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Abstract

Photonic crystals with a bandgap in the visible spectrum are needed for faster
computing in the future, because of their light manipulation application. The
packing arrangement of atoms in quasicrystals has opened a new area of
materials that can have their band gap in this desired frequency range. In
this research we look into the scattering behaviour of single crystals using
a transmission matrix (TM) measuring experimental setup. These TMs,
together with the amplitude and phase plots of these crystals, have shown
that the setup is able to analyse single particles of 10 µm in diameter.
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Introduction
Light is a spectacular phenomenon which allows us to see the world around
us. During day-time, when solar radiation reaches our side of the earth, the
electromagnetic radiation from the sun interacts with everything it touches.
It can get absorbed, reflected back or even being scattered in all different
directions [1]. Although only a small part of the electromagnetic spectrum
can be perceived by the human eye, it is this small part that makes the
world around us look so colourful [2]. The leaves of trees and plants, for
example, contain little chloroplasts that absorb most of the frequencies that
fall inside the visible part of the electromagnetic spectrum. However, we see
the leaves as green, because the specific wavelength of the colour green, which
is ∼ 510 nm, is not being absorbed by the chloroplasts, but reflected back [3].

Besides giving us the ability to see the world around us, light has given
us much more than just colours and contrast. Less energetic frequencies
for example, which is radiation with longer wavelengths, are radio waves
(∼ 103 m) that transmit information so that you can listen to music in your
car [4]. Or infrared waves (∼ 10 µm) that are not visible to the human eye,
but can be detected using thermal cameras. Higher frequencies like ultraviolet
or X-ray also have some very useful applications. UV-light is being used to
purify drinking water from any organic micro pollutants [5], whereas X-rays
are widely being used in medical imaging or airport security.

For all these applications, our control over both the radiation we produce
and how we detect or capture the information it contains, is key. This is
why there is an ever growing field of finding new and more efficient ways of
controlling the light we use to transfer data and information. The computers
used nowadays transfer and store information using electrons, but if this could
be switched to photons, it would enable us to move to both higher bandwidths
and faster data processing. A photon is a quantum of the electromagnetic field
and moves at the speed of light, the frequency with which a photon travels
is completely dependent on the energy it is given [6]. This is a parameter
we can control, however, controlling and manipulating the travelling light is
something completely different.

Photonic crystals are materials that have the ability to manipulate light
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Figure 1.1: Photonic band diagram of a closed packed face centered cubic
(fcc) arrangement of spheres [7].

in whatever way you want, this is because they contain a band gap. This
is an energy range where no electronic states can exist, an example is the
yellow band in Fig. 1.1. Inside this band gap, there is a range of frequencies
that are completely blocked by the crystal, because of destructive interference
of these frequencies inside the crystal [8, 9]. By introducing defects one can
manipulate this band gap, after which for example the flow of light can be
channeled extremely precise. Creating these photonic crystals has been done
in all 3 dimensions so far. A 1D photonic crystal, a flat surface, can act as an
extremely high reflectivity mirror for specific wavelengths. Photonic crystal
fibers, 2D rods, are used for fiber optic communication. But the 3D photonic
crystals, which of course have the most applications, are also the hardest one
to make. Controlling the range of frequencies of their band gap is the difficult
point, but 3D photonic crystals with a band gap in the infrared part of the
spectrum have been synthesised and are already being used in the future
generation of faster computing and information technology.

But, although this is already a big improvement on our speed of data
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transferring, being able to use a broader bandwidth would be more ideal and
open up more possible applications. Where crystals are defined by specific
packing and arrangement laws of their atoms, it is this exact arrangement
order of atoms that determines what frequencies fall into the band gap of
the crystal. Minor changes or alterations in the arrangement of the atoms
will lead to two different things: Firstly, the newly created material isn’t
considered to be a crystal anymore but rather a quasicrystal. Secondly, these
quasicrystals have the possibility that their range of band gap frequencies
falls into the visible light spectrum [10].

Figure 1.2: Quasiperiodic Penrose tiling.

Quasicrystals differ from crystals because their unit cell cannot be period-
ically repeated forever in the lattice configuration. They were discovered in
1984 by Daniel Shechtman for which he received the Nobel Prize in Chemistry
in 2011 [11]. Their atomic structure is ordered, just like in crystals, but
because it is not periodic, the most beautiful lattice configurations can arise.
An example of such an aperiodic tiling is the Penrose tiling, see Fig. 1.2.
Their aperiodic tiling is also visible in the diffraction pattern of quasicrystals.
The diffraction pattern of a crystal always has rotational symmetry, but it can
only be two-, three-, four- or six-folded [12]. However for quasicrystals, five-
and even ten-fold rotational symmetry have been observed in their diffraction
patterns [13–15]. This is another indication that these structures lack transla-
tional symmetry, although their atoms are ordered and fill up all available
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space as tightly packed as possible. A recent discovery by the Soft Condensed
Matter group at the Utrecht University showed a self-assembly route of mix-
tures of binary nanoparticles leads to a 3D icosahedral quasicrystal with a
diameter of ∼ 170 nm [16].

These newly formed materials need to be analysed and optimised to find
the optimal packing arrangement of atoms that has the desired band gap
frequency range. Their approximated spherical shaped band edges differ
from their 1D and 2D slab- or cube geometry lower dimension quasicrystal
band edges, and thus need to be analysed differently. To find their scattering
eigenstates, an instrument that can measure both amplitude and phase of
scattered waves of these spherical quasicrystals is needed. In this thesis a start
is made towards creating and characterising such an instrument. The setup
has already been used to observe scattering invariant modes and improve
imaging inside highly scattering materials [17]. Here, we use small polystyrene
crystal spheres, similar in size to the desired 3D quasicrystal, to find out
whether this setup is compatible with small spherical particles instead of flat
materials.
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Theory
In order to extract information from both the amplitude and phase of scat-
tered waves from our spherical polystyrene particles, we need to understand
the basics of light scattering. Then we can identify the scattering regime,
relevant for our particle scattering, which we can use to optimise our analysis
technique, which is measuring the transmission matrix (TM). Optical TMs
are the mathematical representation of the transmission operator (TO) of the
sample, which relates any incident field to the transmitted field. Finally, an
introduction to Mie scattering theory is given, which is used to calculated
simulated TMs of our spherical polystyrene particles.

2.1 Light scattering

As light passes through an object, it is scattered by the particles inside
this medium, which are called microscopic scatterers. When no absorption
takes place during the scattering event, the light waves’ energy is conserved.
An example of this is the colour of milk being white; none of the visible
wavelengths are absorbed, which means the reflected and scattered light that
reaches our eyes contain all the colours of the rainbow. The sun however, is
not white, this is because our atmosphere is full of small particles that mostly
scatter the blue wavelengths of the sun light. Hence, the sky looks blue and
the sun yellow.

As light passes through these small particles, the size of these particles
determines the number of scattering events of the light that take place inside
them. The smaller the particle, the faster the light exits on the other side,
thus less scattering events could have taken place. Besides, the wavelength of
the light passing through a particle is also of great importance. These two
parameters are expressed as the size parameter:

x = 2πr/λ, (1)

where r is the radius of the particle, and λ is the wavelength of the light
passing through the particle. Three different regimes for the scattering of
light by spherical particles are considered using this size parameter.
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2.1. Light scattering

We speak of the Rayleigh scattering regime when x << 1, in this regime
the particles are much smaller than the radiation wavelength [18]. For x
∼ 1, the wavelength of the radiation and the particle size are comparable.
This is considered to be the Mie scattering regime [19, 20]. Finally, when
the scattering sphere is much larger than the wavelength (x >> 1), the
geometrical optics regime should be considered. Here, the incident radiation
is described as a wavefront containing many individual light rays that can
interact individually with the scattering medium.

Figure 2.1: Schematic representation of both scattering and transport mean
free path for anisotropic scattering [21].

A schematic representation of a single light ray interacting with an
anisotropic scattering medium is given in Fig. 2.1. The individual par-
ticles in this medium interact with the light ray by scattering the initial
direction of the ray into a different direction. The distance between such
scattering events is called the scattering mean free path (ls), after which
scattering occurs. If this scattering is mostly in the forward direction, the
medium is considered to be anisotropic. But if scattering can happen in
any random direction, the medium is considered to be isotropic. Multiple
anisotropic scattering events eventually lead to a randomised propagation
path of the incident light ray inside the medium. This distance is called the
transport mean free path:

ltr =
ls

1− ⟨cosθ⟩
. (2)

Here, ⟨cosθ⟩ indicates that we average over all angles θ, which is the angle
between the vector of the incident ray and the vector of the scattered ray.
For an isotropic scattering event ⟨cosθ⟩ = 0, meaning the light is randomised.
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2.1. Light scattering

Whereas for ⟨cosθ⟩ = 1, the direction of the scattered light is completely in
the forward direction, so it is never randomised.

In many anisotropic materials, such as zinc oxide, the following inequality
holds:

λ < ls ≤ ltr << L << Labs, (3)

where L is the distance from one side of the material to the other side of
the material and Labs is the absorption length. In this regime, the diffusive
regime [22], the light rays scatter through the medium in a random walk,
causing a plane wave to be scattered into many different directions, which
creates a speckle pattern on the detector, see Fig. 2.2 (a).

Figure 2.2: Concept of wavefront shaping. (a) A plane wave is scattered by
a disordered medium into a speckle pattern in the detection plane. (b) A
shaped wavefront is focused by the disordered medium onto a targeted area
in the detection plane [23].

A stable, non-vibrating strong scattering sample, such as a piece of white
paint, has the same speckle pattern if the same plane wave is projected
onto the same incident spot. This indicates that each scatterer scatters the
light rays exactly the same over time. Thus, knowing the position of these
scatterers and their scattering behaviour, one could manipulate the incoming
wave such that it is scattered into one single speckle on your detector, as
depicted in Fig. 2.2 (b). This is the concept of wavefront shaping; the phase
and amplitudes of individual rays of a beam of light are optimised in such
a way that all of the light projected onto a strongly scattering medium is
focused into one spot [23].

The wavefront shaping technique works really well, the only downside is
that, upon moving the scattering material, all the information of the scatterers
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2.2. Transmission matrix

is completely lost. Since the incoming light comes in at different angles and
interacts with different scatterers, one has to re-optimise the wavefront to
find the optimal phase and amplitude of each individual light ray. This does
however also show that the scattering behaviour information of these scatterers
can be stored. In fact, if we want to know exactly how a medium would
interact with an incoming wavefront, the scattered, or rather transmitted
field, can be calculated using the transmission operator (TO) of this medium.
Because the TO links any incident field to its corresponding transmitted field.
Experimentally resolving this TO is nearly impossible though, because some
scattered or transmitted waves will always fall outside the apertures of your
apparatus. However, the TO can be approximated by the transmission matrix
(TM), which is a mathematical representation of the TO [24, 25].

2.2 Transmission matrix

Where the TO of a scattering medium links any incident field to its corre-
sponding transmitted field, the TM is a representation of a small part of
this TO, defined by the number of incident and transmitted modes that
are chosen beforehand. This gives us two identical grids, one that contains
all the incident modes, and one that contains all the transmitted modes.
With the scattering medium being in between these two grids, which are
N modes big. If a single incident mode is projected onto the medium, a
speckle pattern is created on the transmitted grid, with some modes detecting
light, and some modes detecting no light at all. Doing so for each incident
mode, one would end up with an NxN matrix that shows the relation of each
incident mode to all the transmitted modes. Since scattering can change the
polarisation of light, this has to be taken into account in a TM. By defining
two orthogonal polarisations of light, which we call horizontal and vertical,
a polarisation complete 2Nx2N TM can be measured, containing four sub-
matrices (THH , TV V , THV & TV H). Each of these sub-matrices represents
both one of the two incident polarisation components and one of the two
transmitted polarisation components. The THV sub-matrix for example, links
the incident horizontal polarised field to the transmitted vertical polarised
field.

A simulation example for a non-scattering sample, like glass or air, is
given in Fig. 2.3 (a). Both the incident and transmitted grids are made out
of 919 individual modes. The value of each of the diagonal elements (Fig. 2.3
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2.2. Transmission matrix

(a) (b)

Figure 2.3: (a) Simulated 919x919 TM elements for the THH polarization
components of glass. (b) Histogram of magnitude of diagonal elements. Figure
taken from [26].

(b)) is one, indicating that there was no scattering behaviour for any of the
incident modes as it passed through the glass sample. This should have given a
complete dark matrix with one intense diagonal, the simulation however shows
side diagonals. These side diagonals are caused by the field overlap integral of

Figure 2.4: Three-dimensional render-
ing of an Airy disk [27].

one mode on the detection grid with
its neighbouring modes.

This overlap is caused by the Airy
disk produced by a collimated beam
in the focal plane, see Fig. 2.4. This
Airy disk is formed when a circular
laser beam, with a uniform intensity
across the circle, is focused by a lens.
A more intense beam in the focus
point will create a bigger Airy disk.
As depicted in Fig. 2.4, the central
intense Airy unit is surrounded by
less intense concentric rings that al-
ternate with local intensity minima.
These rings are produced by Fraun-
hofer diffraction of light by circular apertures [28]. This causes overlap
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2.2. Transmission matrix

Figure 2.5: Two sampling lattice grids with lattice constant a, with the yellow
parts representing a unit cell. The left grid is a square lattice and the right
grid an hexagonal lattice [26].

between the individual modes in the detection grid when they are sampled
too close together. The modes need to be close-packed to extract the most
information out of our scattering medium. However, this close-packing means
these concentric rings with alternating local minima and maxima end up on
neighbouring modes, resulting in a measured field overlap integral. These
overlap integrals show up as the side diagonals in our TMs of non-scattering
media.

To minimise these noise effects, the sampling configuration of the two grids
has to be chosen in such a way the overlap integral between neighbouring
modes is, firstly, minimal, but secondly, also constant. A triangular lattice,
or hexagonal lattice, is the optimal sampling configuration to achieve this.
The right image in Fig. 2.5 shows that all the six nearest neighbours are at a
distance a, which is the lattice constant, while the six next nearest neighbours
are at a distance a

√
3. In a square grid, shown on the left image in Fig. 2.5,

there are eight nearest neighbours who are at different lattice constant a
distances from the central mode. Four neighbours are at a distance a, with the
other four being at a distance a

√
2. It is this separation distance difference

between two spots that yields different overlap integrals, thus the optimal
lattice constant a at critical sampling has to be determined before creating
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2.2. Transmission matrix

our incident field grid.
Critical sampling for the square lattice is achieved at:

a2sq =
λ2

π
(NA)−2, (4)

and for the hexagonal lattice this is achieved at:

a2hex =
2√
3

λ2

π
(NA)−2 ≈ 1.15

λ2

π
(NA)−2, (5)

where NA is the numerical aperture. From these equations we learn that
critical sampling depends on both the wavelength of the light and the numerical
aperture used in our experimental setup. Interestingly, near the critical
sampling on the hexagonal grid, the nearest neighbour Airy spots are almost
exactly at the Rayleigh criterion:

ahex = 0.994aRay with aRay =
z1λ

2π
(NA)−1, (6)

with aRay being the Rayleigh distance [29]. Here, the maximum of the
neighbouring Airy spot overlaps with the first zero of the central Airy spot,
causing the field overlap integral to disappear. Also, z1 ≈ 3.83, which is the
first zero of the J1 Bessel function [30]. Using this, the nearest neighbours
at critical sampling have almost zero overlap, with the overlap of the next
nearest neighbours also being low. Besides this useful feature of the hexagonal
grid, the unit cell of this grid, see yellow part in Fig. 2.5, is also smaller than
the unit cell of the square lattice. This gives the hexagonal grid around a
15% higher sampling density, allowing TM scans to cover larger fractions of
the complete TM. Thus representing the scattering properties of our medium
more faithful than if the square grid were to be used.

This can be checked by plotting a histogram of the singular value distribu-
tion of a non-scattering sample. The singular values of a TM correspond to
the transmission eigenchannels of the sample, if the TM accurately represents
the TO [31].

It was shown by Pai et al. that there is a clear difference in the singular
value distribution for the hexagonal grid sampling or the square grid sampling
[32]. They proved that the singular values of glass, in the polarisation sub-
matrices, normalised to the root mean square (RMS) singular value of the
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2.2. Transmission matrix

Figure 2.6: (a,b,d,e) Singular value histograms of sub-matrices of a measured
TM of glass and (c) of a polarization complete TM. (f) Simulated histogram
of singular values of complete TM with hexagonal grid sampling with 0.5%
RMS noise and (g) without noise. (i) Simulated histogram of singular values
of complete TM with squared grid sampling with 0.5% RMS noise and (h)
without. Red line in (b) & (d) corresponds to Marchenko-Pastur law. Figure
taken from [26].

respective co-polarised sub-matrix, cluster around 1.0 for both the THH & TV V
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2.2. Transmission matrix

polarisation sub-matrices (Fig. 2.6 (a)&(e)) and follow the Marchenko-Pastur
law in both the THV & TV H cross-polarisation sub-matrices (Fig. 2.6 (b)&(d)).
Since glass does not scatter the light that is projected orthogonally onto its
surface, the transmission eigenchannels in both polarisation sub-matrices
THH & TV V should be completely transmittent. The singular values of these
sub-matrices cluster around 1.0, just like for the singular values of a full
polarisation complete TM (Fig. 2.6 (c)). Taking into account a minimal
amount of noise, it can be concluded that the transmission eigenchannels
indeed transmit 100% of the light that is projected onto them. On the other
hand, the singular value distribution of the cross-polarisation sub-matrices tells
us these are random uncorrelated matrices; their singular value distribution
is in line with the Marchenko-Pastur law, which predicts the singular value
probability of a random uncorrelated matrix [33].

With the measured TM of a scattering medium, one can locate its trans-
mission eigenchannels, if there are any, and find out their transmittance.
An example is shown in Fig. 2.7, in which light is coupled to all the 2282
individual transmission eigenchannels of a 2.7 µm scattering sample [34]. For
all channels the reflectance R̃(n) and transmission T̃ (n) add up to 1, meaning

Figure 2.7: Reflectance R̃(n) and transmittance T̃ (n) versus channel number
for a 2.7 µm sample with average transmittance T̃avg = 0.45. Figure taken
from [34].
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2.2. Transmission matrix

the used setup captures the same fraction of light in both transmission and
reflection for each individual channel. The maximum measured transmittance
T̃ (n) is almost 0.65. Coupling light to these channels would thus enhance
the overall transmitted light by this random scattering sample than by just
illuminating it with a plane wave, because on average, the transmittance T̃avg
= 0.45.

Figure 2.8: Singular value distribution of TM normalized to RMS value, of
a random scattering material (a) and for a TM with all the elements being
randomised (b). Red line corresponds to Marchenko-Pastur law. Figure taken
from [26].

Using the polarisation complete TM of the same random scattering ma-
terial, a singular value distribution normalised to the RMS value can be
plotted, Fig. 2.8 (a). Unlike for the non-scattering medium, the values are
not clustered around 1. Also, they are not random, since a TM with random
elements would follow the Marchenko-Pastur curve, just like in Fig. 2.8
(b), but the experimental data shows a tail of singular values that have a
high transmittance. A start into deriving a theoretical way of predicting the
transmittance of these individual eigenchannels using free probability theory
has been made [35]. Here, the theoretical distribution coincides really well
with the lower transmitting eigenchannels distribution, but it is still unable
to predict the distribution of the higher transmitting eigenchannels.
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2.3. Mie scattering theory

2.3 Mie scattering theory

The TM has proven to be a strong tool to control the scattering of light in
diffusive media. It can locate highly transmitting transmission eigenchannels,
thereby overcoming the randomness in big random scattering materials. How-
ever, in this thesis we are interested in smaller, non-random, single spherical
particles. The scattering of light by such particles can be explained using Mie
scattering theory, which will be used to simulate TMs of our desired single
polystyrene spherical particles.

Figure 2.9: Spherical polar coordinate
system, figure taken from [36].

Mie theory is the solution to
the scattering of an electromagnetic
plane wave by a single homogeneous
sphere, named after its developer
Gustav Mie [37]. A physically realis-
able time-harmonic electro-magentic
field (E, H) in a linear, isotropic,
homogenous medium, must satisfy
the wave equation [20]. Besides, E
& H are not independent of each
other. To construct a solution to the
wave equation as a vector function M,
an arbitrary constant vector c and a
scalar function ψ are given such that:

M = ∇× (cψ), (7)

where ∇ is the nabla operator,
which here denotes the divergence of
the vector field in three-dimensional

Cartesian coordinates. Since we are interested in a sphere, the scalar function
ψ is chosen in such a way it satisfies the wave equation in spherical polar
coordinates r, θ & ϕ, visualised in Fig. 2.9. Changing the arbitrary vector c
to the radius vector r results in:

M = ∇× (rψ). (8)

Now M is also a solution to the wave equation in spherical polar coordinates,
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2.3. Mie scattering theory

with the scalar wave equation in spherical polar coordinates being:

1

r2
∂

∂r
(r2

∂ψ

∂r
) +

1

r2sinθ

∂

∂θ
(sinθ

∂ψ

∂θ
) +

1

r2sinθ

∂2ψ

∂ϕ2
+ k2ψ = 0, (9)

which is used to determine the boundary conditions of our system, where k
is the wave vector: k2 = ω2ϵµ, with ω being the frequency, ϵ the complex
permittivity and µ the permeability

A straightforward way to determine the relation between an incident field
with its transmitted field through an object, is by multiplying it with the
amplitude scattering matrix and the wave function:(

E∥s
E⊥s

)
=
eik(r−z)

−ikr

(
S1 S3

S4 S2

)(
E∥i
E⊥i

)
, (10)

with E∥i & E⊥i
being the two polarisations of the incident field and E∥s & E⊥s

the two differently polarised scattered fields. The elements S1, S2, S3 & S4

of the amplitude scattering matrix depend on both the scattering angle θ
and the azimuthal angle ϕ. For spherical particles, the series expansion of the
scattered field is uniformly convergent, and can therefore be stopped after a
sufficient number of nc terms without the resulting error becoming too large.
The S3 & S4 elements are zero for scattering by spherical particles, with the
other elements S1 & S2 being:

S1 =
∑
n

2n+ 1

n(n+ 1)
(anπn + bnτn), (11)

S2 =
∑
n

2n+ 1

n(n+ 1)
(anτn + bnπn), (12)

where an & bn are the external field coefficients, depending on the size param-
eter x, calculated by Eq. (1), and complex refractive index m of the particle
[38]. Whereas πn & τn are angle-dependent functions:

πn =
P 1
n

sinθ
, τn =

dP 1
n

dθ
, (13)

where Pn denotes the Legendre polynomials. πn & τn can be computed by
upward recurrence from these relations:

πn =
2n− 1

n− 1
µπn−1 −

n

n− 1
πn−2, (14)

τn = nµπn − (n+ 1)πn−1, (15)
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2.3. Mie scattering theory

here µ = cosθ.
Using Eq. (10), for any incident field defined as an incoming vector focused

on a spherical particle, all the scattered vectors with their according field
intensities can be calculated. These intensity values are ratios compared to
the total incident field intensity, with most of the light not being scattered and
propagating in the forward direction (θ = 0o), giving this single propagating
vector the highest ratio value, visualised in Fig. 2.10. Since we know the
ratio of each scattered vector right after it is scattered by the particle using
the simulation, the far field wave function can be neglected and the scattered
and detection plane can be placed in the same field.

Figure 2.10: Schematic of scattering of a spherical wave by a single spherical
particle.

By supplying the simulation code with the complex refractive index
of polystyrene and the diameter of our particle, the PyMieScatt library1

calculates the S1 & S2 elements. By defining our hexagonal incident, and
subsequent detection grid, the ratio for each scattered vector is calculated,
for both polarisations of light. The results of these simulations are presented
and analysed in section 4.1.

1An open-source module for Python that contains functionality for solving the inverse
problem for complex m using extensive optical and physical properties as input, and
calculating regions where valid solutions may exist within the error bounds of laboratory
measurements [39].
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Experimental setup
The optical TMs are experimentally measured using a complex experimental
setup that has been build by dr. Jeroen Bosch [34]. Here, the setup is split
into three sub modules to describe all its functionalities. First the incident
fields are created, which are then focused onto the sample to create the
transmitted fields. Finally, these fields are detected using off-axis holography
after which the TM of our sample can be reconstructed.

3.1 Wavefront construction module

In the first part of the setup, the random light fields, that are projected onto
the sample, are created. These fields consist of many pixels, or individual
light rays, of which both the phase and amplitude are controlled. Besides, to
get the polarisation complete TM of our medium, the phase and amplitude
of the two different polarisations need to be modulated. For this, a digital
micromirror device (DMD) with a resolution of 1920x1200 mirrors, is used.
As depicted in Fig. 3.1, the light beam is widened to a beam with a diameter
of 18 mm using a fiber collimator (C1). Next, it is split into two orthogonal

Figure 3.1: Field synthesis module, figure taken from [34].

parallel orthogonal polarisation components by a polarising beam splitter
(PBS), which are reflected of two different regions on the DMD. Each DMD
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3.2. Imaging module

region generates a circular light field with a diameter of 636 mirrors of which
both the local phases and amplitudes are controlled. After reflection, the
fields are Fourier filtered using a 4f-configuration and an aperture to enhance
the accuracy of the modulated light field. Using the same configuration as for
the splitting of a single beam, the two orthogonal polarisation components
are recombined. The two configurations that split and recombine the two
polarisations of light are mounted at an angle of 45o, which gives a beam
with two diagonal polarisation components. A half-wave plate (λ/2) rotates
these two components such that the beam contains both a horizontal and a
vertical polarisation component.

3.2 Imaging module

The generated fields are projected onto the sample in the imaging module,
which is shown in Fig. 3.2. Here, the incident and transmitted fields are
focused and collected by two high numerical aperture objectives. These are
capable of collecting a large fraction of the power while achieving a high
spatial resolution. The fields are projected onto the sample using the 0.95NA,
63x objective, and collected by the 1.4NA, 63x oil immersion objective. Using
these magnifications, each individual mode field, that all combined make up
the complete hexagonal incident field, is mapped to a spot with the size of
the diffraction limit on the surface of the sample:

δ =
λ

2NA
. (16)

Fig. 3.2 shows both diffraction limited spot sizes as well as the maximum
incident and transmitted angles for the two numerical aperture objectives.
These objectives are mounted on piezo stages that move with the direction of
propagating the light beam. The glass cover slide, on which the sample is
deposited, is mounted on a SmarAct stage that moves in the two orthogonal
directions with respect to the propagation distance of the light beam. This
gives full control over the control area and field of view, which has a radius
of 23 µm.

To focus on the sample, temporally and spatially incoherent light is
generated by the DMD by creating 160 different random phase patterns,
which are projected sequentially onto the sample at 2000 fields per second.
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3.2. Imaging module

Figure 3.2: Imaging module, figure taken from [34].

Figure 3.3: Ideal focal distance of ob-
jective where each incident field (red
arrow) is focused onto the surface of a
spherical particle (blue sphere), which
is deposited on a glass cover slide (grey
rectangle).

By integrating over these patterns
on the camera (the exposure time is
set to 160/2000 = 0.08 seconds), the
focal distances of both objectives can
be found with an estimated accuracy
of 1 µm. This focusing procedure
works fine for big flat media that fill
the complete field of view, like the
ZnO layer depicted in Fig. 3.2. For
the small spherical polystyrene par-
ticles, the objectives should be fo-
cused onto the surface of the sphere
for the incident fields to pass through
the complete particle, like depicted
in Fig. 3.3. The smallness of these
particles causes most of the light to
just pass right next to it during the
focusing procedure, which results in
focusing onto the glass cover slide
rather than on the single particle itself.

To prepare our glass cover slides with single polystyrene particles de-
posited onto its surface, a single droplet of a solution polystyrene particles
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3.2. Imaging module

(FluoresbriteTM Carboxylate Microspheres from Polysciences, Inc.) was drop-
casted onto the glass surface. These glass cover slides (170 µm thick) have
been cleaned using a plasma cleaner, after which the droplet is left to evapo-
rate over time. The polystyrene particles stick to the glass, mostly in small
groups of two or three particles. After the water has evaporated, a single
particle in the center of the field of view needs to be found, this is done by
raster scanning the surface of the glass cover slide.

Figure 3.4: Field measurement module. Signal beam in red, reference beam
in blue and overlapping beams in pink. Figure taken from [34]
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3.3. Field measurement module

3.3 Field measurement module

The transmitted fields contain a spatial field profile that we want to detect.
For this, we analyse each polarisation separately, where we measure the local
phase and amplitude of each field with off-axis holography [40].

The signal beam overlaps with a reference beam after a 50:50 beam splitter
(BS), after which the light is split by a polarising beam splitter (PBS) into
both the horizontal and vertical polarisation component, see Fig. 3.4.

By interference effects between the signal beam (Es) with the slightly
off-axis reference beam (E0) on both CCD1 and CCD2 cameras, the complex
image of the signal beam can be reconstructed. The interference of the two
beams gives an intensity measured by the camera of:

I = |E0|2 + |Es(x, y)|2 + E0E
∗
s (x, y)e

iksinθx + E∗
0Es(x, y)e

−iksinθx. (17)

These terms correspond to the signals centered around the three spatial
frequency orders 0, +1 & -1: 0=(|E0| + |Es|), v = ksin(θ)

2π
and −v. If the

spatial frequency v is larger than the maximal spatial frequency in the signal
to reconstruct, the Fourier transform of the measured intensity pattern shows
three individual components, the 0, +1 and -1 orders, which do not overlap.
Here, the -1 order is directly proportional to the complex signal field Es,
shifted by the spatial frequency v. By centering around this order in the
Fourier domain, the inverse Fourier transform gives the complex image Es.

CCD3 measures the total transmitted intensity of the transmitted fields,
because the reference beam does not fall on this camera due to the large angle
it makes.
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Results
In this chapter, the results of both simulations and experimental analysis are
presented. It starts with the simulation data, and gives an explanation into
how and why these results were obtained. Next, the experimental data and
analysis results are shown. Again, in dept explanations and interpretations of
the results and analyses are provided.

4.1 Simulation results

For the simulation of a polarisation complete TM of a single polystyrene
sphere, the PyMieScatt library is used to calculate the S1 & S2 elements.
Using these elements, the ratio of scattered light into each specific transmitted
mode can be determined. For this, first the two vector fields of incoming

Figure 4.1: Hexagonal grid coordinates consisting of 91 individual modes, used
for defining vector field of incoming and transmitted modes. Spacing between
the modes is chosen such that the overlap integral between neighbouring
modes is almost zero.
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4.1. Simulation results

and transmitted modes are needed. However, since these two fields are the
same, we can copy the incoming vector field to get the transmitted vector
field. By making a hexagonal grid, as projected in Fig. 4.1, with the spacing
between the modes set to such a value the overlap integral between the
neighbouring modes is almost zero, all the incoming vectors onto the particle
can be determined.

Using this vector field, the angles of the incoming and transmitted modes
can be determined, which are some of the parameters used to calculate the
S1 & S2 elements. The complex refractive index m = n+ ik of polystyrene
can be calculated by:

n2 − 1 =
1.4435λ2

λ2 − 0.020216
, (18)

where λ is the wavelength of the light used in our experimental setup. Using
this wavelength (λ = 771 nm), m is set to 1.579 + 0, because there is no
absorption. Finally, the diameter of the particle is set to 1.58 µm, which
results in a size parameter x of 6.438, calculated using Eq. (1).

(a) (b)

Figure 4.2: (a) Simulated polarisation complete TM elements, measured with
a hexagonal grid of 91 individual modes, of a single polystyrene sphere with
diameter of 1.58 µm, and (b) its normalisation (each sub 91x91 matrix is
normalised individually).

The resulting simulated TM is shown in Fig. 4.2 (a). Here, the four
sub-matrices can clearly be distinguished, because these small particles barely
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4.1. Simulation results

change the polarisation of the incident light. This makes the THV & TV H

cross-polarisation sub-matrices almost completely dark. The side diagonals,
caused by overlap of a detected mode with some neighbouring modes are also
visible in this result. However, this TM also tells us that these small spherical
particles, with a diameter of 1.58 µm, barely scatter any light, since most of
the light just propagates in the forward direction. This makes the central
diagonal of the TM really intense, but also because of this, other details fade
out.

To overcome this problem, which mainly happens in the cross-polarisation
sub-matrices, each sub-matrix is normalised individually, which results in
the TM in Fig. 4.2 (b). Normalising the complete TM would make the
central diagonal even more bright than before. In the normalised TM, more
details of our spherical particles light scattering behaviour can be extracted
from the cross-polarisation sub-matrices. Although not perfectly spherical,
many rectangular, or oval or a combination of these two, shapes can be made
out. Combined with the black diagonal in these sub-matrices, we know that
light propagating in the forward direction through a polystyrene sphere does
not change its polarisation component. But when the light is scattered by
the particle, a small portion of this scattered light changes its polarisation
component.

(a) (b)

Figure 4.3: (a) Simulated polarisation complete TM elements, measured with
a hexagonal grid of 919 individual modes, of a single polystyrene sphere with
diameter of 1.58 µm. (b) Normalised TM of (a) (each sub 919x919 matrix is
normalised individually).
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4.1. Simulation results

If the vector field is increased from 91 modes to 919 modes, besides
the TM becoming much bigger, the biggest scattered modes show more
polarisation shifts than the smaller scattered modes, as you see Fig. 4.3 (a).
After normalisation of the individual sub-matrices (Fig. 4.3 (b)), the same
rectangular/ oval shapes are present in the cross-polarisation sub-matrices.
Based on these results we conclude that for particles this small (1.58 µm in
diameter), measuring the TM with an incident field containing more than 91
incident modes does not result in more particle scattering information than if
an incident field with 91 modes is used.

To be able to compare our simulation results with our experimental
results more faithfully, two extra TM simulations were performed. For these
simulations all the parameters were exactly the same as for the last simulations,
with the incident grid containing 91 modes and increasing the polystyrene
sphere size. These new particle diameters were 5 µm & 10 µm, experimental
data of these polystyrene particle sizes will be shown in Fig. 4.2, simulation
results are shown in Fig. 4.4.

The first noticeable difference with the previous simulations is the decrease
in intensity of the central diagonal. This is to be expected, because our
particles are bigger. The light has to travel a longer distance to get to the
other side of the particle, thereby increasing the chance of light being scattered
in different directions than the initial propagation distance.

The two cross-polarisation sub-matrices also differ from each other. For
the 10 µm particle, the rectangular/ oval shapes in these sub-matrices are
completely gone and a whole new shape arises. These new shapes even
show up at low scattering angles, indicating that after travelling long enough
through the particle without being scattered into high scattering angles, the
polarisation component of the light will change.
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(a) (b)

(c) (d)

Figure 4.4: Simulated polarisation complete TM elements, measured with
a hexagonal grid of 91 individual modes, of a single polystyrene sphere
with diameter of (a) 5 µm and (c) 10 µm. (b) & (d): Normalised TMs of
respectively (a) & (c) (each sub 91x91 matrix is normalised individually).
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4.2 Experimental results

When experimentally measuring the TMs of our samples, we need to take
into account that our samples are deposited on a glass cover slide. Although
the glass should not scatter the light, measuring the TM of our glass gives us
some insights on the fidelity of our setup alignment. If the TM of our glass
shows no sign of polarisation changed scattered light, we conclude the setup
is aligned properly; the two numerical aperture objectives are in focus and
the glass is perpendicular to the optical axis. Besides, if the glass is not as
clean as needed, some aberrations will show up in the glass TM.

An example of such an experimentally measured TM of our glass cover
slide is shown in Fig. 4.5 (a). Notice the intense diagonal and much less
intense side diagonals, these show the minimal overlap of neighbouring modes.
Taking a closer look at the diagonal elements tells us that most of the light is
indeed propagating in the forward direction through the glass and not being
scattered (Fig. 4.5 (b)). Although these elements should ideally be 1.0 or
close to 1.0, as shown in Fig. 2.3 (b), our experimental achieved elements
around 0.8 give us a pretty nice non-scattering behaviour of the glass cover
slides used in our experiments.

(a) (b)

Figure 4.5: (a) Polarisation complete TM of glass cover slide. (b) Histogram
of diagonal elements of TM of glass cover slide.
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(a) (b)

(c)

Figure 4.6: Polarisation complete TMs of single polystyrene spheres with
diameters of (a) 1.58 µm, (b) 5 µm & (c) 10 µm.

Experimentally measured polarisation complete TMs for all three single
polystyrene spheres with different sizes are presented in Fig. 4.6. These TMs
do not look like the simulated TMs, except maybe for the intense diagonal,
but rather like the glass TM. This can be explained in several different ways.

Firstly, we focus on a raw data image of the field of view containing a
single polystyrene sphere with a diameter of 1.58 µm (Fig. 4.7), used during
the measurement of Fig. 4.6 (a). The single particle is, compared to the field
of view, really small. This means that most of the light just passes next to
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4.2. Experimental results

Figure 4.7: Raw data image of field of view with single polystyrene sphere
with diameter of 1.58 µm.

the particle without interacting with it. Besides, the scattered modes created
by the particle do not fill up the complete field of view, but rather only a
small circular area in the center around the particle.

A solution to focus on these scattered modes while getting rid of the
unscattered light, is by filtering in real space. By selecting a small circular
area, around the center of the field of view image, all the scattered light vectors
are selected while the unscattered light vectors get deleted. A Gaussian
distribution is added over this area, just like the initial raw data image
captured intensity is a Gaussian distribution. Unfortunately this increases
noise and results in more overlap of the transmitted vectors in the detection
field. Thereby broadening the side-diagonals in the measured TMs, which
in turn lose the information they contained. The smaller the chosen circular
area is, the bigger the noise and resulting side diagonals will appear in the
TM.

Taking a different point of view and looking at both polarisation complete
experimentally resolved TMs of glass and single polystyrene particles, one
could say they look almost identical. This is of course not true, since we know
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a single scattering sphere was present during the experimental analysis, but
we can use their similar characteristics to our advantage. Two matrices A &
B, with a phase shift difference, relate to each other by:

A ≈ Beiϕ, (19)

with ϕ ≈ argmin(||A−B||). Rewriting Eq. (19) gives:

ϕ ≈ Arg(tr(B+A)), (20)

where B+ is the conjugate transpose of matrix B.
By calculating the phase shift ϕ between two matrices and correcting

them, one can subtract them from one another to get rid of the identical
information between the two matrices. This is done for all single polystyrene
experimentally measured polarisation complete TMs of Fig. 4.6. By first
normalising these TMs and the measured glass TMs of the glass cover slide
used on which the particle was deposited, the phase shift between the two
could be determined using Eq. (20). The resulting normalised & corrected
TMs are shown in Fig. 4.8.

For both the 1.58 µm & 5 µm diameter polystyrene TMs (Fig. 4.8 (a &
b)), this did not bring forth any new details that relate to our single scattering
particles. However, this did happen for the 10 µm polystyrene sphere, which
is shown in Fig. 4.8 (c). The cross-polarisation sub-matrices show a spherical
shape, in between the side diagonals. This correlates nicely with the simulated
TMs in section 4.1, although the shapes are not comparable. Noticeable is
the brick wall pattern present in all four sub-matrices. Where all diagonals
and side-diagonals are continuous, there are alternating cross diagonals that
stand out and create this brick wall pattern.

This pattern did not show up in the simulated TMs, and is something that
has not been documented before. However, by taking a close look at both
the TM of the glass cover slide of the 1.58 µm polystyrene experiment and
the TM of the particle itself (Fig. 4.5 (a) & Fig. 4.6 (a)), these same cross
diagonals might be present in the cross-polarisation sub-matrices. Normalising
these matrices just makes everything dark except the central diagonal, but
with some imagination the brick wall pattern is visible to some extent in the
cross-polarisation sub-matrices.
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(a) (b)

(c)

Figure 4.8: Normalised and for glass corrected TMs of single polystyrene
spheres with diameters (a) 1.58 µm, (b) 5 µm & (c) 10 µm.

This is even more clear in the reflection matrices. Since the setup not
only captures all the transmitted modes, but also the reflected modes, we
can calculate the reflection matrix. Both the reflection matrices of the glass
cover slides and single polystyrene particles (Fig. 4.9) show this brick wall
pattern. The cross-polarisation sub-matrices once again get more intense
when a particle is present, whereas with glass there is no polarisation shift of
the light and all the sub-matrices have the same intensity.
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(a) (b)

Figure 4.9: Reflection matrix of (a) glass cover slide and (b) single polystyrene
sphere with diameter of 1.58 µm.

4.3 Data analysis

Besides these experimentally retrieved polarisation complete TMs of single
polystyrene spheres, the raw images used to calculate the matrices can give
some new insights. By using both Eq. (17) and off-axis holography theory, the
amplitude and phase patterns of a single field pattern can be reconstructed.
By first taking the Fourier transform of an intensity pattern, such as the raw
data image in Fig. 4.7, one ends up with the pattern shown in Fig. 4.10 (a).
Here, the three orders do not overlap. By filtering the out the 0 and the +1
orders, and re-centering around the -1 order, the inverse Fourier transform of
the signal in Fig. 4.10 (b) can give either a reconstruction of the amplitude
of the field or the phase of the field.

In the resulting amplitude plot, presented in Fig. 4.10 (c), the single
polystyrene sphere is visible. This is to be expected, since it was also present
in the initial intensity pattern captured by the camera. The reconstruction of
the phase pattern however does not have this spherical particle in the center
of its plot (Fig. 4.10 (d)). This indicates that light passing through a single
polystyrene sphere, of 1.58 µm in diameter, is not delayed or slowed down by
scattering events. This would mean a phase shifted circular shape should be
present in the center of the reconstructed phase plot, which we do not have.

Since the polystyrene spheres with a diameter of 10 µm were the only size
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(a) (b)

(c) (d)

Figure 4.10: (a) Complete Fourier transform of intensity pattern of Fig. 4.7.
(b) Fourier transform filtered and shifted around -1 order. Amplitude (c) &
phase (d) plots of single polystyrene particle with diameter of 1.58 µm.

to show up in the experimentally measured polarisation complete TMs, we
now look at their amplitude and phase plots (Fig. 4.11).

The amplitude plot clearly shows that a big single particle is present in
our field of view, which blocks and scatters a lot of the light. The particle
also shows up in the phase plot, where the centre of the sphere has phase
shifted the transmitted light for half a wavelength. The concentric rings in
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(a) (b)

Figure 4.11: (a) Amplitude & (b) phase plots of single polystyrene particle
with diameter of 10 µm.

the amplitude plot indicate the particle is not perfectly in focus.
This is even clearer in the raw data image of our polystyrene sphere with

a diameter of 5 µm, as visualised in Fig. 4.12 (a). The big concentric rings
almost fill the complete field of view, indicating the particle is completely out
of focus. Here, the picture is nothing more than a time stamp visualising the
intensity of the propagating transmitted field at that time, in this case the
position where the camera is placed. In the Fourier transform, the picture is
transformed to the frequency domain. By multiplying the Fourier transform
with a phase grid, the phases of the frequencies get changed. Thereby altering
the position where the intensity field is captured.

After inversing the phase-changed Fourier transform, both the amplitude
and phase plots can be retrieved, which are now representations of images
taken at a different focus point. By doing this with different phase grids, and
comparing the resulting amplitude and phase plots, the ideal amplitude and
phase plots, which are in focus, can be reconstructed. Fig. 4.12 (b) & (d)
show these optimal amplitude and phase plots, reconstructed from the initial
raw data image in Fig. 4.12 (a).

In the amplitude plot, light is being blocked or scattered by one or two
particles. It is not clear whether there is a single particle in our field of view,
or if there are two particles packed together. However, after looking at the
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(a)

(b) (c)

Figure 4.12: (a) Raw data image of field of view with single polystyrene sphere
with diameter of 5 µm. (b) Amplitude & (c) phase plots of single polystyrene
particle with diameter of 5 µm, after Fourier transform was shifted.

amplitude plot of the polystyrene particles of 1.58 µm in diameter (Fig. 4.10
(c)) and 10 µm in diameter (Fig. 4.11 (a)), we know we should be able to see
one clear spherical shape that is less intense than its surroundings. Here we
can distinguish two such shapes, more or less overlapping, meaning for this
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measurement there were two polystyrene spheres in our field of view. In the
phase plot they also show up, albeit minimally.
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Discussion
As pointed out by the results of the polystyrene spheres of 5 µm in diameter,
the focusing onto the surface of these spheres is not easy. In fact, the focusing
procedure that has been used in this setup before, and also during this
research, works better for big & flat surfaces. Even then there is an estimated
accuracy of 1 µm. For all the experimental results shown in both sections
4.2 & 4.3, the setup was focused on the surface of the glass cover slide. This
is because, after focusing on a clean part of the glass where no particles are
present, the position of the objectives was not changed when we focused on a
part of the glass where a particle was present. Since moving these objectives
would result in a more out of focus pattern during the focusing procedure.

Besides the particles not being in the exact focal point, to get the absolute
best results, they need to be in the exact centre of the field of view. Only
in that position, all the incoming modes will hit the surface of the particles
such that the scattering results can be compared to the simulation results.
Since the alignment of the glass cover slide, with the deposited particles, is
done by hand, placing the particles in the exact centre will never be as exact
as it should be.

It should also be mentioned that the immersion oil moved over time,
thereby changing the focus of both the numerical aperture objectives during
experiments. This only happened after a new sample was mounted in the
setup, after which a droplet of oil was placed in between the glass and the
high numerical aperture objective (NA = 1.4). For a few days, sometimes
maybe a week, the focus points changed every day slightly due to the oil
movement (∼ 1 µm/ day). Until eventually the oil reached its final steady
state and stayed constant.

Besides these minor issues and difficulties, the results are looking promising.
Especially for the biggest polystyrene particle that we analysed (10 µm in
diameter), the TM is comparable to the simulated TM. The shapes in the
cross-polarisation sub-matrices are not exactly identical, but they do show
up in the same areas. The brick-wall pattern is probably due to some minor
overlap between neighbouring modes in the detection fields that we cannot
cancel out completely. They show up in both the experimentally measured
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TMs of our single polystyrene particles and our glass cover slides. Besides,
they are particularly obvious in the reflection matrices of both the glass cover
slide and the single polystyrene particles.

For future research into transmission of small spherical particles, a better
way of focusing onto these particles is needed. The out of focus 5 µm in
diameter polystyrene double particles did not show up in our experimental
measured TM, but later we proved that they were indeed detected by the
setup. A new way of focusing this experimental setup would thus most
probably visualise the 5 µm sized polystyrene particles, and maybe even the
1.58 µm diameter spheres. But for this, the estimated error of the setup
should also be decreased, because an estimated error of 1 µm is too big for
particles that small.
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Conclusion
All in all, the TMs of single polystyrene particles with a diameter of 10 µm
were successfully measured during this research. Although the smaller particles
at first did not show up in our matrices, after some analysis, the scattering
behaviour of these particles was indeed observed in the phase and amplitude
plots of these particles. With a better focusing procedure, it will be possible
to analyse particles as small as 5 µm in diameter in the future. However,
for particles of 1.58 µm in diameter, or even ∼ 170 nm such as the 3D
icosahedral quasicrystals, even more analysis steps or a different experimental
setup are needed.
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