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Abstract

This thesis analyses the performance of Linkage Tree Gene-pool Optimal Mixing Evolu-
tionary Algorithm (LT-GOMEA) on Tree Decomposition Mk Landscapes for problems
generated by the benchmark function CliqueTreeMk introduced by Thierens et al. [16].
To understand the challenges faced by LT-GOMEA on these landscapes, the search pro-
cess is visualized using Local Optima Networks (LONs) introduced by Ochoa et al. [13].
Problems are generated in both a random and deceptive-trap codomain, and the input
parameters for CliqueTreeMk are varied to create problems with different characteris-
tics. The main parameter being varied is the overlap between subfunctions, and the
number of subfunctions increases as well to maintain a constant problem length. Two
implementations of LT-GOMEA are tested: the standard population-based version and a
non-population-based version in which the building blocks are learned from a hill-climbed
population. For population-based LT-GOMEA, the performance for both codomains in-
creased prior to decreasing with an increase in overlap, but the deceptive-trap codomain
performed better at higher overlap. This is thought to be due to a lower number of local
optima (than for the random codomain) and decreased deceptiveness with an increase
in overlap. The non-population based LT-GOMEA had similar results for the deceptive-
trap codomain, but performed poorly on the random codomain with overlap higher than
0, suggesting that an evolving population is necessary to utilize the linkage learning of
LT-GOMEA. We also discovered that the intended deceptiveness of the deceptive-trap
codomain decreases with overlap, and this could also contribute to the increase in global
optima for the deceptive-trap neutral codomain. The findings about the challenges faced
by LT-GOMEA are supported by analyzing the search process through the use of LONs.
The LONs reveal that problems generated with the same input parameters can vary sig-
nificantly in difficulty, and gaining a deeper understanding of the reasons behind this
variance could improve the effectiveness of CliqueTreeMk as a benchmark function, by
being able to more precisely estimate the difficulty of the generated problems.
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Chapter 1

Introduction

This thesis evaluates the performance of LT-GOMEA (Linkage Tree Gene-pool Opti-
mal Mixing Evolutionary Algorithm), a state-of-the-art black-box optimizer developed
by Bosman et al. [2], on problems created by the CliqueTreeMk benchmark function
introduced by Thierens et al. [16]. The difficulty of these problems will be analyzed
in relation to different input parameters. Understanding the difficulty changes caused
by varying the input parameters will be beneficial for utilizing CliqueTreeMk as a bench-
mark function. CliqueTreeMk creates Tree-Decomposition (TD) problems in the category
of Mk-Landscapes introduced by Whitley et al. [23].
Gray-box optimizers can be utilized to solve search problems for which the underlying
structure is known, but black-box optimizers can also learn the structure of the problem
during the search process. When the underlying structure is not provided, gray-box opti-
mizers are not effective. In these situations, black-box optimizers are needed to solve the
problem. LT-GOMEA is a population-based black-box optimizer, which learns the struc-
ture of a problem instance by recognizing structures within an evolving population. By
benchmarking LT-GOMEA on TD Mk Landscape problems, the effectiveness of the algo-
rithm as a black-box optimizer can be evaluated and its suitability for different problem
scenarios can be determined. The CliqueTreeMk benchmark function allows the creation
of different problem instances with different input parameters. The goal of this thesis is
to understand how the difficulty of these problems varies with different input parameters.
To understand how LT-GOMEA performs on the presented problems, the search of LT-
GOMEA is visualized using LONs (Local optima networks), proposed by Ochoa et al. [13].

To better understand Mk Landscapes, it is helpful to first explain the concept of NK
Landscapes. NK Landscapes are popular for benchmarking search algorithms, where a
problem instance can be represented by a bitstring of length N . Every variable in the
bitstring contributes to one or more subfunctions. The subfunctions contribute to the
solution’s total fitness, and the fitness per subfunction depends on its variable configura-
tion. The number of subfunctions M = N and the subfunction size k = K + 1, where
0 ≤ K ≤ N − 1. For adjacent NK landscapes, variable xi must occur in subfi [23] and
only adjacent variables can be represented in a subfunction. A benefit of adjacent NK
landscapes is that the global optimum can be calculated in polynomial time. This is ben-
eficial for benchmarking because solutions of black-box optimizers can be verified with
the global optimum. The constraints of NK landscapes are overcome by Mk landscapes
proposed by Whitley et al. [23]. The CliqueTreeMk benchmark function is able to gen-
erate these Mk landscapes. This allows for more flexibility and a wider range of problem

3



instances to be created. Additionally, the tree-width is bounded to k, this makes the prob-
lem polynomial time solvable with dynamic programming when the TD is known. TD
MK landscapes have several parameters that can be used to generate different instances,
including tree-width, branching factor, problem size, and overlap between subfunctions.
The fitness score for each subfunction configuration is determined by a codomain. In
some cases, such as when using deceptive-trap codomains, it can be difficult to solve the
problem without using linkage learning to identify important building blocks. When eval-
uating a search algorithm, simply knowing whether it can find the optimal solution and
how many function calls it takes, may not provide sufficient insight into why it succeeds
or fails. These metrics do not give a complete picture of the relative difficulty of different
problems, because they do not provide information about the internal structure of the
problem and how the search algorithm handles these structures. To truly understand the
strengths and weaknesses of an algorithm, it is necessary to consider a broader range of
information. Ochoa and Verel did a lot of research to reveal these structures, and this
thesis is inspired by their concepts, for revealing the difficulties when solving TD Mk
Landscapes.
Ochoa et al. [11] came up with techniques to reveal problem structures and search diffi-
culties within NK Landscapes using a best-improvement local search (BILS) algorithm.
They make a so-called ”Local optima Network” (LON), which is a graph where the nodes
represent local optima found by BILS and the edges represent local optima (LOs) with
common neighbours (non-optimized solutions). In a later paper, Verel et al. [19] use
Iterated Local Seach (ILS) where an edge arises between 2 LOs when a mutation success-
fully moved to a better LO. A mutation is defined by D bitflips in a bitstring. An Edge
connects LOi with LOj, when a mutation of LOi and the optimization by BILS leads to
LOj, where fitness(LOi) <= fitness(LOi). Different mutation sizes D can result in dif-
ferent edge configurations for the LON. A LON is a product of the used search algorithm
together with the problem. The LON nodes also keep track of how many times they are
visited by the search algorithm, this is called the node strength. These strengths can give
a lot of insight into the more visited and attractive regions within a LON.
In Ochoa et al. [13] the same concept is used for making LONs for the Travelings Salesman
Problem (TSP). ILS is used for exploring a LON with multiple runs. Where a run tries to
optimize a solution till it did not improve for n times. They use methods for recognizing
regions of attractions within a LON, in later chapters these methods will be clarified.
Almost inescapable regions form the endpoint of the search and are called a funnel. All
the visited LOs of a run belong to the same funnel as well as the visited LOs of runs with
the same endpoint. A LO can belong to multiple funnels because mutation is random
which can lead to different endpoints. When analysing these funnels, observations can be
made about the performance of a search algorithm and the difficulty of the problem. For
example: when the global optimum is located within a relatively small badly connected
funnel the algorithm shall have a difficult time finding the global optimum, but when
there is only one funnel that contains the global optimum, finding the global optimum
can be simpler.
This thesis aims to test LT-GOMEA on TD MK Landscapes and to reveal and understand
the changes in difficulty emerging by changing the CliqueTreeMk input-parameters. A
LON will be created for analysing the performance of LT-GOMEA on different TD MK
Landscape instances. The analysis will be conducted using a LON (Local Optima Net-
work) that is constructed differently from Ochoa’s [13] approach, as it uses a population-
based search algorithm. Unlike in their paper, here the state of a generation in the search
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algorithm does not consist of a single solution, and the next solution is not determined
solely by alterations to a single solution. Therefore, decisions must be made about what
the nodes represent in each state of the search algorithm. LONs for Population-based
algorithms have been proposed [10][3][18], but these were made for either gray-box opti-
mizers, or the state represented within the nodes is so complex, that the LONs are mainly
useful for capturing general trends in difficulty and for comparing different population-
based algorithms. This thesis is concerned with one population-based algorithm and tries
to understand the difficulty on the level of the used codomain. We will investigate if a
LON can tell something about the difficulties for LT-GOMEA, where the nodes represent
each best solution of a population within a generation. Besides the regular implemen-
tation of LT-GOMEA, it would be interesting to see how LT-GOMEA performs when
the building blocks are learned from solely a population of hill-climbed (by use of Best-
improvement local search) solutions. The building blocks have to be learned once. These
building blocks are then used to improve a single solution, where this solution tries to
improve by inheriting the bits belonging to a building block of a random hill-climbed
solution out of the population. This search algorithm has a lot in common with ILS,
only the alterations are not caused by mutation, but by targeting the learned building
blocks. The advantage of this approach is that a LON represents all solutions that made
an improvement during the search, which results in a more complete LON than for the
first approach of LT-GOMEA. Hopefully, this will contribute to a better understanding
of how LT-GOMEA performs on these types of problems.
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Chapter 2

Research Questions

In order to fully understand the performance of LT-GOMEA, it is not sufficient to simply
know whether it is successful or not. It is also important to investigate how the algorithm
searches through the search space, as this can provide insight into why the algorithm may
struggle with some problems more than others. The LONs introduced by Ochoa et al.
[13], are capable of visualizing the search and hopefully can give a more comprehensive
understanding of LT-GOMEA’s performance. The LONs are capable of identifying regions
of attraction. These regions are important features for understanding search difficulties.
When the global optimum is well connected to the largest regions of attraction, this
is generally a positive sign for the algorithm’s performance. In contrast, if the global
optimum is located outside of these regions, it can be more difficult for the algorithm to
reach the optimal solution. Additionally, the nodes in a LON can capture how often each
solution has been found during multiple searches, providing insight into the reachability
of different solutions and the relative difference in the frequency with which they are
visited. Although useful, the approach for creating LONs for population-based algorithms
is different. This may result in the loss of some information, as decisions must be made
about what to include in the LON. As a result, it is interesting to investigate whether
LONs can still provide sufficient information to give insight into how population-based
algorithms search through the search space.
Not only is this thesis concerned with the performance of LT-GOMEA, but also with how
different configurations of CliqueTreeMk influence the search difficulty. In particular,
it is interesting how different levels of overlap affect search difficulty. For problems of
a constant length, the overlap can be increased either by multiplying the number of
subfunctions or by increasing the length of the subfunctions. The latter approach is
similar to increasing the ruggedness of NK landscapes, which is known to substantially
increase search difficulty for NK landscapes. It will be interesting to see how the increase in
overlap affects the TD Mk landscape, and to compare the results with different codomains,
including the random and deceptive-trap codomains.

The following research questions will be investigated:

• How does the amount of overlap in TD MK Landscapes affect the performance of
LT-GOMEA within the random and deceptive-trap codomain?

• How does LT-GOMEA perform when the building blocks are learned from a popu-
lation of hill-climbed solutions?

• Can LONs effectively help to explain the difficulties encountered by LT-GOMEA?
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• Can LONs, as used in this study, provide useful insights into the search processes
of population-based algorithms?
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Chapter 3

NK and Mk Landscapes

3.1 NK Landscapes

Kauffman et al. [8][7] introduced NK Landscapes and used it to predict evolutionary
processes. In this thesis, a solution is represented by a bit string of length N . S is the set
of possible solutions (i.e. search space). The search space exists out of 2N solutions. The
fitness of a solution is dependent on interconnected bits. Every bit is dependent on at
most K other bits, where 0 ≤ K ≤ N − 1. A subset existing of dependent bits from a bit
string is called a subfunction. Every subfunction contains at most k variables, therefore
k = K + 1. For NK landscapes, the number of subfunctions M = N and also variable
xi must occur in subfunction subfi [23]. The fitness of solution s is the sum of all the
subfunction evaluations. A landscape can be visualized in 3D where the horizontal dimen-
sions can be determined by policy choices, where neighbouring solutions are 1 bit apart.
The vertical axis represents the solution fitness. When K = 0, every bit is independent
and subfi only contains xi. An effective strategy of finding the global optimum can be
hill-climbing, because dependencies do not have to be learned [4]. When K increases so
do the ruggedness of the landscape [11], this increases the peaks and hills and when the
problem is big enough it is unlikely for the hill-climber to find the global optimum, and
linkage learning may be necessary.
NK Landscapes are proved to be NP-complete [22], but there is a subclass of NK Land-
scapes called Adjacent NK Landscapes, which is very popular for benchmarking purposes
because it is polynomial time solvable. There are multiple dynamic programming algo-
rithms introduced for this, one of them by Weinberger et al. [22]. Adjacent NK Land-
scapes are only polynomial solvable when treated as gray-box, so the problem structure
is known, this means that the fitness scores for each subfunction configuration are given.
This makes Adjacent NK landscapes in particular suitable for benchmarking black-box
optimizers since the optimum of the black-box optimizer can be compared to the global
optimum which is calculated in polynomial time.

F (s) =
M∑
i=1

subfi(s,maski) (3.1)

In the equation above, maski selects all the bits from s that belong to subfi. An optimiza-
tion problem where F (s) has the form of Equation 3.1 and s is represented by a bit-string
is called a pseudo-Boolean optimization problem. Here follows an example, where bit xi

is dependent on the next bit and because every xi must represent a subfunction and the
subfunction size is 2, the last bit is dependent on the first bit. Here are the subfunction
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fitnesses for every combination:
f(0, 0) = 2
f(1, 0) = 0
f(0, 1) = 0
f(1, 1) = 4
Next, the fitness will be calculated for an example bit-string (1, 1, 1, 0, 0, 1), where N=6
and K=1:
F (1, 1, 1, 0, 0, 1) = f(1, 1)+f(1, 1)+f(1, 0)+f(0, 0)+f(0, 1)+f(1, 1) = 4+4+0+2+0+4 =
14
Note that it is not necessary for Nk Landscape problems that each subfunction has the
same fitness evaluation for all combinations of subfunction variables. The case above only
serves as an example.

3.2 Mk Landscapes

NK Landscapes are very useful for benchmarking, but they also impose redundant con-
straints such as M = N and the required occurrence of variable xi in subfi. Therefore
Whitley et al. [23] introduced a generalization of NK landscapes known as Mk landscapes,
where the obligatory variable subfunction occurrences are not necessary and M does not
have to be equal to N . M again represents the number of subfunctions and k indicates the
upper bound for the subfunction size. Whitley et al. [24] also introduced a tree decom-
position (TD) Mk Landscape, where the global optimum can be calculated in polynomial
time when the fitness of the subfunction configurations is given. So it is polynomial-time
solvable by a gray-box optimizer. Thierens et al.[16] introduced CliqueTreeMk which can
generate any TD Mk Landscape, and these are also polynomial-time solvable.

3.2.1 Clique Tree Mk

The tree decomposition is being built from top to bottom. And the input parameters
are subfunction size k, overlap o and branching factor b. The algorithm initially takes
k variables from the input string, these form a clique in the root node. In example 3.1
these are x4, x2, x7. A clique represents the variables within a subfunction. The cliques
in the branches are formed in BFS order. Each branch takes o random variables from the
parent and fills this child by adding k − o of the non-selected variables. The overlapping
variables are denoted by Si and the subfunction variables, i.e. the overlapping variables
plus the additional variables are denoted by Ci, where the root node is C0. The algorithm
stops when all the problem variables are present in the tree. In the following example,
variables x1..x9 are randomly ordered (x4, x2, x7, x5, x1, x9, x3, x8, x6), where b = 2,
o = 2 and k = 3.
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Figure 3.1: Example branching tree. Figure is retrieved from Thierens et al. [16]

In the resulting TD Mk landscape, M = 7. The cliques in the tree represent the
subfunctions similar to the subfunctions for NK landscapes. The global optimum can be
calculated in polynomial time using dynamic programming when the tree decomposition
is known. The following steps will go over the algorithm as listed in their paper [16]:

1. Initially, take the next k variables as clique C0. Otherwise, take the already con-
structed clique Ci.

2. Choose o random variables from parent clique Ci, assign to separator Sj .

3. Take next (k − o) unchosen variables and add the variables from Sj to construct
child clique Cj

4. Go to step 2 until b branches have been built.

5. Go to 1 to build the next clique.

3.2.2 Global Optimum by Dynamic Programming

Every clique Ci except the root node C0 introduces variable(s) Ci/Si which are not present
in the rest of the tree. This property can be used to solve the global optimum by dynamic
programming in polynomial time. The global optimum is calculated by going through
the branching tree from bottom to top in the following way: go over all the possibilities
of the combination of all the variables Si and choose the variable(s) Ci/Si such that it
maximizes the combination used in Si. When Ci is a root node the maximizing value for
Ci for each combination of Si can simply be calculated by choosing the maximizing values
for Ci/Si. When Ci is not a leaf node, the maximizing value for the combination Si is
dependent on the Ci values of the children.

3.2.3 Codomains

The chosen codomain will to a great extent determine the structure of the landscape.
This paper will investigate the structural differences when varying the input variables
of the CliqueTreeMk algorithm within a certain codomain. The problem size N will be
chosen such that it is computationally manageable. Besides a random codomain, also
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a deceptive-trap codomain will be used. These codomains are ready to use in the TD
Mk Landscape generator by Van Driessel [17]. Where the deceptive-trap codomain, gives
fitnesses to the subfunctions accordingly: Each subfunction gets a random substring as an
optimum for that subfunction with length k, this optimum has a fitness of 1. The inverse
acts as an attractor and has a fitness of 0.9. The rest of the substrings have a fitness of
0.9 − d0.9

k
, where d is the hamming distance with respect to the optimal substring. The

hamming distance is the number of bits that differ, so the hamming distance between the
attractor and the optimum is k. This codomain makes it so that a hill-climber will tend
to move to the attractor. The random codomain assigns random fitness scores between 0
and 1 for each substring of the subfunction.
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Chapter 4

Constructing LONs

For understanding the difficulties within a landscape, a lot of concepts are used of how
Ochoa et al. [13] constructed LONs for TSP instances and NK Landscapes [11] with
escape edges introduced by Verel et al. [19], this is also done by Herman et al. [6] for NK
Landscapes. This chapter will start by explaining their methods and later on in chapter 6
some of their ideas will be used for making LONs with LT-GOMEA as search algorithm.
Ochoa et al. [13] used ILS as a search algorithm and they used Best-Improvement-Local-
Search (BILS) for exploring the landscape. BILS starts by picking an initial solution
s ∈ S and calculating its fitness f(s). All its neighbours V (s) will be explored and if the
best neighbour s′ is better than s, s becomes s′ and the hill-climbing starts again. If there
is no better solution in the neighbour space, s is marked as a LO [14]. Hence, s is a LO
in a maximizing problem when: ∀s′ ∈ V (s), f(s) ≥ f(s′).

Algorithm 1 Best Improvement Local Search

s← Initial solution s ∈ S
s′ ← x0 ∈ V (s), such that ∀x ∈ V (s), f(x0) ≥ f(x)
while f(s) < f(s′) do

s← s′

s′ ← x0

end while
LO ← s

The BILS operator is denoted by h(s). The vertices of a LON are represented by LOs,
where LOi ∈ S. The basin of attraction of LOi is the set of all the solutions that arrive
at LOi after BILS, bi = {∀s ∈ S|h(s) = LOi}. Verel et al. [19] proposed basin-transition
edges and escape edges for the edges between LOs. This paper only uses escape edges
because calculating all the edges (basin-transition-edges) uses a brute-force method, which
involves searching through all possible solutions, which is too computationally expensive.
Instead, escape edges can serve as an informative model and are less computationally
expensive [19].
Escape edges are explored using a mutation operator. An edge eij between LOi and LOj

exists when one can use at most D (where, D > 0) mutations to go from LOi to a solution
belonging to bj. The mutation operator flips 2 random bits. So when D = 2, four random
bits will be flipped. The edge weight wij is being sampled by the number of times this
edge is traversed, note that a LON is directed and if the edges eij and eji exist, wij and
wji do not have to be equal. The following algorithm shows how a LON is created using
ILS, where the mutation operator mutates solutions when stuck in a LO. The algorithm
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below optimizes an initial solution by BILS (alg. 1) and mutates the solution at most n
times, if it does not result in a better or equal solution after BILS optimized the mutated
solution. When the mutated solution arrives at a better or equal LO after BILS, an escape
edge between these LOs is added. When this happens, the search will continue and starts
mutating this new LO, otherwise, it continues mutating the previous LO. When the global
optimum is found, or n mutations did not lead to a different LO, this ILS run stops. The
example below performs 1000 ILS runs in total.

Algorithm 2 LON creation

LONs← {}
Edges← {}
Attractors← {}
n← 1000 ▷ n is empirically determined
for 1 to 1000 do

s← initial solution
s← h(s)
for i from 1 to n do

s′ ← mutation(s)
s′ ← h(s′)
if f(s′) ≥ f(s) then

LONs.add(s′)
Edges.add((s, s′))
s← s′

i← 0
end if

end for
end for

4.1 Mining Funnels

The notion of funnels is used for explaining search difficulties within the landscape.
Ochoa et al. [13] used this concept for TSP landscapes. It is called a funnel because for
minimization problems including the TSP problems the valleys contain LOS which are
hard to escape from. When a local search algorithm finds a LO located in these valleys, it
becomes very hard to move between valleys and the best solution derivable is probably the
optimum solution within this funnel. Finding the global optimum for TD Mk landscapes
is a maximization problem, but still the term funnel will be used for describing the
reversed valleys. For grasping the structure of the landscape it is interesting to find the
optimum solutions located within these funnels because this is where effective evolutionary
algorithms are likely to end up. Consequently, this thesis will go over a method to find
these so-called funnel floors (best LOs within funnel), which are similarly used in the
TSP landscape analyses of Ochoa. For finding the funnels, it is necessary to find the
funnel floors. For recognizing these funnel floors, attractor nodes are used, which are
funnel floor candidates. These attractor nodes are those nodes that did not improve or
did not find an equal solution by applying the mutation function n times in algorithm
2. Therefore attractor nodes are LOs that do not improve easily after mutation. It
can be that for independent runs, some attractor nodes did find an improvement or
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equal solution after mutation and are therefore connected to nodes with higher fitness or
equal fitness in the LON. If an attractor node is connected to an attractor with higher
fitness, it can not be a funnel floor, because nodes belonging to a funnel floor never
improved. For generalizing the structure of the landscape a network is created consisting
of only attractor nodes. These attractor nodes are used for finding the sinks meaning the
funnel floors of the network. The words sink and funnel-floor are used interchangeably.
The attractor network per definition contains the sinks because these funnel floors are
nearly impossible to escape and did not improve after n mutations. For neutral networks
(networks that contain neighbouring nodes of similar fitness [20]), connected attractor
nodes with equal evaluation are compressed to one plateau node within the attractor
network. An attractor node lies within a sink if there are no outgoing edges to attractor
nodes of better evaluation. By going through the nodes of the attractor network, the sink
nodes can be recognized, because these are the nodes (plateau sinks for neutral network)
without outgoing edges in the attractor network.

Figure 4.1: Example of neutral TSP Attractor network retrieved from Ochoa et al. [13].
The colors represent the fitness of the funnel sinks. Two funnels sinks can be recognized,
where red is the global optimum, and yellow is a suboptimal sink. Graph (a) shows
the attractor network, in (b) the connected attractor nodes of (a), which have equal
evaluations, are compressed to a plateau. The plateau length indicates the number of
attractor nodes. Grey nodes belong to a funnel but are not sinks themselves.

In algorithm 3, a sink node is denoted by s ∈ S, where S is the set of sinks extracted
from the attractor network. When the network is neutral, s can also be a sink plateau
node. The most important thing about the sink nodes is that it is used to divide the
LON into different funnels. The sink nodes are used for detecting to which basin the LOs
belong. For detecting the funnel basins, a BFS starting from the sink is done for each
sink. The edges are reversed so that BFS will reach all the nodes that can reach the sink
in the original LON. In other words, the nodes that can reach a particular sink lie in the
funnel basin of this sink. The outgoing edges of the sinks within the LON are removed
because the connected nodes are not attractor nodes themselves and belong to a different
funnel basin [13]. The operator that removes edges from sinks to non-attractor nodes,
is denoted by DelOutgoingSinkEdges(LON, S). When the BFS algorithm is finished,
all the LOs within the LON will belong to one or more funnels, these properties will be
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visualized in a 2D representation. When the basins are established, the LOs which belong
to multiple basins are represented by the set Overlap.

Algorithm 3 Calculate Basins

Basins← {}
S ← funnel sinks
DisconnectedLON ← DelOutgoingSinkEdges(LON, S)

for s ∈ S do
Basins.add(BFS(DisconnectedLON, s))

end for

Overlap← {} ▷ LOs that belong to multiple Basins
for i, j in range(S.length) do

Overlap.add(Basins[i] ∪Basins[j])
end for
RemoveDoubleNodes(Overlap)

4.2 Visualization

By visualizing the LON, the funnel basins can be recognized which will give insight into
the structure of the landscape. The changes in funnel structures caused by varying input
parameters for the CliqueTreeMk algorithm will be investigated. Also, the mutation size
will influence the edge distribution. It is important to note that LT-GOMEA does not
use a standard mutation size. Instead, it learns building blocks that are swapped. The
changes that have been made to adapt it for the use of LT-GOMEA are mentioned in
section 6.0.1. The x position of an LO within this LON can be determined by a graph
visualization module. The fitness of an LO can be shown by its y position. LOs can be
colored according to which funnel they belong. The size of the node can be visualized
according to the node’s strength. When the network is relatively big and the important
structures are only visible in certain parts of the network, it can be pruned by removing
nodes that have a fitness lower than a certain threshold [12]. This threshold has to be
of a magnitude such that all sinks can be displayed. This pruning process can alter the
structure, which has to be taken into account when analyzing.
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Chapter 5

LT-GOMEA

An Evolutionary Algorithm (EA), is a population-based search algorithm that uses biolog-
ical processes to optimize a population of solutions by reproduction, mutation, selection,
and recombination [21]. The performance of a solution can be determined by a fitness
function. There are various ways to optimize a population by using different crossover
policies. A lot of those policies ignore structural information that can be observed from
the population, and the crossover process stays the same disregarding the population.
For harder problems, it can be useful to learn structures and use this to make crossover
policies. This is what the Gene-Pool Mixing Evolutionary Algorithm (GOMEA) does, it
supposes that an improving population yields beneficial structural information and depen-
dencies between variables that can be used to establish building blocks (linkage-learning).
These building blocks are then used in crossover to preserve important structures in the
offspring.

5.1 FOS and Linkage Tree

Let S be the set of all variable indices: {0, 1, ..., l − 1}, where l is the problem size. The
dependencies between variables can be captured in subsets of S. The linkage tree contains
the sets that are considered as blocks for crossover in LT-GOMEA. A set of subsets that
capture the dependencies between variables is called a Family of Subsets (FOS) [15].
Where FOS F is a set of subsets from S. F is a subset of the superset S, F ⊆ P (S).
Three examples of FOS models are: univariate, marginal, and linkage tree FOS structure.
Let the length of S be, l = 6. For the univariate FOS structure all the subsets consist
of 1 variable, e.g. F = {{0}, {1}, {2}, {3}, {4}, {5}}. This structure is limited because
it cannot represent dependencies between variables. The marginal FOS structure can
contain sets that consists of more than 1 variable, but every variable can only occur once
in F , e.g. F = {{0, 3}, {1, 2, 4}, {5}}. This structure can represent dependencies between
variables, but the limitation of a variable only occurring once in the FOS excludes higher-
order dependencies [1]. The Linkage Tree is a hierarchical representation of dependencies
[1], where the leaf nodes are the single problem variables of the univariate FOS structure
and the root node contains all the variables of S. The variables in a subset are dependent
on each other, and the children are a marginal structure of the parent, and therefore
the variables become independent within the children if they belong to another child.
This hierarchical structure makes it very effective to capture the higher and low-order
dependencies [1].
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5.1.1 Building the Linkage Tree

The Linkage tree is built from bottom to top with the reciprocal nearest chain algorithm
[5], starting with the univariate subsets. This algorithm runs in O(l2). The goal is to
combine the most dependent subsets, therefore the Mutual Information (I) between these
subsets is computed. Equation 5.1, measures the mutual dependence I(X, Y ) between
variable X and Y , and determines the similarity between the joint distribution p(X, Y )
and the product of marginal distribution, p(X) and p(Y ). In our problem, the variables
X, Y ∈ 0, 1. Computing I(X, Y ) between all pairs of variables is an l2 operation. When
the linkage sets have a length > 1, the Unweighted Pair Group Method with Arithmetic
Mean (UPGMA)[5][2] is used. In Equation 5.2, the compared subsets are denoted by Fi

and Fj. The process of combining subsets is repeated until every subset is combined once.
Hence, the root node contains all the variables. We do not combine the 2 last subsets
for LT-GOMEA, because using the root node and therefore all the variables for a swap,
essentially means that a solution inherits all variables from another solution, which is not
desired for recombination. Now the LT will contain 2l − 1 subsets.

I(X, Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
(5.1)

IUPGMA(Fi, Fj) =
1

| Fi || Fj |
∑
X∈Fi

∑
Y ∈Fj

I(X, Y ) (5.2)

5.1.2 GOMEA

After the LT is learned from the population, the Gene-Pool Optimal Mixing (GOM)
operator, uses the linkage sets to generate new offspring. The linkage sets represent the
variables that the parent node inherits from a donor to create offspring. GOM goes over
all the solutions in the population in an attempt to make improvements. The process for
every parent solution to create offspring goes as follows: The linkage sets are traversed in
order from last merged to first merged, and as mentioned before, the linkage set belonging
to the root node is not used because the offspring would then be exactly the same as the
donor and no recombination would take place. A random donor is taken out of the
population for every traversed linkage set. And the parent inherits the variables of the
current linkage set from the donor. If this makes an improvement or generates a solution
of equal fitness, continue the search with this new solution, otherwise, keep the current
one. The offspring is the solution that remains after the linkage sets are traversed.

5.1.3 LT-GOMEA

At first, the population needs to be initialized, this can be a population that consists of
n random solutions. The process of building LT from the population and then generating
new offspring by the GOM operator is repeated till a stopping criterion is met.
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5.1.4 LT-GOMEA with Local Search

One reason for the success of LT-GOMEA is its ability to identify and learn important
building blocks, rather than relying on random mutations for improvement like some other
search algorithms such as ILS. It learns from the population as a whole instead of only
the fittest solutions in the population. ILS often fails to solve harder problems, because
it has to be extremely lucky to find the global optimum for deceptive codomains and
large problems. But what if the building blocks are learned from a population of BILS-
optimized solutions? It would be interesting to know if optimized solutions yield enough
information to capture the right building blocks. This raises the question, of whether the
LT could be learned out of a population of LOs alone. The advantage of this method
is that the LT only has to be learned once out of the LOs and then the building blocks
can be used to improve a solution. These building blocks are then used to improve one
particular solution instead of a whole population. Now, the search becomes very similar
to ILS, but the mutations are now learned blocks from the LOs.
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Chapter 6

LON of LT-GOMEA on TD MK
Landscapes

6.0.1 LON for LT-GOMEA

Making a LON for population-based search algorithms is not as straightforward as for
ILS as explained in section 4. For ILS, there is one improving solution, where every
passed LO is a node and every successful perturbation makes an edge between LOs. For
LT-GOMEA there is an improving population instead of just one improving solution. To
overcome this change, an LT-GOMEA run will be handled similarly to an ILS run, but
the best solutions in the population are used for representing the nodes instead of one
improving solution. If a new generation yields solutions that are equal to or better than
the current best solutions, an edge will go from the nodes of the previous best solutions to
the nodes of the current best solutions. For non-neutral landscapes, there is only one best
solution. To complete the LON, multiple LT-GOMEA runs can be executed. The process
for defining attractor nodes will differ from that used for ILS, where a node becomes an
attractor if the solution does not improve after n hill-climbed perturbations. In ILS, the
value of n used to determine when a node becomes an attractor is often quite large (for
example, n = 10000 in Ochoa et al. [13]). However, in LT-GOMEA, the population
tends to converge quickly when the best solution has not improved for a few generations,
so continuing the search for a large value of n would be inefficient. Therefore, a lower
value of n must be maintained. A stopping criterion must be defined for LT-GOMEA
such that when the algorithm takes too long, the best solutions become attractors and
the LT-GOMEA run is terminated. These LT-GOMEA runs are done multiple times for
the creation of a LON.

6.0.2 LON for LT-GOMEA with building blocks learned from
LOs

As described in section 5.1.4, LT-GOMEA will learn its building blocks from a popula-
tion of hill-climbed LOs generated by BILS. The building blocks are learned from this
population, and constructing a LON for this population is similar to the method used
for ILS, since there is no improving population and the edges in the LON are the direct
result of LOs that have been improved using the learned blocks and hill-climbed LOs.
The solutions that made improvements are all present in the LON which is not the case
for the population-based LT-GOMEA. The experiment setup will specify the stopping
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criteria for the runs. If these criteria are too strict, many nodes may become attractors
and the search may terminate before reaching the optimal solution. On the other hand,
if the criteria are too soft, the search may take too long to find the global optimum and
may become stuck in a local optimum. These criteria are tested by checking the lower
bound for the attractor threshold, to which the performance does not drop.
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Chapter 7

Experiment: Increasing Overlap for
LT-GOMEA

This experiment is performed to investigate how an increase in overlap affects the perfor-
mance of LT-GOMEA on problems within the random and deceptive-trap codomain. The
deceptive-trap codomain, as described in section 3.2.3, produces a neutral landscape with
many plateaus, where different solutions with equal fitness exist. As a result, there can
be multiple nodes belonging to the best solutions in a generation. This can lead to a LON
with many edges and nodes. Although these neutral landscapes may not closely resem-
ble real-world problems where each solution typically has a unique fitness, the deceptive
component allows for challenging problems that may require linkage-learning to solve.
Therefore, this experiment also looks into a slightly altered version of the deceptive-trap
codomain, where a random value between 0 and 0.01 is added to each fitness belonging
to the configurations of the subfunctions. These increments are so little in comparison
with the differences in fitness for different subfunction configurations, that they do not
disrupt the deceptive behaviour. The performances of the deceptive-trap codomain with
and without random increments are compared to see if they act similarly. Furthermore,
the performance of LT-GOMEA on the random codomain will be investigated.

7.1 Experimental Setup for Regular LT-GOMEA

The input parameters for the CliqueTreeMk problem generator, are subfunction size k =
8 and branching factor b = 1. The problem length is kept to a length of N = 80
for all instances. To maintain this length while increasing the overlap, the number of
subfunctions M is increased. To determine the corresponding number of subfunctions
for a problem with length N and the desired overlap, the following formula is used:
N = Mk − o(M − 1), where Mk is the sum of the lengths of the subfunctions. The
overlapping bits with a count of o(M−1) are subtracted because this results in the problem
length. To ensure that the problem length is N and that the number of subfunctions M
is an integer, only overlap values that meet these criteria are used. The formula can
be rewritten to M : M = L−o

k−o
. In the experiments N = 80, because it allows for a lot

of overlap values that produce integer values for M and the problem length is sufficient
for generating complicated problems relative to the population size. To generate the
CliqueTreeMk problems, 6 different parameter configurations are used, which consist of
the following values for (o,M): (0,10),(2,13),(4,19),(5,25) and (6,37). The population size
is chosen such that LT-GOMEA does not always converge to a global optimum, as it
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is expected that especially there where LT-GOMEA struggles, interesting features can
be observed in the LON which can provide insights in identifying the challenges that
LT-GOMEA faces on the selected problems. A population size P = 600 is chosen. For
each CliqueTreeMk parameter configuration, 10 problem instances are generated. Each
instance is solved using 20 runs of LT-GOMEA, and the corresponding LON for this
instance is updated with each run. During the search, edges form between the nodes
of the best solution(s) of the previous generation to the best solution(s) of the current
generation (there can be multiple solutions for the neutral network). The edges and nodes
found in the 20 runs per instance of CliqueTreeMk are combined into one LON for each
instance. As a result, if an edge is formed in one run, it will be present in the LON.
The strength of a node is the number of generations in which it was a part of the best
solution(s). In the LON, the node strengths for each run are combined. If a node becomes
an attractor in one run, it will remain an attractor in the combined LON.
The stopping criteria for each LT-GOMEA run are as follows: If during the search, LT-
GOMEA did not introduce a new best solution(s), compared to the best solution(s) of
the previous generation, for three consecutive generations, the run stops and the best
solution(s) of the final generation, becomes an attractor(s). This stopping criterium is
based on how fast the population converges when not improving.

7.2 Results

7.2.1 Results for Deceptive-Trap Codomain

Figure 7.1 shows the number of times that LT-GOMEA successfully found the optimum
for each experiment. The CliqueTreeMk parameters are displayed on the left side of the di-
agrams as M k o (number of subfunctions M, subfunction size k, overlap o). All problems
are generated with a branching factor of 1. The experiments labelled deceptive-trap neu-
tral (in red) refer to the deceptive-trap codomain as described in Section 3.2.3, while those
labelled deceptive-trap non-neutral (in blue) refer to the randomly incremented codomain.
The x-axis represents the experiment number, where all experiments of the diagram are
generated with the same input parameters. Note that the experiments that are generated
by the same input parameters, do not create the same problem. The deceptive-trap non-
neutral and deceptive-trap neutral codomains both use the same generated instance by
CliqueTreeMk, with the only difference being that the subfunction fitnesses are slightly
increased for the deceptive-trap non-neutral.
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Figure 7.1: In red the experiments for Deceptive-trap neutral and in blue for Deceptive-
trap non-neutral. The x-axis shows the experiment number and the y-axis shows the
number of successful runs for 20 LT-GOMEA runs per experiment. Branching factor =
1, Population size = 600. Each diagram shows the input parameters displayed as M k o.

Figure 7.2: These graphs display a line representing the average of successful runs across
all experiments for each CliqueTreeMk input configuration. The x-axis indicates the input
parameter configurations in the order shown in Figure 7.1.
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Figure 7.3: The table displays the number of global optima for each experiment of each
CliqueTreeMk input configuration within the deceptive-trap neutral codomain. The line
graph illustrates a line representing the average values per configuration.

The experiments of input parameter configuration 10 8 0 show similar results for both
codomains. Where in all experiments, the majority of LT-GOMEA runs found the global
optimum. However, configuration 13 8 2 shows different results. For both codomains, at
least half of the experiments did not find the global optimum at all. Only experiment
3 for the deceptive-trap non-neutral codomain had a majority of successful runs. This
configuration had the worst performance in terms of finding the global optimum for both
codomains. As seen in Figure 7.2, the two codomains showed differences for configuration
37 8 6, with the deceptive-trap non-neutral codomain showing an upward trend, unlike
the neutral codomain. In figure 7.11 can be seen that for the deceptive-trap neutral
codomain, configuration 25 8 5 and 37 8 6 each have 2 experiments (exp 2 and exp 8 for
25 8 5 and exp 4 and exp 8 for 37 8 6) where the number of vertices is significantly larger
compared to the other experiments of the input configuration. These experiments also
have no successful runs. Figure 7.3 shows that the average number of global optima of
each input configuration increases as the overlap increases for the deceptive-trap neutral
codomain.

LON details

In the following part, examples of LONs for the deceptive-trap non-neutral codomain for
each input configuration will be displayed, starting with an explanation of how they are
visualized. The colour of a node indicates to which funnel it belongs. Grey nodes belong
to multiple funnels. The sink nodes can be identified by their fitness values being dis-
played. The x-position of each node is determined by a layout algorithm using the Pyvis
module in Python. Some x-positions have been manually adjusted for better readability.
The y-position is determined by the fitness value of the node, with nodes at the top having
the lowest fitness and nodes at the bottom having the highest fitness with a linear rela-
tionship. The strength of each node is represented by the diameter. The node strength
in this experiment is the number of times a solution belonged to the best solutions in
the population. Therefore, a node must have a strength of at least 4 to become an at-
tractor, according to the stopping criteria described in section 7.1. Namely, 3 consecutive
non-improving generations. The relationship between node strength and diameter is not
linear, as it would result in a too-large size difference between nodes. The edges in the
LONs are directed from top to bottom or between nodes of equal fitness. However, the
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latter does not occur in the following figures due to their non-neutral property. Self-loops
are edges that connect a node to itself and occur when a node belongs to the best solu-
tion(s) for consecutive generations. Self-loops can be seen in the bottom left corner of
Figure 7.6b and in the global optimum. Figure 7.6b will be discussed and used to explain
some additional concepts. Most of the nodes have a strength of one, which means that
these solutions were only part of a single LT-GOMEA run within a single generation.
The node belonging to the global optimum has a strength of 76, this can be explained by
the fact that LT-GOMEA was successful for 19 out of 20 runs. The strength increases
19 times when the global optimum is found and also increases three consecutive times for
each run that LT-GOMEA is unable to find an improvement because it has already found
the global optimum, therefore: Strength = 19 + 3 ∗ 19 = 76. Note that the strengths of
the sinks combined can be less than 20+3∗20 = 80, because there can be attractor nodes
that eventually improved in a different generation and therefore are not marked as sinks.
The top of the LON displays 20 starting nodes that are relatively random, as they are the
best nodes for a random population that have been optimized by BILS. Given the size
of the search space, it is not surprising that these starting nodes do not have a strength
higher than one, otherwise, this would indicate that separate runs started with the same
best solution as the starting node. The biggest improvement in fitness for each run can
be observed between the first and second generations of LT-GOMEA. In this case, there
is only one funnel in which the global optimum is the sink node.

LON Results

This section discusses the LONs of the deceptive-trap non-neutral codomain. All the
LONs where the input parameter configuration is 10 8 0 are similar to Figure 7.6b, with
the global optimum found in all of them and most LONs having only one funnel. There
are some LONs with additional funnels, but their basins are smaller compared to the basin
of the funnel containing the global optimum. The strength of the global optimum is the
highest among all nodes in all instances, and the majority of nodes have a strength of one.
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Figure 7.4: This is the 2nd experiment from the ”deceptive-trap non-neutral” codomain
where the input parameters are (M=10, k=8, o=0). There is one funnel containing the
global optimum.

In half of the instances for input configuration 13 8 2, the global optimum was never
found. In the cases where it was found, it was not found frequently, except for experiment
3. The number of funnels varies between 1 and 4 for the instances where the global
optimum was found and between 1 and 5 for the instances where it was not found. In
8 out of 10 instances, the best-found solution is not the one with the highest strength
within the LON. The two cases where the best-found solution has the highest strength
are also the cases where the global optimum was found. One of these is shown in Figure
7.5a, where all three funnels share a large overlapping portion of their basin, with the blue
funnel containing the global optimum having the largest non-shared basin. Most nodes
with a strength greater than 1 are blue nodes close to the global optimum.
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(a) This is the ninth experiment. It has
three funnels, with the blue funnel contain-
ing the global optimum.

(b) This is the eighth experiment. It has
four funnels. The brown sink is the global
optimum.

Figure 7.5: The input parameters are (M=13, k=8, o=2) and the deceptive-trap non-
neutral codomain is used.

Figure 7.5b also shows 1 bigger funnel as well as smaller funnels, and all funnels share
an overlapping basin. In both figures, the grey nodes with high strength, are relatively
high in fitness and are well connected to colored nodes. In figure 7.5b these are the grey
nodes between the blue and red sink. A difference with figure 7.5a is that the largest
funnel does not contain the global optimum.
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(a) This is the first experiment. It has one
funnel, containing the global optimum.

(b) This is the second experiment. It has
one funnel, where the global optimum is the
largest node.

Figure 7.6: The input parameters are (M=19, k=8, o=4), and the deceptive-trap non-
neutral codomain is used.

(a) Input parameters are (M=19, k=8,
0=4), and the deceptive-trap non-neutral
codomain is used. This LON shows 100
runs.

(b) The y-axis shows the occurrences of the
large attractor (above the global optimum)
in the population (600) for 6 separate runs.
The x-axis represents the generation, with
generation 1 being the first time the attrac-
tor is present and the line ending when LT-
GOMEA stopped.

Figure 7.7
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At first glance, Figure 7.6a and Figure 7.6b appear similar. Both problems were
generated using input parameter configuration 19 8 4, but LT-GOMEA found the global
optimum once for the first experiment shown in Figure 7.6a and 20 times for the second
shown in Figure 7.6b. Both figures show one funnel and one large node (high strength)
in relation to the others. The large nodes are reached for each LT-GOMEA run, but
for experiment 1 this node is the global optimum, while for experiment 2 it is not. In
experiment 1, the global optimum is found once after finding the solution belonging to
the large node.
For input parameter configuration 19 8 4, 4 out of the 10 experiments have a main funnel
in which the global optimum is the node with the highest strength. In 2 of the experiments,
there is an attractor node with a high strength relative to the other nodes, but it is not the
global optimum. Figure 7.7b and 7.7a show an instance of configuration 19 8 4 containing
100 runs. The biggest attractor has been found in almost every LT-GOMEA run. In all
of the cases, the optimum is found after this attractor has been found. And for almost
half of the cases, this attractor was a parent or modified solution to generate the global
optimum. Figure 7.7b shows 6 runs of LT-GOMEA demonstrating the speed at which the
population can converge to an attractor. Many runs in this particular problem exhibit
this behaviour. The x-axis represents the generation, with generation 1 showing the first
generation in which the attractor appears in the population, and the following generations
show the increase until LT-GOMEA meets its stopping criteria. For these 6 runs, LT-
GOMEA converged in 2 to 3 generations after the attractor became present. This shows
how fast a population can converge existing of almost one single solution.

(a) Experiment 3. 2 funnels, where the blue
sink is the global optimum.

(b) Experiment 6. 2 funnels, where the light
blue sink is the global optimum.

Figure 7.8: Configuration 25 8 5, from the Deceptive-trap non-neutral codomain

In 6 out of 10 experiments, for input parameter configuration 25 8 5, the biggest fun-
nel contains the global optimum which also resembles the node with the highest strength.
The global optimum has been found in all problems within this configuration. Figures
7.8a and 7.8b show instances where LT-GOMEA performed the worst in terms of the
number of times the global optimum was found. Figure 7.8a displays one large attractor

29



and two better solutions, with the blue one being the global optimum. The edge from the
large attractor to the global optimum was traversed twice, indicating that the optimum
was found in two separate runs after the large attractor was found. The edge from the
large attractor to the other sink was traversed once. Figure 7.8b displays two funnels,
with the smallest one containing the global optimum. The two funnels overlap, and the
two grey nodes with the highest fitness were explored by two different runs. These runs
caused different edges to lead to better nodes in different funnels.
For configuration 37 8 6, 9 out of 10 instances, show one main funnel where the biggest
node by far is the global optimum. These 9 LONs look very similar too figure 7.6b and
in general look very similar to the LONs produced for the instances of configuration 10 8 0.

Repeatability of LT-GOMEA’s Results

In order to assess the repeatability of LT-GOMEA’s results, 10 LONs were constructed
for the same hard instance of input parameter configuration 19 8 4. The global optimum
was found in 9 out of 10 LONs, ranging from 1 to 7 times. The identified attractors were
similar across all cases, with all LONs showing a prominent and common attractor. In 8
out of the 9 cases where the global optimum was found, this attractor had an edge con-
necting it to the global optimum and both belonged to the largest funnel. The number of
sinks and funnels varied, with some instances having attractors that became sinks while
others did not, resulting in mostly small funnels aside from the largest one.

Increasing Ruggedness

In the previous experiments, the number of subfunctions M compensated to maintain a
constant problem length N , when the overlap was increased. Alternatively, N can be kept
equal by changing the subfunction size k for an increase in overlap. This is done when
changing the ruggedness for NK Landscapes, which is known to increase the difficulty [9].
Increasing the size of the subfunctions leads to an increase in overlap due to the constant
number of subfunctions (M), which also results in an increase in ruggedness. To make
experiments for Mk landscapes similar to the increase of ruggedness, the subfunction
size has to compensate to keep the problem length equal. This has been done for the
experiments of the following configurations:

N M k o

48 6 8 0
49 6 9 1
50 6 10 2
51 6 11 3
52 6 12 4

47 6 12 5
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Figure 7.9: This graph shows the average number of successes across 20 runs, plotted
in the order of the input parameter configurations listed in the table above (ordered by
increasing overlap).

For each overlap, the subfunction size was calculated to maintain a constant problem
length(N), using the following formula: k = o(M−1)+N

M
. The value of k was then rounded

to the nearest integer, which then can result in small variations of N . Again 10 instances
are generated for each input parameter configuration, where LT-GOMEA performs 20 runs
for each instance. For overlap values of 0 and 1, Lt-GOMEA performed well, however,
when the overlap is greater than 2, LT-GOMEA struggles to solve problems when a
population of 600 is used. Note that LT-GOMEA performs well when the population is
higher. When instances of (N=47, M=6, k=12, o=5) were tested with higher populations,
LT-GOMEA was able to frequently solve them when the population was above 3000.

7.2.2 Results for Random Codomain

The input parameter configurations and population size (600) used in this experiment were
identical to those used in the previous experiments. For input parameter configuration
10 8 0, the global optimum was found in every run and instance, resulting in one funnel
for each instance. Most nodes have a strength of 1. In figure 7.10 can be seen that
LT-GOMEA performs the worst for configuration 19 8 4. So unlike the deceptive-trap
codomain where LT-GOMEA fails the most on an overlap of 2, for the random codomain,
this is for an overlap of 4. Also, the number of vertices (nodes and vertices mean the
same thing) in the random codomain exceeds the number of vertices for the deceptive-
trap non-neutral codomain except for configuration 10 8 0 (figure 7.11).
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(a) Successes per generated instance of the
given input parameter configuration within
the random codomain.

(b) The y-axis represents the average successes
over 20 runs per configuration. The x-axis rep-
resents the configurations in the order given in
the bar diagram.

Figure 7.10
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Figure 7.11: This figure shows the number of sinks, successes and vertices for each
codomain, input parameter configuration and experiment.

7.3 Discussion

7.3.1 Increasing Overlap for Deceptive-trap Codomain

Increase in Global Optima for the Neutral Deceptive-trap Codomain

The neutrality of the neutral deceptive-trap codomain results in a significant amount of
variation in the number of nodes and edges as the overlap increases. This is due to the
presence of multiple best solutions in a single LT-GOMEA generation. The number of
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edges can increase rapidly, especially when the best solutions of the current generation
did not improve, which leads to edges between all non-improving solutions. This can
be observed by big plateaus within LON and in figure 7.3, where the number of global
optima increases with overlap. These are plateaus that contain either the global optima
or sub-optimal solutions. The big question is, why do the number of global optima and
the number of equal solutions per generation increase when the overlap increases? There
is no explanation found of why the neutrality of the landscape would increase when the
overlap does, but there is an idea for the increase in solutions with equal fitness. As
the overlap increases, the number of subfunctions also increases. The next experiment in
section 8.3.1(figure 8.9), shows that when there are more subfunctions due to the increase
in overlap, there is a higher probability that there will be subfunctions in the global opti-
mum that do not have the same substring as the optimal substring for that subfunction.
The optimal subfunction’s substring refers to a substring of a subfunction that provides
the most fitness, while the deceptive subfunction substring refers to the substring of the
deceptive attractor. It is important to note that the deceptive attractor substring refers
to the substring of a single subfunction, while a solution that is deceptive refers to the
overall problem. There is only one deceptive and one optimal substring per subfunction
which both have a unique fitness, but there are many different subfunction substrings
with equal fitness in between (for k > 1). Because the substring fitness is established by
the hamming distance relative to the global optimum, and the deceptive substring has the
maximum hamming distance, but for each hamming distance in between, there are mul-
tiple substrings that produce this hamming distance. It is believed that when the global
optimum includes more subfunctions that do not contain the optimal or deceptive sub-
string, this can lead to an increase in global optima with the same fitness. The same goes
for when LOs are considered that contain sub-optimal substrings. Because, when there
are more LOs considered by LT-GOMEA that contain sub-optimal substrings, meaning
other substring values than the deceptive or optimal substring, the probability increases
that these overlapping subfunctions produce solutions with equal fitness because there
are more subfunction substring candidates that can be part of those LOs. This finding
explains the observed increase in the number of global optima and equal solutions found
per generation with an increase in overlap. However, this does not necessarily mean that
the search space is more neutral, but rather that there are just more equal solutions that
turn out to be LOs or global optima.
An issue being observed within the LONs for neutral codomains is that the neutrality of
the landscape sometimes leads to a bouncing effect between nodes with equal fitness in
a plateau. This is because different nodes are interchangeably present in the set of best
solutions for many generations and do not stop because the stopping criteria are not met,
causing the node strengths to increase frequently without an improvement in fitness. The
LON can then sometimes show unreasonably large nodes.

Analyzing Search Difficulty in the Deceptive-trap Codomain with Increasing
Overlap

The least number of successful LT-GOMEA runs is found with an overlap of 2, for both
deceptive-trap codomains. The instances with an overlap of 0, were clearly the least
difficult to solve. The trend for average successes is similar for the two codomains, but
they deviate slightly for an overlap of 6. As explained more thoroughly in section 8.3.1, it
is believed that with an increase in overlap, there are fewer subfunctions within the global
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optimum that have the optimal substring (fewer subfunctions with the optimal substring
in relation to the total number of subfunctions). When the overlap increases, not all
overlapping subfunctions can have the optimal substring, as the optimal substrings may
conflict for the overlapping bits between subfunctions. Also, the increase in subfunctions
with an increase in overlap causes more LOs to exist (more peaks and hills), which can
enhance the process of finding deceptive solutions because there are smaller steps needed
to move between LOs. Still, the problems with 0 overlap are easy to solve and the search
difficulty is clearly the highest for an overlap of 2. It is believed that the overlap of 0 is easy
to solve, because of linkage learning. When there is 0 overlap, there are only 2 subfunction
substrings that are attractive, namely, the optimal and deceptive substring. Lt-GOMEA
is highly adequate to recognize these building blocks for 0 overlap, because there is not
much diversity within these subfunction substrings. With a large enough population, the
optimal substrings will be present in the population. The blocks are easily recognizable,
so it is not necessary for a large number of these optimal substrings to be present in the
population for them to be utilized. It is believed that the counteracting changes in search
difficulty, one being the increase in diversity of building blocks with increasing overlap,
making it more difficult for linkage learning to identify these blocks, and the second one
being the decrease in deceptiveness at higher overlap (less optimal substrings in global
optima and closer LOs), contribute to the dip in performance for an overlap of 2.
In 7.11 can be seen that for overlaps 5 and 6 there are LONs with an exceptionally high
number of nodes for the neutral codomain, which all do result in no successes. These
influence the average successes substantially and could cause instances of the generated
problems with the same input parameters to vary a lot in difficulty and explain the
differences in difficulty between the deceptive codomains. The number of global optima
increases substantially when the overlap surpasses an overlap of 3. It is believed that a
large number of global optima do not necessarily make the search process easier, because
the problems generated with the same input parameters for the non-neutral codomain
are more successful for a higher overlap. Instances with an exceptionally high number of
nodes appear more difficult compared to other instances generated with the same input
parameters. The global optimum may be difficult to locate because LT-GOMEA becomes
stuck on large plateaus, which are highly connective and contain many different solutions
with the same fitness. The solutions in such a plateau may be similar in structure and
deceptiveness, reducing the diversity in the population and making it harder to escape
from to find better optima. This could explain why LT-GOMEA performs better with
high overlap for the non-neutral codomain.

7.3.2 Random vs Deceptive neutral vs Deceptive non-neutral

For all the codomains, the configuration with an overlap of 0 is the least difficult to
solve. For the other overlap values, the instances for each input parameter configuration
seem to differ a lot in difficulty. Many of the difficult instances contain attractors that
dominate the population within a few generations, as can be seen in 7.7b. In the prob-
lem of figure 7.7a, the large attractor was beneficial in generating the global optimum.
However, when this is not the case, finding the global optimum becomes very difficult.
This could explain the differences in difficulty within each input parameter configura-
tion, where per instance there are differences in deceptiveness. This also can be observed
within the random codomain. While the random codomain is not specifically designed to
produce deceptiveness, the randomness can always produce deceptive subfunctions. And
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as can be learned from how fast an attractor can dominate a population, there only has
to be a small deceptive portion of the solution, to make a problem difficult to solve for
LT-GOMEA. Note that this applies to problems with an overlap greater than 0. For an
overlap of 0, linkage learning becomes more effective because there is less diversity in
the population, making it easier to solve deceptive problems (when the population is big
enough). For both the deceptive and random codomains the search difficulty increases
with overlap and then decreases. Van Driessel [17] questioned whether the decrease in
search difficulty for deceptive problems was due to the increase in global optima for the
neutral deceptive-trap codomain at higher overlap. However, this decrease in search dif-
ficulty is also observed in non-neutral deceptive-trap codomain. Additionally, instances
with a large number of global optima, when generated with the same input parameters,
are not necessarily the easiest to solve. It is also the case for the random codomain,
although the decrease in difficulty is more noticeable for the deceptive codomain. For
the random codomain, the decrease in deceptiveness for increasing overlap is believed
to be primarily caused by smaller steps that have to be taken to traverse local optima,
while for the deceptive codomain it is shown that in addition to this, the deceptiveness
decreases significantly because the optimal subfunction substrings become less present.
This difference is thought to play a role in why the problems with high overlap for the
deceptive comdomains are significantly easier than for the random codomain. Also, the
increase in LOs is much higher for the random codomain than for the deceptive-trap non-
neutral codomain, this can also be noticed by the difference in number of vertices for the
problems of higher overlap. There seems to be a balance in, to what extent more LOs are
beneficial, but the next experiment will go deeper into this. The random codomain can
have multiple local optima for subfunction substrings when only looking at the substring
of one subfunction. For the deceptive codomain, when the optimal subfunction substring
is neglected there is only one local optimum and this is the deceptive attractor substring.
Otherwise, there are two, and this is probably still less than for the random codomain.
This does not mean that only the deceptive attractor substring (or optimal subfunction
substring) is present in the global optima, but just that there are probably fewer local
optima in the whole search space than for the random codomain. Note that a local op-
timum for a subfunction’s substring means something different than a local optimum for
the entire solution.
For the deceptive codomains, the smaller diversity caused by the abundance of deceptive
subfunction substrings within the population can actually aid linkage learning in identify-
ing the correct building blocks, which can then be used to select less common subfunction
substrings that are part of the global optimum.

7.3.3 Usefulness of LON

This section discusses the practical uses and benefits gained by using the method described
in this research to generate LONs for LT-GOMEA. It is important to note that the insights
and explanations described in the previous section were greatly aided by the use of LONs.
The LONs provide an overview of the search process, and this is beneficial to recognize
important features. Additionally, this method allows for keeping track of useful metrics
that can be used to look into these features. For example, the LONs show which nodes
are highly attractive, these nodes can then be looked into about what their evolution
is within the population for each generation. This gives insights into why LT-GOMEA
prematurely converges, on the other hand this attractor could be beneficial for finding
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the global optimum when it shares a lot of blocks with similar bits.
The vizualized LONs are especially used for comparing the instances generated with the
same input parameters. These vizualized LONs showed that there can be big differences
between these instances, for example in terms of deceptive attractor occurences. This
raised the question of why these instances are so different for problems generated with
the same input parameters. Van Driessel et al [17], mainly focused on the problems where
LT-GOMEA was successful, but this ignored the fact that the problem generated by the
same input parameters show differences in difficulty. The multiple LT-GOMEA runs done
for generating one LON showed that these difficulties are not because of an accidental
failure for not learning the right building blocks, but that some problems (with the same
input parameters) are significantly more difficult than others. This insight was crucial for
looking into the number of optimal subfunction orderings within the global optimum for
the deceptive-trap codomain, as well as looking into the difference in plateau sizes for the
neutral deceptive-trap codomain.
For understanding the differences between instances for different input parameters, the
metrics such as number of vertices and of course the number of successes are useful, but
this is where it becomes more difficult for the population-based method of LON creation.
The LONs are incomplete in the sense that they only target the best solutions within a
generation, which can give limited information and this is where the next experiments
helped by understanding more about the difficulties posed by the problems generated by
CliqueTreeMk. The attractors which are the best solutions in the LON, play a major role,
because they can either aid the search for the global optimum, or disrupt the search by
taking over the population. But they are not always the reason why the global optimum
is found. Also, there can be attractors which are abundant in the population, but they are
not the best solution and are therefore not present in the LON. This gives uncertainties
for what the edges and therefore funnels exactly tell. For example, in the LON of figure
7.7a, there is clearly a relationship, the global optimum has only been found after the
large attractor, but this is not always the case. The next experiments will use ILS and a
different implementation of LT-GOMEA to generate LONs where the edges are a direct
result from changes within previous solutions, therefore they may provide more interesting
insights.
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Chapter 8

Experiment: Increasing Overlap for
LT-GOMEA on a Hill-climbed
population

This experiment is executed to investigate whether LT-GOMEA can learn the right build-
ing blocks when only one initial population of hill-climbed (best-improvement) solutions
is used.

8.1 Setup

The experiments are done for the same CliqueTreeMk configurations as used for the
former LT-GOMEA experiment. The deceptive-trap non-neutral and random codomain
are used. Note that the instances are newly generated, so they are not exactly the
same as in the previous experiment. The building blocks are learned from a population,
where the solutions are randomly generated and improved by hill-climbing (BILS). The
building blocks are then used to optimise a solution. The population size is P = 5000,
which is substantially larger than the population size used in the previous experiment,
but this is necessary because unlike in regular LT-GOMEA, where the building blocks are
computed for each generation, here it is learned once. The right building blocks cannot be
learned from a much smaller population when only hill-climbing is used for optimizing the
solutions. Hill-climbing these 5000 solutions is by far the most time-consuming process, in
comparison to the time it takes to learn the building blocks and to optimise a solution with
these learned building blocks. When these building blocks are learned, many LT-GOMEA
runs can be performed similarly as to ILS. In the case of ILS random mutations are used to
improve solutions (together with BILS), and in this experiment, building blocks are used
to improve a solution. 600 runs are performed per instance of a configuration. Nodes are
trying to improve by inheriting bits from a parent, these bits are indicated by the building
blocks. A random parent is chosen out of the population of hill-climbed solutions. When
all the building blocks are tried for n times without an improvement, the non-improved
node becomes an attractor and the run stops. In this experiment n = 300. A higher
n did not give more improvement, only a longer search process. The node strength is
only increased when the search arrived at this solution previously to another solution.
When a solution did not improve, the strength does not increase. Algorithm 4 shows the
pseudo code for the search process and is also used to recognize the nodes and edges.
The function inherits() takes 3 arguments, the current solution, the building block and
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the parent. It returns the solution that inherited bits from the parent indicated by the
building block.

Algorithm 4 LON creation

LONs← {}
Edges← {}
Attractors← {}
Population← {}
for 1 to 5000 do

s← random solution
s′ ← BILS(s)
Population.add(s′)

end for
building blocks← learn building blocks(Population)
n← 300
for 1 to 600 do

s← random solution
for i from 1 to n do

for BB in building blocks do
parent← Population[random.index]
s′ ← inherits(s, BB, parent)
if f(s′) ≥ f(s) and s ̸= s′ then

LONs.add(s′)
Edges.add((s, s′))
s← s′

i← 1
end if

end for
end for

end for

8.2 Results

In the next section, some LONs for the deceptive-trap non-neutral codomain will be
shown, starting with configuration 10 8 0. What can be noticed for all LONs is that the
nodes are concentrated on certain y-values, which can be observed by somewhat horizontal
lines formed by the nodes. This is caused by the deceptive-trap codomain, where in the
neutral codomain plateaus can be formed. Many solutions show almost equal fitness
because without the random increment it is a neutral landscape. For most instances of
configuration 10 8 0, LT-GOMEA found the global optimum for more than 200 runs.
The node strength in these experiments indicates in how many runs this node (solution)
has been reached. Most LONs show a resemblance with some other LONs within this
input parameter configuration. Three different-looking LONs are featured in figure 8.3
and each LON of this configuration shows a resemblance with one of the featured LONs
of this figure. As can be seen in figure 8.2, experiment 0, 2, 5 and 6 show a similar number
of successes (around 420 runs out of 600). All the LONs of these experiments look similar
to figure 8.1a. There is one big funnel and one big attractor with a substantially higher
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strength compared to the other nodes. This big attractor is also the global optimum
in these experiments. These LONs show no signs of difficulty for LT-GOMEA. There
are some sinks that have very low fitness and strength, but the basins of these sinks do
overlap with other basins (except for the sink nodes). In other words, only grey nodes and
the sink itself belong to these basins. The grey nodes on top of the LONs in this input
parameter configuration occur because these small funnels overlap with the main funnel
and other smaller funnels. Then there are experiments that look similar to figure 8.1b,
these are experiments 1, 3, 7, 8 and 9. They are very similar to the LONs of experiment 5,
the only clear difference is that there is another big attractor, which has a higher strength
than the global optimum, but they both belong to the same funnel. This bigger attractor
is not necessarily the second-best optimum. The number of different bits between the
big attractor and global optimum is in all five experiments 8 bits, which is equal to the
subfunction size. The node strengths of the global optimum and the big attracter are
similar in all five experiments, where the global optimum has a strength of about 230 and
the big attractor of about 350. Figure 8.1c shows a different looking LON which only has
been observed in experiment 4. There are 2 big funnels, where the biggest funnel does
not contain the global optimum and the smaller one does. There is still one big attractor
but it is not in the same funnel as the global optimum. This big attractor has a strength
of 192 and the global optimum a strength of 7. These two solutions have a difference of
16 bits, which is 2 times the subfunction size. There are 4 nodes that differ 8 bits with
the global optimum, where one node has a strength of 94, but it is in the green funnel.
The other three have a strength of less than 23 and are all three located in the purple
funnel (the funnel of the global optimum).

(a) Experiment 5. (b) Experiment 9.

(c) Experiment 4.

Figure 8.1: Configuration 10 8 0, from the Deceptive-trap non-neutral codomain
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Figure 8.2: Number of successes for each experiment of each configuration.

In a two of the LONs for configuration 19 8 4, namely for experiments 0 (figure 8.3a)
and 8, the global optimum was found, but not that often. These LONs both show one big
funnel where the global optimum is the sink and there are a lot of big attractors that have
edges towards the global optimum. These attractors belong to this funnel, as can be seen
in figure 8.3a. The hypothesis is that the global optimum should be easier to find when it
belongs to the main funnel and it should also be easier to find when it is widely connected
with big attractors. Both these requirements seem to comply, but it still seems to have a
hard time finding the global optimum. Therefore the experiments were repeated, to see if
these new results show disagreements with the previous results. The tables of Figure 8.4,
show the number of sinks, successes and vertices for both attempts. The results show that
the number of successes and vertices are similar for most experiments except for some.
Namely, the successes between both attempts differ quite a lot for experiments 0, 2 and
8. And all three of these LONs show features that seem characteristic of easily solvable
problems. The LONs all look similar in structure (global optimum belongs to the main
funnel, and is connected to big attractors), the number of vertices is about equal and the
prominent funnels have about the same size. The LONs also contain the same attractors
with similar strengths. The difference, however, for the mentioned experiments, is the
number of times that the global optimum has been found. To summarize these three
experiments should be easy to solve, and the results show that they are easy to solve for
one of the attempts. This indicates that LT-GOMEA failed in one of the attempts to
learn the correct building blocks. Experiment 1 shows a high number of successes on the
first try and experiments 0 and 8 show more successes on the second try.
It is noteworthy that the number of vertices varies significantly between all the different
problems of this configuration. But the number of vertices for the same problems is
similar for both attempts. This indicates that repeating the same problems results in
approximately the same number of vertices. There is no relationship found between the
number of successes and the number of vertices within problems generated by the same
input parameters. For example, on the second try, experiment 3 has 326 successes and 181
vertices and experiment 8 has 456 successes and 905 vertices. They both are successful
but vary a lot in the number of vertices. The cases that were not successful for both
attempts (experiments 2, 4, 6 and 9), also vary in vertex count. These non-successful
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cases have in common that the global optimum if it has been found is not part of the
main funnel, this is different from experiments 0, 2 and 8.

(a) (b)

Figure 8.3: Different LONs for experiment 0 and Configuration 19 8 4, within the
Deceptive-trap non-neutral codomain

Figure 8.4: The experiments are done twice for the same instances of configuration 19 8 4.

For overlap higher than 3, there are experiments that have an exceptionally high
number of vertices, and those experiments are not successful. For configuration 19 8 4
this is experiment 9 and for configuration 25 8 5 these are experiments 1, 3 and 5 and for
configuration 37 8 6 this is experiment 7.
Not all unsuccessful experiments have this exceptionally high number of vertices. For
instance, experiment 2 of configuration 25 8 5, where the LON is shown in figure 8.5.
The blue funnel contains the global optimum. There is a small region containing the blue
funnel which is fully disconnected from the rest of the LON. Most of the vertices are part
of the brown funnel. It is hard to observe in the representation of figure 8.5, but all the
other small funnels, are also fully disconnected from the brown funnel. The LON shows
that it is hard to escape from the large region of attraction located in the brown funnel.
And it is necessary to escape this region to find the global optimum, and therefore this
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LON clearly shows the trouble that the search is having for finding the global optimum.
This phenomenon where the global optimum is not connected to the biggest region of
attraction can be observed in lots of failure cases. So the two cases that often resolve in
failure are: one where the number of vertices is exceptionally high and the other where
the global optimum is badly connected. For experiments 1,3 and 5 of configuration 25 8 5
the number of vertices seems to be exceptionally high and for experiments 0 and 2, the
global optimum is not connected to the big regions of attraction.

Figure 8.5: Experiment 2 of configuration 25 8 5. The blue funnel contains the global
optimum.

For almost all experiments of configuration 37 8 6, except for experiment 7, the global
optimum is the biggest attractor (second biggest for experiment 8) and the funnel of the
global optimum is also the biggest funnel. This also reflects the high number of successes
which are achieved by LT-GOMEA for this configuration. Experiment 9 also shows a
second funnel which contains large attractors, this is also reflected by the fewer amount
of successes.
As can be observed in figure 8.6, the average number of successes shows the same trend
as the average number of vertices. The successes also follow the same trend as for the
implementation of LT-GOMEA from the previous experiment within the deceptive-trap
non-neutral codomain. The correlation between successes and vertices cannot be rec-
ognized within the instances of the same configuration, because an exceptionally high
number of vertices is often associated with a low number of successes. There are both
plenty of successful cases where the vertices are on the higher and lower end within that
configuration.
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(a) Average number of successes for all con-
figurations

(b) Average number of vertices for all con-
figurations

Figure 8.6: Average number of successes and vertices for the configurations in the
deceptive-trap non-neutral codomain for LT-GOMEA where the building blocks are
learned from a hill-climbed population.

Figure 8.7: Number of sinks, successes and vertices for each experiment for each configu-
ration of the deceptive-trap non-neutral codomain.

Experiments are also done for the random codomain and the same configurations are
used. The building blocks are once again learned from hill-climbed solutions and algorithm
4 is used for creating the LON. The results are shown in the tables of figure 8.8. Only
configuration 10 8 0 shows a high number of successes. Configuration 13 8 2 shows some
successes but configurations with higher overlap hardly show successes. The number of
vertices decreases for an increase in the overlap. The LONs are not shown because of
the high number of vertices, and it is hard to say something convenient about the LONs
when the search fails that often. For an overlap of 0, it is obvious to see that the search
did not struggle to find the global optimum and the global optimum has been found in
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most of the runs, and only one sink exists.

Figure 8.8: Number of sinks, successes and vertices for each experiment for each configu-
ration for the random codomain.

Figure 8.9: Average percentage of optimal subfunction substring occurrences over 10
instances per input parameter configuration.

8.3 Discussion

In this experiment, an implementation of LT-GOMEA is used, where the building blocks
are learned once over a population of hill-climbed solutions. The CliqueTreeMK param-
eters of the previous experiment are used. The population size has to be substantially
larger, than for the previous LT-GOMEA implementation, to get successful runs. This
makes sense because in the previous LT-GOMEA implementation, the building blocks
are learned for each generation. In this experiment, the building blocks are learned once
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so the population has to contain enough information to learn the right building blocks
instantly and the population has to contain solutions that have optimal values for the
blocks. The LONs for this implementation are considerably more complete than the
LONs of the previous implementation because all the solutions that are considered and
make an improvement are represented in the LON.

8.3.1 Increasing overlap for the deceptive-trap non-neutral codomain

For the deceptive-trap non-neutral codomain, the trend of average successes is similar
for both LT-GOMEA implementations (figure 7.2 and 8.6a). Expectantly the complete
LONs of this implementation can give more insight into regular LT-GOMEA, since the
trend is similar. The experiments of configuration 19 8 4 are performed twice, to see if
they produce different LONs and successes for the same instances. Figure 8.6 shows that
the number of vertices and successes show a connection, whereas a higher number of ver-
tices shows more successes. This is not the case for instances of the same configuration.
The expectation is that there are more Local Optima when the overlap increases, because
the number of subfunctions increases. For the deceptive-trap codomain with 0 overlap,
there are only 2 subfunction configurations that occur in the population, because the
hill-climber, either climbs to the deceptive attractor or to the optimal subfunction con-
figuration. When the overlap increases, there are more local optima that the local search
can end up, so there will be a more diverse population. Still, the number of vertices in
figure 8.6b shows that there are fewer solutions considered for an overlap of 2 than for
an overlap of 0. LT-GOMEA finds it more difficult to learn the building blocks from a
diverse population because diversity causes more subfunction substrings to be present and
this makes the blocks less distinguishable. The expectation is that if there is less over-
lap, then the global optimum will have more subfunction substrings which are optimal,
meaning the global optimum contains more subfunction substrings that have the highest
fitness. However, when there is more overlap, it becomes less likely that the optimal
substrings will be present in the global optimum. This is because when a bit overlaps
for multiple subfunctions, there is an increased probability that the optimal subfunction
configurations will disagree for that bit, which can cause at least one of the subfunctions
to settle for a suboptimal substring. Note that suboptimal substrings can be present in
the global optimum, because the global optimum does not necessarily only exist out of
the subfunction substrings with highest fitness.

Optimal Subfunction Substring Occurences

The expectation about the optimal subfunction substring occurrences is confirmed by
analyzing how often the optimal substring occurs in the global optimum for each Clique-
TreeMk configuration. For an overlap of 0 each subfunction has the optimal subfunction
substring, because if there is no overlap, there is no interference of overlapping sub-
functions, and each subfunction will therefore have the optimal substring in the global
optimum. In this case of 0 overlap, this is for 10 subfunctions. For an overlap higher than
2, the optimal subfunction substrings within the global optimum occur an average of 5
times (out of 10 instances per CliqueTreeMk configuration) in the global optimum. But
note that with higher overlap there are far more subfunctions in total, so if the number
of optimal substrings stays at 5, then the percentage of optimal substrings within all the
subfunctions decreases vastly for higher overlap. This can be observed in figure 8.9. The
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increase in local optima with higher overlap also makes the optimal substrings more ac-
cessible and therefore less deceptive. Also, the variance in difficulty for cases of the same
CliqueTreeMk configuration (same overlap) show a relationship. When the number of
optimal substrings within the global optimum is exceptionally high, the problem becomes
more difficult and if it is exceptionally low the problem is easier. Some instances for the
configuration of 37 8 6 contain 1 optimal substring within the global optimum but it also
happens that the global optimum contains 8 optimal substrings. For the instances where
the number of optimal subfunction substring occurrences is closer to the average, no rela-
tionship in difficulty is found. It is believed that this is caused by not only the number of
optimal substrings, but also how the overlapping subfunctions aid the search process for
finding the optimal substrings. If the correct overlapping subfunction substrings, meaning
the subfunction substrings within the global optimum are relatively easy to find for the
search algorithm, this will make it so, that the optimal substring is also easier to find.
The expectancy is that this is especially the case when the overlapping subfunction sub-
strings are the deceptive attractor substrings. Also, when problems are hard for higher
overlap, and there are almost no optimal subfunction occurences, then it is believed that
the deceptiveness is not produced by solely the deceptive attractor substring, but more
by the increase in overlap and local optima that randomly generate more deceptiveness.
Because the deceptive attractor substring cannot be deceptive anymore if there are almost
no optimal substrings present in the global optimum. So when there are difficult instances
with higher overlap, this is probably not only caused by the intended deceptiveness of the
deceptive-trap codomain.

Explanation of LT-GOMEA performance on neutral codomain

Lt-GOMEA is still able to perform similarly to the first experiment while now the build-
ing blocks are only learned from hill-climbed solutions. The increase in local optima for
higher overlap is not so much, that an evolving population is needed to learn the right
building blocks. The increase in local optima can also be a benefit for LT-GOMEA, by
smaller changes that are needed to move between them. The decrease in optimal subfunc-
tion substrings in the global optima decreases the deceptiveness of the problem. When
there is less overlap, the population is less diverse and this is advantageous for learning
the building blocks. On the other hand, when there is more overlap, the problem becomes
less deceptive and moving between LOs becomes easier. The hypothesis is that the dip in
performance for an overlap of 2 is a result of the two aforementioned effects, where lower
overlap makes it easier to recognize the building blocks and higher overlap reduces the
deceptiveness of the problem. For an overlap of 2, the building blocks are harder to learn
than for an overlap of 0, and the problem is still quite deceptive, which probably causes
the difficulty for LT-GOMEA.
When the overlap is increasing, linkage learning seems to play a diminishing role because
of the more diverse population, however, it is thought that not only linkage learning is
important for finding the right subfunction substrings belonging to the global optimum,
but also plays an important role in preserving the subfunction substrings that are found.
This is why for the random codomain and higher overlap, where it is harder to learn
the building blocks because of a diverse population, linkage learning still proves to be
necessary.
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Difficult Problems

There are two different cases that can be distinguished for difficult problems, and the
LONs are a useful tool for recognizing these cases. As shown in figure 8.3, there are
instances where LT-GOMEA does not perform well, but the LON reveals that the global
optimum is connected to many large attractors, and that the attractors and global opti-
mum are part of the biggest funnel within the LON. In these cases, LT-GOMEA may have
failed to learn the right building blocks, but by initializing the population and learning
the building blocks again, it may be possible for LT-GOMEA to learn the correct building
blocks and improve its performance. These instances may appear to be difficult at first,
but the LT-GOMEA together with the population may simply have failed to extract the
right information. This is why rerunning LT-GOMEA can be necessary for these cases
and can ultimately result in a wide range of successes. Another case exists where LT-
GOMEA consistently performs poorly (for instance the problem of figure 8.5), and it is
believed that some cases are simply harder due to the high level of deceptiveness and the
presence of more optimal subfunction substrings in the global optimum.

8.3.2 Increasing overlap for the random codomain and compar-
ison with deceptive-trap codomain

The data from table 8.8 indicates that the performance of LT-GOMEA drops signifi-
cantly when the overlap increases for the random codomain. This is likely due to the
fact that there are so many local optima for an increase in overlap, that the initial pop-
ulation is simply too diverse to effectively learn the building blocks used for identifying
the subfunction orderings present in the global optimum. This can explain the sharp
drop in performance as the overlap increases. It also indicates that it is necessary for
LT-GOMEA in the random codomain, to improve the population and update the learn-
ing blocks. Linkage learning cannot be utilized well enough when the population is too
diverse and improving a population is therefore necessary to reduce diversity for prob-
lems in the random codomain. This can be the reason why in the previous experiment
LT-GOMEA performed much better for higher overlap in the random codomain. For the
deceptive codomain, LT-GOMEA can perform well with a population of local optima.
This is in line with expectations because the decptive-trap codomain is so defined that
there are fewer local optima within the substrings of the subfunctions, namely the optimal
substring and the deceptive attractor substring. For the random codomain these can be
many more and this explains the sharper increase in local optima for higher overlap for
the random codomain. This can also explain the difference in vertices found for the two
codomains, with the random codomain having a relatively larger number of vertices.

8.3.3 Usefulness of LONs

In addition to the benefits of LONs mentioned in section 7.3.3, the LONs generated by
this implementation provide additional information. They include all of the solutions
that made an improvement. Also, the edges are a direct result of altering a particular
solution. This results in a more complete and detailed LON that can be used to better
understand the struggles of LT-GOMEA or the difficulties of the generated problem. The
funnels that contain the global optimum, large attractors, or large basins are particularly
effective for analyzing difficulties because they provide the most comprehensive overview
of the search in 20 runs. For example, figure 8.5 shows a case where the funnels in the
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LON can be useful for identifying challenges faced by the algorithm. The blue funnel
contains the global optimum, which is poorly connected to almost every other node in the
LON. In contrast, the large attractor nodes in the brown funnel are well connected and
may disrupt the search for the global optimum. By analyzing these attractors, it can gain
insights into what makes them so attractive, such as the number of deceptive subfunction
substrings they contain and the differences between their subfunction substrings and those
of the global optimum. Additionally, the number of vertices in the LON can be used to
estimate the efficiency of the search algorithm in exploring the search space.
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Chapter 9

Experiment: Increasing overlap for
ILS

It is interesting to see whether ILS and LT-GOMEA experience the same difficulties when
the overlap changes for instances within the used codomains. This can provide insights
into whether the challenges are caused by the Mk Landscape or by limitations of the
search algorithm. Iterated Local Search (ILS) does not employ linkage learning, so if
LT-GOMEA is able to solve the problem easily while ILS struggles, this may suggest
the importance of linkage learning or highlight other weaknesses of ILS in comparison to
LT-GOMEA. When both LT-GOMEA and ILS face challenges with the same overlap, it
is possible that the cause is the same for both algorithms. This shared cause may make
it easier to identify the reason for these difficulties.

9.1 Setup

The experiments are conducted on smaller instances compared to those used for LT-
GOMEA because ILS performs significantly worse than LT-GOMEA. The CliqueTreeMk
configurations are chosen in a way that allows ILS to perform reasonably well, but notice-
able differences in performance can be observed for different levels of overlap. Similar to
the other experiments, 10 different instances are generated for each CliqueTreeMk con-
figuration. For all configurations a branching of 1 is used. The following table shows the
used configurations.

N M k o

30 5 6 0
31 6 6 1
30 7 6 2
30 9 6 3
30 13 6 4

30 25 6 5

The search algorithm and LON creation methods used in the experiments are described in
Chapter 4. The experiments are conducted on the random and deceptive-trap non-neutral
codomains. The mutation size is chosen such that for the deceptive-trap codomain, with
0 overlap, it is possible for a subfunction that has converged to the deceptive attractor to
converge to the optimal substring if the correct bits are mutated. If this is not the case,
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the mutations will not change the solution because each solution is hill-climbed and no
mutation will ever lead to a different subfunction substring if it has already converged to
the attractor substring (for 0 overlap). This is only possible if the bits are mutated in a
way that results in a substring with one bit difference relative to the optimal substring.
The subfunction size is 6, and the hamming distance between the attractor and optimal
substring is 6. In order to reach a substring that has a hamming distance of 1 from the
optimal substring, a mutation size of at least 5 must be used. The chosen mutation size is
5 because if the mutation size is too large, there is a higher probability that the mutations
will also affect optimal subfunctions. When the difference between the global optimum
and the current solution is small, it may be difficult to make the necessary small changes
when the mutation size is too large.
For each instance, ILS is repeated for 1000 runs. A run is terminated if there is no
improvement after 100 mutation attempts (after mutation solutions are optimized with
BILS). The final solution of a run, the solution that did not improve after 100 mutations
becomes an attractor.

9.2 Results

The tables and graphs in Figure 9.1 and 9.2 show that the different codomains have a dif-
ferent relationship between overlap, average success rate and average number of vertices.
In the deceptive-trap non-neutral codomain, an increase in overlap is accompanied by an
increase in both successes and vertices. The configuration with 0 overlap (5 6 0) does not
result in any successes for any instances. And the configuration with the highest success
rate (25 6 5) shows no instances with low success rates (under 100). All other config-
urations, however, include instances with low success rates. For the random codomain,
the average success rate is similar across all configurations, but the distribution of suc-
cess rates among instances within each configuration varies. Configurations with higher
overlap tend to have more stable success rates, while those with lower overlap exhibit
greater fluctuations, for example, in configuration (5 6 0), there is an instance with 997
successes and another with 0 successes. The average number of vertices decreases as
overlap increases.

Figure 9.1: Number of sinks, successes and vertices for each experiment for each config-
uration for the deceptive-trap non-neutral codomain. The configurations are given with
three parameters: (M=number of subfunctions,k= subfunction length, o = overlap)
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Figure 9.2: Number of sinks, successes and vertices for each experiment for each config-
uration for the random codomain. The configurations are given with three parameters:
(M=number of subfunctions,k= subfunction length, o = overlap)

9.3 Discussion

9.3.1 Deceptive-trap non-neutral codomain

For configuration (5 6 0), it is unlikely that there will be any successes. This is because
every subfunction in the global optimum has the optimal substring. In order to change
one subfunction, all swaps of a mutation must occur exactly in one subfunction. For
a subfunction to start with the correct substring, the subfunction must before BILS
differ from the optimum subfunction substring by at most 1 bit. There are a total of
2k = 26 = 64 subfunction substrings, and the subfunctions that differ from the optimum
by at most 1 bit are: 1 + 6 = 7 (optimum + substrings with hamming distance of 1)
substrings. Therefore, the probability that one particular subfunction in the solution
starts with the optimal subfunction substring is p = 7

64
. To start with an initial solution

where all subfunctions have the optimal substring after local search, the probability would

be 7
64

M ≈ 1
64000

when M = 5.
The probability of swapping the correct bits for a subfunction that is converged to the
deceptive attractor substring is p = 6

30
∗ 5

29
∗ 4

28
∗ 3

27
∗ 2

26
= 1

25000
. These low probabilities

make it so that ILS never succeeded to find the global optimum. Initially, it was believed
that an increase of LOs by increasing the overlap, would make it more difficult for ILS to
find the global optimal because there would be more LOs to consider and a higher chance
of getting far from the global optimum. However, it has also there are also more local
optima with higher overlap and therefore more local optima between the initial solution
and the global optimum. This means that smaller adjustments are needed to improve a
solution, which makes it less likely that ILS will get stuck. Despite having a small number
of local optima for an overlap of 0, the problem is still difficult for ILS to solve in the
configuration (5 6 0) because there are only two possible subfunction substrings when a
solution is optimized by local search, and the number of different bits between the local
optima is large. This shows that fewer local optima do not necessarily mean that the
problem is easier to solve, and linkage learning proves to be neccesary. Additionally, the
results from the last experiment showed that with an increase in overlap, there are fewer
subfunctions with deceptive substrings in the global optimum, which suggests that the
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problem becomes easier to solve especially for BILS.
In summary, the increase in local optima for this codomain for these configurations

appears to be advantageous because smaller steps are needed to explore the search space.
The increase in local optima is also reflected by the increase in vertices for higher overlap.
Additionally, the subfunctions become less deceptive, making it easier for ILS to navigate
through the search space in the direction of the global optimum.

9.3.2 Random Codomain

It is surprising that the success rates for the random codomain are similar for each Clique-
TreeMk configuration. However, it can be observed that for lower overlap, there is more
variation in the success rate. This is likely because, as with the deceptive-trap codomain,
ILS struggles with low overlap if the random codomain creates deceptive substrings, and
this could make it almost impossible for ILS to find the global optimum for lower overlap.
The deceptiveness of higher overlap seems to decrease because local optima are closer to-
gether, making the substrings within the global optimum better reachable. This decrease
in deceptiveness can be seen in the LONs, as there are fewer instances of large attractors
(with higher strength than the global optimum) present for higher overlap in the random
codomain. It is worth noting that deceptive substrings can be formed randomly in the
random codomain.
It was initially thought that the LOs would increase significantly with higher overlap,
making it harder to find the global optimum in the random codomain. However, the
number of vertices actually decreases with higher overlap, which is surprising. This may
be because more improvements are made through BILS which reduces the number of times
that mutations are made, and not all of these improvements are visible as new vertices.
Only fully optimized solutions (when BILS find an LO after mutation) are represented
as new nodes if they are an improvement on the previous node. Therefore, it is believed
that most improvements are made during BILS when overlap increases, as local optima
are closer together and local search can do more work.
It is known that ILS performs poorly on larger problems, so the trend of success for an
increase in overlap for these configurations does not necessarily apply to all problems
made by CliqueTreeMk.
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Chapter 10

Summary

To understand how the conclusions of this thesis were reached, it is helpful to examine the
chronological order in which important discoveries were made. The first experiment (see
Chapter 7) provided good insights, and it became clear that higher overlap did not neces-
sarily lead to increased search difficulty for LT-GOMEA. In fact, after initial decreases in
performance, all codomains showed an increase in success at an overlap of 2 for deceptive
codomains and an overlap of 3 for the random codomain. This raised the question of what
caused this dip and subsequent increase in performance. The first drawn conclusion was
that for all codomains, an increase in overlap increased the number of local optima and
decreased the hamming distance between local optima, which eased the search process.
This may be an important factor, but it also raises the question of why the problems
generated with the same input parameters showed different levels of success, and why the
LONs could vary significantly in terms of the number of large attractors, large funnels,
and access to the global optimum and for the neutral deceptive-trap codomain variation
in plateau sizes. Is the performance of LT-GOMEA just inconsistent or is there a clear
difference between the problem difficulty? It was also concluded that LT-GOMEA per-
formed better for higher overlap on the deceptive-trap codomain than on the random
codomain because the deceptive substrings decrease diversity within the population, al-
lowing the building blocks to be more easily identified. This increases the probability
of selecting the building blocks out of solutions that have subfunction substrings as in
the global optimum. Not only does the deceptiveness reduce diversity, but the way sub-
function fitnesses are constructed also results in fewer local optima for each subfunction
substring in the deceptive codomains compared to the random codomain, which can have
many more local optima. This can lead to increased diversity within the population and
can make linkage learning even harder.
Because the LONs for population-based LT-GOMEA have some limitations, it was also
interesting to examine the LONs for the non-population-based LT-GOMEA. The LONs
show more consistent behaviour when a problem is solved repeatedly for two LONs,
making them more reliable for drawing conclusions. For the deceptive-trap non-neutral
codomain, the performance was very similar to experiment one, which led to the sug-
gestion that it could be for the same reasons. Sometimes, LT-GOMEA was unsuccessful
when only learning building blocks from an initial population of optimized solutions, while
the LON indicated that the problem did not appear to be particularly difficult. In these
cases, the LON often showed a global optimum with good connectivity to large attractors
and the global optimum was positioned in a large funnel. Repeating the initialization of
the population and re-learning the building blocks often resulted in better performance.
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But outside these cases, there also were cases that just seemed difficult compared to
problems generated with the same input parameters. This partly solved the question of
experiment one, it is not necessarily the performance of LT-GOMEA that causes these
difficulty differences, but rather that some problems with the same input parameters are
just harder. This finding led to the following thought: ”Deceptive problems are consid-
ered difficult because the deceptive attractor subfunction substrings mislead the search
and prevent the discovery of the optimal subfunction substrings. But what if the opti-
mal subfunction substrings are not present, then the problem becomes less deceptive.”
Therefore, for all input parameter configurations, the percentage of subfunctions in the
global optimum with the optimal subfunction substrings was calculated. As overlap in-
creased, the average percentage per input parameter decreased, explaining the decrease
in deceptiveness. However, there was also a high variation in the percentages of problems
generated by the same input parameters (except for an overlap of 0), which may help to
explain the differences in difficulty for instances generated with the same overlap. This
notion of fewer optimal substrings in the global optimum also led to the believe that
there are more substrings present that are not either the deceptive or optimal substring.
For the deceptive neutral codomain this is thought to cause the increase in global op-
tima and size of plateaus, because there are many substrings that are not the deceptive
or optimal substring, and have equal fitness. If these are present in the global optimum,
this can cause many different substring configurations to produce the same optimal fitness.
Non-population-based LT-GOMEA where the building blocks are learned from hill-climbed
solutions performed poorly on the random codomain, for all overlaps more than 0. The
large number of local optima on the random codomain makes the initial population too
diverse to learn the correct building blocks from. The population needs time to evolve for
becoming less diverse, which aids in recognizing the blocks and preserving them. This ex-
plains the differences between the random and deceptive codomain in experiment 2. The
number of local optima is far larger for the random codomain. Although it is believed
that deceptiveness plays a smaller role for the random codomain, this does not mean that
deceptive subfunction substrings are non-existing.
The dip in performance (seen in experiment 1) for both codomains must now be ex-
plained. ILS also showed improvement on the deceptive-trap codomain with increasing
overlap. For lower overlap, the problem is too deceptive for ILS to solve. For LT-GOMEA,
this is not an issue because it uses linkage learning to determine which building blocks are
important. The low diversity within the population at lower overlap allows linkage learn-
ing to easily identify the blocks and select the few correct subfunction orderings present
in the population. However, as overlap increases, linkage learning becomes more difficult
due to the increase in diversity. At the same time, the deceptiveness decreases due to the
decreased number of optimal subfunction substrings at higher overlap, and the increased
number of subfunctions causes local optima to be closer together. These counteracting
forces are believed to contribute to the dip in performance seen in experiments 1 and
2 for the deceptive-trap codomain. There is a clear difference in performance between
experiment 1 and 2 on the random codomain. In experiment 1, performance improved
after the initial dip, but this did not occur in experiment 2. The increase in local optima
with increasing overlap probably leads to a population that is too diverse when it consists
only of hill-climbed solutions, therefore it is necessary to have an evolving population.
The dip in performance seen in experiment 1 for the random codomain is quite different
as for the deceptive codomain, the dip is at an overlap of 3 instead of an overlap of 2, and
the performance does not increase as much as for the deceptive codomain, and the dip in
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performance is less for the random codomain.
As seen in experiment 2, the number of local optima is much larger for the random
codomain, which may explain the limited increase in performance. Nonetheless, an in-
crease in local optima can still be advantageous because it makes it easier to move between
the local optima. Similar to the deceptive codomain, it is thought that linkage learning is
important for lower overlap but not as crucial because the local optima are closer together.
This is believed to influence the dip occurring at a higher overlap than for the deceptive
codomain.

10.1 Conclusions

Most of the conclusions are mentioned in the summary, but in this section they will be
addressed according to the research questions.

10.1.1 Increasing overlap

We want to find out how the overlap influences the problem difficulty for LT-GOMEA for
the problems generated by CliqueTreeMk. This is highly dependent on the used codomain.
We decided to use the random and deceptive-trap codomain. These two codomains will
be compared. We used an additional implementation of LT-GOMEA where the building
blocks are only learned from a hill-climbed population. The insights gained from using
this implementation helped us to answer the following research question:
How does the amount of overlap in TD MK Landscapes affect the performance of LT-
GOMEA within the random and deceptive-trap codomain?
This research question will also be answered:
How does LT-GOMEA perform when the building blocks are learned from a population of
hill-climbed solutions?

For the deceptive codomain, both implementations of LT-GOMEA perform well at an
overlap of 0, but there is a dip in performance at an overlap of 2. As overlap increases
beyond 2, performance improves again. It is believed that for lower overlap, linkage learn-
ing is the primary factor in problem-solving. As overlap increases, local optima are closer
together and it becomes easier for the search to move between them. However, linkage
learning becomes more difficult due to increased diversity within the population. The ra-
tio of optimal subfunction substrings to the total number of subfunctions decreases with
increasing overlap, reducing the deceptiveness of the problems. The dip in performance is
thought to be caused by the counteracting effects, namely, a decreasing utilization of link-
age learning for an increase in overlap, making the problem more difficult, and decreasing
deceptiveness and closer local optima for an increase in overlap, making the problem eas-
ier. These counteracting forces are believed to explain the dip in performance.
For the random codomain, the standard implementation of LT-GOMEA also shows a dip
in performance. This dip occurs at an overlap of 3 and is not as severe as for the decep-
tive codomain. Additionally, the performance does not improve as much after the dip.
When LT-GOMEA is learned on hill-climbed solutions, only an overlap of 0 performs
well. This is likely due to the high diversity of the initial population, which makes it
difficult to learn the right building blocks. The population needs to evolve in order to
learn and preserve the necessary blocks. The bad performance for higher overlap with a
non-evolving population, also suggests that the number of local optima for the random
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codomain is larger than that of the deceptive codomain. This may be contributing to the
limited improvement in performance after the dip, as the search space is large and may
be a limiting factor in the search. However, the increase in overlap also results in closer
optima, which can improve performance to some extent. There seems to be a balance
between these two factors. For standard LT-GOMEA, linkage learning with lower overlap
is less important for the random codomain, as for the deceptive codomain, this is believed
to cause the dip to be at a higher overlap for the random codomain.

10.1.2 Usefulness of LONs

To better understand the challenges faced by LT-GOMEA when solving problems gener-
ated by CliqueTreeMk, LONs are used to provide insights into the search process. The
method for creating LONs for population-based search algorithms differs from LONs for
simple search algorithms, as it is not just one improving solution, but the entire pop-
ulation that contributes to finding the global optimum. The creation of LONs for the
LT-GOMEA implementation used in the second experiment was inspired by the work
of Ochoa et al. [13]. However, creating LONs for standard LT-GOMEA required some
changes. In the following research question, we will discuss the usefulness of the LONs,
particularly those from experiment 2: Can LONs effectively capture the difficulties en-
countered by LT-GOMEA?
The LONs were useful for understanding why the search may have gotten stuck. By ana-
lyzing large regions of attraction or attractor nodes, it was possible to determine whether
they were helping or hindering the search process. When the regions of attraction were
located within the same funnel as the global optimum, it often facilitated the search pro-
cess, when they are in a different funnel, the problem becomes more difficult. The LONs
were particularly useful in identifying differences in difficulty among instances generated
with the same input parameters. Some LONs had significantly more nodes or large attrac-
tors compared to the other instances. This helped to support the theory that problems
generated with the same input parameters can differ significantly from deceptiveness and
that problems within the deceptive codomain become less deceptive with an increase in
overlap.
To generate the LON, it is necessary to keep track of all solutions used during the search.
This allows for the collection of useful statistics, such as the number of considered solu-
tions, the frequency of which a solution is traversed, and the differences in blocks and
bits between attractors/solutions with the global optimum. These statistics can help to
provide a deeper understanding of the search process of LT-GOMEA.

The last research question mainly issued the LONs from the second experiment. How-
ever, the LONs from the first experiment were constructed a little differently, which leads
to some disadvantages in comparison. The answer to this question will mainly consist
of these disadvantages, as the advantages were already discussed in the previous ques-
tion. Can LONs, as used in this study, provide useful insights into the search processes
of population-based algorithms? The LON only includes nodes that are the best so-
lution(s) within a generation. Attractors that belong to these best solutions are often
the ones that cause LT-GOMEA to converge, and therefore have a significant impact
on whether LT-GOMEA can find the global optimum or not. If LT-GOMEA fails, this
can be seen in the LON. However, the LON is incomplete as it does not include every
solution that LT-GOMEA improves. These missing nodes can sometimes be essential for
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finding the global optimum, and they are not shown in the LON. They greatly impact
the search process and therefore the edges and funnels. Therefore, when looking at the
edges and funnels, it is important to keep in mind that they have a different meaning for
LT-GOMEA compared to ILS and the other LT-GOMEA implementation. The LONs
are still useful by understanding which attractors disrupt or enhance the search and in
what generation. They also show how frequently the global optimum has been found in
comparison to other nodes.

10.2 Future work

10.2.1 Improving CliqueTreeMk as Benchmark Function

When comparing ILS to LT-GOMEA, there are significant differences in performance,
especially when the overlap is low for the deceptive-trap codomain. Linkage learning
appears to be necessary for finding the global optimum in these cases. The CliqueTreeMk
problem generator is therefore a good benchmark for testing evolutionary algorithms
on the ability of linkage learning. Several interesting findings are made, including that
instances generated with the same input parameters can vary greatly in deceptiveness.
The number of optimal subfunction substrings in the global optimum can be an indicator
of which instances are more or less difficult for problems generated with the same input
parameters. It would be useful if the benchmark function could also provide information
on the occurrence of these optimal subfunction substrings in the global optimum. It would
also be interesting to investigate when and to what degree subfunction substrings from the
random codomain are deceptive. This could help to provide a measure of deceptiveness
for a problem within the random codomain and helps to indicate the difficulty of problems
with the same input parameters.

10.2.2 Broader Analysis

There are many input parameter configurations for which the performance of LT-GOMEA
can yet be analyzed. The subfunction size, which increases overlap (when the problem
length is kept equal), contributes to the ruggedness and difficulty of Nk landscapes. This
was tested briefly for TD Mk Landscapes. The difficulty increased, but it is not fully
understood why. Additionally, the effect of branching on performance was quickly tested
and no significant changes were observed, but this needs to be investigated more thor-
oughly. It would also be interesting to study the effect of different problem lengths and
see if the increase in overlap still matches our findings.

10.2.3 LON analysis

For the use of LONs it is always interesting to know which metrics are important for
estimating the difficulty of problems. And for the population-based LONs, it would
be interesting to see if there is a way to visualize funnels that can give more concrete
information as it does for ILS and the second implementation of LT-GOMEA.
This thesis focused on occurrences and strength of deceptive attractors in order to analyze
the difficulty of certain problems. However, further research is needed to fully understand
what makes these attractors so deceptive and thus the problem more difficult to solve.
One possible indicator of difficulty within the deceptive-trap codomain is the number of
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optimal subfunction substrings. However, there are still many problems with the same
input parameters and number of optimal substrings that vary greatly in difficulty, so this is
not the only indicator. Therefore, it would be useful to analyze the solutions of deceptive
attractors and compare them to the global optimum. This could reveal which blocks differ
and why it is difficult to move from a deceptive attractor to the global optimum. It may
be helpful to start with smaller problems, as they may be easier to analyze and identify
the reasons for their deceptiveness.
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