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Abstract 
Cell-free DNA (cfDNA) are small (145 bp) DNA fragments that reside in the human circulation and 
other bodily fluids. cfDNA is derived from both healthy and tumour cells, in which case it is called 
circulating tumour DNA (ctDNA). ctDNA harbours genetic and epigenetic characteristics from the 
tumour genome and is therefore a valuable source of information. Cancer liquid biopsies target these 
fragments, but as the ctDNA concentration in the blood can be very low, sensitive sequencing 
technologies are needed. CyclomicsSeq is a novel sequencing technique that uses rolling circle 
amplification to generate multiple copies of a cfDNA fragment in a long concatemer. They are 
sequenced with Nanopore sequencing and the consensus sequences for all cfDNA fragments can be 
used to detect tumour variants and to infer the tumour fraction. The sequencing error rate for Nanopore 
sequencing is still quite high, but with consensus calling of the multiple cfDNA copies, random 
sequencing errors are removed. However, systematic sequencing errors remain even with consensus 
calling. Here, we present a deep learning model that is trained on Nanopore sequencing data. The model 
can perform accurate consensus calling for CyclomicsSeq and can find tumour variants in ctDNA 
fragments at a low variant allele frequency.  
 
Layman summary 
In each cell of our body, our genetic information is stored in our DNA. When a patient has cancer, the 
DNA of the tumour cells contain mutations. These are small changes in the DNA that disrupt the normal 
cellular processes. By sequencing the tumours DNA from the cancer patient, mutations can be found, 
and this can help in deciding how to treat the disease or to inform about the disease progress. DNA in 
the tumour is usually not easily accessible for surgery as the tumour can be located deep in the body. 
Another way to sequence DNA is with cancer liquid biopsies from human blood. In the blood stream 
of a cancer patient, DNA is present that is released by both healthy and tumour cells. This DNA is called 
cell-free DNA (cfDNA). The DNA that originates from the tumour bears the same cancerous mutations 
as the DNA in the tumour cell itself. Liquid biopsies thus provide a non-invasive way to investigate the 
tumour genome of a cancer patient. CyclomicsSeq is a sequencing technique developed to sequence 
cfDNA to find tumour mutations. It uses Nanopore sequencing, a sequencing technique that sequences 
long reads, is relatively inexpensive, and fast compared to other sequencing techniques. 
Problematically, Nanopore sequencing has a relatively high error rate. CyclomicsSeq therefore 
sequences the same DNA fragment multiple times and uses the consensus sequence from these copies 
as the sequence of the input fragment. In this way, sequencing errors can be removed. However, some 
sequencing errors still persist after this consensus calling step. Therefore, in this thesis we present a 
deep learning approach that performs this consensus calling step. Deep learning is a form of artificial 
intelligence, where a model learns from input data how to perform a certain task. If you thereafter ask 
the model to perform a similar task, it will have learned how to perform this task. By learning the model 
how to perform correct consensus calling on Nanopore sequencing data, we can use the model to 
perform the consensus calling step of CyclomicsSeq. We showed that the model performs better 
consensus calling than the current method that CyclomicsSeq uses. With these consensus sequences of 
the DNA fragments, we can trace back the mutations in the DNA fragments that originated from the 
tumours. This consensus calling method is not only useful for CyclomicsSeq but can be used for any 
DNA that has been sequenced with Nanopore sequencing.   
 
Introduction 
Cancer liquid biopsies provide a non-invasive manner for cancer diagnosis, prognosis, or measurement 
of treatment resistance, in contrast to solid biopsies (Figure 1). Cancer liquid biopsies target cell-free 
DNA (cfDNA) that is present in the human plasma and other bodily fluids. cfDNA are short DNA 



fragments (mainly around 167bp) that end up in the plasma. The biogenesis of cfDNA is mainly through 
apoptosis and necrosis of cells, but a lot remains unknown about this process. Active release 
mechanisms have been suggested as well. Tumour cells also shed cfDNA into the circulation, which is 
then called circulating tumour DNA (ctDNA). Only a small fraction of the total cfDNA pool consists 
of ctDNA, which complicates detection and somatic variant calling. ctDNA contain valuable 
information about the genetic and epigenetic properties of the tumour cells. Therefore, accurate 
sequencing technologies are a requisite to detect and sequence ctDNA in cancer liquid biopsies (1–4).  
 

 
Figure 1 – Cell-free DNA (cfDNA) in the bloodstream. cfDNA can end up in the circulation via multiple mechanisms 
(apoptosis, necrosis, active secretion) and harbours genetic (e.g. mutations) and epigenetic (e.g. methylation) marks. Adapted 
from (4). 
 
The last decade, third generation sequencing (TGS) technologies have advanced rapidly. These 
techniques have enabled long-read sequencing to an extent that had not been thought possible, which 
has led to numerous breakthroughs in the genomics field. For example, the telomere to telomere (T2T) 
genome has been completed with long-read sequencing (5,6), whereas the repetitive regions that were 
incomplete in the previous genome assembly were inaccessible for next generation sequencing (NGS) 
techniques like Illumina sequencing, that sequences reads up to 300 bp. Illumina sequencing is the 
current gold standard sequencing technique and provides high read accuracy (>99.9%) (7). Oxford 
Nanopore Technologies (ONT) and Pacific Biosciences (PacBio) are two major players in the field of 
long-read sequencing and have overcome these limitations of next generation sequencing in different 
ways (8).  

Single molecule, real-time (SMRT) sequencing has been developed by PacBio. By replication 
of a DNA molecule that has been circularized with fluorescent labelled nucleotides, the sequence can 
be recorded multiple times and a consensus sequence is created, which is called circular consensus 
sequencing (CCS). Raw PacBio reads have a higher error rate (13-15%) than Illumina sequencing but 
the reads have mostly random errors. The CCS sequences are therefore highly accurate (>99%) (9–13). 

Nanopore sequencing, developed by ONT, is the other revolutionary sequencing technique in 
the field of long-read sequencing. Nanopore sequencing makes use of a nanoscopic pore in a membrane 
with an electrical gradient where a single-stranded DNA molecule can pass through (Figure 2). When 
the DNA molecule passes through the pore, small changes in the ion flow result in squiggles that can 
be translated to a nucleotide sequence. Different nucleotides affect the ion current differently. As the 
pore accommodates multiple nucleotides at the same moment, the shift in signal is not determined by a 



single base but by a kmer of nucleotides (13,14). Some major advantages of Nanopore sequencing over 
other long-read sequencing techniques are its portability and a low initial cost. The Nanopore 
sequencing machine fits in a hand palm and works with a normal laptop via USB. One of the unique 
features of Nanopore sequencing is that the DNA can be sequenced directly without the need for DNA 
synthesis, as is the case with most NGS techniques (13,15).  
 

 
Figure 2 – Technology of Nanopore sequencing with a MinION sequencing device. dsDNA is unwound by a motor protein. 
single stranded DNA travels through the nanopore that is embedded in a membrane with an electrical gradient. The bases in 
the pore affect the electrical current, which is measured. Base calling converts the electrical signal to a DNA sequence. Adapted 
from (13).  
 
Base calling algorithms translate the raw Nanopore signals to nucleotide sequences and form an integral 
part in the Nanopore sequencing workflow (16,17). Many base calling algorithms have been developed 
the past decade, both by ONT and by independent researchers (17,18). Currently, Guppy is the most 
widely used base caller and has been developed by ONT (13).  

The past decade, improvements in both pore chemistry and of the base calling algorithms have 
improved accuracy of Nanopore sequencing. The newest pore release is R10, and the major difference 
with previous pores is that the R10 pore detects the sequence at two places inside the pore instead of 
one. Especially for homopolymers, stretches of single bases that are hard to sequence accurately with 
Nanopore sequencing, the R10 shows improved performance according to ONT (13,19,20).  

Despite these advances, Nanopore sequencing comes with some troubles. The R9.4 pore still 
produces reads with an error rate of 6-15% (13). Homopolymers complicate accurate sequencing and 
base calling (21), as the signal does not change throughout the homopolymeric region of the DNA 
molecule. The length of the region could be inferred from the time of the signal, but the time that each 
kmer resides in the pore is not constant (16). Different publications have shown that systematic errors 
are introduced in reads produced by Nanopore sequencing and that they are dependent on sequence 
context, which differs between the forward and revere strand. These errors can arise either in 
homopolymers or in other genomic regions (22–24).  
 
CyclomicsSeq is a novel sequencing technique based on Nanopore sequencing, developed to sequence 
cell-free DNA (2). The ctDNA fraction of the cfDNA pool is dependent on the tumour load and ranges 
from <0.1% to more than 90% (1). This makes it a challenge to accurately detect variants on single 
ctDNA molecules. CyclomicsSeq uses multiple copies of a single DNA molecule to generate an 
accurate consensus sequence. Currently, CyclomicsSeq is targeted at the TP53 gene for disease 
progression prognosis for head and neck cancer. Other targeted as well as untargeted (genome-wide) 
approaches are currently under development. CyclomicsSeq uses rolling circle amplification of a 
cfDNA fragment, to produce a long DNA molecule with multiple copies of the same fragment. These 



copies are then processed by a consensus calling pipeline, resulting in highly accurate consensus 
sequences of the cfDNA molecules. Single nucleotide variants with a variant allele frequency up to 
0.02% can be detected with CyclomicsSeq at the time of publication (2). An important feature of the 
CyclomicsSeq reads are the number of copies used to generate the consensus sequence. Most 
CyclomicsSeq reads have between 3 and 10 repeats. However, it is seen that more copies improve read 
accuracy with the current consensus calling method of CyclomicsSeq. Figure 3 shows how the 
consensus calling process removes random sequencing errors from the consensus sequences. Systematic 
sequencing errors that are present in each copy persist and interfere with variant calling. Improvement 
of the consensus calling method may lead to more accurate consensus calling and thus reliable variant 
detection. 
 
Many polishing methods have been developed to polish Nanopore sequences after assembly of reads, 
mainly intended for genome assembly but for consensus calling as well. However, systematic 
sequencing errors are not always resolved with these methods (25). Currently error correction depends 
mostly on complementing the assembly with short-read sequencing but this approach has limited 
potential for repetitive regions of the genome (15). Consensus calling methods are often based on deep 
learning algorithms.  

Deep learning algorithms are a type of machine learning where the computer learns to perform 
specific tasks or predictions from large datasets. Deep learning algorithms are neural networks, and they 
consist of an input and output layer with hidden layers in between. Progression of the data through the 
layers allows the model to form connections and find patterns in the data. The output layer performs 
the final prediction task. As neural networks are supervised classifiers that make a prediction based on 
the input data, labels must be available for the input dataset. The model uses the labels during training 
to optimize its performance on the prediction task. Many types of neural networks exist. All types have 
an input and output layer, but the layers in between vary. The simplest form of a neural network is a 
Dense Neural Network (DNN), and it contains hidden layers and dropout layers. Dropout layers are 
placed in between the hidden layers and randomly drop a fraction of the connections between two 
subsequent fully connected hidden layers. This forces the model to learn from slightly different 
connections each time and provides a form of regularization. Another type of neural network, often 
used in image classification, is a Convolutional Neural Network (CNN). A CNN consists of 
convolutional layers and can also contain dropout layers. The convolutional layer uses filters that slide 
over the input data and learn representations of features and patters in the data. For example, in an 
image, a filter may recognize the ears while another filter may recognize the nose of a person. CNNs 
are thought to work well with data that is spatially organized. By training a neural network on input 
data, the train set, the model learns to perform its tasks. A separate dataset, the test set, is used to assess 
the model’s performance on data the model has not seen before. Thereafter, the model can be used to 
perform its prediction tasks (26,27).  
 ONT has developed its own consensus calling and variant calling tool Medaka, which uses a 
pileup of the reads against a draft assembly and works with a recurrent neural network (RNN). A RNN 
uses a sequential representation of the data. Medaka is primarily intended for genome assembly and 
polishing but may be used for single sequence consensus calling as well (25,28).  
 Recently, DeepMind has developed a sequence correction algorithm (DeepConsensus) for 
PacBio Circular Consensus Sequencing (29). DeepConsensus is a deep learning model with a 
transformer architecture. This type of architecture uses self-attention and can capture both long- and 
short-range interactions in a sequence. The past few years self-attention has found its way from 
computer science to biology, for example with the Enformer model, that predicts gene expression from 
DNA sequence (30), or Alphafold, that predicts protein structure from an amino acid sequence (29,31). 



To our knowledge, DeepConsensus has not been adjusted to work for Nanopore data, as it is currently 
specific to PacBio data.  
 

 
Figure 3- CyclomicsSeq workflow. cfDNA (from either a targeted amplicon or genome wide) is circularized with a DNA 
backbone sequence and then amplified. In this way, multiple copies of the same fragments are sequenced with Nanopore. 
Consensus calling of the copies of each original input molecule leads to an accurate consensus sequence. Mutations and 
systematic sequencing errors are present in every copy of a cfDNA read and persist in the consensus sequence. Mutation is 
shown with an asterisk. Adapted from (2). 
 
In this thesis, we present a deep learning approach to generate consensus reads of Nanopore sequencing 
data for CyclomicsSeq (Figure 4). The model will be trained on Nanopore sequencing data and will 
thus learn to distinguish Nanopore sequencing errors from true variants.  With this, it can avoid making 
systematic errors in the consensus reads. With more accurate consensus reads, mutations in a single 
ctDNA molecule can be detected more accurately. We train a dense neural network (DNN) and a 
convolutional neural network (CNN) on Nanopore sequencing data from the CHM13 cell line. The 
Nanopore sequencing reads will be down sampled to mimic the multiple copies of a CyclomicsSeq 
fragment. These models will then be used for consensus calling of cfDNA sequenced by CyclomicsSeq, 
both targeted at the TP53 gene and genome wide. Finally, we will validate the ability of the models to 
find single nucleotide variants.  

 
Figure 4 – Workflow presented in this thesis. cfDNA is isolated from the blood and amplified with rolling circle amplification. 
The concatemers are sequenced by Nanopore, generating multiple copies of the same cfDNA read. These copies are aligned 
to the human genome and then used as input for a deep learning model to generate a consensus sequence for the original 
cfDNA read. The model is trained beforehand on DNA of the CHM13 cell line sequenced with Nanopore. Reads are down 
sampled so models can be trained on different coverage bins. Created with BioRender.com  



Results 
Performance of DNN and CNN T2T models on train set from chromosome 18 
We have trained dense neural networks (DNN) and convolutional neural networks (CNN) on a 300,000 
bp region of chromosome 18 from DNA that has been sequenced with Nanopore by the Telomere-to-
Telomere (T2T) consortium. The DNA is human genomic DNA from the CHM13hTERT cell line with 
a haploid genome. A haploid genome guarantees that there is always only 1 allele for all somatic 
chromosomes. From the reads that map to the forward strand of this region, we have created a sample 
for each position. A sample consists of the reads that align to the position of interest of a nine base pair 
window (Figure 5). The rows with sequences are randomly placed throughout the sample, and when the 
coverage is lower than 20X, the remaining rows are filled with zeroes. The reference sequence is also 
supplied, but the reference base at the position of interest is left out so the model does not directly learn 
the reference base for each sample. With each sample, the reference base is stored as the label. The 
models can thus only predict one of the four canonical bases and cannot predict an insertion or a 
deletion. We trained five DNNs and five CNNs, each time on a different coverage of the reads. The 
coverage bins are 3-5X, 6-10X, 11-15X, 16-20X, and 3-20X.  
 

 
Figure 5 – Matrix design for one sample. Green row: position of interest, sequence in bold: reference sequence, light-blue 
arrow: masked reference base at position of interest, grey arrows: example of one-hot-encoded base and insertion, red arrow: 
coverage, green arrow: nine bp window, black arrow: label for position of interest (only for the T2T samples), *: deletion, 
C+1G: insertion. 
 
After cross validation on the 300,000 train samples to evaluate the model performance, we show that 
the F1 score of all models is higher than the F1 score of the majority vote (Figure 6). The F1 score is 
the harmonic mean between precision and recall and is a measure of accuracy. We calculate the macro-
average F1 score for each model based on 10-fold cross validation. The majority vote is a simple 
approach to make a prediction for each sample, where the most frequent base at the position of interest 
is the predicted base which in theory can remove all random sequencing errors. The F1 score is 
calculated for predictions of the four bases only. 

 The F1 score for the majority vote is a few magnitudes lower than the model’s F1 score for 
each coverage bin of the train set (e.g. median F1-score DNN 3-5X: 0.9999648, median F1-score CNN 
3-5X: 0.9999604, F1-score majority vote approach 3-5X: 0.997192), showing our models improve 
consensus calling of a single sample comparing to the majority vote approach. The F1 score of the 
majority vote approach improves when the coverage of the samples increases (DNN 3-5X: 0.997192, 



DNN 16-20X: 0.999385), which is expected as with more reads the chance of making a wrong call 
decreases.  

It is also noted that for each coverage bin of the training samples, the DNN model consistently 
outperforms the CNN model. For some models the difference is minor (e.g. DNN 3-5X vs. CNN 3-5X) 
while for other models it is substantial (e.g. median F1-score DNN 6-10X: 0.99996 vs. median F1-score 
CNN 6-10X: 0.999793). It can also be observed that the F1 scores of each CNN model show a larger 
spread than the F1 scores for each DNN model, indicating the CNN models are less robust.  

 
 

 
 
Figure 6 – F1 score of DNN and CNN T2T models trained on different coverage bins. The majority vote F1 score is 
calculated over all available training samples (where a base is predicted) for each coverage bin. Model F1 scores are 
determined with 10-fold cross-validation on the train set. Y-axis is plotted logarithmically.  
 
Performance of DNN and CNN T2T models on test set of chromosome 18 
Next, we evaluated the performance of all DNN and CNN T2T models on a separate set of 200,000 
samples from chromosome 18 (test set), retrieved from the same dataset as the training samples 
described above. The ten models, each trained on a different coverage bin, are used to predict the 
samples of the test set per coverage bin (Figure 7). In other words, we want to see how the coverage of 
the model translates to performance on test data with different coverages. This may be valuable 
information for the use case of the models, which is prediction of the CyclomicsSeq consensus 
sequences, where different coverages for each CyclomicsSeq read are expected. The majority of the 
CyclomicsSeq reads have less than 10 copies per original CyclomicsSeq read (Figure 8).  

Overall, the false positive rate (FPR) of samples predicted with the DNN models is lower than 
for samples predicted with the CNN models. Therefore, we will use mainly the DNN models for 
consensus calling for CyclomicsSeq in the next sections. Benchmarking the performance of the DNN 
models with the false positive rate of the majority vote approach shows that all combinations perform 
better than the majority vote. When looking at the performance on prediction of the samples with 3-5X 
coverage with the DNN models, we see the lowest false positive rate is achieved with the DNN 3-5X 
model (FPR: 0.00122%). The DNN models trained on higher coverage (FPR DNN 11-15X: 0.00253%, 
FPR DNN 16-20X: 0.00592%, FPR DNN 3-20X: 0.00243%) perform less on prediction of the samples 
with 3-5X coverage. As the majority of the CyclomicsSeq reads will have less than 10X coverage, we 
expect that the models trained on a lower coverage will be best at predicting the CyclomicsSeq 
consensus sequence.  



Taken together, these results suggest that the DNN T2T models can perform accurate consensus 
calling for Nanopore sequencing data. The next section therefore moves on to bring these models into 
practice for consensus calling for CyclomicsSeq sequencing data.  

 
 

 

 
Figure 7 – False positive rate of prediction of the test set for all coverage bins by all DNN T2T (A) and CNN T2T (B) models. 
The majority vote is calculated over all samples of the test set and is similar for A and B. Y-axis is plotted logarithmically.  
 
Consensus calling for CyclomicsSeq reads from the TP53 gene using the DNN T2T models 
We proceeded to use the DNN T2T models for consensus calling of CyclomicsSeq reads. CyclomicsSeq 
dataset A contains synthetic DNA of five regions of the TP53 gene, with five mutations incorporated at 
low variant allele frequency (Table 1). The DNA is sequenced with CyclomicsSeq and base calling was 
performed with Guppy high accuracy base calling. Converting each CyclomicsSeq read with n copies 
of the original DNA fragment into a sample per position with nX coverage while retaining the order of 
the positions, the consensus sequence can be predicted for each original CyclomicsSeq read with each 
model (DNN 3-5X, DNN 6-10X, DNN 11-15X, DNN 16-20X, DNN 3-20X) and mapped to the CHM13 
v2 reference genome. As expected from the CyclomicsSeq workflow, most reads have a lower number 
of copies per read and reads with more repeats are less frequent (Figure 8). All reads with a coverage 
higher than 20 are in the category ‘20+X’ and the coverage of those reads is subsampled to 20. We 
compare the consensus calling accuracy of our model to the performance of the current consensus 
calling from CyclomicsSeq, the Cycas Consensus method. This is a majority vote approach that is 
weighed by base quality. The per-read error rate is calculated as !"

#$%&'()'*	$)'&*,
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indicates the number of mistakes in the alignment of the predicted consensus sequence to the reference 
sequence. 
 
Table 1 – Known mutations in CyclomicsSeq dataset A & B. 

Region Position Mutation Expected VAF 
Region 3 chr17:7,577,900 G>A 0.5% 
Region 3 chr17:7,577,926 C>T 0.5% 
Region 3 chr17:7,577,927 G>A 0.5% 
Region 4 chr17:7,578,324 T>A 0.25% 
Region 4 chr17:7,578,387 A>C 0.25% 

 
Looking into the per-read error rate split per coverage number for the consensus sequences generated 
by the Cycas Consensus method, we see that that the per-read error rate decreases sharply when the 
number of repeats increases from 3X (0.4169%) to 10X (0.064%) (Figure 9). From 10X to >20X 
(0.0336%), the per-read error rate does not drop drastically anymore. This is in line with previous 
findings from CyclomicsSeq. The same pattern can be found for the consensus sequences generated 
with the DNN T2T models but holds true especially for the models trained on a higher coverage (DNN 
11-15X, DNN 16-20X): a lower coverage number is associated with a higher error rate. We see that for 
CyclomicsSeq reads with 3X copies, the per-read error rate for sequences predicted with the DNN 3-
5X model is 0.062% while it is 0.4169% for the consensus sequences predicted with the Cycas 
Consensus method. This is in line with the cross-testing of all DNN T2T models with different 
coverages of the test set (Figure 7). From 10 copies and higher, the different DNN models show smaller 
differences in per-read error rates and the difference in the per-read error rate with the consensus 
sequences from the Cycas Consensus method decreases. Still, the Cycas Consensus method results in 
consensus reads with a higher mean per-read error rate for each number of copies compared to the 
consensus reads predicted with the DNN models.  
 
 
 

 
Figure 8 – Number of copies per CyclomicsSeq read of the Cycas Consensus method from CyclomicsSeq dataset A. Only the 
overlapping subset of reads is analysed. Reads with more than 20 copies are binned in the 20+X category and the first 20 
copies based on the start coordinate are used.  
  



 
Figure 9 – Per-read error rate for consensus sequences generated with the DNN T2T models or with the Cycas Consensus 
method. Coverage on the x-axis indicates number of copies in the original CyclomicsSeq repeat, i.e., the number of reads used 
for consensus calling. Bars show 95% confidence interval. Only the overlapping subset of reads is analysed. 
 
Consensus calling for CyclomicsSeq reads from the TP53 gene using the DNN and CNN T2T models 
Next, we used the DNN and CNN T2T models to predict the consensus sequence for each CyclomicsSeq 
read of another CyclomicsSeq dataset, dataset B. This dataset contains synthetic DNA of five regions 
of the TP53 gene, with five mutations incorporated at a low variant allele frequency (VAF) (three 
mutations at 0.5%, two mutations at 0.25%). Therefore, this dataset can be used to validate the 
consensus calling performance as well as the ability of our model to predict mutations. As the DNA has 
been amplified with PCR during the CyclomicsSeq protocol, the expected error rate is at least 0.20%, 
which is the error rate for errors that occur during the PCR step. The consensus sequences are predicted 
with each model (DNN/CNN 3-5X, 6-10X, 11-15X, 16-20X, 3-20X) and mapped to the CHM13 v2 
reference genome. The predicted consensus sequences did not all map to the reference genome, 
indicating these reads have too many errors to be mapped (Figure S1A). The Cycas Consensus 
sequences all mapped to the reference genome or to the backbone sequence. In this section we will first 
compare the consensus calling performance of the models to the Cycas Consensus method, and then 
investigate the ability of the model to accurately call mutations at the single molecule level.  
 
The error rate per read is calculated as !"-∑	(/*#*%0'1

#$%&'()'*	$)'&*,
 with ∑	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 being the number of known 

mutations found in the read. By calculating this adjusted NM score, the mutations do not interfere with 
the error rate. A read with a mutation and no other alignment mistakes is thus considered perfect. 
However, indirectly, a mutation can affect base calling of neighbouring bases in the read because the 
sequence context changes with a mutation. The DNN models predict the consensus sequence for each 
CyclomicsSeq read with a lower average per-read error rate than the Cycas Consensus pipeline (Figure 
10A). Again, we see that the DNN models trained on samples with low coverage (DNN 3-5X, DNN 6-
10X, DNN 3-20X) achieve a lower per-read error rate for the predicted consensus sequences than the 
DNN models trained on samples with a higher coverage (DNN 11-15X, DNN 16-20X). All CNN 
models perform less accurate consensus calling than the Cycas Consensus method. The DNN models 
predict a higher percentage of reads without alignment mistakes than the Cycas Consensus method, 
whereas the CNN model predicts relatively fewer perfect reads (Figure 10B). Looking at the per-read 
quality score for the reads with at least one alignment mistake, again the CNN models output reads with 



higher error rates. The DNN models and the Cycas Consensus method both achieve around Q20 as the 
median quality score with the DNN 3-5X model achieving the lowest median per-read error rate (Figure 
10C). From the accumulative distribution of reads, we show that the predicted consensus sequences of 
the DNN 3-5X and DNN 6-10X model have a higher proportion of reads with a higher per-read quality 
score than the reads of the Cycas Consensus method (Figure 10D). Keeping in mind that the models are 
trained on forward sequences only, we analysed the error rate per read direction. For all models except 
CNN 3-5X, the reads that map to the forward strand show a lower per-read error rate than those mapping 
to the reverse strand (Figure 10E). This section has shown that the DNN T2T models can perform 
accurate consensus calling for CyclomicsSeq and outperform the current Cycas Consensus method.  
 

 
Figure 10 - Analysis of the consensus reads of CyclomicsSeq dataset B predicted with DNN or CNN T2T models trained on 
different coverages and with the Cycas Consensus pipeline. All error rates are corrected for presence of known mutations and 
only the overlapping subset of reads is analysed. A: Mean per-read error rate. Error bars show 95% confidence interval. B: 
Percentage of predicted reads with no alignment mistakes. C: Median per-read quality score for reads with at least one 
alignment mistake. Y-axis is plotted logarithmically. D: Accumulative proportion of reads based on quality score. X-axis is 
plotted logarithmically. E: Median per-read error rate split for reads mapping to the forward or reverse strand.  
 
Validation of mutation calling for CyclomicsSeq reads mapping to the TP53 gene 
Moving on, we sought to find out whether the T2T models can accurately predict mutations on a single 
molecule in addition to consensus calling. Five mutations are present at a low variant allele frequency 
(Table 1) in CyclomicsSeq dataset B. Mutations 1, 2 and 3 are designed to appear on a single molecule 
that maps to region 3, and mutation 4 and 5 are designed to appear on reads that map to region 4.  

First, we show that all models can predict the mutations at these five positions (Figure 11A, 
11B). This indicates that the models have learned to look at the base context of the reads and is not just 
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predicting the reference base that it might have learned during the training process. When comparing 
the expected VAF of the mutations with the observed VAF in the consensus reads from the DNN models 
and from the Cycas Consensus pipeline, it is shown there is a discrepancy between the expected VAF 
and the found VAF for all models including the Cycas Consensus method (Figure 11A, 11B). The two 
mutations on region 4 are found at a VAF around 0.08% for all models and the Cycas Consensus 
pipeline, whereas the expected VAF is 0.25%. The three mutations on region 3 are found at a VAF 
around 0.90% for all models (except CNN 3-5X) and the Cycas Consensus pipeline, where the expected 
VAF is 0.50%. During preparation of the synthetic DNA, two separate DNA solutions are diluted to 
achieve the expected VAF. The discrepancy between the expected and the observed VAF can occur due 
to unavoidable dilution errors. 

In both regions, the mutations are most often found on the same molecule for the consensus 
sequences predicted with each DNN model (Figure 11C, 11D) and CNN model (Figure S3), as well as 
the consensus sequences from the Cycas Consensus method (Figure 11C, 11D). When only one or two 
of the three mutations are present in the case of region 4, or only one mutation in the case of region 4, 
we cannot be sure whether those are actually sequencing errors (false positives) or that they are true 
mutations. In that case, the other mutations have been missed (false negatives).  

Then, we analysed if we would be able to detect mutations on the TP53 gene without a priori 
knowledge of the mutation position. For the consensus sequences predicted with the DNN 3-5X model, 
we observed that the allele fraction of the mutated positions in region 3 (observed VAF 0.90%) is higher 
than the per-nucleotide error rate for all regions (Figure 12). With a variant allele fraction detection 
limit of 0.30%, we can thus detect mutations without calling false positive mutations in these regions 
of the TP53 gene. For the consensus reads of the Cycas Consensus method in region 3, a similar pattern 
can be observed (Figure 12). However, at the ends of the region 3 and 4 a few positions with a higher 
error rate are observed. These positions may interfere with mutation calling when the detection limit is 
set at 0.30%. For the consensus sequences predicted with the DNN 3-5X model, the VAF of the 
mutations in region 4 (0.08%) is lower than the per-nucleotide error rate of the surrounding positions. 
Thus, these mutations cannot be detected without prior knowledge. This holds true for the consensus 
sequences from the Cycas Consensus method as well. As the targeted CyclomicsSeq protocol comprises 
a PCR step, the expected error rate attributable to PCR errors is 0.20%. However, most of the errors are 
below 0.20% for both the consensus sequences predicted with the DNN 3-5X model and with the Cycas 
Consensus method.  

The other DNN models and all CNN models show an error rate equal to or higher than the 
observed mutation rates, so the mutations cannot be found back in these reads without prior knowledge 
(Figure S4). The model also predicts the base quality score. However, we did not filter for read or base 
quality. This may reduce the error rate at all positions, as it is hypothesized that wrongly predicted bases 
have a lower base quality score. Overall, these results indicate that the DNN 3-5X model can validate 
single nucleotide variants on the TP53 gene. In previous sections it has been shown that all DNN models 
can perform accurate consensus calling for the TP53 gene.  
 
Figure 11 (next page) – Mutation analysis of CyclomicsSeq dataset C predicted with DNN and CNN T2T models trained on 
different coverage bins or with the Cycas Consensus method. A and B are based on all reads output by each model, C and D 
are based only on the overlap between all datasets. A: Expected and observed variant allele frequency (VAF) for three 
mutations in region 3. B: Expected and observed VAF for two mutations in region 2. C: Frequency of each combination of 
mutation 1, 2, and 3 in consensus reads predicted with the DNN T2T models or the Cycas Consensus method. Based on 117923 
reads mapping to region 3. D: Frequency of each combination of mutation 4 and 5 in consensus reads predicted with the DNN 
T2T models or the Cycas Consensus method. Based on 65582 reads mapping to region 4.  
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Figure 12 – Error rate per position per base for consensus reads predicted with the Cycas Consensus method or with the DNN 
3-5X model. Only the overlapping subsets of reads between all models and the Cycas Consensus method are used. Region 3 
(left) and region 4 (right) are shown here. Vertical lines indicate mutation 1-4 coloured according to the alternative base. 
Horizontal grey lines indicate the expected variant allele frequency (0.5% for region 3, 0.25% for region 4). Position 7,578,287 
has a known homozygous mutation T > G and should be present in the reads of the Cycas Consensus method as well.  
 
Consensus calling of genome wide CyclomicsSeq reads with the DNN T2T models 
To evaluate the consensus calling performance of our model on other human chromosomes, we were 
provided with a whole genome sequencing dataset of cell-free DNA of a healthy individual sequenced 
by CyclomicsSeq. All DNN T2T models were used to predict the consensus sequence for each 
Cyclomics read (examples in Figure 14). Predicted sequences are mapped to the hs37d5 reference 
genome as this genome was used in the CyclomicsSeq pipeline. Each model’s output contains 
approximately 0.7% unmapped reads (Figure S5A). Reads overlapping with known SNPS and indels 
of the individual are discarded so that no variants are expected in the remaining reads, besides variants 
that potentially have been missed with variant calling. The per-read error rate for this dataset is 
calculated only for nucleotide mismatches as !"-'2.		%'4)$1	50/'4	

6$%&'()'*	$)'&*,
.  

 
The Cycas Consensus reads now show a higher percentage of perfect reads (90.02%) than the 

DNN models (DNN 3-5X: 89.05%, Figure 13A). The mean error rate for the predicted consensus 
sequences is lower for the DNN 3-5X and DNN 6-10X model than for the consensus reads from the 
Cycas Consensus method (Figure 13C). Looking at the per-read quality scores for reads with at least 
one single nucleotide mismatch (Figure 13B), the distribution appears very similar with the per-read 
quality scores of the Cycas Consensus method showing a larger spread towards both lower and higher 
quality scores compared to the DNN models trained on a low coverage (DNN 3-5X, DNN 6-10X). For 
all models and the Cycas Consensus method, the reads with the lowest quality score have a quality score 
at Q10 (Figure 13B). For the DNN 3-5X and the DNN 6-10X model, a per-read comparison of the error 
rate of the consensus sequence predicted with the model or the Cycas Consensus method, it can be seen 



that the quality scores are lower for the reads predicted with the model (Figure 13D). A point below the 
diagonal indicates the error rate of that read is lower for the consensus read predicted with the model 
than with the Cycas Consensus method. In the second panel of figure 14, it is seen that the Cycas 
Consensus method makes consensus calling mistakes that are removed with the best models (DNN 3-
5X, DNN 3-20X) but not by the models that work less well (DNN 16-20X). All these results suggest 
that our method is able to predict accurate consensus sequences for cell-free DNA reads that are derived 
from anywhere on the genome. Again, we see that the DNN 3-5X model returns the most accurate 
consensus sequences.  
 

 
 
Figure 13 – Analysis of the consensus reads of genome wide cell-free DNA sequenced with CyclomicsSeq. The consensus 
reads are predicted with DNN models trained on different coverages or with the Cycas Consensus method. The per-read 
error rate is corrected for the number of insertions and deletions per read. Only the input reads that occur in each dataset are 
analysed. A: Percentage of reads with no single nucleotide alignment mistakes. B: Median per-read quality score for reads 
with at least one single nucleotide alignment mistake. Y-axis is plotted logarithmically. C: Mean per-read error rate. Error 
bars indicate 95% confidence interval. D: Comparison of the per-read quality score for each read predicted with one of the 
DNN models and the Cycas Consensus method. Only reads with at least one single nucleotide alignment mistake are shown. 
Diagonal equals where the per-read quality score is similar for both methods. 
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Figure 14 – Consensus calling examples shown in IGV (Integrative Genomics Viewer) of cfDNA reads derived from 
chromosome 1. The cfDNA fragments originate from the genome wide CyclomicsSeq dataset (dataset C). Purple triangles 
indicate positions of insertions in at least one of the tracks. Reads are coloured by read direction (red indicates forward 
strand, blue reverse strand). Deletions are indicated with dashes and insertions with purple vertical bars in the alignment. 
Mismatched bases are coloured, and transparent when their base quality is below 20. In each example, the first panel shows 
the copies of a single cfDNA fragment sequenced with CyclomicsSeq. The other panels show consensus sequences for these 
input copies as predicted by DNN 3-5X (panel 2), DNN 3-20X (panel 3), DNN 16-20X (panel 4), and the Cycas Consensus 
method (panel 5).   



Discussion 
In this thesis, we presented a proof-of-concept method to improve consensus calling of cfDNA reads 
sequenced with CyclomicsSeq. CyclomicsSeq uses rolling circle amplification to sequence concatemers 
of cfDNA fragments with Nanopore to reduce random sequencing errors. However, some sequence 
contexts (e.g. homopolymers) result in systematic sequencing errors with Nanopore sequencing, which 
cannot be removed by consensus calling of rolling circle amplificated repeats. These errors interfere 
with single nucleotide variant calling in a cfDNA molecule. We have showcased a series of deep 
learning models trained on Nanopore sequencing data to perform consensus calling that reduces 
systematic sequencing errors while retaining true variants.  
 
We have trained a set of dense neural networks (DNN) and convolutional neural networks (CNN) for 
different coverage bins (3-5X, 6-10X, 11-15X, 16-20X, 3-20X) based on DNA reads sequenced with 
Nanopore. The DNA originates from a cell line with a haploid genome and thus phasing of the reads 
prior to using the reads as model input is not necessary. We have shown that our model performs better 
consensus calling than a simple majority vote approach. The models are then used to perform consensus 
calling for several CyclomicsSeq datasets. We have shown that a model trained on reads with a low 
coverage (3-5X, 6-10X) outperform models trained on a higher coverage for consensus calling of 
CyclomicsSeq reads. Next, we validated variant calling of five mutations at a low variant allele 
frequency. We have shown that the DNN 3-5X model can call mutations above a variant allele 
frequency of 0.30%, but that a further decrease in error rate is required for determining tumour allele 
fraction based on single molecules for mutations with a lower allele frequency. Finally, we have shown 
that we can accurately perform genome wide consensus calling. Our model, that is trained only on 
sequences from a region of chromosome 18, is thus capable of consensus calling for all chromosomes.  
 
In general, we saw that prediction using the models trained on lower coverage resulted in less errors 
than using the models trained on higher coverage, when looking at samples with a low coverage. We 
shuffled the rows (‘reads’) of the input matrix (Figure 5) to make sure the model pays attention to all 
the rows, but this effect persisted. Perhaps the model that is trained on high coverage utilizes all 
available information during training, and during prediction of samples with low coverage, this model 
cannot deal with missing information. For samples with a higher coverage, model performance was 
similar across all models. We would therefore recommend using a model trained on low coverage reads 
(3-10X), perhaps including a low number of reads with a higher coverage (10-20X) for consensus 
calling of cell-free DNA reads. With techniques that seek to explain the inner workings of ‘black box’ 
machine learning models (32), like saliency maps (33), node importance can be visualized. This may 
indicate which rows (the reads) of the input sample the model uses to make its prediction. Saliency 
maps are usually used for images classification with CNN models, but the 3D input sample may be 
regarded as an image with pixel values between 0 and 1. Using this information, it can be investigated 
why the DNN 3-5X model is better at predicting a sample with low coverage than the DNN 16-20X 
model, and this information may aid in future model development.  

Surprisingly, the DNN models constantly outperformed the CNN models. We would have 
expected that convolution over the 3D matrix that is used as input for the CNN models, would allow 
the model to capture sequence patterns better than the DNN model, that uses a flattened matrix as input. 
However, further investigation into the CNN architecture may improve performance. 
 
Currently, the models are trained on the forward sequences of a 300,000 bp region of chromosome 18. 
This region contains 50.5% of the possible 9-mers (the window of bases around the position of interest 
in the input sample) on the forward strand. Here, we note a few things that may be improved about our 



method. The first thing to expand on would be to add the reverse sequences and allow the model to 
predict sequences that map to the reverse strand. Second, the 300,000 bp region could easily be extended 
to a bigger region, including other chromosomes. This would increase the number of 9mers present in 
the train set. One of the reasons that we have not done this, is the long runtime of the script that generates 
the input matrices. Generation of 10,000 samples takes between 30 and 60 minutes, depending on the 
coverage. Multiple batches of samples can be created simultaneously. However, model training itself 
does not take very long (~15 minutes for the DNN models, ~1 hr for the CNN models on a single GPU), 
so optimization of the script to generate the input matrices would highly increase the efficiency of our 
method. A few ideas on how to optimize the script are prepared. The long runtime of the complete 
workflow impedes implementation of our method in (clinical) practice. Additionally, we have chosen 
a simple approach of model training with little hyperparameter optimization for time limitation. We 
believe an increased number of samples in combination with a more refined training strategy will 
improve the model’s performance. Finally, our method does not contain additional read filtering after 
prediction of the consensus sequence. The model already outputs base quality, but this is not utilised 
besides during the mapping. A filter for read quality based on the quality score of all positions in the 
read would further decrease the per-read error rate, which in turn will improve variant calling.  
 
This method has been developed initially to predict single nucleotide variants in a single ctDNA 
molecule. However, as it also serves as a consensus calling method, the fact that our method currently 
does not predict indels is a limiting factor for its utility. Given that the input samples for our method 
are based on a pile-up approach, here we present some adjustments that could be adapted to include 
these features in the future. The method could relatively easily be extended to predict deletions. 
Deletions are correctly represented in the pile-up approach, but in the current method the label is always 
one of the four canonical bases. The reference genome can be edited to include extra bases. Realignment 
of reads to this reference will lead to deletions in the reads at these positions, where samples can be 
created with deletion as label. It would be even better to create deletions at kmers where the Nanopore 
sequencer is prone to skip bases. In the current format it is not possible to predict insertions with the 
reference sequence supplied in each sample. One change would be needed for this method to predict 
insertions, which is the removal of the reference sequence from each sample. This will allow for 
extension of the pile-up when an insertion occurs, as there is no more limitation where each position 
has to be aligned to the reference genome.  
 
DeepConsensus, a sequence correction algorithm developed for PacBio sequencing (29), uses a novel 
alignment-based loss, which has helped them overcome the problem of predicting indels. They have 
switched from using a sample design where reads are aligned to the reference or other contigs to a 
multiple sequence alignment (MSA) from the PacBio reads and the draft consensus that has been created 
by the PacBio pipeline. They use a variable-length prediction which allows their method to represent 
insertions and deletions errors in the alignment. DeepConsensus also leverage metadata from the 
sequencing process like interpulse duration and pulse width (parameters specific to PacBio sequencing).  

ONT has developed Medaka, a consensus calling and variant calling tool for Nanopore 
sequencing (25,28). Due to time constraints, we have not come round to benchmark our model’s 
performance against Medaka. However, this has been done internally at CyclomicsSeq before and 
Medaka has not proven to be a candidate to replace the Cycas Consensus pipeline because of 
computational problems. Medaka has been mainly developed for genome assembly, so has to restart 
every time a new CyclomicsSeq read enters the pipeline. There seems to be a module of Medaka specific 
for consensus calling of single molecule reads, but this is not well documented (34,35). Future research 
may be done to investigate this method’s ability for consensus calling of a small set of reads like the 



CyclomicsSeq reads. This will also allow benchmarking of our model’s performance to another 
consensus calling method besides the Cycas Consensus method.  
 
Two additional ways of improving our consensus calling method, would be to use the raw Nanopore 
squiggles or to use a different model architecture. Currently, our method is built on base called 
sequences. The raw Nanopore squiggles contain more information than the base called sequences, but 
implementation of this will not be straightforward as the DNA strand does not move through the pore 
at a single speed, so it is difficult to correlate a base called DNA sequence to a raw squiggle (16). For 
example, Nanopolish, a method for genome assembly, uses an algorithm that uses the raw signal for 
improving the consensus sequence (36). Potentially the raw signal can be added to the input matrix in 
a way similar that DeepConsensus implements additional sequencing information (29). Secondly, a 
more complex model architecture may improve performance if properly implemented, for example with 
self-attention layers like DeepConsensus or Enformer, or a recurrent neural network (RNN) architecture 
like Medaka. In this study, the DNN models shows the best results. They have a straightforward 
architecture and show more robust performance during training than the CNN models.  
 
The method developed in this thesis is not limited to consensus calling and variant calling for 
CyclomicsSeq. In principle, all aligned reads can be used with our model, up to a coverage of 20X. 
Phasing may be necessary if DNA derived from a diploid genome is used. The model is trained on 
human Nanopore sequencing data, so most likely best results will be achieved when the input material 
has been sequenced with Nanopore and is derived from human. This greatly extends the use case of our 
model beyond the application for CyclomicsSeq, ranging from consensus calling for Nanopore 
sequencing data to polishing of genome assemblies.  
 
In this thesis, we have presented a promising deep learning approach to consensus calling and variant 
calling on a single molecule level. We have shown to be able to predict consensus sequences with high 
accuracy. The best model (DNN 3-5X) increased the per-read accuracy compared to the current Cycas 
Consensus method of CyclomicsSeq. There is abundant potential for improvement of our method, and 
further development will improve consensus calling and single molecule variant calling. Broadly 
speaking, such a consensus calling method retains the benefits of long-read Nanopore sequencing while 
overcoming its main limitation that is its high error rate. For CyclomicsSeq, our consensus calling 
method will help with more accurate detection of mutations in cfDNA and will thus aid in cancer 
diagnosis and prognosis.  
  



Methods 
1. Data 
1.1 Nanopore T2T dataset 
The Telomere-to-telomere (T2T) consortium has sequenced the CHM13hTERT human cell line with 
Nanopore and base called with Guppy (version 5.0.7) (6). This dataset is publicly available in fastq 
format (37). This cell line has a homozygous genome and can thus be regarded as haploid. The base 
called data was mapped to the CHM13 v1.1 reference genome with minimap2, resulting in 120X 
coverage. Throughout this project, the nanopore preset option (-x map-ont) is always used for 
minimap2. The reads are filtered for primary mapping reads and reads mapping to the forward strand 
only. Reads are randomly subsampled to 30X for storage purposes.  
 
1.2 CyclomicsSeq datasets 
Three datasets from CyclomicsSeq based on regions of the TP53 gene or genome wide are used in this 
study (Table 2). All DNA is processed and sequenced with the CyclomicsSeq protocol, which is shortly 
described in section 1.3.  
CyclomicsSeq dataset A 
CyclomicsSeq dataset A consists of synthetic DNA from five amplicons of the TP53 gene. Two 
mutations are incorporated in the synthetic DNA at 0.25% variant allele frequency (VAF) and three 
mutations at 0.5% VAF (Table 3). Base calling is done with Guppy high accuracy base calling (version 
6.1.5). Reads are mapped to the CHM13 v2 reference genome.  
CyclomicsSeq dataset B 
This dataset consists of synthetic DNA from five amplicons of the TP53 gene. Two mutations are 
incorporated in the synthetic DNA at 0.25% variant allele frequency (VAF) and three mutations at 0.5% 
VAF (Table 2). Base calling is done with Guppy super high accuracy base calling (version 6.2.7). Reads 
are mapped to the CHM13 v2 reference genome.  
CyclomicsSeq dataset C 
Cell-free DNA of a healthy individual has been sequenced untargeted with CyclomicsSeq, resulting in 
genome-wide coverage. Base calling is done with Guppy super high accuracy base calling (version 
6.2.11). Reads are mapped to the hs37d5 reference genome.  
 
Table 2 – Overview of datasets. WGS = whole genome sequencing, N.A. = not applicable.  
 

Name Species Reference 
genome 

Targeted or 
WGS 

Sequencing Basecalling Used for Source CyclomicsSeq 
serial number  

Nanopore T2T  Cell line T2T v2 WGS (we 
used only 
chr18) 

Nanopore 
R9.4.1 
 

Guppy high 
accuracy 
basecalling 
(version 5.0.7) 

Model 
training 

Public N.A. 

CyclomicsSeq 
dataset A 

Synthetic T2T v2 Targeted 
(chr17) 

Nanopore 
R10.4.1 

Guppy high 
accuracy base 
calling (version 
6.1.5) 

Consensus 
calling 

Cyclomics
Seq 

CYC000025 

CyclomicsSeq 
dataset B 

Synthetic T2T v2 Targeted 
(chr17) 

Nanopore 
R10.4.1 

Guppy super 
high accuracy 
base calling 
(version 6.2.7) 

Consensus 
calling 

Cyclomics
Seq 

CYC000025 

CyclomicsSeq 
dataset C 

Human Hs37d5 WGS Nanopore 
R10.4.1 

Guppy (version 
6.2.11) 

Consensus 
calling 

Cyclomics
Seq 

CYC000048: 
HC002 

 
 



Table 3 – Known mutations in CyclomicsSeq dataset A and B. 
 

Region Position Mutation Expected VAF 
Region 3 chr17:7,577,900 G>A 0.5% 
Region 3 chr17:7,577,926 C>T 0.5% 
Region 3 chr17:7,577,927 G>A 0.5% 
Region 4 chr17:7,578,324 T>A 0.25% 
Region 4 chr17:7,578,387 A>C 0.25% 

 
1.3 CyclomicsSeq protocol 
The CyclomicsSeq workflow starts with native cfDNA or synthetic DNA. The cfDNA is enriched for 
five amplicons on the TP53 gene (targeted approach). These products are then amplified with PCR for 
TP53 sequences in case of a targeted approach. A synthetic backbone sequence is ligated to each cfDNA 
fragment and together they circularize. Each circular DNA fragment then undergoes rolling circle 
amplification (RCA) to create multiple copies of the same DNA fragment on one strand. These products 
are sequenced with Nanopore sequencing, using a R10.4.1 pore. The resulting reads are mapped to a 
reference genome including the backbone sequences. Then, consensus calling is performed with a base 
quality score weighted majority vote approach to generate a consensus sequence from all copies of the 
same DNA fragment. This method is referred to as the Cycas Consensus method in this project. The 
genome-wide cfDNA is not enriched for specific amplicons, and the PCR step is thus not required. 
Further processing is similar to the targeted approach. Further details can be found in the publication of 
CyclomicsSeq (2).  
 
2. Model input 
The aligned reads (in bam format) are used to generate training and test samples. Using a pile-up 
approach, a sample consists of n reads aligned to a nine-base-pair window around the position of interest 
(Figure 15). There are five bases upstream and three bases downstream of the position of interest. The 
number of reads that align to the position of interest, or the coverage, ranges between 3X and 20X. If 
the coverage of a position is higher than the desired coverage, reads that have a higher starting 
coordinate on the forward strand are excluded. When the coverage is lower than 20X, the remaining 
rows are zero-padded to ensure each sample has the same size. In addition to the aligned reads to the 
position of interest, the reference sequence is also supplied. At the position of interest, the base of the 
reference sequence is replaced by a zero (‘masked reference base’). For the train and test samples, the 
label for each position of interest is the reference base.  

Each base is one hot encoded with six categories (A, C, G, T, deletion, insertion). The base 

quality score is converted to a probability of being correct with 𝑝 = 	1 − 10-
!"#$%	'()*+,-	./0#$

12  and is 
used as the one in the one hot encoding. In this way, the base quality score is coupled with the sequence 
information. An insertion is encoded with two categories: the quality score for the base and one at the 
insertion. The label is also one-hot-encoded, but as the reference base can never be an insertion or a 
deletion, the label is always one of the four canonical bases. For one-hot-encoding of the label, we use 
a 1 and not a quality score. Finally, the rows (excluding the row with the reference sequence, so only 
the rows with reads and the rows with zeros) are shuffled randomly. This is done to ensure that the 
model is paying attention to all rows and is not just focusing on the first few reads.  

For the dense neural network (DNN), an individual sample is stored in a 1D matrix with a size 
of (1134,). This can be calculated as 9 bases wide * 21 bases long * 6 for the encoding. The matrix 
depicted in figure X is flattened. For the convolutional neural network (CNN), a sample is stored as a 
3D matrix. The shape of the matrix is (21, 9, 6) with (height, width, depth). 



  
Figure 15 – Matrix design for one sample. Green row: position of interest, sequence in bold: reference sequence, light-blue 
arrow: masked reference base at position of interest, grey arrows: example of one-hot-encoded base and insertion, red arrow: 
coverage, green arrow: nine bp window, black arrow: label for position of interest (only for the T2T samples), *: deletion, 
C+1G: insertion. 
  
2.1 T2T Samples 
A 600,000 bp region of chromosome 18 of the T2T dataset is used to generate samples for training, 
testing, and hyperparameter optimization (Figure 16). The samples are created for reads mapping to the 
forward strand only. For each position a sample is created so in total we have 600,000 samples. Each 
sample is created with 20X coverage. Later, the coverage of a sample can be adjusted by dropping the 
last n rows of the matrix and padding it with zeros again. The samples and corresponding labels are 
stored in hdf5 format.  
 

 
Figure 16 – Division of chromosome 18 into hyperparameter optimization (hyp. opt.) set (100,000 samples, green), train set 
(300,000 samples, orange), and test set (200,000 samples, pink). 
 
2.2 CyclomicsSeq samples 
The raw CyclomicsSeq reads are also converted into samples. Here, a label is not stored as these samples 
will be used to predict the consensus sequence for the CyclomicsSeq reads. For each read id, a sample 
is created for each position and stored in the correct order in the hdf5 file with the read id as unique 
identifier (Figure 17). The coverage of each sample is determined by the number of repeats in the 
original CyclomicsSeq read. If the coverage on a certain position is lower than three, the sample is not 
created. If the coverage is higher than 20, only the first 20 reads are used. The 20 reads with the highest 
start coordinate on the forward strand are taken. We do not perform read quality filtering to pick the 20 
best reads. If the coverage is between 3 and 19, the remaining rows are filled with zeros.  
 As each sequence in the bam file is stored in the forward direction regardless of the original 
read orientation, reverse reads are converted to their forward sequence in the matrix. Information about 



the original read orientation is retrieved later based on the unique read id from the Cycas Consensus 
reads.  

The reference sequence for the reads of CyclomicsSeq dataset A is retrieved from the CHM13 
v1.1 reference genome, and for the reads of CyclomicsSeq dataset B from the CHM13 v2 reference 
genome. For the genome wide CyclomicsSeq reads (dataset C), the reference sequence is retrieved from 
the hs37d5 reference genome.  

 

 
Figure 17– Two CyclomicsSeq reads with 8 (read id 1) and 21 repeats (read id 2). Per read id, a sample is created for each 
position and stored sequentially. For read id 2, the last read will not be included in the matrix as only the first 20 reads are 
considered.  
 
3. Models 
3.1 Model architecture 
The dense neural network (DNN) consists of fully connected dense layers alternated with dropout layers 
(Figure 18A). The ReLu activation function is used at each hidden layer. The final layer uses the 
softmax activation function to calculate the probability of each class for the input sample. The class 
with the highest score will be the predicted class. The convolutional neural network (CNN) consists of 
2D convolutional layers alternated with dropout layers (Figure 18B). The kernel size in each 2D 
convolutional layer is 2 by 2. ReLu activation is used at each 2D convolutional layer. For the final 
classification, flattening is performed to get a fully connected layer. After the last dropout layer, the 
softmax activation function is used to calculate the probability of each class for the input sample. The 
class with the highest score will be the predicted class.  
 
3.2 Model training 
We use the Keras framework in Python for model training and testing. For all models, we use a learning 
rate of 0.001 and the Adam optimizer. The used loss function is categorical cross-entropy loss. We train 
a DNN and a CNN for each coverage bin (3-5X, 6-10X, 11-15X, 16-20X, 3-20X) so we have 10 models 
in total. Each model is trained for a maximum of 20 epochs, but early stopping is allowed based on 
validation loss with a patience of four epochs. 

We performed hyperparameter optimization on 100,000 samples (Figure 16) for the dropout 
rate in the first, second and last dropout layer for each model (Table 4). The samples are split into a 
train set (25%), validation set (25%), and a test set (50%). Hyperparameter tuning for the DNN model 
is computationally less expensive than for the CNN model, so we gave the DNN model a larger range 
of parameters to tune than the CNN model. The optimized dropout parameters are used during cross-
validation and final model training.  

We randomly split the training samples (300,000 samples, Figure 16) into a train set (25%), 
validation set (25%), and test set (50%) 10 times to perform 10-fold cross-validation for evaluation of 



model performance. We report the macro-average F1-score for each fold as the mean of the F1-score 
for each class. The F1-score per class is calculated as 7	∗	92):%1%0'∗2):#$$

92):%1%0';2):#$$
. Precision is calculated as <=

<=;>=
 

and recall as <=
<=;>!

, with TP as true positives, FP as false positives, and FN as false negatives.  
We then randomly split the training samples again into a train set (80%) and a validation set 

(20%), to train the final models. The best model based on the validation loss metric is saved.  
 

 
 
 

 
Figure 18 – Model architecture. Layers are not drawn to scale. Input layers are shown in blue, dropout layers in orange, and 
output layers in green. A: DNN, dense (fully connected) layers shown in yellow. The number indicates the number of nodes 
for each layer. B: CNN, 2D convolutional layers shown in yellow. The kernel size is (2,2) for each 2D convolutional layer. 
The numbers indicate the shape of each 2D convolutional layer with (nr. Filters, height, width, depth). 
 
Table 4 – Results of hyperparameter tuning of first, second, and last dropout layer for each T2T model. Range of values 
indicates the numbers that were tested for each dropout layer. Tuning is performed with the keras tuner package (Table 11).  
 

Model type Dropout layer Range of values for tuning Value after 
hyperparameter tuning 

DNN 3-5X First 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 0.2 
 Second 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 0.1 
 Last 0.1, 0.2, 0.3, 0.4, 0.5 0.2 
DNN 6-10X First 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 0.3 
 Second 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 0.8 
 Last 0.1, 0.2, 0.3, 0.4, 0.5 0.4 
DNN 11-15X First 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 0.2 
 Second 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 0.2 



 Last 0.1, 0.2, 0.3, 0.4, 0.5 0.2 
DNN 16-20X First 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 0.3 
 Second 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 0.2 
 Last 0.1, 0.2, 0.3, 0.4, 0.5 0.3 
DNN 3-20X First 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 0.7 
 Second 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 0.6 
 Last 0.1, 0.2, 0.3, 0.4, 0.5 0.2 
CNN 3-5X First 0.1, 0.2, 0.3, 0.4 0.3 
 Second 0.1, 0.2, 0.3, 0.4 0.3 
 Last 0.1, 0.2, 0.3, 0.4, 0.5 0.1 
CNN 6-10X First 0.1, 0.2, 0.3, 0.4 0.3 
 Second 0.1, 0.2, 0.3, 0.4 0.1 
 Last 0.1, 0.2, 0.3, 0.4, 0.5 0.3 
CNN 11-15X First 0.1, 0.2, 0.3, 0.4 0.4 
 Second 0.1, 0.2, 0.3, 0.4 0.4 
 Last 0.1, 0.2, 0.3, 0.4, 0.5 0.4 
CNN 16-20X First 0.1, 0.2, 0.3, 0.4 0.4 
 Second 0.1, 0.2, 0.3, 0.4 0.2 
 Last 0.1, 0.2, 0.3, 0.4, 0.5 0.3 
CNN 3-20X First 0.1, 0.2, 0.3, 0.4 0.3 
 Second 0.1, 0.2, 0.3, 0.4 0.4 
 Last 0.1, 0.2, 0.3, 0.4, 0.5 0.2 

 
 
3.3 Model testing 
We use all 10 models to predict the test set (200,000 samples, Figure 16) for each coverage bin (3-5X, 
6-10X, 11-15X, 16-20X, 3-20X). Because for the DNN and the CNN samples, each sample has the 
same size regardless of the coverage, a model trained on coverage 3-5X can be used to predict a sample 
with 16-20X coverage. Using the final models, we test every combination once. For each prediction, 
we use the mean false positive rate as the metric. The false positive rate per class is calculated as >=

>=;<!
, 

with FP as false positives and TN as true negatives.  
 
 

 
Figure 19 – Example of majority vote approach for the position of interest (green). The base predicted by the majority vote is 
compared to the label, and wrong in this example.  
 
 
 



4. Majority vote 
To benchmark each model’s performance, we use a naive approach to predict each sample. With the 
majority vote, we consider the most frequent base on the position of interest as the predicted base 
(Figure 19). We calculate the majority vote for each coverage bin (3-5X, 6-10X, 11-15X, 16-20X, 3-
20X). The majority vote is the same for the DNN and the CNN models. As the samples are created with 
a masked reference base at the position of interest, we do not take the reference base into account for 
the majority vote. The predicted bases are compared to the labels to calculate the performance metrics 
(F1 score) similarly to the way they are calculated for the predictions of the model for model training 
(section 3.2) and model testing (section 3.3). For the training set, the majority vote is calculated for all 
samples where a base is predicted and not those where a deletion is predicted to evaluate the single 
nucleotide mismatch majority vote performance. For the model testing, the majority vote is calculated 
for all samples. 
 
5. Prediction of CyclomicsSeq consensus sequence 
The T2T DNN and CNN models are used to predict the consensus sequence for each CyclomicsSeq 
read. Each CyclomicsSeq read consists of multiple copies of the same fragment. The long concatemer 
CyclomicsSeq read with multiple copies of a cfDNA fragment has been pre-processed with the 
CyclomicsSeq pipeline. This includes discarding reads with more than 50 mismatches to the reference 
(NM > 50), reads with a mapping quality below 20, and reads shorter than 500 bp. Hereafter, the 
concatemerized sequence is split up into multiple short reads that are copies from the same input 
fragment. We use three datasets provided by CyclomicsSeq (Table 2) that have been converted into 
samples for each position per read id. The model takes a matrix for each position as input and outputs 
one of the four canonical bases. The Phred base quality score is derived from the softmax probability 
distribution with the following formula: 𝑄 =	−10 ∗ log	(1 − 𝑝) with p being the softmax probability 
for the predicted base. The Phred base quality score is capped at 93, with 93 being the maximum 
reported Nanopore quality score (38). As the matrices are stored per read id, the predicted sequence for 
each read id is stored in fastq format.  
 
6. Analysis of prediction of CyclomicsSeq dataset A  
The resulting fastq files from the prediction of each CyclomicsSeq read of dataset A with all DNN 
models are mapped to the CHM13 v2 reference genome using minimap2. From the reads that map to 
chromosome 17, the following information is stored: region, read id, NM tag, alignment length, cigar 
string, the type of model that is used for prediction, and the original coverage/number of repeats for 
each read. The NM tag depicts the number of mismatches of the aligned read with the reference 
sequence. The soft-clipped bases are not included in the alignment length. As the reads are predicted 
per region and this was semi-manually annotated, we excluded one read id (10 reads in total) with 
unknown region from further analysis.  

It appeared duplicate reads were present in each region, we found reads with similar read ids 
that map to the same region. This may be an artefact of the CyclomicsSeq protocol as one would expect 
a unique read id for each CyclomicsSeq read. For each set of duplicated reads, we kept the read with 
the longest alignment length. 

The consensus reads of the CyclomicsSeq pipeline for dataset A are retrieved in bam format 
and have been mapped to the CHM13 v2 reference genome using minimap2. From the reads that map 
to chromosome 17 and that have more than three repeats (based on presence of YM tag), the following 
information is stored: region, read id, NM tag, YM tag (repeat number in original CyclomicsSeq read), 
YR tag (read direction), alignment length, and the cigar string. The YM and YR tags are specific for 
CyclomicsSeq. For duplicate read ids, we kept the read with the longest alignment length.  



We calculated the per-read error rate ( !"
6$%&'()'*	$)'&*,

). We then selected the reads that occur 

in each dataset (each model + Cycas Consensus). This resulted in 379,500 unique reads per model. The 
non-overlap read set is analysed separately, these results can be found in the supplementary figures. 
The number of reads per step can be found in table 5 (predicted reads) and table 6 (Cycas Consensus 
reads).  

 
Table 5 – Number of reads for each step for the predicted consensus reads of CyclomicsSeq dataset A. All unmapped reads 
originate from a read with three copies of the original fragment (coverage 3X).  
  

DNN 3-5X DNN 6-10X DNN 11-15X DNN 16-20X DNN 3-20X 

Number of split reads 8796174 8796174 8796174 8796174 8796174 

Number of reads for 
model input 

 399611 399611 399611 399611 399611 

Number of reads 
outputted by model 

399611 399611 399611 399611 399611 

Mapped reads (all reads 
mapped to chr17) 

399610 399609 399605 399605 399609 

Unmapped reads 1  2  6  6  2  
After removal of 10 reads 
with unknown region 

399608 399607 399603 399603 399607 

After removal of duplicate 
read ids 

397641 397640  397636 397636 397640 

Perfect reads – non 
overlap 

377566 366510 346960 337486 356527 

Non perfect reads – non 
overlap 

20075 31130 50676 60150 41113 

Overlap between all read 
sets (including Cycas 
Consensus) 

379500 379500 379500 379500 379500 

Perfect reads - overlap 360375 349938 331625 322635 340496 

Non perfect reads – 
overlap 

19125 29562 47875 56865 39004 

 
Table 6 – Number of reads for each step for the Cycas Consensus reads of CyclomicsSeq dataset A. No unmapped reads were 
produced by the Cycas Consensus pipeline.  

 Cycas Consensus 
Mapped reads to all chromosomes (no unmapped reads) 1008117 
Mapped reads (backbone) 544203 
Mapped reads to other chromosomes Chr1: 14, chr2: 18, chr3: 8, chr4: 12, chr5: 11, chr6: 8, chr9: 

12, chr10: 11, chr11: 6, chr12: 11, chr13: 8, chr14: 4, chr15: 3, 
chr16: 2, chr18: 7, chr19: 7, chr20: 8, chr21: 2, chr22: 3, chrX: 
8 

Mapped reads to chromosome 17 463728 
Mapped reads to chromosome 17 & presence of YM tag 443133 
After removal of duplicate read ids 440938 
Perfect reads (non-overlap) 305270 
Non-perfect reads (non-overlap) 135668 
Overlap between all read sets  379500 
Perfect reads (overlap) 345678 
Non-perfect reads (overlap) 33822 



7. Analysis of prediction of CyclomicsSeq dataset B 
The resulting fastq files from the prediction of each CyclomicsSeq read of dataset B with all 10 models 
are mapped to the CHM13 v2 reference genome using minimap2. From the reads that map to 
chromosome 17, the following information is stored in tabular format: region, read id, NM tag, 
alignment length, cigar string and the type of model that is used for prediction. Additionally, it is stored 
whether one or more of the five mutations is present in the read. The number of reads for each model 
can be found in table 6. For each duplicate read id, we kept the read with the longest alignment length. 
We noticed that the number of reads that mapped to region 2 is very low compared to the other regions. 
Therefore, all reads mapping to region 2 are discarded and region 2 is left out of the analysis.  
  The consensus reads of the CyclomicsSeq pipeline for dataset B are retrieved in bam format 
and have been mapped to the CHM13 v2 reference genome using minimap2. From the reads that map 
to chromosome 17 and that have more than three repeats (based on presence of YM tag), the following 
information is stored: region, read id, NM tag, YM tag (repeat number in original CyclomicsSeq read), 
YR tag (read direction), alignment length, and the cigar string. The YM and YR tags are specific for 
CyclomicsSeq. Additionally, it is stored whether one or more of the five mutations is present in the 
read. All reads mapping to region 2 are discarded. We manually removed 23 reads that span both region 
2 and 3 with a large deletion between the two regions. This is probably a mapping artifact as it is 
practically impossible for the CyclomicsSeq protocol to generate reads that span multiple regions.  

We calculated the error rate per read ( !"
6$%&'()'*	$)'&*,

) and the error rate corrected for the 

number of mutations found per read (!"-'2.(/*#*%0'1	50/'4
6$%&'()'*	$)'&*,

). We manually removed two reads from 

the Cycas Consensus dataset where the error rate corrected for the number of mutations found was -1. 
We then selected the reads that occur in each dataset (each model + Cycas Consensus) so we could 
perform a per-read analysis. This resulted in 291,100 unique reads per model. The non-overlap read set 
is analysed separately, these results can be found in the supplementary information. The number of 
reads per step can be found in table 7 and 8. Reads are considered perfect when no alignment mistakes 
are made besides the known mutations. The per-read error rate is calculated both at normal scale and at 
the Phred scale: 𝑄 =	−10 ∗ 	log?@ 𝑃 with P as the per-read error rate. The Phred Q-score of perfect 
reads (P = 0) is set at Q50 (P = 0.0005), to allow plotting at a logarithmic scale.  
 
 
Table 7 – Number of reads for each step for the predicted consensus reads of CyclomicsSeq dataset B 
  

DNN 3-
5X 

DNN 6-
10X 

DNN 11-
15X 

DNN 16-
20X 

DNN 3-
20X 

CNN 3-
5X 

CNN 6-
10X 

CNN 11-
15X 

CNN 16-
20X 

CNN 3-
20X 

Split reads – 
raw input 
(MapQ NM 
filtered) 

10378363 10378363 10378363 10378363 10378363 10378363 10378363 10378363 10378363 10378363 

Nr. reads – 
Matrix input 
(chr17, >3x 
repeat) 

 409342  409342  409342  409342  409342  410122  410122  410122  410122  410122 

Fastq reads – 
Model output 

409342 409342 409342 409342 409342 410122 410122 410122 410122 410122 

Mapped reads 
(all  mapped to 
chr17) 

409338 409338 409335 409336 409331 385490 410111 410103 410097 410113 

Unmapped 
reads 

4 4 7 6 11 24632 11 19 25 9 



Mapped reads 
to chromosome 
17 

409338 409338 409335 409336 409331 385490 410111 410103 410097 410113 

Mapped reads 
without region 
2 

408783 408783 408780 408781 408776 384978 409556 409548 409542 409558 

After removal 
of duplicate 
read ids 

395957 395957 395954 395955 395950 374460 396703 396695 396691 396705 

Perfect reads – 
non overlap 

379251 374592 
 

369748 
 

365902 
 

371650 
 

327472 
 

325932 
 

298585 
 

257754 
 

308427 
 

Non perfect 
reads – non 
overlap 

16706 21365 26206 30053 24300 46988 70771 98110 138937 88278 

Overlap 
between all 
read sets 
(including 
Cycas 
Consensus) 

292100 292100  292100 292100 292100 292100 292100 292100 292100 292100 

Perfect reads - 
overlap 

279889 
 

276330 
 

272474 
 

269507 
 

273987 
 

255935 
 

238997 
 

219204 
 

183832 
 

226308 
 

Non perfect 
reads – overlap 

12211 15770 19626 22593 18113 36165 53103 72896 108268 65792 

 
Table 8 – Number of reads for each step for the Cycas consensus reads of CyclomicsSeq dataset B. 
 

Steps Cycas Consensus 

Mapped reads 1070547 

Unmapped reads 0 

Mapped reads to chromosome 17 513179 

Mapped reads to other contigs chr1: 18, chr2: 20, chr3: 9, chr4: 12, chr5: 11, chr6: 7, chr7: 12, 
chr8L 9, chr9: 15, chr10: 13, chr11: 7, chr12: 11, chf13: 7, chr14: 
5, chr15: 3 chr16: 1, chr18: 7, chr19: 5, chr20: 9, chr21: 2, chr22: 
3, chrX: 9 BB41C: 557173 

Mapped reads to chromosome 17 & presence of YM 
tag 

392542 

After removal of duplicate read ids 390119 

Filtering for reads that overlap multiple regions and 
NM score of -1 

390071 

Mapped reads without region 2 351163 

Perfect reads – non overlap 312255 

Non perfect reads – non overlap 38908 

Overlap between all prediction read sets 292100 

Perfect reads - overlap 259150 

Non perfect reads – overlap 32950 

 
8. Analysis of prediction of Genome Wide CyclomicsSeq (dataset C) 
For each DNN model (DNN 3-5X, DNN 6-10X, DNN 11-15X, DNN 16-20X, DNN 3-20X) the 
resulting fastq files from the prediction of each CyclomicsSeq read of dataset C are mapped to the 
hs37d5 reference genome using minimap2. From the reads that map to the 23 chromosomes (not 



including decoy contigs), the following information is stored in tabular format: region, read id, NM tag, 
alignment length, cigar string and the model that is used for prediction.  

The consensus reads of the CyclomicsSeq pipeline for this dataset are retrieved in bam format 
and have been mapped to the hs37d5 reference genome using minimap2. From the reads that map to 
the 23 chromosomes (not including decoy contigs) and that have three or more repeats (based on 
presence of YM tag), the following information is stored in tabular format: read id, NM tag, alignment 
length, YM tag, YR tag, and the cigar string. 

For each read set, predicted with one of the DNN models or with the Cycas Consensus method, 
only reads that do not overlap with a known SNP or indel of this individual are included. For each 
duplicate read id, only the read with the longest alignment length is kept. Finally, we selected the reads 
that occur in each dataset. This resulted in 34603 reads per model. The non-overlap dataset is analysed 
separately. The number of reads per step can be found in table 9 and table 10. We calculated the error 
rate per read adjusted for indels ( !"-∑ %'4)$1

6$%&'()'*	$)'&*,
) with ∑𝑖𝑛𝑑𝑒𝑙𝑠 being the number of inserted and 

deleted nucleotides based on the cigar string. Reads are considered perfect when no alignment mistakes 
are made besides indels. The per-read error rate is calculated at normal scale and at the Phred scale: 
𝑄 =	−10 ∗ 	log?@ 𝑃 with P as the per-read error rate. The Phred Q-score of reads with no alignment 
mistakes (P = 0) is set at Q50 (P = 0.00001). 

 
Table 9 – Number of reads for each step for the predicted consensus reads of CyclomicsSeq dataset C. 
 

 DNN 3-5X DNN 6-10X DNN 11-
15X 

DNN 16-
20X 

DNN 3-20X 

Split reads – raw input (MapQ NM 
filtered) 

5426282 5426282 5426282 5426282 5426282 

Nr. reads – Matrix input (>3x repeat) 75074 75074 75074 75074 75074 
Fastq reads – Model output  77019 77026 77012 77036 77029 
Unmapped reads 503 509 519 546 516 
After removal of reads that overlap with 
known variants 

46036 46040 46023 46012 46039 

Mapped reads (normal contigs) 45921 45924 45910 45897 45922 
After removal of duplicate read ids 45476 45481 45469 45461 45478 
Perfect reads (non-overlap)  40764 39770 37178 35045 38877 
Non-perfect reads (non-overlap)  4712 5771 8291 10416 6601 
Overlap between all read sets (including 
Cycas Consensus) 

34603 34603 34603 34603 34603 

Perfect reads (overlap)  31149 30479 28742 27337 29875 
Non-perfect reads (overlap)  3454 4124 5861 7266 4728 

 
Table 10 – Number of reads for each step for the Cycas consensus reads of CyclomicsSeq dataset C. 
 

 Cycas Consensus 
Mapped reads to all chromosomes (no unmapped reads) 179464 
After removal of reads that overlap with known variants 154047 
Mapped reads (backbone) 113772 
Mapped reads (normal contigs) 39115  
After removal of duplicate read ids 36171 
Perfect reads (non-overlap)  31916 
Non-perfect reads (non-overlap)  4255 
Overlap between all read sets  34603 
Perfect reads (overlap) 30659 
Non-perfect reads (overlap)  3944 

 



9. Software 
All code is written in Python (version 3.9.7) and bash. A complete list of used packages and tools can be found 
in table 11. Code can be found on GitHub (https://github.com/icdh99/cyclomics_consensus_models_inez). 
 
Table 11 – Used software packages. 
 

Name Version  
bedtools 2.30.0 
cudatoolkit 11.2.2 
cudnn 8.1.0.77 
freebayes 0.9.21.7 
h5py 3.2.1 
keras 2.7.0 
keras-tuner 1.1.3 
matplotlib 3.5.1 
medaka 1.7.2 
minimap2 2.24 
natsort 8.2.0 
numpy 1.22.3 
Pandas 1.4.2 
perbase 0.8.3 
pysam 0.18.0 
Python 3.9.7 
samtools 1.15 
scikit-learn 1.1.1 
Scipy 1.8.1 
Seaborn 0.11.2 
statannot 0.2.3 
statannotations 0.5.0 
tensorflow 2.7.0 
tensorflow-gpu 2.9.1 

 
10. Storage location of datasets 
CyclomicsSeq dataset A 
/hpc/compgen/projects/gw_cfdna/snv_qs/raw/CYC000025-extended-data 
 
CyclomicsSeq dataset B 
/hpc/compgen/projects/gw_cfdna/snv_qs/raw/000025-sup-extended-data.  
 
CyclomicsSeq dataset C 
/hpc/compgen/projects/gw_cfdna/gw_cyclomics/analysis/lchen/cycloseq-output/HC02_CYC36-
20ng/CycasConsensus/MapqAndNMFilters 
/hpc/compgen/projects/gw_cfdna/gw_cyclomics/analysis/lchen/cycloseq-output/HC02_CYC36-
20ng/bams/HC02_CYC36-20ng.tagged.bam 
Known variants of HC02:  



/hpc/compgen/projects/gw_cfdna/gw_cyclomics/raw/gw_cyclomics/mixing_reference/HC02_202111
19/HC02_processed/VCFS/VCF/MAR6281_processed.vcf.filtered_variants_dbnsfp_CosmicCoding
Muts_v80_gonl.snps_indels.r5.vcf  
 
11. List of abbreviations 
cfDNA – Cell-free DNA 
ctDNA – Circulating tumour DNA 
DNN – Dense neural network 
CNN – Convolutional neural network 
FPR – False positive rate  
RNN – Recurrent neural network 
CCS – Circular Consensus Sequencing 
ONT – Oxford Nanopore Technologies 
PacBio – Pacific BioSciences  
PCR – Polymerase chain reaction  
MSA – Multiple sequence alignment 
T2T – Telomere-to-Telomere 
VAF – Variant allele frequency 
  



Supplementary figures 
 

 
 
Figure S1 - Analysis of the consensus reads of CyclomicsSeq dataset B predicted with DNN or CNN T2T models trained on 
different coverages and with the Cycas Consensus pipeline. All error rates are corrected for presence of known mutations and 
only the overlapping subset of reads is analysed. A: percentage of unmapped reads for each DNN T2T model calculated relative 
to the number of fastq sequences predicted by each model. Y-axis is plotted logarithmically. B: Median per-read quality score 
for reads with at least one alignment mistake. Y-axis is plotted logarithmically. C: Per-read quality score comparison for each 
model versus the Cycas Consensus method. Only reads with at least one single nucleotide alignment mistake are shown. Both 
axes are plotted logarithmically.  
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Figure S2 - Analysis of the consensus reads of CyclomicsSeq dataset B predicted with DNN or CNN T2T models trained on 
different coverages and with the Cycas Consensus pipeline. All error rates are corrected for presence of known mutations and 
all reads are analysed. A: Percentage of predicted reads with no alignment mistakes. B: Mean error rate for prediction of 
CyclomicsSeq dataset C with DNN and CNN T2T models trained on different coverages and with the Cycas Consensus 
pipeline. Error bars show 95% confidence interval. C: Median per-read quality score for reads with at least one alignment 
mistake. Y-axis is plotted logarithmically. D: Accumulative proportion of reads based on quality score. X-axis is plotted 
logarithmically. E: Median per-read error rate split for reads mapping to the forward or reverse strand.  
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Figure S3 – Mutation analysis of CyclomicsSeq dataset C predicted with CNN T2T models trained on different coverage bins 
or with the Cycas Consensus method. Analysis is based only on the overlap between all datasets. C: Frequency of each 
combination of mutation 1, 2, and 3 in consensus reads predicted with the CNN T2T models or the Cycas Consensus method. 
Based on 117923 reads mapping to region 3. D: Frequency of each combination of mutation 4 and 5 in consensus reads 
predicted with the CNN T2T models or the Cycas Consensus method. Based on 65582 reads mapping to region 4.  
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Figure S4 – Error rate per position per base for consensus reads predicted with the Cycas Consensus method or with the DNN 
and CNN T2T models. Only the overlapping subsets of reads between all models and the Cycas Consensus method are used. 
Vertical lines indicate mutation 1-4 coloured according to the alternative base. Horizontal grey lines indicate the expected 
variant allele frequency (0.5% for region 3, 0.25% for region 4.  
 



 
Figure S5 – Analysis of the consensus reads of genome wide cell-free DNA sequenced with CyclomicsSeq (dataset C). The 
consensus reads are predicted with DNN models trained on different coverages or with the Cycas Consensus method. The 
per-read error rate is corrected for the number of insertions and deletions per read. All reads output by the model and the 
Cycas Consensus methods are analysed. A: Percentage of unmapped reads for each of the DNN models. B: percentage of 
reads with no single nucleotide alignment mistakes. C: Mean per-read error rate. Error bars indicate 95% confidence 
interval. D: Median per-read quality score for reads with at least one single nucleotide alignment mistake. Y-axis is plotted 
logarithmically. 
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