between these two limits it is reasonable to look at instabilities from the opposite
perspective. However, the presence of additional phases in the medium range cannot be excluded.
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4.2 Spontaneous dimerization of kagome lattice

We report a recent study on the kagome lattice, where the dimerization instability M302 is consid-
ered [61]. The authors start from the tight-binding Hamiltonian of non-interacting electrons, and
perturbatively add coulomb interaction effects. In quantum field theory, this can be done consider-
ing all the Feynman diagrams which contribute to the two-point functions. Since they are infinitely
many, some approximations have to be done. One important is named “Random Phase Approx-
imation” (RPA), which takes into account the screening due to the polarization of the neutral
background (particle-hole excitations, described by the bubble diagram of fermion lines). In other
words, the electron-electron interaction gets screened by other electrons and nuclei, which consti-
tute the background. This approximation is valid when the density of charge carriers is high. The
interaction line V RPA is obtained self-consistently using the following renormalization procedure,
which describes an effective interaction:

k = k + k

k + q

q

k (4.17)

Note that such relation resembles a Schwinger-Dyson equation for the interactin line. Its solution
is given by

VRPA(k) =
VC(k)

1− VC(k)Π(k, ω)

VC(q) = −α4πℏvF
q2

(4.18)

where VC(q) is the Coulomb interaction in Fourier space, and the fine structure constant α encodes
the interaction strength. The polarization function is given by the bubble diagram:

Π(k, ω) = −2

∫
dν

2π

∫
d2q

(2π)2
G0(k + q, ω + ν)G0(q, ν) (4.19)

The fermion propagator G is approximated in the following Schwinger-Dyson equation:

k
=

k
+

k

k − p

p k
(4.20)

which solution is

G(k, ω) =
G0(k, ω)

1 +G0(k, ω)Σ(k)
(4.21)

It is worth noticing that the interacting Green’s function for the electrons resembles the self-
consistent Fock approximation, where however the interaction line is “dressed” (i.e. renormalised
according to Equation 4.17). The RPA approximation is therefore infinite-order in the Coulomb
interaction.
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The key of the reviewed study is to associate the self-energy of Eq. 4.20 to the perturbation in
tight-binding theory of kagome materials:

δH(k) = Σ(k) =

∫
d2p

(2π)2

∫
dν

2π
V RPA(k − p)G(p, ν) (4.22)

δH(k) = 2iη

 0 sin (k · δab) sin (k · δac)
− sin (k · δab) 0 sin (k · δbc)
− sin (k · δac) − sin (k · δbc) 0

 (4.23)

The propagator G can be written in terms of the band equation E
[
p, η(p)

]
which depends on the

gap η. Equations 4.22,4.23 lead to the self-consistent equation for the gap width:

η(k) = −
∫
BZ

d2p

(2π)2
sin(p · δab)
sin(k · δab)

V RPA (k − p)

2E
(
p, η(p)

) η(p) (4.24)

This last equation can be numerically solved at the Dirac points for different values of α, i.e. the
strength of the Coulomb interaction. The authors detect a phase transition occurring at αc ≈ 1.224:
for subcritical interaction (α < αc) the gap is closed and the system is in the semimetallic phase;
the mass is generated when the interaction is stronger than the critical one, as shown in Figure 4.2.

Figure 4.2: Dimerization gap at the Dirac point, as a function of the fine structure constant (numerical
solutions of the self-consistent equation Eq.4.24). At αc ≈ 1.224 a semimetal-insulator phase transition
occurs. Image is taken from [61].
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Conclusions

Motivated by recent attention on kagome materials we addressed the behaviour of free electrons
on such structures, with reference to a similar and well-known material, graphene. We, therefore,
considered the tight-binding model of electrons on the honeycomb and kagome lattice, which host
massless, Dirac quasiparticles at specific fillings. We included three degrees of freedom in the
low-energy description, namely spin, valley and sublattice. From first-principle calculations, we
derived two families (for the two lattices) of sixteen bilinear Hamiltonians which open a gap at the
Dirac points. When such terms are present the quasiparticles gain mass, and the system is driven
from a semimetallic to an insulating phase. In the second chapter, we implemented operators
for the reflection and rotation symmetries of the lattice, along with additional symmetries of the
quantum Hamiltonians (time reversal, charge and chiral symmetry). The mass terms have been
classified according to the symmetries they break and preserve. In this context, we investigated
a non-trivial feature of the TB Hamiltonian, and its low-energy approximations. Each valley can
be chosen between three “equivalent” Dirac points of the Brillouin zone, but lattice symmetries
such as rotations or reflections mix these points. One result of our work is to identify the gauge
transformation which relates low-energy Hamiltonians expanded around different Dirac points, and
therefore to characterise their equivalence with a gauge symmetry.

Leveraging the classification in terms of symmetry breaking, we found a physical interpretation
for the unknown mass terms and we reviewed in detail the ones previously studied. Each of the
sixteen mass terms of graphene and kagome semimetals has therefore been related to one specific
effect or interaction. A similar discussion was partially present in the literature on graphene, but
unknown at the time of writing for kagome materials. The main remarks of this investigation
are resumed as follows. The anomalous Hall effect (Haldane’s model) and the quantum spin-Hall
effect (spin-orbit coupling), originally proposed in graphene, are promoted in kagome materials with
similar consequences: the gap is open and a topological, insulating phase is obtained. Contrarily
to graphene however, these effects are relevant in the kagome lattice already for nearest-neighbour
hoppings, which indicates the latter as a prominent host for these phenomena. A different category
of instabilities concerns lattice deformation, which is peculiar for the following reason. The kagome
lattice at 1/3 filling can be mapped into a dimer model on the honeycomb lattice of graphene;
remarkably, this relation emerges explicitly in the two families of masses: terms living on the lattice
sites of graphene have a correspondent living on the bond of kagome materials, and viceversa. The
simplest, gap-opening lattice deformations are represented by a staggered potential in graphene and
a dimerization of the kagome lattice. Moreover, we considered distortion patterns with enlarged
unit cells that couple the two valleys in momentum space, such as O-type Kekulé patterns. Again,
such patterns open a gap in the two materials in two conjugate ways: Graphene quasiparticles
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become massive because of the hopping amplitude distortion, while kagome ones thanks to on-site
potential with identical periodicity. This fact gives an indication of the characteristic regimes where
these masses might be relevant: any small dimerization results in a finite gap for graphene; the
periodic, on-site potential instead, (kagome mass) becomes a meaningful description in strongly-
dimerized structures. As last, we compared masses originating from antiferromagnetic interaction.
Honeycomb lattice at 1/2 filling is a perfect host for Néel ordering, and a mean-field treatment
reveals the trivial gapped nature of the antiferromagnetic phase. More sophisticated conclusions
regard kagome materials; because of the magnetic frustration originating in the corner-sharing
triangles, the antiferromagnetic interaction might generate exotic magnetic phases, such as spin-
liquids. In this work, however, we focus on 1/3 filling of the kagome lattice, with, on average, 2
electrons for each triangle. The presence of empty sites leaves space for different antiferromagnetic
orderings. We explored the resonating plaquette phase, characterised by enlarged magnetic cells,
and known to emerge in the strong-coupling limit. Similarly to graphene, a mean-field treatment
reveals the gapped nature of this phase. In the conclusive chapter, we discussed spontaneous mass
generation: we showed how the antiferromagnetic exchange can be derived in the strong-coupling
limit as a perturbative correction to the Hamiltonian, and we reviewed a study on spontaneous
lattice dimerization of kagome, which is obtained in mean-field theory in the weak-coupling limit.
Additionally, we characterise all the masses with the respective symmetry breaking (time reversal,
charge, chiral symmetry) with one exception, i.e. the Kekulé dimerization pattern which mixes the
two valleys and opens a gap by merging the two independent Dirac points. Remarkably, this last
mechanism leaves intact the symmetries of the low-energy Hamiltonian.

In conclusion, the relationship between graphene and kagome structures, which proved to be
complex and multifaced, gives precious indications about the relevant instabilities of these materials.
These insights, together with the characterisation of masses in terms of symmetries and their
physical interpretation, are powerful tools to address the the spontaneous gap opening and estimate
the conductive behaviours of real materials.
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Appendix A

Computational methods

The linearisation of the TB Hamiltonian, the identification of the mass terms and their classifi-
cation in terms of symmetries have been performed using Wolfram Mathematica [64]. Here we report
some of the principal routines for the Kagome lattice. The case of graphene is equivalent, with a
simplification: there are two sublattices, and there is no need to decouple the flat band.

TB Hamiltonian and low-energy approximation

1 (* Lattice vectors & TB Hamiltonian *)

2 deltaAB = {1, 0};

3 deltaAC = 1/2 {1, Sqrt [3]};

4 deltaBC = 1/2 {-1, Sqrt [3]};

5 HNL[kkx_ , kky_] := {{0, Cos[{kkx , kky}. deltaAB], Cos[{kkx , kky}. deltaAC]},

6 {Cos[{kkx , kky}. deltaAB], 0, Cos[{kkx , kky}. deltaBC]},

7 {Cos[{kkx , kky}. deltaAC], Cos[{kkx , kky}. deltaBC], 0}};

8

9 (* Routine to expand the TB Hamiltonian HNL around the Dirac points Kd_ , KdPrime_ *)

10 Hexpand[kkx_ , kky_ , Kd_ , KdPrime_] := Module [{H1, H2, HValley},

11 (* Expanding around the first valley Kd_ *)

12 H1[kkx , kky] := Normal[ Series[

13 2 HNL[Kd[[1]] + kkx t, Kd[[2]] + kky t], {t, 0, 1}]] /. t -> 1 ;

14 (* Expanding around the second valley KdPrime_ *)

15 H2[kkx , kky] := Normal[ Series[

16 2 HNL[KdPrime [[1]] + kkx t, KdPrime [[2]] + kky t], {t, 0, 1}]] /. t -> 1 ;

17

18 HValley[kkx , kky] := (* Putting together the two valleys *)

19 KroneckerProduct[ {{1, 0}, {0, 0}}, H1[kkx , kky]] +

20 KroneckerProduct[ {{0, 0}, {0, 1}}, H2[kkx , kky ]];

21 (* Return: *)

22 KroneckerProduct[

23 PauliMatrix [0], (* Spin dof *)

24 HValley[kkx , kky]] (* Valley + Subl. dof *)

25 ];
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Derivation of the mass terms

1 (* Mass term operator M_{ijk} *)

2 M[i_, j_, k_] := KroneckerProduct[

3 PauliMatrix[i],

4 PauliMatrix[j],

5 PauliMatrix[k]

6 ];

7

8 (* Routine to find the mass terms *)

9 Anticomm[ A_ , B_] := A.B + B.A; (* Anticommutation operation *)

10 allowedindeces = {0, 1, 2, 3}; (* Indices of Pauli matrices *)

11 gaps = {};

12 h0 = vf ( k1 M[0, 3, 3] + k2 M[0, 3, 1]);

13

14 Do[

15 If[ FullSimplify[ Anticomm[h0, M[i, j, k]]] === 0 IdentityMatrix [8],

16 AppendTo[gaps , {i, j, k}]],

17 {i, allowedindeces}, {j, allowedindeces}, {k, allowedindeces}

18 ];

Embedding the mass terms in the full Hilbert space

1 (* Routine for increasing the dimension to 3 sublattices *)

2 from2to3[A_] := Module[ {M},

3 M = Table[ Join [{0}, A[[i]] ], {i, 1, 2}];

4 M = Join[ {{0, 0, 0}}, M];

5 M

6 ]

7 increaseDim[i_ , j_, k_] := Module [{A, M},

8 M = from2to3[PauliMatrix[k]];

9 A = KroneckerProduct[

10 PauliMatrix[i], (* Spin dof *)

11 PauliMatrix[j], (* Valley dof *)

12 M]; (* Sublattice dof *)

13 A

14 ]

Checking the symmetry of the mass terms

1 (* Routine for checking the reflection symmetry E1 of the mass terms *)

2 checkE1 = Table[ Module [{mass , bool},

3 (* Embedding the mass term in the full Hilbert space H_3 *)

4 mass = increaseDim[ gaps[[i, 1]], gaps[[i, 2]], gaps[[i, 3]] ];

5 (* Transforming back to original lattice basis *)

6 mass = Inverse[U14].mass.U14;

7 (* Checking the symmetry *)

8 bool = FullSimplify[ E1.mass ] === FullSimplify[ mass.E1] ;

9 bool

10 ], {i, 1, Length[gaps ]}]
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