
MSc thesis in Game and Media Technology

Utrecht University - Faculty of Beta Sciences

Improved methods on GPU based
versatile and efficient hydrodynamics

code for scientific applications

First supervisor:
Dr. D. Panja

Second supervisor:
Dr. J. de Graaf

Author:

Florian Gaeremynck

7006705
f.k.r.gaeremynck@students.uu.nl

12/12/2022

Contents

Abstract 3

1 Introduction 4

1.1 Mathematical background . 4

1.2 Trends towards parallel compute . 5

1.3 Previous work . 6

1.4 Taking the next steps . 7

2 Methodology 10

2.1 Technical details of the code-base . 10

2.1.1 Initialization of configuration . 10

2.1.2 Calculating and solving the velocity field 11

2.1.3 Displaying results . 11

2.2 Methodology of this project . 12

2.3 Tooling . 12

3 Adding configurations 13

3.1 Tilted channels . 13

3.1.1 Implementation . 13

3.1.2 Extending control over the creation of configurations 14

3.1.3 Results . 14

3.2 Arbitrary boundaries . 17

3.3 Cylindrical obstacle . 19

4 Single core optimization of the solving stage 22

4.1 Analytical gradient calculation . 22

4.2 Adaptive learning rate using Polyak’s length 23

4.3 Dynamic Polyak length . 25

4.4 Multi-threading . 27

5 Expanding Simulation Size 28

5.1 Forcing convergence . 28

6 Scripting 30

6.1 Examples . 30

6.2 Interface . 31

1

7 Future work 32

7.1 Optimisation . 32

7.1.1 Vectorization . 32

7.1.2 Complete use of GPU for calculation and solving 32

7.1.3 Symmetry . 34

7.2 Convergence . 34

7.3 Output . 34

2

Abstract

Fluid simulations are very expensive computational tasks. There is a balancing act in-

volved between the complexity of the system and its relative scale. Being able to optimise

these algorithms at scale makes this trade-off more forgiving and allows researchers to

perform more detailed simulations. As such this is a topic of ongoing research and devel-

opment. There is a general trend towards integration with techniques and hardware used

in the field of high performance computing (HPC) [WJ17]. We investigate and expand the

use of heterogeneous systems taking advantage of the parallel architecture of a graphics

processing unit (GPU) to optimise parts of the fluid simulation algorithm. In this thesis

we expand on work done by Stam et al. [Sta21]. In this preceding work an algorithm

was developed to offload parts of the task to the GPU. We use this algorithm to simulate

more complex fluid systems. We also improve on the serial logic of the algorithm and

discuss how this ties into parallel performance down the line. Additionally, we expose

the resulting simulation data to scripting languages allowing for easier analysis.

3

1 Introduction

1.1 Mathematical background

To describe the behavior of a fluid we make use of the Navier Stokes equations. This set

of two equations is used by most computational fluid dynamics (CFD) solvers to predict

a flow for the fluid that is in line with reality. The equations are the following:

∇⃗ · u⃗ = 0 (1)

ρ

(
∂

∂t
+ u⃗ · ∇⃗

)
u⃗ = −∇⃗p+ µ∇2u⃗+ F⃗ (2)

where:

� ρ is the density of the fluid (kg/m3)

� u is the flow velocity (m/s)

� µ is the dynamic viscosity of the fluid (kg/ms)

� t is time (s)

The first of the two equations states that the divergence of the velocity is 0 at every

point, meaning that the fluid cannot be compressed. The second, more complex looking

equation, expresses the conservation of momentum. It can be read as applying Newton’s

second law (F⃗ = ma⃗) to the context of fluids. Fortunately for us, when dealing with

fluids at the microscopic scale, the second equation is simplified significantly.

To understand why, we need to look at the non-linear terms in the fluid velocity u⃗ in

equation 2. More specifically, it is the material derivative term that causes this non-

linearity:

∂

∂t
+ u⃗ · ∇⃗ (3)

The importance of this non-linear term is linked to two different properties of a fluid called

the Reynolds- (Re) and Strouhal- (St) numbers. Both serve as a form of dimensional

analysis [MS15]. They are defined as follows:

Re =
ρuL

µ
(4)

St =
L

ut
(5)

4

One additional term is introduced here, L which is analogous to the linear dimension

(m).

The Reynolds number expresses the importance of inertia in the system relative to vis-

cous dissipation. For high Reynolds numbers (Re→ inf) the viscous terms vanish, while

for low Reynolds numbers (Re ≪ 1) the inertial terms vanish. Similarly, the Strouhal

number expresses the importance of convective transport relative to temporal perturba-

tions.

It is important to note that both Re and St are dimensionless, and the exact weighting

they apply is dependent on the characteristics of the body that is applying a force on the

liquid, as well as the characteristics of the liquid itself.

To bring this all back to why the Navier-Stokes equations are simplified in the context

of microscopic environments. It is well understood ([Rey83] [Sta21]) that for sufficiently

small values of Re, and a combination of ReSt ≳ 1 which holds for fluid flow in very

small environments, equation 2 may be expressed as follows:

µ∇2u⃗ = ∇⃗p− F⃗ (6)

This is what is known as the linear Stokes equation, sometimes also referred to as ”laminar

flow”, which describes the tendency of a fluid to flow in parallel layers. That means the

fluid mixes primarily through dissipation, and not through lateral motion [Rey83]. What

this means for us is that the complex non-linear term is gone.

As the name “linear Stokes equations” suggests, our math problem just converted from

a non-linear to a linear one. This means that we may take advantage of a range of linear

differential equation techniques to solve various fluid flows.

1.2 Trends towards parallel compute

As is expressed in various publications on the state of the art and prospects of CFD

[WJ17][XXP+18]. There is a need for and a trend towards increasing use of high perfor-

mance computing (HPC) techniques in CFD applications. As Witherden et al. [WJ17]

explain in their article on the future directions of computational fluid dynamics there is

an increasing heterogeneity within HPC. Massively parallel accelerators, including GPUs

from AMD and NVIDIA, and co-processors from Intel are now a mainstay. These are

used in tandem with more traditional CPU architectures. Relegating compute-intensive

tasks of CFD simulations to a parallel architecture is an avenue which the field wants to

embrace and move towards.

5

1.3 Previous work

In the previous thesis by Stam et al. [Sta21], on which this work has built, techniques

for solving linear equations as described above have already been experimented with.

Specifically, they took advantage of the Fourier transform. The Fourier transform is

an operation which transforms a space or time-dependent function domain into a set of

frequencies. These frequencies exactly describe the spatial domain while not losing any

data in the process. This method is widely used to solve partial differential equations

(PDEs). It works by first deconstructing a function into frequencies, solving the equation

for each of those frequencies separately, and lastly, transforming the result back into the

original domain. This is done to calculate a fluid velocity field from an input pressure

field. Stam et al. derived the velocity and pressure fields as a function of the external

force field from the Stokes equations:

p̌(k⃗) =
i⃗k · ˇ⃗f(k⃗)

k2
(7)

ˇ⃗u(k⃗) =
1

µk2
(I3 − ǩ ⊗ ǩ)

ˇ⃗
f(k⃗) (8)

Here p̌ and ˇ⃗u are the Fourier transformed pressure and velocity fields respectively. I3 is

the 3 × 3 identity matrix. The frequencies making up the signal of the flow field are all

periodic in the domain of the simulated system. The only frequency mode that introduces

net flow is the 0th frequency mode. This is problematic because its k⃗ is as follows:

k⃗ =

00
0

 =⇒ k2 = 0 (9)

in equations 7 and 8 this creates a situation where a denominator becomes 0. The al-

gorithm at hand opts to solve this by omitting the 0th frequency so that it does not

contribute to the flow. This introduces a limitation because the 0th frequency mode ex-

presses the net flow of the system. Because it is omitted, the volume of fluid flowing out of

the system must always be equal to the volume of fluid flowing into the system at all times.

Stam et al. delivered a code base to perform such laminar flow simulations using

Fourier transformations and focused on porting their algorithm to run on modern graph-

ics processing units (GPUs) to decrease runtime. The algorithm employed by the pro-

gram performs all Fourier transformations through library functions that utilize CUDA, a

general-purpose GPU (GPGPU) language developed by NVIDIA used to take advantage

6

of massively parallel compute capabilities on GPUs manufactured by the same company.

This program was then used to simulate a system exhibiting Couette flow between two

boundaries positioned parallel to one another on either side of the system illustrated in

figure 1a. As can be seen from the image the system also adheres to a periodic boundary

condition, meaning that if the fluid reaches the set limit of any of the 3 spatial dimen-

sions, it will continue on the other side as if the system were continuous.

In order to know if the velocity field is correct the steps of transforming and solving

the derived stokes equations are done continuously within an overarching gradient descent

algorithm. The gradient descent aims to solve a no-slip boundary condition, meaning that

at every point where the fluid comes into contact with a solid boundary of the system

the fluid velocity must be 0. It does this by calculating virtual forces in the solid sections

of the system which counteract the real fluid forces, this way the relative velocity on

the boundaries remains 0. The program relegates one more step to the graphics card

pertaining to this gradient descent algorithm, namely, the calculation of the gradients of

velocity with respect to force defined as:

Gxixj
=

δuxi

δfxj

(10)

While, as we will demonstrate later, this is a factor for the performance of larger simu-

lations. It is still a pre-processing step, not part of the main gradient descent loop and

as such its impact on the runtime of the previous code-base is minimal. A more in-depth

technical explanation will be provided in the next chapter.

1.4 Taking the next steps

The previously described research leaves plenty of avenues for expansion and improve-

ment which are further developed in this paper. Specifically, the following two aspects

which serve as our initial research questions:

� We examine the quality of the code pertaining to flexibility and by extension main-

tainability with the goal of adding a number of new configurations to be simulated.

� We also explore better ways of interacting with the program. Mainly interaction

with the result data, but also invoking the executable.

As will be explained later in this thesis, we did this by thoroughly stress testing

the system and overhauling a lot of the underlying structure in order to solve the new

7

configurations. We have also reworked the gradient descent part of the algorithm, all

Leading to great improvements in single core performance. Following this, we speculate

on taking these improvements to a concurrent system which harnesses the power of the

GPU in much more aspects of the program. Lastly, we have also exposed the result data

to be readable in scripting languages in order to make a more detailed analysis of results

aimed at users that are not necessarily familiar with C++ and CUDA.

8

(a) a 16x16 system exhibiting Couette flow between two solid moving plates. The darker cells
represent solid regions where virtual forces are applied. The lighter cells are the open regions of
the system where the fluid flows, the arrows in these cells are the velocity vectors of the actual
fluid flow.

(b) The flow profile of figure 1a, this graph represents the x, y and z velocity of each cell in the
first column.

Figure 1: Figures 1a and 1b illustrate both the resulting vector field of a simulation and
its corresponding flow profile.

9

2 Methodology

2.1 Technical details of the code-base

A brief overview was already given in the previous chapter but here we will give a detailed

explanation of how the program solves the no-slip boundary condition and by extension

the fluid flow from the initial input configuration and boundary condition. Here we will

explain the pipeline that produces the results of the fluid simulations from the various

configurations of solids input by the user. We will also delve deeper into some of its steps.

Throughout its runtime the code goes through four distinct steps:

1. Setting up the configuration

2. Calculating the velocity field from the pressure field

3. Solving the no-slip boundary conditions across all boundaries in the system

4. Displaying the solved information

These four steps are compiled together into a main program loop that looks roughly

as follows:

Algorithm 1 Main program loop

u← DesiredV elocity
function Set Configuration(u) ... ▷ Setting configuration can take many forms
end function
while Cost > ϵ do

Cost←
∑boundarypairs

n=0 (un − u)2

function Calculate ... ▷ Calculate Velocity field
end function
function Solve ... ▷ Perform a gradient descent step towards solving the no-slip

boundary condition
end function

end while
function Display
end function

2.1.1 Initialization of configuration

In the first step the configuration of solid and empty cells that will be the stage, if you

will, of the simulation is initiated. To give an example: in the aforementioned parallel

plate configuration, the top and bottom rows of the grid are defined as solid cells and

their desired fluid velocity at the boundary is set. This velocity coincides with the idea

that the plate moves relative to the fluid, this way the no-slip boundary condition can be

10

satisfied while still simulating interesting fluid flows. If the plates do not move the fluid

needs to be static at all times. This is because the program yields undefined behaviour

when the fluid exhibits a net flow. A more in-depth explanation of this will be given in

chapter 3.

2.1.2 Calculating and solving the velocity field

The second and third steps are the core of the simulation and run repeatedly in an

alternating fashion until the no-slip boundary condition is solved. As seen earlier, this

means that the relative velocity where the fluid is tangent to the boundary must be 0. A

solution is accepted when the cost is lower than a small percentage ϵ of the initial cost.

Up until now, part of the Calculate step is the only one that is completely handled by

the GPU. The solver invokes the GPU in one instance, to calculate the gradients (11)

but is otherwise, a function ran on the CPU.

∂u

∂f
(11)

The calculate step transforms the pressure field into Fourier space. At this point the

Stokes equations become linear problems and the correlating velocities can be calculated

easily before transforming them back to real space. This is the one step that makes use

of the GPU when transforming to and from Fourier space. The solving of the equations

once they are transformed into Fourier space also happens on the CPU side.

Next, the solver stage takes the newly calculated velocity field and tests the velocities

against the no-slip boundary condition using a cost function. If the cost remains outside

the acceptable margins, the solver will attempt to nudge the pressure field to manipulate

the velocities in the right direction using a gradient descent algorithm. This algorithm

makes use of the gradient describing the change in the cost function relative to the change

in pressure.

∂C

∂f
(12)

It then uses this to nudge the result to meet a minimum in the cost function. This way

convergence can be reached so the no-slip boundary condition is satisfied. We will revisit

this when we explain how we improved the gradient descent algorithm in chapter 4.

2.1.3 Displaying results

Lastly, the display step renders the velocity field to the screen. This is done from within

the core code-base by passing a reference to the ”Stokes” solver object, in such way that

that all information can be read directly from the solved configuration.

11

2.2 Methodology of this project

We started off by attempting to implement the configurations we wanted using the ex-

isting code and altered it where needed as we went along. Several configurations were

implemented and subsequently used as a baseline to see how far the size of the simula-

tion could be pushed. Additionally, some new techniques for visualizing the results were

developed in order to get more information and spot errors faster. This will also serve

as a basis upon which future work can build to improve the interaction between the user

and the system.

2.3 Tooling

For completeness, we will also be continuing the same tool use as Stam et al. No al-

terations were made to the use of FFTW for Fourier transforms and CUDA for general

purpose GPU code. Stam et al. [Sta21] again contains a more in-depth breakdown of

why these were used. Specifically, an analysis of why to use CUDA over other general

purpose GPU (GPGPU) languages like OpenCL. As well as a breakdown of FFTW and

its planner step to optimize between small- and large-scale Fourier transforms. Lastly, we

make use of python to do scripting for both interacting with the code base and analyzing

the results of the various simulations.

12

Figure 2: A working implementation of tilted channels. As the figure illustrates, this
specific inclination angle of the channels satisfies the periodic boundary condition.

3 Adding configurations

3.1 Tilted channels

The first configuration that is added to the program aims at simulating Couette flow

between two oppositely moving tilted channels. This means that the boundaries will

be tilted at an angle θ with the fluid running through it at the same angle in opposite

directions.

3.1.1 Implementation

Implementation of this system has a catch and brings some limitations with it. Naively

implementing it leads to a configuration in which two boundaries run parallel at an

arbitrary angle θ, analogous to the previous configuration with θ = 0. However, as is

described in a thesis by Rempfer et al. [Rem10], this violates the periodic boundary

condition (PBC). This condition is important to the algorithm in order to simulate the

infinite expansion of the channel in all spatial dimensions and thus can not be violated.

Suppose we want to have tilted channels at an angle θ we need to construct a way

such that the PBC is satisfied. For this we can start with a square of length 1 and draw

a line at angle θ from one corner to the boundary of the square. The construction only

works if the intersection of the line and the boundary is at a rational point. Assuming

that the intersection coordinates are rational, now repeat the square into a 2D grid. Since

the intersection point is rational if we continue the line we will eventually encounter a

grid point. Now repeat the process width a subsequent corner of the square until another

grid point is met. Now take the minimal rectangle encompassing the two lines and copy

the rectangle into a square configuration. Now we have a square which we can use as our

simulation playground.

13

3.1.2 Extending control over the creation of configurations

During this implementation it was clear that at the end of the previous project, the

code-base creates and manipulates properties of the boundaries in a way that is specific

to a horizontal Couette flow between two boundaries but cannot be scaled or skewed to

meet more complex layouts. For example, it looks at the position of a certain solid cell

along the y axis to determine whether it is part of the top or bottom boundary in order

to assign it the proper desired velocity. These conditions of course assume the system to

always be a parallel moving plates configuration. Now that more complex scenarios will

be added, a general approach is needed.

The initialization of boundaries was altered in two key ways which allowed for much

more control and more intuitive interaction. First, a rasterization algorithm based on

Bresenham’s technique [Bre65] was added to the code-base in order to make drawing ar-

bitrary lines through the scene easy. Do note that at the time of writing the implemented

version of Bresenham’s algorithm only supports 2D lines to be drawn. It is not able to

deal with depth in the configuration yet. This can be used for both drawing arbitrary

boundaries as well as extracting information on a line of cells that don’t necessarily have

to be solids. The function merely returns an array with the cells it protrudes to. This is

also handy for drawing up velocity graphs of the simulation in order to verify its accuracy.

However, as will be shown later this responsibility was pushed on to python scripts rather

than remaining in the main code-base.

Secondly, the data structure in which the sets of boundary pairs are stored was

changed to an unordered map. With this, a simple hashing algorithm is added which

assigns a unique key to every pair. This is useful for assigning types to the boundaries

using an enumeration system such that the correct desired velocity can be assigned later

in the initialization stage.

3.1.3 Results

Figure 3a displays an example of a resulting velocity field of the tilted channel configura-

tion. This one is a 16x16x1 field for the purpose of readability. The challenges of going to

higher resolution levels are explained in section 4. To verify the tilted channel configura-

tion, figure 5 displays a progression of the parallel and perpendicular velocity components

along a line running orthogonal through one of the channels. The data is gathered using

the aforementioned rasterization method and corrected using bi-linear interpolation to

get the exact point along the orthogonal line through the channel. A visualization of

the line along which velocities are sampled can be found in figure 3b where a 128x128x1

example is used to illustrate. The line shows the velocity profile progressing from 5 to −5
with some margin above and below because the line slightly runs into the boundary since

the discretized grid does not perfectly overlap with the straight lines along which the

14

(a) 16x16 velocity field resulting from a simulation with tilted channels.

(b) Illustration of the orthogonal line along which velocities are sampled to get the orthogonal
velocity profile of a tilted channel system. In this example the dimensions of the system are
128x128x1

15

Figure 4: x, y and z velocities extracted along a vertical column in a parallel plates
configuration.

Figure 5: Orthogonal velocity profile of a tilted channel configuration. This was taken
from a 128x128 configuration, the line along which velocities are extracted is illustrated
in figure 3b

16

Figure 6: Orthogonal profile of a 128 x 128 simulation revealing the undesirable results
in the velocity profile, the desired graph would exhibit a straight line. Do note that the
perpendicular components run in the opposite direction (−5 to 5) compared to figure
5. This is simply because the desired velocities were swapped on the upper and lower
boundaries in this simulation.

boundaries are constructed. Comparing this graph to the one shown in figure 4 depicting

the x, y and z velocities along a vertical line in a 128x128 Couette flow example, the

similarity is clearly visible. Note that at this size (128x128) the gradient descent solver

already needs to be tweaked to utilize a smaller initial learning rate. Otherwise, proper

convergence isn’t reached which is displayed by the resulting orthogonal velocity profile

(figure 6). This indicated that extensive further optimization of the code base would be

needed in order to reach the larger simulation sizes we wanted to achieve. All technical

details about this are discussed in section 4.

3.2 Arbitrary boundaries

In order to fully stress test the overhaul (which will be discussed in section 4) and show off

its improvement over the previous iteration of the code-base, complex boundary shapes

were implemented and tested. This was done in the form of sinusoidal boundaries in

both 2- and 3 dimensional configurations. which yielded velocity profiles as shown in the

figures 7a and 7b.

Sinusoidal boundaries were used for ease of implementation simply for this proof of

concept. In the long term a proper rasterization algorithm for drawing and describing

curves should be implemented [Zin16] [LWZ+11]. This would allow for truly arbitrary

boundaries and a much greater diversity in the amount of configurations available to

users.

The sinusoidal boundaries were also run in 3 dimensions to further emphasize the

complexity that the new solver is able to deal with. A detailed performance comparison

17

between this and the previous iteration of the code base will be outlined in section 4.

Shown in tables in the mentioned section.

18

3.3 Cylindrical obstacle

Moving on from the arbitrary boundaries we can start playing around with complex

boundaries which could serve other uses in the future. In preparation of having a moving

object run through the configuration we also ran a test with a cylindrical obstacle in the

center of the system. For now, the obstacle is kept static and the flow around it remains

of Couette nature. Visually the flow around the object looks plausible. This is a welcome

testament to the flexibility of the solver. The result is shown in figure 8

Taking a good look at figure 8 reveals that the point at which the arrows flip from

pointing one side to the other is located slightly below the vertical center of the system.

This is simply due to the velocity values here being incredibly small as they approach

0. As this is a gradient descent algorithm, the convergence is not 100% perfect so small

asymmetries like this are to be expected. Forcing the solver to run for longer thus

enforcing tighter convergence balances this symmetry out slightly more.

19

(a) Velocity field of the first layer of a 32 x 32 x 16
configuration with sinusoidal boundaries

(b) Velocity field of the first layer of a 64 x 64 x 4
configuration with sinusoidal boundaries

Figure 7: Demonstration of arbitrary boundaries at varying levels of details and depth
complexity.

20

Figure 8: 65x65 Couette flow between two parallel plates with a cylindrical obstacle
introduced into the system

21

4 Single core optimization of the solving stage

As was mentioned in the introduction, in stress testing and adding configurations we

were forced to re-evaluate the performance of the program. Especially that of the gra-

dient descent stage. These optimizations would then enable the code-base to support

configurations of higher complexity and a much greater number of both solid and fluid

cells. As the key Fourier transformation steps were off loaded to the GPU, all the most

impactful performance bottlenecks could be found on the CPU side. This is where we

focused our optimization efforts. Most of these pertain to the single core logic of the

algorithm. However, as we will discuss in more detail when speculating on future work,

the entire solving function lends itself very well to being parallelized. However, we did

not yet go through this development as we have first taken steps to speed up the solving

solution itself. Note that when we talk about single core optimizations, we also do not

mean SIMD or other vectorization approaches. SIMD is short for ”single instruction

multiple data” and is a form of hardware accelerated parallelism present on most modern

CPUs in the form of vector registers. While these would be useful, the eventual goal is

to port the function to a graphics card architecture where such registers are not found

on individual logical cores. Nevertheless, we will still touch on these in more detail in the

chapter on future work, but they are not a part of this project.

Apart from the general CPU optimizations there were also alterations made to the

gradient descent algorithm that was implemented. Specifically, the way it calculates

gradients as well as how it determines and takes steps towards convergence. Lastly, we

also briefly experimented with multi-threading. This was done as an experiment to probe

the viability of further parallelization of the main loop in the program.

At the time of finishing this project the run time of the 128x128 tilted profile simula-

tion was brought from 744 seconds down to 1,6 second. Parallel plates simulations have

been ran all the way up to system dimensions of 1024x1024. In the following sections we

will break down the technical details of the optimizations we applied to key steps of the

solver stage.

4.1 Analytical gradient calculation

In the introductory chapter it was explained that the solver makes use of a gradient

descent algorithm in order to bring the pressure- and consequently the velocity fields in

line with the no-slip boundary condition. The gradient used in the solver looks at the

difference to the outcome of the cost function against the change in force defined as:

∂C

∂f
=

∂C

∂v⃗
∗ ∂v⃗
∂f

22

in the pre-existing code-base the latter half of this gradient, ∂v⃗
∂f
, is pre-calculated

on the GPU while first half, ∂C
∂v⃗
, was retrieved in a numerical fashion using the CPU.

This entailed adjusting the velocity field with incremental steps before analysing the

change in cost function. This was done for all 3 dimensions with respect to 3 dimensions

individually. This construction resulted in a rather stark discrepancy between the two

processes and slow overall computation time despite the use of the graphics card. All the

while the components of ∂C
∂v⃗

are known at the time of computation. Using these decreased

the computational load significantly. In the cases which, after implementing analytical

gradient calculation, yield stable results a speed up of a factor of ∼ 9 is observed. The

catch being that this implementation reveals a further shortcoming of the solver function

namely the rudimentary adaptive learning rate is unable to deal with the newly calculated

gradients and frequently leads to divergent results.

A note on implementation details: Analysis of the numerical against the analytical

results reveals that the results differ by roughly a factor of 10 so a simple corrective

multiplication suffices to stabilize some configurations and resolutions. However, a more

robust method is needed which will be discussed in the next section.

4.2 Adaptive learning rate using Polyak’s length

It is no secret that the gradient descent algorithm is one of tedious tuning and adjusting

of the different parameters which influence it. Though this reality usually applies to com-

plex multidimensional dependencies such as those found in machine learning methods,

our algorithm has one important parameter who’s value is imiportant to the result of

the simulation. This parameter is the learning rate or the ”step size” with which each

incremental nudge toward the optimum is taken. Make the step size too large and the al-

gorithm will overshoot the minimum and diverge into increasingly bigger and nonsensical

values. Make it too small and the optimum will eventually be found but the simulation

will take longer than it could to find such a result. Since optimization is the name of

the game in this project, it is important that a good learning rate is found based on the

optimization function that is being solved.

Before, the gradient descent algorithm took an initial learning rate (ηt) that was

defined by the user and made use of the following logic to adapt this step size when the

function overshot its target:

Ct > Ct−1 → ηt+1 =
ηt
2

The cost function which is the subject of this solver is however convex, meaning there

exists only one global minimum. Note that this does not mean the retrieving of such a

minimum is trivial. The function may still exhibit a steep, multidimensional topology

23

which is challenging not to diverge from. Regardless, in 1987 Boris T. Polyak published

a book [Pol87] containing a method for dealing with convex optimization problems that

should theoretically always find the global minimum. The technique adapts the learning

rate according to the local topology of the function or the ”slope” so to speak.

If the distance to the optimum from a certain iteration t is notated as h(xt) = ht =

f(xt)− f(x∗) where x∗ is the optimum distance. Polyak’s method describes the learning

rate ηt as follows:

ηt =
ht

||∇t||2

Implementing this way of determining the learning rate at each step of the algorithm

has a much higher success rate at finding a stable solution to the optimization problem.

Especially in complex cases where a great number of both solid and fluid cells are used

and where the previous method fails. Keep in mind that the initial learning rate still must

be adjusted by the user but divergence is much rarer when using the Polyak length while

maintaining over 99% convergence. The previous method is however not removed from

the code-base entirely and the option should still be available to the user. When doing

different tests and comparing them to each other, the learning rate halving technique

shows occasional improvements over the Polyak’s method. That said, the instances are

rare, and it is better for the user to consider which one is needed for their use case.

Tables 1 and 2 show the different results obtained from using different techniques. The

specifications of the computer used to run these tests are listed in table 3. It must be

noted that in these cases the initial learning rate was set to 0.1 for the parallel plates

and 0.01 for the tilted plates. Highlighting the need for user intervention and tuning

according to the needs of the simulation.

Table 1: Couette flow between horizontal parallel plates

32x32 LR halving Runtime Optimization Polyak LR Runtime Optimization

Numeric Gradients 3s 99.99% ¡1s Divergence
Analytic Gradients 183ms 100.00% 13ms 100.00%

64x64 LR halving Runtime Optimization Polyak LR Runtime Optimization

Numeric Gradients 13s 99.99% ¡1s Divergence
Analytic Gradients 305ms 100.00% 118ms 100.00%

128x128 LR halving Runtime Optimization Polyak LR Runtime Optimization

Numeric Gradients 81s 99.95% ¡0s Divergence
Analytic Gradients 3s 28.49% 1s 100.00%

Across the board however, it is clear that analytical gradients yield much better results

by orders of magnitude much greater than 9. This is also due to additional optimizations

24

Table 2: Couette flow between tilted parallel plates

32x32 LR halving Runtime Optimization Polyak LR Runtime Optimization

Numeric Gradients 89s 99.88% ¡1s Divergence
Analytic Gradients 419ms 99.57% 41s 99.93%

64x64 LR halving Runtime Optimization Polyak LR Runtime Optimization

Numeric Gradients 345s 99.95% ¡1s Divergence
Analytic Gradients 6s 99.95% 197s 99.97%

128x128 LR halving Runtime Optimization Polyak LR Runtime Optimization

Numeric Gradients 744s 99.98% 2s Divergence
Analytic Gradients 118s 99.37% 803s 99.99%

Table 3: PC specifications:

CPU Intel i7-9750H
GPU NVIDIA GeForce GTX 1660 Ti
Memory 16 GB DDR4
PCIe gen 3
Year 2020

happened in between the initial tests and these results where the code was optimised for

CPU cache hits which further yielded shorter simulation times.

Another thing which was discovered during this process is that the solver spends about

80% − 90% of its computation time solving the last 0.1% of the convergence. Because

of this it is useful to also expose the tolerance threshold to the user for them to tune

to the accuracy needs of their simulations. Because lowering the solvers tolerance to

99.9% in stead of 99.99% increased simulation speed by another significant factor. We

also developed a method we called ”Dynamic Polyak Length” which is a much better

solution to this problem that also works in cases where very close convergence is needed.

The specifics of this will be discussed in the next section.

The performance increases in the table are quite varied but on average the speed up is

roughly of a factor of 60. This is an incredible upgrade over the previous work. However,

it can most likely be improved even further. Note that these results are only tested on

2D configurations. When the 3rd dimension was included (in the example of arbitrary

boundaries) the performance suffered once again.

4.3 Dynamic Polyak length

As was observed, near complete divergence (99.9%− 99.99%) the step size gets so small

that the algorithm on average spends 80%− 90% of its runtime on this tiny convergence

improvement. We reckoned we could speed up these steps by looking for sequences of

gradient descent steps in which the cost consistently drops and carefully trying to take

25

bigger steps. When the cost consistently drops over a great number of steps, we may

assume that the algorithm is walking in the right direction but because the topology of

the function is so shallow, the step size calculated by the Polyak length is so small that it

takes many of them to go where we are heading anyway. In short, we count the number of

successful steps, when they reach a predetermined threshold the step size gets multiplied

by a factor of 10. This is kept up until either the success threshold is reached again,

at which point we multiply the step size once again because it indicates we can go even

faster. Alternatively, a number of missteps is taken which also exceeds a predetermined

critical point, at which point we decrease the custom learning rate multiplier with a

factor of 0.1. After a bit of trial and error the thresholds that we landed on were at 100

successful cycles and 2 consecutive missteps.

Algorithm 2 Dynamic Polyak Length

Learningrate← 1
FailStreak ← 0
SuccessStreak ← 0
if NewCost > PrevCost then

FailStreak ← FailStreak + 1
if FailStreak ≥ 2 then

FailStreak ← 0
LearningrateMultiplier ← LearningrateMultiplayer ∗ 0.1

end if
else

SuccessStreak ← SuccessStreak + 1
if SuccessStreak ≥ 100 then

SuccessStreak ← 0
LearningrateMultiplier ← LearningrateMultiplayer ∗ 10

end if
end if
Learningrate = Learningrate ∗ LearningrateMultiplier

The addition of this modifier to the Polyak length algorithm to spur on the solver

when it is too cautious with its steps towards convergence yields significant speedups.

Especially in bigger and/or more complex amalgamations of solid and fluid cells in the

simulated system. The runtimes (in seconds) are further displayed in table 4

Table 4: Tilted channels runtime (s)

Previous Method Polyak Length Dynamic Polyak Length
32x32 89 41 0.765
64x64 345 197 0.870

Do note that the use of the ”Dynamic Polyak length” is no silver bullet and we have

found some cases where disabling it yielded better faster runtimes for the simulations in

26

question. An example of this is the 128x128x1 tilted channel configuration which sees

significant slowdowns when using the method. Whether or not the use of this algorithm

to speed up the Polyak length is needed is up to the researcher to determine through trial

and error.

As was mentioned multiple times already, all of these alterations pertain to algorithms

that are currently only executed on single CPU cores. Use of the graphics card in improv-

ing these solver algorithms are key to this project in the long term. In the next sections

some experimentation with parallel computing principles gives insights into avenues for

further bettering the run-time of the simulations.

4.4 Multi-threading

Calculation of the gradients, both numerically as well as analytically is a process which

lends itself well to parallelization. Different components of the gradient with respect to

the 3 spatial dimensions do not depend on each others outcome to obtain their results.

Furthermore, the process is flow independent, meaning that at no point a decision needs

to be made based on a given condition (if-else statements). The combination of these two

characteristics, in theory, make the function an ideal fit to make use of multi-threaded

architectures present on modern CPU’s and GPU’s.

Initially some experiments were done as a proof of concept to show that in further

work on the solver can take these concepts even further. The work was split between

two CPU threads. This did require some abstraction of the function and creation of

additional chunks of memory to bypass restrictions concerning read and write violations.

Fortunately, after the fact a nice 2x speedup was observed on the 32 x 32 tilted chan-

nels configuration using Polyak’s length from 41s to 20s run-time. This optimization is

however not present in the final code-base produced by this project. This is because the

implementation was very aggressive and severely under tested. We fear that it might

destabilize other parts of the pipeline and since a full implementation would take a not

insignificant amount of time, we have left it as a proof of concept for future work. There

we will also mention the step of vectorization which is usually advised before moving

into multi-threading. In general, writing good serial code is a prerequisite for achieving

a good parallel counterpart. Stretching the single core performance as far as possible

ensures the best starting point for parallel algorithms.

27

Figure 9: Flow profile of the system with dimension 1024

5 Expanding Simulation Size

The optimization techniques previously discussed that were initially developed to help

the code base deal with the increasing complexity of the added configurations also allows

us to expand the simulation sizes that were previously not possible. The new code is

able to simulate a Couette flow configuration with a system dimension of 1024 where the

previous method went no further than 64.

5.1 Forcing convergence

The code does start to struggle in converging to a good solution once sizes become very

large. On the one hand this is caused by the threshold of 99.99% being too lenient

relative to the error in large configurations. On the other hand, the numerical preci-

sion of floating point numbers starts to show its limit as step sizes become too small

for the computer to handle. The program often exits when it detects the cost to be

equal between iterations while it is still a ways away from convergence within the desired

threshold. Simply because the computer is unable to see a difference between the two

costs. To remedy this, we created a second executable where the solving stage makes

use of double precision floating point numbers. This again allows for scale up to the

point of reaching the size limits of the double. Next logical steps from here are to make

use of long doubles or even program custom data types which encode floating points in

even more bytes. The risk associated with this becomes then the memory footprint of

the program. This becomes a particularly tricky problem when transferring data to and

from the GPU as video RAM is often smaller in size compared to overall system work-

ing memory. Not only this, when the system gets eventually scaled up to make use of

the entire graphics card, it will need a way of intelligently streaming/sharing data with

the GPU which becomes a more challenging task when the amount of data is much bigger.

28

A second way of tackling this problem would be to, instead of breaking the gradient

descent loop when equal costs are detected, to artificially bump up the step size similar

to what we did with the dynamic Polyak length technique. This way the solver will

more likely come up with a smaller cost which is further from the previous one. This

artificial process does run the risk of creating divergence, especially when the solution

gets incredibly close to its solution. This technique was used to force better convergence

on the cylindrical boundary configuration. Here we found a sweet spot of multiplying

the step size by 3 whenever equal cost was detected. However, we did not experiment

with it enough to say this technique is flawless. We speculate that a better solution to

forcing better convergence will probably be found in a combination of better precision

and slightly forcing the solver past cases of equal cost. Right now, when we attempted to

run this technique to its limit, only exiting when convergence was found rather than an

iteration limit. The simulation was run for over 10 hours and still did not yield a result.

29

6 Scripting

Lastly, as was mentioned earlier in the introduction, there is a need for improvement

of user interaction with the output of the simulation. Everything from visualization, to

verification, to analysis of the data should ideally be done outside the realm of the C++

code base. Reasons for this being that C++ is a rather difficult language to pick up an

learn for new users, especially those who are not primarily interested in using it other

than for this application. Additionally, scripted and interpreted languages like Python,

R or Julia are more often used in computational science and engineering and as such

are more likely to be familiar by the users of this program. Unfortunately, they sacrifice

significant performance when compared to a low-level language such as C++ [ZJKP20].

Ideally, all C++ code is left under the hood where it performs the bulk of the simu-

lations and can be called and manipulated from Python scripts. Also, the output should

be dumped into a readable file which the user can use as an input to their own scripts in

order to analyse and/or visualise the data.

Previously, when the simulation was finished, a separate class within the C++ code

would read in the results and draw up the final velocity field to the screen. Unfortunately,

this was only really useful in case of low-resolution simulations as bigger ones made the

cells so small the vectors where not readable anymore. It also did not allow for much

control from the user to tackle these issues. Moving forward, the solution of the simulation

should be written to an output file to be parsed by scripts writing by the users. This

allows for great flexibility in analysis and display of the results. It is also further in line

with the idea of keeping the code-base as user friendly as possible.

6.1 Examples

During this project this concept was worked out with an output file in plain text format.

Resulting velocity and pressure components were written to the file when the simulation

was done as well as information of whether or not the cell in question was solid. A

number of scripts were made using Python in order to analyse the data for different

purposes which included:

1. Extracting x, y and z velocities along columns in the simulation (for example, figure

4). This also allowed for averaging over columns and other manipulations of the

arrays.

2. Extracting perpendicular and parallel velocity components along line parallel to

the tilted channels (figure 5). This script was kitted out with the same Bresenham

rasterization algorithm as well as the bi-linear interpolation used to better the

accuracy of the extracted values.

30

3. Interactive visualisation of the velocity field which showed insights into the fluid

velocities in each cells, during the project this was primarily used for debugging.

4. Velocity field plotter, which provided a lot of the figures in this thesis (such as

figures 3a and 7b)

These various examples are a showcase of the flexibility and ease of use of the scripting

approach compared to implementing them directly into the C++ framework. These are

applications which have on need for raw performance and as such a low-level language

such as C++ present more obstructions than benefits. Different scripting languages as

well as storage methods could be explored in the future, but this will be discussed further

in the future work section.

6.2 Interface

We also created a small python executable which sports a GUI, and which allows the user

to specify some variables before executing the code base. Through this platform people

with no familiarity with C++ or CUDA are able to utilize the simulations nevertheless.

Of course, it must be noted that this implementation requires a small amount of over-

head which slightly affects performance. This is however only noticeable in very large

simulation setups.

31

7 Future work

7.1 Optimisation

Even though the performance of the program has bettered substantially over the course

of this project. As was shown by the multi-threading experiments, hypothetically a lot

of improvement is still possible. The solving stage still makes use of a lot of nested loops

and separate calculations on a data set that do not depend on each others result. All

these things make the function a very suited one for high levels of parallelization which,

for example, a graphics card allows. With these improvements made to the algorithmic

performance of the solver, these should allow us to significantly accelerate on multiple

cores.

7.1.1 Vectorization

Still in line with single core optimizations, making use of vectorization capabilities present

on modern CPU’s will allow for further reductions in single core run times. This approach

makes sure that every bit of the CPU performance capability is utilized. Modern CPU’s

provide specialized instructions to take advantage of what are called ”SIMD registers”.

SIMD is short for ”single instruction multiple data” and is a protocol that was concep-

tualized in 1966 for supercomputers at the time making use of parallel architectures. It

was widely incorporated in consumer CPUs in 1996 before the advent of graphics cards

to deal with things like rudimentary rendering at the time. Most CPU’s have special

registers which allow for a single instruction to be applied to 4 (SSE protocol) or 8 (AVX

protocol) pieces of data at the same time. In the case the CPU is used for solving the

no-slip boundary conditions this would allow for optimal use of a single thread before

moving into multiple ones as mentioned in section 4. [Bik17]

At the end of the thesis by Stam et al SIMD is also proposed as a possible future

consideration for runtime optimization. However, this approach only makes sense when it

is determined that the algorithm is to run independently from graphics cards and utilize

the central processing unit to its fullest. From the moment there is access to a graphics

card it makes much more sense to simply focus on achieving maximum saturation of the

many threads these systems offer.

7.1.2 Complete use of GPU for calculation and solving

As was briefly mentioned in section 4, two properties of the analytical gradient calcula-

tions make it very well suited to parallel computing, be it using vectorization registers or

the use of multiple threads. Also shifting from a system of halving gradients to one where

step size depends on the geometry of the function eliminates some flow control out of the

32

system which is something that normally hurts the saturation of GPU threads but is now

a non-factor. The key part to the overarching project is the use of the GPU to enhance

Navier-Stokes based fluid solvers. Graphics cards knock central processors right out of

the park when it comes to raw core count and compute power. It is not hard to imagine

they would take the performance benefits gained from multi-threading to another level

entirely. The prospect of doing the gradient descent solving on the GPU does not seem

like an illogical choice for the program in the long term. In addition, the solving stage is

located squarely adjacent to the calculation stage in the pipeline and the two go back and

forth until a result is found. This means that every time the algorithm switches between

the two, data needs to be transferred from one device to another through hardware buses

which in itself is also a significant performance hit. Transferring data, be it between the

CPU and RAM unit or GPU is a bigger concern for performance these days compared

to the raw capabilities of the central processor.

Hypothetically, the entirety of the two vital stages of the simulation could be handled

by the graphics card. Leveraging the power and parallel nature of the GPU in more

stages of the simulation would not only further the goal of this project. Like mentioned

earlier it would also reduce the number of data transfers dramatically. Right now, for

every iteration of the solver data is transferred back and forth between CPU and GPU

twice for calculation of the ∂v⃗
∂f

gradient and 12 times the Fourier transforms. Once for

every spatial dimension and twice for both transformations to and from Fourier space.

Avoiding these transfers could see the program unlock a far greater potential from the

graphics unit compared to employing it in separated stages curated by the GPU. This

is only speculation, and time and care are needed to develop the set of GPU kernels to

make this happen.

Memory streaming to and from the device also needs to be considered carefully as this

will be needed when system sizes start exceeding the amount of video memory present

in a given system. We suspect that memory will be the primary development bottleneck

going into the future of this code base. That said we also see an opportunity for taking

advantage of the layout of the data to increase memory capacity and cache hits on modern

GPUs. Since these vector fields can easily be understood as images, we think they can

be streamed to the device in the form of textures. Since modern consumer graphics

cards are primarily aimed at enabling greater graphical fidelity for video games, they

hold special registers and memory blocks to stream and store textures. Encoding vector

information as textures is a technique that is used in this industry as well, an example of

this is what are called normal maps which store normal vector information on a surface

in order to manipulate light behaviour and create the illusion of an embossed surface. We

believe that experimenting with processing for example, the velocity and pressure fields

as texture data could lead to noticeable speedups.

33

7.1.3 Symmetry

Another avenue for performance improvements, especially in rather simple systems such

as the parallel plates configuration is to abuse the inherent symmetry of its layout. Be-

cause we know that all channels must look identical, we can refrain from solving all but

one vertical channel and reusing them to fill the rest of the system dimensions. An intel-

ligent system able to detect symmetries in any configuration would theoretically be able

to skip a lot of the computing load and as such speedup the solver significantly.

7.2 Convergence

In chapter 5 we extensively explained the problem of insufficient convergence on the

largest and most complex systems. As well as the initial rudimentary ways we dealt

with the it. However, more time can be committed to this problem as it is very likely

that a better method can be devised which yields consistent closer convergence while

sacrificing less of the simulations run-time. When we forced better convergence through

brute forcing the learning rate past the points of equal cost. Getting those extra fractions

of percentages of convergence took significantly more time than the rest of the simulation.

7.3 Output

During this project the parsing of output data was done from a plain text file in function

of ease of implementation for the sake of experimentation rather than long term consid-

erations. In the future however XML might be a better format option for storing the

data. Both because most languages come with a built in or extendable XML parser as

well as XML’s ability to enumerate element types much more easily.

Similar to what was speculated on earlier with regards to processing the field infor-

mation as textures, in the context of Python they can also be seen as images. The nature

of the vector fields lends itself well to outputting the result as an image file. An RGBA

image format can store information about the 3 spatial dimensions of either velocity or

pressure for their respective fields and has another member in the alpha channel to store

some meta data such as solid cells. We have already made use of techniques from the field

of image processing such as bi-linear interpolation. On top of that, Python is a widely

used programming language in this field.

Lastly, with regards to Python itself. The scripting language itself is also not limited

to Python exclusively. Other languages aimed at scientific applications and data analysis

such as Julia [BKSE12] have sprung up in the last few years. Julia prides itself on its

performance and the speed at which it can parse data compared to Python. If this is true

34

and performance for script analysis were ever to become an issue, other options could be

explored.

35

References

[Bik17] Jacco Bikker. practical simd programming. 2017.

[BKSE12] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. Ju-

lia: A fast dynamic language for technical computing. arXiv preprint

arXiv:1209.5145, 2012.

[Bre65] Jack Bresenham. Algorithm for computer control of a digital plotter. IBM

Syst. J., 4:25–30, 1965.

[LWZ+11] Yong Kui Liu, Peng Jie Wang, Dan Dan Zhao, Denis Spelic, Domen Mongus,

and Borut Zalik. Pixel-Level Algorithms for Drawing Curves. In Ian Grimstead

and Hamish Carr, editors, Theory and Practice of Computer Graphics. The

Eurographics Association, 2011.

[MS15] Alexander Morozov and Saverio E. Spagnolie. Introduction to Complex Fluids,

pages 3–52. Springer New York, New York, NY, 2015.

[Pol87] Boris T Polyak. Introduction to optimization. New York: Optimization Soft-

ware, Publications Division, New York, 1987.

[Rem10] Georg Rempfer. Lattice-boltzmann simulations in complex geometries, Octo-

ber 2010.

[Rey83] Osborne Reynolds. An experimental investigation of the circumstances which

determine whether the motion of water shall be direct or sinuous, and of the

law of resistance in parallel channels. Philosophical Transactions of the Royal

Society of London, 174:935–982, 1883.

[Sta21] Bart Stam. A gpu-based versatile and efficient hydrodynamics code for scien-

tific applications, July 2021.

[WJ17] Freddie Witherden and Antony Jameson. Future directions in computational

fluid dynamics. 06 2017.

[XXP+18] Qingang Xiong, Fei Xu, Yaoyu Pan, Yang Yang, Zhiming Gao, Shuli Shu, Kun

Hong, Francois Bertrand, and Jamal Chaouki. Major trends and roadblocks

in cfd-aided process intensification of biomass pyrolysis. Chemical Engineering

and Processing - Process Intensification, 127:206–212, 2018.

[Zin16] Alois Zingl. A rasterizing algorithm for drawing curves. page 106, 2016.

[ZJKP20] Farzeen Zehra, Maha Javed, Darakhshan Khan, and Maria Pasha. Compara-

tive analysis of c++ and python in terms of memory and time. 12 2020.

36

