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Abstract

Atherosclerotic plaques are highly complex and heterogeneous, with a large number of extracellular

components and cell types involved. Traditional analysis, like histology assessment of the plaques, have

been useful to characterize their vulnerability, leading to a binary risk stratification of patients. However,

there is a need for other analysis to assess the plaque composition at higher resolution. Single-cell (sc)

RNA sequencing (RNA-seq) studies have identified the cell composition of human carotid plaques, but the

costs of this technology forces patient cohorts to be too small for clinical studies. Recently, deconvolution

has been introduced to infer the cell type proportions of samples with bulk RNA-seq data using a cell

type reference derived from the sc RNA-seq data. We aimed to perform deconvolution of human carotid

plaques from a large cohort of patients that underwent endarterectomy, to get their cell type proportions

and associate these with sex (with linear regression) and atherosclerosis severity, including symptoms

(with logistic regression) and future events after surgery (with Cox proportional hazard model). We first

benchmarked different deconvolution procedures regarding the data processing and the method selection.

We detected that reducing the number of cell types from the sc reference improved the deconvolution

performance, but all methods resulted in very different cell abundances. However, proportions from

macrophages and smooth muscle cells (SMCs) were consistent among methods and, more importantly, with

plaque histology. We finally observed female plaques to have a tendency to host a greater SMC percentage

(β = 1.86 [-0.25, 3.96], p = 0.084), and macrophages being associated with symptomatic plaques (odds

ratio = 1.02 [1.01, 1.03], p = 0.003) and major cardiovascular events after endarterectomy (hazard ratio

= 1.02 [1.00, 1.03], p = 0.012). Our results suggest that obtaining deconvolved cell proportions of plaques

is not straightforward for all the cell types, but macrophage and SMC proportions were consistent. While

macrophages were did not differ significantly from male to female plaques, the latter showed an increased

SMC content. Macrophages, in turn, might constitute a risk factor for atherosclerosis severity, and more

research on the subtypes that are responsible for this should follow.

Keywords: Deconvolution, benchmarking, cell composition, carotid plaques, macrophages, sex

differences, atherosclerosis severity.



Layman’s Summary

Cardiovascular diseases, affecting the heart or the blood vessels, are currently the leading cause of

death globally. Among these diseases, there is atherosclerosis, which will likely affect most of us when

we get old, and at younger ages if you are a man. During the years, fat accumulates in our arteries

and this will become a risk, since the artery can get blocked or a piece of these accumulation can travel

somewhere else in our body and cause damage. Also, the artery composition will change and there will

be cells that are not normally present and can cause inflammation, for example. Healthy arteries are

built with muscle cells, and in a diseased artery we will also find macrophages. Macrophages are cells

that normally try to destruct harmful organisms and can initiate an immune response. Depending on this

composition, researchers stated that there were patients more vulnerable than others, meaning that they

can experience more problems related to the disease. And in general, men tend to have more vulnerable

arteries. We can identify this changes by inspecting under a microscope a piece of the artery, but we

think this is not precise enough because there are too many players in atherosclerosis. So, we need other

methods to investigate this composition.

In the past years, we have been using technologies that measure the RNA of a mixture of cells from

these arteries, but also of individual cells. RNA is similar to DNA, but while DNA is identical in all your

cells, RNA is different. If we measure the RNA of individual cells from the artery, we can then label each

cell with a cell type, so for each cell type we have a pattern. But measuring cells individually is expensive;

it is cheaper to get the RNA from all cells in that piece of the artery, but then we do not know which

cells we have. We said from the individual cells we have the RNA pattern of each cell type, so can we try

to find these patterns in the RNA from the mixture? Yes, we can, and this is called deconvolution. With

deconvolution we can get the percentage of each cell type in the mixture, in our case, the piece of artery.

A lot of researchers have come up with new deconvolution methods, and we used some to obtain

the proportion of cells in the arteries from patients with atherosclerosis, who previously had surgery to

get a piece of the diseased artery removed. We saw that the proportion of cell types really depended on

the method we chose, which was inconvenient. But we detected agreement of these methods on some cell

types, including muscle cells and macrophages, suggesting we could trust on the proportions defined by the

deconvolution methods. And, we also validated this proportions with inspection of these arteries under

the microscope. So, these two cell types seem to be interesting. We wanted to see if arteries from women

were different from arteries from men. If we only focus on our two interesting cell types, we detected that

female arteries were more muscular, they had more muscle cells. Macrophage content was similar for all

the arteries. But, we found that macrophages were more abundant in arteries from patients that had had

symptoms before the surgery. We also found that macrophages are a risk factor, because patients whose

arteries had more macrophages, were more likely to have other kind of cardiovascular symptoms after the

surgery.

Our results can help us understand why women and men are different when it comes to atherosclerosis.

And we could also start thinking about new therapies that try to reduce the content of macrophages, which

might be dangerous. But deconvolution is still a recent type of analysis. So, we might need to validate

what we found with other analysis that are more hands-on and widely accepted in the research community.



Contents

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Atherosclerotic plaque and its composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 RNA sequencing in atherosclerosis research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Computational deconvolution of cell composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Project design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Study population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Clinical features and follow up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 AE carotid plaques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Histological assessment of carotid plaques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Bulk RNA sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 From bulk RNA-seq to different mixture inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.4 Single cell RNA sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.5 From single cell RNA-seq to different reference inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.6 Single cell RNA proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Generation of artificial pseudo-bulk mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 External sc RNA-seq reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Deconvolution scenarios to benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Evaluation of deconvolution scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.8 Statistics on plaque composition associated with sex and atherosclerosis severity . . . . . . . . . . . . 10

2.9 Software versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Benchmarking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Filtering out low-detected genes from the reference dataset has a minor impact on

the deconvolution but removes marker genes of some cell types from the reference . . 12

3.1.2 Data transformation has a significant effect in deconvolved results, being linear scale

preferable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.3 Balance between resolution, accuracy and biology results in clustering the AE sc

RNA-seq dataset into 8 cell populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.4 Bisque proportions show the highest similarity to sc RNA-seq-derived proportions,

but these are not in agreement with histology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.5 Despite absolute proportions highly differing between methods, macrophage and

SMCs proportions show agreement with histology and great correlation among all

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Clinical data association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Sex differences: female plaques show an increase in SMC content and a significant

reduction of switched-memory B cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



3.2.2 An increased total macrophage content associates with atherosclerosis severity,

but macrophage subtypes show different atheroprotective and atheroprogressive

behaviours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.3 Classical marker gene expression levels also reveal some clinical associations but

these are weaker, pointing towards an added value of the deconvolution . . . . . . . . . . . . . . 22

4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Supplementary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.1 Supplementary figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.2 Supplementary tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.3 Supplementary code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

List of Figures

1 Graphical design of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Benchmarking 1st step: gene selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Benchmarking 2nd step: data transformation . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Benchmarking 3rd step: cell clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Deconvolution of plaques with both bulk and sc RNA-seq data . . . . . . . . . . . . . . . 17

6 Deconvolution of Athero-Express plaques for 8 cell populations . . . . . . . . . . . . . . . 18

7 Cox proportional hazard models for macrophage content associated with major

cardiovascular events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

S1 Switched-memory B cells gene marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

S2 Cell type signature correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

S3 Pseudo-bulk mixtures proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

S4 Athero-Express single-cell RNA sequencing data clustering . . . . . . . . . . . . . . . . . . 36

S5 Plaques with both bulk and single-cell RNA sequencing data from Athero-Express . . . . 37

S6 Deconvolved proportions with histology association . . . . . . . . . . . . . . . . . . . . . . 38

S7 Deconvolved proportions with macrophage population divided into 3 clusters . . . . . . . 39

List of Tables

1 Summary of the deconvolution scenarios used for each benchmarking step . . . . . . . . . 8

2 Deconvolved proportions compared to histology . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Sex differences in plaque composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Association between macrophage content and symptoms . . . . . . . . . . . . . . . . . . . 21

5 Association between macrophage content and major cardiovascular events . . . . . . . . . 22

6 Association of marker genes expression and clinical features . . . . . . . . . . . . . . . . . 24

S1 Deconvolved proportions using Athero-Express and Pan et al. references . . . . . . . . . . 40

S2 Baseline characteristics of the Athero-Express patients stratified by sex . . . . . . . . . . . 40

S3 Baseline characteristics of the Athero-Express patients stratified by symptoms . . . . . . . 41

S4 Baseline characteristics of the Athero-Express patients stratified by MACE . . . . . . . . 41



S5 Association between symptoms and macrophage content obtained with Pan et al. reference 42

S6 Association between MACE and macrophage content obtained with Pan et al. reference . 42



1 Introduction

1.1 Atherosclerotic plaque and its composition

Atherosclerosis is a chronic, systemic and inflammatory disease leading the cause of morbidity and

mortality in Western countries but currently spreading worldwide [1]. It has its origins in the artery walls

and, despite the tunica intima being the very first layer to be affected, it ends up modifying structurally

and functionally all three layers of the vessel. Progressive accumulation of fatty and fibrous elements at

specific sites of such arteries starts creating a lesion, known as atherosclerotic plaque, that can become

more complex with time due to its calcification or haemorrhage. Moreover, lesion complexity rises with

the infiltration of immune cells present in the blood stream in response to the retention of lipids, with T

cells and monocytes deriving to (foam) macrophages as the main actors.

Advanced plaques can not only narrow the lumen but also rupture or erode causing a thrombotic

event, finally leading to a threatening reduction in blood flow. Whereas the former mechanism was

thought to be the main predictor of atherosclerosis severity for a long time [2–4], the latter concept of

plaque destabilization, as well as inflammation status, has overcome the narrowing degree as the main

risk factor [5–7]. Although erosion of the plaques remains to be fully understood, plaques that are prone

to rupture, also referred to as vulnerable plaques, are known to have a large lipid core, thin fibrous cap

and signs of inflammation [8]. These same characteristics have been associated with symptomatic plaques

[9, 10], and other histological features like internal haemorrhage and vessel density have been proven to

worsen the clinical outcome after surgical removal of the plaque [11]. Therefore, plaque composition itself

must be considered a potential predictor of major cardiovascular events (MACE) and a knowledge key

for understanding the mechanism of atherosclerosis progression. Of note, its composition might differ

also between females and males, whose plaques generally present more vulnerability signs [12–16] whereas

(young) female plaques are more likely to erode [17, 18].

Plaque composition, however, can be difficult to determine at high resolution given its high

complexity and heterogeneity. On the one hand, matrix elements present at the lesion like calcium

and lipid levels are worthy to be studied and imaging techniques, including magnetic resonance imaging,

computerised tomography and ultrasounds, are used to non-invasively identify such components [16, 19,

20]. Alongside, assessment of post-mortem plaques with staining methods have also given insight on

this matter, allowing a classification of plaques into different phenotypes [8] and the analysis of histology

characteristics in different groups of patients, as mentioned above [9–12, 14, 15, 17]. Nonetheless, scoring

based on visual inspection of the stained plaque is time-consuming, should be only performed by trained

pathologists and inevitably underlies some source of bias due to intraobserver and interobserver variability

[21]. On the other hand, even though such techniques have been used to identify some major cell type

content like smooth muscle cells (SMCs) and macrophages, with ACTA2 and CD68 staining respectively,

they are far from fully and precisely quantifying the cell composition of atherosclerotic plaques, since now

these are known to host an important number of cell populations [22, 23].

1.2 RNA sequencing in atherosclerosis research

Since the establishment of RNA sequencing (RNA-seq) as a powerful technique to uncover biological

processes, by means of studying gene expression in tissues, atherosclerosis research has benefit from it

[24]. Comparing the transcriptome of plaques with different characteristics is important to find critical

genes and proteins involved in plaque formation or progression for a given scenario. For example, whereas
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studies focusing on stable against unstable plaques will provide insight on the genes that might provoke

unstabilization [24], examining male against female plaques will disentangle whether there might exist

some sex dependent biological processes [25]. Recently, RNA-seq analysis of 654 human carotid plaques

uncovered five distinct transcriptomic profiles, that could lead to a new plaque phenotype classification

[26]. However, conventional bulk RNA-seq (i.e., RNA-seq of a whole tissue) only captures the average

gene expression from all the cells present in the sample, making expression values be dominated by the

most populated cell types. Plaque composition, in turn, will influence the expression levels, but there is

no direct way to identify the cell type that is actually responsible for a signal.

This lack of resolution at the single-cell level is solved by single-cell (sc) RNA-seq, which provides

gene expression of individual cells, allowing the identification of different cell types within the tissue.

Such identification, in contrast to immunostaining or flow cytometry, does not rely on prior knowledge

of plaque composition, allowing unexpected cell types to be discovered as well. In the past years, thanks

to sc RNA-seq, knowledge on which cell (sub)types are present in atherosclerotic plaques, in both human

and mice, has been expanded and reviewed elsewhere [27]. These concluded in the recognition of multiple

types of SMCs, endothelial cells (ECs) and a large list of immune cell subtypes, belonging to macrophages,

T cells, natural killer cells (NK) and B cells. When analyzing the proportion of cells that fall into one

cell type, discrepancies are found in regards of the dominance of macrophages over T cells within the

human plaque [23, 28]. However, such disagreement can be simply technical rather than biological, since

the chosen tissue digestion process to select individual cells before sequencing, might be biased towards

certain cell types [29]. Thus, proportions that one can infer from scRNA-seq do not need to represent the

true picture.

1.3 Computational deconvolution of cell composition

Given that bulk RNA-seq gives average expression values directly influenced by the cell ratios

present in the sample, and scRNA-seq obtain the expression pattern of each cell type that populates

a sample, the integration of data coming from both sides, should be sufficient to infer the cell type

proportions of a tissue. This concept is computationally adopted by the so-called deconvolution methods,

which have been proliferating over the last two decades [28]. Most of these methods rely on the linear

assumption formulated as:

T = C × P

where T = bulk RNAseq expression values, C = cell type-specific expression values (i.e., given by the

scRNA-seq data) and P = cell type proportions. Even though a group of these techniques do not make

use of scRNA-seq data as the reference, requiring instead a list of gene markers, these are not addressed

in this project.

From simpler to more complex implementation and assumptions upon which the methods are

built, a selection of computational deconvolution techniques being used to infer the cell composition are:

non-negative least squares (NNLS) [30], MuSiC [31], Bisque [32], CIBERSORTx [33] and Scaden [34].

NNLS simply fits a linear regression model but forces all its coefficients to be non-negative, which translates

into only obtaining positive (or zero) proportions for all the cell types present in the scRNA-seq data. An

extension to this method is found in both MuSiC and Bisque. While MuSiC corrects NNLS fractions by

weighting those genes which expression is consistent in all the cells from the same cell type and show low

variance across different subjects; Bisque transforms bulk data before applying NNLS so it resembles its

scRNA-seq counterpart. In contrast, CIBERSORTx and Scaden do not rely on linear regression models
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and they instead apply a support vector regression model and a neural network, respectively. Despite the

great development made in this field, there is still no ”one-size fits all” method and differences simply based

on the methods architecture and the processing of the data, will influence the final cell type proportions

derived from a tissue [35, 36]. Some of these methods might also work poorly when cell types share too

similar expression profiles [37].

1.4 Project design

Taking together the importance of atherosclerotic plaque composition, both for understanding

better the disease progression and for potentially stratifying patients based on their risk, and the difficulties

found to accurately quantify the cellular content, we derived our research question:

• Can we computationally deconvolve cell type proportions of human carotid plaques and associate

these with clinical features like sex and atherosclerosis severity?

To address this, we will divide the project into two parts (visually summarized in Fig 1):

1. Benchmarking to find the best deconvolution procedure, based on the previous data processing

and the deconvolution method choice. Five deconvolution methods (i.e., NNLS, MuSiC, Bisque,

CIBERSORTx and Scaden) will be fed by different processed data inputs that will differ on: the

genes to be used from the reference, the transformation of the expression values and the clustering

of the sc RNA-sequenced cells into different numbers of cell populations. To validate each procedure

we will:

• Perform deconvolution of artificial mixtures with known proportion.

• Assess the relationship between plaque deconvolved proportions and the proportions derived

from the sc data.

• Assess the relationship between plaque deconvolved proportions and histology.

2. Clinical data association with plaque composition. For this we will:

• Statistically assess the influence of sex on cell proportions.

• Statistically assess the effect of cell proportions on atherosclerosis severity, focusing on

symptoms and MACE after plaque removal.

3



Fig. 1. Graphical design of the project. The first part of the project consists on benchmarking

different deconvolution methods fed with differently processed datasets with bulk and scRNA-seq

data. The second part of the project focuses on associating the cell type proportions from the

chosen methodology with clinical data, including sex and atherosclerosis severity. Created with

biorender.com
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2 Methods

2.1 Study population

The data comes from the dutch Athero-Express (AE) biobank, which stores a large number of

samples from patients who underwent carotid endarterectomy [38]. In particular for this project, the

data selection includes plaques with RNA-seq analysis that were included between 2002 and 2016. From

these, bulk RNA-seq and sc RNA-seq was performed for 656 and 46 plaques, respectively and exclusively.

Associated to the bulk sequenced samples, there are baseline characteristics annotated for 654 patients,

as well as a follow up to identify future MACE and histology analysis of their specimens. Besides, new

bulk RNA-seq results were obtained for 28 plaques that overlapped with the 46 for which scRNA-seq was

available. All study participants provided consent prior to surgery and the study followed the Declaration

of Helsinki rules [39] and was approved by the Local Medical Ethical Committee.

2.1.1 Clinical features and follow up

Clinical data of the patients, like sex, was retrieved and put together with the results of other

questionnaires which included questions regarding risk factors like smoking and use of medication.

Symptoms were grouped into two categories: ”symptomatic”, including stroke and transient ischaemic

attack, and ”asymptomatic”, including patients with negligible or minor signs, like ocular blindness for

<24 hours. For the following 3 years after surgery, any MACE (i.e., vascular death, nonfatal myocardial

infarction, nonfatal stroke and nonfatal aneurysm rupture) experienced by the participants were reported

in the database.

2.2 AE carotid plaques

Surgically removed plaques were transferred immediately to the laboratory, where the culprit lesion

(i.e., smallest lumen area) was identified, cut and prepared to be stained (for the full protocol, see [22,

38]). Sections surrounding the culprit lesion were properly stored for subsequent RNA-seq analysis.

2.2.1 Histological assessment of carotid plaques

Stainings for alpha-smooth muscle actin (ACTA2) and CD68 were performed to identify the

presence of SMC and macrophages, respectively. These were binned into ”no”, ”minor”, ”moderate” and

”major” categories, and converted to numbers from 0 to 3. SMC to macrophage ratios were determined

based on the same stainings and quantification was binned into “macrophage dominant””, “equal” or

“SMC dominant”, which were again converted to numbers from 0 to 2. Plaque phenotype was determined

based on fat percentage of the total lesion size area (plaques with <10% (fat score 1), 10-40% (fat score 2)

and >40% (fat score 3) fat were categorized as ”fibrous” (converted to number 3), ”fibro-atheromatous”

(converted to 2) and ”atheromatous” (converted to 1), respectively). Also, picrosirius red was stained for

collagen (binned from 0 to 3) and immunohistochemical staining for CD34 was performed to assess vessel

density, defined as a continuous variable (refer to [38] for the details). Besides, for the 46 plaques with sc

RNA-seq data, CD3 and CD34 stainings were also performed and binned to numerical categories.

5



2.2.2 Bulk RNA sequencing

The whole RNA-seq protocol is described by Mokry et al. [26], but the main methodologies

implemented were the following: CEL-seq2 [40] for library preparation, which is a 3’ assay and adds

unique molecular identifiers (UMIs); Bioanalyzer (Agilent) for both RNA and cDNA quality, the latter also

assessed by Qubit fluorometric quantification (Thermo-Fisher); and Illumina Nextseq500 for sequencing.

The sequencing output was aligned with BWA (0.7.13) to the human reference (Ensembl 84).

2.2.3 From bulk RNA-seq to different mixture inputs

We only included in the analysis protein-coding genes that were well annotated with HGNC names

and we excluded all ribosomal genes. Moreover, in case that several reads mapped to the same gene,

we only kept the read with the highest count. Since the UMIs used for the RNA-seq were 6 bp long,

we set a maximum for counts to 4095 and we corrected them for UMI saturation so as corrected count

= -4096*(ln(1-(raw count/4096))). Once corrected, the original 656 plaques were subset from the 28

plaques that overlapped with the scRNA-seq dataset. While for the latter we did not implement any

other processing step, the count matrix with the original 656 carotid plaques was kept in the linear scale

(i.e. as it is) and transformed to the logarithmic (ln(raw count+1)) and the squared root scale, creating

3 different inputs for the bulk data.

2.2.4 Single cell RNA sequencing

For 46 plaque samples, the removed specimen was used for scRNA-seq and the steps followed

regarding the sample handling, the sequencing protocol and the reads processing are described elsewhere

[22]. In short, the sample was enzymatically digested to obtain viable cells that were isolated by

fluorescence-activated cell sorting. Single cells were then sequenced with Illumina Nextseq500 by first

following again the CEL-Seq2 protocol for library preparation. Resulting counts were processed with

Seurat [41], by removing doublets and low-quality cells, as well as mitochondrial and ribosomal genes.

This resulted in 4948 cells and 20111 genes in total, which were annotated with HGNC symbols. In order

to map each of these cells to a cell type, tSNE was applied to transformed data to obtain clusters, which

were associated to a cell population by thoroughly analyzing their gene expression. This resulted in the

identification of 20 cell types, including: inflammatory macrophages, resident macrophages, foam cells,

dendritic cells, monocytes, FOXP3+ T cells, CD3+ T cells (I, II, III, IV, V and VI), natural killer (NK)

cells (I and II), mastocytes, plasma B cells, switched-memory B cells, ECs (I and II) and SMCs.

2.2.5 From single cell RNA-seq to different reference inputs

For the purpose of deconvolution, we processed the counts matrix partly adopting the steps followed

by Avila et al. [35]. Filtering out genes expressed in less than 5% of the cells was proposed by Avila et al.

but we took it as a new experimental setting, with 2 resulting matrices including and excluding such genes

(12264 out of 20111 genes). Then, we excluded, for both, those cells belonging to a low populated cell type

(<50 sequenced cells), namely monocytes and plasma B cells. As in the previous section, these 2 matrices

were kept in the linear scale, log-transformed and square root-transformed, resulting in 6 different inputs

for the scRNA-seq data.

Besides the original clustering of the cells into 20 different cell types, from which two were already

excluded in the previous step, we reclustered again the cells into lower resolution cell population to
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reduce the complexity of the deconvolution process, resulting in two new scenarios: reduction to 9 and

6 cell populations. For the 9-clustering, we clustered together all CD3+ T cells, all NK cells, all ECs

and also one bigger cluster included foam cells, resident macrophages and resident macrophages (i.e.,

macrophage group); while all the other cell types remained independently, namely FOXP3+ T cells,

SMCs, switched-memory B cells, mastocytes and dendritic cells. Whereas for the 6-clustering, we added

the grouping of T and NK cells into one population and dendritic cells were also included in the previous

macrophage group. From this step, we multiply by 3 the number of outputs created above accounting

the different gene filtering and transformations (6x3 = 18 different inputs). Despite not being part of

the initial workflow but a consequence of further results, we finally clustered the cell into 8 populations,

namely dendritic cells, ECs I, ECs II, macrophages, mastocytes, SMCs, switched-memory B cells, and T

and NK cells.

2.2.6 Single cell RNA proportions

For each of the 46 patients included in the sc RNA-seq dataset, we computed the sc-derived cell

type proportions as the total number of cells belonging to each cell type divided by the total number

of sequenced cells. In order to analyze the quality of such proportions, we computed the Kendall rank

correlation coefficient between ECs, SMCs, macrophage and T cell proportions with CD34, ACTA2, CD68

and CD3 staining scores respectively.

2.3 Generation of artificial pseudo-bulk mixtures

The AE sc RNA-seq dataset including all the genes, in linear scale and with 18 cell types-annotation

was used to artificially generate mixtures of cells, referred to as pseudo-bulk mixtures. All the individual

cells were divided into the training and the test dataset (50%:50% split), making sure all patients were

represented in both sets (i.e., there is at least one sequenced cell from each patient in both training and

test set). Then, using the training set, we created 700 pseudo-bulk mixtures. For that, we first established

random but uniform proportions for each cell type, which added up to 1, and then, we calculated the

number of cells to be taken per cell type (total number of cells was 100). The mixtures were finally built

by adding the counts of the randomly selected cells, and the initial cell type proportions were saved as

the true proportions.

Finally, the test dataset with the remaining cells was again stored following the 3 different clustering

strategies, from 18 cell types to 9 and 6 cell clusters. These 3 test sets, as well as the 700 pseudo-bulk

mixtures, were finally transformed to obtain the data in the linear, log and square root scale. True

proportions for each clustering scenario were obtained by adding the simulated proportions of the cell

types that were merged.

2.4 External sc RNA-seq reference

An external sc RNA-seq dataset by Pan et al. [42] including 3 human carotid plaques was also

considered for validation purposes. These data originally included 17818 genes and 8867 sequenced cells,

for which 13 cell clusters were identified. In order to follow a similar process workflow as for the AE sc

RNA-seq data, we excluded the lowest populated and undefined cell cluster labelled as cluster 13. We also

merged the three defined macrophage types (annotated as 1, 2 and 3) into a single macrophage cluster.

Therefore, after grouping this population, 10 cell clusters were kept for this dataset
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2.5 Deconvolution scenarios to benchmark

Five deconvolution methods were tested, using sc RNA-seq data as the reference and bulk RNA-seq

data as the mixtures for which the cell composition must be assessed. The selected methods included three

regression-based approaches, namely NNLS [30], MuSiC [31] and Bisque [32], CIBERSORTx[33], which

implements a support vector regression, and Scaden [34], which works with a complex neural network.

Moreover, different processing pipelines were implemented in this step regarding the genes selection, the

sc RNA-seq data clustering, and the bulk and sc RNA-seq data transformation, using different sourced

datasets. The pipeline to decide the final methodology was:

1. Decision on sc RNA-seq gene selection (i.e., using all genes or filtering out genes present in less than

5% of the cells).

2. Decision on data transformation (i.e., using linear, log or square root scale).

3. Decision on number of cell clusters in the reference dataset (i.e., all 18 cell types or a reduced number

of populations).

4. Decision on deconvolution method (i.e., NNLS, MuSiC, Bisque, CIBERSORTx or Scaden).

All deconvolution settings that were used for this study are summarized in Table 1 (note that in each

pipeline step, some decisions were taken based on the results and therefore not every single combination

of datasets was used as an input). Due to the requirements and/or architecture of the deconvolution

methods, deconvolution using other than linear data (i.e., log and squared root scale) was only performed

with the three regression-based methods.

Table 1. Summary of the deconvolution scenarios used for each benchmarking step. Step 1

for gene selection, 2 for data transformation, 3 for cell clustering and 4 for deconvolution method.

AE refers to Athero-Express data and fields with (*) are new scenarios introduced due to the results

of the previous step.

Sc RNA-seq (reference) Bulk RNA-seq (mixture)

Dataset
Gene

selection

Data

trans-

formation

Clustering

(number of

populations)

Dataset

Data

trans-

formation

Bench-

marking

step

AE All genes Linear 18
AE

(656 plaques)
Linear 1

AE
Genes >5%

cells
Linear 18

AE

(656 plaques)
Linear 1

AE All genes Linear 18
AE

(656 plaques)
Linear 2

AE All genes Log 18
AE

(656 plaques)
Log 2

AE All genes Square root 18
AE

(656 plaques)
Square root 2

Splitted test sc

(section 2.3)
All genes Linear 18

Pseudo-bulk

(section 2.3)
Linear 2

Splitted test sc

(section 2.3)
All genes Linear 9

Pseudo-bulk

(section 2.3)
Linear 2
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Splitted test sc

(section 2.3)
All genes Linear 6

Pseudo-bulk

(section 2.3)
Linear 2

Splitted test sc

(section 2.3)
All genes Log 18

Pseudo-bulk

(section 2.3)
Log 2

Splitted test sc

(section 2.3)
All genes Log 9

Pseudo-bulk

(section 2.3)
Log 2

Splitted test sc

(section 2.3)
All genes Log 6

Pseudo-bulk

(section 2.3)
Log 2

Splitted test sc

(section 2.3)
All genes Square-root 18

Pseudo-bulk

(section 2.3)
Square-root 2

Splitted test sc

(section 2.3)
All genes Square-root 9

Pseudo-bulk

(section 2.3)
Square-root 2

Splitted test sc

(section 2.3)
All genes Square-root 6

Pseudo-bulk

(section 2.3)
Square-root 2

Splitted test sc

(section 2.3)
All genes Linear 18

Pseudo-bulk

(section 2.3)
Linear 3

Splitted test sc

(section 2.3)
All genes Linear 9

Pseudo-bulk

(section 2.3)
Linear 3

Splitted test sc

(section 2.3)
All genes Linear 6

Pseudo-bulk

(section 2.3)
Linear 3

AE All genes Linear 8*
AE

(656 plaques)
Linear 4

AE All genes Linear 8*
AE (28 plaques,

matching sc)
Linear 4

Pan

et. al. (ref)
All genes Linear 10

AE

(656 plaques)
Linear 4

2.6 Deconvolution

For NNLS and MuSiC, the MuSiC package in R was used and all the data inputs were converted

to an expression set (R object with the count matrix and the metadata associated to each sample). We

used the function music props and we took the Est.prop.allgene results as the NNLS proportions, and the

Est.prop.weighted as the MuSiC proportions. The same expression set was used for Bisque (BisqueRNA

package), which was also implemented in R with the function ReferenceBasedDecomposition.

On the other hand, for CIBERSORTx we made use of their web portal

(https://cibersort.stanford.edu), which requires text files for both reference and mixture data. From the

former, a signature matrix is built, which will then be the input next to the mixture file for the Impute

Cell Fractions step. Another kind of text files were created for Scaden deconvolution. As specified, we

normalized the reference counts by the median library size and next, we created individual input files

accounting the counts matrix and the cells annotation for each patient in the reference, as well as a

general mixture file. These were the inputs for Scaden’s publicly available Python scripts, which were

run following this order: simulate, process, train and predict.

Of note, for the second part of the project (i.e., clinical association), we made some adjustments
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to the Scaden workflow for the sake of reproducibility, since the simulate step produced different outputs

every time we ran the code. This step randomly takes cells from the reference dataset to create pseudo-bulk

mixtures that subsequently train the neural network. To ensure reproducibility, we added a fixed random

seed to the bulk simulator.py script (see supplementary code, section 7.3). And we finally ran the whole

Scaden process 10 times using 10 different seeds and took the average of all these proportions.

2.7 Evaluation of deconvolution scenarios

Since there was no ground truth associated to the bulk RNA-sequenced plaques, we could only

visualize and biologically reason the differences we see between different settings and methods. However,

we addressed the evaluation by (1) using other sources of data, (2) analyzing the correlation of results

coming from different methods with each other, and (3) associating histological features annotated to the

654 plaques to their deconvolved proportions.

First, in order to assess the performance of the deconvolution of pseudo-bulk mixtures and the 28

plaques which had matching bulk and sc RNA-seq data, we computed the normalized root-mean-square

error and the Pearson correlation between the deconvolved and the true proportions for each cell type and

globally. While for pseudo-bulk analysis, the true proportions were taken from the artificial generation step

of the pseudo-bulk mixtures, for the matching plaques we defined the true proportions as the proportions

directly derived from the sc-RNA seq dataset.

For the final step of the benchmarking, we also computed the Pearson correlation between the

proportions coming from all five deconvolution methods individually for each cell population. Moreover,

Pearson correlations were computed between the proportions obtained using the AE reference and the

Pan et. al. reference for overlapping cell populations.

Also, for the scenario above, we combined histological annotation of the plaques with deconvolved

proportions to compute the Kendall rank correlation coefficient between SMC and macrophage proportions

with related histology scores (i.e., ACTA2 and CD68 staining, plaque phenotype, fat and collagen), and

Pearson correlation between EC proportions and vessel density.

2.8 Statistics on plaque composition associated with sex and atherosclerosis

severity

For this part of the project, we made use of the cell type composition predicted by Scaden, from

which we took the average proportions obtained by 10 runs using 10 different seeds (see section 2.6),

and these were multiplied by 100 to get the percentages, to make the statistics more interpretable. The

reference used was the AE sc RNA-seq dataset with 8 cell clusters, using all the genes in the dataset and

the counts in linear scale. Deconvolved proportions were merged with clinical data for 654 patients.

Statistical analysis to determine sex differences in cell abundances were performed using univariate

linear regression. Structural cells were defined as SMCs and both EC populations, whereas immune cells

were defined as the remaining cell populations. Baseline characteristics of the 654 patients included were

stratified by sex in Table S2.

Baseline characteristics for these patients were again stratified by symptoms (642 patients, Table S3)

and MACE (649 patients, Table S4). Foucusing on macrophage content, we created univariate and

multivariate models to determine whether it held predictive power. A logistic model was built taking
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symptoms as the outcome and macrophage proportion (and confounders in case of the multivariate

analysis) as the predictors. Regarding future MACE, we used Cox proportional hazard models to study

the event-free time related to the macrophage content. For this last analysis, we took the macrophage

proportion as a continuous variable (i.e., as it is) but also as a ternary categorical variable, dividing

the patients based on macrophage proportion tertiles for the sake of visualizing this association. As

confounders, we included those variables that had a significant (p < 0.05) at the baseline level. In

an attempt to unravel which macrophage subtype was giving the signal for these last associations, we

performed the same deconvolution described above but unfolding the macrophage cluster (i.e., considering

resident, inflammatory and foam macrophages as independent clusters), and we repeated the same

statistical analysis.

In order to assess the same associations directly on the bulk AE RNA-seq data (with the 656

plaques), the same statistical tests were performed but substituting cell proportions for marker gene

expression levels. The selected marker genes were: ACTA2 for SMCs, CD79A for switched-memory B

cells, CD68 and CD14 for macrophages in general, ABCA1 for foam macrophages, IL1B for inflammatory

macrophages, and LYVE1 for resident macrophages. Previously, the bulk counts were normalized and

transformed to counts per million.

2.9 Software versions

R v4.1.2; Seurat v4; MuSiC v0.2.0; BisqueRNA v1.0.5; Python v3.8.5; Scaden v1.1.2.
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3 Results

3.1 Benchmarking

To benchmark different deconvolution settings we focused both in data processing (assessing gene

selection, data transformation and clustering of the sc RNA-seq reference) and the method selection

(including NNLS, MuSiC, Scaden, CIBERSORTx and Scaden).

3.1.1 Filtering out low-detected genes from the reference dataset has a minor impact on

the deconvolution but removes marker genes of some cell types from the reference

Setting the study of Avila Cobos et. al. [35] as the start point for the study, we see that a commonly

adopted step previous to deconvolution is to remove undetectable genes from the reference, defined as

genes present in less than 5% of the sequenced cells. However, we believe this step might be risky with

AE data, since we have a high number of cell types in our reference dataset (i.e., AE sc RNA-seq data),

even after removing the lowest populated cell types, namely plasma B cells and monocytes for the sake

of deconvolution quality. We observed that for the remaining 18 cell types (Fig 2A), 11 of these do not

reach the 5% of sequenced cells threshold (Fig 2B). Investigating genes that would be filtered out with

this step, we detected marker genes for some of these 11 cell types, like CD79A for switched-memory

B cells (Fig S1). In contrast, when performing deconvolution on the AE bulk RNA-sequenced plaques,

taking this reference with all genes and only detectable genes, we saw that, in general, differences due to

this filtering are minor compared to the differences in proportions due to the method choice (Fig 2C).

Since this first benchmarking step seems to be little relevant, we just decided to work with all the genes

in the reference from now on for the sake of cautiousness.

3.1.2 Data transformation has a significant effect in deconvolved results, being linear scale

preferable

To assess the effect data transformation has on the methods built upon linear assumptions (i.e.,

NNLS, MuSiC and Bisque), we performed deconvolution using AE data in linear scale, but also in

logarithmic and square-root scale, which could strengthen the linear relationship between highly skewed

variables. We detected huge differences on deconvolved proportions emerging from differently transformed

data (Fig 3A), forcing us to take a closer look to this effect. For that, we artificially built 700 pseudo-bulk

mixtures with random but uniformly cell type proportions (Fig S3A; see Methods) by adding up the

counts of 100 cells from half of the AE sc RNA-seq dataset. The other half and the pseudo-bulk

mixtures were kept in linear scale and log and square-root transformed, and finally used as the input

for new deconvolutions (Fig S3B depicts the deconvolved proportions for the linear case). Since the

next benchmarking step considers different clustering levels of our AE sc RNA-seq dataset (i.e., different

number of cell populations), we ensure this is not masking the transformation effect by repeating these

experiments with the reference annotated with 18, 9 and 6 cell clusters (Fig 4). In all cases, MuSiC and

NNLS deconvolved proportions of the pseudo-bulk mixtures were notoriously more accurate when the

data was kept in the linear scale, but this behaviour was absent with Bisque, which showed a similar

accuracy regardless of the data transformation (Fig 3B). Even though this last analysis does not include

AE (real) bulk data, we believe the results could be translated to this other scenario and, therefore, linear

data is kept for further analysis.
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Fig. 2. Benchmarking 1st step: gene selection. A) UMAP visualization of 18 cell types identified

in plaques from Athero-Express (AE). B) Percentage of sequenced cells per cell type. The dotted

line corresponds to the 5% of total sequenced cells. C) Boxplot with the deconvolved cell type

proportions of 656 AE plaques using 5 deconvolution methods and the reference using all genes and

using only detectable genes.
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Fig. 3. Benchmarking 2nd step: data transformation. A) Boxplot with the deconvolved cell type

proportions of 656 plaques from Athero-Express using 3 deconvolution methods built upon linear

assumptions. B) Normalized root-mean-square error (NRMSE) between the deconvolved and the

known proportions from 700 pseudo-bulk mixtures. Each box contains the NRMSE value from the

deconvolution performed with the reference annotated with 18, 9 and 6 clusters.

3.1.3 Balance between resolution, accuracy and biology results in clustering the AE sc

RNA-seq dataset into 8 cell populations

High similarity of cell types, in terms of their gene expression profiles, leads to a more complex

deconvolution process [37]. Thus, we hypothesized that reclustering the cell populations identified in the

AE sc RNA-seq data to a lower resolution level, would reduce this complexity. Instead of only considering

the original 18 cell types-clustering, we grouped some of these cell types into bigger clusters, based on

their similarities (Fig S4A, Fig S2), to obtain new references. Originally, the reduction was performed to

9 cell populations (taking all the cell types independently and grouping all CD3+ T cells, NK cells, ECs

and macrophages) (Fig S4B) and 6 cell populations (taking the last clustering, but also grouping T and

NK cells altogether, and adding dendritic cells to macrophages to obtain a CD68+ cluster) (Fig S4C).

Since such modifications only affect the sc RNA-seq data, we assessed the clustering effect focusing

on pseudo-bulk mixtures (Fig S3) instead of the AE bulk RNA-sequenced samples. As mentioned in

the section above, we performed the deconvolution of these pseudo-bulk mixtures using the other half of

the AE sc RNA-seq dataset that was not used for building such artificial data. Next, we computed two
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metrics between the deconvolved and known proportions for the three clustering scenarios (Fig 4), namely

correlation and normalized root-mean-square error (NRMSE). In some cases, decreasing the number of

cell populations, and therefore the resolution, is beneficial (i.e., NRSME is lower and the correlation is

higher). The most notorious improvement is detected in the grouping of T and NK cells, so we decide to

keep it. In contrast, the metrics for ECs do not seem to change significantly and since having these two

subtypes can be useful for further analysis (e.g., endothelial to mesenchymal transition studies), we will

leave them independently. And finally, CD68+ cells clustering show a weak improvement, but going back

to the biology and the possibilities we have with our data (e.g., macrophage histological assessment), we

keep the whole macrophages group but leaving out dendritic cells, as a balance between accuracy of the

deconvolution and resolution of cell populations. These decisions converge to a reference clustered into

8 cell populations: T and NK cells, switched-memory B cells, macrophages, SMCs, ECs I, ECs II and

mastocytes.

3.1.4 Bisque proportions show the highest similarity to sc RNA-seq-derived proportions,

but these are not in agreement with histology

Next, to obtain more insight into which method gives us the most accurate deconvolved proportions

in real AE data, we performed deconvolution on 28 bulk RNA-seq samples from which sc RNA-seq data

was also present. We hypothesized that real plaque cell composition would be, at least, comparable

to the proportion of sequenced cells for each plaque. Therefore, from these 28 plaques we obtained

both deconvolved proportions and sequenced cell proportions for the final 8 cell populations (Fig S5).

Considering the latter as the true proportions, we computed the NRMSE and correlation globally and

individually for each cell population (Fig 5A). Overall, Bisque outperforms the other methods in this

analysis, particularly showing an improvement in the case of T and NK cells. However, proportions of

sequenced cells are not always translated to the true composition due to bias in the digestion step. This

might be the case for our sc RNA-seq data since, overall, its derived cell proportions showed no agreement

with histology, when comparing CD3 score to T and NK cells, CD34 score to ECs, CD68 to macrophages

and dendritic cells, and ACTA2 to SMC proportions (Fig 5B).

3.1.5 Despite absolute proportions highly differing between methods, macrophage and

SMCs proportions show agreement with histology and great correlation among all

methods

Going back to our original AE cohort with 656 bulk RNA-sequenced plaques, we deconvolved

their proportions for the 8 cell populations defined in the AE reference. However, such proportions highly

differ according to the method that was used (Fig 6A). While dendritic cells and ECs have low and similar

proportions for all the methods, the other cell clusters show a high variability regarding the method choice.

For example, Bisque suggests T and NK cells to be the most predominant cell population, whereas with

CIBERSORTx this population is almost absent. MuSiC proportions are high for switched-memory B cells,

which shows a lower abundance in all other cases, even with NNLS, which is the most similar method in

terms of architecture. Finally, Scaden results in a balanced predominance of T and NK cells, macrophages

and SMCs.

Next, we aimed to analyze the correlation between cell type proportions coming from the 5 methods

with related histology scores for 654 plaques. However, due to the lack of stainings for other markers, we

could only focus on macrophages (in relation to CD68, fat, ACTA2:CD68 and plaque phenotype), SMC
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Fig. 4. Benchmarking 3rd step: cell clustering. A) Pearson correlation and normalized

root-mean-square error (NRMSE) between deconvolved and known proportions of 700 pseudo-bulk

mixtures, using the reference with 18, 9 and 6 cell populations to reduce the resolution. The dot

colour accounts for the correlation level, whereas its size increases when NRMSE decreases. B) Final

clustering of the Athero-Express single-cell RNA sequencing reference into 8 cell populations.

(in relation to ACTA2, collagen, ACTA2:CD68 and plaque phenotype) and EC proportions (in relation

to vessel density). All the results are summarized in Table 2. For macrophages and SMCs, all methods

proportions obtained a similar and significant correlation with histology (visualized also in Fig S6). In

contrast, comparisons between ECs and vessel density did not show common results among the different
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Fig. 5. Deconvolution of plaques with both bulk and sc RNA-seq data. A) Pearson correlation

and normalized root-mean-square error (NRMSE) between deconvolved and sc-derived proportions

of 28 AE plaques, globally (all) and individually for each cell type. White dots appear in cases where

correlation could not be computed (i.e., standard deviation is zero. In these cases, due to proportions

being zero for all plaques). B) Boxplot with the sc-derived proportions for the 46 plaques in the

reference against the histology score for T and NK cells (CD3.score), ECs (CD34.score), macrophages

and dendritic cells (CD68.score) and SMCs (alpha.SMA.score).

methods and, except for the case of EC I proportions with NNLS, there were no significant results.

Given the discrepancies in proportions (Fig 6A) but the similarity of results obtained above for

certain cell types regardless of the method choice (Table 2), we hypothesized the following: even if the

absolute proportions might not be blindly trusted; given a cell population, the trend of its proportions to be

lower or higher for certain plaques might be kept for all the methods. These cell populations could therefore

be trusted for stratifying plaques or patients based on their proportions. In order to assess this, for each

of the 8 cell clusters, we computed the pair-wise Pearson correlation between the proportions deconvolved

with the 5 methods (Fig 6B). From this, we detected a strong pair-wise correlation for macrophages and

SMCs, whereas the other cell populations showed a weak agreement among the methods. Furthermore,

macrophage proportions of the same plaques, but deconvolved using totally different sc RNA-seq data as

reference ([42], including 3 human carotid plaques), highly correlated with those obtained with the AE

reference (Table S1).
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Fig. 6. Deconvolution of Athero-Express plaques for 8 cell populations (656 plaques). A)

Boxplot with the deconvolved cell type proportions from 5 deconvolution methods. B) Pair-wise

correlations per cell type between the proportions obtained by the 5 methods. A method is not

shown if the correlation could not be computed (i.e., standard deviation is zero).
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Table 2. Deconvolved proportions compared to histology. Associations between deconvolved

proportions and related histological features were computed with Kendall rank correlation for

categorical features and with Pearson correlation for continuous features (vessel density). P-values

are shown with symbols (*** p<0.01; ** p<0.05; * p<0.1). Plaque phenotypes were converted to

scores from 1 to 3, from atheromatous to fibrous.

Cell

population

Histology

score
Bisque CIBERSORTx MuSiC NNLS Scaden

Macrophages

CD68 0.094 (***) 0.096 (***) 0.089 (***) 0.09 (***) 0.1 (***)

Fat 0.132 (***) 0.132 (***) 0.113 (***) 0.105 (***) 0.114 (***)

ACTA2:

CD68
-0.115 (***) -0.134 (***) -0.096 (***) -0.088 (***) -0.1 (***)

Plaque

phenotype
-0.123 (***) -0.127 (***) -0.1 (***) -0.088 (***) -0.1 (***)

Smooth

muscle cells

ACTA2 0.12 (***) 0.113 (***) 0.085 (***) 0.08 (***) 0.142 (***)

Collagen 0.054 (*) 0.07 (**) 0.021 ( ) -0.001 ( ) 0.066 (**)

ACTA2:

CD68
0.165 (***) 0.199 (***) 0.11 (***) 0.1 (***) 0.195 (***)

Plaque

phenotype
0.118 (***) 0.151 (***) 0.051 (*) 0.036 ( ) 0.132 (***)

Endothelial

cells I
Vessel density -0.037 ( ) 0.008 ( ) 0.065 ( ) 0.114 (***) -0.032 ( )

Endothelial

cells II
Vessel density -0.015 ( ) 0.044 ( ) 0.014 ( ) 0.003 ( ) 0.01 ( )
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3.2 Clinical data association

In order to find associations between plaque composition and clinical features, we proceeded with

the proportions provided with Scaden (see discussion, section 4). Instead of proportions from 0 to 1, we

will work with percentages from 0 to 100 to make results easier to interpret. Our main interest is to assess

sex differences in plaque composition, as well as the relationship with atherosclerosis severity, in terms of

clinical symptoms and future MACE following endarterectomy.

3.2.1 Sex differences: female plaques show an increase in SMC content and a significant

reduction of switched-memory B cells

From 654 plaques (Table S2), we assessed with univariate analysis differences in plaque composition

due to the sex of the patient (Table 3). We observed a significantly lower content of switched-memory B

cells in female plaques (β = -0.29 [-0.54, -0.05], p = 0.019) and a trend towards a higher proportion of

SMCs (β = 1.86 [-0.25, 3.96], p = 0.084). The latter observation also held true for the ratio between SMC

and macrophage content (0.13 [-0.016, 0.282], p = 0.079), even though macrophage proportions alone did

not show any significant association. In addition, when we compared the ratio between all the structural

(i.e., SMCs and ECs) and immune cells (i.e., the rest of populations), there was an increase in women but

it did not reach the significance level (β = 0.046 [-0.02, 0.11], p = 0.136).

Table 3. Sex differences in plaque composition. β coefficients, presented with the 95% confidence

interval (CI), and p-values are calculated with univariate linear regression between sex and the

percentage of cells.

Cell population
β-coefficient [95% CI]

(female)
p-value

T and NK cells -0.50 [-2.19, 1.02] 0.473

Switched-memory B cells -0.29 [-0.54, -0.05] 0.019

Macrophages -0.64 [-0.31, 0.18] 0.605

Dendritic cells -0.02 [-0.09, 0.04] 0.462

Smooth muscle cells 1.86 [-0.25, 3.96] 0.084

Endothelial cells I -0.09 [-0.42, 0.25] 0.606

Endothelial cells II -0.13 [-0.33, 0.07] 0.198

Mastocytes -0.10 [-0.31, 0.11] 0.373

Ratio smooth muscle cells/macrophages 0.13 [-0.016, 0.282] 0.079

Ratio structural cells/immune cells 0.046 [-0.02, 0.11] 0.136

3.2.2 An increased total macrophage content associates with atherosclerosis severity,

but macrophage subtypes show different atheroprotective and atheroprogressive

behaviours

In order to understand the role of plaque composition in atherosclerosis severity, we only focused

on the macrophage population and its relationship with symptoms and future MACE based on the

results obtained in the first part of the project (i.e, showing that macrophage deconvolved proportion

can be trusted for patient stratification). We also aimed to disentangle which macrophage subtype

was causing the association signal by performing deconvolution with the same reference, but separating

the macrophage cluster into the 3 original subtypes, namely foam cells, resident macrophages and

20



inflammatory macrophages (Fig S7).

Plaques were categorized as symptomatic (including those patients with stroke or transient

ischaemic attack) or asymptomatic (including those patients with no or minor symptoms, like amaurosis

fugax) for 642 patients (Table S3). We built logistic regression models between macrophages and

symptoms to obtain the odds ratios (OR) and these are summarized in Table 4. For the deconvolved

proportions of macrophages as one cell population, multivariate analysis (corrected for age and body

mass index) between these and the presence of symptoms showed a positive association (OR = 1.02 [1.01,

1.04], p = 0.001). On the other hand, when assessing the macrophage subtypes individually, we detected

this positive association with symptoms in the resident subtype (OR = 1.02 [1.01, 1.05], p = 0.008), while

inflammatory macrophages showed the opposite behaviour (i.e., a protective role) (OR = 0.86 [0.74, 0.99],

p = 0.038). For this scenario, analysis with foam cells were no significant.

Table 4. Association between macrophage content and symptoms. Odds ratios (OR), presented

with the 95% confidence interval (CI), and p-values are calculated with univariate and multivariate

logistic regression between macrophage percentage and symptoms. Two references were used for

the deconvolution (white: 8 cell populations [1 single macrophage cluster], grey: same except for 3

subtypes of macrophages). Multivariate models were adjusted for age and body mass index.

Macrophage population
Univariate Multivariate

OR [95% CI] p-value OR [95% CI] p-value

Macrophage (single cluster) 1.02 [1.01, 1.03] 0.003 1.02 [1.01, 1.04] 0.001

Foam cells 1.03 [0.99, 1.08] 0.199 1.03 [0.99, 1.08] 0.180

Resident macrophages 1.02 [1.00, 1.05] 0.018 1.02 [1.01, 1.05] 0.008

Inflammatory macrophages 0.86 [0.75, 0.99] 0.040 0.86 [0.74, 0.99] 0.038

MACE were annotated for 649 patients (Table S4) during the 3 years following the endarterectomy

procedure. Univariate and multivariate Cox proportional hazard regression models were used to calculate

the hazard ratio (HR) for macrophage populations. For the sake of visualization and interpretability,

we divided the patients into 3 categories regarding their macrophage percentage. All the results are

summarized in Table 5 and the models based on tertiles are also depicted in Fig 7. Univariate analysis

showed the following. When macrophages were deconvolved as a whole population, there was a positive

association between macrophages and MACE: patients whose plaques had high macrophage content,

compared to those with low content, were significantly at higher risk of undergoing a MACE within the

next 3 years after surgery (HR = 1.84 [1.09, 3.11], p = 0.023). Besides, refined deconvolution with the

3 macrophage subtypes revealed plaques with higher foam cells content to be at higher risk of MACE

(HR = 2.08 [1.21, 3.58], p = 0.008). The same association was found for resident macrophages (HR =

1.77 [1.05, 2.97], p = 0.031), but this was not applicable to inflammatory macrophages. However, the

significance levels of the models for macrophages as a single cluster and resident macrophages individually

were diminished in multivariate analysis (p from <0.05 to <0.1), when correcting for age, diabetes,

hypertension and high-density lipoprotein (HDL) levels.

Finally, since we provided evidence that proportions of macrophages, as a whole cluster, could

be trusted but this was not assessed for the 3 subtypes case, we wanted to evaluate whether the same

associations held true when using different sc RNA-seq data as a reference. The reference from Pan et.

al. ([42]) was also used for deconvolution taking the 3 macrophage subtypes individually (annotated as 1,

2 and 3). Interestingly, macrophage 3, which were found to be enriched for inflammatory markers (data

not shown), showed again a negative association with symptoms (Table S5). And, even though we could
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Table 5. Association between macrophage content and major cardiovascular events. Hazard

ratios (HR), presented with the 95% confidence interval (CI), and p-values are calculated with Cox

proportional hazard models between macrophage percentage and symptoms. Two references were

used for the deconvolution (grey: 8 cell populations [1 single macrophage cluster], white: same

except for 3 subtypes of macrophages). Multivariate models were adjusted for age, hypertension,

diabetes and high-density lipoprotein levels.

Macrophage population
Continuous or

tertile (% interval)

Univariate Multivariate

HR [95% CI] p-value HR [95% CI] p-value

Macrophage

(single population)
Continuous 1.02 [1.00, 1.03] 0.012 1.02 [0.99, 1.03] 0.067

Low tertile

(8.22 to 25.22%)
1 (ref) 1 (ref)

Intermediate tertile

(25.22 to 39%)
1.29 [0.74, 2.26] 0.370 1.46 [0.76, 2.81] 0.253

High tertile

(39 to 75.9%)
1.84 [1.09, 3.11] 0.023 1.78 [0.94, 3.37] 0.075

Foam cells Continuous 1.05 [1.02, 1.09] 0.004 1.06 [1.01, 1.12] 0.001

Low tertile

(0.35 to 1.47%)
1 (ref) 1 (ref)

Intermediate tertile

(1.47 to 3.49%)
1.54 [0.88, 2.72] 0.134 1.68 [0.59, 3.34] 0.135

High tertile

(3.49 to 40.6%)
2.08 [1.21, 3.58] 0.008 2.25 [1.15, 4.42] 0.018

Resident macrophages Continuous 1.02 [1.00, 1.05] 0.070 1.01 [0.99, 1.04] 0.384

Low tertile

(3.03 to 15.5%)
1 (ref) 1 (ref)

Intermediate tertile

(15.5 to 23%)
1.21 [0.69, 2.10] 0.511 1.41 [0.71, 2.76] 0.316

High tertile

(23 to 55.2%)
1.77 [1.05, 2.97] 0.031 1.76 [0.57, 3.29] 0.075

Inflammatory macrophages Continuous 1.10 [0.93, 1.30] 0.263 1.05 [0.86, 1.28] 0.657

Low tertile

(0.13 to 0.94%)
1 (ref) 1 (ref)

Intermediate tertile

(0.94 to 1.82%)
1.25 [0.80, 2.14] 0.416 1.34 [0.74, 2.60] 0.382

High tertile

(1.82 to 6.71%)
1.46 [0.68, 2.46] 0.155 1.55 [0.64, 2.98] 0.186

not identify the other two subtypes as resident or foam-like, we obtained a significant positive association

for one subtype, while the other remained non significant, suggesting the same behaviour obtained with

our data. However, none of the associations with MACE reached the significant level (Table S6).

3.2.3 Classical marker gene expression levels also reveal some clinical associations but these

are weaker, pointing towards an added value of the deconvolution

The last question to address is whether deconvolution holds an added value with respect to simpler

analysis relying only on bulk data. We aimed to recover the same associations found in this section

by interrogating the expression of gene markers in the bulk RNA-seq data at a univariate level. On
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Fig. 7. Cox proportional hazard models for macrophage content associated with major

cardiovascular events. The percentages tested were derived from the deconvolution using the

reference with 8 cell populations (A: Macrophage as a single population) and the reference with the

3 macrophage subtypes (B: foam cells, C: resident macrophages, D: inflammatory macrophages).

P-values obtained by the univariate association between the lowest to highest tertile.

the one hand, linear regression models were built to associate sex with expression levels of CD79A, for

switched-memory B cells, and ACTA2, for SMCs. While CD79A showed a positive but weak trend

towards female plaques (β = -1.32 [-2.88, 0.23], p = 0.095), ACTA2 association with sex had no statistical

power. On the other hand, CD68 and CD14 were chosen as macrophage general markers, while ABCA1

was selected for foam macrophages, IL1B for inflammatory-like and LYVE1 for resident-like. Logistic

regression models with symptoms revealed significant relationships with CD14 (OR = 1.0013 [1.0003,

1.0024], p = 0.014) and ABCA1 (OR = 1.0025 [1.0003, 1.0048], p = 0.031). Associated with MACE, we

found weak trends with both general markers: CD68 (HR = 1.003 [0.997, 1.007], p = 0.083) and CD14

(1.001 [0.999, 1.002], p = 0.096).
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Table 6. Association of marker genes expression and clinical features. Coefficients presented

with the 95% confidence interval (CI) and the p-value from linear regression (association with sex),

log regression (association with symptoms) and cox hazard proportional model (association with

MACE). Expression levels in counts per million. OR: odds ratio, HR: hazard ratio.

β-coefficient [95% CI]

(sex: female)
p-value

ACTA2 44.5 [-72.27, 161.21] 0.455

CD79A -1.32 [-2.88, 0.23] 0.095

OR [95% CI]

(symptoms)
p-value

CD68 1.00252 [1.000, 1.007] 0.201

CD14 1.0013 [1.0003, 1.0024] 0.014

ABCA1 1.0025 [1.0003, 1.0048] 0.031

IL1B 1.0152 [0.993, 1.040] 0.201

LYVE1 1.0089 [0.963, 1.059] 0.711

HR [95% CI]

(MACE)
p-value

CD68 1.003 [0.997, 1.007] 0.083

CD14 1.001 [0.999, 1.002] 0.096

ABCA1 1.002 [0.999, 1.004] 0.151

IL1B 1.015 [0.986, 1.039] 0.226

LYVE1 1.016 [0.984, 1.075] 0.571

24



4 Discussion

Composition of atherosclerotic plaques is not only known to be rich and heterogeneous, but

also to be influenced by patient characteristics, like sex, and to influence atherosclerosis manifestation.

Traditional methods to study the composition of plaques might be falling behind as single-cell analysis

unravel increasing number of cells playing a role in these plaques. Recently, the concept of computationally

imputing tissue composition has been a subject undergoing intense study. Known as deconvolution, it uses

sc RNA-seq data as a reference to impute the cell type proportions of tissues with bulk gene expression.

However, in literature, studies that propose new deconvolution algorithms still outnumber those that

make use of deconvolution as part of their research workflow. This is probably caused by the lack of

proper data, since the tissue origin of both sc and bulk RNA-seq datasets should be similar [43]. Second

of all, there is not yet a gold standard to perform this analysis, leaving researchers alone with the choice

of data processing and method selection. Here, we aimed to use sc and bulk RNA-seq results coming

from human carotid atherosclerotic plaques to retrieve their cell proportions. In order to understand how

data processing and the selection of the method can influence our results, and therefore be able to select

the best approach, we first performed a benchmarking accounting different deconvolution scenarios and

methods (including NNLS, MuSiC, Bisque, CIBERSORTx and Scaden). Next, with the final proportions,

we investigated associations with sex and atherosclerosis severity.

Initially, we wanted to follow the first steps of a popular deconvolution study [35]. As a quality step,

genes of the sc reference that could not be detected in more than 5% of the sequenced cells were removed.

However, we were reluctant of this approach and we showed that, even though deconvolved proportions

did not change significantly, this can be dangerous for sc datasets like ours. If a large number of cell types

is identified, there will be cell types with a number of sequenced individual cells below this threshold

and, therefore, marker genes would get lost. Like Avila-Cobos et al. concluded for artificial pseudo-bulk

analysis [35], we observed a big effect of data transformation on the deconvolution of our plaques for some

methods. Bisque was not as affected as MuSiC and NNLS, probably owing to its inherent transformation

of the bulk data to resemble the sc properties [32]. While square-root and log transformed data would give

us more plausible results for some cell types (MuSiC linear results showed an undesired high proportion

of switched-memory B cells), analysis on pseudo-bulk mixtures created from our sc reference, determined

a better performance with linear data, in accordance with their results and other studies [35, 43].

We found that reducing the number of cell types in the sc reference by grouping similar

clusters together, improved the deconvolution performance on artificial mixtures. Such clustering-based

improvement was specially notorious for T and NK cells, which were in turn, the group of cells whose

transcriptomic profiles showed a higher correlation. This agrees with the spillover effect suggested by

Sturm et al. owing to the multicolinearity of some cell types [37]. Of note, MuSiC was built taking

this similarity problem into account and it initially infers the proportion of similar clusters of cell types

[31]; but, interestingly, we can see it is one of the methods that benefits more from the reclustering we

performed. Results from a very recent research challenge on tumour deconvolution (DREAM) also showed

that while most of the published methods could predict well proportions for the major cell types, these

worsen when cell subtypes were considered [44]. Worth to mention, another benchmarking study focused

on brain data, concluded that subtypes should only be included either if their abundance is higher than

2% or if they are not too transcriptomically similar [36]. Nevertheless, the former condition is met for

some subtypes we grouped together (like resident macrophages). Still, our reduction of the sc dataset into

eight distinct cell populations was done as a balance between accuracy and resolution. Unfortunately,

such decision goes against our willing to unravel plaque composition at high resolution, which was one of
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the needs we wanted to cover with deconvolution.

Even after all the data processing decisions, we still detected an important disagreement between

all deconvolution methods results on real bulk data. This was not found, at least that noticeably, when

we worked with artificial pseudo-bulk mixtures. However, this is not surprising given that these mixtures

were created by a strict linear calculation (i.e., adding the counts of individual cells from the reference

dataset); and we know that most of the methods are inherently assuming this linear association between

the sc and bulk RNA-seq data. Thus, this difference on artificial and real data scenarios suggests that

the relationship between our data is more complex rather than strictly linear. If we investigate methods

behaviour and architecture individually, we detect the following. (I) Bisque results in a large abundance

of T and NK cells and it is the method with better agreement with the proportions derived from the

sc reference. Actually, Bisque implementation considers sc proportions in one of its main steps [32], but

we have shown that our sc proportions might not be trusted. Therefore, Bisque shoud be rejected. (II)

CIBERSORTx is a widely used tool and it is not built under the strict linear assumption. However, it

generally suggested the absence of cell populations other than SMCs, macrophages and switched-memory

B cells in the plaques. (III) While NNLS and MuSiC are theoretically very similar, MuSiC give weights to

genes that are consistent across different plaques [31]. This weighting did not seem to affect the results of

artificial-data analysis and MuSiC performed better than other methods, but it made switched-memory

excessively outnumber all the other populations on real plaques data. (IV) Scaden, which uses a neural

network to infer the proportions [34], resulted in a plausible composition of the plaques with T and NK

cells, macrophages and SMCs as the main populations [23, 28]. Furthermore, in line with the suggested

false strict linear relationship we might have between our bulk and sc data, we believe that more complex

architectures (e.g., Scaden) are needed for the sake of robustness, which seems to be improved with neural

network-based methods [34, 45].

While most studies acknowledge differences between methods, they mainly focus on selecting the

method that correlates best with known proportions [35, 36, 45, 46], but they do not address if method

results correlate with each other. We showed evidence that rather than relying on a single method, it might

be wiser to only rely on some cell types. Even if the absolute proportions scored by different methods

might differ, we know that for macrophages and SMCs, proportions correlated between all the methods.

This suggests that, based on these abundances, all methods would stratify plaques (or patients) the same

way, making the associations method-independent. Also, for these two cell populations we also found

agreement with previous histology assessment and, for macrophages, we also detected a nice correlation

with proportions deconvolved with another reference dataset. Therefore, not only might macrophage

associations be method-independent but also reference-independent, which is key since the selection of

reference is known to highly impact the results [36, 43, 47]. It has been mentioned that deconvolution

methods might be chosen based on the cell type of interest [37], but this interestingly suggests the opposite.

The cell type from the reference we can trust better might be chosen based on the methods agreement.

This finding about SMCs and macrophages is more consistent than relying on Scaden for all the cell type

proportions.

For the clinical part of the project, we aimed to detect sex differences on plaque composition

based on Scaden deconvolution results for these 8 reduced cell populations. With univariate analysis, we

found a trend for female plaques to be richer in SMCs and poorer in immune cells, specially showing a

significant reduction of switched memory B cells compared to male plaques. The association with SMCs

strengthen the concept of fibrous cap thinning in males [48], who normally present vulnerable plaques

[12–14]. Therefore, we also expected a higher macrophage abundance in male plaques, but this was not
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found in our analysis. However, this association could be hindered by the clustering of all macrophages,

which included foam and inflammatory macrophages on top of resident macrophages, with the former

group being particularly associated with sex regarding Sangiorgi et al. results [14]. The significant

reduction of switched-memory B cells in female plaques is interesting, but we have to be careful, since we

did not find agreement of these proportions with other deconvolution methods. Still, peripheral switched

and unswitched-memory B cells were found to be higher in patients with less secondary events after

endarterectomy [49]; and patients who benefit more from this surgery are males [50]. This might open a

line to be further explored, but we can not establish conclusive results regarding this specific cell type.

Narrowing the analysis to the macrophage population, we detected a relationship between its

content and atherosclerosis severity. A higher macrophage abundance was significantly associated with

symptoms (including stroke and TIA) and MACE within 3 years after endarterectomy, suggesting

macrophages to be a risk factor. Macrophages have been defined as hallmarks of the vulnerable plaque

[8] and have been frequently localized at plaque rupture sites [51]. On the other hand, vulnerable plaque

characteristics are more typical in patients undergoing more severe symptoms [8, 10] and worse outcome

after surgery [11]. However, this last study by Hellings et al., with histological comparison of plaques

also from the AE cohort, could only establish this association for intraplaque hemorrhage, but not for

macrophage infiltration. Rather than regarding this disagreement as an opposite direction, we believe

deconvolution might overcome the power of histology assessment in this case. Nevertheless, the rough

classification of macrophages into pro-inflammatory M1 and anti-inflammatory M2 unraveled different

behaviours, suggesting M2-like to boost atherosclerosis regression [52, 53]. Also, De Gaetano et al.

concluded with gene and protein expression analysis, that while M1 markers where higher expressed in

symptomatic plaques, M2 markers where higher expressed in asymptomatic plaques [54]. For this reason,

we obtained the deconvolved proportions of the macrophage subtypes individually, namely resident,

inflammatory and foam macrophages. Nevertheless, if we regard our inflammatory subtype as the M1

group, and resident subtype as the M2 macrophages, our results do not match with De Gaetano et al.

[54], and neither did analysis on our bulk RNA-seq expression levels. Our deconvolved data suggests

that (I) resident macrophages are more abundant in symptomatic plaques and in patients with future

MACE; (II) foam cells are a risk factor for MACE; and (III) inflammatory macrophage content is lower in

symptomatic plaques. Therefore, our defined inflammatory macrophages seem to hide an atheroprotective

role. Still, we might think about another option. We are assuming plaque composition is predictive of

the symptoms, but it has also been assessed that these clinical manifestations trigger a remodeling of the

plaque [55], therefore changing plaques composition. Thus, associations with symptoms could be targeted

bidirectionally.

Clinical associations with plaque compositions could have also been targeted at the gene expression

level analyzed from the bulk RNA-seq data. However, we detect an added value of deconvolution, since

some associations could be found, but less consistently than what we evaluated with deconvolved results.

CD14, as a general macrophage marker, was associated with symptoms, as well as ABCA1 as a foam

cell marker. However, we would also expect the same for CD68, but this was not found. In terms of

sex differences, ACTA2 as a marker of SMCs showed no association, but interestingly, CD79A, targeting

switched memory-B cells was lower expressed in female plaques.

Finally, we must mention some of the limitations of our study. On the one hand, since we did

not have known cell proportions of the plaques to compare the deconvolved proportions with, we had to

find other approaches. We used the deconvolution of artificially created pseudo-bulk mixtures to assess

the effect of data transformation and reference clustering; but these artificial data is not similar to the
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real bulk RNA-seq data we have from the plaques. When working with real mixtures, we wanted to

compare deconvolved with sc-derived proportions, but this was discarded owing to a poor reliability of

the latter. This left us with the comparison between deconvolved proportions and histology, but we only

had histology scores targeting macrophages, SMCs and (undirectly) ECs. On the other hand, clinical

associations found for cell types other than SMCs and macrophages, might be taken carefully since for

the rest of populations we could not show evidence on proportions being as reliable (either in terms of

histology or in terms of deconvolution methods agreement). The same holds true for associations with

macrophages subtypes.

Near-future steps to be taken must consider a sanity check of the deconvolved proportions. Still

in the computational side, we might perform deconvolution using another sc RNA-seq reference from

carotid plaques coming from a cohort with a similar number of patients to ours, or we could also compare

it with results from the deconvolution of DNA methylation data. Nevertheless, we will still need a

validation with approaches like stainings for other cell populations markers that were not gathered in the

AE data, flow cytometry or fluorescence activated cell sorting analysis. For a longer-term future, if the

associations found here can be validated, new therapies could aim to lower those macrophage subtypes

that associate with atherosclerosis severity. And, if macrophage content is indeed predictive of MACE

following the entarterectomy, we could consider to systematically send removed plaques to sequence to

get their deconvolved proportions, and based on this analysis, adapt patients care.

5 Conclusions

Deconvolution of atherosclerotic plaques based on RNA-seq data is not straightforward. To make it

easier, we should reduce the number of cell types identified in the sc RNA-seq reference. Even though all

deconvolution methods obtained very different cell abundances, the relative proportions for macrophages

and SMCs were method-independent (and reference-independent for macrophages), suggesting an equal

stratification of the patients based on these proportions. Female plaques showed a tendency to have

greater SMC content, but no sex differences were found based on macrophages abundance. Macrophages,

in turn, were associated with atherosclerosis severity and results suggest that its subtypes might have

different behaviours on this association (i.e., atheroprotective vs atheroprogressive), but this remains to

be validated with further analysis.
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20. Kolossváry, M., Szilveszter, B., Merkely, B. & Maurovich-Horvat, P. Plaque imaging with CT—a

comprehensive review on coronary CT angiography based risk assessment. Cardiovascular Diagnosis

and Therapy 7 (2017).

21. Hellings, W. E. et al. Intraobserver and interobserver variability and spatial differences in histologic

examination of carotid endarterectomy specimens. Journal of Vascular Surgery 46, 1147–1154

(2007).

22. Depuydt, M. A. et al. Microanatomy of the Human Atherosclerotic Plaque by Single-Cell

Transcriptomics. Circulation Research, 1437–1455 (2020).

23. Winkels, H. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell

RNA-sequencing and mass cytometry. Circulation Research 122, 1675–1688 (2018).

24. McQueen, L. W. et al. Next-Generation and Single-Cell Sequencing Approaches to Study

Atherosclerosis and Vascular Inflammation Pathophysiology: A Systematic Review. Frontiers in

Cardiovascular Medicine 9, 1–19 (2022).

25. Hartman, R. et al. Sex-dependent gene regulation of human atherosclerotic plaques by DNA

methylation and transcriptome integration points to smooth muscle cell involvement in women.

Atherosclerosis 331, e217 (2021).

26. Mokry, M. et al. Transcriptomic-based clustering of advanced atherosclerotic plaques identifies

subgroups of plaques with differential underlying biology that associate with clinical presentation.

medRxiv, 2021.11.25.21266855 (2021).

27. Slenders, L., Tessels, D. E., Laan, S. W. V. D. & Pasterkamp, G. The Applications of Single-Cell

RNA Sequencing in Atherosclerotic Disease. 9, 1–12 (2022).

28. Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nature

Medicine 25, 1576–1588 (2019).

29. Fernandez, D. M. & Giannarelli, C. Immune cell profiling in atherosclerosis: role in research and

precision medicine. Nature Reviews Cardiology 19, 43–58 (2022).

30



30. Mullen, K. M. & van Stokkum, I. H. M. nnls: The Lawson-Hanson algorithm for non-negative least

squares (NNLS) R package version 1.4 (2012).

31. Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with

multi-subject single-cell expression reference. Nature Communications 10 (2019).

32. Jew, B. et al. Accurate estimation of cell composition in bulk expression through robust integration

of single-cell information. Nature Communications 11, 1971 (2020).

33. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital

cytometry. Nature Biotechnology 37, 773–782 (2019).

34. Menden, K. et al. Deep learning–based cell composition analysis from tissue expression profiles.

Science Advances 6, eaba2619 (2020).

35. Avila Cobos, F., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P. & De Preter, K. Benchmarking

of cell type deconvolution pipelines for transcriptomics data. Nature Communications 11 (2020).

36. Sutton, G. & Poppe, D. Comprehensive evaluation of human brain gene expression deconvolution

methods. Nature Communications, 2020.06.01.126839 (2022).

37. Sturm, G. et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods

for immuno-oncology. Bioinformatics 35, i436–i445 (2019).

38. Verhoeven, B. A. N. et al. Athero-express: Differential atherosclerotic plaque expression of mRNA

and protein in relation to cardiovascular events and patient characteristics. Rationale and design.

European Journal of Epidemiology 19, 1127–1133 (2004).

39. Association, W. M. World Medical Association Declaration of Helsinki. Ethical principles for medical

research involving human subjects. Bulletin of the World Health Organization 79, 373–374 (2001).

40. Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome biology

17, 1–7 (2016).

41. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell (2021).

42. Pan, H. et al. Single-Cell Genomics Reveals a Novel Cell State during Smooth Muscle Cell Phenotypic

Switching and Potential Therapeutic Targets for Atherosclerosis in Mouse and Human. Circulation,

2060–2075 (2020).

43. Schelker, M. et al. Estimation of immune cell content in tumour tissue using single-cell RNA-seq

data. Nature Communications 8, 1–12 (2017).

44. White, B. S. et al. Community assessment of methods to deconvolve cellular composition from bulk

gene expression. bioRxiv, 2022.06.03.494221 (2022).

45. Lin, Y. et al. DAISM-DNNXMBD: Highly accurate cell type proportion estimation with in silico

data augmentation and deep neural networks. Patterns 3, 100440 (2022).

31



46. Jin, H. & Liu, Z. A benchmark for RNA-seq deconvolution analysis under dynamic testing

environments. Genome Biology 22, 1–23 (2021).

47. Vallania, F. et al. Leveraging heterogeneity across multiple datasets increases cell-mixture

deconvolution accuracy and reduces biological and technical biases. eng. Nature communications

9, 4735 (2018).

48. Man, J. J., Beckman, J. A. & Jaffe, I. Z. Sex as a Biological Variable in Atherosclerosis. Circulation

Research, 1297–1319 (2020).

49. Meeuwsen, J. A. L. et al. High Levels of (Un)Switched Memory B Cells Are Associated With

Better Outcome in Patients With Advanced Atherosclerotic Disease. Journal of the American Heart

Association 6, e005747 (2017).

50. Sarac, T. P. et al. Gender as a primary predictor of outcome after carotid endarterectomy. eng.

Journal of vascular surgery 35, 748–753 (2002).

51. Kolodgie, F. D. et al. Localization of Apoptotic Macrophages at the Site of Plaque Rupture in Sudden

Coronary Death. The American Journal of Pathology 157, 1259–1268 (2000).

52. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: A dynamic balance.

Nature Reviews Immunology 13, 709–721 (2013).

53. Barrett, T. J. Macrophages in Atherosclerosis Regression. Arteriosclerosis, Thrombosis, and Vascular

Biology 40, 20–33 (2020).

54. De Gaetano, M., Crean, D., Barry, M. & Belton, O. M1- and M2-Type Macrophage Responses Are

Predictive of Adverse Outcomes in Human Atherosclerosis. eng. Frontiers in immunology 7, 275

(2016).

55. Peeters, W. et al. Carotid Atherosclerotic Plaques Stabilize After Stroke. Arteriosclerosis,

Thrombosis, and Vascular Biology 29, 128–133 (2009).

32



7 Supplementary data

7.1 Supplementary figures

Fig. S1. Switched-memory B cells gene marker. Violin plot of CD79A expression in 18 cell types

of the Athero-Express single-cell RNA sequencing dataset.
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Fig. S2. Cell type signature correlation. Pearson correlation plot for the average gene expression

signature of each cell type in the Athero-Express single-cell RNA sequencing dataset.
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Fig. S3. Pseudo-bulk mixtures proportions. A) Boxplot of the simulated proportions for

700 pseudo-bulk mixtures created by adding the counts of 100 randomly selected cells of the

Athero-Express single-cell RNA sequencing (AE sc RNA-seq) training dataset (50% split). The

cell type proportions were established previously by a random but uniform distribution. B) Boxplot

of the pseudo-bulk mixtures deconvolved proportions using the AE sc RNA-seq test dataset (50%

split). In red, known proportions.
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Fig. S4. Athero-Express single-cell RNA sequencing data clustering. UMAP visualization of A)

Original clustering of 18 cell populations. B) Reduction to 9 cell populations. C) Reduction to 6

cell populations.
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Fig. S5. Plaques with both bulk and single-cell RNA sequencing (sc RNA-seq) data from

Athero-Express (AE). A) Boxplot with the deconvolved cell type proportions of 28 AE plaques

which were also part of the sc RNA-seq dataset. In red, proportions derived from the sc RNA-seq

dataset (proportion of sequenced cells per cell type). B) Boxplot with the deconvolved proportions

against the histology score for T and NK cells (CD3.score), ECs (CD34.score), macrophages and

dendritic cells (CD68.score) and SMCs (alpha.SMA.score).
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Fig. S6. Deconvolved proportions with histology association. Boxplot of the deconvolved

macrophage and smooth muscle cells proportions of 654 AE plaques by histology scores, with the

method A) Bisque, B) CIBERSORTx, C) MuSiC, D) NNLS and E) Scaden. Plaque phenotype 1-3

goes from atheromatous-fibrous.
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Fig. S7. Deconvolved proportions with macrophage population divided into 3 clusters. A)

UMAP visualization of the cell populations. B) Boxplot with the deconvolved proportions of the

populations in (A) for 656 Athero-Express plaques.
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7.2 Supplementary tables

Table S1. Deconvolved proportions using Athero-Express and Pan et al. [42] references.

Pearson correlation between the proportions of similar cell type proportions identified in both

single-cell RNA sequencing references. P-values are shown with symbols (*** p<0.01; ** p<0.05; *

p<0.1).

Cell population Bisque CIBERSORTx MuSiC NNLS Scaden

T Cells 0.499 (***) 0.087 (**) 0.263 (***) 0.027 ( ) 0.081 (**)

Macrophages 0.873 (***) 0.958 (***) 0.932 (***) 0.913 (***) 0.943 (***)

Smooth Muscle Cells 0.683 (***) 0.504 (***) 0.709 (***) 0.599 (***) 0.484 (***)

Endothelial Cells I 0.783 (***) 0.678 (***) 0.35 (***) 0.153 (***) 0.344 (***)

Endothelial Cells II 0.154 (***) -0.033 ( ) -0.044 ( ) 0.075 (*) 0.384 (***)

Mastocytes 0.738 (***) 0.107 (***) 0.304 (***) 0.124 (***) 0.854 (***)

Table S2. Baseline characteristics of the Athero-Express patients stratified by sex. P-values

are calculated using t-tests for continuous variables (presented as mean (SD)) and chi-squared tests

for categorical variables (presented as N (%)). LDL: Low-Density Lipoprotein, HDL: High-Density

Lipoprotein, BMI: Body Mass Index, CAD: Coronary Artery Disease

Baseline characteristics
Female

(n = 169)

Male

(n = 485)
p-value

Smoker = yes (%) 71 (44.1) 160 ( 33.3) 0.017

Diabetes = yes (%) 35 (20.7) 108 ( 22.3) 0.754

Hypertension = yes (%) 144 (85.2) 426 ( 87.8) 0.456

Symptoms = symptomatic (%) 113 (68.1) 324 ( 68.1) 1.000

Age (mean (SD)) 68.254 (9.509) 68.623 (8.705) 0.644

BMI (mean (SD)) 26.685 (4.565) 26.600 (3.490) 0.811

Total cholesterol (mean (SD)) 4.919 (1.340) 4.579 (1.199) 0.011

Triglycerides (mean (SD)) 1.578 (0.887) 1.638 (0.955) 0.564

LDL (mean (SD)) 2.842 (1.076) 2.754 (1.031) 0.455

HDL (mean (SD)) 1.285 (0.417) 1.093 (0.345) <0.001

CAD history = no (%) 126 (75.0) 308 ( 63.5) 0.009
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Table S3. Baseline characteristics of the Athero-Express patients stratified by symptoms.

P-values are calculated using t-tests for continuous variables (presented as mean (SD)) and

chi-squared tests for categorical variables (presented as N (%)). LDL: Low-Density Lipoprotein,

HDL: High-Density Lipoprotein, BMI: Body Mass Index, CAD: Coronary Artery Disease, MACE:

MAjor Cardiovascular Event.

Baseline characteristics
Asymptomatic

(n = 205)

Symptomatic

(n = 437)
p-value

Sex = male (%) 152 (74.1) 324 ( 74.1) 1.000

Smoker = yes (%) 80 (39.2) 146 ( 34.3) 0.262

Diabetes = yes (%) 44 (21.5) 95 ( 21.7) 1.000

Hypertension = yes (%) 181 (88.3) 379 ( 86.7) 0.669

Age (mean (SD)) 67.000 (8.561) 69.320 (8.956) 0.002

BMI (mean (SD)) 27.034 (3.907) 26.407 (3.687) 0.056

Total cholesterol (mean (SD)) 4.716 (1.267) 4.650 (1.244) 0.608

Triglycerides (mean (SD)) 1.637 (0.812) 1.614 (0.998) 0.817

LDL (mean (SD)) 2.861 (1.083) 2.743 (1.028) 0.297

HDL (mean (SD)) 1.155 (0.402) 1.137 (0.358) 0.630

CAD history = no (%) 127 (62.0) 298 ( 68.3) 0.131

MACE = no (%) 179 (87.3) 370 ( 85.6) 0.655

Table S4. Baseline characteristics of the AE patients stratified by major cardiovascular events

(MACE). P-values are calculated using t-tests for continuous variables (presented as mean (SD))

and chi-squared tests for categorical variables (presented as N (%)). LDL: Low-Density Lipoprotein,

HDL: High-Density Lipoprotein, BMI: Body Mass Index, CAD: Coronary Artery Disease.

Baseline characteristics
No MACE

(n = 561)

MACE

(n = 88)
P-value

Sex = male (%) 410 ( 73.1) 72 (81.8) 0.107

Smoker = yes (%) 195 ( 35.2) 35 (41.2) 0.343

Diabetes = yes (%) 110 ( 19.6) 30 (34.1) 0.003

Hypertension = yes (%) 481 ( 85.7) 84 (95.5) 0.019

Symptoms = symptomatic (%) 370 ( 67.4) 62 (70.5) 0.655

Age (mean (SD)) 68.173 (8.858) 70.989 (8.490) 0.005

BMI (mean (SD)) 26.512 (3.717) 27.266 (4.071) 0.094

Total cholesterol (mean (SD)) 4.709 (1.261) 4.446 (1.131) 0.121

Triglycerides (mean (SD)) 1.612 (0.913) 1.709 (1.083) 0.451

LDL (mean (SD)) 2.805 (1.045) 2.650 (1.015) 0.291

HDL (mean (SD)) 1.157 (0.370) 1.057 (0.396) 0.054

CAD history = No (%) 379 ( 67.6) 51 (58.6) 0.129
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Table S5. Association between symptoms and macrophage content obtained with Pan et al.

reference [42]. Odds ratios (OR), presented with the 95% confidence interval, and p-values are

calculated with univariate and multivariate logistic regression between macrophage percentage and

symptoms. Multivariate models were adjusted for age and body mass index.

Macrophage population
Univariate Multivariate

OR [95% CI] p-value OR [95% CI] p-value

Macrophage 1 1.02 [1.00, 1.04] 0.062 1.02 [1.00, 1.05] 0.040

Macrophage 2 1.17 [0.78, 1.90] 0.492 1.08 [0.65, 1.86] 0.777

Macrophage 3 0.80 [0.67, 0.95] 0.009 0.77 [0.64, 0.93] 0.006

Table S6. Association between MACE and macrophage content obtained with Pan et al.

reference [42]. Hazard ratios (HR), presented with the 95% confidence interval, and p-values are

calculated with Cox proportional hazard models between macrophage percentage and symptoms.

Multivariate models were adjusted for age, hypertension, diabetes and high-density lipoprotein levels.

Macrophage population
Univariate Multivariate

HR [95% CI] p-value HR [95% CI] p-value

Macrophage 1 1.00 [0.97, 1.03] 0.999 1.00 [0.97, 1.04] 0.848

Macrophage 2 1.19 [0.82, 1.73] 0.362 1.16 [0.63, 2.14] 0.632

Macrophage 3 1.15 [0.93, 1.41] 0.199 1.15 [0.90, 1.47] 0.278
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7.3 Supplementary code

Developed code for this project can be found on the following repository:

https://github.com/gemmabb/DeconvolutionAtheroscleroticPlaques.
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