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Abstract

Most predictions for matter distribution in the universe only consider dark matter.

However, there have been several recent improvements in the quality of observa-

tional data. This means that we can no longer ignore the effects of luminous

matter, that is to say baryons, on models of large-scale structure. We investigate

a halo model of the universe which includes baryons, and see what their effects are

on the matter power spectrum. Including baryons adds many free parameters to

the model. We vary all the parameters to see which have the largest effect, and

look for ways to constrain them. We do a Fisher forecast to explore the uncertainty

on the most important of these. We show that adding priors from observational

data helps mitigate the impact of the baryonic parameters.
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1 Introduction

The distribution of all matter in the universe is usually modelled by what
are called ‘halo models’ [1]. These models describe the non-linear gravita-
tional clustering of matter, by assuming all matter to be contained within
hard, spherical ‘halos’. Most of these predictions only consider dark matter.
However, recent and upcoming improvements in the quality of observational
data, for example LSST (Legacy Survey of Space and Time) [2], mean that
we can no longer ignore the effects of baryons on these models. We will have
measurements to 1% uncertainty, and simulations have shown that baryonic
feedback can alter the matter distribution by a much larger percentage [3], so
it is important they be included. Luminous matter is known to redistribute
matter [4]. For example, supermassive black holes tend to heat and push gas
around overdensities of dark matter. This causes a change in the density map.

This project will aim to further develop efficient models which account for
baryonic impact on cosmological observables, based on previous develop-
ments [5, 6]. We start with a halo model [1] which has been modified to
include baryons, that is to say, stars and hot gas [6]. We use a Python
package called pyccl to reconstruct this model for our own purposes. It is
necessary to make some small changes to the model as presented in [6], so
that we can reproduce the results practically. This mostly consists of making
it compatible with the way we code the model.

A halo model relies on parametrisations of the ‘halo profile’ of each com-
ponent, which is the radial profile of its density within the halo. Here we
have three different profiles. Using these, the model is constructed by con-
sidering the correlation between two particles, (i) within the same halo, and
(ii) within different halos. It is further complicated by the fact that gas also
has a diffuse component which exists outside the halos altogether [6]. This
quantity must also be considered in constructing contributions to the model.
Consequently, there are a lot of free parameters, most of which are not ob-
servationally constrained. We find out which of these parameters are most
important for the model, and attempt to constrain them.

We investigate this by looking at their effect on the matter power spectrum.
This is a quantity which measures the clustering, or amount of structure, of
matter [7]. It is therefore useful to look at when considering matter distri-
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bution. It is noticeably different when baryons are included in the model
compared to when they are not [6]. The baryons have a small contribution,
not appreciably changing the shape of the matter power spectrum, but they
do make it overall larger, and this is significant. It turns out that some free
parameters affect the model more than others, so we want to constrain these
to make the model as accurate as it can be. The goal is to find ways to
constrain this model using observations of baryonic matter.

Once we have found the parameters with the largest effect on the matter
power spectrum, we look for observational data with which to constrain
them. This is crucial if we want to know specifically how the baryons affect
the model. Currently, in these kinds of models, the parameters are primarily
just fitted to match simulations of the universe’s large-scale structure [6].
Unfortunately, this means we do not know exactly how the models reflect
reality, only having the results of simulations to compare with what we can
observe. As dark matter is not observable except where it gravitationally
affects visible matter, we have to rely on measurements of baryonic observ-
ables. Therefore, we want to use observations of baryonic quantities to give
these parameters their own values, so they do not have to be left free anymore.

For the analysis of the parameter uncertainty, we will also need a quan-
tity called the angular power spectrum. This is a Fourier transform of the
angular correlations between points on the sky [7, 8]. It contains all the
information in one function and can be calculated in pyccl using the mat-
ter power spectrum. We then do a Fisher forecast on the model. This is a
way of investigating the uncertainties on the parameters. It involves differ-
entiating the angular power spectrum with respect to the parameters, and
encodes the uncertainty on and correlation between parameters. We explore
the uncertainties on two of the most significant parameters, and compare with
cosmological parameters which are better constrained. Using a visualisation
technique known as confidence ellipses, we show how pairs of parameters are
correlated. The Fisher formalism also allows us to add priors based on the
observations, so that we can lower those uncertainties. We find that adding
a prior on a parameter can reduce uncertainty, on that parameter but also
on the others. However, it can also make parameters less strongly correlated.

We first introduce the model in section 2. Then we discuss any changes
made to the pre-existing halo model in section 3. Following this, section 4
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investigates the effect of each free parameter of the baryonic halo model.
In section 5, we explore possibilities for constraining the model with obser-
vational data. Next, in section 6, we introduce the concept of an angular
power spectrum, as this will be needed for the uncertainty analysis. We then
perform a Fisher analysis on the most significant parameters in section 7.
Finally, section 8 discusses and summarises our findings.
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2 The model

2.1 Halo models

Halo models are a way of describing the non-linear gravitational clustering
of matter. Linear and perturbation theories cannot describe the clustering
of matter at scales smaller than a few megaparsecs (Mpc), so we must use
another method to investigate the highly non-linear range of gravitational
clustering. All matter is considered to be contained within hard, spherical,
virialised ‘halos’. A halo is a region which was sufficiently overdense that
it collapsed [1]. With an initially smooth universe, matter over time clus-
ters into structures including large filaments, sheets, and knots. These dense
knots are often referred to as dark matter (DM) halos. Most halo models
just concern themselves with DM.

In a DM halo model, there are two contributions to the model. The “1-
halo” term concerns the correlation between two particles within the same
halo, while the “2-halo” term concerns the correlation between two particles
in two separate halos. These are added together to obtain the full DM halo
model.

Halo models do have some limitations [1]. We assume they are all spher-
ically symmetric, with smooth parameterised profiles, but even at a fixed
mass there is variation in halo profile shape. Also, in simulations the halos
do not have smooth profiles and are rarely symmetric. We just have to recog-
nise that this assumption may be inaccurate and take all the predictions of
the model with this as a caveat. Halo models are still a very useful way
of describing the distribution of all matter in the universe. Until recently,
halo models have only considered DM, as it makes up the majority of the
matter in the universe. However, with current and near-future observational
capabilities, we can no longer ignore the baryonic contribution. Therefore
we want to include the contribution of baryonic components within the halo
model.

2.2 Baryonic halo model

We start with a (semi-analytic) baryonic halo model as presented by Fedeli
[6]. In this model, about 80% of all matter is DM, while the remaining 20%
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is a mixture of gas and stars. These baryonic components can have an effect
on the distribution of matter through several processes. For example, the gas
can exchange energy with a radiation background, leading to radiative cool-
ing. The stars, for their part, can inject energy and also metals into the gas,
which alters the entropy in the system and affects the radiative properties.
The energy feedback from Active Galactic Nuclei (AGNs) is also expected to
affect baryonic matter.

The matter power spectrum of each component can be related to its abun-
dance and distribution within the gravitational potential wells of DM halos.
It is useful to consider a model like this to study the effect of baryons on cos-
mological parameter estimation, because hydrodynamical simulations cannot
do this. We use the cosmological parameter values in [6].

As a measure for the average energy density of matter in the universe, we use
the density of an equivalent mass, m. This is calculated as if in a universe
with only DM,

ρ̄m =

∫ ∞

0

dmmn(m, z). (1)

We will consider the equivalent average energy density as being equal to the
sum of the average densities of all the components,

ρ̄m = ρ̄DM + ρ̄g(z) + ρ̄∗(z). (2)

The average density of each component is then defined according to their
respective mass fractions. These are defined with respect to the equivalent
mass as follows:

fi(m, z) =
mi(m, z)

m
, (3)

where mi(m, z) is the mass within a bound structure whose equivalent mass
is m. The specific mass fractions are parametrised as:

fDM(m, z) = 1− Ωb,0

Ωm,0

, (4)

f∗(m, z) = A exp

[
− log2(m/m0s)

2σs

]
, (5)

fg(m, z) =
Ωb,0

Ωm,0

erf

[
log(m/m0g)

σg

]
. (6)
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For DM and stars, using this to define the average density is straightforward,
as all of the DM and stellar mass is contained within halos,

ρ̄DM =

∫ ∞

0

dmmfDM(m, z)n(m, z), (7)

ρ̄∗(z) =

∫ ∞

0

dmmf∗(m, z)n(m, z). (8)

However, for the gas component, there is also a certain amount which is
diffused in the space between bound structures, so the average gas density
must be multiplied by the fraction of gaseous matter which does reside within
halos to be defined in the same way,

Fg(z)ρ̄g(z) =

∫ ∞

0

dmmfg(m, z)n(m, z). (9)

For the actual total gas energy density, we can define it by using the total
baryon fraction and subtracting the stellar part,

ρ̄g =
3H2

0

8πG
Ωb,0 − ρ̄∗(z). (10)

The density profiles of each component within a halo are then defined. We
use the standard Navarro-Frenk-White (NFW) profile for the DM component
[9],

ρDM(x|m) =
ρs

x(1 + x)2
, (11)

where x = r/rs. The two parameters ρs and rs can be related by requiring
that the mass fraction within one halo must match that in the universe over-
all, thus eliminating a free parameter.

The stellar profile is an exponential profile as noted in [6],

ρ∗(x|m) =
ρt
x
exp(−xα), (12)

where α is set to 1 for simplicity, and x = r
R∆

x∆. The two parameters ρt and
x∆ can be related in the same way as for the DM profile.

The gas density profile as defined in [6] did not actually work in our compu-
tations, so we substituted a different profile of the same type. This is shown
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in subsection 3.1.

The power spectrum of each component was calculated using the integrals
defined in [6]. These take the form of combinations of

I2p,ij =

∫ ∞

0

dmn(m)m2 yi(k|m) yj(k|m) (13)

and

Ibp,i =

∫ ∞

0

dmn(m) b(m)myi(k|m), (14)

where i and j refer to which component is being calculated, and y is the profile
divided by m. Each component (DM, stars, gas) has different contributions
to the matter power spectrum. The DM and stellar contributions are simply
the 1-halo and 2-halo terms added together for each component,

P
(1)
DM(k) =

1

ρ̄2DM

I2p,DMDM, P
(2)
DM(k) =

PL(k)

ρ̄2DM

[Ibp,DM]
2, (15)

P (1)
∗ (k) =

1

ρ̄2∗
I2p,∗∗, P (2)

∗ (k) =
PL(k)

ρ̄2∗
[Ibp,∗]

2, (16)

while the gas is more complicated. It has the 1- and 2-halo terms,

P
(1)
g,h (k) =

1

F 2
g ρ̄

2
g

I2p,gg, P
(2)
g,h (k) =

PL(k)

F 2
g ρ̄

2
g

[Ibp,g]
2, (17)

but also a term for the diffuse component and the cross-correlation between
the diffuse component and the halo,

Pg,d(k) = b2dPL(k), Pg,dh(k) = bd
PL(k)

F 2
g ρ̄

2
g

Ibp,g. (18)

The diffuse component is simply considered to have a linear power spectrum,
modified by a bias constant bd. The gas components are also not simply
added, but are combined linearly as follows:

Pg(k) = (1−Fg)
2Pg,d(k)+2Fg(1−Fg)Pg,dh(k)+F 2

g

[
P

(1)
g,h (k) + P

(2)
g,h (k)

]
. (19)
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There are also cross contributions from all three components. The DM-stars
cross-correlation just has a 1-halo and 2-halo contribution,

P
(1)
DM∗(k) =

1

ρ̄DMρ̄∗
I2p,DM∗ P

(2)
DM∗(k) =

PL(k)

ρ̄DMρ̄∗
Ibp,DMIbp,∗. (20)

The DM-gas one has those and also a diffuse-halo contribution,

P
(1)
DMg,h(k) =

1

ρ̄DMρ̄g
I2p,DMg P

(2)
DMg,h(k) =

PL(k)

ρ̄DMρ̄g
Ibp,DMIbp,g, (21)

P
(1)
DMg,dh(k) = bd

PL(k)

ρ̄DM

Ibp,DM, (22)

and is combined as follows:

PDMg(k) = (1− Fg)PDMg,dh(k) + Fg

[
P

(1)
DMg,h(k) + P

(2)
DMg,h(k)

]
. (23)

The stars-gas cross-correlation is similar,

P
(1)
∗g,h(k) =

1

ρ̄∗ρ̄g
I2p,∗g, P

(2)
∗g,h(k) =

PL(k)

ρ̄∗ρ̄g
Ibp,∗Ibp,g, P

(1)
∗g,sh(k) = bd

PL(k)

ρ̄∗
Ibp,∗,

(24)

P∗g(k) = (1− Fg)P∗g,sh(k) + Fg

[
P

(1)
∗g,h(k) + P

(2)
∗g,h(k)

]
. (25)

All the contributions are combined by adding them together, weighting each
component based on their average density, to get the total matter power
spectrum [6],

P (k) =
1

ρ̄2m
[ρ̄2DMPDM(k) + ρ̄2∗P∗(k) + ρ̄2gPg(k) + 2ρ̄DMρ̄∗PDM∗(k)+

2ρ̄DMρ̄gPDMg(k) + 2ρ̄∗ρ̄gP∗g(k)].

(26)

This gives us the total matter power spectrum which, when plotted relative
to the (DM-only) non-linear matter power spectrum (as coded by Code for
Anisotropies in the Microwave Background (CAMB)), shows that baryons
can have an impact (Figure 1). Soon we will have new observations which
will measure the matter distribution to within 1% uncertainty [2]. The effect
of the baryons is larger than this [3], as can be seen in Figure 1, so is necessary
to be included in models going forward.
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Figure 1: Total matter power spectrum relative to the non-linear matter
power spectrum, with components.

The model was coded in Python, using a package called pyccl (Python Core
Cosmology Library). This package has some built-in cosmology functions
and integrals, so it was very useful. See Appendix A for the notebook which
calculates the matter power spectra.
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3 Changes made to baryonic halo model

There were some parts of the model in [6] which we changed in the course of
this work. Not everything suited our purposes exactly, so we used different
formulations of things here and there.

3.1 Gas density profile

The most significant change made was using a different β-profile for the gas
than used in [6]. This is because with our code it did not work as a profile.
Instead, we used a β-profile from Schneider [5], which produces a very similar
result to the Fedeli profile, but could actually be implemented in our Python
code. It is also a more complex profile, with not only a β parameter and core
radius, but also an ejection radius:

ρg(r) =
ρg,0

(1 + u)β(1 + v2)(7−β)/2
, (27)

where u = r/rco and v = r/rej. We then do the mass fraction matching as
in [6], constraining the ρg,0 parameter.

3.2 Other changes

Some definitions such as the virial mass and the concentration-mass relation,
as well as the halo mass function and halo bias, were defined using inbuilt
functions in pyccl, rather than taking them from the sources used in [6].
The NFW profile for dark matter is also an inbuilt halo profile in pyccl, so
this was used instead of the explicit parametrisation in [6].

We also interpolated over each of the profiles to allow for better numeri-
cal integration. This involves selecting an amount of values of the function
and then creating a smooth function based on those points, so that the nu-
merical integration is easier. It made the code run faster, and smoothing out
the functions left less room for numerical instabilities.

Everything else in the calculation of the matter power spectra follows Fedeli
[6].
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4 Free parameters

The introduction of the baryons to the halo model adds many free parame-
ters. In this section, we explore the effects of varying each free parameter on
the matter power spectrum. The actual values chosen for upper and lower
bounds are purely illustrative, and are not intended to be specific percentages
of difference. The fiducial values are taken from [6] and [5], unless otherwise
stated.

The parameters have been grouped based on whether they affect the stel-
lar or gas component, though the average density parameters of both are
directly linked (Equation 2) and only effectively count as one free parameter.
The aim here is to discover which parameters change the total matter power
spectrum the most, so that we know which ones are the most important to
constrain.

4.1 Stellar parameters

Figure 2: m0s Figure 3: σs

m0s: The mass at which star formation peaks. Varying it affects the stel-
lar power spectrum, so it mostly only changes the total power spectrum at
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higher k (smaller scales). Above a k-value of ∼ 10, we do not expect to have
high-quality observational data, so this part of the spectrum is not our main
focus. Varied by: an order of magnitude either side.

σs: This parameter determines how wide or narrow the stellar mass fraction
is. It therefore controls the sharpness of the star formation peak. Varying
this has a negligible effect on the total matter power spectrum, and what
small effect it does have is restricted to high k. Varied by: ±0.4.

Figure 4: x∆s Figure 5: ρ̄∗ (ρ̄g)

x∆s: Depends (inversely) on the radius scale which lies between the inner and
outer parts of the exponential disk profile. Only has an effect at large k, so
this is not the most important parameter to constrain. If the transition be-
tween inner to outer happens over a larger distance, this parameter is smaller,
which means the power spectrum (at large k) is also smaller. Varied by: ±20.

ρ̄∗: The average stellar density across the universe. Changing this also affects
ρ̄g, as they are defined (with the constant ρ̄DM) as part of an unchanging to-
tal average matter density (see Equation 2). There is a significant effect on
the total matter power spectrum, so it will be important to constrain this
quantity. Most of the effect is at large k, but it has an effect across all scales,
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so is significant overall. This parameter was varied while keeping the total
baryon fraction Ωb and mass fraction Ωm constant. It would also be possible
to vary it by changing the cosmological parameters, but this would then have
to propagate through the whole model and have a much more complex effect.
Varied by: an order of magnitude either side.

4.2 Gas parameters

Figure 6: m0g Figure 7: σg

m0g: Mass at which gas fraction drops. If gas exists at lower masses, this
means the power spectrum gets larger, as there is more range of mass which
includes gas particles. Has a noticeable effect on the total power spectrum,
so it should be important to constrain this, especially because of the impact
at low and mid-range k. It should be possible to measure this quantity, all
that would be required would be the ranges of mass density which have a
gaseous component. Varied by: an order of magnitude either side.

σg: This parameter defines how sharp the drop is in the mass fraction at
lower masses. This also has an effect at the low and middle ranges of k. If
the drop is steeper, then the fraction is higher at the lower masses above the
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drop, and this makes the power spectrum smaller overall, since the larger
masses have a smaller contribution. Could possibly be measured through
observation of the gas profile. Varied by: ±1.

Figure 8: rco Figure 9: rej

rco: This is the radius of the gas profile’s core. It only affects the power spec-
trum for large k, which makes sense as it only relates to the smaller scales
of the profile. This means it is not particularly important to constrain, since
our measurements will not be that precise up to this small of scales. If the
gas profile is in reality a cored profile, then we can definitely measure the core
radius. Its dependence on the size of the halo, however, through its definition
with respect to R∆, may make it complicated to constrain. Varied by: ±0.09.

rej: Radius of gas ejection from the profile. There is no effect at linear
scales, but has the most effect in the mid-range, so it may be important to
constrain. However, the effect on the total matter power spectrum is small.
There is a constraint in [5] that sets prior assumptions of values between [2,
8]. Problems are caused with the computation of the profile if M = m0g

and/or if rej < 2, so not all values of this parameter are possible in our con-
struction of the model. Fiducial value: 4.5R∆. Varied by: +3.5R∆, -2.5R∆.
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Figure 10: β Figure 11: bd

Figure 12: Fg

β: Measures the slope of the decrease of the power-law gas profile. It depends
on halo mass, so is larger (steeper) for higher masses. This has a very slight
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effect on the mid-to-larger ranges of k in the power spectrum. It already has
a constraint of β ≤ 3 [5]. Varied by: +0.1,−0.4.

bd: This is a bias parameter which deals with the diffuse component of the
gas. The diffuse component just has a linear power spectrum, scaled by bd,
so this parameter only affects the power spectrum at linear scales, simply
scaling that part up or down. There seem to be constraints on bd which say
it is approximately equal to or less than 1 [6]. Varied by: ±0.1.

Fg: The fraction of gas which exists within halos. This means that it af-
fects how much of the gas contributes to the non-linear part of the matter
power spectrum. If it is larger, there is less gas in the diffuse component, so
the power spectrum is smaller at linear scales. It has an effect at small and
middle ranges of k. Varied by: an order of magnitude either side.
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5 Observational constraints

We now start to look for observational data with which to constrain the most
important free parameters.

5.1 Observational constraints on ρ̄∗(z)

The most useful constraint from observations which exists is for the average
stellar density. It is a parameter for which changing it has a large effect on the
matter power spectrum, so it is important that we have a way to constrain
it. This parameter is exhaustively measured at a range of redshifts, and a
large quantity of these measurements (data from 2008-2013) are compiled,
including error bars, in what is known as the Madau plot [10]. This is a plot
of log ρ̄∗ at different redshifts (see [10] for the figure).

We can use this data to set ρ̄∗ at any specific redshift and calculate the
matter power spectrum. Some of the source data within the plot is extracted
here.

Figure 13: Data from Bielby et al
[11]. Consists of four fields of view,
which were averaged over to include
this data in the Madau plot.

Figure 14: Data from Pozzetti et al
[12]. Each colour of data points is
from a different sampling method.

Figure 13 shows some of the data used to create the Madau plot. This
data is from four separate fields of view in the sky, and appears to have
some anomalous points which do not coincide. To avoid bias due to this
dependence on field of view, they were averaged before being included in the
compilation in [10]. Figure 14 illustrates another set of points which was
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included by Madau. These points are from different sampling methods, but
they appear to be self-consistent so an average would hopefully remove any
bias.

5.2 Simulation inspiration

In an effort to find more sources for observational constraints, we looked at
some simulation papers to find out where they got the data for their initial
conditions [13][14][15].

Schaye et al, in their paper on the EAGLE project [13], used the galaxy
stellar mass function (GSMF) to calibrate the efficiency of their feedback
model. The Planck 2013 data was used to constrain the cosmological param-
eters. They also compare the simulation results to the observed GSMF, the
stellar-to-halo mass relation, the sizes of galaxies, and the relation between
black hole (BH) mass and stellar mass. They used data from the Sloan Dig-
ital Sky Survey (SDSS) and the GAMA survey for these.

McCarthy et al, in their paper on the BAHAMAS project [14], also used
data from SDSS and GAMA to calibrate their simulations. They also used
X-ray measurements of hot gas to calibrate the hot gas mass fraction-halo
mass relation.

We also looked at a paper by Dubois et al [15], but they did not appear
to use any observational data to calibrate their simulation.

5.3 Schechter method for n(m)

The halo mass function is usually determined by simulations. Because we
wanted to make this model more observationally constrained, we looked at
luminosity measurements of galaxies. These can be used to calculate values
for the GSMF, the stellar counterpart to n(m), as luminosity is directly
related to mass by the equation [16]

ϕ(M) = ϕ(L) 0.4 ln 10L. (28)
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The GSMF (or n∗(m∗, z)) can be parameterised by a Schechter function [16,
17], with n (usually two or three) terms to capture the multiple phases,

ϕ(M) dM =
n∑

i=1

exp

(
− M

M∗
i

)[
ϕ∗
i

(
M

M∗
i

)αi
]
dM

M∗
i

. (29)

The free parameters M∗
i , ϕ

∗
i , and α∗

i have been set by fitting to various sky
surveys, for example the Galaxy And Mass Assembly (GAMA) survey [18,
19].

n∗(m∗, z) does not actually appear in our equations for the model, as ev-
erything is calculated in relation to n(m, z), but these are related, meaning
we can obtain one from the other:∫ ∞

0

dm∗ n∗(m∗, z) =

∫ ∞

0

dmn(m, z). (30)

Because of this, it can also be used to constrain the average stellar mass
density, if we follow

=⇒ n(m, z) = n∗(m∗, z)
dm∗

dm
, (31)

and substituting in Equation 8,

=⇒ ρ̄∗(z) =

∫ ∞

0

dm∗mf∗(m, z)n∗(m∗, z) =

∫ ∞

0

dm∗m∗ n∗(m∗, z). (32)

Then, combined with the fact that m∗ can be defined through a parametri-
sation of the stellar-to-halo mass relation [20],

m∗(m) =
(m/mh,1)

β1

1 + (m/mh,1)β1−β2
, (33)

where mh,1, β1, and β2 are free parameters fixed by observation, we can
define f∗(m, z) by dividing by m. This therefore specifies ρ̄∗(m, z) in another
way, relying only on observational data. We did not actually end up using
this version of f∗(m, z), because within our model it was not normalised in
a way that made it work right, but further work in this direction could be
interesting.
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6 Angular power spectrum

We will now need to introduce the angular power spectrum, or as it is also
known, the Cℓs. This can be formulated as the Fourier transform of the
angular correlation function [7], analogous to how the matter power spectrum
is the Fourier transform of the spatial density correlation function, and is a
function of the spherical harmonic index ℓ. It can be calculated from the
matter power spectrum, which is three-dimensional, as a kind of projection
to two angular dimensions [8],

C(ℓ) ∼
∫ χlim

0

dχ
g2(χ)

a2(χ)
P (k, χ), (34)

where we integrate over comoving distance χ. We do this using pyccl, where
there is a function which automatically calculates the angular power spec-
trum. Also necessary for this is a distribution of galaxies with redshift, so
that the projection onto the sky is correct. We use a redshift distribution
equal to that detectable by LSST [2].

Figure 15: Redshift distribution used, comparable to the LSST redshift dis-
tribution [2].

The parameter with seemingly the most possible effect on the matter power
spectrum is ρ̄∗, so that is the first one to be investigated. When passed onto
the angular power spectrum, variation in this parameter has a noticeable
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effect, as seen in Figure 16. Here ρ̄∗ has been varied an order of magnitude
either side of its fiducial value.

Figure 16: The change in Cℓs when ρ̄∗ is varied by an order of magnitude
either side.

We have calculated our matter power spectrum at a redshift of zero, as we
were following Fedeli in [6], so when we calculate the Cℓs we need to add a
dependence on redshift. Since this project is mostly a qualitative exploration,
we do this roughly in pyccl by just multiplying the matter power spectrum by
the background growth factor squared, which is a function of the scale factor,
in our cosmology. This is strictly speaking only applicable for the linear power
spectrum, but we extrapolate to give us an idea of what the angular power
spectrum should be like, making the assumption that the variation of the
free parameters with redshift is negligible within 0 ≤ z ≤ 3. The angular
power spectrum is necessary for the next section, which is concerned with
analysis of the uncertainty on parameters.
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7 Fisher forecasting

To get a quantitative idea of how much each free parameter can be con-
strained, we do a Fisher forecast for some of the most important ones. This
involves constructing a Fisher matrix, which begins with calculating the an-
gular power spectrum for this model. This is then differentiated numerically
with respect to each parameter to form the entries of the matrix [21, 22],

Fαβ =
∑
ℓ

1

[Cov]αβ

∂Ctheory(ℓ, {λ̄γ})
∂λ̄α

∂Ctheory(ℓ, {λ̄γ})
∂λ̄β

. (35)

Here [Cov]αβ is an entry in what is called the covariance matrix, a measure
of the error on the Cℓs. It is a diagonal matrix, with entries formulated as
follows:

[Cov]ii =
2

(2ℓ+ 1)fsky

(
Ci

ℓ +
σ2
e

ngal

)2

, (36)

where fsky is the fraction of sky being observed, σe is the intrinsic ellipticity
variance of source galaxies, ngal is the number of galaxies per steradian. The
σ2
e/ngal term corresponds to noise.

Each row and column of the Fisher matrix corresponds to a parameter, for
example:

Ωm σ8 ρ̄∗

F =

F11 F12 F13

F12 F22 F23

F13 F23 F33

 . (37)

The Fisher matrix reveals the possible uncertainty on each parameter through
its inverse. The uncertainty on a parameter x is

σx =
√

[F−1]xx, (38)

where the indices on F−1 refer to the diagonal entry corresponding to pa-
rameter x [22]. We look at the amount of uncertainty on each parameter,
and then add priors based on our constraints to improve this.

Parameters can be fixed or marginalised over simply by removing the pa-
rameter in question from the Fisher matrix or its inverse respectively [22]. In
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this way, all parameters excluded from the matrix are considered perfectly
known. Priors from constraints can be added by just adding a value to the
entry corresponding to the necessary parameter. By marginalising over all
but two parameters, we can make a visual representation (called a confidence
ellipse) of how those two parameters’ uncertainty is correlated.

7.1 Initial analysis

We start with an analysis involving three parameters, Ωm, σ8, and ρ̄∗. Using
numerical differentiation, with ∆Ωm and ∆σ8 as 0.01, and ∆ρ̄∗ as 7 × 106,
we get the following uncertainty values from our Fisher matrix:

• Ωm uncertainty = 2.68× 10−5

• σ8 uncertainty = 9.24× 10−3

• ρ̄∗ uncertainty = 1.80× 108.

The derivatives were calculated using the formula

f ′(x) =
f(x+ h)− f(x− h)

2h
, (39)

where h is ∆x, for each parameter x. As an example of this type of analysis,
Figure 17 shows the 1σ uncertainty in the two cosmological parameters purely
based on this model.

Figure 17: 68% uncertainty confidence ellipse for σ8 and Ωm.
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The narrow ellipse indicates that they are strongly correlated parameters.
Here, ρ̄∗ has been marginalised over, that is to say its corresponding row and
column have been removed from the inverse of the Fisher matrix [22].

7.2 Investigating differentiation methods

To check the results, we compare with a different numerical differentiation
formula,

f ′(x) =
−f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)

12h
, (40)

which is more precise. This method converged to the same quantity as the
previous one for all the parameters except for Ωm.

The numerical differentiation on Ωm was inconsistent, with different results
depending on the formula used (see Figure 18). Therefore, we tried decreas-
ing the value of h until the methods converged.

Figure 18: Comparing different nu-
merical differentiation methods for
a step size of h=0.01. Plot is of
∂Cℓ/∂Ωm(ℓ) as a function of ℓ.

Figure 19: The methods are still sep-
arate at a step size of h=0.001.
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Figure 20: At a step size of
h=0.0001, the methods almost con-
verge, but there is a lot of numerical
instability.

Figure 21: The methods finally con-
verge at a step size of h=0.00001.

The first attempt also uses two extra differentiation formulae: left and right
as opposed to central methods. These were henceforth discarded as they
were much less convergent than the two central methods. With a step size
of h = 0.00001, the derivatives converge, as can be seen in Figure 21.

We could then re-form our Fisher matrix with this more reliable derivative.
It can be seen that the uncertainties changed:

• Ωm uncertainty = 9.35× 10−3

• σ8 uncertainty = 0.0118

• ρ̄∗ uncertainty = 2.00× 108.

If we again marginalise over ρ̄∗, we can investigate the two cosmological
parameters. The ellipse now shows that they are in fact inversely correlated,
which matches with what is known [23].
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Figure 22: 68% uncertainty confidence ellipse for σ8 and Ωm.

7.3 Uncertainty on ρ̄∗

Parameters are selected as important based on how much varying them af-
fects first the matter power spectrum, and then the angular power spectrum.
Based on this, we first investigate ρ̄∗.

A transformation of variables was necessary, as the orders of magnitude
involved were very different. Therefore, ρ̄∗ is multiplied by a constant,
ξ = 1/(7 × 108), so as to make it more comparable. The transformation
of variables can be implemented by differentiating the old parameter set,
(Ωm, σ8, ρ̄∗), with respect to the new one, (Ωm, σ8, ξρ̄∗), to create a kind of
Jacobian matrix [22]. This is used to transform to a new Fisher matrix.

Marginalising over the new Fisher matrix to remove σ8 dependence, we can
look at the confidence ellipse for ξρ̄∗ and Ωm. If we instead marginalise over
Ωm, we get the dependence between ξρ̄∗ and σ8 instead. We see that these el-
lipses show a correlation, but not one as tight as that of the two cosmological
parameters.
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Figure 23: 68% uncertainty confi-
dence ellipse for ξρ̄∗ and Ωm.

Figure 24: 68% uncertainty confi-
dence ellipse for ξρ̄∗ and σ8.

7.4 Setting a prior

Using the data from [10], we can add a prior on ρ̄∗, constraining its uncer-
tainty. We find the tightest constraint on a measurement of ρ̄∗ at z ∼ 0 is
∼ 9 × 106. This means we add a value of 1

(9×106)2
= 1.23 × 10−14 onto the

diagonal entry corresponding to ρ̄∗ in the original (non-transformed) Fisher
matrix [22]. This leads to a lower uncertainty on ρ̄∗ than without this prior,
and actually improves the uncertainty on the cosmological parameters too.
This makes sense, as we have shown them to be correlated quantities.

• Ωm uncertainty = 7.43× 10−3

• σ8 uncertainty = 0.0104

• ρ̄∗ uncertainty = 9.01× 106

Transforming this Fisher matrix to include ξρ̄∗ instead of ρ̄∗, and marginal-
ising over the third parameter once again, we see the effect on the confidence
ellipses.
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Figure 25: 68% uncertainty confi-
dence ellipse for ξρ̄∗ and Ωm, with
prior on ρ̄∗.

Figure 26: 68% uncertainty confi-
dence ellipse for ξρ̄∗ and σ8, with
prior on ρ̄∗.

These ellipses almost look horizontal, but there is a slight tilt on each, show-
ing that there is a correlation between the parameters. However, it is small,
as evinced by the broadness of the almost circular ellipses. Adding the prior
has decreased the uncertainty on ρ̄∗, but it also seems to have decreased the
dependence between it and the cosmological parameters.

7.5 Fixing the third parameter

In the interests of completeness, I also check what happens when the third
parameter is considered perfectly known rather than marginalised over. This
is done by removing the corresponding row and column from the Fisher
matrix before inverting it to get the uncertainties.
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Figure 27: 68% uncertainty confi-
dence ellipse for σ8 and Ωm, where
ρ̄∗ has been fixed.

Figure 28: 68% uncertainty confi-
dence ellipse for ξρ̄∗ and Ωm, where
σ8 has been fixed.

Figure 29: 68% uncertainty confidence ellipse for ξρ̄∗ and σ8, where Ωm has
been fixed.

The ellipses are all narrower, showing that two parameters become more
correlated when the third one is fixed. The uncertainty in all of the param-
eters also decreases, but the correlation for the last one has flipped. Further
exploration will be necessary to find out why this switch of direction happens.

Considering a parameter as fixed essentially means we have a very strong
prior on it. This is not something we currently have, but if very precise
and accurate measurements did become available, we might hope to attain a
constraint similar to this.
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7.6 A different parameter

We now do a similar analysis, but with a different parameter, m0g, replacing
ρ̄∗. As shown in subsection 4.2, this parameter may be important to constrain
as it has an effect at a wide range of k. We construct a 3x3 Fisher matrix
much as before. However, the third row/column now corresponds to m0g.

• Ωm uncertainty = 7.76× 10−3

• σ8 uncertainty = 0.0131

• m0g uncertainty = 1.44× 1012

The uncertainty on m0g is actually similar to the value itself, which is very
high. To look at how these parameters are correlated, we do the same as with
ρ̄∗ and multiply m0g by a constant η = 1/(1012/h), and do a transformation
of variables. The results appear similar to those for ρ̄∗.

Figure 30: 68% uncertainty confi-
dence ellipse for ηm0g and Ωm.

Figure 31: 68% uncertainty confi-
dence ellipse for ηm0g and σ8.
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Figure 32: 68% uncertainty confidence ellipse for Ωm and σ8, when the third
parameter (marginalised over) is m0g instead of ρ̄∗.

We could also put a prior on m0g. Say we knew its value to within ±10%,
then we would add 1

(1011)2
to the diagonal entry corresponding to m0g. This

would have the effect of improving the uncertainty on m0g, but it would also
slightly improve the uncertainty on the cosmological parameters.

• Ωm uncertainty = 7.43× 10−3

• σ8 uncertainty = 0.0104

• m0g uncertainty = 1.36× 1011

Figure 33: 68% uncertainty confi-
dence ellipse for ηm0g and Ωm, with
a prior on m0g.

Figure 34: 68% uncertainty confi-
dence ellipse for ηm0g and σ8, with
a prior on m0g.
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These are again almost horizontal, but there is a slight angle so they are
not circular but elliptical. This effect is useful because constraining any
parameter will help constrain the model as a whole. Therefore, a relevant
observation of any parameter in this model will help improve the uncertainty,
at least somewhat, on all the related parameters.

And, if we fix the third parameter instead of marginalising, the ellipses once
again become narrower. This time the Ωm dependence flips instead of the σ8

one.

Figure 35: 68% uncertainty confi-
dence ellipse for ηm0g and Ωm, with
σ8 fixed.

Figure 36: 68% uncertainty confi-
dence ellipse for ηm0g and σ8, with
Ωm fixed.

It is clear that these parameters (ρ̄∗, m0g) have a large uncertainty. This
means that it is of the utmost importance to constrain them, so that we
can be sure of their impact on the model. We have shown that adding a
prior from observational data on ρ̄∗ improves the uncertainty in the model.
Finding more data for the other parameters will help this cause further, and
it may be possible to have a fully observationally-motivated model of matter
distribution.
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8 Discussion and Conclusions

Modelling the distribution of matter in the universe is an ongoing process.
Including baryons will be necessary for greater accuracy of these matter dis-
tribution models, as we will have more precise measurements of the large-
scale structure of the universe in the near future. We have shown the possible
impact of baryons on the matter power spectrum by considering a halo model
which includes stars and gas in addition to DM. They can cause a noticeable
change in the model when compared to a DM-only model.

However, the inclusion of luminous matter does add many free parameters to
the model. These parameters are usually either left free and fit to the most
observationally correct results, or fixed using data from simulations, which
may not be accurate to reality. The observations they are fit to will soon be
out of date and can have large uncertainty, and it is improbable that simula-
tions perfectly reproduce reality, so there are not many constraints on these
models. This is why it is important to use observational data to constrain
these free parameters.

We investigated which parameters have the largest effect on the model by
varying them and looking at the impact on the total matter power spectrum.
Some parameters had very little impact, or only had an effect at very small
scales, so were not considered as very important to constrain. On the other
hand, a few of the parameters were very impactful. They could possibly
change the model to a large degree, depending on their values.

Different sources of possible observational constraints were then explored.
A detailed compilation of data on one of the parameters, ρ̄∗, was found in
the form of the Madau plot [10]. Also investigated was the possibility of
finding constraints through exploring how simulations set their initial con-
ditions. This revealed that measurements of the GSMF exist, and might be
useful to us. This was examined to find out if it could constrain any of our
free parameters. We did not end up finding anything directly relevant, but
this might be an interesting avenue to study in future.

The two most effective of the parameters were selected and were investi-
gated with a more detailed analysis. This involved doing a Fisher forecast on
each one in turn. We first created a Fisher matrix with ρ̄∗ and two cosmolog-
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ical parameters, Ωm and σ8. The uncertainties on these parameters inherent
in the model were then obtainable from this. There was a very large uncer-
tainty on ρ̄∗, comparable to its own value. This meant it was very desirable
to constrain it somewhat. It was necessary to do a transformation of vari-
ables to compare the parameters visually, so that the orders of magnitude
involved were more similar. This allowed us to look at the confidence ellipses
for each pair of parameters, to see how they were correlated. Following this,
we added a prior from observational data on ρ̄∗ and this reduced the uncer-
tainty. However, it interestingly made the correlations with the cosmological
parameters much less. There was not time to investigate why this might be,
but it is nevertheless an intriguing result.

After that, we did a similar process for m0g. There was also a very large
uncertainty on this parameter. We did not find any observations with rela-
tion to this parameter, but we made a prediction for what effect having even
a nominal prior to constrain the uncertainty would have. It was shown that
if we knew the value of this parameter to within 10%, it would decrease the
uncertainty by an order of magnitude, and improve the uncertainty in the
other parameters as well. This would be very useful in the effort to constrain
the model.

It is evident that the inclusion of baryons in this model and others like it
will be necessary in order to have models precise enough for comparison to
upcoming surveys. A considerable amount of uncertainty comes with this
inclusion, so it is important to find ways to constrain the baryonic param-
eters. Current observational data can provide us with the means to add
priors on some parameters, hence lowering the uncertainty. This must be
further explored, as there is still a lot of freedom in this model. However,
it is reassuring that most of the free parameters do not have a huge effect
on the model if changed, so there are only a few which urgently need con-
straining. To continue with this research, it would be interesting to search
for more sets of observational data which can constrain some of the other
parameters. Depending on how everything is correlated, a measurement on
any one parameter may improve the uncertainty in the whole model. There
is still much to learn in terms of these models, and they will not be perfect
immediately, but we hope to have added some small improvement.
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A Matter power spectrum code

I include my Python notebook used to calculate the matter power spectrum
in the following pages. This can also be found at https://github.com/

LSSTDESC/CCLX/blob/master/Baryons_halo_model_power_spectrum.ipynb

as an example of how to use the pyccl package to construct a baryonic halo
model. In future this kind of model may be implemented into pyccl as an
inbuilt function, as it currently does not have a model of this type.
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In this example, we illustrate how to build a baryonic halo model in CCL. We follow mostly the equations in Fedeli (2014), arXiv:1401.2997, with
some modifications for speed or numerical simplicity.

Baryonic halo model

import numpy as np
import pyccl as ccl
import pylab as plt
import matplotlib.cm as cm
from scipy.special import erf
from scipy import integrate
from scipy import interpolate
from functools import partial
%matplotlib inline

Generate a cosmology and a vector with wavenumbers. We will work only at  for this example.

Preliminaries

z = 0

# Cosmology
cosmo = ccl.Cosmology(Omega_c=0.196, Omega_b=0.042, h=0.73, sigma8=0.74, n_s=0.951)

# Wavenumbers 
k_arr = np.geomspace(1E-2,1E2,256)

# Scale factor
a_sf=1

Let us also initialize a series of halo model quantities. We will need:

A halo mass definition.
A concentration-mass relation.
A halo mass function parametrization.
A halo bias parametrization.
Halo density profiles (for the dark matter part of the model).

# We will use a mass definition with Delta = 200 times the matter density
hmd_200m = ccl.halos.MassDef200m()

# The Duffy 2008 concentration-mass relation
cM = ccl.halos.ConcentrationDuffy08(hmd_200m)

# halo mass function
hmf_200m = ccl.halos.MassFuncTinker10(cosmo, mass_def=hmd_200m)

# The Tinker 2010 halo bias
hbf = ccl.halos.HaloBiasTinker10(cosmo, mass_def=hmd_200m)

# The NFW profile - this is for dark matter only
pM = ccl.halos.profiles.HaloProfileNFW(cM)

The baryonic halo model consists of three ingredients: gas, stars and dark matter. The contribution of each ingredients is weighted by their
energy density at , which are given byz = 0

# Define some useful densities
rho_star = 7E8*cosmo['h']**2
rho_m = cosmo['Omega_m']*ccl.physical_constants.RHO_CRITICAL*cosmo['h']**2
rho_DM = cosmo['Omega_c']*ccl.physical_constants.RHO_CRITICAL*cosmo['h']**2
rho_g = rho_m - rho_star - rho_DM

We are now going to define some useful constants that we will need later.

#For the stellar mass fraction within halos
m_0s = 5E12/cosmo['h']
sigmas = 1.2

#For the stellar profile
x_deltas = 1/0.03

#For the gas mass fraction within halos
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m_0g = 1E12/cosmo['h']
sigmag = 3

#For the gas profile
beta = 2.9

#Parameters that inform the power spectrum of the gas,
#especifically the extended component.
Fg = 0.05 #this is an example, it should be <<1
bd = 0.85 #from Fedeli

# A reference halo mass that will be used later
mhalo = 1E14/cosmo['h']

To compute halo model ingredients of the power spectrum, we will need to integrate over the masses of the contributing halos. These will be
slightly different for stars, DM and gas. Here we define them:

# Array of masses
mmin_DM=1E6
mmax_DM=1E16
mmin_gas=m_0g
mmax_gas=mmax_DM
mmin_stars=1E10
mmax_stars=1E15
m_arr = np.geomspace(mmin_DM,mmax_DM,128)

First we will compute the stellar mass fraction.

We fix  by requiring that  have a particular value.

Stellar component

(m) = A exp(− )f∗
(m/ )log2

10 m0s

2σ2
s

A ρ̄∗

= dmm (m)n(m)ρ̄∗ ∫ ∞
0

f∗

#This computes the normalization of the stellar mass fraction
def f_star_integrand(m):
    mf = hmf_200m.get_mass_function(cosmo,m,a_sf)/(m*np.log(10))
    return m*np.exp(-(np.log10(m/m_0s))**2/(2*sigmas**2))*mf
def f_star_norm():
    return integrate.quad(f_star_integrand,mmin_stars,mmax_stars,epsabs=0,epsrel=1E-3,limit=5000)[0]

#Stellar mass fraction
A = rho_star/f_star_norm()
def f_star(m):
    return A*np.exp(-(np.log10(m/m_0s))**2/(2*sigmas**2))

plt.figure()
plt.plot(m_arr*cosmo['h'], f_star(m_arr), 'b-')
plt.xlabel(r'$M [M_\odot/h]$',fontsize=22)
plt.ylabel(r'$f_\star(M)$',fontsize=22)
plt.xscale('log')
plt.yscale('log')
plt.show()

Next we define the shape of the stellar profiles and we make a class out of them, so we can then pass them on to the power spectrum method.

, with .

An additional constraint on  comes from requiring that the mass fraction overall is equal to the mass fraction within a halo.

(x|m) = exp(− )ρ∗
ρt
x

xα x := r/rt

ρt
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#Stellar profile
class HaloProfileStars(ccl.halos.HaloProfile):
    def __init__(self):
        super(HaloProfileStars, self).__init__()

    #scale radius
    def _rs(self, cosmo, M, a, mdef):
        return mdef.get_radius(cosmo, M, a) / a 

    def _real(self, cosmo, r, M, a, hmd_200m):
        # Generate 2D array by default
        r_use = np.atleast_1d(r)
        M_use = np.atleast_1d(M)

        # Compute profile
        r_delta = self._rs(cosmo, M_use, a, hmd_200m)
        r_t = r_delta/x_deltas
        x = r_use/r_t[:, None]
        rhot = M_use*f_star(M_use)/(4* np.pi * r_t**3)
        prof = rhot[:,None] * np.exp(-x)/x   

        # Make sure the output has the right shape
        if np.ndim(r) == 0:
            prof = np.squeeze(prof, axis=-1)
        if np.ndim(M) == 0:
            prof = np.squeeze(prof, axis=0)
        return prof

ps = HaloProfileStars()
ps.update_precision_fftlog(padding_hi_fftlog=1E3,
                           padding_lo_fftlog=1E-3,
                           n_per_decade=1000,
                           plaw_fourier=-2.)

We now turn to the gas, again defining the gas fraction in each halo.

Gas component

(m) = erf( )fg
Ωb

Ωm

(m/ )log10 m0g

σg

def f_gas(m):
    fgas = []
    for i in m:
        if i<m_0g:
            fgas.append(0.)
        else:
            fgas.append((cosmo['Omega_b']/cosmo['Omega_m'])*erf(np.log10(i/m_0g)/sigmag))
    return fgas

plt.figure()
plt.plot(m_arr*cosmo['h'],f_gas(m_arr), 'b-')
plt.xscale('log')
plt.yscale('log')
plt.xlabel(r'$M$ $[$M$_\odot/h]$',fontsize=22)
plt.ylabel(r'$f_{\rm gas}(M)$',fontsize=22)
plt.show()

We now define a class that describes the profiles for the bound gas. We use a different gas profile to Fedeli (2014) because it is more
compatible with the code.

, with  and .(r) =ρg
ρg,0

(1+u (1+)
β

v2)
(7−β)/2

u := r/rco v := r/rej
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class HaloProfileGas(ccl.halos.HaloProfile):
    def __init__(self):
        super(HaloProfileGas, self).__init__()

    #scale radius
    def _rs(self, cosmo, M, a, mdef):
        return mdef.get_radius(cosmo, M, a) / a 

    def _rint(self, M, Rd, r):
        r_co = 0.1*Rd
        r_ej = 4.5*Rd #just placeholder value
        return r**2/((1+r/r_co)**beta*(1+(r/r_ej)**2)**((7-beta)/2))

    def _norm(self,M,Rd):
        nn = f_gas(M)*M/(4*np.pi*np.array([integrate.romberg(partial(self._rint, mm, rd),
                                                             1E-3,50,tol=0,rtol=1E-1,divmax=5000)
                                           for mm, rd in zip(M, Rd)]))
        return nn

    def _real(self, cosmo, r, M, a, mdef):
        # Generate 2D array by default
        r_use = np.atleast_1d(r)
        M_use = np.atleast_1d(M)

        # Compute profile
        r_delta = self._rs(cosmo, M_use, a, mdef)
        r_co = 0.1*r_delta
        r_ej = 4.5*r_delta

        prof = 1/((1+r_use[None,:]/r_co[:,None])**beta*(1+(r_use[None,:]/r_ej[:,None])**2)**((7-beta)/2))
        norm = self._norm(M_use,r_delta)
        prof = prof[:,:]*norm[:,None]

        # Make sure the output has the right shape
        if np.ndim(r) == 0:
            prof = np.squeeze(prof, axis=-1)
        if np.ndim(M) == 0:
            prof = np.squeeze(prof, axis=0)
        return prof

pg = HaloProfileGas()
pg.update_precision_fftlog(padding_hi_fftlog=1E3,padding_lo_fftlog=1E-3,
                           n_per_decade=1000,plaw_fourier=-2.)

It takes a while to evaluate the profiles. For this reason, we are going to interpolate them.

Interpolation of profiles

#Interpolate the profiles for speed

M = np.logspace(np.log10(mmin_DM),np.log10(mmax_DM),num=20)
yDM=np.zeros((20,500))
M2D = np.zeros((20,500))
for i in range(0,500):
    M2D[:,i]=M
K = np.linspace(1E-2,1E2,num=500)
for j in range(0,20):
    yDM[j,:]=pM.fourier(cosmo, K,M[j], a_sf, hmd_200m)/M[j]
fDM = interpolate.interp2d(K, M, yDM)

print("DM profiles interpolated...\n")

M = np.logspace(np.log10(mmin_gas),np.log10(mmax_gas),num=10)
yg=np.zeros((10,500))
M2D = np.zeros((10,500))
for i in range(0,500):
    M2D[:,i]=M
K = np.linspace(1E-2,1E2,num=500)
for j in range(0,10):
    yg[j,:]=pg.fourier(cosmo, K,M[j], a_sf, hmd_200m)/M[j]
f = interpolate.interp2d(K, M, yg)

print("Gas profiles interpolated...\n")

M = np.logspace(np.log10(mmin_stars),np.log10(mmax_stars),num=10)
M2D = np.zeros((len(M),50))
for i in range(0,50):
    M2D[:,i]=M
K = np.linspace(1E-2,1E2,num=50)
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ys=ps.fourier(cosmo, K,M, a_sf, hmd_200m)/M2D
fs = interpolate.interp2d(K,M,ys)

print("Star profiles interpolated...\n")

DM profiles interpolated...

Gas profiles interpolated...

Star profiles interpolated...

Calculation of power spectra

We define some generic integrals:

= dmn(m) (k) (k)I2p ∫ ∞
0

m2y1 y2

= dmn(m)b(m)my(k)Ibp ∫ ∞
0

# Halo Mass Calculator (for DM)
hmc = ccl.halos.HMCalculator(cosmo, hmf_200m, hbf, hmd_200m)

# Non-linear matter power spectrum, for comparison
pk_nl = ccl.nonlin_matter_power(cosmo, k_arr, a_sf)

#Generic integrals we need
#(of the form 5.x in Fedeli (2014))
def integrandGEN2p(m,k,prof1,prof2):
    dndlog10m = hmf_200m.get_mass_function(cosmo, m, a_sf)
    dndm=dndlog10m/(m*np.log(10.))
    y1=prof1(k,m)
    y2 =prof2(k,m)
    return dndm*m**2*y1*y2
def integratedGEN2p(mmin,mmax,k,p1,p2):
    return integrate.quad(integrandGEN2p, mmin, mmax, args=(k,p1,p2),epsabs=0,epsrel=1E-3,limit=5000)[0]
def integrandGENbp(m,k,prof1):
    bm = hbf.get_halo_bias(cosmo,m,a_sf)
    dndlog10m = hmf_200m.get_mass_function(cosmo, m, a_sf)
    dndm=dndlog10m/(m*np.log(10.))
    y=prof1(k,m)
    return dndm*m*bm*y
def integratedGENbp(mmin,mmax,k,p1):
    return integrate.quad(integrandGENbp, mmin, mmax, args=(k,p1),epsabs=0,epsrel=1E-3,limit=5000)[0]

We start with the dark matter:

#Dark matter auto-spectra

def PDM2h(k):
    return ccl.linear_matter_power(cosmo, k, a_sf)/rho_DM**2*integratedGENbp(mmin_DM,mmax_DM,k,fDM)**2

def PDM1h(k):
    return 1/rho_DM**2*integratedGEN2p(mmin_DM,mmax_DM,k,fDM,fDM)

PDM1h_arr=np.zeros(len(k_arr))
PDM2h_arr=np.zeros(len(k_arr))
for i in range(0,len(k_arr)):
    PDM1h_arr[i]=PDM1h(k_arr[i])
    PDM2h_arr[i]=PDM2h(k_arr[i])

#Gas auto-spectra

def PG2h(k):
    return ccl.linear_matter_power(cosmo, k, a_sf)/(Fg*rho_g)**2*integratedGENbp(mmin_gas,mmax_gas,k,f)**2

def PG1h(k):
    return 1/(Fg*rho_g)**2*integratedGEN2p(mmin_gas,mmax_gas,k,f,f)

def PGd(k):
    return bd**2*ccl.linear_matter_power(cosmo, k, a_sf)

def PGdh(k):
    return bd*ccl.linear_matter_power(cosmo, k, a_sf)/(Fg*rho_g)*integratedGENbp(mmin_gas,mmax_gas,k,f)

PG2h_arr=np.zeros(len(k_arr))
PG1h_arr=np.zeros(len(k_arr))
PGd_arr=np.zeros(len(k_arr))
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PGdh_arr=np.zeros(len(k_arr))
for i in range(0,len(k_arr)):
    PG2h_arr[i]=PG2h(k_arr[i])
    PGd_arr[i]=PGd(k_arr[i])
    PG1h_arr[i]=PG1h(k_arr[i])
    PGdh_arr[i]=PGdh(k_arr[i])

PG = Fg**2*(PG2h_arr + PG1h_arr) + (1-Fg)**2*PGd_arr + 2*Fg*(1-Fg)*PGdh_arr

#DM x gas

def PDMgdh(k):
    return (bd*ccl.linear_matter_power(cosmo, k, a_sf)/rho_DM)*integratedGENbp(mmin_DM,mmax_DM,k,fDM)
def PDMg1h(k):
    return 1/(rho_DM*Fg*rho_g)*integratedGEN2p(mmin_gas,mmax_gas,k,f,fDM)
def PDMg2h(k):
    return ccl.linear_matter_power(cosmo, k, a_sf)/(rho_DM*Fg*rho_g)*integratedGENbp(mmin_DM,mmax_DM,k,fDM)*integratedGENbp(mmin_gas,mmax

PDMgdh_arr=np.zeros(len(k_arr))
PDMg2h_arr=np.zeros(len(k_arr))
PDMg1h_arr=np.zeros(len(k_arr))
for i in range(0,len(k_arr)):
    PDMgdh_arr[i]=PDMgdh(k_arr[i])
    PDMg1h_arr[i]=PDMg1h(k_arr[i])
    PDMg2h_arr[i]=PDMg2h(k_arr[i])

PDMg = (1-Fg)*PDMgdh_arr + Fg*(PDMg1h_arr+PDMg2h_arr)

We will now compute all spectra that involve a stellar contribution:

#Stars auto spectrum
def PS2h(k):
    return ccl.linear_matter_power(cosmo, k, a_sf)/rho_star**2*integratedGENbp(mmin_stars,mmax_stars,k,fs)**2

def PS1h(k):
    return 1/rho_star**2*integratedGEN2p(mmin_stars,mmax_stars,k,fs,fs)

PS2h_arr=np.zeros(len(k_arr))
PS1h_arr=np.zeros(len(k_arr))
for i in range(0,len(k_arr)):
    PS2h_arr[i]=PS2h(k_arr[i])
    PS1h_arr[i]=PS1h(k_arr[i])

#DM x stars

def PDMs1h(k):
    return 1/(rho_DM*rho_star)*integratedGEN2p(mmin_stars,mmax_stars,k,fDM,fs)

def PDMs2h(k):
    ii=integratedGENbp(mmin_stars,mmax_stars,k,fs)*integratedGENbp(mmin_DM,mmax_DM,k,fDM)
    return ccl.linear_matter_power(cosmo, k, a_sf)/(rho_DM*rho_star)*ii

#Eval and add DM x stars
PDMs1h_arr=np.zeros(len(k_arr))
PDMs2h_arr=np.zeros(len(k_arr))
for i in range(0,len(k_arr)):
    PDMs1h_arr[i]=PDMs1h(k_arr[i])
    PDMs2h_arr[i]=PDMs2h(k_arr[i])
PDMs = PDMs1h_arr+PDMs2h_arr

#Stars x gas
def Psgh(k):
    return bd*ccl.linear_matter_power(cosmo, k, a_sf)/rho_star*integratedGENbp(mmin_stars,mmax_stars,k,fs)

def Psg1h(k):
    return 1/(rho_star*Fg*rho_g)*integratedGEN2p(mmin_gas,mmax_stars,k,f,fs)

def Psg2h(k):
    ii=integratedGENbp(mmin_stars,mmax_stars,k,fs)*integratedGENbp(mmin_gas,mmax_gas,k,f)
    return ccl.linear_matter_power(cosmo, k, a_sf)/(rho_star*Fg*rho_g)*ii

#Eval and add star x gas
Psgh_arr=np.zeros(len(k_arr))
Psg2h_arr=np.zeros(len(k_arr))
Psg1h_arr=np.zeros(len(k_arr))
for i in range(0,len(k_arr)):
    Psgh_arr[i]=Psgh(k_arr[i])
    Psg1h_arr[i]=Psg1h(k_arr[i])
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    Psg2h_arr[i]=Psg2h(k_arr[i])
Psg = (1-Fg)*Psgh_arr + Fg*(Psg1h_arr+Psg2h_arr)

Now plot them all and add them to form the total:

#Auto-spectra
Pauto = (rho_DM/rho_m)**2*(PDM2h_arr+PDM1h_arr)+(rho_g/rho_m)**2*PG+(rho_star/rho_m)**2*(PS1h_arr+PS2h_arr)
#Cross-spectra
Pcross = (2*rho_DM*rho_star*PDMs +2*rho_g*rho_star*Psg+2*rho_DM*rho_g*PDMg)/(rho_m**2)
#Add all
Ptotal = Pauto + Pcross

#Relative power spectra
plt.figure(figsize=(7,8))
#All auto correl
plt.plot(k_arr/cosmo['h'], (rho_DM/rho_m)**2*(PDM2h_arr+PDM1h_arr)/pk_nl, 'k-', label='$P_{DM}(k)$')
plt.plot(k_arr/cosmo['h'], (rho_g/rho_m)**2*PG/pk_nl, 'r-', label='$P_{G}(k)$')
plt.plot(k_arr/cosmo['h'], (rho_star/rho_m)**2*(PS2h_arr+PS1h_arr)/pk_nl, 'b-', label='$P_{S}(k)$')
#All cross correl
plt.plot(k_arr/cosmo['h'], 2*rho_DM*rho_g/(rho_m**2)*PDMg/pk_nl, 'g-', label='$P_{DM,G}(k)$')
plt.plot(k_arr/cosmo['h'], 2*rho_g*rho_star/(rho_m**2)*Psg/pk_nl, 'm-', label='$P_{G,S}(k)$')
plt.plot(k_arr/cosmo['h'], 2*rho_DM*rho_star/(rho_m**2)*PDMs/pk_nl, 'c-', label='$P_{DM,S}(k)$')
#And the total with respect to CAMBs nonlinear power
plt.plot(k_arr/cosmo['h'], Ptotal/pk_nl, 'k--', label='$P_{total}(k)$')
plt.xscale('log')
plt.yscale('log')
plt.legend(loc='lower left', fontsize=12.5)
plt.ylabel(r'$P(k)/P_{nl}(k)$', fontsize=15)
plt.xlabel(r'$k\,\,[{\rm h/Mpc}]$', fontsize=15)
plt.show()


	Introduction
	The model
	Halo models
	Baryonic halo model

	Changes made to baryonic halo model
	Gas density profile
	Other changes

	Free parameters
	Stellar parameters
	Gas parameters

	Observational constraints
	Observational constraints on *(z)
	Simulation inspiration
	Schechter method for n(m)

	Angular power spectrum
	Fisher forecasting
	Initial analysis
	Investigating differentiation methods
	Uncertainty on *
	Setting a prior
	Fixing the third parameter
	A different parameter

	Discussion and Conclusions
	Matter power spectrum code

