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Abstract

Motivated by recent ARPES experiments on strange metals, we implement
those measurements to the standard condensed-matter theory. Considering that
the best description is found to be a nodal self-energy similar to that of the Gubser-
Rocha model, derived by AdS/CFT calculations, we are encouraged to match this
term’s analytical properties to the standard formalism and calculate the critical
temperature corrections produced. Comparing it with the standard BCS predic-
tion, we evaluate whether such correction has a tendency to higher temperature
superconductivity.

i



A.Papatheodorou •

Table of contents
List of Figures iii

List of Tables iii

Introduction 1
1 Experimental self-energy and the Gubser-Rocha form . . . . . . . . . . . . 2

Green’s function 4
2.1 Application to the condensed-matter formalism . . . . . . . . . . . . . . 4
2.2 Spectral function and sum-rule . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Case: νk <

1
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Case: νk >
1
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Analytic structure of the second Riemann sheet . . . . . . . . . . . . . . 15

Critical temperature 17
3.1 Matsubara Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Introducing the self-energy . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Hubbard-Stratonovich . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Ladder-diagram summation . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Non-interacting case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Expanding about the Fermi surface . . . . . . . . . . . . . . . . . . . . . 28
3.7 Momentum-independent critical exponent at optimal doping . . . . . . . 29
3.8 Linear momentum dependence for νk ≥ 1

2 . . . . . . . . . . . . . . . . . 31

Discussion 33
4.1 Analyticity and approximations . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Critical Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Conclusion 36

Bibliography 37

ii



A.Papatheodorou •

List of Figures
1 Contour graph of Σ(ω,k) in the polar ω2 plane. . . . . . . . . . . . . . . . 4
2 Absolute value of the −ω2 function in the complex plane. . . . . . . . . . . . . 5
3 (a) Example of the absolute value of the self-energy Σ, (b) example of the real

and imaginary part of the self-energy in the complex ω plane for the critical
exponent value of νk = 0.822 . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Example of the absolute value of the inverse propagator G−1(k,z) for νk = 0.35 in
the complex ω plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Example of the absolute value of the inverse propagator G−1(k,z) for νk = 0.8 in
the complex ω plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 Spectral function plotted against frequency for values of νk ≤ 1
2 (a) and νk ≥ 1

2 (b). 9
7 Lorentzian approximations of first (ωc) and second (ωc2) order for varying values

of coupling constant g and c =−0.26. . . . . . . . . . . . . . . . . . . . . 13
8 Numerical fit of the width of spectral function in the experimental range. . . 14
9 Numerical fit of the real part of the self-energy in the range 1

2 ≤ νk ≤ 1. . . 14
10 Fitted function of Re[Σ], plotted as the orange curve, compared against the original,

plotted with blue dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
11 (a) The first physical sheet of the inverse propagator where ck is identified

as the red dot and the pole approximation of Eq.(19) with the green
one. (b) The first sheet of the inverse propagator on the upper half plane
matched with the second Riemann sheet of the inverse propagator for
the lower complex plane. An additional purple dot signifies the second
order approximation of the pole. . . . . . . . . . . . . . . . . . . . . . 17

12 Contour in complex plane avoiding the Matsubara poles on the imaginary
axis and the real pole on the real axis [16]. . . . . . . . . . . . . . . . . 20

13 Multiplication factor for the critical temperature with momentum indepen-
dent critical exponent at abstract doping. . . . . . . . . . . . . . . . . . 31

14 Critical temperature for varying values of doping. . . . . . . . . . . . . . . . . 33
15 Inverse Green’s function for a comparably big value of critical exponent. . . 34

List of Tables
1 Fitting parameters for Re[Σ] . . . . . . . . . . . . . . . . . . . . . . . . . 14

iii



A.Papatheodorou •

Introduction
The unexpected discovery of high-temperature superconductors (HTS) stirred up the
world of condensed-matter physics as Bednorz and Müller measured a critical
temperature of 35K for the cuprate lanthanum-barium-copper oxide well above
anything measured beforehand (1986). HTS find large-scale applications in the heart
of modern physics like the Large Hadron Collider at CERN being driven by
super-cooled bismuth-strontium-calcium-copper oxide superconductors. Despite their
technological applications, these strange metals appeal to the scientific community
mainly for eluding any of the standard microscopic theoretical treatments like the very
successful Bardeen–Cooper–Schrieffer (BCS) theory. Consequently, alternative
theoretical descriptions like the recent superexchange [1] interaction models and the
Anti-de Sitter/Conformal field theory or AdS/CFT correspondence gain popularity for
battling this theoretical deficiency. This script focuses on the later, as new evidence
surfaced, provoking great scientific interest in finding out how its intricate nature can
describe the reality of strange metals. Originating in 1997 by Juan Maldacena [2][3],
this approach merges string theory on AdS spaces with a conformal field theory, using
Gerard ’t Hooft’s holographic principle in order to find the conjecture of a strongly
correlated condensed matter system with a weakly interacting gravitational one of one
higher dimension.

The success of this theory lies in describing the intricate frequency [4] and recently
found momentum dependence [5] of the nodal self-energy of strange metals. In the
context of holography, this self-energy originates from a gravitationally dual model
with the purpose of describing an electron interacting with a CFT near its
superconducting phase transition region. This special behaviour is encaptured into the
critical exponent, which in the case of strange metals, bridges the gap between Fermi
liquid and non-Fermi liquid as shown by the best experimentally fitted spectral function
[5]. From this fact follows that the critical exponent must be momentum dependent [3].

Following the instructions of condensed-matter theory we evaluate whether the
analytical properties of the Gubser-Rocha self-energy, containing the critical exponent,
matches the standard formalism by studying it on the complex plane. The analytic
properties of the propagator are then derived which is followed by an assessment of the
spectral function’s ability to follow the quantum mechanical rulebook.

Having attained enough information we present the formalism which will lead to a
critical temperature calculation for a many-body system of fermions and attempt to go
through it with the additional self-energy corrections. The continuous nature of the
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critical exponent stands as an obstacle in these kind of calculations so the resulting
critical temperature is given for a simplified form of a momentum independent critical
exponent at optimal doping and a approximate general form where the real part of the
self-energy has been singled out. For the later, the Gubser-Rocha critical exponent
range is matched with that of the experiment [5] and the calculations are conducted
along a numerical approximation.

Evaluating the results and methods used in this script, we then present the
superconductive contribution of the nodal self-energy to the critical temperature and
asses its importance.

Strange metal self-energy in
second-quantization formalism
1 Experimental self-energy and the Gubser-Rocha form

Fitting angle-resolved photoemission of (Pb,Bi)2Sr2−xLaxCuO6+δ for different
momenta and temperatures [5] the calculated spectral function follows a Lorentzian
shape, which later becomes asymmetric away from the transition point hinting towards
momentum dependent exponent terms. The width ΓH of that spectral function is then
identified with the imaginary self-energy Σ′′(k,ω). The modified fit-function LH(k) is
of the form:

LH(k) =
W
π

ΓH
2

(k− k∗)2 +(ΓH
2 )2

,

ΓH(k) = G0 +λ
[(h̄ω)2 +(βkBT )2]α(k)

h̄ω
2α(k)−1
N

,

α(k) = a(1+V [
k− kF

kF
]).

(1)

In these equations λ and β are fitting parameters normalized to an energy scale of ωN ,
while G0 is the self-energy contribution from impurity scattering, V the asymmetry
parameter. It is worth noting that the doping dependence is included in the α

coefficient which takes the value of a = 0.51 for optimal doping up to the value of
a = 0.84 for the most overdoped state. The width ΓH of the Lorentzian curve is

2
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directly connected with the imaginary part of the self-energy[6], as

Σ
′′(k,ω) =

vFΓH(ω,k)
2

∝ ω
2α(k), (2)

where vF is the Fermi velocity.
Considering momentum-dependent exponents, the Gubser-Rocha model [4]

provides an excellent candidate where the theoretically produced self-energy has
frequency dependence with a momentum-dependent power-law. We denote this critical
exponent by νk and identify it with a(k). For zero temperatures this self-energy is
defined by the equation

Σ(k,ω) = gω(−ω
2)νk− 1

2 . (3)

Notably, the asymmetry parameter V is required to take the value of minus one for the
Gubser-Rocha self-energy to match the experiment although fixing the rest of the
parameters and fitting the ARPES data again yields a similar value for V [5].

We can see how these terms coalign by performing an ε << 1 expansion of the
form ω → ω + iε and neglecting ε2 terms. This yields:

Σ(k,ω) = g(ω + iε)e(νk− 1
2 ) ln(−ω2−2iεω) (4)

Looking at the complex plane on Fig.(1) the orange region is found for ω < 0 and the
red one for ω > 0. The arguement of the complex z =−ω2 −2iωε can be found as

arg(z) =

{
+π ,ω < 0

−π ,ω > 0 .

It bares mention that the branch cut created by the logarithm of Eq.(4) spans across the
whole real axis on the ω plane but is restricted for the complex z plane, as the positive
region is inaccessible for any ω . Knowing this, the self-energy can be written as

Σ(ω,k) =±g|ω|e(νk− 1
2 ) ln |ω|2e∓(νk− 1

2 )iπ =±g|ω||ω|2νk−1[cos(∓(νk −
1
2
)π)+ isin(∓(νk −

1
2
)π)], (5)

where the top sign corresponds to ω > 0 and the bottom one to ω < 0.

3
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Figure 1: Contour graph of Σ(ω,k) in the polar ω2 plane.

The real and imaginary part of the Gubser-Rocha self-energy now become

Re(Σ(k,ω)) =±g|ω|2νkcos(∓(νk −
1
2
)π)− εg|ω|2νk−1sin(∓(νk −

1
2
)π)

Im(Σ(k,ω)) =±g|ω|2νksin(∓(νk −
1
2
)π)+ εg|ω|2νk−1cos(∓(νk −

1
2
)π) .

(6)

Taking the limit ε → 0+ yields:

Re(Σ(k,ω)) = gω|ω|2νk−1cos((νk −
1
2
)π),

Im(Σ(k,ω)) =−g|ω|2νksin((νk −
1
2
)π).

(7)

Identifying α with νk, the Gubser-Rocha imaginary self-energy shows exactly the
same Σ′′(ω,k) ∝ ω2α(k) relation as the experiment.

Constructing the propagator
2.1 Application to the condensed-matter formalism

The aim of this subsection is to gain insight about the Gusber-Rocha self-energy in the
full complex plane. Consequently, we analytically continue the frequency ω = x+ yi
and split the self-energy into a real and an imaginary part once more.

4
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Figure 2: Absolute value of the −ω2 function in the complex plane.
Graphing and verifying the structure of such function can prove to be somewhat

tedious since branch cuts take away its continuity and complex inputs to the
logarithmic function create a multiplicity of solutions called Riemann sheets. Since
most visualization softwares do not take well to those traits we will be breaking down
this procedure focusing first on the behaviour of the multi-valued −ω2 function for
complex frequencies as a sanity check. The starting shape of Fig.(2) must remain
consistent when we combine it with the rest of the self-energy terms. Consequently,
the next step entails raising the previous function to the rational power of νk − 1

2 and
multiplying by the complex frequency. Calculating the complete self-energy using
cartesian coordinates, with ω = x+ yi, yields

Σ(k,x,y) = g[x(x2 + y2)νk− 1
2 cos((νk −

1
2
)θ)− y(x2 + y2)νk− 1

2 sin((νk −
1
2
)θ)]

+ ig[y(x2 + y2)
νk− 1

2 cos((νk −
1
2
)θ)+ x(x2 + y2)νk− 1

2 sin((νk −
1
2
)θ)],

(8)

where θ is the angle of the complex number −ω2. Since this negative exponentiated
term creates a branch cut on the real axis of the complex ω plane one should be careful
as to not cross to another Riemann sheet.

5
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(a) (b)

Figure 3: (a) Example of the absolute value of the self-energy Σ, (b) example of the real
and imaginary part of the self-energy in the complex ω plane for the critical exponent
value of νk = 0.822

It is worth noting that the imaginary self-energy of Fig.(3. b) takes both negative
and positive values on the upper and lower complex plane. This is an unusual feature
for condensed matter systems which will prove to be cumbersome, as shown later in
the script.

To unravel the properties of an interacting system dictated by the Gubser-Rocha
self-energy we turn our attention the Green’s function derived in the Lehmann
representation [7]. Close to the real axis the non-interacting Green’s function is given
by the typical form

G0(k,ω) =
h̄

h̄ω − (εk −µ)
. (9)

In the interacting case an imaginary part is added to the denominator that comes from
the self-energy, which is related to the lifetime of the excitation causing the interaction
as

G(k,ω) =
h̄

h̄ω − (εk −µ)− h̄Σ(k,ω)
. (10)

We expand this function to the whole complex plane by analytically continuing in
regards to the frequency in a similar way to the self-energy described in Eq.(8). On that
note, the first "physical" Riemann sheet of the propagator can be plotted. Expanding on
this idea, we turn to the inverse of the Green’s function which exhibits the Green’s
function poles as zeroes. These points are of great importance as they can provide the
full microscopic picture of the interaction.

6
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Figure 4: Example of the abso-
lute value of the inverse propagator
G−1(k,z) for νk = 0.35 in the complex
ω plane.

Figure 5: Example of the abso-
lute value of the inverse propagator
G−1(k,z) for νk = 0.8 in the complex
ω plane.

The sign of the coupling constant plays a big role in identifying these structures.
Following the analysis done in the experimental side of things [5] we match the
Gubser-Rocha frequency independent prefactors with the results.

g sin((νk −
1
2
)π) =

λvF

2(h̄ωN)2νk−1 ,

g sin((νk −
1
2
)π)> 0.

(11)

Since the coupling constant g is a renormalizable quantity we neglect its absolute value
and fix its sign in accordance to the above equation. A sign change for the coupling
constant is also theoretically predicted by AdS/CFT [3], which takes place at the value
of νk =

1
2 , changing from g ∝ Γ(νk − 1

2) =−|g|, for νk ≤ 1
2 , to g = |g|, for νk ≥ 1

2 , in
agreement with the above. In the νk ≥ 1

2 case two poles appear in the first and forth
quadrant of the complex plane fact that will prove to be troublesome in giving physical
context to our calculations. Similar poles have been observed in Green’s function
calculations derived from AdS/CFT correspondence [10] that hint towards particle
anti-particle symmetry violation.

7
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2.2 Spectral function and sum-rule

The spectral function is a continuous function lying in the real axis of the analytically
continued Green’s function G(k,z). Approaching the real axis from above we find the
retarded Green’s function whose self-energy has been already calculated in Eqs.(7).
Hence,

GR(k,ω) =
1

ω − ck −g(ω|ω|2νk−1cos((νk − 1
2)π)− i|ω|2νksin((νk − 1

2)π))
. (12)

Where we have set ck =
εk−µ

h̄ for notational simplicity.
In the case of a non-interacting Green’s function with a small positive imaginary

part added to the frequency the imaginary part of the Green’s function is found as

Im[ lim
ε→0+

G0(x+ iε)] = Im[ lim
ε→0+

1
x+ iε

]

=− lim
ε→0+

ε

x2 + ε2 =−πδ (x),
(13)

The sharp peak in the imaginary part is an indication of an existing particle thus in the
free particle case this quantity is associated with the spectral function. Including the
Gubser-Rocha self-energy produces a spectral function ρ(k,ω) equal to

ρ(k,ω) =−Im(GR(k,ω))

π

=
1
π

g|ω|2νksin((νk − 1
2)π)

[ω − c−gω|ω|2νk−1cos((νk − 1
2π))]2 +[g|ω|2νksin((νk − 1

2)π)]]
2
.

(14)

This function should obey the Riemann-Lebesgue lemma approaching zero as the
frequency ω tends to infinity with a factor of 1

ω
. Conventionally, this relation is

verified by the sum rule [7] where the spectral function is required to equate to unity
when integrated over all frequency space. At first glance, the spectral function of
Eq.(14) is given in regards to the critical exponent νk where for νk ≤ 1

2 it takes negative
values and only for νk ≥ 1

2 the spectral function becomes positive. This unphysical
result can be easily traced back to the coupling constant g which has a sign change
threshold at νk =

1
2 , as mentioned before. The spectral function can now be plotted

having shape similar to that of holographic spectral functions for varying critical
exponents [8], as shown in Fig.(6).

8
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(a) (b)

Figure 6: Spectral function plotted against frequency for values of νk ≤ 1
2 (a) and νk ≥ 1

2 (b).

Applying the aforementioned function to the sum-rule relation should
hypothetically yield

1 =

ˆ
∞

−∞

dωρ(ω,k)

=

ˆ
∞

−∞

dω
1
π

g|ω|2νksin((νk − 1
2)π)

[ω − c−gω|ω|2νk−1cos((νk − 1
2π))]2 +[g|ω|2νksin((νk − 1

2)π)]]
2
.

(15)

As mentioned in the previous section, this property of quantum mechanical spectral
functions is responsible for maintaining the sum of probabilities to be equal to one.

2.3 Case: νk <
1
2

In this range for the critical exponent νk, no poles appear in the first physical sheet of
the propagator. The analyticity of the Green’s function in the upper complex plane,
which by definition produces the aforementioned sum rule, will now work as a
verifying mechanism. Integrating the analytically continued G(z) along an
anti-clockwise directed curve, entrapping the whole upper complex curve, yields zero
as there are no poles present. So, ˛

C
G(z)dz = 0. (16)

Considering the contour as a sum of a straight line on the real axis and an arc with
opposing directions, this integral can be split into two. The straight integral passes
through the real axis while the arc circles around the real pole on the negative real axis
as shown in Fig.(4). We rewrite the contour integral as˛

straight
G(z)dz+

˛
arc

G(z)dz = 0. (17)

9
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This relation requires the imaginary part of the resulting integration to tend to zero as
well. The straight line integral can be approximated by taking small positive imaginary
values of z and results in an integration of the spectral function as seen before in
Eq.(15). The arc integral contributes a term equal to πi since it covers only half a
circle. Now we can identify this straight line integration of the imaginary part of the
Green’s function with the spectral function using the first equation of Eq.(14). This
results in the aforementioned sum-ruleˆ

∞

−∞

ρ(x)dx = 1. (18)

2.4 Case: νk >
1
2

These values for the critical exponent hold special value as they match the ones in our
experimental reference. In this section we attempt to mend the analytical misbehaviour
of the spectral function and break down its properties in this range.

Taking a closer look at the zeroes of the retarded Green’s function denominator, the
existence of more than one pole is prohibited for values of νk ≤ 1 .

ωc = ck +g(ωc|ωc|2νk−1cos((νk −
1
2
)π)− i|ωc|2νksin((νk −

1
2
)π))

The apparent first and forth quadrant poles are connected with the logarithmic function
used to describe the self-energy of Eq.(4). The multi-valued exponent
(νk − 1

2)ln(−ω2 − iεω) in the self-energy creates an infinite amount of poles scattered
around the infinite Riemann sheets the same way that a function of the form 1

eix+1
would [9]. These points are considered poles of first order which ruin the upper
complex plane analyticity of the propagator. In the previous section this property of the
Green’s function was used to verify the sum rule. Yet, a single pole can still be found
approximatively for the above equation. We use the Lagrange inversion theorem in
order to extract a momentum dependent critical frequency following the inversion
relations

ck = f (ωc) = ωc −Σ(ωc,k),

ω = g(ck) = ck +
∞

∑
n=1

gn
(ck − f (a))n

n!
,

gn = lim
ω→ck

dn−1

dω
n−1
c

(
ωc − ck

f (ωc)− f (ck)
)n,

10
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where g1 = 1, as limω→ck [Σ(ω,k)−Σ(ck,k)] tends to zero faster than limω→ck [ω − ck]

for νk ≥ 1
2 . The first order approximation is now calculated as

ωc = ck +Σ(ck,k) = ck +g(ck|ck|2νk−1cos((νk −
1
2
)π)− i|ck|2νksin((νk −

1
2
)π)).

(19)

Similarly to other AdS/CFT motivated papers [10] we consider terms of
ck =

εk−µ

h̄ ∝ k− kF up to and including powers of 2νk for 1
2 ≤ νk. This approximation,

shown in Eq.(19), can succeed in finding the pole’s location on the complex plane only
for small values of ck

In order to see how this approximation can create poles in the denominator of the
retarded Green’s function we apply the equation above to the corresponding
denominator to find

ωc − ck −g|ωc|2νk(sing(ωc)cos((νk −
1
2
)π)− isin((νk −

1
2
)π)) =

g|ck|2νk(sign(ck)cos((νk −
1
2
)π)− isin((νk −

1
2
)π))+��ck −��ck

−g|ck +g(ck|ck|2νk−1cos((νk −
1
2
)π)− i|ck|2νk sin((νk −

1
2
)π))|2νk(sign(ωc)cos((νk −

1
2
)π)− isin((νk −

1
2
)π))

= g|ck|2νk(sign(ck)cos((νk −
1
2
)π)− isin((νk −

1
2
)π))−g|ck|2νk(sign(ωk)cos((νk −

1
2
)π)− isin((νk −

1
2
)π))+O(c2νk+1

k )

≈ 0, for sign(ωc) = sign(ck).

To perform the calculations described above we have used the fact that the factor
|ωc|2νk expands into terms with powers of ck bigger than 2νk which are simplified for
1
2 ≤ νk leaving just the term |ck|2νk . The sign of the critical frequency is considered to
be the same as the sign of ck while in the case that these two quantities have a different
sign the pole approximation

ωc = ck +g(−ck|ck|2νk−1cos((νk −
1
2
)π)− i|ck|2νksin((νk −

1
2
)π)),

can be used to get the same outcome. Now we turn again to the sum rule where the
integration over frequencies has to be done along the upper-half complex plane as
discussed before. For this reason we choose the conjugate of the pole found previously
since it lies in our area of interest and is also a valid pole of the spectral function. In
order to perform the contour integral on the complex plane, we split the anti-clockwise
contour C that engulfs the upper-half plane into two parts. The first one is Cstraight
which accounts for the integration along the real axis and the second one is CArc whose
contribution to the integral vanishes as we get to bigger ω . Thus, the straight line is

11
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exactly equal to the contour integral along C
˛

C
dω

1
π

g|ω|2νk sin((νk −
1
2
)π)

1
ω − ck −gω|ω|2νk−1cos((νk − 1

2 )π)+ ig|ω|2νk sin((νk
1
2 )π))

1
ω − ck −gω|ω|2νk−1cos((νk − 1

2 )π)− ig|ω|2νk sin((νk
1
2 )π))

= 2πiRes

[
1
π

g|ω|2νk sin((νk − 1
2 )π)

ω − ck −gω|ω|2νk−1cos((νk − 1
2 )π)+ ig|ω|2νk sin((νk

1
2 )π))

]
ω=ω∗

c

≈ 2πi(
1
π

g|ck|2νk sin((νk − 1
2 )π)

2ig|ck|2νk sin((νk − 1
2 )π)

)

= 1.

(20)

This process has normalized the spectral function approximatively so the sum of all
probabilities amount to unity. To further our calculation’s accuracy, we turn to
second-order approximation of the pole calculated in the previous segment. The
second-order approximation is also considered where we keep terms of ck up to the 4νk
order. So,

ωc2 = ck −g(c2
k +2g|c2νk+1|cos((νk −

1
2
)π)+g2|c4νk

k |)νk cos((νk −
1
2
)π)

− ig(c2
k +2g|c2νk+1|cos((νk −

1
2
)π)+g2|c4νk

k |)νk sin((νk −
1
2
)π).

In order to provide an additional evaluation criteria for the above approximations we
transform these complex poles into Lorentzian distributions and compare the results.
In this scenario two different parameters play roles of great importance. The first is the
position of the maxima in between cases, given by the real part of the pole, and
secondly the width of the Lorentzian dictated by the imaginary part of the pole. Since
the matching done in [5] is valid for momenta close to the Fermi momenta, where
−0.26

h̄ eV ≤ ck we expect the validity of the pole approximations to become apparent in
a similar region of energies.

Taking a glance at Fig.(7) the approximations show high dependence on the
coupling constant g, where smaller values of it lead to a better agreement with the
experiment. This fact will be taken into account when deriving results based on this
approximation. More than that, the ck parameter has been tuned at the least favourable
value of −0.26

h̄ where closer to zero values lead to a better result.
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Figure 7: Lorentzian approximations of first (ωc) and second (ωc2) order for
varying values of coupling constant g and c =−0.26.

Alternatively we can separate the spectral function into two components its width
and the position where it takes its maximum value. Given the fact the non-interactive
spectral function is considered to be equal to a delta function, we study the range where
the above approximation stands true. Following a local optimization fit the width of the
spectral function is plotted in Fig.(8), where the ratio of the Lorentzian’s height, being
equal to 2

πΓ
, over width was also used to separate the graph into regions where the

claim of a delta-like spectral function is most prevalent. We extract the momentum
dependence of the width by taking different values of ck and νk separately inside the
experimental range which were later combined to get the behaviour of the width in
regards to doping. More than that the spectral function maximum can be approximated
following the same procedure shown in Fig.(9). It is inherent to the power law relation
of the self-energy that the largest standard error appears near the edge values of the
critical exponent. Taking that into account and a five-fold height to width ratio, the
delta function approximation is thought to be valid for the range 0.6 ≤ νk ≤ 1.
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Figure 8: Numerical fit of the width of spectral function in the experimental range.

Figure 9: Numerical fit of the real part of the self-energy in the range 1
2 ≤ νk ≤ 1.

Considering that the power law nature of the self-energy becomes troublesome for
the Green’s function’s analyticity and poses great obstacles in further calculations we
approximate its behaviour by a function of the form

ω|ω|2νk−1cos((νk −
1
2
)π) → [a+b(νk −1)+ c(νk −1)2]ω +[d + f (νk −

1
2
)+ l(νk −

1
2
)2]ω2.

Table 1: Fitting parameters for Re[Σ]

Linear dependence Quadratic dependence
a 0.185986 d 0.0469406
b -0.643364 f 0.222502
c 3.28174 l 7.7821

Since the critical exponent has been restricted to values that make the self-energy
relation linear or quadratic, higher powers of frequency dependence do not lead to
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better approximations. It is also worth mentioning that a greater weight has been put
on lower values of ω which contribute most for momentum values close to the Fermi
surface. The fitted equation can be now put to the test by comparing the function to the
original as shown in Fig.(10) where a good agreement is found up to the critical
exponent value of 0.9. This numerical approximation, in contrast with the original
form, can allow us to extract the momentum dependence of the real part of the self
energy as a factor since the critical exponent does not appear as a power order of
frequency.

Figure 10: Fitted function of Re[Σ], plotted as the orange curve, compared
against the original, plotted with blue dots.

2.5 Analytic structure of the second Riemann sheet

In this section we study the analytical structure of the propagator outside the first,
physical Riemann sheet. The points of most interest are its poles where a classification
of them according to their characteristic features can provide information about
unstable particles. The propagator poles which are of most interest appear for
Im(ω)< 0 and Re(ω)> 0 and are called resonances [11]. The second Riemann sheet
can found by analytically continuing the Green’s function[12](or the inverse of it)
below the branch cut in a way that

G(2)(x− iε) = G(1)(x+ iε). (21)
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The superscript in this case is used for noting the first and second Riemann sheets
Since the discontinuity around the branch cut is defined by

G(1)(x+ iε)−G(1)(x− iε) = 2πiρ(x), (22)

where ρ the spectral function. The merging of the upper complex physical plane and
lower unphysical plane should be done in a continuous manner. The identity theorem
states that if two given functions f and g, both holomorphic on a domain Ω, equal each
other on some line segment U lying in Ω, then they equal each other on the whole
domain Ω [13]. This means that we can analytically continue the inverse propagator
function as ω = z = x+ yi analytically from the upper-half complex plane to the
lower-half second Riemann sheet. Given the fact the quantity of interest is the inverse
of the Green’s function, we define σ(x) as the inverse of the retarded Green’s function
minus the inverse advanced Green’s function. This allows us to rewrite Eq.(22) as

G(2)(z)−1 = G(1)(z)−1 +2πiσ(z) (23)

σ(z) =−Im[G(1)(z)−1]

π
, (24)

where σ(x) is analytically continued to the whole complex plane. Borrowing the
Green’s function form, from section 1, we apply this process in a similar manner to
[13] [14][15]. The second Riemann sheet propagator, which is continuous across the
real axis, can now be evaluated by the sum of the physical Green’s function and the
inverted spectral function’s value on the real axis [12]. This process results in
deforming the branch cut in a way that the pole hiding behind it can be revealed.
Taking the inverse propagator relation for the whole complex plane yields:

G(2)(z)−1 = G(1)(z)−1 +2iIm[(G(1)(z))−1].
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Figure 11: (a) The first physical sheet of the inverse propagator where ck

is identified as the red dot and the pole approximation of Eq.(19) with the
green one. (b) The first sheet of the inverse propagator on the upper half
plane matched with the second Riemann sheet of the inverse propagator
for the lower complex plane. An additional purple dot signifies the sec-
ond order approximation of the pole.

The second Riemann sheet can is now plotted in Fig.(11) and searched for complex
poles. The approximative relation of Eq.(19) was also indicated on the complex plane
which seems to track a pole underneath the branch cut next to the negative real axis.
An important detail for this process is that we are expanding the upper complex plane
onto the lower without passing any branch cuts, so the angle of the complex
self-energy remains similar to that of the retarded Green’s function of Eq.(12) instead
of the advanced one. This threat to our function’s analyticity is inherit to the rational
nature of the critical exponent and is present in all the infinite logarithmic sheets of the
propagator.
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Hubbard–Stratonovich transformation
and ladder-diagram calculations
The Hubbard-Stratonovich transformation is a manipulation of the system’s action
where a new collective field is added in a way that decouples the interaction terms
between fermionic fields. This allows for a simplified theoretical description of the
system where the fermionic fields can be integrated out, as described later in the text.
Through this transformation useful quantities can be determined that will later lead to
the calculation of observable quantities like the critical temperature of the phase
transition or the coherence length of the condensate [16]. We initialize this model by
considering the non interacting case of a many particle Lagrangian inside the action
functional, which yields

S0[L [φ∗,φ ]] = ∑
a

ˆ h̄β

0
dτ

ˆ
dxL [φ∗

a (x,τ),φa(x,τ)]

= ∑
a

ˆ h̄β

0
dτ

ˆ
dxφ

∗
a (x,τ)(h̄

d
dτ

− h̄2
∇2

2m
+ εa −µ)φa(x,τ),

(25)

where we denote εa as the Hamiltonian eigenvalues and µ as the chemical potential.

3.1 Matsubara Expansion

We attempt to simplify the action by Fourier transforming the electron fields in a
similar manner to that of a Matsubara expansion

φa = ∑
n

∑
n

φn,n,aχn(x)
e−iωnτ√

h̄β
, (26)

where β = 1
kBT and kB the Boltzmann constant. In this case, the imaginary frequency

space is written in regards to the Matsubara frequencies, where ωn =
πn
h̄β

for bosons and

ωn =
π(2n+1)

h̄β
for fermions. The action is now transformed in a way that our operators

can take their corresponding eigenvalues

S[φ ∗,φ ] = ∑
a,a′

ˆ h̄β

0
dτ

ˆ
dx∑

n,n
∑
n′,n′

φn,n,aχ
∗
n(x)

eiωnτ√
h̄β

(h̄
d

dτ
− h̄2

∇2

2m
+ εa,a′ −µ)φn′,n′,a′χn′(x)

e−iωnτ√
h̄β

= ∑
a,a′

ˆ h̄β

0
dτ

ˆ
dx∑

n,n
∑
n′,n′

φ
∗
n,n,aχ

∗
n (x)

eiωnτ√
h̄β

(−h̄ωn′ + εn′ + εa,a′ −µ)φn′,n′,a′χn′(x)
e−iωn′τ√

h̄β
,

(27)
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where εn′ is the eigenenergy of the n′th Matsubara frequency and εa,a′ the eigenenergy

corresponding to spin. Using that
´ h̄β

0 dτ
ei(ωn−ωn′ )τ

h̄β
= δn,n′ the above expression can be

simplified to

S[φ∗,φ ] = ∑
n,n,

∑
a

φn,n,a(−h̄ωn + εn,a −µ)φn,n,a, (28)

where we denote the total energy by εn,a,a′ . We now turn to the partition function
defined as

Z0 =

ˆ
d[φ∗]d[φ ]exp{−1

h̄ ∑
a,a′

ˆ h̄β

0
dτ

ˆ h̄β

0
dτ

′
ˆ

dx
ˆ

dx′φa(x,τ)∗G−1
0;a,a′(x,τ;x′,τ ′)φa(x′,τ ′)}.

(29)

The Green’s function G is the solution when the Lagrangian operator is applied on the
fields and can be found from solving the following equation.

G−1
0;a,a′(x,τ;x′,τ ′) =−1

h̄
(h̄

d
dτ

− h̄2
∇2

2m
+ εa,a′ −µ)δ (x− x′)δ (τ − τ

′). (30)

Expanding it in the same way as before for discrete states we can extract the
momentum representation of the Green’s function from inside the Fourier transform.

G0;a,a′(x,τ;x′,τ ′) = ∑
n,n

−h̄
−ih̄ωn + εn,a,a′ −µ

χn(x)χn ∗ (x′)
e−iωn(τ−τ ′)

h̄β
, (31)

where in momentum space

G0;a,a′(n,n;n′,n′) = δn,n′δn,n′
−h̄

−ih̄ωn + εn,a,a′ −µ
. (32)

Now the integration of the fermionic fields is made possible by the identity:

Z =

ˆ
[dφ

∗]d[φ ]exp{(φ |G−1|φ)+(J|φ)+(φ |J)}

= exp{∓Tr[log(−G−1)],

(33)

where ((φ |G−1|φ)) representing the action and J the added sources [16]. Specifically:

Z0 =

ˆ
(Πn,n,adφ

∗
n,n,adφn,n,a

1

(2πi)
1±1

2

1
(h̄β )±1 )exp{−1

h̄ ∑
n,n,a

φ
∗
n,n,a(−ih̄ωn + εn,a −µ)φn,n,a}

= exp{∓ ∑
n,n,a

ln(β (−ih̄ωn + εn,a −µ))},

(34)
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where the term 1
(h̄β )±1 comes from the Jacobian of the wavefunction integration, as we

transform the field φa to its momentum space equivalent φn,n,a. Taking a closer look at
the sum in the exponent and narrowing our focus to the frequency index n, we notice
that the discrete summation can be turned into complex integration by analytically
continuing the frequency space [16][17].

1
h̄β

∑
n

ln(−ih̄ωn + ε −µ) =
1

2πi

˛
C

ln(−h̄z+ ε −µ). (35)

It is essential for the contour C to contain no divergences like the one created by the
logarithmic function presented at Sec.(2.1). For values of ε−µ

h̄ < z the contour is
deformed and partitioned into C,C′ and C′′, as shown in Fig.(12), so that the branch-cut
is avoided. The Matsubara poles can be now elegantly added by multiplying by the
quantity limη→0

±h̄βeηz

eβ h̄z∓1
. This term is made so its contribution, when performing the

contour integration, to be equal to ±1, with −1 corresponding to fermions and +1 to
bosons. Its poles are simple and, considering that z = iωn, they correspond to the odd
and even Matsubara frequencies. The importance of this addition can be readily seen
by identifying the additional term with the Fermi-Dirac or Bose-Einstein distribution
for fermions and bosons respectively. Since the total contour is made to enclose no
poles, the complex integration yields zero

limη→0
1

2πi

˛
C+C′+C′′

ln(−h̄z+ ε −µ)
±eηz

eh̄β z ∓1
= 0.

The contour of interest C is now calculatable as a function of the rest of the contours.
The contour C′ gives no contribution when integrated over.

Figure 12: Contour in complex plane avoid-
ing the Matsubara poles on the imaginary axis
and the real pole on the real axis [16].
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This can be readily seen, if one considers that the Green’s functions should
converge to zero, for high frequency modes, with a convergence ratio of 1

ω
, fact which

is made sure by the sum rule Eq.(15). So

limη→0
1

2πi

˛
C

ln(−h̄z+ ε −µ)
±eηz

eh̄β z ∓1
= limη→0

1
2πi

˛
C′′

ln(−h̄z+ ε −µ)
∓eηz

eh̄β z ∓1

=

ˆ
∞

ε−µ

h̄

dz
∓1

eh̄β z ∓1
=∓[z− ln(eh̄β z ±1)

h̄β
]∞
z= ε−µ

h̄
=∓ 1

h̄β
ln(

eβ (ε−µ)

eβ (ε−µ)±1
).

(36)

This is the process we will attempt to recreate with the addition of interactions like the
self-energy described before.

3.2 Introducing the self-energy

In the case of self-energy contributions the particle is considered to interact and so the
action now attains a new interaction term.

Z =

ˆ
d[φ∗]d[φ ]exp{−S0[φ

∗,φ ]+Sint [φ
∗,φ ]

h̄
} (37)

To implement this interaction into the non-interacting system we expand the
exponential with the interaction term. In order to do that first we must consider an
interaction which is weak, so the series expansion of the exponential function makes
sense for lower order terms. The Green’s function can now be written as a correlation
function including the non-interacting Green’s functions as

< φ(x,τ)φ∗(x′,τ ′)Sint [φ ,φ
∗]> . (38)

Applying Wick’s theorem on the aforementioned terms we notice that an interaction
involving different spin states between particles produces terms with three different
spin indices making the outcome null. That is the reason this interaction has been
considered diagonal is spin space similar to the Green’s function terms. Turning to
momentum space the interactive part of the action is renamed as self-energy and the
propagator is now described by the following equation

Ga(k, iωn) = G0;a(k, iωn)+G0;a(k, iωn)Σ(k, iωn)Ga(k, iωn). (39)

Multiplying by the right with G−1 and from the left with G−1
0;a yields

G−1
a (k, iωn) = G−1

0;a(k, iωn)−Σ(k, iωn). (40)
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We can depict this expansion called Dyson series with Feymann diagrams. The first
order expansion of the propagator is then considered as

= + Σ⃝ ,
where the thick line corresponds to the interacting propagator while the thin one to the
non-interacting one. This comes as no surprise as we have studied the Gubser-Rocha
self-energy using this process in the previous section. The contribution of the
interaction can be seen as a shift in the pole location of the non-interacting Green’s
function. From now on this corrected Green’s function will be noted as GGR(k,ωn).

3.3 Hubbard-Stratonovich

Considering a general form of fourth-order interaction between fields we can start
molding the case of an attractive interaction between fermions that can lead to a phase
transition

Vint =
1
2

ˆ h̄β

0
dτ

ˆ
dx
ˆ

dx′φ∗
↑ (x,τ)φ

∗
↓ (x,τ)V (x− x′)φ↑(x′,τ)φ↓(x′,τ),

Z =

ˆ
d[φ∗]d[φ ]exp{−S0[φ

∗,φ ]+Sint [φ
∗,φ ]+Vint [φ

∗,φ ]

h̄
},

V (x− x′) =V0δ (x− x′).

(41)

We can incorporate such an interaction into the previous model by adding a new
collective field, without changing the rest of the system

ˆ
d[∆∗]d[∆]exp{ 1

2h̄
(∆∗−V φ

∗
↑φ

∗
↓ |V−1|∆−V φ↑φ↓)}= 1. (42)

The importance of such transformation is apparent when taking a closer look at the
fourth-order term which can be made, in the case of Hubbard-Stratonovich
transformations, to eliminate any other fourth-order interaction term when multiplied
with the partition function

ˆ
d[∆∗]d[∆]exp{(V φ

∗
↑φ

∗
↓ |V−1|V φ↑φ↓)}. (43)

Introducing this transformation on the partition function yields

Z =

ˆ
d[φ∗]d[φ ]

ˆ
d[∆∗]d[∆]exp{− ∑

a=↑,↓

ˆ h̄β

0

ˆ
dx

|∆(x,τ)|2

V
− h̄
ˆ h̄β

0
dτ

ˆ
dx
ˆ h̄β

0
dτ

′
ˆ

dx′φ ∗
a (x,τ)G

−1
0;aφa(x′,τ ′)

+

ˆ h̄β

0
dτ

ˆ
dx
ˆ h̄β

0
dτ

′
ˆ

dx′(φ ∗
↑ (x,τ)φ

∗
↓ (x,τ)∆(x,τ)+∆

∗(x,τ)φ↑(x,τ)φ↓(x,τ))}.

(44)
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This interaction between the newly added field and the old one is the only trade off for
removing the forth-order interaction. The next step is to incorporate the second and
third term from the above equation in a way that a new interacting Green’s function
can arise

Z =

ˆ
d[φ∗]d[φ ]

ˆ
d[∆∗]d[∆]exp{− ∑

a=↑,↓

ˆ h̄β

0

ˆ
dx

|∆(x,τ)|2

V

− h̄
ˆ h̄β

0
dτ

ˆ
dx
ˆ h̄β

0
dτ

′
ˆ

dx′[φ∗
↑ (x,τ)φ↓(x,τ)]G

−1
a

[
φ↑(x′,τ ′)
φ∗
↓ (x

′,τ ′)

]
}.

(45)

For now the collective field will simply play the role of a theoretical tool that can guide
us through the formalism. The most practical equation that we can extract so far is that
of the total Green’s function with both self-energy contributions

G−1
a (x,τ;x′,τ ′) = G−1

GR;a(x,τ;x′,τ ′)−Σ(x,τ;x′,τ ′) =[
G−1

0;↑(x,τ;x′,τ ′)−Σ1,1(x,τ;x′,τ ′) Σ1,2(x,τ;x′,τ ′)
Σ2,1(x,τ;x′,τ ′) −G−1

0;↓(x,τ;x′,τ ′)−Σ2,2(x,τ;x′,τ ′)

]
.

(46)

Keeping the term gω(−ω2)νk− 1
2 from the momentum space representation of the

Gubser-Rocha self-energy as a pole correction term for the Green’s function diagonal
elements, we turn our attention to the forth order interaction. This interaction can now
become the driving force for condensation by considering it attractive and point like,
meaning it is of the type V (x− x′) =V δ (x− x′), where V < 0. Its connection with the
added collective field is now dictated by the following equation

h̄Σ1,2(x,τ;x′,τ ′;∆(x,τ)) = δ (x− x′)δ (τ − τ
′)∆(x,τ). (47)

The Green’s function is put back together where the contribution of each term is
depicted in matrix notation as

G−1
a (x,τ;x′,τ ′) = G−1

GR;a(x,τ;x′,τ ′)−Σ(x,τ;x′,τ ′)

=

[
G−1

GR;↑(x,τ;x′,τ ′) ∆(x,τ)
h̄ δ (x− x′)δ (τ − τ ′)

∆∗(x,τ)
h̄ δ (x− x′)δ (τ − τ ′) −G−1

GR;↓(x,τ;x′,τ ′).

]
(48)
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3.4 Ladder-diagram summation

Extract the Green’s function from the previous subsection, we can calculate the trace of
the resulting matrix from the partition function by integrating out the fermionic fields

Z =

ˆ
d[∆∗]d[∆]exp{

ˆ h̄β

0
dτ

ˆ
dx

|∆(x,τ)|2

V
}exp{Tr[log(−G−1

a )]}. (49)

So far no alteration has happened to the system, just a manipulation to the partition
function so it can be written as an integral over the collective field. We can expand the
logarithmic trace term in the action following a series expansion of the form

log(a−1 −b) = log(a−1)+ log(1−ab) = log(a−1)+
∞

∑
n=0

1
n
(ab)n. (50)

Our case follows a similar path where odd powers of the index n powers result to zero.
This claim comes from the fact that the resulting interacting Green’s function matrix of
Eq.(49) has only off-diagonal terms when raised to an odd power.

Tr[log(−G−1
a )] = Tr[log(−G−1

GR)]−
∞

∑
n=1

1
n

Tr[(GGRΣ)n]]. (51)

This collective field is shown to appear in the total action even powers. In order to
study the phase transition that this system can describe first we need to identify it with
the usual Landau free energy density of the type

S[k∗,k]
h̄βV

= f (|k|) = a(T )|∆|2 +b(T )|∆|4 + ... . (52)

The transition is defined by the a(T ) parameter of the free energy expansion. When
this parameter switches signs the energy of the system changes its minima. It gains its
first term from the residual term of the Hubbard-Stratonovich transformation and a
second one from the logarithmic expansion since summing Eq.(52) in regards to n
produces only even powers of the field ∆(x,τ). We denote the second order of the
expansion as Ξ(T )

Ξ(T ) =
h̄
2

Tr[(GGRΣ)2]. (53)

Expanding Ξ(T ) into its integral form yields:

Ξ(T ) =−1
h̄

ˆ h̄β

0
dτdτ

′dτ
′′dτ

′′′
ˆ

dxdx′dx′′dx′′′dx′GGR;↑(x,τ;x′,τ ′)Σ1,2(x′,τ ′;x′′,τ ′′)GGR;↓(x′′,τ ′′′;x,τ ′′′)Σ2,1(x′′′,τ ′′′;x,τ).

(54)
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Since the off-diagonal self-energy has delta function proportionality, the second order
expansion term can be simplified to a more convenient form.

h̄Σ2,1(x,τ;x′,τ ′;∆(x,τ)) = h̄Σ1,2(x,τ;x′,τ ′;∆(x,τ)) = δ (x− x′)δ (τ − τ
′)∆(x,τ), (55)

Ξ(T ) =−1
h̄

ˆ h̄β

0
dτdτ

′
ˆ

dxdx′GGR;↑(x,τ;x′,τ ′)k(x,τ)GGR;↓(x′,τ ′;x,τ)k∗(x′,τ ′). (56)

This results in an a(T ) parameter which is a functional of the Green’s function
containing the Gubser-Rocha self-energy

a(T ) =− 1
V0

− 1
h̄2

β

ˆ h̄β

0
dτdτ

′
ˆ

dxdx′GGR;↑(x,τ;x′,τ ′)GGR;↓(x,τ;x′,τ ′)

=− 1
V0

− 1
h̄2

β

ˆ
dk

(2π)2 ∑
n

GGR;↑(k, iωn)GGR;↓(k′−k, i(ω ′−ωn))

=− 1
V0

− 1
h̄2

β

ˆ
dk

(2π)2 ∑
n

1
iωn − εk−µ

h̄ −Σ(k, iωn)

1

i(ω ′−ωn)−
εk′−k−µ

h̄ −Σ(k′−k, i(ω ′−ωn))
.

(57)

Where V0 is the interaction strength and the chemical potential is considered equal for
different spin directions µ = µ↑ = µ↓. The complexity of the Gubser-Rocha self-energy
dictates that our approach to this interacting case must be somewhat similar to the one
described for the non-interacting one in order for an analytic result to be made. This
self-energy is integrated over the entire range of frequencies fact that will prove to be
troublesome. Since the critical exponent is momentum dependent we must consider all
possible values and evidently all the possible frequency integration results which vary
drastically. Its complication can be diminished by narrowing our range of interest to
the case of ω → 0. It is a reasonable approximation which was already made to derive
the Gubser-Rocha self-energy a priori [3]. The simplifications start from the term

Σ(k′−k, i(ω ′−ωn)) = g(ω ′−ωn)[−(ω ′−ωn)
2]νk′−k− 1

2 = gi2νk′−k−1(ω ′−ωn)
2νk′−k−1

= gk′−k[(−ωn)
2νk′−k +2νk′−kω

′(−ωn)
2νk′−k−1 +O(ω ′2)]

, (58)

where a factor of i2νk′−k−1 was absorbed into the constant for notational convenience.
Next we turn to the whole fraction containing the frequency dependence and expand it
linearly, as

GGR(k, iωn)GGR(k′−k, i(ω ′−ωn)) =
1

i(ω ′−ωn)− εk′−k +µ −Σ(k′−k,ω ′−ωn)

=
1

−iωn − εk′−k +µ −gk′−k(−ωn)
2νk′−k

− ω ′(1−2νk′−kgk′−k(−ωn)
2νk′−k−1)

(−iωn − εk′−k +µ −gk′−k(−ωn)
2νk′−k)2

+O(ω ′2).

(59)
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Finally, taking the limit of ω ′ → 0 yields

GGR(k, iω)GGR(−k,−iωn) =
1

iωn − εk +µ −gk(ωn)2νk

1
−iωn − εk′−k +µ −gk′−k(−ωn)

2νk′−k
.

(60)

The Green’s function can be directly connected to the spectral function, fact that will
prove useful in this ladder diagram calculation since spectral functions are continuous
in their domain. This relation is given in the previous section in Eq.(14). Applying the
same logic to the second-order collective field expansion term Ξ(T )

Ξ(T ) =− 1
h̄2

β

ˆ
dk

(2π)2 ∑
n

GGR(k, iωn)GGR(−k,−iωn). (61)

Now we convert the sum into a contour integral in the same spirit as Eq.(35) along the
contour C engulfing the upper complex plane. Before performing the integration we
consider the additional term which corresponds to the Matsubara frequencies. The
multiplication with the Matsubara term limη→0

±h̄βeηz

eh̄β z∓1
only deforms the contour in a

way that the Matsubara frequencies can be included in the calculation

Ξ(T ) =− 1
2πih̄

limη→0

ˆ
dk

(2π)2

˛
C

ˆ ˆ
dωdω

′dω
′′ρ(k,ω ′)

ω ′− iω
ρ(−k,ω ′′)

ω ′′+ iω
±h̄βeηω

eh̄βω ∓1
.

(62)

The ω integration has been transformed in this way so only two first-order poles
appear, one being ω =−iω ′ and the second ω = iω ′′. In order to solve the ω integral
we enclose the contour in the upper complex plane so the first poles becomes valid for
Re[ω ′]< 0 and the second one for Re[ω ′′]> 0. Following this logic we are free to
write the Ξ(T ) parameter as a sum of the heavy-side step functions θ(−ω ′) and θ(ω ′′)

for the zero temperature limit [17] but since we have expanded into the whole complex
plane these are replaced by the Fermi-Dirac distribution functions for the fermionic
case

Ξ(T ) =−1
h̄

ˆ
dk

(2π)2

ˆ ˆ
dω

′dω
′′
ρ(k,ω ′)ρ(−k,ω ′′)

nFD(ω
′)−nFD(−ω ′′)

ω ′+ω ′′ . (63)

3.5 Non-interacting case

Stripping the self-energy from our equations can provide a simplified relation, known
from the BCS theory, which will later allow for a direct comparison with the
interacting scheme. The spectral function in this non-interacting case obtains a couple
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of handy properties. Firstly, it is symmetric in regards to momenta, meaning
ρ(k,ω) = ρ(−k,ω), and secondly, as shown beforehand, it can be transformed into a
Dirac delta function

Ξ(T ) =−1
h̄

ˆ
dk

(2π)2

ˆ ˆ
dω

′dω
′′
δ (ω ′− εk −µ

h̄
)δ (ω ′′− εk −µ

h̄
)
nFD(ω

′)−nFD(−ω ′′)

ω ′+ω ′′

=−
ˆ

dk
(2π)2

nFD(
εk−µ

h̄ )−nFD(− εk−µ

h̄ )

2(εk −µ)
.

(64)

Following the identity 1
1+e−2z − 1

1+e2z = tanh(z) leads to further simplifications

Ξ(T ) =
ˆ

dk
(2π)2

tanh(β (εk −µ)/2)
2(εk −µ)

. (65)

Additionally, we transform the momentum integration to an energy one by considering
a two-dimensional distribution of momentum

ˆ
dk

(2π)2 =
1

(2π)2

ˆ 2π

0
dφ

ˆ
∞

−∞

kdk =
m

π h̄2

ˆ
∞

0
dε. (66)

An additional factor of 2 was added in the above equation to include the spin
degeneracy of fermions. Using the more convenient variables x = εk

µ
and y = β µ

2
transforms the ladder diagram by the equation into

Ξ(T ) =
m

2π h̄2

ˆ
∞

0
dx

tanh(y(x−1))
(x−1)

=
m

2π h̄2

ˆ
Λ

−1
dx

tanh(yx)
x

. (67)

The substitution of the upper limit of the integral with a cut-off quantity Λ is necessary
to mask this divergent integral. This problem is usually solved by the renormalization
group, after the calculation of the observables, but in this context we will follow a more
direct approach

Ξ(T ) =
m

2π h̄2{
ˆ 1

0
dx

tanh(yx)
x

+

ˆ
Λ

0
dx

tanh(yx)
x

}= m
2π h̄2{

ˆ 1

0
dx

tanh(yx)
x

+

ˆ
Λ

0
dx

tanh(yx)
x

}.

(68)

By partial integration the terms inside the integral become
ˆ a

0
dx

tanh(yx)
x

= ln(a)tanh(ya)−
ˆ a

0

yln(x)
cosh(yx)2

= ln(a)+ γ − ln(
π

4y
),
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where the symbol γ is used for the Euler-Mascheroni constant and the term tanh(ya) is
considered to be equal to one for a >> 1. Putting everything together yields

Ξ(T ) =
m

2π h̄2{ln(Λ)+ γ − ln(
π

2β µ
)}. (69)

The first term of the above equation holds all the divergences and as a result blows up
our result to infinity. In order to avoid it in a delicate but not intrusive way, we can
subtract from our result the background contribution that is inherit to the system. This
can be easily found as it is equal to the zero temperature result of the ladder diagram.
Applying the above rational to Eq.(65) we find the background contribution as

Ξ(0) = limy→∞

m
2π h̄2 {

ˆ 1

0
dx

tanh(yx)
x−1

+

ˆ
Λ

0
dx

tanh(yx)
x−1

}

= limy→∞

m
2π h̄2 {ln(Λ)−

ˆ 1

0
dx

yln(x)
cosh(yx)2 −

ˆ
Λ

0
dx

yln(z)
cosh(yx)2 }.

(70)

The last two terms tend to zero for zero temperature leaving us with just one correction
term exactly equal to the divergences found before. Considering the point of phase
transition, the second-order coefficient in Eq.(52) is taken as positive [16] and the
critical temperature can be found in regards to the systems parameters by taking
a(Tc) = 0 for

Tc =
2µ

πkB
eγ− 2π h̄2

V0m . (71)

Taking into consideration that the constant V0 originates from the fourth order
interaction means that it can be rewritten in regards to a dimensionless constant as
4π h̄2

m λ . With this transformation the exponential quantity of the previous relation is
written in its dimensionless form

Tc =
2µ

πkB
eγ− 1

2λ . (72)

3.6 Expanding about the Fermi surface

Specifying the calculation of the previous subsection close to the Fermi surface we
expand the spectral function’s pole location linearly, so εk−µ

h̄ ≈ vB(k− kF). This
transforms Eq.(63) into

Ξ(T ) =−1
h̄

ˆ
dk

(2π)2

ˆ
dω

′dω
′′
δ (ω ′− h̄vF(k− kF))δ (ω

′′− h̄vF(k− kF))
nFD(ω

′)−nFD(−ω ′′)

ω ′+ω ′′

=− 1
4π h̄2

ˆ
∞

−∞

dk k
nFD(h̄vF(k− kF))−nFD(−h̄vF(k− kF)

vF(k− kF)
,

(73)
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where Eq.(67) was used to transform the momentum integral into its one-dimensional
form. This produces four quantities inside the integral where the first two are just the
Fermi-Dirac functions defined above. The result of the first two integrals can be found
by substituting k → k− kF as

− 1
4π h̄2vF

ˆ
∞

−∞

dknFD(h̄vF k)−nFD(−h̄vF k) =− 1
4π h̄2vF

(−ln(eβ h̄vF k +1)− ln(e−β h̄vF k +1))
∣∣∣∣Λ
−Λ

.

(74)

These two terms cancel each other out leaving us with two final terms to calculate, namely

− kF

4π h̄2

ˆ
∞

−∞

dk
nFD(h̄vF(k− kF))−nFD(−h̄vF(k− kF))

k− kF
=

kF

4π h̄2vF

ˆ
∞

−∞

dk
tanh(β h̄vF(k− kF))

k− kF
. (75)

The integration parameters can now change to x = k/kF −1 and y = β h̄vF kF
2 so

kF

4π h̄2vF

ˆ
∞

−∞

dx
tanh(yx)

x
. (76)

Taking into consideration that the hyperbolic tangent is odd, the quantity inside the
integral becomes even allowing for a change of integration boundaries. To get the
desired result the only thing left to do is set the cutoff tending to a high value Λ, as

Ξ(T ) =
kF

2π h̄2vF

ˆ
Λ

0
dx

tanh(yx)
x

=
kF

2π h̄2vF
{ln(Λ)+ γ − ln(

π

2β h̄vFkF
))}. (77)

The result of this integral has been done in Eq.(70) and proves that the critical
temperature calculations lead to the same predictions when expanding linearly in
regards to momentum. Moreover this allows for a direct implementation of the
interaction corrections by defining the effective Fermi velocity given by the momentum
dependence of the frequency pole in the spectral function. From that point a shortcut is
created to calculate the critical temperature as

Tc =
h̄2k2

F
πkBm∗ eγ− m

2m∗λ . (78)

Here the interacting Fermi velocity is taken as εk−µ−gRe[Σ(k,ω)]
h̄ ≈ vF(k− kF) where m∗

is the effective mass instead of vB = kF
m which is the bare Fermi velocity.

3.7 Momentum-independent critical exponent at optimal doping

The spectral function, including interactions, is given in Eq.(14) and its contribution to
the ladder diagram is shaped by the imaginary part of the self-energy. We claim that
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this imaginary self-energy leads to a null result except for when a pole ξk is present. In
the previous sections we have delved into this claim and realize the conditions where it
holds true in more detail. The position of the pole is then given by

ξk =
εk −µ

h̄
+gξ

2νk
k cos((νk −

1
2
)π). (79)

Accordingly the spectral function is transformed into ρ(k,ω) = δ (ω −ξk). Following
this approach allows easy implementation of the self-energy contribution into the
critical temperature calculations by simply changing the location of the spectral
function’s pole. Directing our focus on the above equation the pole can be found, in
regards to the system’s parameters, by a recursive relation for ξk or numerical
approximations. To extract this result we turn to the critical exponent
νk = ν(1− k−kF

kF
), where most of our simplifications will take place. Since the

self-energy formula is effective for momenta close to the Fermi surface, the most
simplistic approximation would be to calculate the self-energy contribution given a
momentum independent exponent limk→kF νk = ν = 1

2 . In the case of optimal doping
this constant takes the value of half [5]. The pole is calculated to be

ξk =
εk −µ

1−g
. (80)

It bares mention that in this framework the imaginary part of the self-energy, being
Im[Σ(k,ω)] ∝ limk→kF sin((νk − 1

2)π) = 0, fulfills the criteria for treating the spectral
function as a delta function. This becomes more apparent if we rewrite the spectral
function as a functional of the self-energy

ρ(k,ω) =
1
π

−Im(Σ(k,ω)]

(ω − ck −Re[Σ(k,ω)])2 +(Im[Σ(k,ω)])2 . (81)

Following the same procedure as Sec.(3.1) the ladder diagram contribution yields

Ξ(T ) =−1
h̄

ˆ
dk

(2π)2

ˆ ˆ
dω

′dω
′′
δ (ω ′− ck

1−g
)δ (ω ′′− ck

1−g
)
nFD(ω

′)−nFD(−ω ′′)

ω ′+ω ′′

=−
ˆ

dk
(2π)2

nFD(
ck

1−g)−nFD(− ck
1−g)

2ck
.

(82)

Manipulating the momentum integral into an energy integral we find that the resulting
quantity differs slightly from that of Eq.(65) as in this case the Ξ(T ) quantity is given
by

Ξ(T ) =
m(1−g)

2π h̄2

ˆ
Λ

−1
dx

tanh(yx)
x

. (83)
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This time the integration variables equate to x = εk
µ

and y = β µ

2(1−g) . Following the same
integration process as the non-interacting case the renormalized contribution of the
ladder diagram is calculated

Ξ(T ) =
m(1−g)

2π h̄2 {γ − ln(
π(1−g)

2β µ
)}. (84)

Leading to a critical temperature of

T ∗
c =

2µ

πkB(1−g)
eγ− 1

2λ (1−g) , (85)

where the fourth-order interaction constant has been rewritten in regards to the
coupling constant λ in the same way as before. The implementation of the self-energy
has apparent effects on the critical temperature equation, where the quantity of most
importance is the fraction of the interactive critical temperature over the non interactive
one. For this reason we define as σ(g,ν) = T ∗

c
Tc

the amplification factor

σ(g,0.5) =
e

−g
2λ (1−g)

1−g
. (86)

Figure 13: Multiplication factor for the critical temperature with
momentum independent critical exponent at abstract doping.

The decreasing magnitude of Fig.(10) suggests that the maximal value can only be
reached in the non-interactive case where the coupling constant is zero, meaning that
the interaction attributes negatively to the critical temperature.

3.8 Linear momentum dependence for νk ≥ 1
2

We now attempt to include into our calculations the momentum dependence of the
critical exponent partially, by expanding in linear powers of k. In this section the
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imaginary part of the self-energy will be considered negligible as discussed in
Sec.(2.2). This simplification comes from the lack of mathematical machinery to
derive the critical temperature with this additional term analytically. On the other hand
it tests the ability of the Gubser-Rocha self-energy to predict a high critical temperature
as the real part of the self-energy is the most contributing in this calculation and it does
not share the experimental backing that the imaginary part has [5]. Considering the
position of the pole given in Eq.(79), we Taylor expand close to the Fermi surface

ξkF +(k− kF)ξ
′
kF

= vBh̄(k− kF)+g(ξ 2ν
kF

−2ξ
2ν−1
kF

(k− kF)(ξ
′
kF
− ξkF ln(ξkF )

kF
)).

(87)

This expansion leads to divergences given that ξkf should tend to zero coming from the
critical exponent terms. For this reason we apply the approximation derived on
Sec.(2.2) to extract our result. The solutions for the frequency pole are given by

ξk =
1−g(a+b(νk −1)+ c(νk −1)2)

g(d + f (νk − 1
2 )+ l(νk −1/2)2)

±

√
1−g(a+b(νk −1)+ c(νk −1)2)

g(d + f (νk − 1
2 )+ l(νk −1/2)2)

2

+
εk −µ

h̄g(d + f (νk − 1
2 )+ l(νk − 1

2 )
2)
,

(88)

which when linearly expanding yields

ξ
′
kF

=−R′
kF
±

RkF R′
kF
+ h̄vB

2g(d+ f (ν− 1
2 )+l(ν− 1

2 )
2)

RkF

,

RkF =
1−g(a+b(ν −1)+ c(ν −1)2)

2g(d + f (ν − 1
2 )+ l(ν − 1

2 )
2)

,

R′
kF

=
−ν

kF g
{
( f ν −2l(ν − 1

2 )ν)(1−g(a+b(ν −1)+ c(ν −1)2))+gν −2gcν(ν −1)

2(d + f (ν − 1
2 )+ l(ν − 1

2 )
2)

}.

(89)

One of the solutions shown above leads to an unphysical result. This comes from the
quadratic approximation of the real part of the self-energy which can provide only one
pole for the spectral function as mentioned before in Sec.(2). Considering only the
physical solution, the effective mass is calculated to be

m∗ = m[1−g(a+b(ν −1)+ c(ν −1)2)]. (90)
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Figure 14: Critical temperature for varying values of doping.
The amplification factor can now be calculated as

σ(g,ν) =
e

−g(a+b(ν−1)+c(ν−1)2)
2λ (1−g(a+b(ν−1)+c(ν−1)2))

1−g(a+b(ν −1)+ c(ν −1)2)
. (91)

The maximal value is again found at the zero coupling constant range, while in the
case of non-optimal doping this range grows as shown in Fig.(14).

Discussion
4.1 Analyticity and approximations

The matching of the Gubser-Rocha self-energy with the condensed-matter formalism
was done with the latter as a priority. The intricacy of the momentum-dependent
exponent is the self-energy of this theory was reduced by restricting the coupling
constant to the experimental critical exponent range. This was done by fixing its sign to
the predicted sign to battle the fact that the experimental terms are thought to be
already renormalized by a renormalization procedure outside the scope of standard
condensed matter physics. Given the fact that no information about the UV region of a
theory can be extracted from the IR results fixing the sign was a one-way road. The
analyticity of the Green’s function was protected for the νk ≤ 1

2 while for the νk ≥ 1
2

case, which was of most interest, this was not true. The addition of the ck =
εk−µ

h̄ term
creates poles in the upper and lower complex plane in positions that were problematic.
The position of these points highly depend on the value of the critical exponent where
increasing its value multiplies them, as shown in Fig.(15), with immediate
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repercussions in regards to the spectral function normalizing to unity. This was
circumvented by the approximation of Eq.(19) which is based on the Lagrange
inversion theorem. It was found to approximately make the spectral function valid to
the sum rule although the non-isolated singularities on the complex plane had to be
neglected ad hoc. What is most surprising is that the position of this complex pole lies
in the second Riemann sheet of the Green’s function as shown in Fig.(11).

Figure 15: Inverse Green’s function for a comparably big value of critical exponent.
This pole never reaches the physical sheet but affects its value on the real axis and
more specifically the real part of the spectral function pole. Its potency is studied in
Fig.(7) where a spectral function constructed with it showed agreement with the
experimentally derived spectral function but only for a specific range of parameters.

The intricate behaviour of the power-law relation of the Gubser-Rocha self-energy
was then simplified to a, up to quadratic order, numerical approximation, which also
made the integrals of Sec.(3) solvable. As mentioned before, only one pole is valid
from this approximation as the quadratic behaviour extends outside of the standard
condensed matter physics and the experimental range. Additionally, the imaginary part
of the spectral function was evaluated in Fig.(7) and a preferable range of critical
exponent was found were the spectral function appeared to behave in a similar way as a
Dirac delta function. The lack of mathematical tools to battle such imaginary term for
the critical temperature calculation was the reason for this approximation as well as
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putting the real part of the self-energy on the forefront. In this way the real part can be
isolated and studied whether it contributes to the apparent high temperature behaviour
of strange metals.

4.2 Critical Temperature

The second quantization background built in Sec.(3) is an attempt to conjugate the
normal BCS prediction by correcting it with the self-energy added in Sec.(2). The
linear expansion of the energy in regards to momentum was done with the purpose of
simplifying the calculation procedure that leads to critical temperature estimations.
The whole theoretical formalism was built for a two-dimensional system in order to
replicate the experiment’s conditions where a single layer of (Pb,Bi)2Sr2−xLaxCu6+δ

was isolated. After the inclusion of the interaction terms the resulting critical
temperature was put against the non-interacting one as a function of the coupling
constant, shown in Fig.(13) and Fig.(14). As mentioned before this restriction goes
hand in hand with the critical exponent range that we study. In the case of doping
dependent critical temperature the fitting equation for the spectral function’s pole was
employed in order to find the effective mass of the system. At first glance the result
seems irrelevant to the quadratic momentum dependence of the real self-energy, as the
three fitting parameters (d, f , l) are absent in the effective mass equation, although its
contribution is present in the (a,b,c) parameters too. One can easily see that the result
of Eq.(91) differs than that described in Eq.(86) for the case of optimal doping since
the numerical approximation estimates a uniform solution for the whole range of the
critical exponent. This means that both the linear and quadratic frequency dependence
inherently contribute to the result even at the extremums of the critical exponent range.
Looking at Fig.(14) the doping parameter acts as a smoothening factor for the
contribution of the real self energy as more values of the coupling constant maintain a
higher Tc.

Although the real part can provide intuition in regards to the behaviour of the
interacting system the imaginary self-energy is a point of great interest as well,
especially when one considers its increasing contribution while approaching the phase
transition point, shown in Fig.(8). The approximatory approach built throughout the
script is deficient in taking that into account, making it a potential candidate for the
high temperature superconductive behaviour of the strange metal.
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Conclusion
The efforts of scientists continue as high temperature superconductivity remains an
open problem for more that 30 years. The strong electron glue that forces the cuprate
metal to condense avoids any standard theoretical approach while identifying the
microscopic quantities required for a quantum description is a highly demanding
process. The Gubser-Rocha form of self-energy, being the only verified elucidation of
the ARPES data, is shown to have intricate properties when coming to the standard
condensed-matter theory. Its unique analytically continued image requires special
handling in order for it to fit the known formalism. Given approximatory and
numerical procedures this script mends part of the divergences.

The formalism for including the Gubser-Rocha real self-energy was built where the
critical temperature equations for the strange metal at optimal doping and at abstract
doping were derived. Concerning the high-temperature superconductive behaviour no
indication of an increase in critical temperature was found leaving a lot to be expected
from the inclusion of the imaginary part of the same self-energy, which is left for
future research. Additionally, further analysis on the coupling constant can provide a
more direct connection with the experimental evidence since its relation to the fitting
parameter λ , shown in Eq.(11), is readily available. With this matching the exact
contribution of the real part of the self-energy can be found for
(Pb,Bi)2Sr2−xLaxCu6+δ metals specifically.

Having critical temperature far above the predicted value, strange metals have
gained a great amount of scientific interest. Understanding the physics that dictates the
thermodynamic behaviour of this class of metals allows for a plethora of technological
applications. Although the theoretical-physics tool box has evolved in new striking
theories in order to find common grounds with the experimental perspective, the
elusive nature of the cuprate’s microscopic interactions appear just only out of reach.
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