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L A Y M A N ’ S  S U M M A R Y  

Obesity is a term used to describe people with high body mass index (BMI) and an excess of body fat that 

affects their health. It is a disease that increases the chance of developing other diseases, such as heart 

disease or certain cancers. Obesity is a problem worldwide, however, currently, the proportion of people 

classified as obese is increasing quicker in low- and middle-income countries (LMICs) compared to high-

income countries (HICs). Obesity is also considered an inherited condition, with genetic information 

playing a big role in how likely people develop it. Since 2008, a type of genetic research known as genome-

wide association studies (GWAS) has been used to identify specific genes associated with obesity. These 

genes, also called single nucleotide polymorphisms (SNPs), vary between individual people and 

populations. More recent research has shown that different SNPs can interact with a person’s 

environment or lifestyle choices, such as their diet or levels of exercise, to either increase or decrease 

their risk of obesity. Like GWAS, studies investigating gene-environment interactions (GxE), have mainly 

been performed in HICs among European populations. However, findings from GxE research in HICs 

cannot be assumed to be the same in LMICs. This is because people living in LMICs have different ethnic 

backgrounds with different genetic information, and live in different environments with different 

lifestyles. At present, research analysing GxE on obesity in LMICs is limited but growing. This review 

discusses what research is available, and brings to light areas for improvement for future scientific studies. 

Three different databases, which contain millions of scientific research articles, were searched using 

combinations of key words such as ‘obesity’, ‘diet’ ‘LMIC’ and ‘SNP’. Search results up until November 

2022 were checked and irrelevant research was excluded. From these results, eighteen research papers 

were considered relevant to this review. The risk of bias was assessed for all included studies, which is the 

risk that a scientific study may have presented misleading results due to how they designed the study or 

collected scientific data. Overall, 14 different SNPs were found to significantly interact with different 

lifestyle factors to change the likelihood of an individual being obese. However, significant interactions 



Page | 3  
 

were not repeated across different research studies or in different populations. This review also 

highlighted several problems with the way current scientific studies collected lifestyle information, or how 

they defined or classified obesity using varied BMI cut-off values. Statistical analyses were also outdated, 

relied on information found in old European-based GWAS, or were weakened by small numbers of 

research participants. Future scientific studies in LMICs should therefore focus on improving the quality 

of their research, by using standardised data-collection methods, updated statistical techniques, and 

information from GWAS performed in populations of the same ethnicity.  
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A B S T R A C T  

BACKGROUND: Obesity represents a major and preventable global health challenge as a complex 

disease in itself, and a modifiable risk factor for the development of other non-communicable diseases. 

In recent years, obesity prevalence has risen more rapidly in low- and middle-income countries (LMICs) 

compared to high-income countries (HICs). Obesity traits are shown to be modulated by an interplay of 

genetic and environmental factors such as unhealthy diet and physical inactivity in studies from HICs 

focused on populations of European descent, however genetic heterogeneity and environmental 

differences prevent the generalisation of study results to LMICs. Primary research investigating gene-

environment interactions (GxE) on obesity in LMICs is limited but expanding. Synthesis of current research 

would provide an overview of the interactions between genetic variants and environmental factors that 

underlie the obesity epidemic, and identify knowledge gaps for future studies. 

METHODS: Three databases were searched systematically using a combination of key words such as 

“genetic risk”, “obesity”, “LMIC”, “diet” and “physical activity”, to find all relevant observational studies 

published prior to November 2022. Risk of bias was assessed for all included studies.  

RESULTS: Eighteen of the 1,373 articles met the inclusion criteria, of which one was a GWAS, thirteen 

used a candidate gene approach and five were assigned as genetic risk score studies. Six studies were 

considered to be of high quality, while twelve studies were of moderate quality. Statistically significant 

findings were true for a total of 14 individual SNPs across 10 different genetic loci, however most studies 

were of small scale and without replication.   

CONCLUSIONS: Although results suggest significant GxE interactions on obesity in LMICs, updated 

robust statistical techniques with more precise and standardised exposure and outcome measurements 

are necessary for translatable results. Future research should focus on replication efforts with improved 

quality, with emphasis on large-scale, long-term longitudinal study designs using multi-ethnic GWAS. 
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I N T R O D U C T I O N  

Obesity is a major public health concern worldwide, with 39% of adults over 18 classified as overweight, 

and 13% obese according to the most recent global estimates by the Word Health Organisation (WHO) 

(1). Previously considered a disease primarily affecting high-income counties (HICs), obesity is rapidly 

rising in developing countries with emerging economies. These low- and middle-income countries (LMICs) 

are now home to 62% of the world's overweight or obese population (2), and make up the top 10 countries 

with the largest average annual increase in obesity prevalence worldwide (3). In recent decades, LMICs 

have been faced with an epidemiological transition, characterised by a shift in the main drivers of 

mortality and morbidity from communicable diseases to non-communicable diseases (NCDs), such as 

cardiovascular disease, type 2 diabetes and cancer. As both a major metabolic risk factor for NCD 

development, and a disease by itself, obesity represents a significant epidemiological burden (4). While 

the prevention and treatment of obesity is a major target within global health systems, it poses significant 

challenges thanks to its complexity as a disease, and the contribution of a multifaceted interplay of 

variables which underwrite its development.  

Obesity, defined by the WHO as a body mass index (BMI) of ≥ 30 kg/m2, is determined by a long-

term positive imbalance in energy intake versus energy expenditure, driven by an unhealthy diet and 

reduced physical activity (1,5). Changes in global trade, dietary patterns, and declining physical activity 

have exposed people living in developing countries to increasingly obesogenic environments (2). The 

nutrition transition faced by LMICs has been a major contributor to the obesity epidemic, characterised 

by a shift from traditional dietary habits to increased consumption of energy-dense, nutrient-poor ultra-

processed foods and beverages (6). Rapid urbanisation and within-country rural-to-urban migration have 

also led to a decline in manual labour and active transportation, and an increase in sedentary behaviours 

(7,8). Genetics has also been shown to play a strong role in an individual’s susceptibility to obesity, with 

obesity heritability estimated to be between 40-70% (9). The advent of genome-wide association studies 
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(GWAS) accelerated the discovery of obesity-related genetic loci and causative single nucleotide 

polymorphisms (SNPs), but focussed on adult populations of European ancestry (10,11). The fat mass and 

obesity-associated (FTO) locus was the first obesity-related GWAS-identified locus, and remains the most 

highly significant and robustly replicated (11,12). The landmark 2007 European study initially found that 

per risk allele in the FTO SNP rs9939609, there was a 1.32-fold increased odds of obesity (13). The effect 

of FTO SNPs on obesity risk, and the prevalence of FTO risk alleles has since been shown to vary across 

different ethnic populations (14), with the risk of obesity per risk allele increasing 1.25-fold in Asians, and 

1.15 in Indians (15,16). Since the discovery of FTO, a further 1,100 independent genome-wide significant 

loci have been identified, however, these combined explain only 6% of inter-individual obesity variation 

(17).  

As both a modifiable risk factor and a complex multifactorial condition, obesity results from an 

interplay of genetic, lifestyle and environmental factors (12). In parallel with GWAS, the number of studies 

analysing gene-environment interactions (GxE) on obesity risk has increased exponentially over the last 

decade, however these have focussed primarily on European populations living in resource-rich settings 

(18). Recent research from HICs has presented evidence that an individual’s genetic susceptibility to 

obesity can be magnified or mitigated in response to environmental factors, such as physical activity (19), 

alcohol consumption (20), smoking (21), diet (22) and sleep (23). Generalisability of findings from these 

studies to developing countries is restricted due to the genetic heterogeneity found in different 

populations and ethnic groups, in addition to differences in the obesogenic environmental exposure (24). 

So far, observational research focussing on populations from LMIC’s is limited but expanding. Synthesis of 

population-based studies specifically investigating GxE on obesity in LMIC’s could provide a more 

comprehensive understanding of this cause-effect relationship in varied ethnic groups and potentially 

translate into tailored region-specific lifestyle intervention strategies to combat the global obesity 
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epidemic. To our knowledge, this will be the first systematic review to examine and discuss population-

based studies from LMIC’s investigating gene-lifestyle interactions and their effect on obesity. 

 

M E T H O D S  

This study was conducted according to the Transparent Reporting of Systematic Reviews and Meta-

analyses (PRISMA) guidelines.  

 

ELEGIBILITY CRITERIA 

The study inclusion and exclusion criteria for this review were specified using the PECOS elements, as 

defined in Table 1. All observational research articles investigating GxE on obesity risk in adult human 

populations from LMICs were included. Articles were also excluded if they focussed on specific 

populations, e.g. only women, or participants with comorbidities such as cancer, cardiovascular or renal 

disease to reduce concerns for disease labelling bias. 

 

SEARCH STRATEGY 

Three electronic databases PubMed, EMBASE and Scopus were systematically searched on October 24th 

2022 by one investigator. To identify articles relevant to the research question addressed by this review, 

the search strategy was subdivided into three main groupings: populations in LMICs, gene-environment 

interactions, and weight-related outcomes. To define LMICs, articles were searched by title and abstract 

for key words such as ‘low middle income’, ‘developing country’ and ‘low resource’. To further increase 

capture, the names of countries and geographical areas were included in the search syntax according to 

the World Bank 2022 country classifications (25).  To include gene-environment interactions, key words 
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were used such as ‘gene-lifestyle’ or ‘GxE’ or terms relating to genetic susceptibility such as ‘polygenic risk 

score’, ‘single nucleotide polymorphism’ and ‘epigenetic’ in combination with environmental exposure 

such as ‘diet’ or ‘physical activity’. Obesity and all other weight-related anthropometric measurements 

such as ‘BMI’, ‘waist circumference’, ‘body fat percentage’, and ‘waist-hip ratio’ were included in the final 

group. Animal, paediatric and intervention studies were excluded. No filters based on language or 

publication date were applied. Details of the search strategies developed for each specific database can 

be found in Supplementary Table 1.  

 

DATA COLLECTION AND EXTRACTION 

Titles and abstracts of all articles identified via database searches were screened by one investigator based 

on the eligibility criteria previously detailed using Endnote (v20.4.1) (26). Full text articles were assessed 

using Rayyan, with all reasons for exclusion documented (27). Data extraction was also performed by one 

investigator using a standardised form with software programme Microsoft Excel 2016. For each included 

study, the following information was extracted:  

• First author, year of study, year of publication, country of coverage, study objectives, and study 

design. 

• Sample size, distribution of study population characteristics (e.g. BMI, age, gender), obesity 

definition, environmental or lifestyle exposure, genetic exposure (e.g. gene or SNP of interest) 

and type of genetic analysis. 

• Primary and secondary results (e.g. β coefficient or odds ratio where possible) and overall 

conclusion. 
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RISK OF BIAS AND QUALITY ASSESSMENT 

Risk of bias was assessed by one investigator using the Newcastle-Ottawa-Scale (NOS) for case-control 

and cohort studies. Studies were judged based on three categories: selection of study participants, 

comparability of participants, and the assessment of the exposure or outcome for case-control or cohort 

studies respectively. Studies could be awarded a maximum of four stars for the selection category, two 

stars for comparability and three stars for exposure. For cross-sectional studies, an adapted version of the 

NOS was used (28), where a maximum of five stars could be awarded for the selection category, two for 

comparability and 3 for outcome. A quality threshold score was used to summarise overall study quality, 

with >7 points indicating high quality, 5-7 fair quality and ≥4 points poor quality. 
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R E S U L T S  

A total of 1,373 articles were identified, of which 744 were from PubMed, 133 from Embase and 499 from 

Scopus. After removing 101 duplicate studies, and 3 ineligible studies, titles and abstracts of 1,269 articles 

were screened and a further 1,233 irrelevant studies were excluded. Full texts were reviewed for 36 

articles, of which 18 were excluded. Of these, 11 reported on populations which did not meet the inclusion 

or exclusion criteria, 4 did not include an environmental interaction, 1 reported an irrelevant outcome, 

and 1 incorporated an interventional design. Two studies by the same authors reported duplicate 

populations, studies and outcomes but differed by cross-sectional versus longitudinal analyses. The cross-

sectional study was excluded to ensure the strength of evidence was not overestimated, and the most 

recent longitudinal study was included. In total, 18 studies met the PECOS criteria and were included in 

this systematic review. Figure 1 shows the PRISMA flow chart for the selection of studies.  

 

CHARACTERISTICS OF INCLUDED STUDIES 

Populations and study designs 

A summary of the key features of the 19 included studies is presented in Table 2. In short, five studies 

were conducted in South Asia (Pakistan, Sri Lanka and India), three studies in South-East Asia (Indonesia), 

four studies in West Asia (Iran and Turkey), five studies in China, and one study in Ghana.  Studies from 

China were assessed to ensure that study populations did not focus on very high-income regions. Across 

all studies, ages ranged between 18 – 90 years, and sample sizes ranged from 71 – 14,131 participants. 

Publication time ranged from 2012-2022. The majority of studies were cross-sectional (n = 9) or case-

control (n = 8) by design, with only two cohort studies examining longitudinal associations. 
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Gene-environment exposures 

Four articles focussed on a variety of environmental or lifestyle factors and their genetic interactions on 

the risk of obesity. Five studies assessed dietary interactions only, including dietary components and 

dietary patterns, three studies investigated the effects of physical activity and sedentary behaviours, three 

studies looked at smoking and drinking statuses, two studies evaluated sleep patterns and two studies 

assessed urban-rural differences and effects of within-country migration. With respect to genetic 

exposures, there was only one GWAS included in this review. Five studies assessed genetic risk through a 

genetic risk score (GRS), with the number of included SNPs ranging from 2 to 9. Only two studies assigned 

weights through the use of an external independent study or genome-wide meta-analyses, whilst the 

other three used an unweighted approach. Thirteen studies used a candidate gene approach to 

investigate 62 different SNPs, with risk alleles in genetic variants of the FTO and melanocortin 4 receptor 

(MC4R) gene most commonly studied. For only two studies, SNPs selection was based on recent GWAS 

conducted in the same ancestral population as the study participants, while the rest either relied on GWAS 

of European ancestry or failed to justify.  

 

Obesity outcomes 

Anthropometric indices for obesity outcomes included (change in) weight, BMI, waist circumference (WC), 

hip circumference (HC), waist-hip ratio (WHR), waist-to-height ratio (WHtR), fat mass index (FMI), fat-free 

mass index (FFMI), and percentage body fat (%BF). Population measures were also examined, including 

odds of being overweight. For all included studies, obesity outcomes were objectively measured by a 

healthcare provider or study investigators using validated consistent devices. Definitions of general 

obesity ranged across the studies, countries and populations from BMI ≥ 25 kg/m2 to BMI ≥ 30 kg/m2. 
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STUDY QUALITY ASSESSMENT AND RISK OF BIAS 

The results from the NOS for observational studies and the adapted NOS for cross-sectional studies risk 

of bias assessments for the included studies are shown in Table 3 and Table 4, respectively. Scores for 

case-control and cohort studies ranged from 5 – 8, and scores for cross-sectional studies ranged from 6 – 

10. All studies included in the review were assessed as having either a low or fair risk of bias. The most 

common score-reducing traits were from the selection domain, due to either small or unjustified sample 

sizes, or due to the potential for bias from the participant selection procedures. Studies generally scored 

well for comparability, with only one failing to control for age and sex in the statistical analysis. Obesity-

related outcome measurements were assessed objectively by trained researchers using standardised 

equipment for all studies. Lifestyle and environmental exposures were collected either via participant self-

report or face-to-face interviews, using a combination of standardised externally validated questionnaires 

or short self-developed questionnaires. 

 

THEMATIC RESULTS 

Diet and food timing 

Studies investigating gene-diet interactions on obesity, focus on macronutrient intake including total fat, 

protein and carbohydrates, and fatty acid intake including saturated (SAFA), monounsaturated (MUFA) 

and polyunsaturated (PUFA) fatty acids were most prevalent. Within these studies Al-Jawadi et al. (n = 

71), Alsulami et al. (n = 302), Daya et al (n = 80). and Wuni et al. (n = 497) all reported significant 

associations between higher total fat intake and obesity traits, for those carrying risk alleles of obesity-

related gene variants, or for those with a high GRSs in Indonesian, Ghanian and Indian populations (29–

32). High SFA specifically was also found to interact positively with WC in those with increased genetic 



Page | 13  
 

susceptibility to obesity in the cross-sectional studies by Alsulami et al. and Wuni et al. Individuals with 

high GRS (≥ 2 risk alleles) and high SFA intake (>14 g/day) had a significantly higher WC (Pinteraction = 0.02) 

compared to those with low SFA intake after adjustment for age and sex in the Ghanian study, while in an 

Indian population, those with lower SFA intake (≤23.2 g/day) had a significantly smaller WC (β= -0.01cm, 

P=0.03) (Pinteraction= 0.006) after adjustment for age, sex and 6 other potential confounders (30,32). 

However, some inconsistencies were also reported on the modifying effects of dietary fat intake on 

genetic susceptibility and obesity risk. In the case-control study by Isgin-Atici et al. (n = 400), the same FTO 

SNP rs9939609 variant as the Indonesian case-control study by Daya et al. was investigated both 

individually and as part of a GRS with one other FTO gene variant. Contrastingly, no statistically significant 

association was found between dietary fat intake on obesity traits in Turkish populations (33). Findings in 

relation to protein dietary intake and its interaction with FTO gene variants on obesity measures were 

also conflicting in Turkish and Indonesian populations. Carriers of FTO risk alleles in the study by Isgin-Atici 

et al. showed a significant interaction with protein intake on increased WC (Pinteraction = 0.044) after 

adjustment for age, sex hypertension and CVD. In contrast, FTO risk allele carriers showed no significant 

interaction for protein intake on obesity in findings by Al-Jawadi et al. after adjustment for age and sex 

(29,33). 

 

With regards to dietary patterns, two studies examining eating patterns in two separate Iranian 

populations reported modifying effects in individuals with either high GRSs or those carrying risk alleles 

of the Cocaine and Amphetamine-Regulated Transcript Prepropeptide (CARTPT) gene and their 

association with obesity-related anthropometric measures. In a cohort study, Hosseini-Esfahani et al. (n = 

4292) showed that higher Western dietary pattern scores (namely high intakes of processed foods and 

drinks, sugar, red meat and high-fat dairy) were associated with increased BMI in subjects with high GRS 

compared to those with low GRS over time (2.26 ± 0.36, Pinteraction= 0.01) after multivariable adjustment 
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for age, sex and 5 other confounders (34). In a cross-sectional study, Mahmoudi-Nezhad et al. (n = 287) 

used the Diet Quality Index—International (DQI-I), an indicator of nutritional variety, moderation and 

adequacy to show that in individuals with high-scoring quality diets, CARPT-DQI-I interactions significantly 

reduced BMI (Pinteraction < 0.001) following adjustment for age and sex (35). In both studies, however, 

analyses assessing healthy eating patterns rich in fruits, vegetables, fish and whole grains, quantified by 

the Healthy Eating Index, showed no significant modifying effects by genotypic groups or GRS for obesity 

traits.  

Significant interactions between food timing and genetic variants on obesity were also 

demonstrated in both Iranian and Pakistani populations. Rahati et al. (n = 403) reported in a cross-

sectional study, that for carriers of Circadian Locomotor Output Cycles Kaput (CLOCK) gene 

polymorphisms, delayed eating times for breakfast and lunch increased the odds of obesity by 2.95 (95% 

CI = 1.77, 4.90) and 1.53 (95% CI = 1.32, 1.89) respectively (P<0.05) after adjustment for age, sex and 6 

other confounders (36). Significant interactions between risk alleles in multiple genes including FTO, 

MC4R, and transmembrane protein 18 (TMEM18) and random eating patterns were also found to increase 

BMI (P=0.002, P = 0.008, P=0.001 respectively) in the case-control study by Rana et al. (n = 578) focussing 

on a Pakistani population after age and sex adjustment (37). 

 

Physical activity and sedentary behaviours 

A total of 10 studies using either a candidate gene approach (n = 6) or GRSs (n = 4), reported gene-physical 

activity (PA) interactions on obesity traits. PA or sedentary behaviour were defined via participant self-

reporting in studies by Xue et al., Rana et al., Moore et al., Isgin-Atici et al., and Gong et al., (33,37–40) 

while articles by Sun et al., Muhammed et al., Alsulami et al., and Ahmad et al., used investigator-

administered questionnaires (30,41–43). The standardised international physical activity questionnaire 
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was most commonly used to assess PA levels across studies (n = 4), which assesses levels of PA relating to 

work and house-related work, transportation and recreation, calculated and summarised as metabolic 

equivalent of task units per week (MET-min/wk). 

Four of the candidate gene studies showed that interactions between 4 different gene variants, 

and low levels of PA were significantly associated with obesity-related anthropometrics (33,37,39,42). The 

study by Moore et al. (n = 1129) used a cross-sectional design to show that in India, for participants with 

a low PA level of <81 MET-h/wk, the FTO s3751812 risk allele was significantly associated with an increased 

WC (β = 2.86; 95% CI = 1.24, 4.12) after controlling for age, sex, region and religion (39). The same 

association for variants of the FTO candidate gene was also found in 2 other case-control studies, which 

focused on Turkish (n = 400) and Pakistani populations (n = 578)(33,37). High levels of PA however, defined 

as >212 MET-h/wk did not produce any significant gene interaction effect on obesity (39). In conflict, there 

were no significant interactions between putative uncharacterized protein (FLJ33534), uncoupling protein 

2 (UCP2), or olfactory pathway-related candidate genes and PA, or their interaction on obesity-related 

traits (41–43). The study by Alsulami et al. which used a GRS, comprised partly of FTO gene variants, also 

failed to show any significant interaction between high genetic risk and PA on obesity (30) in a Ghanian 

population. Two cross-sectional studies specifically investigated sedentary behaviours and their 

potentially modifying effects in two Chinese populations. Gong et al. (n = 2216) and Xue et al. (n = 3976) 

consistently showed that increased leisure time sedentary behaviours such as television watching 

positively accentuated the interaction between high GRS or SNPs and WC and BMI after multivariable 

adjustment (38,40).  
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Tobacco smoking and alcohol consumption 

Across the studies included in this review, very few investigated GxE assessing the effect of tobacco 

smoking (n = 3) or alcohol consumption (n = 2) on obesity. In these candidate gene studies, tobacco and 

alcohol exposures were assessed by a self-administered questionnaire by Wei et al., while Ahmad et al. 

and Sun et al. collected data using researcher administered validated questionnaires in the form of a 

structured interview (41,43,44). Both Ahmad et al. (n = 8,193) and Sun et al. (n = 608) using cross-sectional 

and case-control study designs respectively, showed that for current smokers, the interaction between 

smoking status and obesity was modified by different gene variants (41,43). In the current smokers from 

Pakistan, FLJ33534 risk alleles showed a negative association with BMI (β=−1.51 ± 0.52, P=0.003) after 

adjustment for age, sex and genetic ancestry (43). While the Chinese population showed smoking 

increased the risk of obesity for those with high olfactory receptor family 4 subfamily D member 1 (OR4D1) 

gene scores (OR = 2.67; 95% CI = 1.35, 5.30; P=0.005), but decreased the risk of obesity for those with high 

calmodulin like 3 (CALML3) gene scores (OR = 0.25; 95% CI = 0.10, 0.62; P=0.003) after adjustment for age, 

sex, PA and alcohol consumption (41). A separate case-control study in China by Wei et al. (n = 1,836) 

however showed no significant gene-smoking or gene-alcohol interaction on obesity risk for MC4R 

genotypes (44). Alcohol consumption was also consistently disproved to show any modifying effect on the 

relationship between gene variants and obesity by Sun et al. (41). 

 

Sleeping patterns 

Only two candidate gene studies performed gene-sleep interaction analyses on obesity traits, both of 

which estimated sleeping patterns and sleep duration using participant self-reporting via study-specific 

questionnaires. Both studies demonstrated unfavourable outcomes on obesity traits in response to the 

interaction between genetic variants and reduced sleeping times. In a Pakistani population (n = 578), Rana 
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et al. applied a case-control study design to demonstrate a significant interaction between TMEM18, 

neuronal growth regulator 1 (NEGR1), FTO and MC4R gene variants and irregular sleep wake cycle, which 

was shown to augment BMI, WC, HC, WHR, WHtR and %BF, in carriers of risk alleles after controlling for 

age and sex (37). In the same study, inadequate sleep, defined as <7 hours/night, was also shown to 

interact with FTO, TMEM18 and NEGR1 gene variants to significantly increase BMI and WC. In a separate 

cross-sectional study by Rahati et al. the interaction between sleep duration (hours/week) and CLOCK 

rs1801260 genotypes were also assessed in an Iranian population (n = 403), where obese individuals with 

the CT + CC genotypes had a significantly shorter sleeping time than TT genotype carriers after controlling 

for age, sex and 6 other variables (36). 

 

Rural-urban differences 

Two studies investigating the moderating effects of urban and rural living environments found disparity 

in their effects on obesity and their interactions with MC4R candidate genes in Chinese and Sri Lankan 

populations. Information pertaining to sociodemographic information and lifestyle factors was collected 

through face-to-face interviews, or participant self-report via standardised questionnaires by Wang et al. 

and Illangasekera et al. respectively. The MCR4 rs17782313 CC + CT genotype was cross-sectionally 

associated with significantly higher BMI values in Sri Lankans (P= 0.03) (n = 528) compared to the TT 

genotype, a result which was replicated in the Chinese case-control study by Wang et al. (n = 965), which 

demonstrated significantly higher odds of obesity (OR = 3.01; 95% CI = 1.49, 6.05) for homozygous C allele 

carriers (45,46). However, on the performance of stratified analysis by urban or rural residence and the 

interaction with the MC4R gene polymorphism on obesity, only the study by Wang et al. found a 

statistically significant heterogenous association between the two living environments, with an 

attributable proportion of 0.65 (95% CI = 0.22, 1.17) after controlling for age, sex and 7 other potential 
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confounders (46). In contrast, Illangasekera et al. showed the MC4R non-variant TT carriers of urban 

residence to record higher mean BMIs (45). 
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D I S C U S S I O N  

To our knowledge, this is the first systematic review to provide an overview of current literature 

investigating the effects of gene-environment interactions on obesity traits in LMICs. Of the 18 studies 

(n=26,684) included, approximately two-thirds explored gene-diet or gene-PA interactions. In contrast, 

more limited numbers explored other emerging obesogenic environmental risk factors, such as urbanicity, 

irregular or insufficient sleep, and tobacco and alcohol use. Results from this study indicate there may be 

some consistent associations across developing countries, for interactions between genetic variants and 

reduced sleeping times, urban living environments, low levels of PA, increased sedentary behaviour and 

delayed eating patterns on obesity outcomes. However, due to considerable heterogeneity between 

study outcome definitions, genetic polymorphisms and environmental and lifestyle factors, in 

combination with the genetic heterogeneity across different ethnic groups in LMICs, genotype-phenotype 

cross-correlations should be interpreted with caution.  

 

 While results from nutrigenetic studies, and studies investigating gene-physical activity 

interactions on obesity suggest there could be some consistent associations between eating patterns or 

low levels of physical activity and their genetic interactions on an increased risk of obesity, associations 

with specific genes variants were not replicated across studies. Across all included studies, statistically 

significant findings were true for 14 individual SNPs across 10 different genetic loci; FLJ33544 rs140133294 

(43), FTO rs1421085 (29,37), rs9939609 (31,45), rs10163409 (33), rs3751812 (39), CARTPT rs2239670 (35), 

UCP2 rs659366 (42), CLOCK rs1801260 (36), MC4R rs17782313 (37,45,46), rs12970134 (40,46), TMEM18 

rs7561317 and NEGR1 rs2815752 (37). However, these associations were either only significant in single 

trials, or were not replicated in response to the same environmental exposure. Trials which did assess 

interactions between the same FTO genetic variants and macronutrients, including total fat and protein 

intake on obesity were also conflicting  across different LMICs and populations (29,31,33).  
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Explanations for these inconsistent results could be accounted for in the substantial 

heterogeneity in exposure and outcome data collection methods, alongside wide-ranging obesity 

definitions in the included studies. Obesity and overweight were often not differentiated, and using BMI 

values only as a screening tool for obesity was common, with cut-offs varying from ≥ 25 kg/m2 to ≥ 30 

kg/m2. Further heterogeneity can be evidenced by the additional incorporation of WC measurements into 

obesity definitions by some studies, as a measurement of central obesity. Regional and ethnic differences 

in anthropometry and adiposity prevent the use of standardised global obesity definitions, as evidenced 

by WHO guidelines, which define obesity as 2.5 kg/m2 lower in Asian populations compared to the global 

standard (2,47). However, this review has demonstrated disparity in the use of obesity definitions even 

amongst populations from the same developing countries, signalling the need for more consistent 

application of recommended definitions. Assessment and definitions of exposures were also conflicting 

across studies, and at high risk of recall or reporting bias due to incomplete or ambiguous recording of 

methods, and use of short self-developed questionnaires and surveys for patient self-report. Confounding 

was however controlled reasonably well across studies, with age and sex-adjusted for by all researchers 

as a minimum. 

There is a high prevalence of statistically ‘significant’ GxE on obesity on single genetic variants or 

environmental exposures without replication. However, even with replication, many of the study designs 

shown in this review are susceptible to reverse causation, highlighting the need for more well-controlled 

long term prospective longitudinal research looking at GxE on obesity. Use of P-values without effect sizes 

or confidence intervals to report associations was also prevalent across studies (32–35,42), alongside 

small sample sizes and erroneous underpowered statistical analyses, resulting in concerns for selective 

reporting and publication bias. 

 



Page | 21  
 

From what is demonstrated in this review, emerging primary research from LMICs investigating 

GxE primarily employ a hypothesis-based approach, using pre-specified genes of interest identified in 

GWAS studies from European populations. The inconsistencies, and lack of replication across study 

findings could be partly attributed to use of genetic variants identified from GWAS conducted in 

developed regions with ancestrally homogenous populations. It is therefore likely that the inconsistency 

in study findings results from a lack of generalisability of the GWAS-identified candidate genes from 

developed nations, due to varied genetic architecture found in the diverse ethnic populations across 

LMICs (48). In addition, of the studies using a candidate gene approach, approximately half failed to 

correct for multiple testing when using multiple regression analysis to investigate several SNPs across 

different genetic loci (49). Of those which did control for Type I error, sample sizes were very small and 

consequentially underpowered to reliably detect GxE. 

Only five of the studies included in this review used a GRS (30,32–34,38); which while eliminating 

the loss of statistical power attributable to correction for multiple testing, studies were still underpowered 

owing to insufficient sample sizes of 400, 497 and 302 for studies by Isgin-Atici et al., Wuni et al. and 

Alsulami et al. respectively (30,32,33,50). Moreover, only two studies by Xue et al. and Hosseini-Esfahani 

et al. assigned a weighted method, using external weights from an independent study of the same 

ancestral population (38), or a multiethnic GWAS meta-analysis respectively (34). Absence of suitable 

external weights for the studies using unweighted GRSs in Turkish, Indian and Ghanian populations further 

demonstrates the lack of global diversity in the existing genetic research (30,32,33). As an aggregation of 

multiple genetic variants, weighted GRS using meta-analysed external weights is considered the gold 

standard for this genetic approach and is a powerful and bourgeoning tool for identifying GxE (51). New 

statistical techniques which rely on internal information of effect size distributions could improve the 

accuracy of research in developing countries using GRS analyses where external genetic information is 

unavailable (52,53). 
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Application of more GWAS approaches in LMIC research would eliminate reliance on the strength 

of a priori evidence, and any previous associations drawn from homogenous populations of European 

decent, in turn producing quality genetic associations for future gene-interaction studies (54). Only one 

paper eligible for inclusion in this study used a GWAS approach in a Pakistani population to identify the 

FLJ33534 obesogenic locus. This paper demonstrated a strong, high quality significant interaction 

between the identified genetic variant, smoking and a moderating effect on obesity (43). Transethnic 

GWAS studies for the estimation of improved GRSs could provide greater predictive power for future GxE 

studies in developing countries, and their inclusion in future research has been called for in previous 

reviews (18,55). However, with a recommended genome-wide significance threshold of P = 5x10-8, GWAS 

require very large sample sizes to reach an adequate statistical power (56). This presents a significant 

challenge in LMICs, where resources are often limited and participant recruitment can be challenging due 

to low engagement levels and distrust of the scientific community (48). Expansion of genetic studies in 

diverse populations is essential, and while an increase in research capacity from LMICs could eliminate 

the Eurocentric biases surrounding GWAS and GxE interactions, a more equitable and open sharing of 

technologies, statistical advancements and GWAS summary statistics in diverse populations is needed to 

improve the quality of future research and eliminate health disparities (57).  

 

STUDY STRENGTHS AND LIMITATIONS 

The strength of this systematic review is that it is the first to report on GxE on obesity traits in LMICs 

through a broad and exhaustive literature search, using rigorous and predetermined inclusion and 

exclusion criteria. Risk of bias was also assessed for each included study using standardised checklists. 

Evidence of this topic as a fast developing, and emerging field of research in developing countries can be 

substantiated by the number of included primary research conducted or published in the last two years. 

However, several limitations associated with this study should be highlighted. Despite nearly all included 
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studies reporting significant findings for GxE on obesity, the limited homogeneity among studied SNPs 

and outcome definitions severely restricted the synthesis and interpretation of results. In addition, no 

meta-analysis or quantitative data synthesis could be performed, owing to the considerable heterogeneity 

and sources of error surrounding the included primary research. Imprecise and diverse measurements of 

exposures and outcomes, alongside small sample sizes and underpowered or improper interaction 

analyses, which could have yielded false positive or false negative results, mitigate any value in a meta-

analytic summary of effect sizes of GxE.  

While all decisions regarding data extraction, screening and exclusion have been transparently 

documented using the Rayyan and Endnote software’s, risk of bias cannot be assumed as this review was 

conducted individually as part of the Graduate School of Life Sciences writing assignment, and thus lacks 

an independent second reviewer with methodological expertise. It should also be noted that although the 

search strategy and study eligibility criteria did not exclude studies based on language, only English search 

terms were used in database searches. In addition, no non-English databases were included in the search 

strategy due to time and resource constraints. This could explain the lack of any representation of 

research from developing countries from Central and South America, and the limited representation of 

studies from developing African countries eligible for inclusion in this review, with only 3 irrelevant non-

English studies identified in the initial database search.  
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C O N C L U S I O N  

This review has examined and discussed population-based studies from LMIC’s investigating GxE and their 

effect on obesity, in addition to synthesising the achievements and pitfalls in the currently available 

primary research. Individual results have shown smoking status to modify the interaction between 

FLJ33544 and olfactory pathway genetic loci and obesity traits. At the same time, urban living 

environments were demonstrated to interact with MC4R gene polymorphisms to increase obesity traits. 

However, the ability to draw concrete conclusions is limited due to concerns over study quality and a high 

potential for biases. The considerable heterogeneity exhibited across the investigated genetic variants, 

exposure and outcome measures, statistical analyses and reporting of data has highlighted a need for 

updated standardised protocols bespoke to LMICS, and advanced statistical techniques and data 

availability to improve the quality and comparability of future studies.  
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N O N S T A N D A R D  A B B R E V I A T I O N S  A N D  A C R O N Y M S  

BMI; body mass index, CALML3; calmodulin like 3, CARTPT; cocaine and amphetamine-regulated 

transcript prepropeptide, CI; confidence interval, CLOCK; circadian locomotor output cycles kaput, DQI-I; 

diet quality index – international, FFMI; fat-free mass index, FLJ33534; putative uncharacterized protein, 

FMI; fat mass index, FTO; fat mass and obesity-associated, GRS; genetic risk score, GWAS; genome wide 

association study, GxE; gene-environment interactions, HC; hip circumference, HDL; high density 

lipoprotein, HIC; high income countries, LDL; low density lipoprotein, LMIC; low- and middle-income 

countries, MC4R; melanocortin 4 receptor, MET; metabolic equivalent of task, MUFA; monounsaturated 

fatty acids, NCD; non-communicable disease, NEGR1; neuronal growth regulator 1, NOS; Newcastle-

Ottawa-Scale, OR; odds ratio, PA; physical activity, PUFA; polyunsaturated fatty acids, SES; socioeconomic 

status, SAFA; saturated fatty acid, SNP; single nucleotide polymorphism, TMEM18; transmembrane 

protein 18, UCP2; uncoupling protein 2, WC; waist circumference, WHR; waist-hip ratio, WHtR; waist-to-

height ratio, %BF; percentage body fat. 
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