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Abstract

Since its first synthesis, graphene has opened new exciting research prospects in the
context of solid state physics. Despite the simplicity of its structure, this material
hosts a rich variety of phenomena and physical properties. In particular, in the low
energy limit, it exhibits massless Dirac fermions, typical of 2D Weyl semimetals.
However, the semimetallic nature of graphene is generally detrimental for the real-
ization of electronic devices. Therefore it reveals important to find ways to generate
a gap in its band structure. In this thesis, employing a tight-binding description, we
review the well-known graphene model and the possibility of engineering a spectral
gap by applying mechanical strain to its honeycomb structure. This serves as a
blueprint to generalize the discussion to the kagomé systems, a novel class of 2D
Weyl semimetals for which we construct the effective Dirac theory and classify all
the possible mass terms based on the symmetries they preserve or break.
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Chapter 1

Introduction

“We are all in the depths of a cave, chained by
our ignorance, by our prejudices, and our weak
senses reveal to us only shadows. If we try to
see further, we are confused; we are
unaccustomed. But we try. This is science.”

— Carlo Rovelli, Reality is not what it seems.

1.1 Overview and Outline

Solid state physics is certainly one of the richest branches of condensed matter
physics. The variety of its phenomena has attracted an increasingly growing inter-
est, both from a theoretical point of view and for the wide range of technological
applicability.

Of central importance in its context is the study of the conduction properties of
solids. This is encoded in the band structure, which represents the electronic energy
distribution in momentum space and leads to a natural classification of the phases
of the materials [1].

In the band structure we distinguish the valence and conduction bands, located
respectively below and above the Fermi level. At absolute zero temperature, the
valence band is filled with electrons bounded to individual atoms. The migration of
these electrons towards the upper conduction band is what determines conductivity,
and the difficulty or ease to generate this flow provides a criteria of classification.
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Chapter 1 1.1. Overview and Outline

Energy

Insulator Semimetal Metal

Figure 1.1: Electronic states in insulators, semimetals and insulators. EF is the
Fermi level. The width of the bands encodes the density of states for each corre-
sponding energy. The shade represents the Fermi-Dirac distribution (blue: all states
filled, white: no state filled). Adapted from [8].

In particular, if the highest valence band and the lowest conduction band are
separated by an energy gap, we call the material insulator. On the contrary if
the spectrum is gap-less with a non-zero density of states at the Fermi level the
material is said to be a metal. There exists another possible category represented
by semimetals: these materials are gapless but with a vanishing density of states at
the Fermi level. 1

A special class of solids that has particularly intrigued the science community
in the last years is represented by two-dimensional materials. The outbreak of this
interest has been certainly fueled by the discovery of graphene in 2004 [13]. This
material consists of carbon atoms arranged in a honeycomb pattern, and it has been
first synthesized by isolating a single layer of atoms from three-dimensional graphite.

From a conduction point of view graphene is a gapless semimetal, having a
vanishing density of states at the Fermi level. The Fermi surface presents six double
cones where the the valence and conduction bands touch each other [20]. These
special points are called Weyl nodes (or also Dirac points) and the energy dispersion
in their proximity is linear in momentum.

1In materials science there is a distinction between semimetals and semiconductors. As we
said, the former have no gap and vanishing density of states at the Fermi energy, whereas the
latter present a small gap (< 4eV ). However in this thesis we will use the two denominations
interchangeably.
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Chapter 1 1.1. Overview and Outline

Figure 1.2: Linear energy dispersion near a Weyl node.

This feature, reminiscent of relativistic physics, is what characterizes in general
a class of two-dimensional materials called Weyl semimetals [20]. In fact, as we
will see, low energy excitations near a node are well described by a massless Dirac
Hamiltonian, with the speed of light replaced by the so called Fermi velocity vF
(dependent on the material). In graphene its value is approximately

vF = 106m/s ≈ c

300
. (1.1)

Massless Dirac fermions can therefore be realized in graphene, providing new ways
to investigate the scattering properties of Dirac particles. This is an outstanding
feature, which creates a bridge between high energy phenomena and low energy
systems. A famous example of it is the realization of the Klein paradox [7].

Despite the numerous remarkable properties of graphene, a gapless spectrum can
be detrimental in many circumstances and device applications, where completely
hindering charge flow is desirable. Therefore a relevant question to address is how
to induce a gap at the Dirac points. This can be achieved by introducing a mass in
the two-dimensional Dirac Hamiltonian. All the graphene mass terms can be found
in the literature, and have been classified based on the symmetries they preserve or
break [2].

Figure 1.3: Modification of the spectrum due to the introduction of mass in the
Dirac Hamiltonian.
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Chapter 1 1.2. Graphene Tight-binding Model

On the other hand it has been shown that one possible way to engineer a gap
in graphene is by applying strain to the material [18]. However the structure of the
Dirac cones is robust, and a strain threshold has to be exceeded in order to produce
a gap. This threshold depends on the particular strain employed and is it generally
large. Nevertheless this is still applicable due to the remarkable elastic properties
of graphene: it is in fact one of the strongest material ever measured, being able to
sustain reversible elastic deformations up to 25% [16].

Another more recently discovered class of two-dimensional Weyl semimetals that
has drawn notable interest is represented by systems on the kagomé lattice [5]. These
novel materials present an hexagonal structure, with the atoms placed on the edges
of the hexagon rather than on the vertices, as in graphene. It follows that the
unit cell is composed of three different sub-lattices. As we will show, the kagomé
band structure, analogously to graphene, shows emergent mass-less Dirac fermions.
However, an exhaustive list of its mass terms with the corresponding symmetry
classification is lacking in the literature.

The aim of the first part of this thesis is to fill this gap. Employing a tight-binding
description of the kagomé lattice, we explicitly extract the underlying Dirac theory.
We then proceed to determine all the mass terms, and provide their symmetry
classification.

In the second part, utilizing linear elasticity theory, strain is introduced in the
model. We begin by studying it in the case of graphene. In particular, the connection
between the strain-induced gap and the general mass terms of the Dirac theory is
explored. We then extend the discussion to the kagomé case to investigate if this
remains a viable method to generate a bulk gap.

1.2 Graphene Tight-binding Model

Let us begin by briefly reviewing the tigh-binding description of graphene. This will
serve as a useful reference for the following, where we will extend this model to the
kagomé lattice and introduce elastic deformations in the theory.

The second quantized tight-binding Hamiltonian with nearest neighbor hopping
reads

H = −t
∑
⟨i,j⟩,σ

(a†i,σbj,σ + h.c.), (1.2)

where a and b are the fermionic quantum operators respectively acting on the two
different sub-lattices A, B [12] and satisfying the canonical anti-commutation rela-
tions 2

{ aα, aβ} = { a†α, a
†
β} = 0 , { aα, a†β} = δα,β (same for b). (1.3)

The latin indices i, j denote the real space positions of the lattice sites and σ
labels the electronic spin states | ↑⟩, | ↓⟩. The constant t is called hopping param-
eter and it encodes the probability amplitude for an electron to hop between two
neighbouring sites. In the graphene case its value is

t = 2.7eV. (1.4)

2Here α and β span over all the degrees of freedom of the system. Moreover the two sets of
operators a and b anti-commute between each other.
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Chapter 1 1.2. Graphene Tight-binding Model

It is possible to consider models in which electronic hops between second nearest
neighbours (and even beyond) are also taken into account, however we will neglect
those effects in our discussion.

Figure 1.4: Lattice structure of graphene in real space and its first Brillouin zone.
b1 and b2 are the reciprocal lattice vectors. KD and K′

D indicate the independent
Dirac points. (Adapted from [12]).

Given an electron on site ri of the A sub-lattice, the three nearest neighbors are
found at positions

rj ∈ B = ri + δ1,2,3 (1.5)

with
δ1 =

a

2
(1,
√
3)T , δ2 =

a

2
(1,−

√
3)T , δ3 = −a(1, 0)T . (1.6)

The Hamiltonian (1.2) can therefore be rewritten as

H = −t
∑

i∈A,σ,δ

(a†i,σbi+δ,σ + h.c.). (1.7)

We then proceed to Fourier transform the quantum operators:

ai =
1√
N/2

∑
k

e−ik·riak , a†i =
1√
N/2

∑
k

eik·ria†k, (1.8)

with N the total number of lattice sites (or equivalently N/2 the total number of
unit cells). Plugging the latter expressions in eq.(1.7) we obtain

H = −t
∑

i∈A,σ,δ

∑
k,k′

1

N/2
(ei(k−k′)·rie−ik′·δa†kbk′ + h.c.) =

= −t
∑
σ,δ,k

(e−ik·δa†kbk + h.c.) (1.9)

where we have made use of the identity

1

N/2

∑
i∈A

ei(k−k′)·ri = δk,k′ . (1.10)

Finally, we can conveniently cast H in the form

H = −t
∑
k,σ

Ψ†
k,σH(k)Ψk,σ (1.11)
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Chapter 1 1.2. Graphene Tight-binding Model

having defined Ψ the vector of fermionic operators

Ψk,σ =
(
ak,σ, bk,σ

)T
. (1.12)

H(k) is the Block Hamiltonian, and has the form

H(k) =

(
0

∑
j=1,2,3 e

−ik·δj∑
j e

ik·δj 0

)
:=

(
0 ∆(k)

∆∗(k) 0

)
. (1.13)

The energy bands are readily found by diagonalizing it:

E± = ±t
√

∆(k)∆∗(k) =

√√√√1 + 4 cos

(
3

2
kxa

)
cos

(√
3

2
kya

)
+ 4 cos2

(√
3

2
kya

)
,

(1.14)
where here a indicates the bond length between carbon atoms.

Figure 1.5: Graphene band structure.

1.2.1 Low Energy Expansion

The band structure of graphene, depicted in Fig.(1.5), is characterized by two bands
touching each other on a discrete set of points. Therefore if we set the chemical
potential µ to zero, such that the Fermi level lies at the junction of the two bands
(at E = 0), then the material behaves as a semimetal.

In particular within the first Brillouin zone there are six points of contact between
the two bands, which incidentally coincide with the corners of the hexagon delimiting
the reciprocal unit cell (see Fig1.4). Therefore it follows that only two of them are
independent and a possible choice is to consider

kD = (
2π

3a
,

2π

3
√
3a

) , k′
D = (

2π

3a
,− 2π

3
√
3a

). (1.15)

These special momentum values are called Dirac points for the following reason:
expanding the Block Hamiltonian H(k) around kD up to linear order in momentum
yields

H(kD + q) ≈ 3

2
at

(
0 qx + iqy

qx − iqy 0

)
= vF (qxτ1 − qyτ2), (1.16)

where τ1,2 are the usual Pauli matrices, and vF is the graphene Fermi velocity

vF =
3

2
at. (1.17)
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Chapter 1 1.3. Unitary and Anti-unitary Symmetries

Eq.(1.16) has indeed the form of a two-dimensional Dirac Hamiltonian, with the
velocity of light c replaced by vF . Analogously the expansion around k′

D is

H(k′
D + q) ≈ 3

2
at

(
0 qx − iqy

qx + iqy 0

)
= vF (qxτ1 + qyτ2). (1.18)

An Hamiltonian containing both of these expanded blocks effectively describes
the low energy excitations of the system:

Heff = vF


0 qx − iqy 0 0

qx + iqy 0 0 0
0 0 qx + iqy
0 0 qx − iqy 0

 . (1.19)

This is what we call low energy effective theory, and we will reflect more on its
construction when discussing it in the kagomé case.

It is convenient to rewrite eq.(1.19) in the form of a tensor product of Pauli
matrices:

Heff = vF (σ0 ⊗ τ1kx + σ3 ⊗ τ2kx), (1.20)

such that the different degrees of freedom of the system are distinguished. In partic-
ular τ acts on the sublattice space, and σ on the so called valley degree of freedom.
We can think the latter as a quantum number (just like spin) that labels the states
based on their momentum, which can either be close to one or the other Dirac point.
The wave function is therefore a spinor with components

ψ =
(
A+ B+ A− B−

)T
(1.21)

where ± labels the two different valleys.
Eq.(1.19) is valid for a spinless system. Introducing back this degree of freedom,

the full effective theory takes the form

Heff = vF (s0 ⊗ σ0 ⊗ τ1kx + s0 ⊗ σ3 ⊗ τ2kx), (1.22)

where s are the Pauli matrices acting on the spin degree of freedom. The corre-
sponding spinor reads

ψ =
(
A+↑ B+↑ A−↑ B−↑ A+↓ B+↓ A−↓ B−↓

)T
. (1.23)

1.3 Unitary and Anti-unitary Symmetries

We conclude this introductory chapter with a review of unitary and anti-unitary
symmetries, which will be used later in the classification of the kagomé mass terms.

Unitary symmetries are a powerful tool that can be used to greatly simplify the
study of a system. A great example that we have already exploited is translational
invariance, which enabled us to block diagonalize the Hamiltonian in momentum
space. This is in fact a general feature: if the one-particle Hamiltonian H commutes
with a unitary transformation U , we can find a basis in which both H and U
are block diagonal. This drastically reduces the dimensionality of the problem, as
we only need to study the individual sub-blocks of the Hamiltonian. Once we have
exhausted all the possible unitary symmetries of the system, we can further find anti-
unitary transformations that either commute or anti-commute with the individual

10



Chapter 1 1.3. Unitary and Anti-unitary Symmetries

blocks of H. This are given by Time reversal (T ) and Charge (C) symmetries. We
can further combine them to obtain Sublattice symmetry (S) as

S = T · C, (1.24)

which turns out to be unitary, but anti-commutes with H.
Before analyzing each of them, we need to define formally what we mean by sym-

metry. The most fundamental definition is given in the contex of second quantization
[3]. Let us then consider a generic (non interacting) second quantized Hamiltonian,
which has the general form

Ĥ =
∑
A,B

Ψ̂†
AHA,BΨB. (1.25)

with the fermionic creation and anhilation operators that satisfy the canonical anti-
commutation relations

{ ΨA,Ψ
†
B} = δA,B , { ΨA,ΨB} = { Ψ†

A,Ψ
†
B} = 0. (1.26)

Here A and B span over all the degrees of freedom of the system.
A symmetry is then defined as a linear transformation of the fermionic operators,

that commutes with the second-quantized Hamiltonian and preserves the canonical
relations (1.26). In particular:

Ψ̂A → Ψ̂′
A =

∑
B

UA,BΨ̂B := ÛΨ̂AÛ−1 (1.27)

Ψ̂†
A → Ψ̂′†

A =
∑
B

Ψ̂†
BU

∗
A,B := ÛΨ̂†

AÛ
−1 (1.28)

where Û is the second quantized operator of the symmetry (which can either be
unitary or anti-unitary), while U is a unitary matrix (UAB is a collection of num-
bers). 3 By definition this is a symmetry if it commutes with the second-quantized
Hamiltonian

Û · Ĥ · Û−1 = Ĥ. (1.29)

We particularly put emphasis on equation (1.29), which is really what is meant
by symmetry. This will be in fact true for time reversal, charge and sublattice
symmetries:

T̂ · Ĥ · T̂ −1 = Ĥ , Ĉ · Ĥ · Ĉ−1 = Ĥ , Ŝ · Ĥ · Ŝ−1 = Ĥ. (1.30)

However we have to be careful, since this commutation relation applies to the second-
quantized Hamiltonian. The corresponding condition on the one-particle Hamilto-
nian H is found by plugging inside (1.29) the general form for the second quantized
Hamiltonian (1.25). As we will see the resulting symmetry condition on H will be
different depending on the particular symmetry. In fact, H can either commute (as
in the case of T ) or anti-commute (as in the case of C) with the symmetry operator.

1.3.1 Time Reversal

Let us now discuss more specifically time reversal. We begin by providing a review
of this anti-unitary symmetry using first quantization language [17]. It will then be
instructive to also generalize it in the second quantization formalism.

3The fact that U is unitary follows from the requirement that (1.26) are preserved under Û .
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1.3.1.1 Time reversal in first quantization

Time reversal is the fundamental transformation

T : t→ −t, (1.31)

that reverses the dynamic of a system. As anticipated, the quantum mechanical
operator that implements this discrete symmetry is anti-unitary. To prove this
important property, we consider a system described by a state |α⟩ at t = 0. After
an infinitesimal time interval δt, the evolved state is simply

|α, δt⟩ = (1− iĤδt

ℏ
)|α⟩. (1.32)

On the other hand, if we first time-reverse the initial state, and then look at its
evolution, after δt we end up with

(1− iĤδt

ℏ
)T |α⟩. (1.33)

If the system is time reversal invariant, we expect that the following holds

(1− iĤδt

ℏ
)T |α⟩ = T |α,−δt⟩ =⇒ (1− iĤδt

ℏ
)T |α⟩ = T (1 + iĤδt

ℏ
)|α⟩. (1.34)

This is intuitively understood in the case where |α⟩ = |p⟩ as in Fig.(1.6).

Figure 1.6: Time reversal of momentum states.

It follows that
− iHT = T iH. (1.35)

At this point, a simplification of the imaginary unit would yield the contradictory
result

{ H, T } = 0. (1.36)

This, in fact, would mean that for each energy eigenstate |E⟩ there exists another,
obtained by time reversing |E⟩, with opposite energy

HT |E⟩ = −T H|E⟩ = −ET |E⟩. (1.37)

12



Chapter 1 1.3. Unitary and Anti-unitary Symmetries

Clearly this is a nonphysical result, which suggests that T must instead be anti-
unitary

T iT −1 = −i, (1.38)

and therefore
[H, T ] = 0. (1.39)

It is easy to show that an anti-unitary operator can be expressed as a composition
of complex conjugation and a unitary transformation

T = UT ◦ K. (1.40)

In particular the operator K acts on a generic state by changing the expansion
coefficients with their complex conjugate and leaving the basis states untouched

K
∑
i

αi|i⟩ =
∑
i

α∗
i |i⟩. (1.41)

The action of time reversal on a generic operator can therefore be written as

Â→ T ÂT −1 = UT Â
∗U−1

T . (1.42)

using this, we can rewrite the condition (1.39) as

UTH
∗U−1

T = H. (1.43)

Another important property is that hermitian operators can be either odd or
even under the action of T

T ÂT −1 = ±Â, (1.44)

being a direct consequence of the anti-unitarity.
In particular for position, momentum and spin it is reasonable to expect

T xT −1 = x , T pT −1 = −p , T sT −1 = −s. (1.45)

From the first two relations, it becomes immediately clear that time reversal must
indeed be anti-unitary. If that was not the case, the canonical commutation relations
will in fact not be preserved by the transformation.

1.3.1.2 Time reversal in second quantization

The action of time reversal in second quantization is given by [3]

T Ψ̂AT −1 =
∑
B

(UT )ABΨ̂B , T Ψ̂†
AT

−1 =
∑
B

Ψ̂†
B(UT )

∗
AB , T iT = −i, (1.46)

where UT is a unitary matrix. By definition, a system is time reversal invariant if
the second-quantized Hamiltonian is symmetric

T · Ĥ · T −1 = Ĥ. (1.47)

If we plug the generic form of Ĥ (given by eq.(1.25)) in eq.(1.47), we can determine
the corresponding symmetry condition on the one-particle Hamiltonian H:

13



Chapter 1 1.3. Unitary and Anti-unitary Symmetries

T ĤT −1 =
∑
A,B

T Ψ†
AT

−1T HABT −1T ΨBT −1 =

=
∑
A,B

∑
C,D

Ψ†
C(UT )

∗
ACH

∗
AB(UT )BDΨD = Ĥ =

=
∑
CD

Ψ†
CHCDΨD. (1.48)

It follows that the system is time reversal symmetric if the one-particle Hamiltonian
satisfies

U †
TH

∗UT = H. (1.49)

This is indeed equivalent to the condition of eq.(1.43), determined by using first
quantization.

It is useful to also find the symmetry condition of the one-particle Hamiltonian
in momentum space, which reads

T H(k)T −1 = H(−k) =⇒ UTH
∗(k)U−1

T = H(−k). (1.50)
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Chapter 2

Kagomé Lattice

In this chapter we generalize the previous discussion of graphene to the kagomé lat-
tice. We begin by constructing the corresponding tight-binding model and building
the effective theory near the Dirac points. As in graphene, this will be described by
a massless Dirac Hamiltonian, for which we determine the possible mass terms with
their corresponding symmetry classification.

2.1 Tight-binding Model

Let us start by writing the tight binding model on the kagomé lattice. The Hamil-
tonian, with nearest neighbor hopping parameter t, reads [5]

H = −t
∑

<i,j,l>,σ

(a†i,σbj,σ + a†i,σcl,σ + b†j,σcl,σ + h.c.), (2.1)

where a, b, c are the quantum operators acting respectively on the three different
sublattices. The indices i, j, l indicate the real space position of the lattice sites
and σ is the spin label.

Figure 2.1: Kagomé real space lattice structure. Adapted from [5].

Let us now consider a generic site i, belonging to the A sublattice, at position

15



Chapter 2 2.1. Tight-binding Model

ri. It follows that the positions of the nearest neighbouring sites are

rj ∈ B = ri ± δAB

rl ∈ C = ri ± δAC

(2.2)

with

δAB = a(1, 0)T , δAC =
a

2
(1,
√
3)T . (2.3)

The Hamiltonian can then be rewritten as

H = −t
∑
i∈A

(a†ibi+δAB
+a†ibi−δAB

+a†ici+δAC
+a†ici−δAC

+b†i+δAB
ci+δAC

+b†i−δAB
ci−δAC

+h.c)

(2.4)
where we have dropped the spin index σ for convenience.

We now make use of the transformation laws for the creation and anihilation
operators from real to momentum space

a†i =
1√
N
3

∑
k

e−ik·ria†k

ai =
1√
N
3

∑
k

eik·ria†k.
(2.5)

with N the total number of lattice sites. Plugging these into eq.(2.4) yields

H = −t
∑
i∈A

1

N/3

∑
k,k′

(ei(k−k′)·rieik·δABa†
k′bk + ei(k−k′)·rie−ik·δABa†

k′bk + ei(k−k′)·rieik·δACa†
k′ck+

+ei(k−k′)·rie−ik·δACa†
k′ck + ei(k−k′)·rie−ik′·δABeik·δACb†

k′ck + ei(k−k′)·rieik
′·δABe−ik′·δACb†

k′ck + h.c.)

(2.6)

which using ∑
i∈A

1

N/3
ei(k−k′)·ri = δk,k′ (2.7)

becomes

H = −t
∑
k

(eik·δABa†kbk + e−ik·δABa†kbk + eik·δACa†kck + e−ik·δACa†kck+

+eik·(δAC−δAB)b†kck + eik·(δAB−δAC)b†kck + h.c.) =

= −t
∑
k

(2 cos (k · δAB)a
†
kbk + 2 cos (k · δAC)a

†
kck + 2 cos ((δAC − δAB) · k)b†kck + h.c.)

(2.8)

where for the following we define δBC := δAC − δAB = a
2
(−1,

√
3)T .

The final expression in eq.(2.8) can be conveniently rearranged as

H = −2t
∑
k,σ

Ψ†
σ(k)

 0 cos (k · δAB) cos (k · δAC)
cos (k · δAB) 0 cos (k · δBC)
cos (k · δAC) cos (k · δBC) 0

Ψσ(k) =
∑
k,σ

Ψ†
σ(k)H(k)Ψσ(k)

(2.9)
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Chapter 2 2.1. Tight-binding Model

with Ψ(k) =
(
aσ(k) bσ(k) cσ(k)

)T
the vector of quantum operators, and H(k)

the Block Hamiltonian. The energy bands are then determined by diagonalizing
H(k) {

E1,2 = t(1±
√
3 + 2

∑
j cos (2k · δj))

E3 = −2t
(2.10)

with δj = (δAB, δAC , δBC).

Figure 2.2: Kagomé energy bands in units of the hopping parameter t.
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2.2 Retrieve the Dirac Structure

The band structure of the kagomé lattice, represented in Fig.(2.2), presents some
remarkable similarities with the one of graphene. In particular the two non flat
bands exhibit Weyl nodes: a discrete set of momentum values where the bands
intersect each other and the energy becomes linear in momentum, resembling the
dispersion of massless relativistic particles. For this reason they are usually referred
to as Dirac points. In fact, the effective Hamiltonian describing the system near
these special points turns out to have the two-dimensional Dirac form, as in the
graphene case.

Figure 2.3: Dirac structure in the kagomé spectrum.

Within the first Brillouin zone there are six of these nodes, which again inci-
dentally coincide with the corners of the hexagonal primitive cell in the reciprocal
lattice. The boundary conditions impose the equivalence between some of them,
such that there are only two in-equivalent Dirac points.

Figure 2.4: First Brillouin zone of the kagomé lattice. The Dirac points sit on its
corners. Equivalent points are marked with the same symbol (circle or square).
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Chapter 2 2.2. Retrieve the Dirac Structure

The purpose of this section is to construct the effective theory, in the vicinity of
the Dirac points, for the kagomé lattice. As we will see, the procedure is slightly
more complicated than the one for graphene, where expanding the Hamiltonian
around the Dirac points was sufficient. This is due to the presence of the additional
flat band in the kagomé spectrum, which needs to be decoupled from the other two
in order to retrieve the Dirac structure.

Let us start by expanding the one-particle Hamiltonian in eq.(2.9) around kD1 =
(2π
3a
, 0). This is obtained by changing the variables as k = kD1+q and consequently

Taylor expand up to linear order in q, assuming |q|
|kD1|

≪ 1.

H(kD1+q) ≃ t

 0 1 +
√
3aqx −1 +

√
3
2
(aqx +

√
3aqy)

1 +
√
3aqx 0 −1 +

√
3
2
(aqx −

√
3aqy)

−1 +
√
3
2
(aqx +

√
3aqy) −1 +

√
3
2
(aqx −

√
3aqy) 0


(2.11)

To make the notation more convenient, in the following we will indicate the
Hamiltonian expanded around kD1 as H1(q).

The goal now is to extract from eq.(2.11) an effective 2×2 Hamiltonian, describ-
ing exclusively the two non flat bands near the Dirac point. In other words, the
spectrum of the effective Hamiltonian should reproduce correctly, up to linear order
in momentum, the dispersion of the two non flat bands in the proximity of kD1.

To achieve this we first evaluate H1 at q = 0, and find a transformation which
diagonalizes the resulting matrix [5]. This is given by

U1 =


1√
2
− 1√

6
− 1√

3

0
√

2
3
− 1√

3
1√
2

1√
6

1√
3

 (2.12)

such that

U−1
1 H1(0)U1 =

−t 0 0
0 −t 0
0 0 2t

 . (2.13)

Applying the same transformation to H1(q) (for q ̸= 0), we get

U−1
1 H1(q)U1 =


−t+ 1

2
at
(√

3qx + 3qy
)

1
2
at
(
−
√
3qy + 3qx

)
1
2

√
3
2
at
(
−
√
3qx + qy

)
1
2
at
(
−
√
3qy + 3qx

)
−1

2
t
(√

3aqx + 3aqy + 2
)
−1

2

√
3
2
at
(
qx +

√
3qy
)

at(−3qx+
√
3qy)

2
√
2

−1
2

√
3
2
at
(
qx +

√
3qy
)

2t

 .

(2.14)

For a more convenient notation in the following we will indicate U−1
1 H1(q)U1 :=

h1(q). We note en passant that it is important to preserve the hermitian structure
of the Hamiltonian, which is the reason why we choose U1 unitary.

It reveals to be convenient to also perform the following change of variables
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{
q1 =

1
2
(qx +

√
3qy)

q2 =
1
2
(
√
3qx − qy)

(2.15)

so that the Hamiltonian finally takes the form

h1(q1, q2) =

−t+ vfq1 vfq2 − vf√
2
q2

vfq2 −t− vfq1 − vf√
2
q1

− vf√
2
q2 − vf√

2
q1 2t

 (2.16)

where we have defined the kagomé Fermi velocity vf =
√
3at.

As we can see in eq.(2.16), the eigenvalue 2t, corresponding to the flat band,
appears on the diagonal. This is expected since U1 is by construction the trans-
formation that diagonalizes H1(q) at zero-th order in momentum, such that any
constant eigenvalue should already pop up on the diagonal after applying U1.

Having isolated the eigenvalue corresponding to the flat band, the upper-left 2×2
block constitutes the effective Dirac Hamiltonian we were looking for, describing
exclusively the two non-flat bands.

h1eff (q1, q2) =

(
−t+ vfq1 vfq2
vfq2 −t− vfq1

)
= −t · 1 + vf (q1σ3 + q2σ1). (2.17)

However it still remains to prove that the off-block matrix elements in eq.(2.16)
contribute to the energy levels of the upper left 2 × 2 block by terms of order q2,
which can be neglected in the linear regime [5]. This is done in the next paragraph
by means of perturbation theory.

2.2.1 Perturbation Theory

Let us consider as the unperturbed Hamiltonian

h01(q1, q2) =

−t+ vfq1 vfq2 0
vfq2 −t− vfq1 0
0 0 2t

 (2.18)

and as the perturbation

V =

 0 0 − vf√
2
q2

0 0 − vf√
2
q1

− vf√
2
q2 − vf√

2
q1 0

 . (2.19)

h01(q1, q2) can be exactly diagonalized by the unitary transformation

u =


(q1+
√

q21+q22)
√

q22

q2

√
2q21+2q22+2q1

√
q21+q22)

(q1−
√

q21+q22)
√

q22

q2

√
2q21+2q22−2q1

√
q21+q22)

0
√

q22√
2q21+2q22+2q1

√
q21+q22

√
q22√

2q21+2q22−2q1
√

q21+q22

0

0 0 1

 (2.20)

as

u−1 · h01(q1, q2) · u =

−t+ vf
√
q21 + q22 0 0

0 −t− vf
√
q21 + q22 0

0 0 2t

 (2.21)
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meaning that, besides the flat band, the unperturbed energy levels are:

E1 = −t+ vf

√
q21 + q22 and E2 = −t− vf

√
q21 + q22 (2.22)

with corresponding eigenstates |E1⟩, |E2⟩. On the other hand the perturbation in
this basis becomes

u−1·V ·u ≡ Ṽ = −vf


0 0

√
q22(2q1+

√
q21+q22)

2
√

q22+q21+q1
√

q21+q22

0 0

√
q22(2q1−

√
q21+q22)

2
√

q22+q21−q1
√

q21+q22√
q22(2q1+

√
q21+q22)

2
√

q22+q21+q1
√

q21+q22

√
q22(2q1−

√
q21+q22)

2
√

q22+q21−q1
√

q21+q22

0

 .

(2.23)
We can now calculate the correction on the levels E1, E2 due to Ṽ . The perturbative
approach is justified here since we assumed q to be small in the expansion, so indeed
Ṽ can be treated as a small perturbation.
The first order correction is zero

δE
′

1 = ⟨E1|Ṽ |E1⟩ = δE
′

2 = ⟨E2|Ṽ |E2⟩ = 0. (2.24)

Whereas at second order we get

δE
′′

1 =
∑

i ̸=|E1⟩

|⟨E1|Ṽ |Ei⟩|2

E1 − Ei

=
q21
12t

+
q22
12t

+
q1|q2|
4t

+O(q3) (2.25)

and

δE
′′

2 =
∑

i ̸=|E2⟩

|⟨E2|Ṽ |i⟩|2

E2 − Ei

=
q21
12t

+
q22
12t
− q1|q2|

4t
+O(q3) (2.26)

as we wanted to prove.

2.2.2 Full Effective Hamiltonian

Before continuing with our discussion of the effective theory, a useful remark has
to be made. The one-particle Hamiltonian H(k) derived in eq.(2.9) represents just
a single block of the full Hamiltonian in momentum space, which is in fact block
diagonal in k.

H =


H(k1)

H(k2)
. . .

H(kN−1)
H(kN)

 . (2.27)

This is a direct consequence of the translational invariance of the system, and keeping
it in mind will make the construction of the full effective theory appear natural.

Generally speaking, an effective theory is a description of the dynamics of a
system, valid only in a particular limit. In our specific case, we started by writing
down a tight-binding model on the kagomé lattice, and we now aim to restrict the
theory in the regime where the electronic momentum values are in the proximity
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of the Dirac points. As already said, in the first Brillouin zone there are two in-
equivalent Dirac points. Let us choose kD1 and kD4 as in Fig(2.4). Then, morally,
this procedure can be seen as restricting the initial Hilbert space to the states

|kD1 + q⟩ , |kD4 + q⟩ with q ∼ 0 (2.28)

and thus selecting in (2.27) only the diagonal blocks with corresponding momentum
values. All the needed information is therefore encoded in the Hamiltonian

H14(q) =

(
H(kD1 + q) 0

0 H(kD4 + q)

)
(2.29)

which can be then linearized in q. At that point, if we decouple the flat band
and ignore the corresponding rows and columns, the Dirac form of the Hamiltonian
becomes apparent.

In the previous paragraphs this procedure has been carried out only for the upper
block, corresponding to H(kD1 + q). The same steps can be similarly repeated also
for the Hamiltonian expanded around kD4, leading to the final result

Heff (q1, q2) =


−t+ vfq1 −vfq2 0 0
−vfq2 −t− vfq1 0 0

0 0 −t− vfq1 vfq2
0 0 vfq2 −t+ vfq1

 . (2.30)

This can be conveniently written using tensor products of Pauli matrices as

Heff = −t(σ0 ⊗ τ0) + [σ3 ⊗ (vfq1τ3)] + [σ3 ⊗ (vfq2τ1)]. (2.31)

If we set the chemical potential properly such that the Fermi level lies between

the two non flat bands, the first constant term in (2.31) can be neglected and the
effective Hamiltonian describing low energy excitations is

Heff = vf [σ3 ⊗ (τ3q1 + τ1q2)]. (2.32)

Up to this point we have omitted for convenience the presence of the spin degree
of freedom. Introducing it back, the spin-full effective theory is described by

Heff = vf [s0 ⊗ σ3 ⊗ (τ3q1 + τ1q2)] (2.33)

where again s, σ, τ are Pauli matrices. The first two act as usual on the spin
and valley degree of freedom. However for τ we need to be careful. In fact the
effective Hamiltonian (2.33) has been obtained after performing a transformation to
decouple the flat band and ignoring the corresponding rows and columns. Therefore
the sublattice degree of freedom, still present in H14(q), is not intact anymore in
Heff . In particular the Pauli matrices τ in (2.33) act on the space of 2-component
spinors, whose components contain a combination of the three sublattices.

2.2.3 Hilbert Spaces of the Model

We conclude the treatment of the effective theory with a comment on the different
Hilbert spaces that play a role in the description of our model. It will be in fact
useful to distinguish them in the following.
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We begin by indicating with H the Hilbert space of the original tight-binding
theory. In a sense this is the large landscape that contains all the other Hilbert
spaces that we are going to define.

As a first step to build the effective theory, we have then restricted H to a subset
only containing the states (2.28). We call this new Hilbert space H̃, in which the
Hamiltonian H14(q) in (2.29) is expressed before the decoupling procedure of the
flat band. The block structure of H14(q) suggests that H̃ can be broken down into
sectors corresponding to the degrees of freedom of the system:

H̃ = spin⊗ valley⊗ sublattice, (2.34)

The wave function in H̃ is therefore a spinor with components

Ψ =
(
ψA,B,C
+,↑ , ψA,B,C

−,↑ , ψA,B,C
+,↓ , ψA,B,C

−,↓

)T
with ψA,B,C =

(
A B C

)T
.

(2.35)
Finally, we transformed H14(q) (and accordingly H̃) by decoupling the flat band,

and ignoring the corresponding rows and columns. In this space the Hamiltonian
takes the two-dimensional Dirac form. For this reason, we refer to the resulting
Hilbert space as the Dirac subspace HD.

2.2.4 Choice of the Dirac Points

The form of the effective Hamiltonian (2.33) has been derived for a particular choice
of in-equivalent Dirac points, namely kD1 and kD4. However this choice was com-
pletely arbitrary, and we may ask if a different one would have yield the same result.
As already said, in the first Brillouin zone there are six Dirac points, corresponding
to the corners of its hexagonal edge. The boundary conditions on the hexagon im-
pose that kD1 is equivalent to kD3, kD5 (and kD4 to kD2, kD6). These points are in
fact connected by reciprocal lattice vectors. Therefore we would expect our theory
to be independent from equivalent valley choice. Things are however more subtle,
as we will see it in details later during the discussion of the mass terms, where the
Gauge transformations will be introduced. For the time being we simply note that
expanding the Hamiltonian around different (although equivalent) Dirac points will
result in two different matrices. This means that the transformation that decouples
the flat band is in general different for each of the possible choices of Dirac points.
However, if we construct the transformations carefully, we are able to obtain the
same final effective Dirac Hamiltonian (2.33).

In particular the correct transformations are

U1 =


1√
2
− 1√

6
− 1√

3

0
√

2
3
− 1√

3
1√
2

1√
6

1√
3

 U2 =

 −
1√
2

1√
6

1√
3

0
√

2
3
− 1√

3
1√
2

1√
6

1√
3

 U3 =


1√
2
− 1√

6
− 1√

3

0 −
√

2
3

1√
3

1√
2

1√
6

1√
3



U4 =


1√
2
− 1√

6
− 1√

3

0
√

2
3
− 1√

3
1√
2

1√
6

1√
3

 U5 =

 −
1√
2

1√
6

1√
3

0
√

2
3
− 1√

3
1√
2

1√
6

1√
3

 U6 =

 −
1√
2

1√
6
− 1√

3

0
√

2
3

1√
3

− 1√
2
− 1√

6
1√
3


(2.36)

where Ui works for the Hamiltonian expanded around kDi.
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2.3 Opening a Gap

In the previous section we have seen that the band structure of the kagomé lattice
is characterized, in the first Brillouin zone, by two in-equivalent Dirac points at the
Fermi level. An excitation around these points is linear in momentum, therefore
the low energy theory is well described by a two-dimensional massless Dirac Hamil-
tonian. This emergent relativistic behaviour is a remarkable property that kagomé
shares with graphene.

At this point, a natural question that arises is what kind of mass terms can be
introduced in the theory, such that the dispersion acquires a gap. This question is
relevant in the context of controlling the conduction properties of the material, and
has already been address in the graphene case [2]. We now extend the discussion
also to kagomé.

We begin by first defining what we mean by mass. Let us consider a generic
Dirac Hamiltonian in two dimensions

HD = α1k1 + α2k2, (2.37)

where α1,2 are two generic anti-commuting objects satisfying

{αi, αj} = 2δi,j i, j = 1, 2 . (2.38)

The Hamiltonian (2.37) simply leads to the gap-less dispersion

E = ±|k|. (2.39)

Let us now add to (2.37) a term of the form mM , where M is an operator and m a
constant [2]. Squaring the resulting Hamiltonian yields

H2
D = k21 + k22 +m2M2 +mk1{ M,α1}mk2{ M,α2} (2.40)

where eq.(2.38) has been used. If we require that

{ M,α1,2} = 0 , M2 = 1 (2.41)

the resulting dispersion becomes massive

E = ±
√
|k|2 +m2. (2.42)

(a)
(b)

Figure 2.5: On the left a massless Dirac dispersion. On the right is the dispersion
after introducing a mass term.
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A mass term is therefore defined by the relations (2.41). In the kagomé case the
Dirac Hamiltonian reads

HD = vf [s0 ⊗ σ3 ⊗ (τ3q1 + τ1q2)] (2.43)

and we can make the identifications

α1 = s0 ⊗ σ3 ⊗ τ3 , α2 = s0 ⊗ σ3 ⊗ τ1. (2.44)

In order to find all the possible mass terms it is convenient to use as basis a tensor
product of three Pauli Matrices (plus the identity) Mijk = si ⊗ σj ⊗ τk. In total
there are 64 possibilities, among which only 16 1 satisfy the condition (2.41):

m1 = 002 m5 = 102 m9 = 202 m13 = 302
m2 = 010 m6 = 110 m10 = 210 m14 = 310
m3 = 020 m7 = 120 m11 = 220 m15 = 320
m4 = 032 m8 = 132 m12 = 232 m16 = 332

Table 2.1: Tensor indices of the kagomé mass terms.

It is important to note that in the derivation of these mass terms we have assumed
that momentum is still a good quantum number, meaning that the terms in the list
preserve translation invariance. However, in general, it is possible to find other
elements that open a gap, obtained by coupling states with different momenta.

Finally, we stress the fact that the form of the mass terms in H̃D is the same
for any valley choice. This is because, as already said, the flat band decoupling
transformations have been constructed to get the same Dirac Hamiltonian regardless
of the Dirac points chosen.

116 is also the number of mass terms in the graphene case [2].
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2.4 Symmetries

In this section we present the symmetries of the kagomé system. We are going to
divide them into two classes: lattice symmetries, and general quantum mechanical
symmetries (T , S, C). First we write down the representation of each symmetry
operator and the transformation law of the gap-less Hamiltonian under it. We then
classify the mass terms depending if they preserve or break the transformation laws.
Based on the particular symmetry, we will represent its corresponding operator
in a different Hilbert space. In particular, in the case of the lattice symmetries the
natural choice is H̃, since in that space the sublattice degree of freedom is still intact
and it is immediate to see how the three sublattices are transformed by reflections
and rotations. In the case of time reversal we can either choose H̃ or HD, whereas
for the remaining quantum symmetries (C, S) the choice is forced to HD since in the
kagomé case those symmetries are exclusively present in the effective Dirac theory.

2.4.1 Time Reversal

As we have already seen, H̃ can be broken down into three distinct sectors, cor-
responding to the spin, valley and sublattice degree of freedom. It is therefore
sufficient to first find the correct representation of the symmetry operator on each
single sector, and then combine them using the tensor product to obtain the full
representation.

Let us start by considering the representation of T on the Hilbert space of spin
1
2
. This is given by

Tspin 1
2
= is2K (2.45)

where as usual s indicates Pauli matrices and K indicates complex conjugation [17].
It can be readily verified that it is indeed the correct form by checking that

T s1T −1 = −s1 , T s2T −1 = −s2 , T s3T −1 = −s3 (2.46)

as expected. To see how the valleys transform, it is sufficient to note that

T |k⟩ = | − k⟩. (2.47)

meaning that if we choose opposite Dirac points, these are swapped. Hence the
valley degree of freedom transforms with

Tvalley = σ1. (2.48)

The sublattice degree of freedom is left untouched by this transformation. It follows
that the full transformation is represented by

T = is2K ⊗ σ1 ⊗ 13x3. (2.49)

With the explicit form of the operator T at hand, we can verify that the system
presents this symmetry by checking eq.(1.50). Indeed the condition holds true, as
can be verified choosing for example H14(k).

2.4.2 Sublattice Symmetry

This transformation also goes by the name of Chiral symmetry. It is defined in
second quantization as

SΨ̂AS−1 =
∑
B

(US)ABΨB , SΨ̂†
AS

−1 =
∑
B

Ψ†
B(U

∗
S)BA (2.50)
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with US a unitary matrix [3]. The second quantized Hamiltonian is invariant under
S if

SHS−1 = H, (2.51)

form which it follows that the one-particle Hamiltonian has to satisfy

USHU
†
S = −H

USH(k)U †
S = −H(k). (2.52)

In order to find the representation of S it is instructive to first discuss it in the
simpler case of graphene, using first quantization language. Ignoring temporarily
spin and valleys, a single momentum block of the tight-binding Hamiltonian has the
form

H(k) =

(
0 HAB

H†
BA 0

)
, (2.53)

where A and B indicate the two different orbitals. As the name suggests, this
symmetry acts on the sublattice degree of freedom, flipping the sign of one sublattice
with respect to the other. We say that the symmetry is intact if

τ3H(k)τ3 = −H(k). (2.54)

From this it immediately follows that if ψ =
(
ψA ψB

)
is an eigenstate with en-

ergy E, then there exists another eigenstate ψ =
(
ψA −ψB

)
with opposite energy

−E. Therefore the spectrum is symmetric. In the full low energy theory, with
Hamiltonian

H(k)eff/graphene = vf (s0 ⊗ σ0 ⊗ τ1kx + s0 ⊗ σ3 ⊗ τ2ky) (2.55)

the basis spinor is

ψ =
(
A+↑, B+↑, A−↑, B−↑, A+↓, B+↓, A−↓, B−↓

)
, (2.56)

therefore the action of the sublattice symmetry operator is

Sgraphene = s0 ⊗ σ0 ⊗ τ3. (2.57)

The Kagomé lattice does not present this property apparently, because of the
presence of the flat band, which spoils the symmetry of the energy spectrum. How-
ever it becomes a symmetry if we restrict to the decoupled space H̃D, describing
exclusively the two non flat bands. Even though the symmetry does not have the
same intuitive action as in graphene, we can still write a unitary matrix that anti-
commutes with the kagomé low energy Hamiltonian

H(k)eff/kagome = vf [s0 ⊗ σ3 ⊗ (τ3k1 + τ1k2)]. (2.58)

In that case the operator is represented as

Skagome = s0 ⊗ σ3 ⊗ τ2 (2.59)

and it can be checked that the kagomé effective low energy Hamiltonian H(k)eff
transforms as

SkagomeH(k)effS−1
kagome = −H(k)eff . (2.60)
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2.4.3 Charge Symmetry

This symmetry is also called particle-hole, as its action is to swap creation and
annihilation operators. It is therefore natural to present it in second quantization.
Ĉ acts on the Fock space as

CΨAC−1 :=
∑
B

(UC)
∗
ABΨ

†
B , CΨ†

AC
−1 :=

∑
B

(UC)BAΨB , CiC−1 = −i (2.61)

where UC is a unitary matrix [3]. By definition, we say that the system has this
symmetry if

CHC−1 = H. (2.62)

Similarly as for time reversal, we can use eq.(2.62) to find the corresponding sym-
metry condition for the one-particle Hamiltonian, which reads

U †
CH

∗U = −H, (2.63)

and in momentum space becomes

CH(k)C−1 = −H(−k). (2.64)

As we mentioned in the introduction of unitary and anti-unitary transformations,
the symmetry condition is always that the operator commutes with the second
quantazied Hamiltonian. However this may not be the case for the one-particle
Hamiltonian, as happens here.

In order to derive the representation of C, we remind that the sublattice symme-
try can be defined as a composition of charge and time reversal

S = T · C. (2.65)

Therefore inverting the previous relation, and using the representations of T and S
already derived, we find that

S = s2 ⊗ σ2 ⊗ τ2 · K. (2.66)

Again it can be verified that (2.64) holds for the kagomé low energy effective Hamil-
tonian Heff (k).
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2.4.4 Lattice Symmetries

We now turn our attention to the geometrical symmetries of the kagomé lattice.
These are reflections and rotations that preserve the structure of the lattice. As in
the previous section, we will explicitly write down their representations, and verify
that the gapless Hamiltonian is symmetric under them. Before doing that, it is
useful to review how the spin and valley degree of freedom are affected by these
transformations.

2.4.4.1 Transformation of the spin degree of freedom

Let us first recall that on the Hilbert space of spin 1
2
, a rotation of angle θ around

the axis n̂, is represented by the operator

Rn⃗(θ) = exp(−iθ
2
s · n̂) = cos(

θ

2
) · 12x2 − is · n̂ sin(

θ

2
), (2.67)

where s = (s1, s2, s3) is the vector of Pauli matrices [17].
On the other hand, reflections require some extra care. A two dimensional re-

flection with respect to a certain axis n̂ crossing the origin can be decomposed into
an inversion of all coordinates (parity transformation), followed by a rotation of π
around the direction perpendicular to n̂, as in Fig.(2.6).

+=

Figure 2.6: Decomposition of a 2D reflection (with respect to an axis crossing the
origin) as an inversion of the coordinates followed by a rotation of π around the
direction n̂, perpendicular to the reflection axis.

This observation turns out to be useful. In fact parity doesn’t affect spin, so
that only the rotation component needs to be taken into account. The operator
representing the reflection is therefore

Refn̂ = −is · n̂⊥ (2.68)

with n̂⊥ the unitary vector perpendicular to the reflection axis.

2.4.4.2 Transformation of the valleys

Reflections and rotations in real space correspond to the same transformations in
momentum space. Moreover the reciprocal lattice presents the same symmetries as
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the real space structure. Therefore, in order to see how the valleys are affected, we
apply the considered transformation to the hexagon representing the first Brillouin
zone, and see how the Dirac points at the corners are mapped into each other. As
we will see, depending on the particular reflection or rotation, there will be some
natural choices for the Dirac points of reference, such that the symmetry operator
assumes the simplest form.

2.4.4.3 Reflections symmetries

Figure 2.7: Reflection symmetries of the kagomé lattice. The dotted lines indicate
the axis of reflection. The three sublattices are marked with different colors.

• E1 : This is the reflection with respect to the ŷ axis, and it inverts the kx
momentum component. Using eq.(2.68) the corresponding transformation on
the spin sector is

E1spin = −is · x̂ = −is1 (2.69)

where s1 is the first Pauli matrix.

Regarding the valleys, a convenient choice for this reflection is to consider
Dirac points symmetric with each other with respect to the reflection axis ŷ,
such as kD1 and kD4. Given that choice, it is clear that E1 simply exchanges
the two valleys

kD1 → kD4

kD4 → kD1,
(2.70)

meaning that the reflection operator in valley space is represented by

E1V alley = σ1. (2.71)

Finally it is immediate to see, by looking at the real space lattice, how the
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sublattice degree of freedom transforms:

A→ B

B → A

C → C.

(2.72)

Therefore the full transformation is given by

E1 = −is1 ⊗ σ1 ⊗

0 1 0
1 0 0
0 0 1

 (2.73)

Finally, the momentum Hamiltonian expanded around kD1 and kD4 transforms
under the action of E1 as

E1 ·H14(kx, ky) · E−1
1 = H14(−kx, ky). (2.74)

• E2: This is the reflection with respect to the x̂ axis, which inverts the ky
momentum component. The transformation acts on the spin sector as

E2spin = −is2 (2.75)

A convenient choice for the valleys here is again kD1 and kD4, which are left un-
touched by this reflection. The sublattice degree of freedom changes according
to

A→ B

B → A

C → C

(2.76)

The full transformation is therefore

E2 = −is2 ⊗ σ0 ⊗

0 1 0
1 0 0
0 0 1

 (2.77)

Finally, the Hamiltonian transforms under the action of E2 according to

E2 ·H14(kx, ky) · E−1
2 = H14(kx,−ky). (2.78)

• E3: This reflection is with respect to the axis n̂ of components

n̂ = (

√
3

2
,
1

2
). (2.79)

Using some simple trigonometry, the perpendicular direction is

n̂⊥ = (−1

2
,

√
3

2
). (2.80)

It follows that the spin degree of freedom transforms with

E3spin =
i

2
(s1 −

√
3s2). (2.81)

31



Chapter 2 2.4. Symmetries

Regarding the valleys, a convenient choice is to consider kD1 and kD2, which
get swapped by this reflection. Another equivalent possibility is to take kD4

and kD5. The 3 sublattices are reshuffled as:

A→ A

B → C

C → B

(2.82)

The full transformation is therefore

E3 =
i

2
(s1 −

√
3s2)⊗ σ1 ⊗

1 0 0
0 0 1
0 1 0

 . (2.83)

Finally, the Hamiltonian expanded around kD1,kD2 transforms as

E3 ·H12(k) · E−1
3 = H12(k

′) (2.84)

where k′ is the momentum reflected with respect to n̂⊥

k′ = (
kx
2

+

√
3

2
ky,

√
3

2
kx −

ky
2
). (2.85)

• E4: In this case the axis of reflection is

n̂ = (−
√
3

2
,
1

2
) (2.86)

therefore

n̂⊥ = (
1

2
,

√
3

2
). (2.87)

The spin degree of freedom transforms according to

E4spin = − i
2
(s1 +

√
3s2) (2.88)

For the valleys we can conveniently either choose kD3 and kD4 (or kD1,kD6),
which are swapped under E4. The 3 sublattices are changed as:

A→ C

B → B

C → A

(2.89)

The full transformation is

E4 = −
i

2
(s1 +

√
3s2)⊗ σ1 ⊗

0 0 1
0 1 0
1 0 0

 (2.90)

Finally the Hamiltonian transforms as

E4 ·H34(k) · E−1
4 = H34(k

′) (2.91)

where again k′ is the reflected momentum under E4

k′ = (
kx
2
−
√
3ky
2

,−
√
3kx
2
− ky

2
). (2.92)
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• E5: For this reflection we have that the axis of reflection and its perpendicular
are

n̂ = (
1

2
,

√
3

2
) , n̂⊥ = (−3

2
,
1

2
). (2.93)

The spin sector transforms under

E5spin =
i

2
(
√
3s1 − s2) (2.94)

As for the valleys, we choose kD5 and kD2, which are left untouched by the
reflection. The 3 sublattices are shuffled according to

A→ C

B → B

C → A

(2.95)

The full transformation is

E5 =
i

2
(
√
3s1 − s2)⊗ σ0 ⊗

0 0 1
0 1 0
0 0 1

 (2.96)

And finally the Hamiltonian transformation law is

E5 ·H52(k) · E−1
5 = H52(k

′) (2.97)

with k′ the momentum reflected with respect to n̂

k′ = (−kx
2

+

√
3ky
2

,

√
3kx
2

+
ky
2
). (2.98)

• E6: In this case the reflection axis and its perpendicular are

n̂ = (−1

2
,

√
3

2
) , n̂⊥ = (

√
3

2
,
1

2
) (2.99)

. It follows that the transformation in spin space is

E6spin = − i
2
(
√
3s1 + s2) (2.100)

As for the valleys, the convenient choice here is to take kD3 and kD6, which
are left untouched by E6. The sublattice degree of freedom changes according
to

A→ A

B → C

C → B

(2.101)

The full transformation is therefore

E6 = −
i

2
(
√
3s1 + s2)⊗ σ0 ⊗

1 0 0
0 0 1
0 1 0

 (2.102)

The action of E6 on the Hamiltonian is

E6 ·H36(k⃗) · E−1
6 = H36(k⃗′) (2.103)

with k′ the reflected momentum with respect to n̂

k′ = (−kx
2
−
√
3ky
2

,−
√
3kx
2

+
ky
2
). (2.104)
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2.4.4.4 Rotations

The treatment of rotations follows a similar procedure as for the reflections. How-
ever, extra care needs to be paid when writing down the transformation law for the
Hamiltonian. In fact, if in the case of reflections we were able to conveniently choose
the valleys, such that the transformation could either swap or left them untouched,
this is not possible anymore for rotations. In particular, an Hamiltonian expanded
around a certain pair of Dirac points will be sent by the rotation in an Hamiltonian
corresponding to a different choice of valleys. Therefore, when writing the transfor-
mation law, we will need to express it using Hamiltonians expanded around different
valleys. The transformation operator on the valley sector will then only keep track
of the fact that a Dirac point can either be sent to an equivalent or in-equivalent
one by the rotation (this will become clear in the following).

Figure 2.8: Rotation symmetries of kagomé lattice.

• R1: This is the rotation of θ = π
3
, therefore using eq.(2.6) the spin degree of

freedom transforms with the operator

R1spin =
1

2
(
√
3s0 − is3). (2.105)

As for the valleys, if we choose kD1 and kD4, this rotation will send them in

kD1 → kD2 , kD4 → kD5 (2.106)

which means that odd valleys are sent into even, and vice versa. This is true
for any other choice. Our convention is to always write the Hamiltonian with
odd valleys in the upper block and even in the lower. Therefore this rotation
acts with a σ1 in the valley sector, which serves to restore the correct order.
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The sublattices are transformed as

A→ C

B → A

C → B

(2.107)

The full transformation is

R1 =
1

2
(
√
3s0 − is3)⊗ σ1 ⊗

0 0 1
1 0 0
0 1 0

 . (2.108)

Finally the transformation law for the Hamiltonian reads

R1 ·H14(k) ·R−1
1 = H54(k

′) (2.109)

where here, and in the following, we indicate with k′ the rotated of k by the
angle of the rotation (in this case π

3
).

• R2: This is the rotation of 2π
3
. Spin is transformed with

R2spin =
1

2
(s0 − i

√
3s3). (2.110)

The parity of the Dirac points number is not changed by this transformation,
so we have a σ0 acting in the valley sector. Again it is easy to see how the
sub-lattices change

A→ B

B → C

C → A

(2.111)

The full transformation is

1

2
(s0 − i

√
3s3)⊗ σ0 ⊗

0 1 0
0 0 1
1 0 0

 , (2.112)

and the Hamiltonian transformation law can be expressed as

R2 ·H14(k) ·R−1
2 = H36(k

′) (2.113)

where again k′ is the rotated of k by 2π
3
.

• R3: This is the rotation of π. The operator that represents R3 in spin space
is

R3spin = −is3 (2.114)

Here it is convenient to choose as reference opposite Dirac points, such that
the transformation simply swaps them. The lattice is left untouched

A→ A

B → B

C → C

(2.115)
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The full operator is

R3 = −is3 ⊗ σ1 ⊗

1 0 0
0 1 0
0 0 1

 , (2.116)

and the transformation law for the Hamiltonian reads

R3 ·H14(k) ·R−1
3 = H14(k

′) (2.117)

with k′ = (−kx,−ky).

• R4: This is the rotation of 4π
3
. For the spin we have

R4spin = −1

2
(s0 + i

√
3s3) (2.118)

A possible choice for the Dirac points is kD1 and kD4, which are sent to

kD1 → kD5 , kD4 → kD2. (2.119)

Therefore the valley number does not change parity. Sublattices are reshuffled
as

A→ C

B → A

C → B

(2.120)

The full operator is

R4 = −
1

2
(s0 + i

√
3s3)⊗ σ0 ⊗

0 0 1
1 0 0
0 1 0

 (2.121)

and the transformation law for the Hamiltonian is:

R4 ·H14(k) ·R−1
4 = H52(k

′). (2.122)

where k′ is the rotation of the vector k = (kx, ky) of
4π
3
.

• R5: This is the rotation of 5π
3
We have

R5spin = −1

2
(
√
3s0 + is3) (2.123)

The valley number changes parity, so a σ1 acts on that degree of freedom. The
sublattices transform as

A→ B

B → C

C → A

(2.124)

The full transformation is

− 1

2
(
√
3s0 + is3)⊗ σ1 ⊗

0 1 0
0 0 1
1 0 0

 (2.125)

And finally the Hamiltonian transformation law is

R5 ·H14(k) ·R−1
5 = H36(k

′) (2.126)

where k′ is the rotation of the vector k = (kx, ky) of
5π
3
.
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2.4.5 Classification of Mass Terms

In the previous section we have analyzed all the symmetries of the gap-less tight-
binding model for the kagomé lattice. On the other hand, as seen in section(2.3), it
is possible to introduce a list of instabilities in the model, such that the underlying
Dirac theory becomes massive, and the spectrum acquires a gap.

In this section we bring these two pieces together, and see how the previously
discussed symmetries are affected by the presence of mass. It is reasonable to expect
that, depending on the particular mass term, some symmetries will be preserved and
other broken. In particular, we say that a symmetry is left intact if the corresponding
transformation law still holds true for the massive Hamiltonian.

Our goal is therefore to classify all the possible mass terms, based on the sym-
metries they preserve or break. To do that, it is convenient to transform the mass
terms from the Dirac subspace, back to the the non-decoupled space H̃. This is
because the majority of the symmetry transformations are naturally expressed in
the latter. The procedure is explicitly demonstrated in the following, taking m1 as
guide example.

2.4.5.1 Example: m1 = 002

Suppose we start with the mass termm1 = 002 in the Dirac subspace, and arbitrarily
choose kD1 and kD4 as our reference valleys, such that the Hamiltonian in the
decoupled space H̃ is H14. Our goal is then to transform m1 in the space H̃ (where
H14 is expressed). The procedure consists of the following steps:

• we insert back the rows and columns (of zeros), corresponding to the flat band
previously ignored. As a result we get a 12× 12 matrix as follows

m1 = s0 ⊗ σ0 ⊗
(
0 −i
i 0

)
→ s0 ⊗ σ0 ⊗

0 −i 0
i 0 0
0 0 0

 := m̃1 (2.127)

• Then we transform the so obtained object, restoring the coupling of the flat
band with the inverse of the proper U as provided in eq.(2.36), depending on
the valley choice. In this particular case

U1 0
0 U4

0

0 U1 0
0 U4

 · m̃1 ·


U−1
1 0
0 U−1

4

0

0 U−1
1 0
0 U−1

4

 :=M14
002

where we introduced the notation Mab
ijk to indicate the mass term si ⊗ σj ⊗ τk

in the Dirac space, transformed back to the original non decoupled space, with
choice of valleys a and b.

The resulting matrix M14
002, if added to the mass-less Hamiltonian H14, will

indeed lift the degeneracy at the Dirac points kD1 and kD4, producing a gap.
On the other hand, as a consequence of the boundary conditions, the valley
corresponding to kD1 is equivalent to kD3 and kD5 (and 4 to 2,6) meaning that,
if a mass term produces a gap at two in-equivalent valleys, it should open a
gap in all of the others as well. Therefore we would naively expect M14

002 to be
a good mass term also for an Hamiltonian expanded at different valleys. This
turns out to not be the case. More concretely, for example H32+M

14
002 remains

massless. The reason for this apparent contradiction is subtle, and the next
paragraph is devoted to solve this problem.
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2.4.5.2 Gauge Transformations

We have previously stated that the six Dirac points in the first Brillouin zone are
divided in two groups of three equivalent valleys, as in Fig.(2.4). However this
information is not apparent in the form of the Hamiltonian. In fact, if we evaluate
H(k) at equivalent Dirac points (for example kD1 and kD3) we end up with two
different matrices

H(kD1) =

 0 −1 1
−1 0 1
1 1 0

 , H(kD3) =

0 1 1
1 0 −1
1 −1 0

 . (2.128)

We have already mentioned indirectly this problem, when stating the fact that
the U transformation that decouples the flat band (constructed as the matrix that
diagonalizes at zero-th momentum order the Hamiltonian) is different depending on
the Dirac point considered.

This might be confusing at first glance, since we would expect the Hamiltonian
to be same if evaluated at points connected by reciprocal lattice vectors. The in-
formation about the boundary conditions is however still encoded in the fact that
H(kD1) and H(kD3) show the same spectrum. In fact, what need to be invariant
are the observables (in this case the energy), and not necessarily the form of the
Hamiltonian. This suggests that there exists a Gauge transformation that connects
H(kD1) and H(kD3). In particular it is given by

g13 =

1 0 0
0 −1 0
0 0 1

 (2.129)

such that
g13 ·H(kD1) · g−1

13 = H(kD3). (2.130)

Similarly we can find the Gauge transformations connecting any pair of Hamiltonians
evaluated at equivalent Dirac points

g13 =

 1 0 0
0 −1 0
0 0 1

 g15 =

 −1 0 0
0 1 0
0 0 1

 (2.131)

g24 =

 −1 0 0
0 1 0
0 0 1

 g26 =

 1 0 0
0 1 0
0 0 −1

 (2.132)

Any other possibility is obtained by a composition of the previous. For instance

g35 = g15 · g13 =

−1 0 0
0 −1 0
0 0 1

 (2.133)

It follows that a mass term Mab
ijk for the Hamiltonian Hab, of valleys a and b,

would no longer be a mass term for Hcd (different valleys), unless we perform the
right Gauge transformation on it.

In the specific case mentioned in the previous paragraph, M14
002 transformed to

the valleys 3,2 becomes
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g13 0
0 g42

0

0 g13 0
0 g42

 ·M14
002 ·


g−1
13 0
0 g−1

42

0

0 g−1
13 0
0 g−1

42


which opens correctly a gap in the spectrum of H32.

2.4.5.3 Map the mass terms coming from different valleys

At this point we might ask what is the relation between the mass terms transformed
from the Dirac representation into the space H̃ for different valley choices.

Mab
ijk

?←→M cd
lmn. (2.134)

In general we would expect that if we gauge transform Mab
ijk, the result would

be a combination of mass terms in the new valleys. However it turns out that not
only Mab

ijk, if properly gauged transformed, becomes a mass term for Hcd, but it is

precisely equal to M cd
ijk:

gac 0
0 gbd

0

0 gac 0
0 gbd

 ·Mab
ijk ·


g−1
ac 0
0 g−1

bd

0

0 g−1
ac 0
0 g−1

bd

 =M cd
ijk. (2.135)

Therefore the mapping between mass terms in H̃ for different the valleys is the
simplest possible: the identity. This is true in the particular choice we made of
the decoupling transformations in eq.(2.36). For different choices one might get an
overall minus sign on the right hand side of eq.(2.135).

This also means that the form of the mass terms in the Dirac subspace will be
the same independently of the valley choice. Therefore it makes sense referring to
them by their tensorial indices in HD, which uniquely identify them.

39



Chapter 2 2.4. Symmetries

2.4.5.4 Classification table of the kagomé mass terms

Finally we are ready to present the symmetry classification of the kagomé mass
terms.2

ijk E1 E2 E3 E4 E5 E6 R1 R2 R3 R4 R5

002 false false false false false false true true true true true
010 true true true true true true true true true true true
020 false true false false true true false true false true false
032 true false true true false false false true false true false
102 false true false false false false false false false false false
110 true false false false false false false false false false false
120 false false false false false false false false true false false
132 true true false false false false false false true false false
202 true false false false false false false false false false false
210 false true false false false false false false false false false
202 true false false false false false false false false false false
232 false false false false false false false false true false false
302 true true true true true true true true true true true
310 false false false false false false true true true true true
320 true false true true false false false true false true false
332 false true false false true true false true false true false

T C S
002 false true false
010 true true true
020 true true true
032 true false false
102 true false false
110 false false true
120 false false true
132 false true false
202 true false false
210 false false true
220 false false true
232 false true false
302 true false false
310 false false true
320 false false true
332 false true false

2In the classification ”true” and ”false” correspond respectively to preserved or broken symme-
try. The first column of the table contains the tensorial inidces of the mass termsmijk = si⊗σj⊗τk.
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Strained Graphene

3.1 General Overview

In this chapter we are going to consider the effects of strain in the case of graphene.
Employing a tight-binding description, we analyse the induced changes on the band
structure and particularly on the Dirac cones. The possibility to open a gap in the
spectrum is explored through different types of strain. Finally we investigate the
connection between the strain-induced gap and mass terms within the usual Dirac
theory.

3.1.1 Tight-binding Hamiltonian in the Strained Case

We begin by recalling the tight-binding Hamiltonian for graphene with nearest neigh-
bour hopping which, in the unstrained case, reads

H = −t0
∑

<i,j>,σ

(a†i,σbj,σ + h.c.). (3.1)

As already said, the parameter t0 encodes the electronic probability amplitude for
the hopping between two neighbouring sites to occur and, in the unstrained scenario,
it is such that

tij = t0 = 2.7 eV ,∀ij nearest neighbours (3.2)

being a consequence of the constant bond lengths between carbon atoms.
When strain is introduced, the distances between neighbors are modified

δ → δ′ = (I + ϵ̂)δ (3.3)

with ϵ̂ the strain tensor, for which we are going to provide more details in the
following. As a result, we will have in general a different hopping parameter tij for
each neighbouring pairs ⟨i, j⟩. In particular we assume that the value of tij depends
on the module of the vector δij connecting the two neighboring sites ⟨i, j⟩, and
follows an exponential decay law [14],[16],[15], [4]:

t(δ′) = t0e
−β(

|δ′|
a

−1) (3.4)

with β = 3.37 and a = 1.28A the unstrained bond length (which in the following is
set to 1 for convenience). The Hamiltonian is hence modified as follows

H = −
∑
⟨i,j⟩,σ

tij(a
†
i,σbj,σ + h.c.) (3.5)
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and can be rewritten conveniently as

H = −
∑

i∈A,δ′,σ

t(δ′)(a†i,σbi+δ′,σ + h.c.). (3.6)

In what follows, we are going to consider the case where the strain applied
preserves the translation symmetry of the system, such that the Hamiltonian main-
tains the block diagonal form in momentum space. Therefore, performing the Fourier
transform and replicating the calculations of the first chapter, we can cast the Hamil-
tonian as

H =
∑
k,σ

(
a†k,σ b†k,σ

)
·
(

0 ∆
∆∗ 0

)
·
(
ak,σ
bk,σ

)
, (3.7)

where
∆ :=

∑
j

t(δ′
j)e

−ik·δ′j =
∑
j

t((I + ϵ̂)δj)e
−ik·(I+ϵ̂)δj , (3.8)

and the matrix

H(k) :=

(
0 ∆
∆∗ 0

)
(3.9)

is the usual Block Hamiltonian. Finally, the energy spectrum is easily obtained by
diagonalizing H(k)

E(k) = ±

∣∣∣∣∣∑
j

t(δ′j)e
−ik·δ′j

∣∣∣∣∣ . (3.10)

3.1.2 Strain-induced Effects on the Dirac Points

As the numerical results of the next section will confirm, the application of strain
can indeed lead to the opening of a gap in the energy spectrum, which occurs
concurrently with the merging of in-equivalent Dirac points. In particular in this
paragraph we investigate analytically how strain affects their position in momentum
space.

By definition, the position of the Dirac points is determined by the condition

E(k) = ±

∣∣∣∣∣∑
j

t(δ′
j)e

−ik·(I+ϵ)δj

∣∣∣∣∣ = 0. (3.11)

It reveals to be a convenient choice to make the following change of variables in
momentum space [15]:

k→ k̃ = (I + ϵ̂)Tk (3.12)

such that the energy dispersion becomes similar to the unstrained case

E(k) = ±

∣∣∣∣∣∑
j

t(δ′
j)e

−ik̃·δj

∣∣∣∣∣ = 0, (3.13)

with the presence of three distinct hopping parameters being the only difference.
This procedure is in fact equivalent to only consider the changes produced by the
strain on the hopping parameters, while keeping the lattice untouched [15]. The
advantage gained is that the reciprocal lattice vectors in k̃ space will not be modified
by strain

42



Chapter 3 3.1. General Overview

b1 = (
2π

3
;
2π
√
3

3
) and b2 = (

2π

3
;−2π

√
3

3
) (3.14)

hence the Brillouin zone is not deformed. In the following we will mark a point with
an upper tilde ”∼” to indicate that its coordinates are expressed in this particular
momentum space.

Figure 3.1: Brillouin zone in k space and real space lattice representations.

Keeping this in mind, using the expression of the three unstrained bonds δ1,2,3,
we can explicitly evaluate the condition (3.11) as

t21 + t22 + t23 +2t1t2 cos (
√
3k̃y)+ 2t2t3 cos (

3

2
k̃x −

√
3

2
k̃y)+ 2t1t3 cos (

3

2
k̃x +

√
3

2
k̃y) = 0

(3.15)
Let us first find the solution in the special case of uni-axial strain along Z.

• Zig-Zag uni-axial strain (Z): In this case t1 = t2 ̸= t3 and it is easy to
guess one possible solution [16]:

K̃ = (0,± 2√
3
arccos (− t3

2t1
)). (3.16)

As a consistency check, we can evaluate it for t1 = t3, corresponding to null
strain, and verify that it correctly reduces to the two in-equivalent Dirac points

kd2 = (0,
4π

3
√
3
) , kd5 = (0,− 4π

3
√
3
). (3.17)

Having found these two particular solutions, all the others can be readily
generated by adding reciprocal lattice vectors. In particular, for the two usual
in-equivalent Dirac points of our choice, we have

k̃d1 =
2√
3
(
π√
3
; π − arccos (− t3

2t1
))

k̃d6 =
2√
3
(
π√
3
;−π + arccos (− t3

2t1
)). (3.18)
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As anticipated, these points shift as the hopping parameters change, and do
not coincide anymore with the corners of the Brillouin zone. It is also apparent
from eq.(3.18) that when 2t1 = t3, k̃d1 and k̃d6 will merge in

M̃1 = (
2π

3
; 0). (3.19)

After merge has taken place, if the intensity of the strain is further increased,
a gap is opened in the spectrum and the condition (3.11) for the Dirac points
does not hold anymore. However it is worth noting that the local minimum
of the upper energy band E+ (or equivalently the local maximum of the lower
band E−) will still lie at position M̃ 1 (in k̃ space). In fact the gradient of E2

+

evaluated at M̃ 1 is always zero, whereas the Hessian reads: ∂2E2
+

∂k̃x∂k̃x

∂2E2
+

∂k̃x∂k̃y
∂2E2

+

∂k̃y∂k̃x

∂2E2
+

∂k̃y∂k̃y


/M̃1

=

(
9t1t3 0
0 3t1(t3 − 2t1)

)
. (3.20)

Considering the sign of its determinant, we see that for t3 < 2t1 (before merge)
M̃ 1 is a saddle point. Whereas for t3 > 2t1 (after merge) M̃ 1 becomes a local
minimum.

(a) ϵ = 0 (b) ϵ = 0.17

(c) ϵ = 0.23 (d) ϵ = 0.3

Figure 3.2: Merging of the Dirac cones for a strain along Z.

• Generic strain: In the case where a generic strain is chosen, the merging of
in-equivalent Dirac points will still occur, as the numerical analysis will show.
Moreover it can be proven generally that the point of merge can only be either
the origin, or one of the four M̃ i points in k̃-space represented in Fig.(3.3),
[11].
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Chapter 3 3.1. General Overview

Figure 3.3: Possible positions of merge in k̃-space. Equivalent points are indicated
with the same color.

In fact, if K satisfies eq.(3.11), then also −K is a possible solution. In particu-
lar, for each Dirac point K there is always a non-equivalent one at −K. When
these two merge, their final position is the same up to a generic reciprocal
lattice vector

K = −K+ b , b ∈ reciprocal lattice . (3.21)

Therefore the possible points of merge are located at b
2
(or the origin if K =

−K = 0). Within the first Brillouin zone these points are the ones indicated
in Fig.(3.3).

As a final remark, we note that it is possible to obtain the expression for the
shifted position of the Dirac points in the original k-space by simply applying
to the expressions in k̃-space the opposite of the transformation (3.12):

kd = ((I + ϵ̂)T )−1k̃d. (3.22)
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3.2 Review of Elasticity Theory for Solids

In order to analyse the properties of strained graphene, we need to know how its
lattice structure gets affected by an external tension. Strain is in fact achieved by
applying mechanical stress on a graphene sheet, therefore a description which relates
stress and strain needs to be employed. This is provided by the theory of elasticity,
that effectively describes how an homogeneous solid behaves under mechanical stress
assumed to be small (elastic regime). For our purposes it will be sufficient to restrict
the discussion to the two dimensional case.

We first begin by providing the definition of the strain tensor [19]. For that
purpose let us consider an infinitesimal element of a 2D solid, as in figure (3.4).

O

O’

X

Y

   u

v

A

B
A’

B’

Figure 3.4: A general deformation of the infinitesiaml segments OA and OB.
Adapted from [19].

A general deformation of the object can be described by the vector field:

U⃗ =

(
u(x, y)
v(x, y)

)
(3.23)

giving the displacement vector induced on each point of the body by the deformation,
which, for the following discussion, we are going to assume to be small. In particular
the displacement of point A along x̂ is

u(A) = u(dx, 0) = u(0, 0) +
∂u

∂x/(0,0)
dx. (3.24)

A measure of strain along x̂ can be defined as:

ϵx :=
A′O′

x − AOx

AOx

=
(u+ ∂u

∂x
dx+ dx− u)− dx

dx
=
∂u

∂x
. (3.25)

In the previous expression, and in the following, the functions u(x, y) and v(x, y),
as their derivatives, are understood to be evaluated at O if not specified otherwise.

Similarly along ŷ we have

ϵy :=
O′B′

y −OBy

OBy

=
∂v

∂y
(3.26)

These quantities are called normal strains, and they quantify linear elongation.
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Let us now consider the deformation given by the change of the angle ˆBOA. The
displacement of A along y is:

v(A) = v(dx, 0) = v +
∂v

∂x
dx (3.27)

Therefore the angle α can be approximated as:

α ≈ tan(α) =
v + ∂v

∂x
− v

dx+ ∂u
∂x
dx
≈

∂v
∂x
dx

dx
=
∂v

∂x
(3.28)

where in the first and third passage we have used respectively the assumption of
small angular deformation and small strain along x̂.

With similar calculations we also find

β =
∂u

∂y
(3.29)

The two previous angles are used to define the shear strain as:

γxy = (α + β) (3.30)

which is the change of angle between the axis x̂, ŷ.
Finally, the strain tensor is defined by

ϵ̂ =

(
ϵx

1
2
γxy

1
2
γxy ϵy

)
(3.31)

It is therefore symmetric by definition. We can also rewrite it explicitly in terms of
the gradient of the displacement field as

ϵ̂ =
1

2
(∇U + (∇U)T ). (3.32)

which makes the tensorial nature of ϵ̂ become evident.
Having defined the strain tensor, we can now describe how it relates to stress.

Let us consider a two dimensional object, for simplicity of rectangular shape, and
imagine to apply a tension T̂ to it. We are going to examine two ways in which
this can be done: one is to exert a normal tension, uniformly distributed over two
opposite sides. The other is to apply the tension parallelly to the sides.

O

O’

X

Y

   u

v

A

B
A’

B’

Figure 3.5: On the left is depicted normal strain, on the right shear strain.
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The first scenario is described by Hook’s law, that states the proportionality
between stress and strain along the same direction:

ϵi =
1

E
σi (3.33)

where E is the Young modulus. Each of these elongations is accompanied by an
additional induced transverse strain

ϵi = −νϵj , i ⊥ j (3.34)

with ν the Poisson’s ratio of the material. Typically the value of ν is positive, result-
ing in a transverse contraction. A simple example of the latter effect can be observed
by stretching a rubber band: its length will increase whereas the thickness will be
simultaneously reduced. For graphene we have ν = 0.165. Therefore considering for
example a stress σ applied along x̂, the strain tensor will have the form:

ϵ̂ = ϵ

(
1 0
0 −ν

)
(3.35)

where ϵ = σx

E
is our tunable parameter. This first scenario represents normal strain,

a special case of uni-axial strain.
It is useful to also derive the form of the strain tensor in the case where a normal

tension is still applied to the sides, as in the first case, but the edges of the 2D
graphene sheet do not coincide with the coordinate axis.

Figure 3.6: Uni-axial strain of generic angle. Notice that we keep the zig-zag direc-
tion of graphene always along ŷ (before applying strain).

Let us consider it in a reference frame where the tension is directed along the

new horizontal direction x̂′. In these coordinates we will observe a strain along x̂′

and a compression along ŷ′ , therefore the strain tensor takes the form:

ϵ̂′ = ϵ

(
1 0
0 −ν

)
. (3.36)
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Obtaining its form in the original frame is simply achieved by a rotation [16]:

ϵ̂ij = R(θ)imR(θ)jnϵ̂′mn = R(θ) · ϵ̂′ ·R(θ)t = ϵ

(
cos2 θ − ν sin2 θ (1 + ν) cos θ sin θ
(1 + ν) cos θ sin θ sin2 θ − ν cos2 θ

)
(3.37)

This will be useful in order to consider uni-axial strain along directions different
than the ones of the coordinated axis.

We now turn to the scenario where the tension is applied parallelly to the sides.
In particular by σij we indicate a stress directed along ĵ, applied on the side whose
external normal is î. In the case of shear strain, this tensions come in pairs on
opposite sides with opposite orientations. The two cases depicted on the right of
Fig.(3.5) represent simple shear. It is important to note that simple shear also
causes a rigid rotation on the object, which we ignore since we are only interested
in deformations. We can also combine two simple shears as in Fig.(3.7) to obtain
deformation with a null torque.

 

X

Y

X’

Y’

O

O’

Figure 3.7: Pure shear strain.

It can be proven that pure shear and simple shear are equivalent in terms of
deformations (modulo rigid rotations). Therefore in the following we are going to
focus just on pure shear.

Applying shear stress produces an angle deformation according to the law

γxy =
1

G
σxy (3.38)

with G the shear modulus. Finally the corresponding strain tensor has the form

ϵ̂ = ϵ

(
0 1
1 0

)
. (3.39)
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3.3 Numerical Analysis

In the following we will test and verify the previous analytical calculations by means
of numerical methods. In particular, we apply to the graphene structure uni-axial
strain in different directions [16] as well as shear strain [6].

3.3.1 Uni-axial Strain

Uni-axial strain is the simplest possible strain patter, which consists of applying
tension along a certain axis. As we have discussed in the previous section, for a
generic direction of angle θ the strain tensor reads [16]

ϵ̂ = ϵ

(
cos2 θ − ν sin2 θ (1 + ν) cos θ sin θ
(1 + ν) cos θ sin θ sin2 θ − ν cos2 θ

)
(3.40)

As a first numerical analysis we explore the different directions of strain, and
observe in which conditions the energy spectrum acquires a gap. Due to the rota-
tional symmetry of the honeycomb lattice, it is sufficient to restrict the analysis to
the angular interval [0, π

6
].

The numerical simulation for a given angle of strain θ has been performed as
follows: the strain intensity is increased in steps of dϵ, and for each step the new
position of the Dirac points is determined. This is done by Monte Carlo sampling a
square centered at their position in the previous step, and looking for the new points
that minimize the energy in the square. The critic strain has been determined as
the first strain value for which the Dirac points disappear, i.e. their corresponding
energy becomes sensibly different than 0. The result of the simulation is shown
in figure (3.8). We can see that indeed a gap can be opened, with different strain
thresholds depending on the direction.

Of particular relevance are the two special cases θ = 0 (equivalent to π
3
), and

θ = π
6
(equivalent to π

2
), corresponding respectively to the armchair and zig-zag

directions. These two scenarios appear to be opposed, as in the first the gap is
never present, whereas the second corresponds to the most efficient gap opening
direction, requiring the smallest strain threshold:

ϵzig−zag ≈ 0.23. (3.41)

Figure 3.8: Gap opening strain threshold as a function of direction.
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Secondly, we observed how the Dirac points are affected by strain. Figure (3.12)
shows the evolution of their position for increasing intensity ϵ in the special case of
zig-zag strain. As we can see the Brillouin zone gets distorted, and concurrently the
Dirac points drift away from its corners to finally merge [9].

(a) ϵ = 0 (b) ϵ = 0.15 (c) ϵ = 0.23

Figure 3.9: Merging of the Dirac points applying Z strain. The white contour
denotes the first Brillouin zone, with the red points marking its corners. The Dirac
points are indicated in green. The colors of the heat map encode the value of the
energy band considered.

Figure(3.10b) specifically shows the evolution of the position of the Dirac points
kd1 and kd6 both in k and k̃ space.

(a) In k space. (b) In k̃ space.

Figure 3.10: Evolution of the positions of kd1 and kd6 for an increasing Z strain
intensity.

As already seen in paragraph (3.1.2), for a strain along Z, kd1 and kd6 approach
each other by moving along the axis k̃x = 2π

3a
in k̃ space. The following figures show

the profile of the upper energy band along the merging axis for increasing strain
values.
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(a) Energy profile along the merging axis
with increasing Z strain. (b) A zoom of the figure on the left.

Figure 3.11

On the other hand, in the case of θ = 0 (armchair direction) the Dirac points
drift away from each other and consequently the gap is not opened.

In the case where a generic strain direction is chosen, the Brillouin zone will
undergo a different distortion, but the merging of in-equivalent Dirac points still
occurs (although with different pairings), and simultaneously the gap is opened.

3.3.2 Shear Strain

We now turn to the case of shear strain [6] and repeat the same numerical analysis, as
done for the uni-axial scenario. We will see that there are no conceptual differences
with the previous case: in-equivalent Dirac points still merge, leading to the opening
of a gap. However one difference can be observed in the value of the critic strain,
which appears to be lower than the critic ϵzig−zag.

The shear strain tensor reads:

ϵ̂ =

(
0 ϵ
ϵ 0

)
(3.42)

We are going to consider only the case of ϵ > 0. For ϵ < 0 the results obtained are
the same up to a global rotation. The following set of figures shows the energy heat
map in the first Brillouin zone.

(a) ϵ = 0.05 (b) ϵ = 0.10 (c) ϵ = 0.16

Figure 3.12: Merging of the Dirac points applying pure shear strain.

As anticipated, the Dirac points kd6 and kd5 merge. More specifically, the fol-
lowing figure shows the evolution of their position both in k and k̃ space.
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(a) In k space (b) In k̃ space

Figure 3.13: Evolution of the positions of kd5 and kd6 for an increasing shear strain.

The critic strain has been numerically determined to be

ϵshear = 0.162, (3.43)

which corresponds to a change in the angle between the axis x̂ and ŷ of approximately
9◦.

3.4 On the Merging of the Dirac Cones

The previous numerical results have highlighted the close connection, in the presence
of strain, between the merge of in-equivalent Dirac points and the creation of a
spectral bulk gap. In other words, it seems that the formation of the gap is always
accompanied by the merging of Dirac cones. At first glance this appears to be
a coincidence, determined by how the hopping parameters are tuned by strain.
However we can give a simple interpretation of the mechanism as follows.

For simplicity, let us consider the case of uni-axial strain along Z. As already
seen, in k̃ space the Dirac points kD1 and kD2 move vertically along k̃x = 2π

3a
, to then

meet on the k̃x axis.
The profiles of the positive and negative energy bands along that direction are

respectively given by

Ey± = ±

∣∣∣∣∣t3 − 2t1 cos (

√
3k̃y
2

)

∣∣∣∣∣ . (3.44)
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Figure 3.14: Energy profile along the direction of merge of the Dirac cones.

From the fig.3.14 we see that the branches labelled by I and IV correspond to
different eigenvalues of the diagonalized Hamiltonian. However the derivative of
the parabolic curve, obtained by sewing together I and IV , is always continuous
at the point of junction between the two different bands. The same is true for the
symmetric point, meaning that we can effectively treat the branches I, IV , V as a
single band (and II, III, V I as well). Therefore, it becomes clear that the change in
the hopping parameters induced by strain acts by moving the two parabolic curves
vertically and changing their width. The only way to open a gap is then to pull
the top parabolic band upwards, and the lower downwards, which also necessarily
merges kd1 and kd2.
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3.5 Low Energy Effective Hamiltonian

In section (1.2.1) we have seen that graphene exhibits an emergent Dirac theory in
the low energy limit, with effective Hamiltonian of the form

H = αqx + βqy (3.45)

where α and β satisfy:
{α, β} = 0 , α2 = β2 ∝ 1. (3.46)

All the possible mass terms that, if introduced in the theory, produce an energy gap,
are found in the form of sixteen terms that anti-commute with both α and β and
square to the identity [2].

On the other hand, in the previous sections we have seen that strain can induce a
gap in the energy spectrum of graphene as a result of the merging of non equivalent
Dirac points. It is therefore natural to ask if the strain patterns considered are con-
nected to any of those sixteen general mass terms of the effective Dirac Hamiltonian.
In other words, the question we try to answer is: does the application of uni-axial
or shear strain to the system modify the effective mass-less Dirac theory by intro-
ducing one (or a combination) of mass terms? To address the question we build
the effective low energy theory for strained graphene. The procedure follows the
same steps done for unstrained graphene (and kagomé), nevertheless we are going
to remark its fundamental points.

Constructing a low energy theory consists in considering the situation where
only low energy states are accessible by the system. If we properly set the chemical
potential, these are momentum states close to the Dirac points:

|Kd + q⟩ ; |K′
d + q⟩ (3.47)

where Kd , K′
d are two generic in-equivalent valleys, and q is to be taken small.

In particular we are interested in the case where the Dirac points are already
merged ( Kd = K′

d := M) because this is when the gap is created. In that regime,
since the two points coincide, the valley index is not a good degree of freedom
anymore. It follows that the spinless effective low energy Hamiltonian is just the
expansion of the Block Hamiltonian around the point of merge M:

H =

(
0 ∆M+q

∆∗
M+q 0

)
(3.48)

with ∆M+q being the linear expansion of ∆(k) =
∑

j t(δj)e
ik·(I+ϵ̂)δj around M + q

(with q a small momentum deviation).
Now, in order to detect the presence of mass terms introduced by the strain, we

ought to bring this Hamiltonian in the form of a mass-less Dirac Hamiltonian plus
the supposed constant mass term. Looking at the form of the matrix, we can in
general decompose it as

H =

(
0 ∆M+q

∆∗
M+q 0

)
∼ (aqx + bqy)σ1 + (cqx + dqy)σ2 +m1σ1 +m2σ2 (3.49)

where σ1,σ2 are Pauli matrices as usual. To bring eq.(3.49) in the usual Dirac form,
it seems natural to relabel the momentum variables, so that we get

H ∼ q̃xσ1 + q̃yσ2 +m1σ1 +m2σ2 (3.50)
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However this would yield to a contradictory result: this is in fact a mass-less Dirac
Hamiltonian, as mass terms would only be proportional to σz in this case. But on the
contrary the spectrum shows a gap after the Dirac points have merged. In reality,
the change of momentum variables performed is not allowed. The reason is that the
energy dispersion, after merging, becomes linear in one momentum direction and
quadratic in the normal one. In the case of strain along Z it is linear along qx and
quadratic along qy, such that terms in qy will not show up in the linear expansion
of eq.(3.49), and we have instead:(

0 ∆
∆∗ 0

)
Z
∼ aqxσ1 + cqxσ2 +m1σ1 +m2σ2 (3.51)

It is apparent now why the previous relabel of momenta is forbidden, because degen-
erate. Moreover in the case of a generic strain pattern, the combination of qx and qy
coupling to the two Pauli matrices will be the same, such that we can do a rotation
of coordinates and end up in the same situation (valid for Z strain) described by
(3.51).

The fact that the effective theory couples the Pauli matrices to the same mo-
mentum direction has important implications. For such a theory it is in fact still
true that the mass terms are the ones anti-commuting with the matrices coupled
to the momenta (here σ1,σ2). However there are additional ones, and in particular
both σ1 and σ2 can open a gap in this case. As an example, let us consider the case
of σ1. If we add such term to a usual massless Dirac theory:

H = σ1qx + σ2qy +mσ1 (3.52)

then the resulting energy spectrum is

E = ±
√

(qx +m)2 + q2y (3.53)

which remains gapless as we can see by shifting coordinates( indeed in this case
the effect is to simply shift the position of the Dirac point). However assuming an
Hamiltonian of the type (3.51):

H = σ1qx + σ2qx +mσ1 (3.54)

the spectrum is
E = ±

√
(qx +m)2 + q2x (3.55)

which now exhibits a gap.
This shows that the mechanism by which the gap is opened with the strain is

not the expected one, namely the introduction of usual mass terms in the Dirac
theory. But rather a modification of the Dirac theory itself, by coupling the same
momentum to both Pauli matrices, which results into the constant terms introduced
by strain being good gap terms.
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Chapter 4

Strained Kagomé

In the previous chapter we have studied the effects of uni-axial and shear strain
applied to the lattice structure of graphene. The main effect observed was the merge
of in-equivalent Dirac points, with the consequent opening of a gap in the spectrum.
Therefore strain revealed to be a viable method to induce a phase transition from
a semimetal to insulator in the material. On the other hand, as we have seen, the
kagomé lattice presents many similarities with graphene, the most important being
the emergent Dirac structure in the low energy limit. It is therefore natural to ask
if strain could induce a gap also in its spectrum. In this chapter we address this
question, following a similar approach as in the graphene case.

4.1 Numerical Analysis

We generalize to the kagomé lattice the analysis done in the graphene case. The
discussion follows the same conceptual steps, which we briefly recall. Elastic strain
alters the lattice bond lengths, resulting in a modulation of the hopping parameters
according to the law

t(δ′) = t0e
−g(

|δ′|
a

−1) (4.1)

where as usual δ′ = (I + ϵ̂)δ, and g is the Grünisen parameter. In accordance with
the literature we assume g = 1 [10]. The tight binding model is therefore modified
as

H = −
∑

<i,j,l>,σ

(tija
†
i,σbj,σ + tila

†
i,σcl,σ + tjlb

†
j,σcl,σ + h.c.), (4.2)

which, following the same steps done in Chapter 2, can be rewritten after some
calculations as

H = −2
∑
k,σ

Ψ†
σ(k)

 0 tAB cos (k · δ′
AB) t13 cos (k · δ′

AC)
tAB cos (k · δ′

AB) 0 tBC cos (k · δ′
BC)

t13 cos (k · δ′
AC) tBC cos (k · δ′

BC) 0

Ψσ(k) =

=
∑
k,σ

Ψ†
σ(k)H(k)Ψσ(k)

(4.3)

The energy eigenvalues can then be determined by numerical diagonalization of the
Block Hamiltonian H(k).

We start the numerical analysis by first considering once again uni-axial strain.
The strain tensor has the usual form of eq.(3.40), where ν is now the kagomé Pois-
son’s ratio. For the purpose of our simulations, we assumed the same value as for
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graphene
ν = 0.165. (4.4)

As already mentioned, the kagomé lattice presents a six fold symmetry. it follows
that, when applying uni-axial strain, it is sufficient to explore the directions in
the angular interval [0, π

3
]. In order to asses the presence of a spectrum gap, we

constructed the density of states for the strained system. This was obtained by
Monte Carlo sampling the first Brillouin zone and numerically diagonalizing the
Hamiltonian. Moreover, in order to exclude the possibility that the gap is not
observed due to a bad choice of the parameters in the model, we extended our
analysis to a range of strain intensities with all probability beyond the material
elastic failure.

Fig.(4.1) depicts the density of states in absence of strain, whereas in the fol-
lowing figures we show as an example some cases corresponding to different strain
patterns and intensities.

Figure 4.1: Density of states of the kagomé lattice in the unstrained case. In this
particular case a non linear y scale has been used in order to better visualize the
density profile.
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(a) ϵ = 0.2 (b) ϵ = 0.3

(c) ϵ = 0.4 (d) ϵ = 2.0

Figure 4.2: Uni-axial strain in direction θ = π
12

applied to the kagomé lattice for
increasingly intensity ϵ.

(a) ϵ = 0.2 (b) ϵ = 0.3

(c) ϵ = 0.4 (d) ϵ = 2.0

Figure 4.3: Uni-axial strain in direction θ = π
6
applied to the kagomé lattice for

increasingly intensity ϵ.

As it appears clearly from the plots, no sensible gap is opened in the spectrum.
Moving on to the case of shear strain, the strain tensor has the form as in

59



Chapter 4 4.1. Numerical Analysis

eq.(3.42). The results are shown in Fig.(4.4), and are no different from the uni-axial
scenario.

(a) ϵ = 0.2 (b) ϵ = 0.3

(c) ϵ = 0.4 (d) ϵ = 2.0

Figure 4.4: Shear strain applied to the kagomé lattice with increasingly intensity ϵ.

In all of the cases considered, we observe a progressive deformation of the flat
band, which acquires ripples. Concurrently the middle band becomes progressively
flat, producing a high peak of states at intermediate energy values for higher values
of strain intensity. However no gap has been observed applying uni-axial and shear
strain.
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Conclusions

In this thesis we have started by reviewing the graphene tight-binding model and in
particular the emergent Dirac Hamiltonian arising from the low energy expansion.
That served as example and guideline to extend the discussion to the kagomé lattice,
a novel two-dimensional material that shares many similarities with graphene. In
particular the former is also characterized by the presence of an underlying Dirac
theory, which we have explicitly extracted. To do that the additional step of decou-
pling the flat band present in the spectrum was necessary, compared to the graphene
case where only an expansion around the Fermi points is needed.

We have then analyzed the possible ways to induce a bulk gap in the kagomé
spectrum. This has lead to a list of sixteen instabilities corresponding to the mass
terms of the Dirac theory. Moreover we have proceeded to classify this list of mass
terms based on the symmetries of the system, that can be either preserved or broken
when introducing them. For that purpose it revealed to be crucial the observation
that the equivalence between the Dirac points was not manifest in the form of the
Block Hamiltonian. In fact that required the introduction of a Gauge transforma-
tion to reinforce the periodic boundary conditions in the theory, and restore the
invariance of the model under equivalent valley choices.

In the second part of the thesis we have combined the previous tight-binding
description with the linear theory of elasticity in order to introduce in the model
lattice deformations. In particular we have considered distortion patters that were
preserving the translation invariance of the system, such as uni-axial and shear
strain. The effect of strain has been first analyzed in graphene, with a special focus
on the modifications induced on the structure of the Dirac cones. In accordance
with the literature, the main effects observed were the merge of in-equivalent Dirac
points, with the consequent generation of a spectral gap. In the uni-axial case,
different directions correspond to different intensity thresholds in order to achieve
the collision of the Dirac points.

Motivated by the fact that strain has been shown to be a viable way to engineer
a gap in graphene, we investigated its connection with the general mass terms of
the Dirac theory. However we have seen that the mechanism by which strain acts to
generate the gap is different from an effective introduction of one of the 16 possible
masses of the Dirac theory. In fact it leads to a modification of the low energy model
itself, by coupling the two anti-commuting objects present in the Dirac Hamiltonian
(specifically the Pauli matrices σx and σy ) to the same momentum component. As
a result, the condition that has to be satisfied in order have a gap in the spectrum
is relaxed, and the terms introduced by strain become good gap terms despite not
being mass terms in the usual sense.
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Finally we applied strain also to the kagomé lattice to see if the induced effects
were comparable to the ones observed in graphene. However, for the particular
strain patterns that we employed, no spectral gap was observed. We concluded that
uni-axial and shear strain do not seem to be viable methods to tune the electronic
properties of the kagomé lattice by generating a gap .
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