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Abstract
I will present a novel way to model the hybrid Unit Commitment (UC) and Economic Dispatch

(ED) problem as a variation of an interior point problem, which allows the problem to be tackled
by common local-search metaheuristics. On top of that, my state representation is highly intuitive,
adaptable and can accept any cost function and many constraints with relative ease. I will also
compare my findings with the pre-existing literature and I will show that this method can find an
improvement of a known optimum for at least one well known instance of the hybrid UC/ED problem.
I will also show that this method exhibits interesting search behaviour which can be preferable in
networks with renewable energy sources and various other robustness concerns.
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1 Introduction
In today’s world having a reliable supply of electricity has become a vital part of modern life, because
large parts of society will quickly grind to a halt without it. We are facing a reality in which broadly
applicable methods of energy storage are not yet available. Currently the generation of electricity is one
of the main environmental polluters, most renewable energy producers are unpredictable, energy distri-
bution networks place significant technical constraints on the routing of electrical power, and economic
factors cannot be ignored. So it becomes vitally important to optimize the production scheduling of the
generation of electrical power. The unit commitment (UC) and economic dispatch (ED) problems are
concerned with finding methods to optimize the aforementioned production schedules.

As of yet, creating these schedules is hard and no general or easily adaptable methods exist for
computing them. The creation of said schedules is further complicated by the fact that energy networks
have different topologies, economic regimes and technical properties. These are the reasons that most
methods for optimizing the UC problem for one network, are usually not easily portable to different
networks, or to different network or generator operators.

Most solutions in the currently available literature focus on approaches based on variations of linear
programming algorithms. This means that the instances of the problem, which often contain non-lineair
objective functions, have to be approximated by a linear approximation of their objective functions.
Methods based on local search do not have this linearity requirement, because such methods can be used
to optimize any cost function. This flexibility of the local search method comes with the downside that
it requires careful modeling of the problem under consideration. It is in this modeling phase where most
previous attempts have been generally unsuccessful or only have succeeded for certain specific instances
of the unit commitment problem.

Overall we think that the use of local search methods with regard to the Unit Commitment problem
for electrical power generation, has not yet received the amount of scientific scrutiny it deserves.

Therefore, the purpose of this master thesis is to explore the feasibility of local-search methods for the
unit-commitment problem with integrated dispatch. To this end, we show that we can cast the problem
as an instance of a local search problem which bears some similarities to an interior point problem, which
then has to be optimized through common meta-heuristics.

2 Overview of the Unit Commitment and Economic Dispatch
problems

The unit commitment problem is typically concerned with finding a production schedule for a given
power plant or energy distribution network, such that the energy demands can be met, and the various
constraints imposed by the technical and operational limitations of the generators and the distribution
network are respected. Typically this means that we have to compute a schedule for production, dispatch
and optionally for transmission as well.

There are two common ways to look at these problems. The first is a classical way in which the
problem is subdivided into a part in which the commitment status of the generators is computed sepa-
rately from the dispatch of the generators. In the other (hybrid) approach, both the dispatch and the
commitment schedules are calculated simultaneously.

While in this document we will only be considering the integrated approach which combines the
calculation of the commitment and dispatch schedules into one algorithm, it is still required to have a
basic understanding of the isolated forms of both problems.
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2.1 Classical approach to Unit Commitment
The classical approach to compute a schedule for the unit commitment problem is only concerned with
computing whether or not a specific generator or unit1 (gi) is on or off at a certain point (tj) in time.
This is usually represented as a binary vector in which a 0 means that gi is off at tj and a 1 means that
gi is on at tj .

This in turn means that a commitment (on/off) schedule that provides a solution to the classical
version of the Unit Commitment problem with n generators with a length of m time steps, is a binary
n×m matrix in which a 0 at position (i, j) means that generator i is off at time j and that a 1 at position
(i, j) means that generator i is on at time j.

Table 1: Example classical Unit Commitment schedule for GA10 instance (part 1)
Time 1 2 3 4 5 6 7 8 9 10 11 12
Unit 1 1 1 1 1 1 1 1 1 1 1 1 0
Unit 2 1 1 1 1 1 1 1 1 0 0 0 0
Unit 3 0 0 0 0 0 1 1 1 1 1 1 1
Unit 4 1 1 1 1 1 0 0 0 0 0 1 1
Unit 5 0 0 1 1 1 1 1 1 1 1 1 1
Unit 6 1 1 1 0 0 0 1 1 1 0 0 0
Unit 7 0 0 0 0 0 0 1 1 1 1 1 0
Unit 8 0 1 0 1 0 1 0 1 0 1 0 1
Unit 9 0 0 0 0 0 0 1 0 1 1 1 0
Unit 10 0 0 0 0 0 1 1 0 1 1 0 1

Table 2: Example classical Unit Commitment schedule for GA10 instance (part 2)
Time 13 14 15 16 17 18 19 20 21 22 23 24
Unit 1 0 0 0 0 0 0 0 1 1 1 1 1
Unit 2 0 0 0 0 1 1 1 1 1 1 1 1
Unit 3 0 0 0 0 0 1 1 1 1 1 1 1
Unit 4 1 1 1 0 0 0 0 0 1 1 1 1
Unit 5 1 1 0 0 0 0 0 0 0 0 0 0
Unit 6 1 1 1 1 1 1 0 0 0 0 0 0
Unit 7 0 0 1 1 1 0 0 0 1 1 1 0
Unit 8 1 1 0 0 1 1 1 1 1 0 0 0
Unit 9 0 0 0 1 0 1 0 1 1 1 1 0
Unit 10 0 0 1 1 1 0 1 1 1 0 1 0

The demands are usually given in the form of an integer- or real-valued vector of length m in which
the value at position j denotes the demand of energy required at time tj .

However, the classical Unit Commitment problem does not concern itself with assigning concrete
levels of power output to each generator at each timestep, but it does concern itself with generating an
on/off schedule in which energy demands are met while the constraints implied by all the generation and
distribution equipment are respected.

This usually does simplify the study of the problem, but it could also be seen as an obstacle to finding
good or better solutions, because some constraints which must be satisfied in a final solution are hidden
from the algorithm if one only considers this formulation and representation.

However, for certain classes of algorithms, like genetic algorithms in Kazarlis [7] for example, this
representation can be very useful.

1Note that the terms unit and generator are used interchangeably throughout this document, as is often seen in other
literature on this problem.
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2.2 Economic dispatch problem
Once a commitment schedule has been given or found, the economic dispatch problem has to be solved
for the given commitment schedule if we want to obtain a feasible production schedule. The economic
dispatch problem is concerned with minimizing the cost of said energy production production, while
meeting the energy demands specified as stated in equation 1.

minimize
m∑
i=1

n∑
j=1

Ci(Pi,j) + SUC(Pi,j) + SDC(Pi,j) (1)

Subject to:
m∑
i=1

Pi,j = Dj ∀j ∈ 1..n (2)

Where Ci is the cost per unit of power of running generator gi, SUC(Pi,j) is a function which defines
the startup cost of generator gi at time tj , SDC(Pi,j) is a function which defines the shutdown cost of
generator gi at time tj , Pi,j is the power output of gi at time j , and Dj is the energy demand at time tj .

2.3 Transmission
Sometimes we have instances of the UC-problem in which we also need to consider the network topology
and/or have to compute a transmission schedule for the network. The transmission schedule dictates
how the generated power should flow through the network of a network operator. This can again be
formulated as a matrix in which at position (k, j) we denote the state of a switch k (sk) in the network
at time t (tj).

We also have to make sure that our production schedule meets the energy demands which are specified
beforehand. In the case where we do not have to consider the network topology, the demands can be
modeled as a vector in which d(tj) denotes the total amount of power demanded at tj . If we do have
to consider the network topology as well, a simple vector does not suffice anymore. In this case our
demands will be given in the form of a matrix in which each (k, j) position denotes the power demands
d(nk, tj) at network node nk ∈ 1..l, at time tj .

An example can be seen in equation 3.

Demands =


d(n1, t1) d(n1, t2) · · · d(n1, tn)
d(n2, t1) d(n2, t2) · · · d(n2, tn)

...
...

. . .
...

d(nk, t1) d(nk, t2) · · · d(nl, tn)

 (3)

I have decided to leave experiments involving network topologies out of scope because of the very
instance-specific implementations required and the increased workload this would cause. However, it’s
important to note that the way the problem is formulated does allow for the integration of network
constraints with relative ease.

2.4 Integrated problem
Sometimes it’s useful to combine the unit commitment and economic dispatch problem into a variant of
the problem in which the on/off schedule and the power dispatch schedule are calculated simultaneously.
This makes sense, because we are often not just interested in obtaining an on/off schedule, but we also
need a detailed production schedule as well. Yet another reason to integrate both problems, is that
local-search based approaches often require complicated additional procedures to ensure that the on/off
schedule actually leads to a feasible production schedule.

The first thing we have to do to solve the UC-problem with an integrated approach, is to define a
representation of a production schedule. In a production schedule, we need to know how much energy
has to be produced by each generator g at time each timestep t. This means that a production schedule
takes the form of a 2-dimensional matrix in which at position (i, j) we denote the outcome of p(gi, tj),
which is the amount of power that generator i (gi) needs to produce at time j (tj). An example can be
seen in equation 4.
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Schedule =


p(g1, t1) p(g1, t2) · · · p(g1, tn)
p(g2, t1) p(g2, t2) · · · p(g2, tn)

...
...

. . .
...

p(gm, t1) p(gm, t2) · · · p(gm, tn)

 (4)

Note that, once a production schedule has been found, the corresponding on/off schedule can easily
be found as well, by defining that whenever p(gi, tj) > 0 then gi is on at tj and that when p(gi, tj) = 0
the generator gi is off at tj . This on/off schedule can then serve as a solution to the Unit Commitment
problem.

2.5 Objectives
If we set out to calculate a suitable schedule for the unit commitment problem, we typically have one or
more objectives we wish to accomplish. We wish to accomplish those objectives by finding a schedule
which respects all the operational, technical and demand constraints imposed by the equipment which
makes up the generation and distribution-network.

The objectives we want to optimize are typically one or more of the following:

• Maximize total profits.

• Minimize total operating costs.

• Minimize fuel costs.

• Minimize power shortages.

• Minimize environmental pollution.

2.6 Problem constraints
Some of the technical constraints we have to consider for generation are:

• Minimum uptime: The minimum time a generator has to be turned on before it can be turned off
again.

• Minimum downtime: The minimum amount of time a generator has to be off before it can be
turned on again.

• The maximum amount of power a generator can output (Pmax).

• The minimum amount of power a generator can output without having to shut down (Pmin).

• The maximum amount of power a generator can output when it is turned on (Pstartup).

• The maximum amount of power a generator can output right before it can be turned off (Pshutdown).

• Ramp up limit: The maximum amount of power by which the output of a generator can be increased
between two subsequent time steps.

• Ramp down limit: The maximum amount of power by which the output of a generator can be
decreased between two subsequent timesteps.

• Demand constraints which place a requirement on the schedule that at least a certain amount of
power has to be available at a certain network node at time tj .

This list of constraints can grow if additional requirements need to be modeled as well. Examples of
potential extra constraints are the capacity constraints imposed by the cables when we need to consider
the routing of power through the network. Renewables and energy storage systems, like batteries or
pumped-hydroelectrical storage systems can complicate things even further and will require the intro-
duction of additional constraints.
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3 Related work
At least three literature surveys have been done on the topic of unit commitment by Padhy[13], Savaran[15]
and Ackooij[19].

Padhy[13] provides an overview for the standard UC-problem. In it, we can find a basic formulation
of the objectives, which is to either minimize operational cost or to maximize profits, and the various
constraints at play in standard UC problems. Padhy[13] also notes that while UC for a single area
(without a transmission network) has been extensively studied, the variants dealing with multiple areas
(nodes) have not received enough attention yet. Padhy[13] does also note that latter variants of UC
have to be considered combined with the viable economic dispatch problem, because of the constraints
the transmission lines induce on the generated schedule. Furthermore, Padhy[13] lists an overview of
studies done using algorithms based on exhaustive enumeration, priority listing, dynamic programming,
(integer) linear programming, branch and bound, Lagrangian relaxation, interior point optimization,
tabu-search, simulated annealing, expert systems, fuzzy systems, artificial neural networks, genetic algo-
rithms, evolutionairy programming, ant colony search algorithms and hybrid models.

Padhy[13] notes that all listed techniques have their own drawbacks and advantages. Exhaustive
enumeration is capable of finding optimal solutions, but it is not suitable for larger instances of the
UC-problem.

Priority listing is a simple method which orders all generators based on lowest operational cost
characteristics and then turns them on, based on lowest operational cost or some other criterion that
leads to a certain ordering on the priority-list. While this might work for certain generator operators, it
doesn’t necessarily work for others.

Methods based on dynamic programming are capable of solving UC-problems of a variety of sizes,
but treat time dependent startup costs, minimum uptime and minimum downtime constraints in a
suboptimal way.

Methods based on branch and bound, (integer) lineair programming and Lagrangian relaxation,
generally perform well, but are mathematically heavy and often require complex solvers. They also
require that the cost-functions, which are often quadratic, are piecewise linearly approximated, implying
that the solutions found are inherently suboptimal. However, in practice, these approximations are quite
reasonable.

Methods based on simulated annealing are generally less mathematically complex and can be suitable
for solving for UC, but generally require more CPU-time.

Savaran[15] adds a series of objectives which can be used if we have to solve UC-problems in different
economic environments. Examples of these environments are stochastic environments, profit-, time-
and emissions-based economic environments. However, most of the studies listed in their survey are not
based on local search methods and rely on other methods like, for example, (integer) lineair programming,
instead.

Ackooij[19] has provided the biggest literature survey and mostly focuses on UC under uncertainty
(UUC). Uncertainty here can generally refer to two types of uncertainty. The first type are faults
which can occur in the network. In these cases, objectives like minimization of non-delivered energy
and maximization of network robustness can be optimized. The second type of uncertainty pertains
to the uncertainty imposed by the demand forecasts and/or the production figures of renewable energy
sources like solar, wind and run-of-river units. Ackooij[19] also discusses the aspects of energy storage
systems (like pumping hydros for example) and transmission switching. However, the number of papers
listed by Ackooij[19] which are concerned with local search approaches, is very small and only one
of these listed papers ([18]) takes the ramping constraints into account. Their method consists of a
simulated annealing algorithm which relies on changing random states of randomly chosen generators
for its candidate generation.

Regarding algorithms based on local search:
Zhuang and Galiana[22] also use a simulated annealing algorithm to solve UC. They partition the set

of constraints into “easy” and “difficult” constraints, where difficult constraints are penalized and easy
constraints are not. What is remarkable about their algorithm, is that they model the generation limits,
minimum up- and downtimes as “easy” constraints, while they model power balance and reserve and crew
constraints as difficult constraints which are penalized. Crew constraints are constraints concerning the
staff that needs to operate the power plant, while the reserve constraints are constraints with relation to
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the amount of spinning reserve that has to be available. Their neighbourhood is calculated by changing
the commitment of a random generator gi at a random point in time tj . They do have some cost
improvements, but their simulated annealing method also requires a considerable amount of additional
iterations and running time.

Matanwy et al[9] also randomly select a generator gi at time tj and detail an elaborate strategy to
turn gi off at tj if it is on, and on if it is off, while taking great care to ensure that all constraints are still
satisfied. Their approach is quite different from our current approach, because they generate a random
unit at a random instant and then compute whether or not all constraints in the problem are still valid.
Our proposed approach does not generate units randomly and stores as many constraints as possible
into a data-structure in such a way that checking the validity of constraints becomes a fast operation.
Yet Matanwy et al’s[9] approach bears the most similarities with our proposed approach.

In a later paper Matanwy et al.[10] decribe a simulated annealing algorithm which specifically takes
the long term hydro scheduling into account. This problem specifically focuses on a system with four
hydro-systems that spill their water into each other’s reservoir in a hierarchical way, such that the
production of a generator upstream also directly influences the production of a unit downstream.

Mori[11] proposes a method based on tabu-search. The idea is that the number of neighbouring
solution candidates is narrowed down by integrating the restrictions posed by the priority list of units
into the tabu-search. They do this in such a way that, for a given load-curve, only the generation units
that are direct neighbours of the given load-curve on the priority list, are considered in the tabu-search.

Lin et al[8] provide a hybrid algorithm based on tabu-search with flexible memory and evolutionary
programming to solve just the economic dispatch problem in a power distribution network.

Rajan[4] describes a neural based tabu-search algorithm for solving unit commitment problems in
which a neural network is used to generate trial solutions for the tabu-search. However, this algorithm
requires an extensive repair mechanism to ensure that all constraints are met.

Annakage et al.[1] demonstrate that the running time of simulated annealing algorithms can be
somewhat lowered by using a variant of the simulated annealing algorithm that uses speculative execution
techniques to evaluate trial solutions in parallel.

Borghetti et al.[3] compare tabu-search and Lagrangian heuristics on a few realistic instances of
the optimal short-term unit commitment problem. They highlight the strong and weak points of each
technique. They find that both Lagrangian relaxation and tabu-search both usually find solutions which
differ less than 1% of their total costs. They notice that Lagrangian relaxation is more suitable for
handling instances with a larger number of generators, while for smaller instances, a straightforward
implementation of tabu-search is able to find equally good results in less than a minute. They argue that
further research into a method that integrates both algorithms is therefore justified.

Victore and Jeyakumar [20] demonstrate a hybrid tabu-search algorithm which can be used for both
cost based (CBUC) and profit based (PBUC) instances of the unit commitment problem. In the CBUC
variant of the problem the focus is solely on reducing the costs of generation, while in the PBUC problem,
they also take economic factors, like the price at which the power can be sold, into consideration. They
use a particle swarm optimization method to keep a population of feasible solutions and it also guides
the selection of trial candidates (neighbours) that the tabu-search will evaluate first.

Simmopoulos et al.[18] present an algorithm based on tabu-search which generates trial solutions
by a procedure which uses three different mechanisms to create pertubations of the current schedule
in an alternating way. The first mechanism changes the states of a randomly chosen generator over a
given time interval. The second mechanism changes the states of all generators for a randomly chosen
hour. The third mechanism uses a complicated series of steps to ensure that feasible solutions are always
obtained.

In a different paper by Simmopoulos et al.[17] an algorithm based on simulated annealing is presented.
The algorithm deals with the reliability constraints by penalizing solutions in which the reliability con-
straints are not met.

Kazarlis et al.[7] present a genetic algorithm to solve the unit commitment problem. They also
provide a detailed description of a relatively small (10 units, 24 hours) but realistic instance of the unit
commitment problem, along with the costs of the best solutions they have found. This instance is used
in some of the papers mentioned above as a benchmark for their algorithms. It is therefore quite useful
as a starting point.

Kun-Yuan Huang et al.[5] provide an approach based on constraint logic programming to solve the
unit commitment problem. Although this is also not directly relevant for a local search based solution,
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this paper provides a detailed instance of a unit commitment problem that is slightly larger (38 units
and 24 hours) than the instance provided by Kazarlis et al.[7].

Other papers which are less relevant for local search, but nevertheless interesting because they con-
tain instances and/or benchmarking data for which instances are available at the time of writing are:
Silbernagl et al.[16], Park et al. [14], Frangioni et al.[2] and Orero and Irving[12].

Finally there is the elaborate Dispa-SET study from the EU Joint Research Centre[6] which provides
some complicated real-world instances and much more.

Park et al. [14] and Frangioni et al.[2] solve a 24-hour UC problem with 140 and 200 generators
respectively with relative success. Of these two, only Park et al. [14] provide us with the score of the
best solution they have found and therefore contains the largest “solved” solution against which we can
benchmark. The other instances (with the exception of Dispa-SET[6]) all contain problems of smaller
sizes, with various combinations of constraints. The Dispa-SET instances are much larger, but also much
harder to compare.

An overview of the different instances and their sizes is included in Table 3. Machine readable
definitions in .uc format of the instances in table 3 were kindly provided by Rogier Hans Wuijts who is
the author of the .uc files and has used a number of these same instances to study dynamic programming
algorithms for the Single-Unit Commitment problem with ramping limits in [21]. An overview of the
different properties of these machine readable instances is shown in table 3.

Dataset Generators Timesteps State variables Additional Properties
Kazarlis et. al. [7] 10 24 240 Global optimum: 565825
Huang et. al. [5] 38 24 912

Orero and Irving [12] 110 24 2640
Park et. al. [14] 140 24 3360

Frangioni et. al. [2] 200 24 4800
Silbernagl et. al. [16] 54 576 31104 transmission

DispaSET [6] 304 8760 2663040 storage, transmission
DispaSET2 [6] 1442 8783 12665086 storage, transmission

Table 3: Number of generators, timesteps, generator states and non-regular constraints present in each
instance.

Instance GA10 [7] TAI38 [5] RTS54 [16] A110 [12] KOR140 [14] RCUC200 [2] DISPASET [6] DISPASET2 [6]
Units 10 38 54 110 140 200 304 1442
Timesteps 24 24 576 24 24 24 8760 8783
Cost function Quadratic Quadratic Quadratic Quadratic Quadratic Quadratic Quadratic Quadratic
Transmission No No Yes No No No Yes Yes
Initial State Yes No No No No No No No
Pmin Yes Yes Yes Yes Yes Yes Yes Yes
Pmax Yes Yes Yes Yes Yes Yes Yes Yes
Ramp Up Yes Yes Yes Yes Yes Yes Yes Yes
Ramp Down Yes Yes Yes Yes Yes Yes Yes Yes
Time Dependent Startup Costs Yes Yes No No Yes No Yes Yes
Shutdown Limit Yes Yes Yes Yes Yes Yes Yes Yes
Minimum Uptime Yes Yes Yes Yes Yes Yes Yes Yes
Minimum Downtime Yes Yes Yes Yes Yes Yes Yes Yes

Table 4: An overview of the various properties, constraints and cost functions present in the instances
provided by Rogier Hans Wuijts.

4 Local search
Local search is a heuristic which is often used to solve computationally hard problems. It is an approach
which takes an existing solution for a problem and then repeatedly modifies it in such a way that a new
solution is generated, with the aim of discovering better solutions than the one it has currently found.

For the Unit Commitment problem, these changes can either be small changes, like ramping a unit
which increases or decreases its power output at a certain point in time, or big changes, like turning a
unit on or off or moving a sequence of loads from one unit to another.
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However, before local search as a method can be used, we need the following prerequisites:

• A formally defined representation of a solution. (Section 5)

• A formally defined state-representation for the algorithm. (Section 9)

• An objective function to be optimized. (Section 8)

• A search strategy.

• Procedures to generate neighbouring solutions, which can be used to formulate a Neighbourhood
description. (Section 11)

• A suitable set of constraints to model the feasibility of the problem. (Section 6)

• Suitable criteria to stop the search (Stopping criteria).

• A suitable set of test instances to test our local search on.

• A set of initial solutions or a method of generating initial solutions. (Section 13)

• A set of criteria which define whether or not a neighbouring solution is accepted.

4.1 The local search procedure
The general process of local search works along these lines:

1. Generate an initial solution.

2. Evaluate the stopping criterion.

3. If the stopping criterion is satisfied, terminate the search. Otherwise continue.

4. Generate the next neighbouring solution.

5. Test if the neighbour is invalid, reject the neighbour and go to step 2. Otherwise continue to step
6.

6. Evaluate acceptance criteria. If the neighbour is rejected, go to step 2. Otherwise continue to step
7.

7. Accept neighbour.

8. Update algorithm state.

9. Recalculate or update cost function.

10. Go to step 2.

This process is illustrated in a flowchart in figure 1.

4.2 Why local search?
We now have a basic understanding of what local search as a meta-heuristic entails. But what are
the differences, advantages and potential downsides of using of local search instead of (integer) linear
programming? In this section I will touch briefly on these matters.

The main difference between local search and lineair programming is the search procedure each
employs. Local search is a very basic procedure which in itself is not very complex and if the problem
can be modeled, it places very few restrictions on how the problem can be modeled. However, the success
of local search is heavily dependent on the finer details of how the problem is modeled.

Lineair programming however, typically uses some variation of the simplex method. The simplex
method puts more restrictions on how the problem can be modeled because it exploits very specific
properties of higher dimensional shapes with convex geometries. This also means that for (I)LP-like
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Figure 1: Flow chart of a typical local search
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methods to work, the shape of the space enclosed by the higher dimensional convex shape, must be
guaranteed to be convex.

To ensure that the space enclosed by all valid solutions is convex, the objective function of the unit
commitment problem and all of its constraints are modeled as lineair higher dimensional surfaces which
divide the higher-dimensional space into two parts.

The simplex method exploits the convex shape of the solution space by following the boundary of the
enclosing space by moving along the lines, surfaces and points along which the various higher dimensional
planes intersect.

If the shape isn’t convex, or if the given constraints and objective function cannot be modeled as
higher dimensional linear planes, then the simplex method simply won’t work as intended.

This is a problem, because most instances of the hybrid unit commitment problem, contain units
which have quadratic cost functions.

The traditional way to deal with this, is to use linear approximations to model the quadratic cost
functions. Usually this is fine because the margin of error is relatively small, but it is still important to
note that the local search method is not bound by such restrictions on the cost functions or constraints,
and therefore does not require the problem to be approximated, nor does it require the operator to define
these approximations.

To illustrate this difference, an example of a quadratic cost function can be seen in figure 2. An
example of a lineair approximation of a cost function that an (I)LP could use can be seen in figure 3 and
in figure 4 you can see an overlay of how both relate to each other.

Figure 2: Plot of a quadratic objective function
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Other aspects in which methods based on linear programming and local search differ, are in the way
the problems can be specified. In a local search, the programmer has to model the entire problem by
himself and then write that model into computer code, while linear programs only require a mathematical
description of the problem which can often be given to a solver in terms of a matrix or a number of
equations. This means that there are more general purpose software packages available for solving linear
problems and they are more widely applicable, while a program for local search on the unit commitment
problem, is usually only suitable to solve the unit commitment problem and cannot easily be transformed
to solve other problems.

4.3 Types of local search
There are a number of strategies which can be employed by a local search algorithm. In this section I
will cover four of the most prominent ones. These strategies are usually used to modify the way a local
search algorithm deals with situations in which it gets stuck in local optima and how it can escape from
a local optimum. Usually this involves either terminating the search or finding some way to jump over
barriers in the landscape of the objective function.
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Figure 3: Plot of its piecewise linear approximations
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Figure 4: Plot of both a quadratic objective function and its piecewise linear approximation
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A visual example of the landscape of the objective function, containing one local optimum, one gobal
optimum and one barrier can be seen in figure 5.

4.3.1 Random walk

A random walk is a type of local search in which the acceptance criteria simply accept every generated
neighbour which satisfies all constraints. Usually the best solution the random walk has seen, is kept
in memory, while the search is allowed to walk randomly throughout all possible valid solutions of the
problem. This type of search typically does not get stuck in local optima, but will often have trouble
finding a good outcome within a reasonable amount of allotted time.

4.3.2 Greedy hillclimber

A local search which uses the greedy hillclimber metaheuristic is a type of local search in which the
acceptance criteria accepts every neighbour which leads to a better outcome according to the cost function
used to model a problem, and rejects every neighbour which leads to a solution with an outcome of the
objective functions that is worse than the best solution which has been found so far.
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Figure 5: A visual example of a local optimum, a global optimum, a barrier and regions of attraction.

4.3.3 Best in neighbourhood

A local search which uses the ‘best in neighbourhood’ metaheuristic evaluates all neighbouring solutions
which can be reached from the best solution it has found so far and then finally selects the best solution
out of all neighbouring solutions it has evaluated. This method has the downside that it cannot be used
in a procedure which does not have a enumerable and finite neighbourhood. This in turn means that
it cannot be used in procedures which generate a neighbour randomly. It is also guaranteed that when
given the same initial solution and initial parameters, it will always follow the same search path and
terminate on the same final solution.

4.3.4 Simulated Annealing

A local search using the simulated annealing metaheuristic, is a local search which will generate neigh-
bouring solutions randomly. These generated solutions can be better or worse than the solution the
local search has currently discovered. If the outcome of the objective function for the neighbour which is
under consideration is better than the best solution found so far, the simulated annealing heuristic will
always accept the better solution. However, if the value of the objective function of the neighbour under
consideration is worse than that of the current solution, simulated annealing will accept this neighbour
with a certain probability. The probability that a worse solution is accepted depends on the difference
in the result of its objective function compared to the result of the objective function of the current
solution and the number of iterations which has gone by. As this process was inspired by the process
of annealing in metallurgy, it uses the notion of a cooling schedule to gradually make the acceptance of
a worse neighbour less likely. The main idea behind this is that in the beginning of the search, we can
quickly get trapped in local optima which could be surrounded by barriers, which make it hard to escape
from the local optimum if a worse neighbour can never be accepted. It should therefore be regarded as a
technique to escape from a local optimum so we can prevent the search from stalling prematurely, which
slowly becomes more restrictive in the magnitude of changes it allows as the search progresses.

The widely known equations 5 and 6 typically govern this process.

temperature(x, y) = 1− x+ 1

y
(5)
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Where x is the number of the current iteration in the search process and y is the maximum number of
iterations after which the search process will terminate.

probability(r, s, t) = exp(r − s

t
) (6)

Where r is the value of the objective function for the current solution, s is the value found by the
objective function for the neighbouring solution and t is the value returned by the temperature function.

To determine whether or not a worse solution is accepted, we simply generate a random number q in
the range [0, 1] and if q is smaller than the calculated probability, we accept the current solution.

Note that the function presented in equation 6 is the conventional way of modeling the probability
function of the simulated annealing heuristic. However, this definition as given in equation 6 is not usable
for the unit commitment problem, because this definition makes it nearly impossible to overcome a barrier
which has an objective function that is two times as high as the current value for r. However, in this
problem the barriers of the objective function can be anywhere from about a factor of two to a hundred
times as high as the current value of r. It’s therefore not uncommon to have a very deep local optimum
surrounded by relatively high barriers. To overcome this problem, I have updated the probability function
to be more permissive of larger differences between r and s by modifying the probability equation as
seen in equation 7.

probability(r, s, t) = exp(r − s

r × t
) (7)

5 Characterization of a solution
In section 2 we’ve seen a basic overview of the Unit Commitment and Economic Dispatch problems.
We’ve also seen a characterization of what a schedule which qualifies as a solution looks like and what
the differences between a solution to just the Unit Commitment, Economic Dispatch and the integrated
problem are.

However, the problem under consideration is more complicated than the theoretic versions shown
above in 2.4. In some of the instances under consideration, some of the units are modeled as a single unit,
consisting of multiple identical subunits which each represent a generator with identical specifications
in their own right. In this case we have i different units, which all have a fixed number of identical
subunits. Let s(i) denote the number of subunits corresponding to unit i. With these definitions, each
pair of (gi, sk) for k ∈ 1..k will now require a row in a matrix like the one shown in 4. This yields a
matrix of the following form shown in equation 8.

Schedule =



p(g1, s(1)1, t1) p(g1, s(1)1, t2) · · · p(g1, s(1)1, tj) · · · p(g1, s(1)1, tn)
p(g1, s(1)2, t1) p(g1, s(1)2, t2) · · · p(g1, s(1)2, tj) · · · p(g1, s(1)2, tn)

...
...

. . .
...

. . .
...

p(g1, s(1)k, t1) p(g1, s(1)k, t2) · · · p(g1, s(1)k, tj) · · · p(g1, s(1)k, tn)
p(g2, s(2)1, t1) p(g2, s(2)1, t2) · · · p(g2, s(2)1, tj) · · · p(g2, s(2)1, tn)

...
...

. . .
...

. . .
...

p(gm, s(m)k, t1) p(gm, s(m)k, t2) · · · p(gm, s(m)k, tj) · · · p(gm, s(m)k, tn)


(8)

We are searching for a schedule like this, in which every p(i, s, j) value has been assigned a concrete
value, such that all contraints imposed by the technical constraints of the units, the infrastructure and
the forecasted demands at a given time are satisfied.

6 Modeling problem constraints
In this section I will describe the various constraints, what these constraints represent, how these can
mathematically be modeled, and whether or not we have to treat these constraints as soft or hard
constraints.
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6.1 Maximum generation (Pmax)
The maximum power generation of generator gi models the absolute maximum production capacity a
generator can be run on at any given time. The production for this generator may never rise above this
value. We will refer to this value as Pmax(gi). This is a hard constraint, because it cannot be violated
under any circumstances. Often this is the case because exceeding this limit would cause damage to
real-world equipment.

This can trivially be modeled by a function which always returns Pmax and puts an upper bound on
the amount of power a generator can output.

The Pmax constraint is violated if p(i, s, j) > Pmax.

6.2 Minimum generation (Pmin)
The minimum power generation of generator gi models the lowest production capacity a generator can
be run on at any given time. If the production for this generator drops below this value, it has to be
turned off. We will refer to this value as Pmin(gi). This is a hard constraint, because the output of a
generator can never fall below this threshold if it is running and therefore puts a lower bound on the
output of a running generator.

However, because generators can also be turned off, we have to model this constraint as a function
which returns Pmin(gi) if a generator is on and 0 if a generator is turned off.

This gives us the formulation of equation 9 to calculate the lower bound imposed on the value of
p(i, s, j).

calculateBound(i, s, j) =

{
Pmin(i) if unit i subunit s is generating at time t

0 otherwise
(9)

Violation of the Pmin constraint is tested with equation 10.

isViolated(i, s, j) =

{
p(i, s, j) < Pmin(i) if unit i subunit s is generating at time t

p(i, s, j) > 0 otherwise
(10)

6.3 Ramp-up limit (RU(i))
The ramp-up limit is the maximum amount of units of power by which the production of generator gi
can be increased at any given time tj . We will refer to this value as RU(i). This is a hard constraint
which is imposed by technical restrictions of the generator.

This constraint puts both an upper and a lower bound on the value of p(i, s, j). The ramp-up limit
constraint limits the maximum value of p(i, s, j) and depends on the value of p(i, s, j − 1), which puts
an upper bound on the value p(i, s, j) can take on. Conversely, the ramp-up limit constraint also puts a
lower bound on the value p(i, s, j) can take on because of the value of p(i, s, j + 1).

We should observe that because of this, the ramp-up limit is not just one constraint, but actually
two: it has a forwards looking component and a backwards looking component. I have modeled these as
two separate constraints.

The definitions I’ve used for the forwards looking ramp-up constraints can be seen in equations 11
and 12.

calculateBound(i, s, j) = p(i, s, j + 1)−RU(i) (11)

isViolated(i, s, j) = p(i, s, j + 1) > p(i, s, j) +RU(i) (12)

The definitions I’ve used for the backwards looking ramp-up constraints can be seen in equations 13
and 14.

calculateBound(i, s, j) = p(i, s, j − 1) +RU(i) (13)

isViolated(i, s, j) = p(i, s, j) > p(i, s, j − 1) +RU(i) (14)
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6.4 Ramp-down limit (RD(i))
The ramp-down limit is the maximum amount of units of power by which the production of generator
gi can be decreased at any given time tj . We will refer to this value as RD(i). This is a hard constraint
which is imposed by technical restrictions of the generator.

This constraint also puts both an upper and a lower bound on the value of p(i, s, j). The ramp-down
limit constraint limits the minimum value of p(i, s, j) and depends on the value of p(i, s, j − 1), which
puts an lower bound on the value p(i, s, j) can take on. Conversely, the ramp-down limit constraint also
puts a upper bound on the value p(i, s, j) can take on because of the value of p(i, s, j + 1).

We should observe that because of this, the ramp-down limit is also not just one constraint, but
actually two: it also has a forwards looking component and a backwards looking component. I have
again modeled these as two separate constraints.

The definitions I’ve used for the forwards looking ramp-down constraints can be seen in equations 15
and 16.

calculateBound(i, s, j) = p(i, s, j + 1) +RD(i) (15)

isViolated(i, s, j) = p(i, s, j) ≥ p(i, s, j + 1) +RD(i) (16)

The definitions I’ve used for the backwards looking ramp-down constraints can be seen in equations
17 and 18.

calculateBound(i, s, j) = p(i, s, j − 1) +RD(i) (17)

isViolated(i, s, j) = p(i, s, j) < p(i, s, j − 1)−RD(i) (18)

6.5 Startup limit (SU(i))
The startup limit is the maximum amount of power which generator gi can produce at tj if it was off at
tj−1. We will refer to this value as SU(gi). This is a hard constraint imposed by technical limitations of
the generator. This constraint puts an upper bound on the value of p(i, s, j).

The startup limit constraint limits the maximum value of p(i, s, j) and depends on the value of
p(i, s, j − 1), which puts an upper bound on the value p(i, s, j) can take on.

The definitions I’ve used to model the startup limit constraints can be seen in equations 19 and 20.

calculateBound(i, s, j) =

{
SU(gi) if unit i subunit s is not generating at time tj−1

+∞ otherwise
(19)

isViolated(i, s, j) =

{
true if unit i subunit s is not generating at time tj−1 and p(i, s, j) > SU(gi)

false otherwise

(20)

6.6 Shutdown limit (SD(i))
The shutdown limit is the maximum amount of power which generator gi can produce at tj if it is about
to be off at tj+1. We will refer to this value as SD(gi). This is a hard constraint imposed by technical
limitations of the generator. This constraint puts an upper bound on the value of p(i, s, j).

The shutdown limit constraint limits the maximum value of p(i, s, j) and depends on the value of
p(i, s, j − 1), which puts an upper bound on the value p(i, s, j) can take on.

The definitions I’ve used to model the shutdown limit constraints can be seen in equations 21 and
22.

calculateBound(i, s, j) =

{
SD(gi) if p(i, s, j) > 0 and p(i, s, j + 1) ≤ 0

+∞ otherwise
(21)
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isViolated(i, s, j) =

{
true p(i, s, j) > 0 and p(i, s, j + 1) ≤ 0 and p(i, s, j) > SD(gi)

false otherwise
(22)

6.7 Minimal uptime (minup(i))
The minimal uptime constraint models the minimum amount of time generator gi has to be generating
power before it can be shutdown. We will refer to this value as minup(gi)). This is a hard constraint
imposed by technical limitations of the generator. This constraint puts a lower limit on the value of
p(i, s, j).

The minimal uptime constraint limits the minimal value of p(i, s, j) and depends on the value of
p(i, s, j − 1) and uptime(i, s, j − 1), which puts a lower bound on the value p(i, s, j) can take on.

The definitions I’ve used to model the minimal uptime constraints can be seen in equations 23 and
24.

calculateBound(i, s, j) =

{
Pmin(gi) if p(i, s, j) > 0 and uptime(i, s, j) ≤ 0

−∞ otherwise
(23)

isViolated(i, s, j) =

{
true if uptime(i, s, j − 1) > 0 and uptime(i, s, j − 1) ≤ minup(gi) and uptime(i, s, j) ≤ 0

false otherwise

(24)

6.8 Minimal downtime (mindown(i))
The minimal downtime constraint models the minimum amount of time generator gi has to be off before
it can be switched on again. We will refer to this value as mindown(gi)). This is a hard constraint
imposed by technical limitations of the generator. This constraint puts an upper limit on the value of
p(i, s, j).

The minimal downtime constraint limits the maximal value of p(i, s, j) and depends on the value of
p(i, s, j − 1) and downtime(i, s, j − 1) and puts an upper bound on the value p(i, s, j) can take on.

The definitions I’ve used to model the minimal uptime constraints can be seen in equations 25 and
26.

calculateBound(i, s, j) =

{
0 if p(i, s, j) ≤ 0 and downtime(i, s, j − 1) ≤ mindown(gi)
+∞ otherwise

(25)

isViolated(i, s, j) =

{
true if p(i, s, j − 1) ≤ 0 and downtime(i, s, j − 1) < mindown(gi) and p(i, s, j) > 0

false otherwise

(26)

6.9 Demand constraints
Furthermore, the problem contains demand constraints. These are simply a number which indicate the
amount of forecasted demand for power at a given point in time at a given node in the network. These
are given as a vector of numbers for each node, in which every number corresponds to one timestep at
each node in the network. I will treat these as soft constraints for reasons which will become clear in
section 13.
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7 Some observations about the hybrid Unit commitment and
economic dispatch problem

With all of the above knowledge of the problem, we can now make some observations which will provide
us with the insights we need to further model this problem.

The information from section 6 leads me to create table 5.

Table 5: Initial observations about constraints
Constraint Upper bound Lower bound Forwards looking (t+1) Backwards looking (t-1)
Pmin No Yes No No
Pmax Yes No No No
Ramp up Yes Yes Yes Yes
Ramp down Yes Yes Yes Yes
Startup limit Yes No No Yes
Shutdown limit Yes No Yes No
Minimum uptime No Yes No Yes
Minimum downtime Yes No No Yes

From this table it becomes clear that nearly all information we require to evaluate the constraints
of this problem quickly, can be found in the schedule by looking at the value of p(i, s, j) or one of its
direct temporal neighbours p(i, s, j − 1) or p(i, s, j + 1). The only exceptions to this are the minimum
uptime and minimum downtime constraints, but it’s also clear that if we are willing to keep two variables
of extra state which denote uptime(i, s, j) and downtime(i, s, j) for each combination of (i, s, j), we can
also access this information from the direct temporal neighbours of (i, s, j). These constraints can all be
evaluated in constant time, and the variables we’d have to store can also be updated in constant time in
all operations which do not change the state of a unit i subunit s at time tj from on to off or off to on.

In section 6 I’ve already touched upon the fact that the ramp up and ramp down constraints are not
just one constraint each, but in practise manifest themselves as being two separate constraints with their
own bounds and validity criteria each. For the sake of clarity I have separated these ramping constraints
from the constraints in table 5 and listed how their various properties relate and turn out in table 6.

Table 6: Properties and relations of the ramping constraints
Constraint Temporal direction Upper bound Lower bound
Ramp up Forwards No Yes
Ramp up Backwards Yes No
Ramp down Forwards Yes No
Ramp down Backwards No Yes

Another noteworthy observation is that the variables calculated by the upper and lower bounds
formed by these constraints, will only change in (i, s, j−1), (i, s, j) and (i, s, j+1) if the value of p(i, s, j)
is updated. This in turn implies that it is possible to split the objective function of the hybrid unit
commitment and economic dispatch problem into smaller components, which all individually affect the
outcome of the objective function in an additive manner. However, because the manner in which the
components of the cost functions are combined is additive, we can also recalculate only the parts of the
cost function that actually change if we make a small change in a schedule, calculate the differences
(delta δ) in cost of these components, and then add the deltas to the previously calculated total value
of the objective function for the entire problem. The fact that we can save a lot of calculations this way,
is extremely beneficial for an approach using local search.

While the feasible region is undoubtedly a higher dimensional polygon which is hard to imagine,
it is possible to get an intuitive sense of what the feasible region containing all admissible solutions,
which satisfy all hard constraints, looks like for one unit at a single point in time. An example of this
representation can be seen in figure 6. From this figure we can derive that the value for p(i, s, t) is limited
by the values assigned to (i, s, j − 1) and (i, s, j + 1).
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Figure 6: Intuitive visualisation of how various constraints restrict the feasible region of the value of
p(i, s, t). Note that the ramping constraints originate in both directions from each p(i, s, t)∀t but that
only half or the constraints originating from p(i, s, t− 1) and p(i, s, t+ 1) have been drawn for the sake
of clarity.

We will exploit these observations in the construction of a suitable state representation for our local
search algorithm.

8 Objective Functions (Cost Functions)
The instances under consideration all use equation 27 as their fuel cost function. This is the first
component of the cost function.

f(p) = a+ bp+ cp2 (27)

In equation 27 p is the amount of power a generator generates at a given point in time and a, b and
c are given constants which differ per unit.

However the instances under consideration have just one of two different functions for calculating the
startup costs.

They can either use equation 28 in which FSC is the fixed startup cost constant, VSC is the variable
startup cost constant and the constant λ are given for each unit,

StartupCost = FSC + VSC × (1− e(−λ)) (28)

or the instances can use a cost function which defines its variable startup cost in a piecewise manner.
The intervals to define the startup cost in a piecewise manner are specified for each generator in each
instance. In the instance files, the SCI colum denotes the intervals and the SCV colum defines the values
corresponding to each interval. For example, the function for unit 1 in the GA10 instance looks like
equation 29.

StartupCost =

{
9000 if downtime > 13

4500 if downtime ≤ 13
(29)
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Note that the functions modeling the startup cost, only apply at the points in time where a generator
is being switched on from a state in which it was switched off.

9 Algorithmic state representation
In section 7 we have made some important observations which we can exploit to guide the design of our
local search algorithm. At the core of this algorithm is always a data structure which represents the state
of our search process. This data structure will model the feasible region of the problem and will keep
track of all variables we need to decide whether or not a certain change to the schedule is admissible.

Due to the observations from section 7 I’ve come up with a representation which has six components
at its core.

These six components are:

1. A UnitState.

2. A NodeState.

3. A TimeState.

4. A Node.

5. A Unit.

6. An Instance: An instance of the problem we are currently solving.

I will detail how these are modeled and how these are related to each other in this section.
A conceptual diagram of the horizontal and vertical relations between these components can be seen

in figure 7 and 8.

9.1 The UnitState
Formally the UnitState class (or UnitState for short) can be regarded as a large tuple which at least
contains:

• Indices: The i, s and j indices for its corresponding unit, subunit and time coordinates in the
state-matrix to which this UnitState corresponds.

• Power: The value of p(i, s, j) which will appear in the final solution.

• Cost: A cost variable which contains the partial contribution to the total cost of the current
solution.

• Uptime: A variable which denotes the uptime of unit i, subunit s at time j in the schedule.

• Downtime: A variable which denotes the downtime of unit i, subunit s at time j in the schedule.

• InitialUptime: A variable which can be set if the given instance defines a default value for uptime
which should be restored if at some point in the search process the unit is turned off after it has
been turned on at tj .

• InitialDowntime: A variable which can be set if the given instance defines a default value for
downtime which should be restored if at some point in the search process the unit is turned on
after it has been turned off at tj .

• MaximumPowerConstraints: A list of all constraints which provide an upper bound on the value
of p(i, s, j).

• PowerUpperLimit: The minimum of all the results of the calculateBound function of all constraints
in the list MaximumPowerConstraints.

• MinimumPowerConstraints: A list of all constraints which provide a lower bound on the value of
p(i, s, j).
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Figure 7: Horizontal relationships between the various components of the state description.
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Figure 8: Vertical relationships between the various components of the state description.

• PowerLowerLimit: The maximum of all the results of the calculateBound function of all constraints
in the list MinimumPowerConstraints.

• Unit: A pointer for quick access to the Unit variable which represents the unit to which this
UnitState belongs and contains all relevant variables for this.

• NodeState: A pointer for quick access to the NodeState which corresponds to the NodeState for
Node k at time tj to which this Unit is connected.

• Instance: A pointer for quick access to the Instance object which represents this instance.

• Previous: A pointer for quick access to the UnitState (i, s, j − 1) which is chronologically the
previous. If a previous UnitState does not exist, this pointer is nil.

• Next: A pointer for quick access to the UnitState (i, s, j + 1) which is chronologically the next. If
a next UnitState does not exist, this pointer is nil.

• CostFunctionComponents: A list of the partial components of the cost function which apply to
this UnitState.

Most of the variables in the UnitState-tuple are exactly what the description in the above list states.
However the Cost, PowerUpperLimit, PowerLowerLimit and CostFunctionComponents require some
additional explanation.

The CostFunctionComponents variable contains a list of all components of the cost function which
apply to that UnitState. Among these are the functions for the startup and fuel cost as defined in section
8, which each comprise a CostFunctionComponent of their own. The value of the cost variable is then
defined as the sum over all CostFunctionComponents.

To calculate the value of PowerUpperLimit, we take the minimum of the result of the calculateBound
function of each constraint in the MaximumPowerConstraints list like denoted in equation 30.

PowerUpperLimit = min
Constraint c∈ MaximumPowerConstraints

c.calculateBound(i, s, j) (30)
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The value of PowerLowerLimit is calculated analogously, but instead of the minimum, we take the
maximum of the result of the calculateBound function of each constraint in the MinimumPowerCon-
straints as shown in equation 31.

PowerLowerLimit = max
Constraint c∈ MinimumPowerConstraints

c.calculateBound(i, s, j) (31)

Furthermore, the functions isGenerating (equation 32), isStartup (equation 33), isShutdown (equation
34), negativeSpinningReserve (equation 35), positiveSpinningReserve (equation 36) and operatingReserve
(equation 37) are defined for the UnitState.

isGenerating = Power > 0 (32)

isStartup =

{
true if the uptime of the previous UnitState is 0 and uptime = 1
false otherwise

(33)

isShutdown =

{
true if this UnitState is generating and the next UnitState is not
false otherwise

(34)

negativeSpinningReserve =

{
power − PowerLowerLimit if this UnitState is generating
0 otherwise

(35)

positiveSpinningReserve =

{
PowerUpperLimit− power if this UnitState is generating
0 otherwise

(36)

operatingReserve =


SU(i) if this UnitState is not generating and can be started
0 if this UnitState is generating and cannot be started
PositiveSpinningReserve otherwise

(37)

9.2 The NodeState
The NodeState is a tuple containing the variables required to represent the state of a Node in the network
at a certain point in time. It contains the following variables:

• Node: A pointer for quick access to the Node to which this NodeState belongs.

• Time: A pointer for quick access to the TimeState related to this NodeState.

• UnitStates: A list of UnitStates for quick access to the UnitStates related to this NodeState.

• Instance: A pointer for quick access to the Instance object which represents this instance.

• CurrentDispatch: The sum of the value of the Power variable of all UnitState tuples in UnitStates.
This corresponds to the total amount of power generated at this Node at time tj .

• Cost: The sum of the result of the objective functions incurred by all components of the cost-
function for this NodeState which are present in CostFunctionComponents. This is the cost in-
curred by this NodeState at time tj .

• OperatingReserve: The sum of the value returned by the operatingReserve function applied to
all UnitState tuples in Unitstates. This corresponds to the total amount of power which can be
brought online from an offline state at this Node at time tj .
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• PositiveSpinningReserve: The sum of the value returned by the PositiveSpinningReserve function
applied to all UnitState tuples in Unitstates. This corresponds to the total amount of additional
power which can be generated at this Node at time tj .

• NegativeSpinningReserve: The sum of the value returned by the NegativeSpinningReserve function
applied to all UnitState tuples in Unitstates. This corresponds to the total amount of power by
which the generation can be lowered at this Node at time tj .

• ActiveUnitStates: A count of all UnitStates in the list ‘UnitStates’ for which the function isGen-
erating is true. This corresponds to the total number of generators which are switched on at this
Node at time tj .

• CostFunctionComponents: A list of all relevant components of the cost function which apply to
this Node at time tj .

The functions demand (which simply returns the forecasted demand at node k at time tj), calcu-
lateShortage (equation 38) and calculateSurplus (equation 39) are defined as well:

calculateShortage =

{
demand− currentDispatch if demand− currentDispatch > 0

0 otherwise
(38)

calculateSurplus =

{
currentDispatch− demand if currentDispatch− demand > 0

0 otherwise
(39)

9.3 The TimeState
The TimeState is a tuple containing the variables required to represent the state of some aggegrate
variables for the entire network at a point in time tj .

It contains the following variables:

• CurrentDispatch: The sum of the value of the CurrentDispatch variable for all NodeState tuples
in NodeStates.

• totalDemand: The sum of the value returned by the demand-function for all NodeState tuples in
NodeStates.

• Cost: The sum of the result of the objective functions incurred by all components of the cost-
function for this TimeState which are present in CostFunctionComponents. This is the cost in-
curred by this TimeState for time tj .

• Shortage: The sum of the value returned by the calculateShortage function applied to all NodeState
tuples in NodeStates. This corresponds to the total amount of unmet power demand at this
TimeState at time tj .

• Surplus: The sum of the value returned by the calculateSurplus function applied to all NodeState
tuples in NodeStates. This corresponds to the total amount of surplus power at this TimeState at
time tj .

• OperatingReserve: The sum of the value of the OperatingReserve variable of all NodeState tuples
in NodeStates. This corresponds to the total amount of power which can be brought online from
an offline state at this point in time (tj).

• PositiveSpinningReserve: The sum of the value of the PositiveSpinningReserve variable of all
NodeState tuples in NodeStates. This corresponds to the total amount of spinning reserve power
available at time tj .

• NegativeSpinningReserve: The sum of the value of the NegativeSpinningReserve variable of all
NodeState tuples in NodeStates. This corresponds to the total amount of power by which the
generation can be lowered at time tj .
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• ActiveUnitStates: The sum of the value of the ActiveUnitStates variable of all NodeState tuples in
NodeStates. This corresponds to the total number of generators which are switched on at time tj .

• TimeIndex: j because this variable represents the point in time (tj) to which this TimeState
corresponds.

• NodeStates: A list containing all NodeState tuples which model the state of a node in the network
at time tj .

• CostFunctionComponents: A list of all relevant components of the cost function which apply to
this TimeState representing time tj .

9.4 The Node
A Node is just a tuple which contains its id value and a demands vector in which demandsj denotes the
total amount of power demand at time tj .

9.5 The Unit
The Unit is a tuple which contains all variables which define the characteristics of a generator or unit.
Because there are a lot of variables, this is a relatively long list.

• Index: The index i of the unit.

• Id: The ID number of a unit.

• Count: The number of subunits which make up this composite unit if count > 1. If count = 1 this
unit is not a composite unit and therefore will only have one subunit.

• Pmax: The value used to define the Pmax constraint in section 6.1.

• Pmin: The value used to define the Pmin constraint in section 6.2.

• a, b and c: The constants used in equation 27 which is used to calculate the fuel costs.

• RampUpLimit: The value returned by the function RU(i) which is used to define the constraints
for the ramp-up limit in subsection 6.3.

• RampDownLimit: The value returned by the function RD(i) which is used to define the constraints
for the ramp-down limit in subsection 6.4.

• StartupLimit: The value returned by the function SU(i) which is used to define the constraints for
the startup limit in subsection 6.5.

• ShutdownLimit: The value returned by the function SD(i) which is used to define the constraints
for the shutdown limit in subsection 6.6.

• MinUp: The value returned by the function minup(i) which is used to define the minimum uptime
constraint in subsection 6.7.

• MinDown: The value returned by the function mindown(i) which is used to define the minimum
downtime constraint in subsection 6.8.

• FixedStartupCost, VariableStartupCost and λ: The values for FSC, VSC and λ in equation 28.

• VariableStartupCostInterval: The respective values for the interval boundaries in the predicates of
equation 29

• VariableStartupCostValue: The respective values for the results in equation 29.
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9.6 The Instance
The instance is the tuple which contains the entire state representation for the local search for a given
instance of the hybrid unit commitment and economic dispatch problem. This consists of the following
variables:

• Units: A list containing all Units in this instance.

• Nodes: A list containing all Nodes in this instance.

• Time: A number which denotes the number of TimeSteps in this instance.

• StateMatrix: A 3-dimensional array of UnitStates for which the first dimension denotes the unit
component (gi), the second dimension denotes the subunit if the unit is clustered (s) and the
third dimension denotes the time dimension (tj) to which the UnitState stored at that position
corresponds.

• NodeStates: A 2-dimensional array of NodeStates in which the first dimension denotes the number
of the Node (nk) in the network and the second dimension denotes the time dimension (tj) to which
the NodeState stored at that position corresponds.

• Timeline: An array of TimeStates of which each TimeState stored at index j in the array corre-
sponds to the state at time tj .

• TotalDemand: A variable which contains the sum of all demands at all NodeStates in the NodeStates
array.

• TotalCost: A variable which stores the result of the sum over all CostFunctionComponents which
have currently been added to the state representation.

• TotalDispatch: The total amount of energy generated by all units at all timesteps with the current
schedule.

• Shortage: The total amount of unmet energy demands (shortage) with the current schedule.

• Surplus: The total amount of surplus energy generated with the current schedule.

• OperatingReserve: The combined total amount of operating reserve present in the schedule across
all UnitStates at all Nodes at all points in Time.

• PositiveSpinningReserve: The combined total amount of positive spinning reserve present in the
schedule across all UnitStates at all Nodes at all points in Time.

• NegativeSpinningReserve: The combined total amount of negative spinning reserve present in the
schedule across all UnitStates at all Nodes at all points in Time.

• TotalUnitStates: The total number of UnitState tuples present in this instance.

• ActiveUnitStates: The total number of UnitState tuples in this instance at which the generator is
on.

Note that the variables TotalDemand, TotalCost, TotalDispatch, Shortage, Surplus, OperatingRe-
serve, NegativeSpinningReserve, PositiveSpinningReserve and ActiveUnitStates can all be used as per-
formance measures for the current schedule.
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10 Updating the state representation
In section 9 we have seen how the state in this local search algorithm was modeled, but what we have
not discussed is a procedure for how we can update all those variables to keep them consistent.

Fortunately this representation allows us to do so with a relatively simple procedure. We have to tell
this procedure two things: The new value we want to write to the power-variable of a given UnitState
and whether or not we want to also call the update procedure without changing the power-value of its
direct neighbours (the next UnitState (i, s, j + 1) and the previous UnitState (i, s, j − 1)).

The update procedure for the state of a UnitState works as follows:

1. Store the old values for Cost, OperatingReserve, PositiveSpinningReserve, NegativeSpinningRe-
serve and on/off status of the generator which belongs to the given UnitState at (i, s, j).

2. Calculate the difference between the old value of power and the new value we are going to replace
it with. Call this value δp.

3. Update power with the new power value.

4. Recalculate all the state state variables which depend on the value of power. These are the Uptime,
Downtime, PowerUpperLimit as mandated by the constraints in MaximumPowerConstraints, Pow-
erLowerLimit as mandated by the constraints in MinimumPowerConstraints and finally the value
of Cost mandated by summing over the values returned by calculateBound from all CostFunction-
Components in CostFunctionComponents.

5. Calculate the difference between the old and new values of Cost, OperatingReserve, PositiveSpin-
ningReserve and NegativeSpinningReserve. Call these δCost, δOperatingReserve, δPositiveSpinningReserve
and δNegativeSpinningReserve.

6. Update the variables TotalCost and TotalDispatch in the Instance tuple by doing TotalCost =
TotalCost+ δCost and TotalDispatch = TotalDispatch+ δPower.

7. Calculate δActiveUnitStates =


−1 if the generator was previously on and is now turned off
1 if the generator was previously off and is now turned on
0 otherwise

8. Call the state update procedure for NodeState while supplying δpower, δOperatingReserve, δPos-
itiveSpinningReserve, δnegativeSpinningReserve and δActiveUnitStates.

9. If the flag to update the previous and next UnitStates is given, call the update procedure for the
UnitState (i, s, j− 1) and (i, s, j+1) with their respective currently assigned power values and the
flag to update their neighbours set to false.

The procedure to update the variables of the NodeState is very similar to the update procedure for
the UnitState and works as follows:

1. Receive δpower, δOperatingReserve, δPositiveSpinningReserve, δnegativeSpinningReserve and
δActiveUnitStates from the UnitState update procedure.

2. Store the old values for Cost, Shortage, Surplus and ActiveUnitStates.

3. Update CurrentDispatch = CurrentDispatch+ δpower

4. Update OperatingReserve = OperatingReserve+ δOperatingReserve

5. Update PositiveSpinningReserve = PositiveSpinningReserve+ δPositiveSpinningReserve

6. Update NegativeSpinningReserve = NegativeSpinningReserve+ δNegativeSpinningReserve

7. Update ActiveUnitStates = ActiveUnitStates+ δActiveUnitStates

8. Recalculate Cost mandated by summing over the values returned by calculateBound from all Cost-
FunctionComponents in CostFunctionComponents.
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9. Calculate the difference between the old and new values of Cost, Shortage and Surplus. Call these
values δCost, δShortage and δSurplus.

10. Update the variable TotalCost in the Instance tuple by doing TotalCost = TotalCost+ δCost.

11. Call the state update procedure for TimeState while supplying δpower, δShortage, δSurplus,
δOperatingReserve, δPositiveSpinningReserve, δNegativeSpinningReserve and δActiveUnitStates.

The procedure to update the variables of the TimeState is again very similar to the two above and
works as follows:

1. Receive δpower, δShortage, δSurplus, δOperatingReserve, δPositiveSpinningReserve, δNegativeSpin-
ningReserve and δActiveUnitStates from the NodeState update procedure.

2. Update CurrentDispatch = CurrentDispatch+ δpower

3. Update Shortage = Shortage+ δShortage

4. Update Surplus = Surplus+ δSurplus

5. Update OperatingReserve = OperatingReserve+ δOperatingReserve

6. Update PositiveSpinningReserve = PositiveSpinningReserve+ δPositiveSpinningReserve

7. Update NegativeSpinningReserve = NegativeSpinningReserve+ δNegativeSpinningReserve

8. Update ActiveUnitStates = ActiveUnitStates+ δActiveUnitStates

9. Recalculate Cost mandated by summing over the values returned by calculateBound from all Cost-
FunctionComponents in CostFunctionComponents.

10. Update the variable Shortage in the Instance Shortage = Shortage+ δShortage

11. Update the variable Surplus in the Instance Surplus = Surplus+ δSurplus

12. Update the variable OperatingReserve in the Instance OperatingReserve = OperatingReserve+
δOperatingReserve

13. Update the variable PositiveSpinningReserve in the Instance
PositiveSpinningReserve = PositiveSpinningReserve+ δPositiveSpinningReserve

14. Update the variable NegativeSpinningReserve in the Instance
NegativeSpinningReserve = NegativeSpinningReserve+ δNegativeSpinningReserve

15. Update the variable ActiveUnitStates in the Instance
ActiveUnitStates = ActiveUnitStates+ δActiveUnitStates

16. Update the variable Cost in the Instance
TotalCost = TotalCost+ δCost

The conceptual steps can be seen in figure 9.
We now have a relatively flexible and extendable state-representation for the hybrid unit commitment

and economic dispatch problem which allows for:

• Simulation of a schedule: The representation itself contains all the variables a simulation of a
schedule requires.

• Memoization: Most of the variables do not have to be considered or recalculated and the variables
we do have to update, can be updated with only the differences in their values (δ).

• Fast updates: Most of the updates to variables can be done in contant or near-constant amounts
of time.
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Figure 9: Conceptual overview of the procedure to update all state variables

• Fast checking of validity for constraints: For each power value we change, we can check in constant
time if that value falls within an admissible range (between PowerUpperLimit and PowerLower-
Limit) and therefore, if a change we’d like to make to this problem is inside or outside of the feasible
region of the problem.

• The flexible cost functions: We can attach multiple CostFunctionComponents to various Unit-
States, NodeStates and TimeStates.

• Flexible extension: If we want to introduce some additional variables to keep track of different
performance measures, it’s now relatively easy to add those to the respective UnitState, NodeState
or TimeState. It’s also relatively straightforward to adapt the update procedures to keep track of
these additional variables as well.

• A limited number of factors we have to take into account while working on the other parts of the
local search.

We have succeeded in modeling the higher-dimensional, non-linear and non-convex problem space of
the hybrid UC+ED problem and we can traverse it by modifying the power values in the UnitStates.
Because we have now succeeded in modeling the problem space and know where the boundaries of the
feasible region are, this allows us to approach this local search problem as if it is somewhat similar to an
Interior Point Problem.

This also means that we are no longer constrained by the limitations of the Linear Programming
heuristic, which traverses the boundary region of a higher dimensional convex polygon.

11 Local Search Operators
In this section I will discuss the operators I’ve implemented to mutate the state representation to a
neighbouring state representation. For convenience, I have called these operators “moves” because they
move the state of the search from one solution, to one of its neighbouring solutions.

Once generated, a move strictly belongs to only one given Instance at one given iteration of the search
and needs to implement three operations:

1. isValid: A predicate used to check whether or not the neighbouring state this move would move
the schedule to, is still within the feasible region of the problem space.

2. apply: The apply operation executes the mutation of the state such that once it returns, the state
representation reflects the schedule of the new neighbour.

3. undo: The undo operation reverts the apply operation. Due to the very diverse way the apply
function can be implemented, it’s up to each individual move type to implement a mechanism
which stores the power-values of the previous state before it changes them in such a way that the
undo operation can satisfy its stated purpose.
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In the following subsections I will discuss the move-types (operators) I’ve implemented. The Ramp
operator is used to perform all operations required to solve the Economic Dispatch part of the hybrid
unit commitment and economic dispatch problem because it is the operator which can change the values
of power dispatched from the generators. The other operators (TurnOnAtPmin, TurnOff, StartupPush-
Back and ExtendRunTime) are the operators which implement the unit commitment part of the hybrid
problem. The implementations of these operators can be found in the moves package of the source code.

11.1 Ramp
A ramp move changes the power value of a single UnitState in the instance. To do so, it requires
coordinates i, s and j so it can find the corresponding UnitState in the state matrix stored in the Instance
tuple. It also requires a δpower value which denotes the amount of change which has to be applied to
the power-value of the UnitState tuple. Its validity check is to simply test if the unit is generating
and the new power value would be bigger than the Pmin and Pmax values of the Unit to which this
UnitState corresponds and if it does, test if the value is within the range between the PowerLowerLimit
and PowerUpperLimit values stored in the UnitStateTuple. To implement the undo-operation, we simply
store the previous power-value in variable and write it back to the power-value of the UnitState tuple
(i, s, j) once the undo function is called.

11.2 TurnOnAtPmin
TurnOnAtPmin will, as its name indicates, turn on a specific generator at a certain point in time. To
do so, it requires coordinates i, s and j so it can find the corresponding UnitState in the state matrix
stored in the Instance tuple.

It has to perform one of the following operations:

• Turn on the generator for the remaining duration of the schedule, because the shutdown time is
past the end of the schedule.

• Turn on the generator for the next minup(i) timesteps and ensure that the next mindown(i)
timesteps after that are updated, so the uptimes and downtimes are correct.

• Turn on the generator for the next minup(i) timesteps and combine the interval that is currently
being brought online, with an interval which follows the current in which the generator is already
generating, and update the remainder of this interval.

11.3 TurnOff
TurnOff will simply check the variables in UnitState (i, s, j) to see if it can turn off the generator at all
the succeeding points in time until the next startup or the end of the schedule is reached. It can do
this if UnitState (i, s, j) is a startup moment, or at any time in which uptime > minup(i). It will turn
generators off by setting the UnitState’s power value to 0.

11.4 StartupPushBack
StartupPushback can be applied in the interval in which the minimal uptime constraint has not been
satisfied yet, but the remainder of the interval in which the generator is turned on, is longer than
minup(i). It will turn the generator off for any UnitState between the previous startup and the current
time tj if the requirement for its application is met. It will turn generators off by setting the UnitState’s
power value to 0.

11.5 ExtendRunTime
The ExtendRunTime move can extend an interval in which the unit was previously on before tj up until
time tj . It will turn generators on by setting the UnitState’s power value to Pmin(i) for all the unitstates
between the previous shutdown and tj .

31



12 Stategies for neighbourhood exploration
In this section I will describe the various strategies we can employ to explore the search neighbourhood.
I have termed these MoveGenerators in the source code, because these strategies generate a move which
then changes the state representation such that it represents a neighbouring solution. There are currently
two main categories of MoveGenerators. The first category are MoveGenerators which rely on random
numbers, while MoveGenerators of the second category will iteratively traverse the schedule from left to
right and top to bottom and will try every possible move at every possible unitstate in the schedule in
a brute-force way.

12.1 RandomRampMoveGenerator
This is a move generator which always creates a Ramp move, but it will choose its values i, s and j
which are then used to select a UnitState randomly. Once the UnitState has been selected, a new power
value will be generated according to equation 40.

newPower = PowerLowerLimit+ ((PowerUpperLimit− PowerLowerLimit)×Random([0, 1]) (40)

If the IntegerNumbers flag is set to true, the value of newPower will be rounded to the nearest integer
value and otherwise no rounding will be done. Once we have the value of newPower we determine the
difference (δPower) between the current Power value at UnitState (i, s, j) which is the last value we need
to generate a random move.

This move generator will ensure these values are within the valid array bounds of the StateMatrix in
the Instance tuple, but that’s all it will check. This means that it can also select a UnitState in which it
is impossible to ramp a generator. If this happens, the move this generator returns, will be invalid and
as a consequence, it will be rejected by the local search algorithm.

12.2 EnhancedRandomRampMoveGenerator
This MoveGenerator works the same as the RandomRampMoveGenerator in subsection 12.1, but with
the extra added requirement that it will only generate Ramp moves for UnitStates in which the state of
the generator is on. This decreases the number of rejected moves at the cost of having to spend a little
more time. It selects the UnitState for which it will generate a Ramp move as follows:

1. Iterate through all TimeState tuples in the TimeLine and keep a list of all TimeStates for which
the variable ActiveUnitStates is greater than 0.

2. Select a random TimeState from the previous list 1.

3. Iterate through all UnitStates at time tj and keep a list of UnitStates at which the generator is
active.

4. Select a random UnitState from the list of step 3.

5. Generate the value for δPower just like the RandomRampMoveGenerator in 12.1.

12.3 RandomBestGuessRampMoveGenerator
The RandomBestGuessRampMoveGenerator will randomly select a UnitState from the StateMatrix. It
will then try to match the power value at that UnitState to correct the discrepancy between the demand
and dispatch at that point in time. This means that if there is an energy shortage or surplus, the
power value will be increased or decreased to the point where either the discrepancy is resolved or the
PowerUpperLimit or PowerLowerLimit of the UnitState are hit.

12.4 RandomExtendRunTimeMoveGenerator
The RandomExtendRunTimeMoveGenerator simply generates valid values for i, s and j and will then
return an ExtendRunTime move which may or may not be valid.
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12.5 RandomPowerOnMoveGenerator
The RandomPowerOnMoveGenerator simply generates valid values for i, s and j and will then return a
TurnOnAtPmin move which may or may not be valid.

12.6 RandomStartUpPushBackMoveGenerator
The RandomStartUpPushBackMoveGenerator simply generates valid values for i, s and j and will then
return a StartUpPushBack move which may or may not be valid.

12.7 RandomTurnOffMoveGenerator
The RandomTurnOffMoveGenerator simply generates valid values for i, s and j and will then return a
TurnOff move which may or may not be valid.

12.8 RandomMoveGenerator
The RandomMoveGenerator does not generate any move by itself. It instead accepts a list of tuples of
which each tuple will contain a value c and one of the other RandomMoveGenerator types listed in this
section. On its creation, it will calculate ctotal =

∑
∀c c.

Once it gets the request to generate a new move, it will select one of the RandomMoveGenerators it
was given on its creation. The probability that a given RandomMoveGenerator is selected is Pr( c

ctotal
).

This way we can influence the probabilities of generating a certain move-type.

12.9 IterativeExtendRunTimeMoveGenerator
The IterativeExtendRunTimeMoveGenerator will iterate through all UnitStates in left-to-right and top-
to-bottom order and return a ExtendRunTime move with the respective i, s and j values.

12.10 IterativePowerOffMoveGenerator
The IterativePowerOffMoveGenerator will iterate through all UnitStates in left-to-right and top-to-
bottom order and return a TurnOff move with the respective i, s and j values.

12.11 IterativePowerOnMoveGenerator
The IterativePowerOnMoveGenerator will iterate through all UnitStates in left-to-right and top-to-
bottom order and return a PowerOnAtPmin move with the respective i, s and j values.

12.12 IterativeSamplingRampMoveGenerator
The IterativeSamplingRampMoveGenerator will iterate through all UnitStates in left-to-right and top-
to-bottom order and return a Ramp move with the respective i, s and j values. However, it will sample
the domain between the PowerLowerLimit and PowerUpperLimit values of the UnitState tuple with a
given resolution to calculate the value of δPower which is passed to a Ramp move. It generates Ramp
moves with the same values for i, s and j multiple times sequentially, but with different values for δPower
so the entire range between PowerLowerLimit and PowerUpperLimit can be sampled, before it moves on
to the next UnitState.

12.13 IterativeCompositeMoveGenerator
Just like the RandomMoveGenerator in subsection 12.8, the IterativeCompositeMoveGenerator receives
a list of IterativeMoveGenerators at its creation. As its name suggests, it will iterate through these move
generators one by one until their neighbourhood is exhausted.
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12.14 A final note on MoveGenerators
In this section we have seen that the MoveGenerators we use to generate moves which can take us to
neighbouring solutions, can be subdivided into two broad categories: random and iterative move genera-
tors. While the neighbourhood presented by the RandomMoveGenerators is impossible to exhaust, this
is not the case for the iterative MoveGenerators. Because the neighbourhood of some move generators
can be exhausted, the local search needs to contain a facility which can be used to signal to a MoveG-
enerator if the last move it generated was accepted or rejected. For the RandomMoveGenerators this
signal is irrelevant, but the IterativeMoveGenerators need these signals to update their internal state.

Consequently, we also need a mechanism for the MoveGenerators to signal to the Local Search that
its neighbourhood is exhausted. While the RandomMoveGenerators will never send this signal (their
neighbourhood cannot be exhausted), the IterativeMoveGenerators do need to be able to send this signal.
The IterativeCompositeMoveGenerator from subsection 12.13 even relies on this signal to advance to the
next MoveGenerator it has on its list.

It is important to note, that the Local Search I’ve built for this master thesis has been extended with
these facilities. The local search has also been extended with a mechanism by which it can request a “last
attempt” move to prevent the search from stalling and therefore terminating once its neighbourhood is
exhausted. This mechanism is very useful for implementing the best in neighbourhood heuristic from
subsection 4.3.3.

13 Obtaining initial solutions and the role of the cost function
There are various methods we can employ to obtain initial solutions for our local search. We could for
example simply assume that the power value in all UnitStates is set to 0. This means that the search
will always start with the assumption that all generators are off at any given time.

However, if we were to do this, the local search would never start at all, because in most instances,
the minimum possible fuel cost is achieved when all units are turned off and no power is generated at all.
So if we apply this in a naive way, we won’t get anywhere with most search heuristics. There might be
a way to make a random walk which simply accepts any neighbour (even if it makes the solution worse)
work, but unfortunately then we also have no way of determining if a solution found during the random
walk is actually better than the solution in which all units are turned off. So we have to do something
else.

The second naive idea is to simply turn all units on at their Pmax value at the start of the search.
However, this also won’t work, because we are minimizing a cost function and the minimal cost is always
the instance in which all units are turned off. Therefore the local search will quickly favor all neighbours
which ramp generators down and turn them off. Once the search finally terminates, we are left with the
same schedule as we had in previous situation: The one in which all units are turned off for the entire
duration of the schedule. So this doesn’t work either.

There is another trick which is commonly used to solve various optimization problems which can
be modeled as linear programs which might be useful here: Put penalty costs on situations which are
undesirable outcomes in your final solution. Considering the fact that the data structure and state update
procedures I have defined in sections 9 and 10 are highly flexible and can quite easily process an additional
CostFunctionComponent, I have decided to introduce a CostFunctionComponent which can be used to
introduce a penalty cost for every unit of energy that is not generated. This CostFunctionComponent
is defined in equation 41. This CostFunctionComponent is then attached to every TimeState in the
timeline of the Instance before the local search is started. Once the search terminates, we remove all
CostFunctionComponents in the problem and then add the legitimate ones which truly belong to that
specific instance again. When we’ve done that, we do one last pass over the state datastructure to
recalculate all state variables which ensures that the costs and the schedule we produce are correct.

calculateCost =

{
Shortage × PenaltyCost if CurrentDispatch < TotalDemand

0 otherwise
(41)

Now we have a mechanism which ensures that the local search doesn’t immediately optimize to the
solution in which all generators are turned off. This however immedately poses a new problem: “How
much should the penalty for non-delivered energy be?”. Unfortunately, this is different for each and every
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instance of the hybrid UC/ED problem and I have not been able to find a pattern I could exploit. So
I did a Fermi-estimation by just running a couple of Simulated Annealing searches to first discover the
correct order of magnitude for the penalty cost. This means that I ran multiple Simulated Annealing
searches with multiples of 10 as penalty value, so 10, 100, 1000, 10000 and so on. For the GA10 instance,
with a PenaltyCost of 10, the search didn’t move at all from the state in which all units were turned
off. A PenaltyCost of 100 seemed to give somewhat acceptable results. A PenaltyCost of 1000 seemed
to give results with a worse score than 100, but it also had less instances in which demands could not
be met. A PenaltyCost of 10000 appeared to be more or less indistinguishable from the case where the
costs were set at 1000.

So this seemed to suggest that for the GA10 instance, the optimal range for the PenaltyCost was to
be found somewhere between 10 and 1000. It was also clear that the end of the optimal range would be
somewhere in the interval [100, 1000], but it wasn’t clear on which side of 100 that range would start.

Then I ran a couple more and longer Simulated Annealing searches, but this time with values 50, 75,
100, 200 and 500 for the PenaltyCost.

Using this procedure for all instances, we arrive at the appropriate values for PenaltyCost shown in
table 7.

Instance Values
GA10 100, 200 or 500
TAI38 20000
A110 75 or 100
KOR140 100, 200 or 500
RCUC200 200 or 500

Table 7: An overview of values which work well for the PenaltyCost for each instance.

Surprisingly it turns out that the answer to the research question “How do we construct an initial
solution?” is: “We don’t. We just exploit the properties of the data-structure which we use as a state
representation. Then we put a penalty on the undesirable situation of non-delivered energy. We then
use a Fermi-estimation to get an idea of the desirable order of magnitude for the PenaltyCost. We then
further narrow down on preferable values by splitting the space between two orders of magnitude to
arrive at values which work reasonably well for the PenaltyCost constant.”

I do have to note that this is only possible, because we can treat the demand constraints as soft
constraints, and because the values returned by the objective function can span multiple orders of
magnitude as well.

14 Experimental environment
In this section, I will give details about my experimental environment and setup.

14.1 Experimental environment
These experiments were done on a Lenovo ThinkPad L480 and L580 which both have an Intel Core
i5-8250 CPU and 32 GigaBytes of ram and Debian 11 (Linux) as operating system. The algorithms were
implemented in Java and the experiments have been compiled and run with java-17-openjdk-amd64.

To keep the results reproducible, the runtime of the experiments has been limited by a stopping
criterion which terminates the search after a fixed number of iterations. However, for practical purposes
I have tied the names of the experiments to their expected running time on the wall-clock. To this end, I
have tied the number of iterations a search is allowed to run, to the number of seconds implied by “15m”
(15 minutes or 900 seconds) and “1h” (1 hour or 3600 seconds) by assuming that the search will always
progress at a fictional constant rate of 250.000 iterations per second. This means that a 15 minute search
may run for at most 15× 60× 250000 = 225000000 iterations and that a 1 hour long search may run for
3600× 250000 = 9000000000 iterations. Note that this gross indication of the expected running time, is
just a very loose indication which often does not match the actual running time. The actual running time
often differed from the actual running time on the computer the experiments were ran on too. However,
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the results produced by my experiments should be reproducible as all random generators are seeded from
one generator, which is always seeded with 0. These two factors combined should make the randomness
in my experiments entirely deterministic, so that apart from the running times, the experimental results
should in theory be entirely reproducible if one were to run the main method of the Experiments class
in the localSearchCore package.

14.2 A note on the experiment naming and the files and folders the code
will produce

By default my program will look for the .uc files in the instance directory, which it expects to be in the
working directory from which the program was started. In that same working directory it will create
two folders. One of these folders is named “tex” and the other one is named “logs”. Throughout these
folders a naming scheme is used which follows the convention that the files and folders will be separated
by hyphen-minus signs. The order in which the various naming elements will appear is as follows:

1. Name of instance (e.g. “GA10”)

2. Name of search strategy (e.g. “simulated annealing”)

3. Name of defined move-generation strategy (e.g. “Random”)

4. Shorthand notation for the estimated given maximum runtime (e.g. “r15m” or “r1h”)

5. A value used as a penalty cost per unit of non-delivered energy (e.g. “p10”, “p100”, “p1k” or
“p10k”)

6. A number denoting which experimental run produced the file.

7. A somewhat descriptive name of what was output into each file.

In the log directory, the program writes logs which dump nearly everything contained in the entire
state of each experimental run in a somewhat human readable format. In the tex directory, the program
writes compilable latex-files which will can be used to generate very large PDF-documents which can
create nice tables and plots of the solutions produced by an experimental run. In this same directory, the
program also writes a lot of tsv-files which contain the tables which serve as the input for the pgfplots
package used in the Latex documents. So both folders contain multiple representations in various forms
of the final schedules found by the program. In the code, in the Experiment class in the localsearchCore
package, there are three switches which can be used to control the volume of output generated by the
.tex documents which one can change if desired. Finally I also want to note that the LocalSearch class
in the LocalsearchCore package contains a switch called integerMoves. If this switch is set to true, the
various moveGenerators will try to generate only Integer moves by rounding the random moves they
generate. If this switch is set to false, the various moveGenerators will not do any rounding and just
generate any floating point number within the specified range. By default, this switch is set to true.

15 Stopping criteria
The following four basic stopping criteria have been implemented.

• Stop after a fixed number of search iterations.

• Stop after a fixed amount of time on the wall-clock has passed.

• Stop if the solution has not been improved for a fixed number of iterations.

• Stop if the solution has not been improved after a fixed amount of time on the wall-clock has
passed.

In addition to the four stopping criteria listed above, I’ve also implemented three stopping criteria
which can be used to combine different stopping criteria.
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• A disjunctive stopping criterion which evaluates to true if one or more of its supplied stopping
criteria evaluates to true.

• A conjunctive stopping criterion which evaluates to true if all its supplied stopping criteria evaluate
to true.

• An inverse stopping criterion which can be used to negate the value of its supplied stopping criterion.

16 Experiments
In this section I will describe how the various components which have been described throughout this
document are combined to perform experiments to assess the feasibility of furter research into local
search methods for the hybrid Unit Commitment and Economic Dispatch problem.

16.1 Experimental setup
We now have a very flexible set of building blocks which can be combined to construct various types of
integrated local search algorithms for the UC+ED problem.

Before we start defining complete configurations for local search algorithms, we first need to discuss
how we have to combine the various RandomMoveGenerators to arrive at a RandomMoveGenerator
which is suitable for a simulated annealing local search.

We can do so by combining the following elements into a RandomMoveGenerator as follows:

• Strictly one of the following: EnhancedRandomRampMoveGenerator, RandomRampMoveGenera-
tor or BestGuessRandomRampMoveGenerator. The value we assign to c to define the probability
is 400.

• A RandomStartUpPushBackMoveGenerator. The value we assign to c to define the probability is
100.

• A RandomTurnOffMoveGenerator. The value we assign to c to define the probability is 100.

• A RandomExtendRunTimeMoveGenerator. The value we assign to c to define the probability is
100.

• A RandomPowerOnMoveGenerator. The value we assign to c to define the probability is 100.

Notice how the c values of the RandomMoveGenerators which generate moves which can turn gen-
erators on and off add up to 400, which is exactly the same as the value assigned to the EnhancedRan-
domRampMoveGenerator or RandomRampMoveGenerator and how the total adds up to 800. Because
these values are chosen like this, there is either a 50% chance that we randomly generate a move which
tries to ramp the problem and a 50% chance that we randomly generate a move which tries to switch
generators on and off.

This distribution has been deliberately chosen, because we are trying to solve two separate problems
in the same local search algorithm. By chosing the values like this, there is now a an equal probability
for the local search to work on the Unit Commitment or the Economic Dispatch part of this problem.
Which side the local search will work on, is purely left up to chance.

I will use this distributions for all experiments which utilize RandomMoveGenerators.
For example, we can run a local search algorithm which uses the simulated annealing heuristic if we

combine these elements:

• A RandomMoveGenerator

• A DisjunctiveStoppingCriterion consisting of a FixedNumberOfIterations stopping criterion with
its number of iterations set to 250000 times the number of seconds we want the search to run and
an IterationsSinceLastImprovement stopping criterion with its number of iterations set to 60 times
250000.
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• A SimulatedAnnealingAcceptanceStrategy with its maximum number of iterations set to 250000
times the number of seconds we want the search to run. This parameter is used in the temperature
function of simulated annealing defined in equation 5.

We can create a greedy hillclimber like this:

• A RandomMoveGenerator

• A DisjunctiveStoppingCriterion consisting of a FixedNumberOfIterations stopping criterion with
its number of iterations set to 250000 times the number of seconds we want the search to run and
an IterationsSinceLastImprovement stopping criterion with its number of iterations set to 60 times
250000.

• A GreedyHillClimberAcceptanceStrategy.

We can create a random walk like this:

• A RandomMoveGenerator

• A DisjunctiveStoppingCriterion consisting of a FixedNumberOfIterations stopping criterion with
its number of iterations set to 250000 times the number of seconds we want the search to run and
an IterationsSinceLastImprovement stopping criterion with its number of iterations set to 60 times
250000.

• An AlwaysAcceptAcceptanceStrategy.

We can create a best in neighbourhood local search like this:

• An IterativeMoveGenerator

• A DisjunctiveStoppingCriterion consisting of a FixedNumberOfIterations stopping criterion with
its number of iterations set to 250000 times the number of seconds we want the search to run and
an IterationsSinceLastImprovement stopping criterion with its number of iterations set to 60 times
250000.

• A BestInNeighbourhoodAcceptanceStrategy as the main acceptance strategy.

• A GreedyHillClimberAcceptanceStrategy as the acceptance strategy for the situation in which the
neighbourhood generated by the IterativeMoveGenerator is exhausted.

In early testing the best in neighbourhood and random walk search strategies did not yield any
satisfying results when compared to the greedy hillclimber and simulated annealing strategies and since
this was in line with expectations and therefore not surprising, I decided it was not feasible to do any
extended experiments with these strategies.

So the main focus of my experiments was placed on the greedy hillclimber and simulated annealing.
With the information from section 14 and in particular the naming scheme from subsection 14.2,

the configuration parameters used for the extended experiments can be derived from their name. For
all configurations, I have done 50 different local search runs, except for the configurations involving the
A110 and RCUC200 instances, for which I have done 8 runs each. I have cut down on the number of
runs for these instances, because these were the last two instances under consideration and by then a
quite clear pattern had emerged.

17 Results
Let’s first define what it means for a schedule to be successful. A schedule is successful if all demands
are met, such that there are no points in time with a shortage greater than zero. We can then calculate
the ratio of successful versus unsuccessful schedules for the various configurations of our experiments.
The results of this are shown in table 17.
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Table 8: Success ratios of various experiments
ExperimentName numberOfRuns SuccesRate
A110-SimulatedAnnealing-EnhancedRandom-r1h-p100 8 1.0
GA10-HillClimberGreedy-Random-r15m-p10 50 None
GA10-HillClimberGreedy-BestGuessRandom-r15m-p10 50 None
GA10-HillClimberGreedy-EnhancedRandom-r15m-p10 50 None
GA10-HillClimberGreedy-Random-r15m-p100 50 0.18
GA10-HillClimberGreedy-BestGuessRandom-r15m-p100 50 None
GA10-HillClimberGreedy-EnhancedRandom-r15m-p100 50 0.16
GA10-HillClimberGreedy-Random-r15m-p1k 50 0.3
GA10-HillClimberGreedy-BestGuessRandom-r15m-p1k 50 None
GA10-HillClimberGreedy-EnhancedRandom-r15m-p1k 50 0.26
GA10-HillClimberGreedy-Random-r15m-p10k 50 0.32
GA10-HillClimberGreedy-BestGuessRandom-r15m-p10k 50 None
GA10-HillClimberGreedy-EnhancedRandom-r15m-p10k 50 0.26
GA10-SimulatedAnnealing2-Random-r1h-p50 50 None
GA10-SimulatedAnnealing2-EnhancedRandom-r1h-p50 50 None
GA10-SimulatedAnnealing2-Random-r1h-p75 50 None
GA10-SimulatedAnnealing2-EnhancedRandom-r1h-p75 50 None
GA10-SimulatedAnnealing2-Random-r1h-p100 50 0.14
GA10-SimulatedAnnealing2-EnhancedRandom-r1h-p100 50 0.02
GA10-SimulatedAnnealing2-Random-r1h-p200 50 1.0
GA10-SimulatedAnnealing2-EnhancedRandom-r1h-p200 50 1.0
GA10-SimulatedAnnealing2-Random-r1h-p500 50 1.0
GA10-SimulatedAnnealing2-EnhancedRandom-r1h-p500 50 0.94
GA10-SimulatedAnnealing-Random-r15m-p10 50 None
GA10-SimulatedAnnealing-BestGuessRandom-r15m-p10 50 None
GA10-SimulatedAnnealing-EnhancedRandom-r15m-p10 50 None
GA10-SimulatedAnnealing-Random-r15m-p100 50 0.22
GA10-SimulatedAnnealing-BestGuessRandom-r15m-p100 50 None
GA10-SimulatedAnnealing-EnhancedRandom-r15m-p100 50 0.24
GA10-SimulatedAnnealing-Random-r15m-p1k 50 1.0
GA10-SimulatedAnnealing-BestGuessRandom-r15m-p1k 50 None
GA10-SimulatedAnnealing-EnhancedRandom-r15m-p1k 50 1.0
GA10-SimulatedAnnealing-Random-r15m-p10k 50 1.0
GA10-SimulatedAnnealing-BestGuessRandom-r15m-p10k 50 None
GA10-SimulatedAnnealing-EnhancedRandom-r15m-p10k 50 1.0
KOR140-SimulatedAnnealing-Random-r1h-p100 50 None
KOR140-SimulatedAnnealing-EnhancedRandom-r1h-p100 50 None
KOR140-SimulatedAnnealing-Random-r1h-p200 50 None
KOR140-SimulatedAnnealing-EnhancedRandom-r1h-p200 50 None
KOR140-SimulatedAnnealing-Random-r1h-p500 50 None
KOR140-SimulatedAnnealing-EnhancedRandom-r1h-p500 50 None
KOR140-SimulatedAnnealing-Random-r1h-p1k 50 None
KOR140-SimulatedAnnealing-EnhancedRandom-r1h-p1k 50 None
RCUC200-SimulatedAnnealing-Random-r1h-p100 8 None
RCUC200-SimulatedAnnealing-Random-r1h-p200 8 None
RCUC200-SimulatedAnnealing-Random-r1h-p500 8 0.125
TAI38-SimulatedAnnealing-EnhancedRandom-r1h-p20k 50 1.0
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There are a few noticeble patterns. The first one is that the BestGuessRandom is clearly inferior. Its
succes rate is always None.

The higher the PenaltyCost, the more likely we are to find a schedule with a high succes rate. This
was expected.

It is also clear at a glance that if the local search finds a solution without unmet demands, it is very
likely that nearly all runs will succeed in finding a solution without unmet demands. I have already
hinted at this pattern in subsection 16.1 by stating that if 8 runs succeed, it is highly likely that all
additional runs will also succeed.

Another pattern we can read from table 17 is that there does not appear to be a large difference
between the RandomRampMoveGenerator and the EnhancedRandomRampMoveGenerator.

It appears to be the case that every time we try to do something clever, our efforts do not bear fruit.
However, there are also a couple of positive observations to be made. For example, the best score

found by the GA10-SimulatedAnnealing2-Random-r1h-p200 experiment is 591252.55457. Remember
from table 3 in section 3 that the global optimum for this instance is known to be 565825. This is
about a 4.5% difference with respect to the global optimum, which was found by Kazarlis et al. [7] by
brute-forcing the GA10 instance with a DP algorithm.

Another nice result is the schedule we’ve found for TAI38-SimulatedAnnealing-EnhancedRandom-
r1h-p20k. The cost of this schedule is about 2.056 ∗ 108, which is slightly better than the best value of
2.138 ∗ 108 reported by Huang et al. in Table 6 of their paper [5].

This suggests that a solution which does no clever tricks other than making a detailed model of the
problem space, has the potential to find solutions which only differ from the global optimum by a few
percent.

17.1 Thoughts about the validity of the success-ratio as a metric
In the beginning of this section, we have seen that if we look at success rates, the local search method
doesn’t look very reassuring. However, that is only if we use the definition of an infeasible schedule in
which we designate any schedule in which we have a shortage of energy that is strictly greater than 0 as
infeasible.

Therefore I argue, that this might not be a good metric to determine the success or failure for the
feasibility of a schedule, because the demands we are given, are forecasted values which rarely turn out
exactly as they were forecasted.

I also remark that if the shortages are small enough, which they often are, it might be possible to
make the schedule feasible with relatively small changes to the schedule. It is important to keep that in
mind as well.

Fortunately, our approach allows for the easy bookkeeping of additional state variables which hold
additional information about the state of the system. This is where the additional variables which model
the operating reserve, positive spinning reserve and negative spinning reserve come into the picture.

To illustrate this point we need to take a look at an example schedule which is included in subsection
17.2.

There is no particular reason to choose this schedule over any other, other than that it is the first of
a run with reasonable parameters. Yet this schedule exhibits the typical traits of many of the solutions
a local search with this state-representation calculates.

In figure 17.2.1 we can see that the demand and dispatch match eachother almost perfectly except
for one peak moment at time 11 at which this solution is 7 units of energy short.

If we then take a look at table 17.2.1, we can see that at time 11, there are still 4 units of Positive
Spinning Reserve left which could bring the shortage at time 11 down to only 3 units.

If we then take a look at times 10 and 12 we see that there is more than enough Positive and Negative
Spinning Reserve capacity to ramp a couple of units up or down to compensate for the 3 to 7 units of
energy we are short at time 11 and this can probably also be done without making noticeble changes in
the amount of power dispatched at times 10 and 12.

This brings us to the typical behaviour of a local search which uses simulated annealing in a problem
which behaves as an interior point problem. That is: The search tends to move through the middle of
the feasible region while staying some distance away from the boundaries. This behaviour is almost the
polar opposite of algorithms using linear programming.
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Table 9: Success ratios of various experiments
ExperimentName BestScoreWithoutShortage SuccesRate
A110-SimulatedAnnealing-EnhancedRandom-r1h-p100 4428953.969578764 1.0
GA10-HillClimberGreedy-Random-r15m-p10 None None
GA10-HillClimberGreedy-BestGuessRandom-r15m-p10 None None
GA10-HillClimberGreedy-EnhancedRandom-r15m-p10 None None
GA10-HillClimberGreedy-Random-r15m-p100 629764.0471400002 0.18
GA10-HillClimberGreedy-BestGuessRandom-r15m-p100 None None
GA10-HillClimberGreedy-EnhancedRandom-r15m-p100 625617.5357200002 0.16
GA10-HillClimberGreedy-Random-r15m-p1k 647551.2105900003 0.3
GA10-HillClimberGreedy-BestGuessRandom-r15m-p1k None None
GA10-HillClimberGreedy-EnhancedRandom-r15m-p1k 640272.7524700001 0.26
GA10-HillClimberGreedy-Random-r15m-p10k 647551.2105900003 0.32
GA10-HillClimberGreedy-BestGuessRandom-r15m-p10k None None
GA10-HillClimberGreedy-EnhancedRandom-r15m-p10k 637788.8110899999 0.26
GA10-SimulatedAnnealing2-Random-r1h-p50 None None
GA10-SimulatedAnnealing2-EnhancedRandom-r1h-p50 None None
GA10-SimulatedAnnealing2-Random-r1h-p75 None None
GA10-SimulatedAnnealing2-EnhancedRandom-r1h-p75 None None
GA10-SimulatedAnnealing2-Random-r1h-p100 591259.3546000001 0.14
GA10-SimulatedAnnealing2-EnhancedRandom-r1h-p100 591387.7778899994 0.02
GA10-SimulatedAnnealing2-Random-r1h-p200 591252.55457 1.0
GA10-SimulatedAnnealing2-EnhancedRandom-r1h-p200 591375.1288199999 1.0
GA10-SimulatedAnnealing2-Random-r1h-p500 609896.9320699999 1.0
GA10-SimulatedAnnealing2-EnhancedRandom-r1h-p500 609182.6644600001 0.94
GA10-SimulatedAnnealing-Random-r15m-p10 None None
GA10-SimulatedAnnealing-BestGuessRandom-r15m-p10 None None
GA10-SimulatedAnnealing-EnhancedRandom-r15m-p10 None None
GA10-SimulatedAnnealing-Random-r15m-p100 593778.7539499997 0.22
GA10-SimulatedAnnealing-BestGuessRandom-r15m-
p100

None None

GA10-SimulatedAnnealing-EnhancedRandom-r15m-p100 592960.3534499996 0.24
GA10-SimulatedAnnealing-Random-r15m-p1k 630814.52726 1.0
GA10-SimulatedAnnealing-BestGuessRandom-r15m-p1k None None
GA10-SimulatedAnnealing-EnhancedRandom-r15m-p1k 633470.5980000002 1.0
GA10-SimulatedAnnealing-Random-r15m-p10k 649032.9910499996 1.0
GA10-SimulatedAnnealing-BestGuessRandom-r15m-
p10k

None None

GA10-SimulatedAnnealing-EnhancedRandom-r15m-p10k 649693.2709499998 1.0
KOR140-SimulatedAnnealing-Random-r1h-p100 None None
KOR140-SimulatedAnnealing-EnhancedRandom-r1h-
p100

None None

KOR140-SimulatedAnnealing-Random-r1h-p200 None None
KOR140-SimulatedAnnealing-EnhancedRandom-r1h-
p200

None None

KOR140-SimulatedAnnealing-Random-r1h-p500 None None
KOR140-SimulatedAnnealing-EnhancedRandom-r1h-
p500

None None

KOR140-SimulatedAnnealing-Random-r1h-p1k None None
KOR140-SimulatedAnnealing-EnhancedRandom-r1h-p1k None None
RCUC200-SimulatedAnnealing-Random-r1h-p100 None None
RCUC200-SimulatedAnnealing-Random-r1h-p200 None None
RCUC200-SimulatedAnnealing-Random-r1h-p500 4.084530338869913E7 0.125
TAI38-SimulatedAnnealing-EnhancedRandom-r1h-p20k 2.0556055808769998E8 1.0
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I also have to note that the schedules this algorithm generates, are very robust because they tend
to have fairly large margins for the Positive and Negative Spinning Reserves, which means that at most
points in time, there is a lot of room to anticipate fluctuating demand. This is a very desirable property
if one has to consider the fluctuating output of renewable energy sources.
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17.2 GA10-SimulatedAnnealing-EnhancedRandom-r15m-p100-0000

Table 10: Core statistics of GA10-SimulatedAnnealing-EnhancedRandom-r15m-p100-0000
Statistic Value
total cost 593,542.35

total demand 27,100
total dispatch 27,094
total shortage 7
total surplus 1

active UnitStates 168
shortage instants 1
surplus instants 1

17.2.1 Timeline

Figure 10: Demand and dispatch of schedule GA10-SimulatedAnnealing-EnhancedRandom-r15m-p100-
0000
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Figure 11: Shortage and surplus of schedule GA10-SimulatedAnnealing-EnhancedRandom-r15m-p100-
0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

2

4

6

Time

Po
w

er

Shortage and surplus of schedule GA10-SimulatedAnnealing-EnhancedRandom-r15m-p100-0000

Shortage
Surplus

43



Figure 12: OR, PSR and NSR of schedule GA10-SimulatedAnnealing-EnhancedRandom-r15m-p100-0000
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Table 11: Timeline of GA10-SimulatedAnnealing-EnhancedRandom-r15m-p100-0000
Time Demand Dispatch Cost Shortage Surplus OR PSR NSR
0 700 700 0 0 0 448 448 273
1 750 750 0 0 0 288 258 169
2 850 851 0 0 1 318 288 275
3 950 950 0 0 0 289 259 287
4 1,000 1,000 0 0 0 303 273 287
5 1,100 1,100 0 0 0 238 208 329
6 1,150 1,150 0 0 0 199 169 312
7 1,200 1,200 0 0 0 169 139 304
8 1,300 1,300 0 0 0 129 99 310
9 1,400 1,400 0 0 0 80 50 352
10 1,450 1,450 0 0 0 76 46 367
11 1,500 1,493 0 7 0 34 4 452
12 1,400 1,400 0 0 0 110 80 317
13 1,300 1,300 0 0 0 178 148 297
14 1,200 1,200 0 0 0 258 228 287
15 1,050 1,050 0 0 0 268 238 138
16 1,000 1,000 0 0 0 419 389 233
17 1,100 1,100 0 0 0 212 182 275
18 1,200 1,200 0 0 0 226 196 210
19 1,400 1,400 0 0 0 53 23 481
20 1,300 1,300 0 0 0 122 92 310
21 1,100 1,100 0 0 0 240 210 204
22 900 900 0 0 0 329 299 183
23 800 800 0 0 0 540 510 223
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18 Conclusions
We have presented an integrated local search algorithm for the hybrid unit commitment and economic
dispatch problem. At the time of writing, the author is not aware of the existance of another local search
algorithm which can solve both problems simultaneously within the same procedure. Additionally, the
algorithm can be modified and extended with relative ease, because of the state representation we have
presented in this document. Because of the way the problem is formulated, it is also relatively easy to
extend the current formulation such that network transmission flows could also be incorporated into the
local search, if a future reader would so desire. The costs of the generated schedules are comparable to
the costs found by other researchers. On top of that, we have succeeded in modeling the feasible region
of the problem in a flexible, extensible and non-linear way which can be understood intuitively.

The author began this endavour because he suspected that it was possible that local search for the
unit commitment problem had not yet received the scientific attention it deserved. While there is some
pre-existing literature on this topic, this assumption turned out to be mostly correct.

19 Opportunities for future research
There are many paths we can take from this point on if one wants to research the subject of local search
for the hybrid unit commitment and economic dispatch problem further. One of such opportunities lies in
the search for new strategies for Neighbourhood exploration. Another opportunity lies in the potential to
extend the state representation further such that it becomes possible to also pull the optimization of the
load-flow problem into the local search procedure. Besides that, there is also potential to be found in the
discovery of additional performance measures for the energy generating system by extending the tuples
and update procedures of the state representation with additional variables which could directly model
various other parameters, like for example pollution. Finally, one could also take it upon themselves to
explore the feasibility of other acceptance strategies, like beam search or tabu-search for example. Or they
could try to extend the formulation presented here such that it also becomes usable for the RTS45, Dispa-
SET and Dispa-SET2 instances, which I have not touched upon due to their highly specific properties,
like the presence of a transmission network with renewables and energy storage facilities.
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