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Automating biomarker identification for 
immunotherapies:  
Non-canonical peptides presented on MHC molecules. 
S.I. PULLENS1 

THEORETICAL BIOLOGY & BIOINFORMATICS GROUP - UTRECHT UNIVERSITY 

ABSTRACT 
Neo-antigens are a promising area of research in the development of immunotherapies against 

cancer. The neo-antigens arise due to mutations in cancerous cell, which often helps the cancer cell 

to hide from the surveillance of the immune system. In the last decade, the amount of mass 

spectrometry data has been growing exponentially. Researchers often found that the origin of all 

peptides eluted from cancer cells could not be mapped, which suggest that the tumor alters the 

translation process to generate new peptides that are presented in the MHC-complex on the cell 

surface. Obviously, this finding opens up a totally new area for cancer specific biomarkers. Here we 

present our pipeline to identify these non-canonical (cryptic) peptide candidates from RNA count data. 

Introduction 
Cancer is still one off the most leading causes 

of death in the world. Due to the global 

population growth and increasing age, the 

number of cancer casualties is increasing 

rapidly (1–3). Even though new treatment 

methods are being developed, the success of a 

treatment is mostly limited due to multiple 

aspects. First, the physician must determine 

the best tumor repressive treatment, 

considering factors such as the potential side 

effects and toxicity for the patient. This is 

challenging as there are no clinical predictive 

tests available to assess the suitability of 

specific chemotherapy regimens, requiring 

that they be empirically evaluated for each 

patient. In addition, the chosen chemotherapy 

should not be de-novo resistant and should 

induce multidrug resistance (4). These 

considerations make it difficult to establish an 

effective, personalized treatment plan for each 

patient. 

Recently, patient-specific biomarker methods 

have been developed and have been cleared 

for use in clinical trials (5,6). The main 

limitation of this approach  is the uncertainty 

that the treatment will take effect on target  

 

cells only, as  there is always a chance that 

these markers are found on healthy cells. If 

that is the case, the therapy would cause 

possible harm to the surrounding cells. 

Moreover, the identification of patient-specific 

biomarkers often requires a significant amount 

of manual labor, which can be botch costly and 

time consuming. It is important to initiate 

treatment quickly in order to improve the 

patient’s life expectancy (7).  

An effective treatment would specifically 

targets only cancer cells, be effective for 

multiple patients and have minimal side 

effects.  One way this could be achieved is by 

encapsulating chemotherapeutic-molecules in 

a liposome that will only fuse with the target 

tumor cells. This makes it safe for the 

surrounding cells, which in return will reduce 

side effects for the patient. This will, in theory, 

be possible if the targeting of the cancer cells 

is very specific. 
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Tumors can proliferate, if they escape the 

immune surveillance system. Normally, 

healthy cells present self-peptides that inhibit 

T cell-mediated immune response. This is 

achieved by generating self-peptides, that are 

presented on the cell surface (8). Cancer cells, 

on the other hand, express neo-antigens (9–

11), which are mutated self-peptides. These 

neo-antigens could be a biomarker to use in 

several immunotherapies against cancer. 

These neo-antigens unfortunately, are 

typically cancer- and patient-specific, making 

them not suited for affordable, patient-wide 

therapies. 

Due to protein identification by Tandem MS 

becoming a standard (12,13), more peptide-

MHC complexes were being detected that 

could not be explained by canonical protein 

translation. Already in 1989, a hypothesis 

named ‘pepton hypothesis’, arose that stated: 

“antigenic peptides are derived from the 

cellular genome, and are not a degradation 

product of cellular proteins, but can be 

generated directly by the autonomous 

transcript and translation of short sub genic 

regions” (14). Due to lack of evidence however, 

this hypothesis was quickly disregarded. Now 

that we are finding evidence, this theory is 

being explored more thoroughly. (15–19). 

These peptides are believed to be translated in 

a non-traditional manner, originating from the 

same genomic data as canonical peptides. 

Because all cryptic peptide research has been 

performed on De Novo Peptide Sequencing 

(20–23), we wanted to explore the possibilities 

of cryptic peptide detection in not-peptide-

specific-sequencing data that is publicly 

available.  

This research has been done in collaboration 

with the Molecular Targeted Therapies 

research group from Utrecht University 

(https://cellbiology.science.uu.nl/research-

groups/sabrina-oliveira-molecular-targeted-

therapies/). The objective was to find non-

canonical, neo-antigen peptides that were 

derived from open source data. To achieve this 

goal, we developed a simple to use, user-

flexible pipeline to predict cryptic peptide 

candidates.  

 

•RNA-seq data 
(open source)

•Gene selection

Data gathering

•Normalization

•DNA transcript 
sequences

Data 
processing •Traditional 

translation

•Cryptic translation

Translation
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Figure 1, Overview of developed pipeline. A, basic overview of input for the pipeline and expected output. The user inputs the 
cancer type they want analyze, and the research project that can be found in the GDC dataset, more can be found in the methods. 
Note, output can change based on tweaked parameters (Not shown in figure, can be found in methods). B, more detailed 
flowchart inside the pipeline. Here, 5 high-level steps are shown, with their own internal steps. These steps will be discussed in 
detail in the methods. 

https://cellbiology.science.uu.nl/research-groups/sabrina-oliveira-molecular-targeted-therapies/
https://cellbiology.science.uu.nl/research-groups/sabrina-oliveira-molecular-targeted-therapies/
https://cellbiology.science.uu.nl/research-groups/sabrina-oliveira-molecular-targeted-therapies/
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RESULTS 

DATA AND THE DEVELOPMENT OF THE PIPELINE 
The RNA-seq count data was fetched from the 

GDC Data portal (24) on 26-11-2022. Open data 

corresponding to a total of 1699 patients, 473 

and 1226 for skin and breast cancers 

respectively, was downloaded. RNA-seq count 

data has been processed using the STAR 

algorithm, which provides gene expression 

values for 60617 genes. 40.85% of these genes 

were RNA related, giving us a large pool of 

sequences to search for cryptic peptides, as 

most of those are expected to be found in the 

long non-coding RNA (lncRNA) (25,26). 

The first step in the pipeline is to select for the 

RNA related genes that are highly expressed 

(see Figure 1). To this end, we calculated the 

median expression (counts) of each gene in the 

patient cohort and defined the genes with top 

1% medians as the “highly expressed genes”. 

After stabilization (which removes the 

dependence of the variance on the mean), we 

found 1125 (83% lncRNA) and 1251 (82.8% 

lncRNA) highly expressed genes for skin and 

breast cancers, respectively (Table 1). To our 

surprise, RNA related genes are expressed in 

higher amounts than coding genes. Moreover, 

we found that 62% of the genes that are 

identified as highly expressing in the skin and 

breast cancer data set are overlapping (of 

which 81% is lncRNA), promising some pan-

cancer RNA based biomarkers. 

The second step in the pipeline is to convert 

transcripts for every gene and exclude the 

coding regions by double checking the 

annotations. To this end, we used 

transcriptomics data from the Ensemble 

database (27). The average amount of 

transcripts, with known coding regions (CDS) 

(according to the database) per gene  was 2.20 

and 2.38 for skin and breast cancer data set 

respectively, with outliers of 14 and 17 

transcripts per gene (Table 1). Among the RNA-

related genes, we could only find a single 

transcript with a known CDS in the skin dataset 

(ENST00000598322). This is probably a wrong 

annotated transcript, mainly because both the 

transcript and related gene 

(ENSG00000269825) are annotated as ‘novel’. 

Also, the transcript does not have a Transcript 

Support Level (TSL), which should be either 

one or two for a transcripts with a known CDS 

(28). 

The third step in the pipeline, was to decide 

how to handle the transcripts that do not 

contain any coding regions. This was 

particularly important due the Ensemble 

database only holding sequences for coding 

regions, meaning no direct sequences were 

available for the non-coding transcripts. To 

tackle this, we looked at the earliest start 

codon on the genome that we could find for all 

transcripts linking to our gene (Sup. Fig 1.). We 

did the same for the end, by taking the latest 

associated stop codon. By saving the 

coordinates for these start- and stop codons, 

we were able to fetch a sequence from the 

human genome. The main issue that arises 

with this method, is that taking the whole 

sequence also contaminates the read with 

canonical peptides, originating from coding 

regions. In order to solve this problem, we 

translated the whole sequence, including the 

transcripts that are known to contain a CDS. 

Afterwards the peptides that originated from 

the known CDS transcripts were removed, 

leaving only theoretical, cryptic peptides.  

The next step of the pipeline is the translation. 

Unfortunately, there is not yet an available 

Table 1, Overview of data that was gathered and used for this project. 

Cancer 
Tissue 

No. 
Genes 

No. 
Patients 

Percentage 
RNA-related 

No. top 1% high-
expressed genes  

Percentage 
of lncRNA 
in top 1% 

Avg. No. transcripts with 
known CDS per gene 

Skin 60617 473 41% 1125 83,0% 2,20 

Breast 60617 1226 41% 1251 82,8% 2,38 
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software package to predict the translation of 

sequences outside of CDS regions. Due to lack 

of RNA-seq sequences, we were not able to 

perform alternate splicing simulation. Recent 

research (29,30), including a recently 

published paper on the standardization of 

alternative open reading frames (31), suggest 

that cryptic peptides may originate from 

alternative open reading frames (aORFs). In 

response to this, we have developed an in-

house algorithm that analyzes messenger RNA 

(mRNA) (including untranslated regions and 

introns) and predicts aORFs based on the 

presence of non-traditional start and stop 

codons in other parts of the sequence. This 

cryptic peptide prediction is performed with 6-

frame translation; 3 open reading frames in the 

forward direction, and 3 on the 

complementary strand in the reverse 

direction. With this algorithm (further 

explained in Supp. Fig 1), we used 5 of the 6 

newly defined alternate ORFs (31) (see 

methods). 

The final step of the pipeline is the predicted 

binding to MHC molecules. The predicted 

peptide binding of the translated sequences 

was done with NetMHCpan (32). (Used 

parameters can be found in the methods) 

CRYPTIC PEPTIDES AS POSSIBLE MHC LIGANDS 
Filtering the possible MHC molecule binders, 

we obtained (on average) 216 and 219 strong 

binders peptides for RNA-related  genes in the 

skin and breast dataset respectively. These 

numbers are significantly higher than the 

average amount of canonical peptide binders 

that were predicted: 42 for skin and 41 for the 

breast dataset. This main difference is 

hypothesized to arise from the 6-frame 

translation that is performed in the in-house 

algorithm to cover all possible peptides. 

To test whether or not the high amount of 

predicted peptides is very unusual, we 

compared the number of peptides that have 

been found per read (for alleles HLA-A01:01 

and HLA-A02:01), with the expected number of 

peptides (Fig. 2). Since we are using a 1% 

threshold on the ranking system of 

NetMHCpan, the expected number of peptides 

was calculated by taking the top 1% of the 

expected number of peptides. for a single read 

this is approximately 1% of the read length  

(see Equation 1). 

In Figure 2, the predicted and expected MHC 

peptide binders are plotted in a scatter plot, 

including a regression line. For all HLA-A01:01 

alleles datasets, the predicted peptides were 

slightly higher than the expected ones (1.2 to 

 

A B 

Figure 2, Scatterplots of observed vs. expected number of peptides in all genes breast dataset. Each dot represents a single read.  
A, dataset containing HLA-A01:01 allele predictions, regression analysis shows a 1.2 fold increase in the amount of observed peptides. 
B, dataset containing HLA-A02:02 allele predictions, regression analysis shows a 2.5 fold increase in the amount of observed peptides. 
Other HLA-A01:01 regression analysis show an increase, ranging from 0.8 to 1.4 times. For HLA-A02:01, this increases ranges from 1.6, to 
2.5 (Supp. Fig. 2). 
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1.4 range Fig. 2A, Supp. Fig. 2A). The HLA-

A02:01 alleles datasets however, had 2.0 to 3.0 

fold more binders than expected (Fig. 2B, Supp. 

Fig. 2B). This difference is hypothesized to arise 

from the fact that HLA-A02:01 is more 

abundant in the population than HLA-A01:01 

(33), meaning that NetMHCpan has been 

trained more on HLA-A02:01 data (32,34), 

resulting in more candidate peptides being 

found for HLA-A02:01 than HLA-A01:01. 

The high number of predicted binders force us 

to focus on the top 1% as possible biomarker 

candidates. In this subset there is a clear 

difference in the number of HLA-A01:01 and 

HLA-02:01 binders (Fig. 3.). Among the total list 

of binders, the alleles showed a similar 

distribution in the Elution score ranking; HLA-

A01:01 has a median of 0.52 (skin) and 0.51 

(breast). HLA-A02:01 on the other hand, had 

the same median (0.44) for both the skin and 

breast dataset.  

Due to HLA-A02:01 having significantly more 

peptides with a lower rank in the distribution 

plot than HLA-A01:01, we looked at the 

difference of allele distribution in the top 1% 

highest ranking peptides. (Fig. 3a). As 

expected, HLA-A02:01 had more of the 

peptides (61%), than HLA-A01:01 (39%) in the 

breast dataset (Fig. 2b). These results were 

similar for skin (HLA-A01:01 38%, HLA-A02:01 

62%) (Supp. Fig. 3). 

  

 

𝑃𝐸𝑥𝑝 =  𝑇𝐾𝑚𝑒𝑟𝑠 ∗ 𝐶𝑊𝐵 

𝑇𝐾𝑚𝑒𝑟𝑠 = 𝐿 − 𝑘 + 1 

Equation 1, Equation to calculate number of expected 
peptides (PExp). Where,  
TKmers is the total number of Kmers.  
CWB is the weak binder percentage cut-off,  
L is the length of the read and  
K is the length of the Kmers, (which has been fixed at 
9 amino acids). 

 

Figure 3, A, Density plot of the distribution of %Rank_EL for both HLA-A01:01 and HLA-A02:01 in the RNA-related, breast dataset. 
Dashed lines represent the median for both alleles. B, Pie plot with distribution for number of candidate peptides for both alleles in 
the top 1% highly expressed genes in the breast dataset. Figures for the skin dataset have similar results, shown in (Supp. Fig. 2). 

A B 
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POSSIBLE BIOMARKERS FOR EXPERIMENTAL 

TESTING 
In our study, we identified cryptic peptide 

candidates (peptides with an elution rank of 1 

or lower) in RNA-related genes and compared 

these with known, cryptic, Mass spectrometry 

peptides from other papers (2,3,16,32,35–42). 

Our final results included a total of 75 (5 HLA-

A01:01 and 70 HLA-A02:01) peptides from the 

skin dataset, and 63 (1 HLA-A01:01 and 62 HLA-

A02:01) peptides from the breast dataset 

(Supp Table 1). The difference in overlapping 

candidate peptides per allele could be caused 

by the fact that the amount of known peptides 

per allele differ. For HLA-A01:01, we gathered 

2551 cryptic peptides, and 197 known 

canonical peptides. Whilst for HLA-A02:01, we 

accumulated 8842 cryptic peptides, and 599 

known canonical peptides.  

In Table 3 we assembled the top 5 overlapping 

peptides (based on elution score), including 

the gene function of the originating genes. 

Interestingly enough, one peptide was found 

originating from multiple transcripts in the 

breast dataset and was also found in the skin 

dataset. These peptides have been analyzed 

with Blast (43) to identify possible 

homologues. 

 

We found strong evidence of peptide 

‘YLLEKFVAV’ originating from ATP-dependent 

DNA helicase DDX11. Multiple studies (44,45) 

suggest that this lncRNA strand is a highly 

conserved oncogene. Furthermore, other 

research found this peptide in bladder cancer 

(46) and bone cancer (47), suggesting that it 

may be a potential pan-cancer biomarker. 

A perfect alignment was observed between 

peptide ‘FLIPKFFEL’ and the  protein 

phosphatase 4 regulatory subunit (PPP4R1L) 

gene. Previous research (48) has shown that 

PPP4R1L is involved in protein 

dephosphorylation and has high expression in 

27 different tissues, indicating that the 

peptide’s origin cannot be traced back to a 

specific cell when cancer occurs. 

In our study of the peptide ‘ALAEVFHQL’, we 

identified a novel homologue gene, which has 

been referenced by the synonyms ‘KIAA0196’ 

and ‘WASHC5’. This gene has been primarily 

associated with the Ritscher-Schinzel (48) and 

hereditary spastic paraplegia syndrome (49). 

In order to validate the identified peptide 

candidates, further research and experimental 

validation will be required. 
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Table 2, Shortlist of peptide candidates that have also been found by other papers, from both the skin and breast dataset, including both alleles.  

Dataset Pos Peptide Identity %Rank_EL Protein Gene Description

TCGA-skin 498 YLLEKFVAV ENST00000539757 0.001 ENSG00000111788

DEAD/H (Asp-Glu-Ala-Asp/His) box 

polypeptide like pseudogene

TCGA-breast 449 YLLEKFVAV ENST00000432996 0.001 DDX12P DEAD/H-box helicase 12, pseudogene

TCGA-breast 498 YLLEKFVAV ENST00000539757 0.001 ENSG00000111788

DEAD/H (Asp-Glu-Ala-Asp/His) box 

polypeptide like pseudogene

TCGA-breast 196 FLIPKFFEL ENST00000334187 0.002 PPP4R1L 

protein phosphatase 4 regulatory 

subunit 1

TCGA-breast 64 ALAEVFHQL ENST00000605862 0.002 ENSG00000242588 novel transcript  
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METHODS 

DATA COLLECTION 
Main data collection was performed using two 

databases; the National Cancer Institute’s GDC 

Data Portal (https://portal.gdc.cancer.gov/) 

(50) and the Ensemble vertebrate genome 

browser (http://www.ensembl.org/) (51). The 

biggest challenge was gathering data that is 

publicly available. Overall in this project, only 

open, RNA-seq count data from multiple 

projects was tested and used. 

The TCGA project (52) captures the most open-

source patients RNA-count cancer data. To 

avoid biased   data, other projects of the same 

cancer types were used for initial method 

testing. When no statistical differences were 

found, TCGA became the go-to project to use. 

Even though there are 55 tissue groups to 

choose from, we only looked at skin and breast 

cancer samples, due to the direct interest of 

our colleagues in the Molecular Targeted 

Therapies group.  

DATA NORMALIZATION 
Using R package DESEQ2, variance stabilization 

transformation was performed. This gene 

expression transformation showed an 

expression peak in the lower region of the 

distribution. To identify the top expressing 

genes in the dataset, the median for each gene 

in all patients has been calculated. The top 

percentile was selected as highest expressing 

genes, henceforth referred to as candidate 

genes. 

SEQUENCE GATHERING 
Gene sequences were downloaded from the 

Ensemble (http://www.ensembl.org/) 

database  (53) at 11/24/2022. To this end, all 

the transcripts of a candidate gene are 

gathered, and filtered into coding & non-

coding transcripts, depicted by the presence of 

a (known) coding region. When multiple non-

coding transcripts overlap, they get elongated 

and conflated, containing the sequences of all  

overlapping transcripts.  These non-coding 

transcripts will be referred to as cryptic 

transcripts. (Supp. Fig 4). 

When all transcripts from the candidate genes 

have been gathered, the next step is to predict 

the translation. First, the transcripts with a 

known coding region are translated  using the 

Bio-python package (54). The cryptic 

transcripts are translated by our in-house 

algorithm, which copies the alternative open 

reading frames method, developed by (31). 

This method implements new open reading 

frame (ORF) definitions, adopted by 37 

research companies and academia around the 

world. This method (31) and other research 

(29,30) describes alternative open reading 

frames (aORF) being the direct cause of 

alternative translation. aORFs are reading 

frames that start and stop on different 

locations than the traditional start and stop 

codons in the CDS of a mRNA sequence. 

Internal out-of-frame ORFs are described as 

ORFs that have a reading frame shift inside the 

CDS, meaning that midway, other codons are 

being translated. These frame-shift ORFs were 

not used in our in-house algorithm, due to the 

fact that there is currently is no method known 

to accurately predict the locations of these 

internal frameshifts. 

Finally, canonical sequences have been 

discarded from the main pipeline to ensure 

that all candidate peptides would be cryptic. 

These steps have also been summarized in 

Figure 1. 

When the amino acid sequences have been 

determined, the actual HLA peptide binding 

prediction is done with NetMHCpan (32). The 

new version of this method uses elution data 

and data from in vitro binding essays for 

training. Because of this, NetMHCpan has 

shown to be one, if not the best tool for 

predicting the binding of MHC peptides (38). 

Furthermore, NetMHCpan is still used in state-

of-the-art research (16,42,55–58). 

  

https://portal.gdc.cancer.gov/
http://www.ensembl.org/
http://www.ensembl.org/
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The results from NetMHCpan have been 

filtered with user-set parameters; 

--primary_site Skin OR Breast,  

--cancer_project TCGA-SKCM or TCGA-BRCM,  

--strong_binding_threshold 0.1,  

--weak_binding_threshold 1, 

--to_stop True, 

--peptide_inclusive True. 

Candidate peptides from NetMHCpan have 

been compared with known peptides from 

other papers (2,3,16,32,35–42). These 

peptides were downloaded from IEDB 

database (59) (https://www.iedb.org/) and 

are listed in the code provided. 

DISCUSSION 
The main goal of this research was to develop 

a pipeline to detect cryptic neo-antigen 

peptides presented on MHC molecules. With 

this pipeline we showed that we are able to 

extract cryptic neo-antigens from open source, 

RNA count data. Performance of this pipeline 

was estimated with the use of known cryptic 

peptides from other research. However, 

experimental validation will be necessary to 

accurately test the performance of the 

pipeline. 

One of the requirements in developing this 

pipeline was the strict use of open-source data. 

This made available data limited, resulting in 

only using RNA count data. Even though we 

were not able to obtain the sequence data, we 

were able to generate a workflow that predicts 

the sequence data. Obviously, we are not able 

to perform patient-specific mutation analysis. 

The mutational information could be 

promising for developing personalized 

treatments. but, patient-specific analysis was 

not in the scope of this project. 

Further research could deliver insights into 

other cancer types. If significant changes are 

found, it could, in theory, mean that specific 

cancer/cell types deploy different cryptic 

translational pathways.  

Cryptic peptide detection is a relatively new 

research subject, which will most likely 

improve when more data becomes available. 

Considering this, we made sure the pipeline is 

developed to be as flexible as possible, 

meaning the user should be able to tweak as 

much as they desire for their own research. 

This was achieved by adding plenteous 

parameters for the user to tweak. 

During the development of this pipeline we 

found some interesting features and possible 

improvements that were not added due to our 

timeframe or project scope. Other research 

(57) has shown that aligning the candidate 

peptides to the genome can improve 

predictive accuracy. This could also be an 

added feature in future research. 

SUPPLEMENTARY INFORMATION 
Supplementary figures and data can be found 

at the bottom of the paper. Supplementary 

data can also be downloaded from 

https://github.com/Sjonnie404/NeoPipeline/t

ree/Deployment/Data/Candidate%20peptides  

CODE AVAILABILITY 
Source code for this project can be found at 

https://github.com/Sjonnie404/NeoPipeline. 

  

https://www.iedb.org/
https://github.com/Sjonnie404/NeoPipeline/tree/Deployment/Data/Candidate%20peptides
https://github.com/Sjonnie404/NeoPipeline/tree/Deployment/Data/Candidate%20peptides
https://github.com/Sjonnie404/NeoPipeline
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SUPPLEMENTARY INFORMATION 
Supplementary figure 1 

  

Supplementary Figure 1, Flowchart of in-house algorithm to detect alternative, Open Reading Frames (aORFs). Code 
methods and colors are inspired by the figures of other research (31). 
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Supplementary figure 2 
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Supplementary Figure 2, Extra scatterplots (observed vs. expected) for candidate peptides for other parameters. 
A, Scatterplots regarding HLA-A01:01 allele predictions, regression analysis shows a 0.8 to 1.4 fold increase in the amount 
of observed peptides. B, Scatterplots regarding HLA-A02:01 allele predictions, regression analysis shows a 1.6 to 2.5 fold 
increase in the amount of observed peptides. (regression folds from Figure 1 are also taken into account.) 
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Supplementary figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary figure 4  
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Supplementary Figure 4, Global overview of non-coding sequence gathering. A, first step is to identify all transcripts 
that are associated with the selected gene. B, second step is to identify and label which transcripts have a known 
coding region and which do not. Then the earliest start- and last stop codon coordinates are saved (indicated with 
the red arrows). C, Transcript sequences with a known CDS are saved and discarded from the list. D, The whole 
sequence is gathered from the earlier saved coordinates. Later in the pipeline, peptides that are both found in coding 
and non-coding sequences are discarded, due to possible contamination. 

 

Supplementary Figure 3, A, Density plot of the distribution of %Rank_EL for both HLA-A01:01 and HLA-A02:01 in the RNA-related, skin 
dataset. Dashed lines represent the median for both alleles. B, Pie plot with distribution for number of candidate peptides for both 
alleles in the top 1% highly expressed genes in the skin dataset.  

A B 



Page | 17  
 

Supplementary Table 1, NetMHCpan output of candidate peptides for both the skin and breast dataset, including both alleles. (1 / 5)

Dataset Pos MHC 

HLA-A*

Peptide Core Of Gp Gl Ip Il Icore Identi ty Score EL %Rank 

EL

Score BA %Rank 

BA

Aff(nM) Bind 

Level

TCGA-Breast 72 01:01 HTEPLDELY HTEPLDELY 0 0 0 0 0 HTEPLDELY ENST00000523992 0.992338 0.004 0.73937 0.015 16.78 SB

TCGA-Breast 449 02:01 YLLEKFVAV YLLEKFVAV 0 0 0 0 0 YLLEKFVAV ENST00000432996 0.99692 0.001 0.939803 0.005 1.92 SB

TCGA-Breast 498 02:01 YLLEKFVAV YLLEKFVAV 0 0 0 0 0 YLLEKFVAV ENST00000539757 0.99692 0.001 0.939803 0.005 1.92 SB

TCGA-Breast 196 02:01 FLIPKFFEL FLIPKFFEL 0 0 0 0 0 FLIPKFFEL ENST00000334187 0.994211 0.002 0.927875 0.006 2.18 SB

TCGA-Breast 64 02:01 ALAEVFHQL ALAEVFHQL 0 0 0 0 0 ALAEVFHQL ENST00000605862 0.994985 0.002 0.860882 0.026 4.51 SB

TCGA-Breast 24 02:01 SLIEHLQGL SLIEHLQGL 0 0 0 0 0 SLIEHLQGL ENST00000439564 0.989222 0.005 0.851983 0.032 4.96 SB

TCGA-Breast 241 02:01 QLAQFVHEV QLAQFVHEV 0 0 0 0 0 QLAQFVHEV ENST00000432996 0.985561 0.006 0.837955 0.053 5.77 SB

TCGA-Breast 290 02:01 QLAQFVHEV QLAQFVHEV 0 0 0 0 0 QLAQFVHEV ENST00000539757 0.985561 0.006 0.837955 0.053 5.77 SB

TCGA-Breast 515 02:01 GLWGPVHEL GLWGPVHEL 0 0 0 0 0 GLWGPVHEL ENST00000414990 0.986793 0.006 0.824723 0.067 6.66 SB

TCGA-Breast 492 02:01 VLAKELVEV VLAKELVEV 0 0 0 0 0 VLAKELVEV ENST00000412962 0.983159 0.007 0.830255 0.059 6.28 SB

TCGA-Breast 453 02:01 RLWDEVMQA RLWDEVMQA 0 0 0 0 0 RLWDEVMQA ENST00000414990 0.980028 0.008 0.825399 0.066 6.61 SB

TCGA-Breast 6 02:01 VLGPIINKV VLGPIINKV 0 0 0 0 0 VLGPIINKV ENST00000424092 0.97678 0.01 0.732191 0.263 18.13 SB

TCGA-Breast 44 02:01 FLNDIFERI FLNDIFERI 0 0 0 0 0 FLNDIFERI ENST00000369385 0.971245 0.013 0.863228 0.025 4.39 SB

TCGA-Breast 30 02:01 ALDNGLFTL ALDNGLFTL 0 0 0 0 0 ALDNGLFTL ENST00000278882 0.966495 0.016 0.802336 0.098 8.49 SB

TCGA-Breast 387 02:01 KLGSVPVTV KLGSVPVTV 0 0 0 0 0 KLGSVPVTV ENST00000414990 0.959472 0.019 0.734274 0.256 17.73 SB

TCGA-Breast 607 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000550135 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Breast 1228 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000602436 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Breast 16 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000451424 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Breast 310 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000654763 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Breast 577 02:01 ALNNLLHSL ALNNLLHSL 0 0 0 0 0 ALNNLLHSL ENST00000522480 0.952066 0.023 0.751848 0.199 14.66 SB

TCGA-Breast 702 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000602458 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Breast 1056 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000659614 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Breast 1377 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000608477 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Breast 430 02:01 YVTDVLYRV YVTDVLYRV 0 0 0 0 0 YVTDVLYRV ENST00000522480 0.949292 0.024 0.837463 0.053 5.8 SB

TCGA-Breast 478 02:01 IVADVQISV IVADVQISV 0 0 0 0 0 IVADVQISV ENST00000414990 0.9292 0.032 0.715975 0.314 21.61 SB

TCGA-Breast 40 02:01 GLVNYQISV GLVNYQISV 0 0 0 0 0 GLVNYQISV ENST00000449061 0.929385 0.032 0.819201 0.074 7.07 SB

TCGA-Breast 424 02:01 YLGHLQQYV YLGHLQQYV 0 0 0 0 0 YLGHLQQYV ENST00000266746 0.927329 0.034 0.856079 0.029 4.75 SB  
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Supplementary Table 1, continued (2 / 5)

Dataset Pos MHC 

HLA-A*

Peptide Core Of Gp Gl Ip Il Icore Identi ty Score EL %Rank 

EL

Score BA %Rank 

BA

Aff(nM) Bind 

Level

TCGA-Breast 46 02:01 QLISIILRL QLISIILRL 0 0 0 0 0 QLISIILRL ENST00000551901 0.925103 0.035 0.701469 0.375 25.28 SB

TCGA-Breast 209 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000381800 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 346 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000701321 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 416 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000623673 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 57 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000635600 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 30400 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000597346 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 528 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000499521 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 3099 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000605862 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 210 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000456273 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 782 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000656196 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 1406 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000647856 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 1271 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000608477 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 1080 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000647856 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 309 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000562760 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 578 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000647856 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 6599 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000597346 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 488 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000551271 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 361 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000671580 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 663 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000551271 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 2 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000686891 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 565 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000621919 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 689 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000621919 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 1090 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000641433 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 1537 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000641433 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 1023 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000641433 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Breast 923 02:01 YLDQTLPRA YLDQTLPRA 0 0 0 0 0 YLDQTLPRA ENST00000539757 0.915058 0.041 0.721541 0.294 20.35 SB

TCGA-Breast 222 02:01 YQNQEIHNL YQNQEIHNL 0 0 0 0 0 YQNQEIHNL ENST00000374336 0.851158 0.074 0.582194 1.025 91.89 SB

TCGA-Breast 153 02:01 KVADLVLML KVADLVLML 0 0 0 0 0 KVADLVLML ENST00000374336 0.832821 0.085 0.654882 0.569 41.85 SB  
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Supplementary Table 1, continued (3 / 5)

Dataset Pos MHC 

HLA-A*

Peptide Core Of Gp Gl Ip Il Icore Identi ty Score EL %Rank 

EL

Score BA %Rank 

BA

Aff(nM) Bind 

Level

TCGA-Breast 195 02:01 RLQQLQHRV RLQQLQHRV 0 0 0 0 0 RLQQLQHRV ENST00000539757 0.800719 0.107 0.58412 1.01 89.99 WB

TCGA-Breast 121 02:01 RLQQLQHRV RLQQLQHRV 0 0 0 0 0 RLQQLQHRV ENST00000432996 0.800719 0.107 0.58412 1.01 89.99 WB

TCGA-Breast 287 02:01 LLWQSLILL LLWQSLILL 0 0 0 0 0 LLWQSLILL ENST00000301665 0.748795 0.148 0.751919 0.199 14.65 WB

TCGA-Breast 119 02:01 QLDWDVATV QLDWDVATV 0 0 0 0 0 QLDWDVATV ENST00000477247 0.692592 0.19 0.703558 0.366 24.72 WB

TCGA-Breast 170 02:01 VLITAVLLL VLITAVLLL 0 0 0 0 0 VLITAVLLL ENST00000414273 0.602202 0.278 0.684808 0.444 30.27 WB

TCGA-Breast 181 02:01 TLAEFQVIM TLAEFQVIM 0 0 0 0 0 TLAEFQVIM ENST00000414990 0.570685 0.311 0.589795 0.965 84.63 WB

TCGA-Breast 589 02:01 RQAEQEATV RQAEQEATV 0 0 0 0 0 RQAEQEATV ENST00000412962 0.487702 0.408 0.487586 1.919 255.75 WB

TCGA-Breast 90 02:01 YLIPIVVRY YLIPIVVRY 0 0 0 0 0 YLIPIVVRY ENST00000334187 0.281158 0.819 0.27039 6.765 2681.73 WB

TCGA-Skin 72 01:01 HTEPLDELY HTEPLDELY 0 0 0 0 0 HTEPLDELY ENST00000510506 0.992338 0.004 0.73937 0.015 16.78 SB

TCGA-Skin 325 01:01 SSDRKGGSY SSDRKGGSY 0 0 0 0 0 SSDRKGGSY ENST00000383620 0.974135 0.013 0.662035 0.037 38.73 SB

TCGA-Skin 166 01:01 EVDTFMEAY EVDTFMEAY 0 0 0 0 0 EVDTFMEAY ENST00000566851 0.905706 0.051 0.612493 0.061 66.2 SB

TCGA-Skin 145 01:01 FTATRPGVY FTATRPGVY 0 0 0 0 0 FTATRPGVY ENST00000427426 0.797859 0.101 0.610635 0.063 67.55 WB

TCGA-Skin 25 01:01 YLDPAQQNL YLDPAQQNL 0 0 0 0 0 YLDPAQQNL ENST00000421406 0.41373 0.378 0.25185 1.066 3277.44 WB

TCGA-Skin 498 02:01 YLLEKFVAV YLLEKFVAV 0 0 0 0 0 YLLEKFVAV ENST00000539757 0.99692 0.001 0.939803 0.005 1.92 SB

TCGA-Skin 196 02:01 FLIPKFFEL FLIPKFFEL 0 0 0 0 0 FLIPKFFEL ENST00000334187 0.994211 0.002 0.927875 0.006 2.18 SB

TCGA-Skin 64 02:01 ALAEVFHQL ALAEVFHQL 0 0 0 0 0 ALAEVFHQL ENST00000605862 0.994985 0.002 0.860882 0.026 4.51 SB

TCGA-Skin 25 02:01 YLDPAQQNL YLDPAQQNL 0 0 0 0 0 YLDPAQQNL ENST00000421406 0.992484 0.003 0.786521 0.131 10.07 SB

TCGA-Skin 290 02:01 QLAQFVHEV QLAQFVHEV 0 0 0 0 0 QLAQFVHEV ENST00000539757 0.985561 0.006 0.837955 0.053 5.77 SB

TCGA-Skin 492 02:01 VLAKELVEV VLAKELVEV 0 0 0 0 0 VLAKELVEV ENST00000412962 0.983159 0.007 0.830255 0.059 6.28 SB

TCGA-Skin 71 02:01 SLVELLVQL SLVELLVQL 0 0 0 0 0 SLVELLVQL ENST00000454465 0.980079 0.008 0.791773 0.121 9.52 SB

TCGA-Skin 240 02:01 ALLSGIVSI ALLSGIVSI 0 0 0 0 0 ALLSGIVSI ENST00000440904 0.970534 0.013 0.826899 0.064 6.51 SB

TCGA-Skin 503 02:01 GLYPQSPLL GLYPQSPLL 0 0 0 0 0 GLYPQSPLL ENST00000529624 0.961821 0.018 0.75225 0.198 14.59 SB

TCGA-Skin 16 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000451424 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Skin 718 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000660864 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Skin 252 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000668238 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Skin 301 02:01 GMNDMNHEV GMNDMNHEV 0 0 0 0 0 GMNDMNHEV ENST00000454465 0.950998 0.023 0.820898 0.072 6.94 SB

TCGA-Skin 702 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000602458 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Skin 634 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000564629 0.950274 0.023 0.915931 0.007 2.48 SB  
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TCGA-Skin 3717 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000623726 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Skin 3370 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000623726 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Skin 1056 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000659614 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Skin 1014 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000623726 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Skin 4856 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000499624 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Skin 310 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000654763 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Skin 607 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000550135 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Skin 310 02:01 WLMPVIPAL WLMPVIPAL 0 0 0 0 0 WLMPVIPAL ENST00000437833 0.950274 0.023 0.915931 0.007 2.48 SB

TCGA-Skin 40 02:01 GLVNYQISV GLVNYQISV 0 0 0 0 0 GLVNYQISV ENST00000449061 0.929385 0.032 0.819201 0.074 7.07 SB

TCGA-Skin 424 02:01 YLGHLQQYV YLGHLQQYV 0 0 0 0 0 YLGHLQQYV ENST00000266746 0.927329 0.034 0.856079 0.029 4.75 SB

TCGA-Skin 2793 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000392097 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 452 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000392097 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 3099 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000605862 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 951 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000598377 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 707 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000609755 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 614 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000609755 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 782 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000656196 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 4138 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000499624 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 159 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000442526 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 663 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000551271 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 795 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000660864 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 1790 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000665286 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 987 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000513358 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 488 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000551271 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 4054 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000499624 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 626 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000499624 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 417 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000506172 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 557 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000413987 0.917518 0.04 0.835139 0.055 5.95 SB  
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TCGA-Skin 557 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000413987 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 1127 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000416860 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 1952 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000623726 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 4550 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000623726 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 4445 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000499624 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 66 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000562082 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 57 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000635600 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 940 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000660724 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 1753 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000665286 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 1569 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000624350 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 292 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000654838 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 361 02:01 WLTPVIPAL WLTPVIPAL 0 0 0 0 0 WLTPVIPAL ENST00000671580 0.917518 0.04 0.835139 0.055 5.95 SB

TCGA-Skin 923 02:01 YLDQTLPRA YLDQTLPRA 0 0 0 0 0 YLDQTLPRA ENST00000539757 0.915058 0.041 0.721541 0.294 20.35 SB

TCGA-Skin 27 02:01 TILPAIILV TILPAIILV 0 0 0 0 0 TILPAIILV ENST00000427426 0.846628 0.077 0.7073 0.351 23.73 SB

TCGA-Skin 669 02:01 KVPEIEVTV KVPEIEVTV 0 0 0 0 0 KVPEIEVTV ENST00000638517 0.815565 0.097 0.547083 1.305 134.35 SB

TCGA-Skin 11 02:01 SLIAKVATA SLIAKVATA 0 0 0 0 0 SLIAKVATA ENST00000434500 0.81275 0.099 0.667022 0.517 36.7 SB

TCGA-Skin 195 02:01 RLQQLQHRV RLQQLQHRV 0 0 0 0 0 RLQQLQHRV ENST00000539757 0.800719 0.107 0.58412 1.01 89.99 WB

TCGA-Skin 287 02:01 LLWQSLILL LLWQSLILL 0 0 0 0 0 LLWQSLILL ENST00000301665 0.748795 0.148 0.751919 0.199 14.65 WB

TCGA-Skin 206 02:01 QLDWDVATV QLDWDVATV 0 0 0 0 0 QLDWDVATV ENST00000513466 0.692592 0.19 0.703558 0.366 24.72 WB

TCGA-Skin 211 02:01 QLDWDVATV QLDWDVATV 0 0 0 0 0 QLDWDVATV ENST00000510506 0.692592 0.19 0.703558 0.366 24.72 WB

TCGA-Skin 119 02:01 QLDWDVATV QLDWDVATV 0 0 0 0 0 QLDWDVATV ENST00000477247 0.692592 0.19 0.703558 0.366 24.72 WB

TCGA-Skin 80 02:01 ALSDPPALA ALSDPPALA 0 0 0 0 0 ALSDPPALA ENST00000650759 0.654447 0.229 0.499542 1.788 224.72 WB

TCGA-Skin 175 02:01 YLENGKETL YLENGKETL 0 0 0 0 0 YLENGKETL ENST00000383620 0.569159 0.312 0.461117 2.265 340.56 WB

TCGA-Skin 589 02:01 RQAEQEATV RQAEQEATV 0 0 0 0 0 RQAEQEATV ENST00000412962 0.487702 0.408 0.487586 1.919 255.75 WB

TCGA-Skin 139 02:01 RLNQTTFTA RLNQTTFTA 0 0 0 0 0 RLNQTTFTA ENST00000427426 0.40356 0.528 0.548145 1.295 132.82 WB

TCGA-Skin 124 02:01 VTWDAALYL VTWDAALYL 0 0 0 0 0 VTWDAALYL ENST00000510506 0.385044 0.559 0.599793 0.887 75.96 WB

TCGA-Skin 90 02:01 YLIPIVVRY YLIPIVVRY 0 0 0 0 0 YLIPIVVRY ENST00000334187 0.281158 0.819 0.27039 6.765 2681.73 WB

TCGA-Skin 103 02:01 FAYDGKDYI FAYDGKDYI 0 0 0 0 0 FAYDGKDYI ENST00000420110 0.250175 0.924 0.520666 1.563 178.8 WB  


