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ABSTRACT

Multimodal Analysis of Acoustic and Linguistic Features in Entrepreneurial

Pitches using Deep Learning

by Pepijn van Aken

Acquiring early-stage investments for the purpose of developing a business is a funda-

mental aspect of the entrepreneurial process, which regularly entails pitching the busi-

ness proposal to potential investors. Previous research suggests that business viability

data and the perception of the entrepreneur play an important role in the investment

decision-making process. This perception of the entrepreneur is shaped by verbal and

non-verbal behavioural cues produced in investor-entrepreneur interactions. This study

explores the impact of such cues on decisions that involve investing in a startup on the

basis of a pitch. A multimodal approach is developed in which acoustic and linguistic

features are extracted from recordings of entrepreneurial pitches to predict the likeli-

hood of investment. The acoustic and linguistic modalities are represented using both

hand-crafted and deep features. The capabilities of deep learning models are exploited

to capture the temporal dynamics of the inputs. The findings show promising results for

the prediction of the likelihood of investment using a multimodal architecture consisting

of acoustic and linguistic features. Models based on deep features generally outperform

hand-crafted representations. Across multiple explainable models, consistent features

are found to be important predictors. An early fusion multimodal model consisting of

deep representations of the two modalities has been proven to be most predictive.
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Chapter 1

Introduction

This thesis aims to contribute to the field of entrepreneurial decision-making, with a focus

on investment decisions for startups based on a pitch. In Section 1.1, the motivation for

the research is formulated and the potential of a multimodal machine learning model

to study this context is examined. In Section 1.2, the contributions of this work to

existing literature are presented. Subsequently, the research question and sub-questions

are introduced, followed by a brief overview of the experiments used to answer these

questions. Finally, an outline for this thesis is provided in Section 1.4.

1.1 Research motivation

Delivering a successful elevator pitch on a business proposal in front of investors is an

intimidating challenge for many entrepreneurs. Convincing investors of the potential of a

business plan and raising funds to realize the plan are critical parts of the entrepreneurial

process. We are only beginning to understand how investors make decisions regarding

investments (Clarke et al., 2019).

Decision-making, the process of determining the most appropriate course of action

based on available information, in the field of entrepreneurship is characterized by high

levels of uncertainty (Shepherd et al., 2015). Berner et al. (2012) claim that the main

premise of entrepreneurship is to accept high levels of risk while investing or producing

a good. Since factual information to base a decision is often lacking or limited, decision

makers in entrepreneurial contexts rely on heuristics (Huang and Pierce, 2015). The high

levels of uncertainty and the use of heuristics make it difficult to analyze the decision-

making process, and due to its complexity, this process has attracted a lot of academic

research (e.g. Wadeson, 2006 ; Shepherd et al., 2015). It is especially interesting to study

decisions that involve social interactions, since due to the lack of factual information,

this social interaction itself can influence the decision.

The interaction between a pitching entrepreneur and an evaluating investor is such an

entrepreneurial setting based on social relationships that is marked by high uncertainty.

The investor has to make an assessment of the feasibility of a project based on the pitch

and financial data. However, research suggests that investors also rely on subtle social
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cues they extract from the pitch. Huang and Pierce (2015) find that investors both rely

on intuition and formal analysis when making this decision. Furthermore, they find that

this intuition is for a large share based on the perception of the founding entrepreneur.

Multiple studies show that this perception of the entrepreneur is shaped by verbal and

non-verbal cues in the pitch. Martens et al. (2007) find that the use of language and

storytelling plays a key role in entrepreneur-investor interactions. Chen et al. (2009)

study the influence of non-verbal behaviour cues on perceived passion of an entrepreneur.

Clarke et al. (2019) study a combination of verbal cues and hand gestures and find a

strong effect on funding decisions.

Processing the verbal and non-verbal cues emitted by pitchers could open up a valu-

able source of information for research into investor decision-making. To unlock the

potential of these signals, NLP can be used to analyze the cues in the use of language in

the pitch, while the Social Signal Processing domain provides the tools to automatically

code nonverbal signals, resulting in a more accurate and efficient analysis (Liebregts et

al., 2020). However, as noted by Clarke et al. (2019), the effect of verbal and non-verbal

communication strategies are often studied in isolation. Since social interactions are

the interplay of verbal and non-verbal cues, integrating them in a single analysis could

provide interesting new insights. The class of vocal behaviour has been identified as a

potential important driver for investments in entrepreneurial pitches (Huang and Pearce,

2015 ; Clarke et al. 2019), but has not been studied in a combined model with verbal

cues yet. This is a current gap in existing literature which has been explored in this

thesis.

Extracting features from the raw data is one of the main challenges when using

acoustic and linguistic data. Traditionally, both these modalities have been studied

using hand-crafted feature sets. For the acoustic features of speech, features such as

pitch and loudness can directly be extracted from the audio signal and used to make

predictions such as emotion classification (Luengo et al., 2005 ; Marchi et al., 2016). For

language, a Bag-of-Words (BoW) model can be used to create a vector that represents

the input text. Despite the fact that hand-crafted feature sets have been successfully

applied on a number of tasks, there are some limitations regarding this approach, such as

modelling the context of a text. The development of deep learning enabled the creation

of models that can learn to extract feature representations themselves. Furthermore, in

combination with deep feature embeddings, deep encoders can capture the temporal dy-

namics of the signals, leading to better performance (Zhou, 2021). Currently, these deep

learning based feature extractors have become state-of-the-art in audio and language

research. However, this does not imply that hand-crafted feature sets are not useful
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anymore. Elbanna et al. (2022) and Johnson and Marcellino (2022) argue that using an

ensemble of hand-crafted and deep feature sets can lead to an increase in performance

and interpretability of a model.

For a long time, vocal and verbal behavioural cues have been studied separately in

the form of unimodal models. However, research suggest that verbal and non-verbal,

such as vocal cues, are tightly coupled communication mechanisms that each carry com-

plementary but distinct meanings (Clarke et al., 2019). Therefore, to properly analyze

the role of vocal and verbal cues in decision-making in entrepreneurial contexts, both

have to be considered in a single model. This is where multimodal models come into

play. In a multimodal model, different unimodal models are combined and thus capture

a wider range of behaviour. Different techniques exist to fuse unimodal models into a

multimodal model, such as early and late fusion (Poria et al. 2017).

This thesis presents a multimodal model consisting of both acoustic and linguistic

features to predict the likelihood of investment of entrepreneurial pitches. This study

could provide insights for investors and researchers into the decision-making process and

help entrepreneurs enhance their pitching abilities. In this study the Data Management

Entrepreneurial Pitches data set is used, which is issued by Tilburg University and con-

tains video recordings of pitchers and potential investors during a pitch competition

(2020). Firstly, unimodal models consisting of either acoustic or linguistic features are

developed to predict the probability of investment, using different types and combina-

tions of feature representations. We experiment using hand-crafted representations and

deep representations. It is hypothesised that integrating these two types of, potentially

complementary, feature set into a single model to represent a modality could result in

an improvement in model performance. Deep learning models are developed to capture

the complex non-linear relationships and temporal dynamics of the acoustic and linguis-

tic input data. Then we examine what the effect is of combining the two modalities

into a single multimodal model. It is hypothesised that when analyzing different types

of behavioural cues in one model, a more truthful representation of reality is created,

allowing us to capture more information of the social interaction in the model. Here, we

also examine the effect of applying different fusion strategies on the model performance.

Finally some explainable models are considered, for which common important features

are discussed, and we test how well the models generalize to a different setting in a

cross-domain experiment.
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1.2 Contributions to existing work

Overall, this study contributes to existing literature in four main ways. Firstly, most

prior works that apply a multimodal model in an entrepreneurial context study crowd-

funding campaigns (e.g. Kaminski et al., 2020 ; Cheng et al., 2019). As noted by

Liebregts et al. (2020) crowdfunding decisions do not always require social interactions

and for this reason the effect of verbal and non-verbal social cues on these decisions

is rather limited. In this work, the direct effects of verbal and non-verbal behavioural

cues during social interactions in the context of entrepreneurship are analyzed. Further-

more, we study how these cues impact the uncertainty that is inherent to these types of

decisions.

Secondly, we have developed a deep-learning based model consisting of a combina-

tion of verbal and vocal features to predict the probability of investment. Research on

pitching has mostly been focused on studying verbal and non-verbal behaviour in iso-

lation (Huang and Pierce, 2015). Since social interactions are formed by the interplay

of different kind of social cues, you miss out on important information when analyzing

them separately. Clarke et al. (2019) do use a mixed methods approach and look at the

combination of verbal features and gestures of a speaker. They find strong evidence that

a combined model can predict investment decisions. Although Clarke et al. (2019) focus

on gestures, they suggest that the combination of verbal and vocal behaviour may also

shape the interactions of entrepreneurs and investors. We draw on this recommendation

by Clarke et al. (2019).

The third contribution to the existing work is using a combination of hand-crafted

and deep feature set to represent each modality within the multimodal model. Prior

research has shown that combining hand-crafted and deep representations for both the

acoustic and linguistic modality can lead to an increase in accuracy and explainability

(Elbanna et al., 2022 ; Johnson and Marcellino, 2022). Most studies using a multimodal

model, first explore several types of unimodal models, including both hand-crafted and

deep based features (Soleymani et al., 2019 ; Tavabi et al., 2020). However, when fusing

the modalities, only the best performing model for each modality is considered in the

fusion model. This study explores whether combining the two types of feature sets in a

multimodal model can improve the performance of such models.

Finally, en explainable multimodal model has been developed on the hand-crafted

acoustic and linguistic feature representations. This enables us to study what features

play an important role in determining the likelihood to invest score. To the best of

our knowledge, this thesis research is the first to propose an explainable multimodal
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architecture consisting of acoustic and linguistic features to study investment decision-

making based on entrepreneurial pitches.

1.3 Research questions

For this research the following research question and corresponding sub-questions are

defined.

Main research question: To what extent can the likelihood of investment be predicted

from acoustic and linguistic features recorded during an entrepreneurial pitch using deep

and hand-crafted representations?

To answer the overarching research question, multiple unimodal and multimodal mod-

els are developed, utilizing hand-crafted and deep features to represent the acoustic

and linguistic modalities. These models are evaluated by testing them on unseen data.

Differences in the performance on the task to predict the likelihood of investment are

compared in order to find the strongest predictors.

Sub-question 1: To what extent can an acoustic or linguistic unimodal model predict

the likelihood to invest of entrepreneurial pitches while using either hand-crafted or deep

feature representations?

To study the first sub-question, four feature representations are extracted from the

pitch recordings. For the acoustic modality, hand-crafted features are extracted using

openSMILE and deep embeddings are obtained using VGGish. For the linguistic modal-

ity, LIWC is used to create a hand-crafted representation and Longformer for the deep

features. A GRU is trained to capture the temporal information in the acoustic features,

while the linguistic features are modelled using a linear regression.

Sub-question 2: How does combining hand-crafted and deep feature representations

in a unimodal model affect the performance of the model?

For each modality, the hand-crafted and deep representations are combined in a model.

One type of combination is created by directly fusing the feature sets and training a

single model to predict the likelihood. Another strategy involves fusing the output of

the individual models that are developed for the previous sub-question.
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Sub-question 3: What is the effect of using different multimodal fusion approaches

when using both acoustic and linguistic feature representations in one model?

We evaluate the effect of using a multimodal model by combining the unimodal acous-

tic and linguistic models. The unimodal models are integrated by both applying early

fusion and late fusion. Furthermore, models are considered where all four feature sets

are used, as well as models containing only the best performing feature representation

per modality.

Sub-question 4: What explainable acoustic and linguistic features play a role when

predicting the likelihood of investment of entrepreneurial pitches?

To answer this sub-question, hand-crafted acoustic and linguistic features extracted us-

ing openSMILE and LIWC, are used to train a model for predicting the likelihood of

investment. Then, Shapley feature importance values are obtained for each fold and

compared to explain common important features.

Sub-question 5: How well do the models trained using the in-person recordings of

the pitches generalize to online recordings?

For the final experiment, the generalizability of the models developed to answer the pre-

vious sub-questions is evaluated in a cross-domain experiment. For the online pitches,

hand-crafted and deep features for both modalities are extracted. Then, the best per-

forming models trained on the in-person pitches are tested using the instances of the

online data set.

1.4 Thesis outline

The rest of this thesis is organized as follows. First, a literature review of related

works is presented. This literature study consists of two parts: a contextual part on

entrepreneurial decision making and a technical part discussing papers related to the

methodology. The purpose of this literature review is to establish the potential signifi-

cance of the proposed approach. In the next chapter, the data set is described and an

overview of the methodologies used for the experiments is given. Chapter 4 presents the

results of these experiments. Finally, in Chapter 5 the results are discussed and placed

into context, some limitations are provided and the research questions are answered.
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Chapter 2

Literature Study

2.1 Literature Study: Decision-making in entrepreneurial

contexts

In a report called Fostering Entrepreneurship (1998), the OECD recognizes the central

role entrepreneurship plays in driving economies and economic growth. The dynamism of

entrepreneurship fosters globalisation, creates jobs and helps our economies to function

as open markets. Despite this importance, there is still a lot to be understood about

what entrepreneurship actually is and in what kind of processes it thrives. Shane and

Venkataraman (2000), who presented a framework and definition of entrepreneurship

that is widely supported among scholars in the field, describe it as “a field of business that

seeks to understand how opportunities to create something new (e.g., new products or

services, new markets, new production processes or raw materials, new ways of organizing

existing technologies) arise and are discovered or created by specific persons, who then

use various means to exploit or develop them, this producing a wide range of effects”.

Following this definition, studying how individuals in entrepreneurial contexts identify

and act on opportunities that are presented to them, in other words how decisions are

made, is a focus point in recent research on entrepreneurship (Ucbasaran, 2008).

The Oxford Dictionary defines decision-making as “the process of acting upon the

best information available in order to determine the most appropriate course of action”

(Stevenson, 2010). Decision-making in entrepreneurial settings is characterized by the

uncertain conditions in which it takes place, limiting the information available to deter-

mine the best course of action. According to Berner at al.(2012), the main premise of

entrepreneurship is to invest or produce while accepting higher risks. For this reason,

researchers are focusing on how decisions can be made under uncertainty, and decision-

making has become a well-established topic (e.g. Wadeson, 2006 ; Shepherd et al., 2015).

Understanding how entrepreneurs make decisions, why some are successful and some fail

is crucial to the success of entrepreneurial businesses.

To account for uncertainty in decision-making, the naturalistic decision-making frame-

work was introduced. This framework forms a means of studying how people that are
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experts in their respective fields can make decisions despite the uncertainty (De Win-

naar and Scholtz, 2019). This framework assumes that the knowledge structures of the

decision makers are formed by their cognitive structures, which in turn are developed

through emotion, which means that not all possible variables involved in the decision

can be known. The role of emotion makes entrepreneurial decision-making a complex

process since entrepreneurs are altered by their social environment and cannot be seen as

entire rational beings. Therefore, decisions in entrepreneurial settings that involve social

interactions are especially interesting. When the decision involves uncertainty over the

facts and consequences, this social interaction itself can play a key role (Liebregts et al.,

2020).

An important entrepreneurial decision-making process involving social interactions is

the hiring process of new employees. This decision is vital for a firm since human capital

is related to the effectiveness of the team and to growth of the firm (Colombo and

Grilli, 2005). The application process often involves multiple rounds based on which

job-based performance predictions can be made. Someone’s cv forms an important

information source of past experience but in most cases a job interview is the deciding

factor (DeGroot and Gooty, 2009). In an interview, verbal cues play an important role,

for example the applicant has to be able to explain their motivation for the job. However,

the social interaction does not only exist of the words being interchanged, gestures and

appearances also influence the conversation. DeGroot and Gooty (2009) find that visual

and vocal cues are related to the performance of applicants. Barrick et al. (2009) find

that the image candidates portray in an interview plays a significant role in whether

they are hired or not.

2.1.1 Studying social interactions

In social interactions people communicate with another in two main ways. Firstly, di-

rectly by speaking with another, this is called verbal communication. Developments in

the field of Natural Language Processing (NLP) have enhanced the processing of verbal

cues and their influence on human behaviour. In section 2.2.2 several NLP tools are

examined that can be used to study the role of language in social interactions. However,

when watching television in a foreign country where you do not speak the language, you

can still follow the social interactions to some degree. For example, whether people are

angry at each other and if the setting is tense or relaxed. This information is commu-

nicated using nonverbal cues such as vocal outbursts and facial expressions (Vinciarelli

et al., 2009). These nonverbal social signals often trigger analysis of socially relevant
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information (Argyle and Kendon, 1967).

Traditionally, the effects of social signals have been analyzed using manual techniques

to encode them. Maxwell et al. (2011) use independent raters to manually code social

signals emitted by pitchers to study early stage business angel decision-making. Jimeneze

Munoz (2019) studies success in non-native business pitches using independent ratings

of both verbal and non-verbal interactions. The results suggest that both the use of

the pitchers voice and gestures influence investment decisions. These manual methods

have two main limitations. Firstly, manually encoding variables is time-consuming and

inherently arbitrary. Zhang and Cueto (2017) argue that these independent raters are

prone to bias. Secondly, the manual annotators may miss important information for

decision-making, because it happens too fast or it is a more subtle social signal.

Given the importance of nonverbal cues on our behaviour, a more suitable approach

to encode their information is necessary. This problem is addressed by the emerging

domain Social Signal Processing (SSP), which aims to make social interactions under-

standable through analyzing nonverbal behavioural cues using machines (Vinciarelli et

al., 2009). SSP focuses on human nonverbal communication and uses modern technolo-

gies such as artificial intelligence (AI) to analyze it. Five major classes of nonverbal cues

are identified: physical appearance, gestures, face and eye behaviour, vocal or acous-

tic behaviour and the surrounding environment. In section 2.2.1, the methodologies

that can be used for the analysis of acoustic features of vocal behaviour are discussed

in detail. The processing of social signals and behaviours consists of two main stages.

Firstly, in the pre-processing stage the recordings of social interactions are split into

multimodal behavioural streams per person. Secondly, in the social interaction analysis

stage the multimodal streams are mapped to social signals and behaviours (Vinciarelli

et al., 2009).

2.1.2 Investor decision-making based on entrepreneurial pitches

Both verbal and nonverbal behavioural cues are used to communicate in social inter-

actions and can thus have an influence on the decision-making process. This section

reviews what role both verbal and nonverbal cues have in investment decision-making

based on entrepreneurial pitches.

There are also decisions in the entrepreneurial context that are not made by the

entrepreneurs themselves but by others, such as funding decisions. A vital part of the

entrepreneurial process is raising funds from investors to develop your business ideas

(Liebregts et al., 2020). Convincing potential investors of the viability of your business
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proposal is often the result of social interactions through the form of an entrepreneurial

pitch, also referred to as an elevator pitch. Like other entrepreneurial decision-making

processes, the setting of a pitching entrepreneur and an evaluating investor is charac-

terized by high levels of uncertainty. The entrepreneur has to prove that the business

idea is feasible, while not exactly knowing who sits in front of him. On the other hand,

the investor has to make an assessment of the potential legitimacy of the project while

having limited information (Clarke et al., 2019). Pitching for an investor often takes

place at the earliest stages of new ventures, before a product even has been developed

or produced and for that reason the risk is uncertain or unknown (Huang and Pearce,

2015).

Newell et al. (1958) coined the idea that in order to deal with high uncertainty, in-

vestment decision makers develop heuristics. This form of decision-making can be seen

as expert-based intuition, compared to formal analysis when information is available.

Huang and Pearce (2015) argue that when evaluating a pitch, investors rely on both

expert intuition and formal analysis. The authors name this strategy of using both in-

tuition and formal analysis, two undermining strategies, decision-making based on “gut

feeling”. Out of a survey among early-stage investors, this gut feeling is described as

based on two main components: data on the viability of the project and perceptions

of the founding entrepreneur (Huang and Pearce, 2015). As discussed before, viability

data is often scarce and for that reason the second component can be more interest-

ing for a study on decision-making. The perceptions of the founding entrepreneur are

formed by personal observations of the investor based on social interactions (Huang and

Pearce, 2015). As discussed in the previous section, verbal and nonverbal behavioural

cues play a vital role in social interactions. Given the reliance of investors on social

interactions for their decision-making, it is interesting to analyze the social cues in such

an entrepreneurial pitch setting. The role of verbal and nonverbal cues of pitches in

making investment decisions has attracted a lot of attention in academic research.

Martens et al. (2007) study the role of storytelling in the ability of a start-up to secure

investments. They qualitatively analyse the languages used in pitches in three high-tech

industries. According to the authors, the verbal content is important when entrepreneurs

want to attract capital for three reasons. Firstly, it can help give investors an insight in

the firm’s culture and identity, providing more insights than purely factual data on the

firms business (sales, revenue etc.). Secondly, using verbal cues can help the business idea

to appear both original and distinctive. Thirdly, it gives an entrepreneur the opportunity

to elaborate on the background and reasoning behind the business proposal. Combining

these three arguments suggests that using the correct verbal cues in a pitch could reduce
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the uncertainty and risk as perceived by the investors. Furthermore, it can act as a

call to action, by motivating and mobilizing investors to commit (Cohen and Dean,

2005). In a qualitative analysis, Martens et al. (2007) reveal that creating narratives

that construct identities for firms or that create a contextual embedding have a positive

influence on the amount of capital a firm can acquire. They conclude that language

usage and storytelling play a key role in entrepreneur-investor interactions.

In an influential study, Chen et al. (2009) investigate the extent to which investors’

perception of the passion of an entrepreneur influence investment decisions. Here, passion

is defined as an affective state that is accompanied by behavioural manifestations related

to the display of emotions and energy. In experiments, they found that this passion has

no direct impact on investment decisions, while the substance of the business idea has

a positive influence. Since then, research has aimed to replicate these findings, which

led to mixed results (Mitteness et al., 2012; Murnieks et al., 2016). These conflicting

findings seem to suggest that the approach of Chen et al. (2009) does not capture the

entire underlying interlinkages of verbal and non-verbal behaviour in these pitch settings.

In the paper by Chen et al. (2009) non-verbal behaviour is mostly handled as sec-

ondary behaviour that can support to convey the passion of an entrepreneur. Clarke

et al. (2019) challenge this view and aim to show that non-verbal cues carry meaning

themselves, in combination with verbal cues they form an integral part of the interaction

process. Clarke et al. (2019) study different combinations of verbal tactics (such as using

figurative language) and gestures (e.g. hand gestures) on the probability of investment

of entrepreneurial pitches. Their findings suggest that both verbal and the non-verbal

gestures significantly influence investment judges. The effect of hand gestures to depict

the business proposal had an even stronger positive effect than variations in the type of

language used. Of all the non-verbal cues, Clarke et al. (2019) focus on the gestures

class, however, they do deem it likely that other non-verbal modalities shape the inter-

actions. They highlight the potential of vocal or paralinguistic acoustic elements such

as pitch and loudness in these kinds of analyses.

Research on the role of vocal behaviour in entrepreneurial contexts has mostly focused

on the influence on persuasion. Clarke and Healey (2022) argue that voice is an important

source of information for investors. To get a better understanding how vocal cues can be

used, a model is developed to investigate the relationship between a voice and investor

decisions. Their findings suggest that vocal features have the ability to signal important

entrepreneurial qualities such as competence and trustworthiness. Another interesting

finding is that female entrepreneurs are disadvantaged when trying to persuade a investor

given their naturally higher voice pitch. Wang et al. (2021a) study persuasion attempt
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in crowdfunding projects. The results identify three key vocal indicators that could lead

to successful persuasion attempts: focus, low stress and stable emotions. The authors

argue that using vocal features and audio mining should play a greater role in academic

entrepreneurial research.

The studies by Clarke and Healey (2022) and Wang et al. (2021a) prove that vocal

behaviour can play a significant role in the decision-making process. However, both these

papers look at vocal-behaviour in isolation and not in combination with verbal behaviour.

The approach in Clarke et al. (2019) suggests that looking at the combination of verbal

and non-verbal is beneficial. Furthermore, Clarke and Healey (2022) and Wang et al.

(2021a) mostly focus on the influence on the perceived persuasiveness of the entrepreneur

and not directly on the investment decision. In some cases, it might be possible that

an entrepreneur that comes across as too persuasive and thus loses their credibility.

Therefore, it is interesting to analyze the direct effect of vocal behaviour on investment

decisions.

Acquiring capital in the form of investments is a critical part of the entrepreneurial

process for any business in the early stages of their venture. Entrepreneurial pitches form

a medium where entrepreneurs and investors interact. Previous work on the assessment

of entrepreneurial pitches shows that both verbal and nonverbal behavioural cues can

affect the final investment decision. Processing the social signals emitted by both the

pitchers and the investors opens up a valuable source of information for research into

entrepreneurial decision-making. To unlock the potential of these signals, NLP can be

used to analyze the verbal cues, while the SSP domain provides the tools to automatically

code nonverbal signals resulting in a more accurate and efficient analysis. Since social

interactions are the interplay of verbal and non-verbal cues, integrating them in a single

analysis is a current gap in the existing literature and could provide interesting new

insights. The class of vocal behaviour has been identified as a potential important driver

in pitch settings (Huang and Pearce, 2015 ; Clarke et al. 2019), but has not been studied

in a combined model with verbal cues yet.

2.2 Literature Study: Methodology

In this section, a review of related works employing a methodological approach similar

to the one that has been used in this research is presented. Firstly, an overview of

papers utilizing either acoustic or linguistic features is provided. Then, papers exploring

the potential added value of combining these two modalities in a multimodal model

are introduced. Emphasis is placed on papers that apply these methodologies in an
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entrepreneurial context.

2.2.1 Acoustic modality

Acoustic features of speech form the primary mode of interactions between humans.

These type of acoustic or vocal features are used on a wide scale to analyse human be-

haviour, including decision-making. Extracting features from the actual audio signal and

creating feature representations is a key part in the analysis of vocal behaviour. Gener-

ally speaking there are two different approaches to feature engineering of the acoustics

of speech:

(i) Feature representations that are handcrafted using domain knowledge

(ii) Feature representations that are learnt by deep learning algorithms

In the following sections, papers utilizing either one or a combination of these approaches

for the representation of the acoustic modality are be discussed.

Hand-crafted acoustic feature representations

Traditionally, feature representations of speech are generated by a hand-crafted process

which requires domain knowledge. These type of feature sets are interpretable by hu-

mans. Examples of features that can be extracted by hand are pitch, which makes it

possible to judge sounds as either high or low, and loudness. There is a wide range

of features that are based on domain knowledge and fall under the hand-crafted cate-

gory, which can be further categorized into three categories: prosodic, voice quality and

spectral (Shah, 2022).

Prosodic features represent the melodic contour of the audio signals of speech and give

an indication of the intonation, examples include: pitch, loudness and timing. These

relatively simple features can be used to gain interesting insights on the effect of the

acoustic features of human speech. Carlson (2017) used a small selection of highly inter-

pretable prosodic features, such as loudness and speaking rate, to analyse entrepreneurial

pitches from a startup competition. The aim of the study was to examine whether these

vocal features capture perceived traits of entrepreneurs. Regressing perceived traits such

as confidence and likeability on the prosodic features, the author finds that speech has a

significant effect. The findings suggest that especially loudness plays an important role

in how a speaker is perceived, as those who are louder on average are perceived to be

more confident and more likable. Furthermore, the study looked at whether the effect of

loudness could also be extended to funding outcomes of the entrepreneurial pitch. The
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findings suggest that the variance in loudness has a strong positive relationship with

funding raised (Carlson, 2017).

Another application for which prosodic features are used is the detection of emotion

in a speaker. Luengo et al. (2005) used an emotional speech database which included

six basic emotions, namely anger, fear, surprise, disgust, joy and sadness. For each

utterence, the authors extracted 12 “curves” such as pitch and power and for each of

them different statiscal features were computed, resulting in 86 prosodic features. A

support vector machine (SVM) was trained on the data set using this entire feature set,

resulting in an accuracy of 93.5%. When only using the six best features, which include

mean pitch and pitch variance, an accuracy of 92.3% is obtained. A similar approach is

used by Rao et al. (2013) who specifically compare the effect of using prosodic features

over segments of sentences instead of the entire sentence. Their results suggest that using

local prosodic features outperforms global prosodic features. Finally, prosodic features

can also be used to detect medical conditions such as dementia (Ossewaarde et al., 2019,

Haulcy and James, 2021) and depression (Yang et al., 2012).

The second category of hand-crafted acoustic feature representations is voice quality.

Voice quality can be defined as the characteristic auditory colouring of a person’s voice

(Keller, 2004). Although prosodic and voice quality features interact closely, scholars

argue it is beneficial to distinguish them for explanatory and algorithmic purposes (Ibid,

2004). Examples of features that fall under this category are divergence from spectral

distributions and jitter, a measure of the periodicity of the voice signal. Studies have

shown that using voice quality feature representations, predictive models can be created.

For example, Szekely et al. (2012) created a model using voice quality differences to

detect specific regions where the speaker swaps its normal voice for a different one in

audio books. Although voice quality can be a useful feature representation by itself,

combining it with prosodic feature sets yields a substantial improvement in performance,

compared to using a single feature set. With a combination of these two feature sets and

a SVM classifier, Zhang (2008) achieved a performance of 76% in an emotion recognition

task, a 10% improvement compared to single features. Similarly, Lugger and Yang (2007)

found that the parameters of voice quality are a contribution in addition to prosodic

features.

The third and final category of hand-crafted acoustic features describes the spectral

attributes. These spectral features are treated as strong correlations of the different

shapes the vocal tract makes when a person is speaking and the changes in articulator

movement (Koolagudi and Rao, 2012). MFCCs (Mel frequency cepstral coefficients)

and LPCCs (Linear prediction cepstral coefficients) are often used as feature sets for
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the spectral category. These are created by first by applying a Fourier transform on the

audio signal, to transform a time-domain signal into a frequency domain signal. Spectral

feature representations have been used for several tasks. Niebuhr et al. (2018) showed

evidence that there is a correlation between spectral features and listener ratings of how

charismatic a speaker is. Again, in many cases a combination of spectral features with

one of the other types yields an increase in performance of the model, for example when

creating a language identification model (Yin et al., 2006).

As discussed in the previous sections, these types of hand-crafted feature repre-

sentations are in many cases more useful when combined with another. This has led

to standardized feature vectors which are released as sets of feature representations.

OpenSMILE is a feature extraction toolkit which extracts different types of feature

representations from audio signals and creates vectors (Eyben, Wollmer, and Schuller,

2010; Eyben et al., 2013). Using openSMILE, Low Level Descriptors (LDDs) can be

extracted and in addition functional statistics (such as extremes, mean etc.) of these

descriptors are determined. Currently, openSMILE supports three standard feature sets:

ComParE, GeMAPS and eGeMAps. The ComParE set is the baseline feature set of the

INTERSPEECH Computational Paralinguistics Challenge and consists of 6373 features

(Schuller et al., 2016). The openSMILE toolkit has been used in a wide range of studies.

Training (deep) models using hand-crafted acoustic features

As in this study we look at the role of social signals in entrepreneurial decision-making

it is especially interesting to look at papers part of the 2013 INTERSPEECH Compu-

tational Paralinguistics Challenge. During this year, the 2012 version of openSMILE’s

ComParE was slightly modified in order to optimize modelling social signals and emotion

(Schuller et al., 2016). As part of this challenge, Wagner et al. (2013) used phonetic

patterns to detect social cues, such as laughter and fillers like “uhm”, in natural con-

versations. Extracting features using openSMILE and training a linear kernel SVM on

these features resulted in an accuracy of 83.3%.

Marchi et al. (2016) used the ComPare 2013 package from openSMILE as a baseline

feature set for a model to the track the emotions and character traits of speakers on

mobile platforms. Their motivation to use this feature set was twofold. Firstly, openS-

MILE is freely available and a well-defined standard for audio tasks. Secondly, the size

of several thousands features gives a substantial amount of information for a model to

be trained on. The authors extract acoustic features for speech segments of up to 120

seconds and then classify speaker’s characteristics and emotional state with the help of
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Support Vector Machines (SVMs) and Support Vector Regression (SVR). The openS-

MILE toolkit is also used in a study Galanis and Esposito (2013) that looks at detecting

emotional traits in call centre interactions. By extracting features compromised of func-

tionals of LLDs using openSMILE an SVM can be trained. The SVM learns an optimal

hyperplane that separates the emotional and non-emotional utterances. This hyperplane

can be used to predict the category of a new utterance. The best performing model can

classify emotional speech with an accuracy of 82.11%.

The studies using openSMILE for feature extraction that have been discussed so far

mostly use a SVM for classification. The SVM was a successful learning model for a num-

ber of tasks and was considered state-of-the-art. Recently, as deep learning techniques

have been widely used on various tasks, researchers have also started to use them for

audio classification tasks (Bae et al., 2016). Deep neural networks (DNN) are powerful

learners that can learn complex non-linear relationships between the input and targeted

output. A limitation of DNNs is they can only map a present input vector directly to

an output, in other words the model cannot remember states in the past. Recurrent

neural networks (RNNs) overcome this shortcoming. Using Long Short-Term Memory

(LSTM) and Gated Recurrent Unit (GRU) models, two types of RNNs, the model can

learn the temporal information of consecutive input vectors. Given the importance of

spatiotemporal dynamics in speech, these types of models are very practical to ana-

lyze vocal behaviour. Therefore, it is interesting to feed the feature extractions sets of

openSMILE in RNN classification models (Bae et al., 2016).

Wollmer et al. (2012) propose a model for emotion recognition based on a LSTM.

Previous studies on emotion recognition found that modeling long-range emotions tends

to increase the performance of models for emotion recognition. These LSTM networks

are able to incorporate information on how emotions develop over time and thus could

increase the accuracy of this task. In this study, the audio feature extraction is based

on openSMILE. Using the toolkit, a large set of LLDs and fuctionals are extracted. An

LSTM is trained on this feature set to make classifications on an emotion recognition

task, to discriminate between high and low levels of arousal, expectation and power.

The LSTM trained on the openSMILE features is the best performing model for this

task, outperforming LSTM models based on other (such as visual) feature sets. The

65% accuracy on this task using vocal features and a LSTM was the highest accuracy

reported in literature when the paper was published in 2012.

These papers that successfully use feature sets extracted using openSMILE for speech

based tasks show the potential power of speech as a social signal. In the chapter on en-

trepreneurial decision-making we have seen that perceived character traits and emotions
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of a pitcher in an entrepreneurial setting has an effect on how much funding is raised.

Here we saw that openSMILE feature sets capture the emotion of a speaker. Therefore,

it seems likely that it is interesting to use hand-crafted acoustic feature representations

of speech to analyze entrepreneurial pitches.

Deep learning derived acoustic feature representations

The previous section discussed the traditional method to create feature representations

of the audio signal of speech, which relies on designing hand-engineered features. After

the feature engineering step, a machine learning model (such as a SVM or RNN) is

trained on these features to make predictions. The performance of these models is very

dependent on the quality of the data representations and for this reason feature engi-

neering has been a vital part of the process. However, feature engineering techniques are

often time-consuming and the hand-crafted features can potentially be a not so accurate

representation of the actual speech (Latif et al., 2020). Recently, representation learning

techniques have been started to become popular. With these techniques, machines can

learn a representation of the speech input directly and automatically. These types of

representations are very useful and conducive for making predictions or classifications.

Data representation tools can be divided over two categories: shallow learning models

and deep learning based models. In this thesis the main focus is on deep learning based

models. Deep learning models, such as a CNN, can be trained to learn what the impor-

tant features are of an audio signal and thus be used as a feature extraction tool (Latif

et al., 2020).

Jaitly and Hinton (2011) were one of the firsts to try find a “better” way to represent

speech sound waves. They argue that using low dimensional hand-crafted representations

may lead to losing valuable information which makes it difficult to use it for discrim-

ination. Jaitly and Hinton present a novel approach consisting of higher dimensional

encodings with the help of a Restricted Boltzmann machine (RBM). RBMs are a type

of graphical model that uses hidden variables to achieve expressive marginal distribu-

tions. Experiments using these RBMs to detect features showed that they can be used

in emotion recognition task and outperform the state-of-the-art models at the time, that

were based on hand-crafted features. Milde and Biemann (2015) used CNNs to create

a feature extraction model for a paralinguistic task of eating condition classification.

Their main idea is to train local CNN classifiers that learn feature representations on

a small section of the full spectrum. The local classifications of the small segments are

then aggregated to create a global classification for the entire sequence. The final model
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achieved a relative improvement of 15% over the baseline hand-crafted model.

Trigeorgis et al. (2016) went a step further than Jaitly and Hinton (2011) and

applied an end-to-end model for an emotion recognition task. An end-to-end model

refers to learning the feature representation and classifying the emotional state of the

speaker in one jointly trained model. The model they use which has the raw waveform

signal as input and an emotion prediction as output is illustrated in Figure 2.1. As input,

the raw wave is divided into 6 seconds long segments. Subsequently, the input is fed to a

convolutional layer to extract spectral information, followed by temporal pooling. Then

there is another convolutional layer in order to extract more long term characteristics of

speech. The convolutional layers “replace” the traditional need for hand-crafted features

and the output of these layers is fed into a recurrent network. The use of this proposed

model that uses the raw signal significantly outperforms models based on traditional

hand-crafted feature sets such as ComParE and eGeMAPS. Furthermore, the authors

studied the gate activations of the recurrent layers of the LSTM models. They find that

these cells are highly correlated with prosodic features that were assumed to convey cues

in speech, which suggests interpretable cells exist.

Figure 2.1: The convolutional layers replace hand-crafted features. Image by Trigeorgis
et al. (2016)

Hersey et al. (2017) study various CNN architectures for large scale audio classifica-

tion. Their strategy is based on the notion that an audio spectrum can be regarded as

some type of image. By modifying CNN networks that are effective for image classifica-

tion tasks, a CNN architecture that can perform audio classification tasks is created. In

such as case, the pre-training is processed with a different task at hand and we call this

kind of learning transfer learning. VGGish is a type of deep audio embedding method

that works in such a manner (Hersey et al. (2017)). VGGish is based on the VGG model,

which is designed for image classification. VGGish is trained to predict video tags from

the Youtube-8M data set (Hersey et al., 2017). The VGGish model is composed of a
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series of convolutional, ReLU activation and max pooling layers, followed by three fully

connected layers. Using the VGGish feature extractor a 128 dimensional audio embed-

ding is created for every 960 ms of the audio fragment. Similarly as was the case for

the hand-crafted feature vectors, a RNN can be trained on this feature set as a sequence

encoder which can incorporate the temporal dynamics over the entire audio signal.

Shi et al. (2021) leveraged the VGGish architecture to extract audio features for

crowdfunding campaign video’s. For every 960 ms segment, a 1280-dimensional vector

is outputted by the final layer. This feature vector can then be used to train a model. In

this case, Shi et al. (2021) use a deep neural network model as a prediction model, the

output layer being a sigmoid activation function. The model using VGGish features was

the best performing model on the task of predicting crowdfunding success, outperforming

models based on hand-crafted feature sets such as MFCC.

Sun et al. (2020) extract both hand-crafted and deep vocal features for an emotion

recognition task. The eGeMAPS consisting of LLDs and functionals is extracted using

the openSMILE toolkit. The window size is set to 5 seconds, meaning that a feature

vector is created for frames of this size. Using VGGish, 128-dimensional embeddings are

extracted for every 0.96 seconds of the audio signal. Then, a LSTM model is utilized

in order to model the complex temporal dynamics of the audio sequences. The LSTM

is trained on the feature sets and creates context-dependent hidden states. Finally,

a regression layer is used to output the final emotion prediction. The VGGish based

model outperforms the eGeMAPS model significantly on the arousal prediction task

(0.49 versus 0.39).

Combination of acoustic hand-crafted and deep representations

The previous section highlighted the superiority of deep representations over hand-

crafted features when the goal is to analyze or make predictions on acoustic features

of speech. However, this does not necessarily mean that hand-crafted feature represen-

tations have to be discarded all together. In this section, we examine whether it could

be beneficial to combine both deep and hand-crafted speech feature representations in a

model.

Elbanna et al. (2022) studied the effect of stress on speech and aimed to create a

model to detect stress in speech. Earlier works using feature representations based on

deep neural networks did not succeed in accurately recognizing stress load in speech.

The approach of Elbanna et al. (2022) consists of leveraging the power of the deep

feature representations and the hand-crafted acoustic feature sets. Instead of training
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two separate models, one on deep and one on handcrafted features, and combining

the outcomes of these models, the two models are incorporated into the pre-training

phase. By doing so, the authors create a unique representation on which a classifier

can be trained. In this study, a handcrafted feature set consisting out of 88 features is

extracted using openSMILE. Deep learning representations are extracted using a variety

of models, including VGGish and YAMNet (Plakal and Ellis, 2020). Comparing the

performance of several models on a stress recognition task, the results suggest that a

hybrid representation of speech outperforms models that solely use either handcrafted

or deep feature sets. Although deep learning based models are effective for the task

at hand by themselves, including hand-crafted acoustic features yields a more accurate

model. The author suggests that future research should use a similar approach.

Another audio task for which feature extraction plays a important role in the perfor-

mance of the model is urban sound classification. It can be valuable to classify sounds

in city for numerous reasons including reducing noise pollution and improving security

(Luz et al., 2021). Traditionally, urban sound classification models relied on handcrafted

acoustic features but in the last years deep learning models have also successfully been

used. A few studies have experimented using a combination of both deep and hand-

crafted feature representations. Giannakopoulos, Spyrou and Perantonis (2019) propose

a method that combines hand-crafted audio representations with a CNN based repre-

sentation. Extensive experimentation on the combination of these two feature represen-

tation types showed that the combination leads to a relative increase in performance of

11%. This result suggests that the CNN model and hand-crafted method complement

each other. Luz et al. (2021) use a similar strategy to classify urban sounds. By associ-

ating hand-crafted features to deep features, the performance is increased and it allows

for dimension reduction of up to 62% for the combined descriptors. The combined model

outperforms most of the state-of-the-art CNN models for urban sound classification.

Generally speaking, theories on ensembling techniques suggest that using a diverse

set of features plays an important role in the performance of a classifier (Kuncheva et

al., 2003). This theory in addition to the works discussed in this subsection show that

it could be beneficial to combine hand-crafted and deep feature set in a single mode.

2.2.2 Linguistic modality

The analysis of linguistic data is commonly referred to as Natural Language Processing

(NLP). The field of NLP involves developing models that allow computers to under-

stand and process information in a natural language format. The development of AI has
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resulted in major breakthroughs in the development of language models. Approaches

using language as input to make classifications or predictions can, generally speaking, be

deconstructed into four phases: feature extraction, dimension reductions, classifier selec-

tion and evaluation (Kowsari et al., 2019). As was the case for the linguistic modality,

feature extraction plays a key role when we want to analyze text. Generally speaking

there are two different approaches to feature engineering of text:

(i) Feature representations that are handcrafted using domain knowledge

(ii) Feature representations that are learnt by deep learning algorithms

As text data often consists of a large number of unique words, the feature represen-

tations for a document can get very large. Large feature representation sets can cause

high time and memory complexity when training a model. A solution for this problem

is dimension reduction to reduce the size of the feature representations. A commonly

used method for dimension reduction is Principal Component Analysis (PCA).

Figure 2.2: Using text to make predictions. Image by Kowsari et al., (2019)

After extracting features and reducing the dimensionality of these features, a clas-

sifier can be trained on the text data. Different types of machine learning algorithms,

ranging from traditional to deep learning models, can be trained on text data, all having

different advantages and disadvantages. Traditionally, simple classification algorithms

such as logistic regression and Naive Bayes were very popular and have achieved good

results. Currently, SVMs are used on a wide scale as baseline models to compare to more

advanced models. Deep learning models outperform most of these traditional methods

given their capacity to model complex and non-linear relationships in the data (Kowsari

et al., 2019). The final step of the entire process is evaluating the predictions of the text

model. There are many methods available to evaluate these techniques.

In the following sections, papers that employ linguistic features of text as input for

machine learning models are discussed, with a particular focus on the feature extraction
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step. The two different types of feature representations and their combination are ex-

plored. The approaches for the other three phases are also examined in the discussion

of works employing one of these methods.

Hand-crafted linguistic feature representations

Raw language data often contains text in the form of short or long documents. A

documents consists of a number of sentences, where each sentence includes words that

are made out of letters. If we want to train a model on this kind of data, first a structured

feature set has to be extracted. The simplest form of feature representation are hand-

crafted and belong to the “n-gram” category. The n-gram strategy involves a set of

n-words that occur in that specific order in a text. Such a n-gram is not a representation

of the text, but can be a feature to represent it (Kowsari et al., 2019).

The simplest form of n-gram technique is where n = 1, this form is also called a

Bag-of-Words model (BoW). A BoW model involves two things, a vocabulary of known

words and a measure to quantify the presence of these words. In this model, a vector is

created in which each feature corresponds to a unique word in the text. In the simplest

form, called term frequency, the value for this feature is the number of times this word is

present in a text. Dirisam, Bein and Verma (2021) use a BoW model to predict whether

a crowdfunding action will attract donors or not. The text of crowdfunding pages is

converted into a vector using BoW. Training a Naive Bayes classifier on these feature

representations resulted in an AUC score of 0.7, outperforming other types of feature

sets. The authors attribute this to the fact that BoW is simple and the conditional

probabilities are not overfitted. Venkata Raju and Sridhar (2020) use a BoW model to

predict the score of a review based on the text of that review. The authors use a scale of

one to five on a data set consisting out of hotel reviews. Using this BoW approach, 60%

of the ratings can be accurately predicted with the given review. A limitation of the

BoW models is that all that matters is what and how often words are used, the ordering

of the words is irrelevant. Therefore, it is also common to use 2-grams and 3-grams,

since here a model can detect more information and the order of words is included in

the feature set (Kowsari et al., 2019).

Another limitation of BoW is that it treats every word equally. This way implicitly

common words in a corpus can have a big effect on the feature representation. To lessen

the effect of these common words, Sparck Jones (1972) developed the Term Frequency

- Inverse Document Frequency (TF-IDF) model. This model combines term frequency

with inverse document frequency, that assigns a higher weight to either words with a high
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or low frequency in the document. Ramos (2003) used a TF-IDF model to determine

word relevance in document queries. In this experiment, the goal is to find a document

relevant to a search query. The TF-IDF vector of the search query is matched with the

TF-IDF vectors of the documents. The sum of the vectors is maximized, resulting in a

list of documents that should match the search query. The results of Ramos (2003) show

that TF-IDF is an efficient model for this task and it returns highly relevant documents.

However, a limitation of the model is that it makes no relationships between words,

for example when a query includes the word “priest”, documents that use the word

“reverend” will not be returned.

Another BoW based feature extraction model is Linguistic Inquiry and Word Count

(LIWC) which relies on pre-computed dictionaries (Pennebaker et al., 2015). LIWC

is a lexical software tool that creates feature representations by matching words in a

document to terms in its dictionary and creates scores along multiple dimensions. For

example, LIWC scores for linguistic variables such as number of pronouns and conjunc-

tions but also more affective aspects such as positive/negative emotion (Kahn et al.,

2007). The terms in each dictionary are selected by experts and validated in different

types of settings. The English LIWC Dictionary contains around 6400 words and word

stems. For every term in the dictionary, one or multiple category labels are listed. These

categories can be classified into five sets: linguistic processes, psychological processes,

personal concerns, spoken categories and punctuation. Examples of categories in the

linguistic processes category are: word count, total pronouns, personal pronouns. For a

word in the input text, scores for each category are added and by doing so a feature set

is created for text sequences or entire documents. For example, words in the negative

emotion category are: abuse, sorry, tears. For a specific text, the LIWC analysis mea-

sures the appearance of all negative emotion words and creates a numeric value in the

range 0 to 1 for the negative emotion category. (Onan, 2018).

LIWC has been used to create feature sets and analyze texts in entrepreneurial

settings and achieved high model accuracies. Balachandra et al. (2021) used LIWC

features to study the influence of gendered language in entrepreneurial pitching. Pre-

vious studies showed that women consistently raise less capital than men. This study

explored whether gendered language might influence investment decisions. Using LIWC,

variables for masculine discursive style measures (work and complexity) and feminine dis-

cursive style measures (emotions and affect) were extracted from entrepreneurial pitches

presented by both males and females. The results of the analysis show that female en-

trepreneurs do not use a more feminine linguistic style in their pitches compared to men.

However, the results do suggest that a masculine linguistic style is more effective in the
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pitch setting.

Zhang et al. (2021a) study what contributes to a successful crowdfunding campaign.

Amongst other attributes of crowdfunding campaigns, the role of the text in the descrip-

tion is analyzed. For every pitch, a feature vector consisting of 92 features is extracted

using LIWC. The results show that text features can contribute to 59% variance in

the success of the campaign. Similarly, Babayoff and Shehory (2022) use a data set of

50.000 crowdfunding campaigns from the website Kickstarter and extract 120 semantic

features using LIWC. A prediction model based on semantics only, can predict whether

the campaign is successful or not with an accuracy of 91%. Looking more specifically at

the categories of LIWC, the buzzwords and emotional features are highly correlated to

funding outcome.

These different kinds of hand-crafted BoW based models are chosen as feature ex-

traction technique for machine learning due to their simplicity and robustness (Mikolov

et al., 2013). Furthermore, it is more effective to train a simple model on a large amount

of data instead of training a complex model on limited data. The discussed papers indi-

cate that feature sets extracted using LIWC can be applied successfully to train a model

to make predictions in an entrepreneurial setting. However, these models do not include

any semantic similarity of the words in the feature representations. As Mikolov et al.,

(2013) argue, in many cases a meaning of a phrase is not simple the composition of the

meaning of the individual words that make up the phrase. Given the fact that the order

of words is not respected and the lack of semantic information in these feature sets, a

limited set of tasks can be achieved using this method.

Deep learning based linguistc feature representations

Given the shortcomings of hand-crafted BoW based models, many researchers aimed to

develop a word embedding model to represent text data. Similarly as for the speech

modality, models can be trained to learn feature extraction of a text. Word embeddings

are feature learning models in which each word or phrase is mapped to a dimension

vector of real numbers (Kowsari et al., 2019).

Mikolov et al. (2013) presented the “word to vector” (Word2Vec) representation as

a word embedding model. Word2Vec is a deep learning based model which can be used

to generate continuous dense vector representations of words. These embeddings are

special since they capture semantic similarity. Simply said, this is a unsupervised model

which can take in large amounts of text, create a vocabulary of all words and creates

embeddings for every word in the vector space representing that vocabulary. Since
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the size of the vectors and the number of vectors can be specified, the dimensionality

of these models can be lower than the BoW based models. Two model architectures

exist that can be leveraged by Word2Vec to create the embeddings: the Skip-gram and

the Continuous Bag of Words models. Word2Vec can be seen as both supervised and

unsupervised. Using the Skip-gram and the Continuous Bag of Words models the model

can derive a supervised learning task from the corpus itself. While it is unsupervised in

the sense that it can learn embeddings for any corpus of your choice, without labelling.

Lilleberg et al., (2015) use Word2Vec in combination with Support Vector Machines

for text classification. The main issue the authors identify in this approach is the fact

that Word2Vec treats every word the same and is thus unable to distinguish between

the importance of each word with respect to the classification. Therefore, they propose

an approach which combines Word2Vec and TF-IDF. Since Word2Vec can only create

feature vectors for words or short phrases, the representation for an entire document

was created using the weighted sum of the word vectors. The result shows that the

combination of the two can outperform the model using individual feature sets.

The main challenge that Lilleberg et al., (2015) ran into while using Word2Vec is the

fact that it can only generate embeddings for words and not for entire sentences, which

makes it difficult to incorporate the context in the embedding. This problem is solved by

the Bidirectional Encoder Representations from Transformers (BERT) model (Devlin et

al., 2018). The BERT model is based on the transformer architecture and currently is the

most commonly used pre-trained model for feature extraction on text data. BERT has

achieved state-of-the-art results in several NLP tasks and is very effective in representing

a whole sequence of terms at once as a fixed-length vector. The BERT model is pre-

trained in such a way that it is forced to learn the context and semantic information

within and between sentences (Devlin et al., 2018). This is done by training the model

with two learning objectives in mind: masked language modelling (MLM) and next

sentence prediction (NSP). The MLM task drives the BERT model to to embed each

word based on each surroundings. The NSP tasks forces the model to learn continuous

semantics over sentences.

Chan et al. (2021) explore how BERT can be used to predict crowdfunding out-

comes. Using word embeddings created by BERT, they analyze the writing quality of

the description of crowdfunding projects. The BERT masking strategy is used to predict

the probability of that word appearing in that position, given the rest of the sentence.

A lower BERT score then indicates better predictability for the tokens in the sentence.

Therefore, in this case a lower BERT score reflects a better use of grammar and more

fluent sentences, representing better writing quality. The results of the study show that
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descriptions with a higher average BERT score (lower writing quality) tend to raise

more donations. Zhou (2021) proposes a BERT + CNN model to classify the titles

of crowdfunding campaigns. This model is used to achieve semantic information and

spatial location information at the same time. The combined BERT and CNN model

outperforms the individual models and traditional methods such as SVMs and Naive

Bayes.

Transformer based models such as BERT are partly so successful because of their

attention mechanism which enables them to capture the context of a sequence. How-

ever, a limitation of this attention mechanism is that the memory and computational

requirements grow quadratically with sequence length (Beltagy et al., 2020). Therefore

it is infeasible to use BERT for long sequences or entire documents. To address this

limitation, Beltagy et al. (2020) propose the Longformer model, which is a transformer

based model comparable to BERT with an attention mechanism that scales linearly.

Longformer can be used to extract features for entire documents.

Chen and Chu (2021) propose a method to detect fake news regarding the COVID-19

vaccine in long documents. The authors use Longformer to extract a 768-dimensional

vector for every document in the data set, to capture the long-range dynamics of the

document. A matrix consisting of all the feature sets of each document is created and

fed into a Multi Head Attention module. Finally, a softmax layer is used to get the final

classification. Wang et al. (2021b) use a bimodal model consisting of speech and text

for an emotion recognition task. The Longformer network is used to extract features for

the text modality. An accuracy of around 70% is achieved using this method.

Combination of linguistic hand-crafted and deep representations

As discussed in the previous section, transformer based models significantly outperform

BoW models that rely on pre-computed dictionaries. The same argument, based on gen-

eral ensemble theory, as for the different acoustic representations applies here: since using

diverse features can improve performance, the fact that one model is outperformed by

another does not mean it has to be discarded. Again, we examine how it can be beneficial

to combine hand-crafted and deep features, this time for linguistic features specifically.

Downsides of deep transformer models include intensive computing requirements and a

lack of explainability. Since BoW models are simpler models and require less computing

power, some scholars tried to use these BoW models in conjunction with deep models.

Johnson and Marcellino (2022) argue that when simple BoW models are used as a

supplement for deep transformer models, this can lead to both an increase in perfor-
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mance and improved explainability of the results. To demonstrate the validity of this

argument, they perform two different experiments. Firstly, an experiment is described

where implementing a BoW model drastically improves classification performance com-

pared to only a transformer model. The authors extract features using a BERT-based

model and a dictionary based model comparable to LIWC, called a stance vector. A

logistic classifier is trained on either the BERT vector, the stance vector or a concate-

nation of these two. The two embeddings are scaled differently, however, this is not an

issue since a logistic regression model fits each parameter separately. The three different

implementations are trained for binary classification on three different text databases. In

all three cases, the “hybrid” model where the two feature sets are concatenated performs

the best. Transformer models are known to have difficulty with longer pieces of text,

this also appears in the results of this experiment. The highest increase in performance

over the single models of the hybrid models is on the data set consisting of long pieces

of text. This finding suggest that hybrid approach are the most effective on longer text

sequences. Secondly, Johnson and Marcellino (2022) show that a hybrid approach also

provides insights in the classification process and thus increases explainability.

Younus and Qureshi (2020) propose a similar method as Johnson and Marcellino

(2022) to combine BERT with LIWC features. Again, a logistic regression model is

fed both types of features. In this case the task involves detecting propaganda in news

outlets. The results show that combining the two feature sets significantly improves

the performance of this task. The authors conclude that the contextual linguistics and

contextual semantics play a role in text classification. El Mekki et al. (2020) use an

ensemble model that applies a weighted voting techniques on one classifier based on

hand-crafted N-grams and another on BERT. The ensembling model outperforms the

models based on either BERT or N-grams.

The findings of these papers demonstrate the potential value of combining deep and

hand-crafted feature sets for text data. Especially for longer text sequences and in

computer-constrained settings a hybrid approach can be beneficial.

2.2.3 Multimodal analysis

As human beings, we often do not rely on one unimodal feature in our communication

but on a combination of several unimodal features together. Using such multimodal

information we get a better understanding of a speaker’s intention. For example, when

hearing someone’s voice we are able to detect sarcasm, while this is difficult when just

reading a text. The ability of multimodal systems to outperform a unimodal one is well
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established in literature (D’mello et al., 2015).

Multimodal fusion

So far, unimodal models consisting of either speech or text have been discussed. In this

section, we look at how these unimodals can form the building blocks for a multimodal

system. This step forms one of the important challenges when designing a multimodal

model (Baltruvsaitis et al., 2018). The process of combining information from the differ-

ent unimodal models into a multimodal one is called fusion. Different fusion strategies

and techniques exist. Generally speaking, two types of fusion techniques exist: early

fusion at the feature level and late fusion at the decision level. Furthermore, these two

different strategies are also employed together by some researchers, as part of a hybrid

approach (Poria et al., 2017).

Early or feature-level fusion refers to concatenating the feature vectors from the dif-

ferent modalities into a single vector. The concatenation forms a single new feature

representation on which a model can be trained for classification or regression. The

main benefit of fusing the feature vectors of the unimodal models is that the correlation

between the different features can help when training the model to improve the perfor-

mance of the task at hand. A challenge when using early fusion is the synchronization

of the different modalities. If you want to concatenate the different features into a single

vector, they must be synchronized and in the same format (Poria et al., 2017).

Figure 2.3: Early fusion versus late fusion. Image by Zhang et al. (2021b)

When using late fusion, first several models are trained on the feature representations

of each of the individual modalities, then the results of these models are fused to form
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a single final decision. Aggregating the decision of the unimodal models can be done by

voting, averaging, weighted sum or a trainable model (Gkoumas et al., 2021). One of the

benefits of late fusion is the complement of the weakness of early fusion, it is relatively

simple to fuse the outcomes of the unimodal model since these are often a similar form

of data. Another advantage of late fusion is that for every modality, experiments can

be done on what the most suitable classifier is and this one can be selected for the final

model. A downside of training multiple models and classifiers is that it is a tedious job

that consumes a substantial amount of time. A survey of different fusion methods in

academic studies by Poria et al. (2017) reveals that recently researchers seem to prefer

late fusion over early fusion.

Morvant et al. (2014) apply a late fusion approach based on majority voting of diverse

classifiers. Over a set of classifiers, seen as voters, the lowest misclassification rate is

estimated while maximizing the diversity of the voters. By maximizing the diversity

of these voters, they ensure that information of different modalities are included in

the final model. The proposed approach scores a good performance on the challenging

PASCAL VOC’07 benchmark. Another notable late fusion method is based on the

Kalman filter, a linear system based on a Markov model (Glodek et al., 2013). Dobrivsek

et al. (2013) propose a relatively simple fusion model by employing weight sum and

weighted product rule, where the weighted product rule outperformed the sum approach

on the eNTERFACE data set. Finally, it is also possible to train a deep model to fuse

the predictions of multiple classifiers. Nojavanasghari et al. (2016) train a deep model

on the final prediction score of each unimodal classifier and the complementary scores

(to infer the absence of the class of interest). The late fusion model based on the deep

model outperformed a early fusion and a late fusion with averaging model.

In a hybrid fusion model both early and late fusion are applied. The motivation of this

approach is exploiting the advantages of each strategy and overcoming the disadvantages.

Different types of hybrid fusion models exist. Wollmer et al. (2013) propose a hybrid

model for audio, video and text modalities. When using these three modalities the

main challenge is the alignment of the audio and video versus the text. In the hybrid

fusion approach of Wollmer et al. (2013) the audio and video feature representations

are concatenated (early fusion) and a prediction model on this combined feature set is

trained, while the textual features are fed into a separate prediction model. The decisions

of the two prediction models are then fused (late fusion), resulting in a single prediction

for the three modalities together.
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The added value of using multiple modalities

After describing how unimodal models can be combined into a multimodal one, papers

that develop multimodal models are examined in more detail. The entire methodology of

feature extraction, training, and fusion are examined in order to assess the added value

of utilizing multiple modalities, particularly in an entrepreneurial setting. Additionally,

the evaluation of multimodal systems is discussed.

Jiménez Muñoz (2019) uses a very simple model only consisting out of handcrafted

features to analyze the impact of verbal and non-verbal elements on the success rate of

business pitches. The study provides statistical evidence on the impact of paralinguistic

cues on the probability of success of pitches. In some cases these cues have a higher effect

on the success rate of business pitches than verbal aspects. Based on the analysis of the

investor reports Jiménez Muñoz (2019) concludes that both verbal and paralinguistic

features play a significant role and are related to start-up valuation and probability of

investment. Although this study provides some interesting evidence that both verbal

and paralinguistic features are correlated with the success of pitches, it is a shallow

analysis which cannot be used to make predictions.

In Section 2.2.1 the paper by Sun et al. (2020) was reviewed, who used hand-

crafted (eGeMAPS) and deep (VGGish) speech features to predict emotions. Apart

from training a unimodal based on speech, two other unimodal models are trained in

this experiment: text and vision. Several deep embeddings are extracted for these

modalities, including BERT word embeddings. Sun et al. (2020) use both early and

late fusion to create a multimodal model. Here the best performing feature sets for each

modality are combined into the multimodal model. Here late fusion achieves consistently

better performance than early fusion. The authors observe that multi-modal models can

substantially improve the performance. Furthermore, the authors find that using too

many unimodal models may hurt the performance.

Soleymani et al. (2019) have developed a multimodal deep neural network based

on verbal and non-verbal behaviour to predict the level of self-disclosure. The data

consisted of 727 responses on questions from 102 participants, where each response was

rated on the willingness to disclose (on a 7 point scale). Three modalities capturing the

responses of the participants were analyzed: language, speech and vision. To represent

language, BERT and LIWC were used. Using BERT each instance (response on a

question) was transformed into a 768-dimensional vector. With LIWC, 93 features were

extracted from the text of each utterance, forming a 93-dimensional vector. For the

speech (acoustic) modality two types of hand-crafted feature representations (MFCC
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and eGeMAP) and a deep representation are used. MFCC features are extracted using

openSMILE, generating a T x 39 matrix for each sample, where T is the number of

frames based on the hopsize. Using VGGish, an embedding of length 128 is extracted

for each frame of the audio signal, resulting in a T x 128 matrix. Finally, two sets of

vision features are extracted using openFACE and FACS.

Firstly, Soleymani et al. (2019) estimate self-disclosure using unimodal models. All

the different feature representations are fed into an encoder that transforms the output

into a 1 x 128 vector. For the language features this is a single fully connected (FC) layer

or an instance based encoder. For speech and vision, the temporal dynamics play an im-

portant role and for that reason recurrent layers (single layer GRU) are used as sequence

based encoders. Each of these encoders are then followed by a fully connected layer that

outputs the predicted self-disclosure score. The models are trained and evaluated using

k-fold cross-validation. Since self-disclosure is estimated using a score, the models are

evaluated using Spearman correlation (r). For the unimodal models, the models based

on deep representations, BERT for language, ResNet for vision and VGGish for speech.

achieve the best performance. Generally speaking, the linguistic modality achieves the

highest performance of the three modalities (r = 0.58).

Figure 2.4: The multimodal model to estimate self disclosure by Soleymani et al. (2019)

Subsequently, a multimodal model is created by using the encoders of the best per-

forming models for each modality (BERT, VGGish and ResNet). These three pre-trained

encoders are followed by one FC layer to fuse the modalities before being fed into a final

layer for prediction (see Figure 2.4). Additionally, the authors develop a late fusion

model by averaging the output of the best performing models of all modalities. The

results of Soleymani et al. (2019) show that for this task the performance of both fusion

strategies is comparable (both r = 0.58). However, the fusion models are not able to im-

prove on the performance of the best performing unimodal, BERT. On the contrary, in
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a cross-corpus experiment where the training is done on one data set and the evaluation

on another, the late fusion model outperforms the best unimodal model. Although for

this specific task in the within corpora experiment the multimodal did not improve the

performance, when combining different modalities the results can be generalized beyond

the data used for training.

Tavabi et al. (2020) use a multimodal model to detect whether a conversation two

people have can be considered motivational, a style that evokes a persons personal in-

trinsic reasons to change their behaviour. As it considers intrinsic reasons to make a

change in behaviour it can be seen as some sort of decision-making. The authors study

behavioural cues in both speech and language features, using a database consisting of

therapy sessions between therapists and clients with alcohol problems. Two feature sets

for the text modality are extracted: LIWC and BERT. LIWC is chosen for its inter-

pretability and to identify important features. For every utterance (client or therapist)

a 93-dimensional feature is extracted. BERT is used to take advantages of the powerful

pre-training representations, for all utterance a representation of length 768 is extracted.

For the speech modality also two types of feature sets are used, namely eGeMAPS (from

openSMILE) and VGGish. The eGeMAPS consists of 23 features that can be inter-

preted. A 128-dimensional vector is extracted using VGGish and applying PCA, using

a hopsize of 0.96 seconds.

Figure 2.5: The multimodal model to classify motivational interviewing by Tavabi et al.
(2020)

Tavabi et al. (2020) use a similar methodology as Soleymani et al. (2019) to train

the unimodal models. For the text models, an instance based encoder is used to map

the input feature space to a 256-dimensional embedding. Again, since in the speech

modality the temporal dynamics are significant, a sequence based encoder (1 layer GRU)
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is used for the VGGish and eGeMAPS vectors. To make predictions on the unimodal

models, the 256-dimensionl vector produced by the encoders are fed into a classification

layer, which makes a 3-class classification (sustain talk, neutral or change talk). For the

multimodal model, early fusion is used. The same 256-d embeddings from the previous

models are now concatenated and fed into a final layer before classification. The authors

also perform late fusion by averaging the predictions of the unimodal models.

The results of the analysis indicate that using text and speech features it is possible

to estimate when interviewing can be considered “motivational”, reaching an F1-score

of 0.72. For this specific task, text is the strongest unimodal model. The multimodal

model consisting of both text and speech obtains very similar performance scores as the

unimodal text model and thus not substantially increases the performance. The authors

argue that this might be explained by the fact that three different feature sets (client

utterance, client context and therapist context) are extracted while only one feature set

for speech (client utterance) is used. Therefore, in this case the speech modality does

not add a lot of additional information for the model. When only extracting features for

the utterance of the client, the (early fusion) multimodal model slightly outperforms the

unimodal text model. Comparing the two fusion techniques, in this study early fusion

outperformed late fusion.

Looking at some other studies that specifically combine text and speech features in a

single model, we find some interesting results. Toto, Tlachac and Rundensteiner (2021)

developed a deep transfer learning multimodal classification framework for depression

screening. Due to privacy concerns, audio data sets consisting out of people speaking

and depression labels are limited in size. To tackle this problem, the authors propose

a deep learning framework based on speech and text. To overcome the problem of the

small data set, pre-trained audio (VGGish) and text (BERT) feature extractors are

augmented by a dual self-attention mechanism. The model, called AudiBERT, achieved

state-of-the-art performance on the depression recognition task. The multimodal model

demonstrated a robust improvement (ranging from 6% to 30% F1 score) in comparison

to the unimodal models.

From the studies discussed in this section, we cannot conclude that either early or late

fusion achieves higher accuracy. In some cases late fusion is preferred since it is simpler

to implement. For all the papers discussed here, the multimodal model substantially

outperformed the unimodal models, which is in line with what is expected based on

theory.
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Chapter 3

Methodology

In this chapter, the methodology and experimental setup employed in the research are

discussed in detail. The data set utilized in this study, as well as previous work on this

data set, are introduced. Then, the data pre-processing and feature extraction process

are described. Subsequently, the experimental pipelines utilized to address the research

question and sub-questions are outlined. Finally, the training and evaluation of the

models are examined.

3.1 Data

In this thesis we used the Data Management Entrepreneurial Pitches data set containing

video recordings from entrepreneurial pitch competitions. This data set is collected and

maintained by Dr. Werner Liebregts, assistant Professor of Entrepreneurship at the

Jheronimus Academy of Data Science (JADS) in Den Bosch, the Netherlands. JADS

is an initiative of Tilburg University and the Eindhoven University of Technology. This

data set was originally part of a study by Liebregts et al. (2020) on the potential of

studying the role of social signal processing in entrepreneurial decision-making.

3.1.1 Overview of the data set

The Data Management Entrepreneurial Pitches data set consists of two main compo-

nents: video data of entrepreneurial pitches followed by a Q&A session and survey data

coming from both the pitchers and investor judges. The video data consists of students

of the JADS that perform an entrepreneurial pitch on a start-up business proposition

in front of judges that have experience with investing in start-up companies. Both the

pitchers and the judges are video and audio recorded during the presentation. Accord-

ing to the guidelines, every pitcher had 3 minutes to present their business proposal,

followed by a Q&A session of 10 minutes. However, in practise these guidelines were not

implemented very strictly. For the sake of this study, only the actual pitch segment of

the video is analyzed, the Q&A segment is discarded during the pre-processing.

The pitches of the start-up course of the JADS have been recorded for several years,
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starting from 2018 up to 2021, resulting in 52 videos in total. Before being recorded, all

the participants (pitchers and jury members) had to fill in an informed consent form.

Based on these consent forms, 42 pitches can be included in this study. All of the

pitchers of these 42 pitches gave permission for their video and survey data to be used

for research. For the pitch video data, only the consent forms of the pitchers are relevant

since we exclusively analyze the extracted audio files of the pitch segments. As the judges

do not interrupt the speaker during the pitch itself, the audio files of these segments do

not include any data of the judges.

Within the 2018-2021 time frame, the COVID-19 pandemic started. Due to the pan-

demic, the pitch sessions of the JADS changed from in-person meetings to online settings.

Therefore, one share of the pitches is documented in an offline setting and the other con-

sists of recordings of online meetings. Kuhn and Sarfati (2021) explored whether the

move to online settings affected investors’ perception of social signals. Their findings

suggest that since body movement is limited, acoustic features plays a more substantial

role in the assessment of pitches in online settings. It is likely that the relationship

between acoustic and linguistic features of speech and probability of investment is not

the same in online and offline settings. For this reason, only the in-person recordings

(25 in total) are used for the overarching research question and the first 4 sub-questions.

To investigate how the models trained on the offline database generalize to different

settings, we use the online database, consisting of 17 additional videos, as the test data

for the cross-domain experiments.

Besides the video data, the data set consists of survey data on the investors and the

pitchers. The data of three different surveys is included in the data set: an investor

survey, a student survey and a pitch survey. The investor survey is meant for the

judges and includes demographic information, character traits and investor experience.

The student survey is conducted before and after giving the pitch and involves similar

questions as the investor survey, except that there is no focus on investor experience but

on passion for entrepreneurship. The third survey is the most interesting for the sake

of this research and consists of the jury evaluation reports of the pitches. After each

pitch, the investor judges evaluated the pitch on several aspects, including non-verbal

behavioural cues and the business idea itself. In this research, we specifically look at

the probability that the investor would invest in the pitched business idea. Every judge

ranked this probability from 0 to 100. Looking at the consent forms of the judges, all of

the judges who scored the 25 in-person and 17 online recorded pitches that are listed in

the appendix gave permission for their survey data to be used for academic research.
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3.1.2 Previous work on this data set

The Data Management Entrepreneurial Pitches data set has been used for previous

studies. In the work of Goossens (2021) and Goossens et al. (2022) the impact of vocal

behaviour on funding decisions is analyzed. In the study, the VGGish model is used to

extract deep feature representations for the acoustic modality of the audio files of the

pitches. This deep representation is combined with a hand-crafted feature representation

and fed into a RNN in order to model the long term dependencies. Goossens (2021) uses

both the online and offline videos in the analysis (42 in total) and makes a binary

classification on whether a pitch would attract investment. The best performing models,

the combination of a deep and hand-crafted representations trained on either a LSTM

or GRU achieved an accuracy of 77.78%.

Stoitsas et al.(2022) focused on nonverbal behaviour cues and self reported char-

acteristics from both pitchers and investors. Using different feature sets consisting of

cues from several modalities such as facial expressions, head movement and vocal ex-

pressions, the investment decisions of the pitches are predicted. Their findings show

promising results for the prediction of investor’s evaluations of entrepreneurial pitches

based on nonverbal behavioural cues. In this study the behavioural cues are stronger

predictors than the models trained on the self-reported characteristics. The best per-

formance was achieved for the models trained on head movement and vocal expression

features. When predicting “the probability that you would invest”, the best performing

unimodal model was trained on head movement, which had an average MAE of 16.47.

Here the multimodal late fusion model had an average MAE of 17.25 and thus did not

result in an increase in performance.

3.2 Feature extraction

3.2.1 Pre-processing the data

Before features can be extracted from the data and a model can be trained on these fea-

tures, several pre-processing steps must be completed: (i) removing non-consent pitches,

(ii) extracting audio from video data, (iii) trimming the audio data, (iv) splitting the

audio data in chunks, (v) converting speech to text and (vi) creating a single score for

likelihood to invest.

(i) removing non-consent pitches : As discussed in the previous section, the entire

data set consists of 52 videos. However, not all of these videos are used in the research,

when removing non-consent pitches, 42 are available for our research. Then, the data
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set is split into an in-person database (25 pitches) for the main goals of this study, and

an online database (17 pitches) for the cross-domain experiment.

(ii) extracting audio from video data: In this study, only acoustic and linguistic fea-

tures are considered, thus the videos are first converted into audio files. The conversion

process was carried out using the MoviePy package in Python, with all files being trans-

formed into WAV format audio files. The use of WAV format has been chosen due to its

uncompressed nature, which allows for the preservation of more information for feature

extraction using the openSMILE and VGGish packages.

(iii) trimming the audio data: In order to accurately analyze the pitches, it is nec-

essary to trim the audio files to only include the pitch segment itself and exclude the

Q&A session. Although the guidelines for the presentations stipulate a duration of three

minutes for the pitch, in practise this was not always fulfilled. Therefore, it is necessary

to manually extract the pitch portion of the audio from the full video, as the pitch may

not always begin at the start of the video or end at the three-minute mark.

(iv) splitting the audio data in chunks: While using VGGish, a feature vector is

extracted for every 0.96 seconds of audio data. To get similar size feature vectors for

both the deep VGGish and the hand-crafted openSMILE features, chunks have to be

created. Here, we split all the audio data in non-overlapping chunks of 0.96 seconds.

By doing so, openSMILE can be used to extract features for the exact same frames as

VGGish.

(v) converting speech to text data: Before linguistic features can be extracted, the

audio files have to be transcribed to text data. This is done by using Google’s Speech-

to-Text API, which has state-of-the-art accuracy on automatic speech recognition tasks.

(vi) creating a single score for likelihood to invest : Every pitch in the data set is

evaluated by several judges. To train the model, a single likelihood to invest score for

every pitch has to be determined. Here we set the maximum score out of all judges’

scores for a specific pitch as the single probability to invest score. This decision is

justified for several reasons. Firstly, the goal of a pitcher is to raise money for their

business. If one of the investors is very enthusiastic about a pitch but the other two are

not at all, the pitch is likely to be “successful” and raise money. The average probability

to invest score of this pitch would not be very high since two of the judges are not

enthusiastic. For this reason the maximum score is used, since it gives a better indication

of whether a pitch is successful. Another reason is that the investors come from different

background and industries. Therefore, in some cases it is possible the investor has no

experience in the industry a pitcher is presenting on, and would probably not invest in

this pitch. Including this pitchers (low) probability to invest in the final score would not
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Figure 3.1: Distribution of in-person pitches Figure 3.2: Distribution of online pitches

be an truthful reflection of the actual quality of the pitch. Following this definition, the

distribution of scores in the in-person data set and the online recordings are presented

in Figure 3.1 and Figure 3.2.

3.2.2 Acoustic features

For the acoustic modality, two categories of feature sets are extracted: explainable, hand-

crafted features and deep representations. For the hand-crafted features the openSMILE

toolkit is used, for the deep features we use VGGish:

openSMILE: Out of the openSMILE kit we specifically use the extended Geneva

Minimalistic Acoustic Parameter Set (eGeMAPSv02) feature set (Eyben et al. 2015).

This is a basic standard acoustic parameter set intended to provide a common baseline

for research in the acoustic domain. It consists of 88 features, including Low Level

Descriptors (LLDs) and functionals, which are extracted from the 0.96 second chunks of

audio created in the pre-processing. These features are organized into a T x 88 matrix

for each pitch, where T represents the number of 0.96 second chunks that fit into the

length of the pitch. In order to model the temporal information in the audio signal, a

gated recurrent unit (GRU) is used. A GRU requires all inputs to be the same size, in

order to ensure that all pitches have fixed-length feature vectors, we fix the length of all

pitches based on the size of the second longest pitch. This allows for the incorporation

of as much audio information as possible while accounting for the longest pitch (09:25

minutes), which may be considered an outlier. To create equal length feature vectors,

shorter pitches are zero padded and the longer pitch is trimmed. This is a standard

method to create equal length features (e.g. Han et al., 2020) in the audio modality. In

addition, a “static” openSMILE representation is extracted, which does not consider the
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temporal information of the audio signal, by taking the mean, maximum and standard

deviation of each column over all the chunks, resulting in a 264-dimensional feature

vector.

VGGish: VGGish converts audio input into a semantically meaningful 128-D em-

bedding (Hershey et al., 2017). As discussed in Section 2.2.1, for every 0.96 seconds

of audio an embedding is obtained. When feeding the pitches into the VGGish frame-

work this results in a T x 128 embedding for every pitch, where T is the number of

chunks. Here, the same procedure has been applied to fix the length, by zero padding

and trimming all videos to a size 330 x 128, resulting in a deep representation of the

acoustic features of the text that capture the temporal information. Similarly as for the

openSMILE features, we also create a “static” deep representation, by taking the mean,

maximum and standard deviation over all the chunks for each column, resulting in a

384-dimensional feature vector.

3.2.3 Linguistic features

For the linguistic modality, both hand-crafted and deep representations are extracted.

The hand-crafted representations consist of LIWC features, while the deep embeddings

of the language used in the pitches is represented by LongFormer features.

LIWC: Linguistic Inquiry and Word Count (LIWC) is a text analysis tool that

determines the percentage of words in a text that fall into one or more linguistic, psy-

chological and topical categories. The core of the tool is a dictionary containing words

that belong to these categories. The most recent version, LIWC-22, is used to extract

116 features for each pitch (Boyd et al., 2022). These features are also used in an ex-

plainable model, which enables us to draw conclusions on what word “categories” play

a role in the investment decision-making process.

Longformer: As discussed in Section 2.2.2, most transformer based models cannot

be used for longer text sequences. Since the pitches in the data set are many cases too

long to be compatible with models such as BERT. For this reason, Longformer is used

in this study, which has a linear (instead of a quadratic) attention mechanisms, allowing

much longer input texts (Beltagy et al., 2020). Using the output of the pooled layer of

the Longformer model, a 768-dimensional embedding is obtained for the text of every

pitch. Given the large number of features in the Longformer model compared to the

LIWC model, we also create another deep feature representation with a smaller number

of features. With the help of principal component analysis (PCA) the number of features

is reduced substantially. For every fold in the training process, principal components
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are obtained only using the training set, then the coefficients are used to also transform

the test set. Splitting the data sets in specific folds for training and testing the model is

discussed in more detail in section 3.4.

3.3 Experimental Setup

3.3.1 Unimodal models: single set of feature representations

The first part of the analysis is aimed to answer the first sub-question: To what ex-

tent can an acoustic or linguistic unimodal model predict the likelihood to invest of

entrepreneurial pitches while using either hand-crafted or deep feature representations?

Here we developed 7 individual models, that all predict the probability of investment.

The approach for these unimodal models is inspired by the models of Soleymani et al.

(2019) and Tavabi et al. (2020).

Figure 3.3: Unimodal models consisting of either hand-crafted or deep feature sets

The probability of investment of the entrepreneurial pitches is formulated as a regres-

sion problem. The first step involves extracting the feature sets. This is done following
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the procedure outlined in Figure 3.2. As shown in Figure 3.3, on the acoustic modality, 4

models are trained. Two of these models use a sequence of chunks to model the temporal

information, a GRU is used to model this information. Since the temporal dynamics of

human behaviour could be important in shaping the entrepreneur - investor interaction,

we used a recurrent model as sequence-based encoder for the acoustic modality. This

GRU model consists of a single GRU layer followed by a regression module that outputs

a continuous value for the probability of investment of an entrepreneurial pitch. We per-

form hyper-parameter tuning by applying grid search over the parameters of the model,

exact details on the training and evaluation of the models are discussed in Section 3.4.

For the two remaining “static” acoustic models, we predict the probability of investment

using a linear regression, by applying Xgboost Regressor. Here the one-dimensional

feature set is used, consisting of the functionals calculated over each column.

For the linguistic modality 3 models have been developed, one on the hand-crafted

feature representation and two on the deep representation. The PCA Longformer model

is developed by applying PCA on every training set and subsequently transforming

the test set. A smaller feature size for the Longformer feature vector is also useful when

looking ahead at the model where it is combined with the LIWC feature representations.

All the models in the linguistic modality are trained using a linear regression by applying

Xgboost Regressor. A small grid search is performed over the number of instances, the

learning rate and maximum depth of the model.

3.3.2 Unimodal models: combining deep and hand-crafted feature sets

Figure 3.4: Unimodal acoustic models consisting of both hand-crafted and deep features

The second part of the analysis investigates the second sub-question of this the-
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sis: How does combining hand-crafted and deep feature representations in a unimodal

model affect the performance of the task to predict the likelihood of investment of en-

trepreneurial pitches? The approach is based on the suggestions raised in the papers

discussed in Section 2.2.1 and Section 2.2.2. We combine the feature sets into a single

model by both applying “early” fusion (a single regression model) and “late” fusion

(taking the mean output of two regression models to get a single score).

Figure 3.5: Unimodal linguistic model consisting of both hand-crafted and deep features

For all the models, the same feature extraction procedure and resulting feature vec-

tors are used as in the previous analysis. For the early fusion acoustic models the two

feature vectors are combined using two distinct strategies. The first strategy, presented

in Figure 3.4 (a), involves creating a model consisting out of two GRU input (encoder)

layers, one for each feature set. These two GRU layers are followed by a single fully con-

nected layer, where the two inputs are fused, and a dense layer to output the likelihood

of investment score. For the second strategy, presented in Figure 3.4 (b), we directly

combine the feature vectors by merging them. The merged feature representation is

then fed into a single GRU and subsequent fully connected layer to output the predic-

tion, comparable to the models consisting out of a single feature set. For the acoustic

modality, the two “static” feature sets are concatenated and modelled using a linear

regression.

For the linguistic modality, two “early” fusion models have been developed. The

first model consists of the merged LIWC and standard Longformer representations. The

second model consists of the merged LIWC and the PCA-transformed Longformer rep-

resentations. Both these features sets are modelled using a linear regression.

For both modalities we also combine the two feature sets into a single model using

late fusion. For the acoustic model we select the two best performing models of each

category (hand-crafted and deep): the (temporal) openSMILE and (temporal) VGGish

model. For every instance in the test set, the prediction of this late fusion model is

derived by taking the mean of the individual openSMILE and VGGish predictions. The

performance of the model is then determined using the same method as the other models,
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by calculating the Mean Absolute Error between the predictions and the actual values.

The same method is applied for the linguistic model, where the output of the PCA

transformed Longformer model is integrated with the LIWC model output.

3.3.3 Multimodal models: different fusion techniques

To answer the third sub-question and the overarching research question, multiple models

are developed in the third set of experiments. These models are designed to predict the

probability of an investment score using two different multimodal models architectures.

The first type employs late fusion, which involves averaging the regression output of

the unimodal models to produce a single score for the entire multimodal model. Two

late fusion models are developed: one using the best performing feature set of each

modality (VGGish and PCA-transformed Longformer), and the other using all four

feature representations.

Figure 3.6: Multimodal model - early fusion: hand-crafted and deep feature sets for each
modality

In the subsequent section of this research, experiments using the second type of

multimodal architectures, namely early fusion, are conducted. The same feature rep-

resentations and encoders as in previous steps are utilized. Similarly as was the case

for the late fusion models, we develop a model consisting out of all feeature represen-

tations and a model solely consisiting of the best performing representation for both

modalities. A model that can accommodate the four different inputs is created using

the functional API package of Keras. As shown in Figure 3.6, temporal acoustic features

are first encoded using a single layer GRU model with a similar architecture as depicted

in Figure 3.4 (a). The GRU is used to capture the temporal information present in
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the audio signal. The hidden layers for the linguistic features are fully connected layers

with ReLU activation. The four branches of the network are then concatenated using

a fully connected (FC) layer. The final layers consist of two dense layers, the first of

which combines all the different inputs and the second performs the actual regression

and predicts an investment score. Thus, using this complete vector of information from

two modalities, comprising two types of feature sets per modality, a model is trained to

predict the probability of investment for the pitches. Additionally, a model composed of

the best-performing feature set of each modality has been developed. The architecture

for this model is shown in Figure 3.7, and consists of the components for the VGGish

and Longformer features of the complete multimodal model.

Figure 3.7: Multimodal model - early fusion: best performing feature set of each modality

3.3.4 Explainable acoustic, linguistic and multimodal models

The experimental setup for the explainable models is relatively straightforward. Three

individual explainable models are developed: an acoustic, a linguistic and a multimodal

model. For the acoustic modality, a slightly different feature set is used as in the pre-

vious desribed experiments. Instead of extracting features for chunks of the pitches, we

extract the eGeMAPSv02 (Eyben et al., 2015) features over the whole pitch at once.

Consequently, a one-dimensional vector of length 88 is obtained for the entire pitch. For

the explainable linguistic model, the same LIWC feature representation is implemented

as earlier. For the multimodal model, the openSMILE and LIWC vectors are concate-

nated. All models are trained using Xgboost Regressor. A grid search is performed over

the number of instances, the maximum depth and the learning rate.

The output of these explainable models can be analyzed using a tool such as SHAP

(SHapley Additive exPlanations) (Lundberg, Scott and Lee, 2017). SHAP is an approach

based on game theory, which connects optimal credit allocation with local explanations

using Shapley values. With the help of SHAP, we can gain insights into which features

play an important role in predicting the likelihood of investment of the pitches in our

data set. To get an overview of which features are important for a model, the SHAP
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values of every feature of every pitch can be plotted. By doing so, both the importance

of the features and the distribution of the impact each feature has on the output can

be visualized. In this research this means, we can analyze whether a higher value for

an acoustic or linguistic feature would increase or decrease the likelihood of investment.

Since in this thesis Xgboost Regressor is applied, which is a tree based model, the

TreeExplainer implementation of SHAP is used (Lundberg et al., 2020).

3.3.5 Generalizing the models to online settings

The goal of the final sub-question is to test to what extent the performances of the

models outlined in Section 3.3.1 - 3.3.3 generalize to data collected in a slightly different

setting. To answer this question, the best performing models for each sub-question are

tested on the recordings of the pitches in the online setting. For the online videos, the

exact same feature extraction procedures are followed as outlined in Section 3.2. Then,

we evaluate the best performing acoustic, linguistic and multimodal models using all the

instances of the online data set.

3.4 Training and evaluation

In this section, the procedures for training and evaluating the described models are

detailed. Prior to training the models, the data set must be divided into a training set

and a test set. Rather than using random sampling, the data is divided into folds based

on the session in which a pitch was recorded. The 25 in-person recorded pitches included

in this study were recorded over four distinct sessions, each with different pitches and

investors. The pitches are divided into folds, with each fold consisting of all the pitches

from a single session, in order to ensure that each fold or test set can be considered

representative of an actual session. This results in four folds, ranging in size from 5 to

7 pitches per fold. The pitches recorded in the online setting are all tested at once and

thus do not need to be split into separate folds. An overview of the pitches and the

division of pitches over the folds can be found in the Appendix.

For the models based on Xgboost Regressor hyper-parameter tuning was conducted

to optimize model performance. For each model and each fold, hyperparameters were

explored using a grid search with 5-fold cross-validation on selected hyperparameters.

The model was then evaluated by predicting pitches in the unseen test set using the

best-performing parameters identified during the grid search. The absolute error was

used as the objective function during training. The explored hyperparameters and values
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are listed in Table 3.1.

Hyper-parameter Explored values

Number of instances 100, 200, 300, 400
Learning rate 0.1, 0.2, 0.3

Maximum depth 4, 5, 6, 7

Table 3.1: Hyper-parameters included in Grid Search for Xgboost Regressor models

The deep learning-based models consisting of a single input layer were trained using

the Keras Sequential API. A grid search was also employed as part of the training process

to optimize the hyperparameters of the model. For each model, three parameters were

selected for hyper-parameter tuning: the number of units in the GRU layer, the learning

rate, and the drop-out rate. Given limited computing power, the number of parameters

and the number of explored values was kept relatively small. The explored parameter

space is presented in Table 3.2. The Adam optimizer was used during training, and early

stopping was applied by monitoring the validation error on a hold-out set of the training

set (using a validation split of 0.2). The number of epochs was set to 100, although the

application of early stopping means that this value is not particularly relevant in this

case. A batch size of 5 was used while training all these models.

Hyper-parameter Explored values

Number of units 32, 64
Learning rate 0.001, 0.1, 0.2
Drop-out rate 0, 0.1, 0.2

Table 3.2: Hyper-parameters included in Grid Search for single input GRU models

The deep learning models with multiple, diverse input layers are created using the

Keras Functional API. Due to the complexity of these models, they are not compatible

with grid search implementations, and therefore no hyper-parameter tuning is performed.

Instead, the hyper-parameter settings for each fold of a specific model are set to be

exactly the same, allowing for fair comparisons across different models and preventing

overfitting on the test set. For all models, the GRU layers consist of 64 units, the dropout

rate is set at 0.1, the Adam optimizer is used, and the learning rate is set to 0.001. Early

stopping was applied by monitoring performance on the validation set, using a validation

split of 0.2. The batch size was again set at 5.

The performance of the models is evaluated using two main metrics: performance

on the prediction of the probability of investment and feature importance in explainable

models. The performance of all models is measured using the same evaluation score, the
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Mean Absolute Error (MAE). This allows for comparison of all models to each other

and to the findings of other studies using this data set, such as Stoitsas et al. (2022).

The MAE is calculated as the sum of absolute errors divided by the sample size and is a

commonly used evaluation measure for regression problems. The feature importance of

explainable models is evaluated using SHAP scores, as previously discussed in Section

3.3.4.
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Chapter 4

Results

In this chapter, the results of the experiments discussed in the previous chapter are

presented. The chapter is divided in sections based on the sub-questions of this thesis.

4.1 Unimodal models: single feature representations

The results from the unimodal models containing a single feature representation are

summarized in Table 4.1. The table includes the Mean Absolute Error (MAE) for each

individual fold, as well as the average MAE across all models. The best average result

for each modality is highlighted in bold. The results indicate that the best perform-

ing acoustic model outperforms the linguistic models, with the acoustic VGGish model

yielding the best results overall. Among the hand-crafted feature representations, LIWC

outperforms openSMILE. When drawing a comparison between a hand-crafted feature

set and a deep one, the results here suggest that the deep representations can form

stronger predictors. For both modalities the models that use (the best performing) deep

representations outperform the hand-crafted interpretable feature sets. The performance

results for the non-PCA-transformed Longformer model are substantially lower than the

PCA-transformed version. This could be caused by the large embedding size of Long-

former in combination with a small data set and a relatively simple model, namely a

linear regression. For this reason, in the remaining experiments, the PCA-transformed

implementation is used to represent the deep linguistic features.

Upon analyzing the acoustic modality, it was found that the overall best performance

was achieved using the deep (temporal) VGGish representation, which outperformed the

openSMILE representation in all but one fold. The relatively weak performance of the

“static” acoustic models, which are based on functionals of the entire pitch, suggests that

it is valuable to exploit the capabilities of deep learning models to capture the complex

non-linear relationships and temporal dynamics of the audio input. Using a deep model

to represent the acoustic signals and a GRU layer to model the information captured

in this signal results in a better performing prediction model. For this reason, the

temporal implementations are used in the experiments where feature sets and modalities

are combined into a single model.
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Modality Feature Set MAE 1 MAE 2 MAE 3 MAE 4 Average MAE

Acoustic openSMILE 18.54 15.23 13.44 20.92 17.03

Acoustic VGGish 15.48 12.42 11.53 22.19 15.41

Acoustic static openSMILE 20.90 15.30 16.35 31.09 20.91

Acoustic static VGGish 24.07 19.76 15.14 22.34 20.32

Linguistic LIWC 17.20 16.17 11.13 18.01 15.63

Linguistic Longformer 16.27 21.40 15.95 27.69 20.33

Linguistic PCA Longformer 16.03 12.25 10.94 23.21 15.60

Table 4.1: Unimodal models: single feature representation

The results of the linguistic modality show that the deep model outperforms the

non-deep model, although this is only after reducing and transforming the number of

features using PCA. It is interesting to note that the hand-crafted LIWC model has

a very competitive performance across all folds. While the deep model demonstrates

better average performance on the test sets, the hand-crafted models offer the benefit

of explainability, which can be useful in guiding entrepreneurs to identify characteristics

of an attractive pitch for investors. The performance and relevant features of these

explainable models, both unimodal and multimodal, are discussed in more detail in

Section 4.4.

4.2 Unimodal models: combining feature representations

In Table 4.2, the results for predicting the likelihood of investment using unimodal models

that combine hand-crafted and deep feature representations are presented. For the

acoustic modality, the model consisting of two separate GRU layers, one for openSMILE

and one for VGGish, performs slightly worse than the model where the feature vectors

are concatenated directly and fed into a single GRU. Both these models represent a

significant improvement compared to the acoustic models with only one feature set.

Additionally, the combined version of the static model outperforms both individual static

features. However, the late fusion model, which takes the mean of the predictions of the

individual models, does not improve on the single VGGish model.

The early fusion approaches for the linguistic modality are not able to improve on

the average MAE of 15.60 of the PCA-transformed Longformer model. However, in this
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case, it was found that using late fusion increases the predictive power of the linguistic

modality. Similarly as in the previous experiment, the best linguistic model performs

marginally worse than the acoustic one.

The results here indicate that the method of creating a “hybrid” representation has

the potential to outperform models that rely solely on hand-crafted or deep feature sets.

This effect is observed for both modalities in the conducted experiment, and is consistent

with findings from papers discussed in Sections 2.2.1 and 2.2.2.

Modality Model MAE 1 MAE 2 MAE 3 MAE 4 Average MAE

Acoustic
Concat VGGish +

openSMILE, into single GRU.
14.22 17.53 10.38 17.13 14.82

Acoustic
VGGish + openSMILE into

separate GRUs, then concat.
17.34 14.16 9.05 20.13 15.17

Acoustic
Static:

VGGish + openSMILE
22.04 16.99 15.75 25.98 20.19

Acoustic
Late Fusion:

VGGish + openSMILE
16.80 13.98 12.48 21.39 16.16

Linguistic
Concat: LIWC +

Longformer
14.49 19.56 15.02 24.70 18.44

Linguistic
Concat: LIWC +

(PCA) Longformer
17.79 17.02 11.61 23.63 17.51

Linguistic
Late Fusion:

LIWC + (PCA) Longformer
16.62 12.61 9.56 20.61 14.85

Table 4.2: Unimodal models: combined feature representations

4.3 Multimodal models

This section reviews the results of the experiments on multimodal models and the effect

of different fusion techniques on the performance of such models. The results of the mul-

timodal explainable model are discussed in Section 4.4, which leaves four models, two

for each fusion strategy, to be discussed here. For each fusion technique, a model con-

sisting of all the four feature representations and a model containing the best performing

feature set per modality (VGGish and PCA-transformed Longformer) are presented.

The results of the experiments demonstrate two main effects. Firstly, the overall
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results of the early fusion technique are compared to the late fusion models. We note

that the best performing model is an early fusion model, namely the model in which

early fusion of the best feature representations of each modality is applied. Overall,

the average MAE of 13.91 of this specific model is the best performing model that has

been found in the entire research. This model performs substantially better than its

late fusion counterpart, consisting of the two best feature sets (average MAE of 14.95).

However, it cannot be noted that early fusion is the strongest fusion approach in any

scenario. From Table 4.3, we note that when using all the four feature representations,

the late fusion approach slightly outperforms early fusion. We observe that the best

performing early fusion model does improve on the best performing unimodal models

(acoustic hand-crafted and deep features into a single GRU and the linguistic combined

model of LIWC and PCA-Longformer). However, the best performing late fusion model

is outperformed by both these unimodal models consisting of a combination of feature

sets.

Fusion type Features MAE 1 MAE 2 MAE 3 MAE 4 Average MAE

Early Explainable models 13.92 13.54 12.56 22.36 15.59

Early Best set of each modality 17.17 13.51 5.47 19.47 13.91

Early All sets 16.48 15.21 9.17 20.52 15.35

Late Best set of each modality 15.11 11.73 10.47 22.47 14.95

Late All sets 16.49 12.94 10.76 20.70 15.22

Table 4.3: Multimodal models: different fusion techniques

Secondly, for every fusion strategy, the performance of the model consisting of all

the four feature sets can be compared to the model solely consisting of the two best

performing representations. As discussed in Sections 1.2 and 2.2.3, most previous works

using a multimodal model only use the best performing feature set to represent a modal-

ity. Since, the best features outperform all the four features, the findings here suggest

that this approach is the strongest method to represent the modalities and forms the

foundation for the best performing models. This effect is valid for both fusion techniques

and zooming in on the individual folds, we observe that for both strategies in three out

of four folds a better performance is achieved in the “best performing sets only” sce-

nario. The increase in performance when removing the openSMILE and LIWC features

is larger in the case of early fusion compared to late fusion.
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4.4 Explainable models

In Table 4.4 the results of the explainable models are presented. The explainable acoustic

model is a slightly different implementation of the static acoustic openSMILE model

given in Table 4.1, since here the openSMILE features are obtained over the whole

length of the pitch at once, instead of over chunks. We note that when looking at the

average MAE across the four folds, this explainable openSMILE model outperforms the

model that captures the temporal information of the audio signal presented in Table 4.1

(Average MAE of 17.03). However, when examining the individual models, we find that

in 3 out of the 4 models, the temporal model outperforms the features obtained over the

whole pitch at once that is given here. The better overall performance for the model

here is caused by a large performance increase in performance on the first test set. The

LIWC model given in the table here is exactly the same as in Table 4.1.

The average MAE of the explainable multimodal model is 15.59. This finding demon-

strate that also when developing explainable models, using a multimodal model is benefi-

cial when predicting the probability of investment of entrepreneurial pitches and outper-

forms the unimodal models it is made up of. Despite the fact that the average increase

in performance is rather limited compared to the LIWC model, the multimodal model

performs substantially better in the first two models. Comparing the explainable multi-

modal to the multimodal models based on deep learning frameworks in Table 4.3, we find

that this approach is the worst performing model. However, we note that the improve-

ment of this model in terms of explainability, compared to the deep learning models,

is obtained at a relatively small cost in terms of model performance. The difference in

performance of the best performing model, early fusion of the strongest representations,

and the explainable model is rather limited (average MAE of 13.91 versus 15.59). At

the cost of this slight decrease in performance, we do gain a lot of interesting insights

by looking at the SHAP feature importance plots of these models.

Modality Feature Set MAE 1 MAE 2 MAE 3 MAE 4 Average MAE

Acoustic
openSMILE

on whole pitch
12.75 16.71 14.08 23.72 16.82

Linguistic LIWC 17.20 16.17 11.13 18.01 15.63

Multimodal
openSMILE +

LIWC
13.92 13.54 12.56 22.36 15.59

Table 4.4: Explainable acoustic, linguistic and multimodal models
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In Table 4.5 the explainable features that appear in the top 20 of feature importance

for at least three out of the four folds are presented. When looking at the SHAP plots in

Figures 4.1 - 4.3, some conclusions can be drawn on the effect these features have on the

outcomes of the model. Here it must be noted that these values should be used carefully

and should not directly be used to create guidelines for entrepreneurs to enhance their

pitching skills, as is discussed in Section 5.3.

Linguistic LIWC model Acoustic openSMILE model Multimodal model

number F0semitoneFrom27.5Hz amean Clout

achieve loudness amean F0semitoneFrom27.5Hz pctlrange0-2

Clout F2frequency amean F2frequency amean

Analytic loudness stddevNorm Conversation

i jitterLocal amean WC

Dic F0semitoneFrom27.5Hz stddevNorm number

quantity mfcc3 amean

Conversation F0semitoneFrom27.5Hz pctlrange0-2

spectralFlux stddevNorm

Table 4.5: Explainable features that appear among the top 20 of feature importance in
at least 3 out of 4 models for the respective linguistic, acoustic and multimodal models

Starting with the linguistic model, for the LIWC feature number, which is simply

a count for the amount of numbers used in the text, the results seem to suggest that

a lower value has a positive impact on the model output. This can be read from the

tables by looking at the color and the side of the spectrum the majority of dots are.

For number we generally observe more blue dots on the right half of the spectrum, this

pattern is especially clear in folds 2 and 3. This would indicate that in the pitch setting

studied here, using a lot of numbers during the pitch could have a decreasing effect on

the probability of investment. Similarly, for the feature quantity, which captures words

such as: all, more and some, this same effect is observed in the first model. However, in

models 3 and 4, the relationship is reversed, making it difficult to draw a conclusion on

the impact of this feature.

For the second category achieve, which contains words such as: work, better, best and

working, we observe that there are mostly pink dots on the right side of the spectrum,

meaning that the more these words are used during the pitch, the higher the prediction

for the probability of investment. This means that in the studied setting, when the

pitching entrepreneur uses more words that demonstrate a sense of achieving, this has
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Figure 4.1: SHAP summary plots for the LIWC models

a positive impact on the likelihood that investment would be attracted.

The third common important feature is Clout. The LIWC feature set contains four

overarching summary variables, of which Clout is one. This variable is described in the

LIWC documentation as “language of leadership” (Boyd et al., 2022). A higher number

for the Clout score indicates that the presenter is speaking from a perspective of high

expertise and is confident, on the other hand, lower scores suggest a more tentative or

humble speaking style (Pennebaker et al., 2015). For this feature, the SHAP plots for

all the four models indicate that a higher value for this feature would lower the output

of the model. This would mean that when the presenter seems to be highly confident,

this has a negative impact on getting an investment in the pitch setting studied here.

Another potentially interesting strong feature, which is also a summary variable,

is Analytic. A high number for the Analytic variable reflects formal and hierarchical

thinking, while a lower number reflects informal or personal language. The effect of this
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feature on the model output is less straightforward compared to the previous cases. In

models 2 and 3, even though the feature impact is relatively low, we observe mostly blue

dots on the right and pink dots on the left, indicating that a lower value for Analytic

would have a positive effect on the model outcome, and vice versa. However, for model

4, where the feature has a stronger impact on the model, some blue dots are spotted on

the left side, while all the higher feature values (depicted by a pink/red color) are found

on the right half. Therefore, we cannot draw an unambiguous conclusion on the effect

the Analytic feature has on the likelihood of investment.

The feature i appears in the top features of all the four individual models. This

category involves all 1st person singular pronouns, such as I, me and my. The effect of

this feature is consistent across all these models, namely that using a high number of

these kind of pronouns increases the probability of investment score predicted by the

model (and vice versa). This finding seems to suggest that when the presenter makes

the content of the pitch personal, and refers to him or herself in the story, this has a

positive impact on receiving investments.

Finally, for the Conversation feature, which is the most important feature for two

of the models, we observe that a higher score for this feature has a substantial negative

impact on the outcomes of the model. It might be surprising that this feature comes

up during a pitch situation where only one person is speaking. However, this category

involves non-fluent speech such as: oh, um and uh, and also contains filler words. There-

fore, the SHAP values for the Conversation feature indicate that when a pitcher presents

with a lack of fluency, for example caused by stammering or usage of filler words, this

has a negative impact on the likelihood of investment.

Upon analyzing the feature importance plots for the acoustic openSMILE models,

9 features are found to appear in the top 20 of at least three of the models. Since the

openSMILE features are comprised of functionals over some of the descriptors of the

audio signal, the features are less easy to interpret than the LIWC features. However,

we can still observe some interesting results. For the common feature, loudness amean,

which is the average loudness, a subjective auditory impression of the intensity of a

sound, in model 4 we observe that a higher value for this feature reduces the model

output. On the other hand, in model 2 we find a reversed relationship and observe some

blue dots on the left side, indicating that a lower mean loudness reduces the likelihood

of investment the model predicts. The relationship between the standard deviation of

the loudness, the loudness stddevNorm feature and the impact on the model is more

consistent across the different models. Here we find that a lower standard deviation

for the loudness descriptor leads to a higher probability of investment predictions. This
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Figure 4.2: SHAP summary plots for the openSMILE models

suggest that consistently speaking on a loudness level closer to the mean increases the

prediction for the likelihood of investment.

Amongst the common important features, several features representing a type of

frequency are found. Starting with the F0semitoneFrom27.5Hz amean, this is a measure

for the fundamental frequency of the audio signal, which represents the lowest frequency

component of the periodic waveform and is often referred to as the pitch of a sound. For

this feature we do not observe a consistent relationship. In model 4, a lower fundamental

frequency increases the likelihood of investment, but in models 2 and 3 we do not find this

correlation. We also find the F2frequency amean feature in the list of common important

features. The second formant (F2) frequency is related to the vowel sounds of speech.

F0semitoneFrom27.5Hz pctlrange0-2 and F0semitoneFrom27.5Hz stddevNorm are both

measures for the distribution of the fundamental frequency over the audio signal, where

the first is useful to identify extremes and the latter to indicate the consistency of the

frequency (Cooper and Sorensen, 2012). In model 4, these features are both in the top

three most important features, and in both cases a lower value has a positive impact

on the predictions of the model. For the pctlrange0-2 feature this relationship is also

found in models 2 and 3. The jitterLocal amean feature is also common and is related to

the fundamental frequency, as it is defined as the variation in frequency over the signal.
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Therefore, we note that for common important acoustic features there are three features

related to the distribution of the fundamental frequency and two features related to the

mean frequency, one for the fundamental and one for the second formant frequency.

[1] [2]

[3] [4]

Figure 4.3: SHAP summary plots for the multimodal models

For the multimodal model, the 6 common features consist of 4 linguistic and 2 acous-

tic features. All of these features are also a common feature in the respective acoustic

and linguistic models, except for the WC (word count) feature of LIWC. For the multi-

modal model, it is mostly interesting to look at the distributions of the feature categories

(acoustic or linguistic) over the feature importance plots. Across all the 4 different mod-

els both acoustic and linguistic are found amongst the most predictive features. Looking

at the overall distribution, we find this is slightly skewed to the linguistic features, since

60 out of the 80 most important features across the four models are of the linguistic cat-

egory. However, when only considering the top 5 features of the 4 models, the number of

acoustic and linguistic features is very similar (11 versus 9). Furthermore, in 3 models,

the strongest feature is an acoustic one. This finding demonstrates that when devel-

oping a multimodal model consisting out of acoustic and linguistic features, important

features used by the model to make predictions originate from both modalities . This

result, in combination with the performance edge of the explainable multimodal model

over its unimodal counterparts, is further evidence that studying verbal and non-verbal
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behaviour cues in combination is a valuable strategy when studying a social interactions.

The implications of this finding are discussed in more detail in section 5.1.

Zooming in on the 6 common features and their feature importance plots, similar

patterns are identified as in the unimodal models. Specifically, in the multimodal model,

the linguistic feature Clout showed the same effect as in the unimodal linguistic scenario,

with higher Clout scores corresponding to lower predictions for the probabilities of invest-

ment in models 1, 2, and 3. Similarly, the Conversation feature exhibited the same rela-

tionship as in the unimodal case, with higher scores corresponding to lower model out-

comes and vice versa. The same holds for the number feature. The two acoustic features

that are common important features in the multimodal model (F0semitoneFrom27.5Hz

pctlrange0-2 and F2frequency amean) are also common features in the unimodal acoustic

model.

4.5 Cross-domain experiment

Finally, the results of the cross-domain experiment are presented. Here the best per-

forming acoustic, linguistic and multimodal models are tested on the database consisting

of the online recordings. The goal of the cross-domain experiment is to test to what ex-

tent the performance of the used methodology generalizes to unseen data recorded in a

different context. In this experiment, we used the models trained on the four folds of the

in-person database. Then, we evaluated the models with all the instances of the online

dataset.

Modality Model MAE 1 MAE 2 MAE 3 MAE 4 Average MAE

Acoustic
Concat VGGish +

openSMILE, into single GRU
16.51 15.91 19.05 21.21 18.17

Linguistic
Late fusion:

LIWC + (PCA) Longformer
19.15 19.50 21.65 19.62 19.98

Multimodal
Early fusion:

best set of each modality
18.59 16.22 16.91 16.84 17.14

Table 4.6: Cross-domain results

Comparing the result of this experiment with the results of the previous experiments

suggests that the methods can generalize to an online pitch settings to certain extent.

While a slight decrease in performance across all three models was observed, the size

of this decrease is relatively small and the models continue to exhibit an adequate per-
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formance. We note that the some of the patterns observed in the previous experiments

recur in the cross-domain experiment. Firstly, when comparing the unimodal acoustic

and linguistic model, we again find that the acoustic model is superior. The difference

in performance is more pronounced in this cross-domain experiment than previously (as

presented in Table 4.2), where these particular acoustic and linguistic models displayed

relatively similar scores. Therefore, we observe that the features representing the acous-

tic modality generalized better than the linguistic features. Another consistent finding

in this experiment is the observation that the multimodal model again outperforms

the individual unimodal models. The relative increase in performance compared to the

acoustic model consisting of concatenated features fed into a single GRU is comparable

as in the in-person context, namely a decrease in MAE score of around 1 point.

Model Features MAE 1 MAE 2 MAE 3 MAE 4 Average MAE

Acoustic VGGish 15.48 12.42 11.53 22.19 15.41

Linguistic PCA Longformer 16.03 12.25 10.94 23.21 15.60

Acoustic
VGGish + openSMILE

single GRU
14.22 17.53 10.38 17.13 14.82

Linguistic
LIWC + PCA Longformer

late fusion
16.62 12.61 9.56 20.61 14.85

MM:

Early fusion

openSMILE +

LIWC
13.92 13.54 12.56 22.36 15.59

MM:

Early fusion

VGGish +

PCA Longformer
17.17 13.51 5.47 19.47 13.91

MM:

Late fusion

VGGish +

PCA Longformer
15.11 11.73 10.47 22.47 14.95

Table 4.7: An overview of the best performing models
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Chapter 5

Discussion & Conclusion

In the concluding chapter of this research, a comprehensive examination of the research

objectives and outcomes is presented. In section 5.1, the findings reported in Chapter 4

are contextualized and compared with existing literature in the field. Subsequently, in

section 5.2, the main research question and associated sub-questions are addressed and

answered. The limitations of the current study and recommendations for future research

are discussed in section 5.3. Lastly, an overall conclusion is drawn, summarizing the key

insights of the study.

5.1 Overview of the results

The aim of this study was to examine the decision-making processes of investors during

entrepreneurial pitch interactions by analyzing the acoustic and linguistic characteristics

of these pitches. Previous work has shown that early-stage investors rely on two main

components when making decisions: factual data on the viability of the project and

perceptions of the founding entrepreneur (Huang and Pearce, 2015). Given the scarcity

of factual data in this area, the resulting decisions are often characterized by a high degree

of uncertainty. Therefore, the perception of the entrepreneur, for a large part based on

the social interaction between the investor and entrepreneur, forms a vital part of the

decision-making process. For this reason, the social interaction itself can have an impact

on the outcome of the decision-making process. Social interactions are shaped by both

verbal and nonverbal behavioural cues. In the pitch scenario, such cues may, for example,

contribute to the level of trust the investor has in the entrepreneur’s capabilities. To

address this, the current study proposes a multimodal approach that combines both

verbal and nonverbal behavioural cues, specifically acoustic and linguistic features, into

a single model to predict the outcomes of these interactions. The underlying philosophy

behind this approach is that social interactions are shaped by the interplay of different

behavioural cues, and thus studying them in combination results in a more accurate

representation of reality.
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Acoustic and linguistic models

First the unimodal acoustic and linguistic models consisting of a single feature represen-

tation are discussed. Four models were trained on individual acoustic features, with two

models utilizing a GRU to model the temporal information in the audio signal and the

remaining two models utilizing static representations of openSMILE and VGGish fea-

tures, respectively. These static representations were trained using Xgboost Regressor.

The results of the study indicate that the temporal models performed significantly better

than the static models, highlighting the importance of capturing the non-linear relation-

ships and temporal dynamics of acoustic features in the speech signal. This finding is in

line with previous research, such as the work of Bae et al. (2016), who emphasize the

benefits of learning temporal information when modeling the acoustic modality. Addi-

tionally, when comparing the performance of the hand-crafted openSMILE models to

the deep VGGish models, it was found that the deep representations achieved superior

performance, with this difference being more pronounced in the temporal scenario than

in the static scenario. This result is consistent with the study by Sun et al. (2020), who

analyzed both the eGeMAPS and VGGish features using a LSTM model and found that

the VGGish model outperforms the model based on the openSMILE eGeMAPS features.

In the study of Soleymani et al. (2019), who use a comparable methodology as used in

this research, the VGGish model also outperforms the eGeMAPS model.

In this study, three models have been trained on individual linguistic features, with

one model utilizing the LIWC features and two models utilizing the Longformer rep-

resentation. When comparing the performance of the hand-crafted model to the deep

models, it was found that the best-performing model was based on the deep represen-

tation. Additionally, it was observed that the non-PCA-transformed Longformer model

exhibited poor performance across all folds of the study. This result can be attributed

to the combination of a large embedding size of 768 and a limited sample size. However,

upon applying Principal Component Analysis (PCA) to the Longformer features, the

results improved substantially. Furthermore, a direct comparison between the results of

the PCA-transformed Longformer model and the LIWC model revealed that the Long-

former model performed slightly better overall and achieved the strongest performance

in 3 of the folds. This finding is consistent with previous research such as the work of

Soleymani et al. (2019), who also found that deep embeddings outperform hand-crafted

LIWC models. However, in that study, the difference in performance between the two

models is more prominent.

In addition, experiments have been conducted to examine the effectiveness of com-
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bining hand-crafted and deep representations to create a “hybrid” representation for

the unimodal acoustic or linguistic model. Specifically, for the acoustic modality, the

openSMILE and VGGish features were integrated in four different models. These mod-

els were constructed in various ways, three of which were created by first integrating

the feature vectors and then applying a regression module. The effectiveness of these

different “hybrid” representation models on the task were then evaluated and compared

to the individual models. For all these first three models, an improvement was found

with respect to the individual models. The strategy of directly concatenating and feed-

ing the features into a single GRU emerged as the most effective performer. On top

of that, the model comprising of two GRUs to encode the information for each feature

set also performed better than individual models. The remaining hybrid acoustic model

was created by taking the mean of the individual models, comparable to a late fusion

approach. However, this model performed worse than the individual VGGish model.

The findings for the first three models are in agreement with the study of Goossens

et al. (2022), who use the same data set as used here, to develop a classification model

which predicts whether a pitch would be invested in. When openSMILE features were

added to the VGGish model, by concatenating the features and feeding this into a single

GRU (comparable to the set-up of the best performing acoustic model in this study),

the accuracy increased from 66 % to 78 %. Furthermore, in the study by Elbanna

et al. (2022), the feature vectors of eGeMAPs and VGGish are also combined in the

pre-training phase. Although deep learning based models are effective by themselves,

including hand-crafted acoustic features yields a more accurate model. Therefore, in this

study we find further evidence for what has been found in earlier works where acoustic

feature sets are integrated.

For the linguistic modality, three “hybrid” models have been developed, of which the

early fusion and late fusion of LIWC and PCA-Longformer are discussed. Our findings

indicate that the combination of hand-crafted and deep features through a single regres-

sion model did not result in an improvement in performance, as measured by the mean

absolute error (MAE) of 17.51. Upon closer examination of the performance on individ-

ual folds, it was found that the combined model did not achieve higher performance than

either of the individual models in any fold. This outcome is in contrast to some previous

studies that are discussed in Section 2.2.2. For example, both Johnson and Marcellino

(2022) and Younus and Qureshi (2020) find that when a hand-crafted model is used

as supplement for a deep transformer model, this leads to an increase in performance.

However, looking at the results of the late fusion approach of the linguistic features we

do find an increase in performance. Here it must be noted that in this case the model
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does not actually learn a combined feature space. We obtain a better performance using

this strategy when we consistently find that one of the models under-predicts an actual

score and the other over-predicts this same score.

Across all the unimodal acoustic and linguistic models, we note that the best perform-

ing acoustic model is the combined feature representation implemented using a single

GRU. Similarly, the strongest linguistic model was identified as the one that employed

a combined representation obtained by averaging the output of the individual models.

These findings suggest that, in both cases, a combined feature set forms the strongest

representation of a modality. The acoustic model slightly outperforms the linguistic

model (14.82 compared to 14.85), but this difference is negligible. Furthermore, upon

closer examination of the performance on individual folds, it was found that in two cases

the acoustic model outperformed the linguistic model and vice versa. Therefore, it is not

possible to draw a clear conclusion regarding which modality is the strongest predictor

in the context of entrepreneurial pitches.

Multimodal models

The experiments on multimodal models provide three notable insights. Firstly, we stud-

ied the effect of creating a multimodal model consisting of both hand-crafted and deep

features to represent the two modalities and compared this to a model where only the

best performing features of the two modalities are used. As noted in Section 1.2, most

previous works explore multiple unimodal models but employ the latter strategy when

constructing multimodal models, utilizing a single feature set per modality. The findings

presented in this study demonstrate that in both the early fusion and the late fusion

architectures the strategy of only using the best performing feature is superior in terms

of model performance. This finding lends credibility to the multimodal architectures

proposed by authors such as Soleymani et al. (2019) and Tavabi et al. (2020). Here

we note that earlier we found using both hand-crafted and deep features in a unimodal

context outperforms models made up of individual features. However, this finding is not

consistently replicated in the multimodal scenario.

Secondly, the performances of the early fusion models are compared to those of late

fusion models. The results revealed that, when evaluating the multimodal model consist-

ing of the best features only, the early fusion model outperforms the late fusion strategy.

Conversely, in the setting where all the feature sets are used, the late fusion model

demonstrated superior performance. Therefore, we cannot draw a consistent conclusion

regarding the most optimal fusion strategy for creating the strongest model. Previous

69



work also did not identify a clear superiority of one strategy over the other. For example,

Nojavanasghari et al. (2016) find that late fusion outperforms early fusion, while Dong

et al. (2014) find that early fusion is superior. Given these inconclusive findings, we

argue that it is recommended to experiment with both early and late fusion strategies

when developing a multimodal model in order to assess their impact on the performance.

The early fusion approach has the benefit of allowing the model to learn a comprehensive

feature space incorporating both verbal and nonverbal behavioral cues. On the other

hand, the late fusion approach has the benefit of being relatively straightforward to im-

plement and does not require the modalities to be synchronized, making it applicable in

a broader range of contexts

Thirdly, the results for the multimodal models are compared to those of the uni-

modal models in order to test the hypothesis that multimodal models can potentially

outperform unimodal models. The findings indicate that only one of the non-explainable

multimodal models, specifically the early fusion of VGGish and PCA-transformed Long-

former features, was superior to the best performing unimodal models. Although this

result is specific to a single model, it does suggest that utilizing a multimodal approach

is a viable methodology for studying investment decision-making based on pitches. Ad-

ditionally, it highlights the added value of studying different modalities in conjunction,

as previously demonstrated in literature discussed in Section 2.2.3. In the previous para-

graph we argued that we do not find evidence for the superiority of one of the two fusion

strategies. However, considering that the best performing model utilizes early fusion

and it is the only multimodal model that outperforms the strongest unimodal models,

it can be concluded that the early fusion strategy is the most effective in the context of

predicting the likelihood of investment based on acoustic and linguistic features.

Since the early fusion model consisting of the VGGish and PCA-transformed Long-

former features is the strongest model found in this study, the performance of this model

is compared to the current state-of-the-art performance on the in-person recordings avail-

able in this data set. Stoitsas et al. (2022) also used the probability of investment score

as a target variable and used a model consisting of different feature sets of cues from

several modalities such as facial expressions, head movement and vocal expressions. Here

the strongest performing model was trained on head movement and achieved an average

MAE of 16.47. Here it must be noted that in this experiment, the data set is split in

three folds, with the first two being the same as in this study. However, the third fold

was a combination of the third and fourth folds in this experiment. Our strongest model

achieved a performance of 13.91, yielding an improvement over the previous state-of-

the-art performance provided by Stoitsas et al. (2022).
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Explainable models

Explainable models have been developed in order to examine what features play an

important role when the models predict the likelihood of investment. For these models,

openSMILE and LIWC features are used. First we look at the model performance of

these explainable models. Compared to the best performing non-explainable models,

we observe a slight decrease in performance. The acoustic explainable model (MAE

of 16.82) performs worse than the acoustic model were a GRU is used to model the

openSMILE and VGGish features at once. Similarly, the explainable multimodal model

is outperformed by all the four other multimodal models. However, we observe that this

decrease in performance is rather limited and at the cost of this decrease we do gain

a lot in terms of explainability. Furthermore, we again observe that the multimodal

model outperforms the unimodal models it contains. So we can conclude that also in

the context of explainable models, a multimodal architecture is suitable to predict the

likelihood of investment.

We obtained the Shapley feature importance values in order to find repeated im-

portant features and to study some correlations between feature values and model pre-

dictions. Overall, we found that a relatively large number of features were consistent

important features across multiple models. LIWC measures four broader “summary”

variables and two of these, Clout and Analytic, were found to be common important

features across the four linguistic models. In the analysis of the openSMILE features, 3

different functionals over the fundamental frequency were common important features.

In addition, both the mean and the normalized standard deviation of the loudness were

also frequent relevant features. For the SHAP plots of the multimodal models, our pri-

mary focus was on examining the distribution of modality categories across the feature

importance plots. The results of the analysis demonstrate that both acoustic and linguis-

tic features play an important role in determining the model output. Additionally, this

finding further supports the argument that the combination of verbal and non-verbal be-

havioral cues captures a more comprehensive range of behavior and subsequently yields

stronger predictors. The evidence that both modalities are important in determining

the model output, strengthens this line of thinking.

Generalizing the models to online recordings

In a cross-domain experiment we tested how well the models that have been developed

generalize to the online recorded pitches. Our findings demonstrate a degree of gener-

alizability of the proposed methods to a slightly different context. Firstly, the results
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indicate that the acoustic features generalized better than the linguistic features. This

is consistent with the findings of Soleymani et al. (2019), who also tested their models

in a cross-domain experiment and found that non-verbal features, such as vocal fea-

tures, generalized better. The paper of Kuhn and Sarfati (2021) found that in online

settings acoustic features play a more critical role. Therefore, one might expect that

the acoustic features have a distinct and different effect in the online setting and thus

would not generalize well from an in-person to online context. However, we observe

that the acoustic features generalize relatively well. One interpretation of the relatively

weak generalizability of the linguistic modality might be that the verbal content changes

significantly across the two settings, for example because the presenter is able to have

speaker notes on his screen or is less nervous in the online setting. Secondly, we find that

also in the cross-domain experiment, the multimodal model is superior to the unimodal

models. These observations demonstrate the generalizability of the proposed multimodal

architecture and provide further evidence that using a multimodal model leads to better

performing models.

5.2 Answering the research questions

Regarding Sub-question 1, which stated to what extent can an acoustic or linguistic

unimodal model using either hand-crafted or deep feature representations predict the

likelihood of investment, it should be answered that it is to some extent possible to

predict the investment likelihood using these models. The best performing model was

trained on the VGGish features, achieving an average MAE of 15.41, followed by the

PCA-transformed Longformer features. However, these models did not improve on the

results of Stoitsas et al. (2022).

Sub-question 2 continues on the first sub-question and asks whether combining the

hand-crafted and deep representations in a single model affects the model performance.

The present study provides evidence that in certain contexts, the utilization of both

hand-crafted and deep features can result in an improvement in model performance.

Specifically, for the acoustic modality, it was observed that training a model on an

integrated feature vector led to an increase in performance in two cases. Furthermore,

for the linguistic modality, it was observed that only fusing the outputs of the individual

LIWC and Longformer models had a positive effect on performance.

For Sub-question 3 we examined the effect of using different multimodal fusion

approaches when using both acoustic and linguistic feature representations in one model.

For this sub-question we find that the result of applying early fusion or late fusion
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depends on whether all features or only the best features are used. However, only using

early fusion, a higher performance was achieved compared to the unimodal models.

Sub-question 4 asked What explainable acoustic and linguistic features play a role

when predicting the likelihood of investment of entrepreneurial pitches? Using the Shap-

ley values, multiple frequent important features were identified across the acoustic, lin-

guistic and multimodal models. In the multimodal model, both acoustic and linguistic

features played an important role when predicting the investment likelihood.

Sub-question 5 stated how well do the models trained using the in-person recordings

of the pitches generalize to online recordings?. Here the findings indicate that the models

generalize to the online recordings to some degree. As can be expected in a cross-domain

experiment, a slight decrease in performance was observed. The multimodal model was

also in this setting the strongest predictor.

The Main research question was the following: To what extent can the likeli-

hood of investment be predicted from acoustic and linguistic features recorded during an

entrepreneurial pitch using deep and hand-crafted representations? The answer to the

overarching question can be stated as: a state-of-the-art performance to predict the

likelihood of investment of the pitches in this data set can be achieved, with an average

MAE of 13.91. The strongest predictor is an early fusion model consisting of the VGGish

and PCA-Longformer features. When both hand-crafted and deep representations are

used, we do not observe an increase in performance over the unimodal models consist-

ing of these two representations. The superiority of the multimodal model is further

supported by experiments on generalizability and explainable models, which indicate

that analyzing both verbal and nonverbal cues together is beneficial in understanding

entrepreneurial decision-making.

5.3 Limitations and future research

Although the presented findings show some promising results for the prediction of in-

vestor’s likelihood of investment, some limitations and context need to be considered.

Firstly, it is difficult to generalize the results, given the relatively small data set,

consisting of only 25 videos on which models can be trained, and another 17 (online)

pitches that can be used to test the models in a different pitch setting. For this reason, the

models presented in this study are based on only 18 to 20 training instances, depending

on which session is used as a test set. However, it is worth noting that the startup

course where the pitches used in this experiment originate from is taught on an annual

basis, thus, the dataset will continue to expand in size over time, which would enable
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the training of more robust models with more data. Furthermore it would be interesting

to look at publicly available data sets containing entrepreneurial pitches, such as the tv

shows Shark Tank and Dragons’ Den. Models trained on the dataset used in this thesis

could be tested on pitches originating from these sources, and vice versa.

A second limitation, and possible confounding factor, is the fact that the pitches that

are analyzed in this study are part of a start-up course as part of a university program and

do not take place in a “real” entrepreneurial setting. For this start-up course, the goal is

mostly to come up with a business plan and convince investors that this is a well thought

out plan. However,the students are not professional entrepreneurs and for the investors

there is no actual money at stake. For this reason, it could be argued that in this case the

effect of giving a good pitch in terms of acoustic and linguistic features on the probability

of investment is larger compared to professional entrepreneurial settings. Furthermore,

there was limited to no economic or factual viability data available for the evaluating

investors to base their likelihood of investment score on. In reality, this is, besides the

evaluation of the founder, an important factor where investors base a decision on. This

is another argument for the claim that models using acoustic and linguistic features are

less effective when they are applied in a more realistic entrepreneurial context.

Apart from limited viability data in the context of this study, the scope of social

interactions analyzed here is narrow in comparison to more realistic entrepreneurial

settings. Firstly, the likelihood of investment score that we predict here is based only

on the actual pitch segment of the recordings. However, in the data set, the pitches

were followed by a Q&A session between the entrepreneur and the investors. This Q&A

session has the potential to significantly shape the nature of the social interaction and

alter the perception of the founding entrepreneur held by investors. Therefore, future

work could aim to also incorporate the Q&A session in the analysis to get a more

comprehensive model to represent the reality. It is also worth noting that, in real-world

scenarios, social interactions between entrepreneurs and investors are often extensive

and involve multiple meetings, thus the scope of the interaction is likely to be broader

than what is captured in this study.

Finally, some considerations should be noted regarding the explainable models and

the effect of common important features on the outcome of the models. An inter-

pretability tool like SHAP can make predictive machine learning models, like XGBoost

Regressor, even more powerful, by uncovering informative associations between features

and model outcomes. As noted in an article in the documentation of SHAP (Lundberg,

Scott and Lee, 2017), it can be tempting to interpret the values as identifying specific

features that can be manipulated by stakeholders in order to alter the predictions of the
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model. However, using predictive models to guide behaviour is often misleading, since

there is an important difference between correlation and causation. While the SHAP

tool provides a method to create transparency regarding correlations, it does not indicate

causation. Therefore, if the goal is to create guidelines for entrepreneurs to enhance their

pitching skills, it is essential to exercise caution when interpreting feature importance

plots in this context and it would be necessary to conduct additional causal analysis.

In a broader context, this thesis has demonstrated that using a multimodal analysis

approach is a promising direction for studying decision-making in the context of en-

trepreneurial pitches. Based on this, future research in this area could continue to build

upon the methodology proposed in this thesis in order to address some of its limitations.

An alternative direction for future research could involve expanding the methodology

used in this study. For instance, it would be of interest to incorporate the visual modal-

ity, which includes features such as facial expressions, gestures, and head movement into

the multimodal analysis. This is because the results of Stoitsas et al. (2022) have in-

dicated that these features also play a role in decision-making, and thus, incorporating

them along with the features analyzed in this study could potentially lead to further

improvements in performance on the task at hand.

5.4 Conclusion

In this thesis, acoustic and linguistic features extracted from recordings of entrepreneurial

pitches have been used to predict the likelihood of investment. Both modalities are

represented using hand-crafted and deep features. Deep learning models have been used

to model to the temporal dynamics of the inputs. The acoustic and linguistic models have

been combined in a single multimodal by applying early and late fusion of the feature

representations. Furthermore, explainable models have been trained on the hand-crafted

features in order to identify common important features.

The presented findings show promising results for the prediction of investor’s like-

lihood of investment of entrepreneurial pitches using acoustic and linguistic features.

State-of-the-art performance has been achieved on this data set using a multimodal

model where the best performing features of each modality are integrated using early fu-

sion. In the experiments, deep features generally outperform hand-crafted ones. Further

findings suggest that when developing a unimodal model, it is beneficial to represent

this modality using both hand-crafted and deep feature sets. It was found that early

fusion outperforms late fusion. Across multiple explainable models, consistent features

are found to be important predictors. A cross-domain experiment demonstrated that
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the developed models generalize to a different context to some extent.
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Appendix

In-person recordings

Fold 1 Fold 2 Fold 3 Fold 4

PREA BubblePop Chattern Ar-T-ficial

SoccerAcademy FitPoint Choos3Wisely HoodFood

Whitebox FLIPR FindIT LockUp

YoungBoosters HOTIDY SmArt Peech

Ziggurat LittleSister StudentFood Recipe-Me

RecognEyes TAIste Salix

SOLON WAIste

Table 1: Distribution of the in-person recorded pitches over the folds

Online recordings

APlaceForNow CommunicAid Locify SOLOPE

Adverlyze CourseCompass OutBusy Shooze

BestCarFit EasyTrip Pawshake ThriftShopBox

BookFlixDelivery Jellefish QTag VintageSurprise

Calculytics

Table 2: The online recorded pitches used for the cross-domain experiment
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