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Abstract

Gravitational waves (GWs) from neutron star-black hole binary systems (NSBHs) are a promis-
ing probe of the neutron star equation of state. One needs to model these waveforms accu-
rately to gain information from NSBH waveform signals. A unique feature of NSBHs is that
the merger can happen in a disruptive manner, i.e. the neutron star can get tidally disrupted
before it merges with the black hole for a certain parameter subspace of the system. This
unique feature has a distinct imprint on the GWs an NSBH produces. Understanding the
tidal disruption of the neutron star by a companion black hole plays a vital role in accurately
modelling waveforms. We construct an effective action considering dynamical tidal effects and
aligned spin interactions in our work. We can use the action to set up an energy balance from
which we can compute the orbital frequency at which the neutron star tidally disrupts. The
parameter region of validity is given by Λ2 ∈ [1, 5000], Q ∈ [1, 10], χNS and χBH ∈ [−0.5, 0.5].
It is shown that this novel model agrees with numerical relativity (NR) results and significantly
outperforms the merger frequencies obtained from the current waveform model PhenomNSBH.
Furthermore, recommendations are made for further NR simulations to verify the model such
that it can be used to generate accurate gravitational waveforms.
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Introduction

Gravitational waves (GWs) were predicted by Einstein over a hundred years ago as a conse-
quence of the theory of general relativity (GR). On September 14th, 2015, GWs were finally
observed by GW-detectors on earth, and the theory of Einstein was once again validated. The
LIGO and VIRGO collaboration announced the detection several months later, on February
11th, 2016, after the data was processed [11]. The signal originated from a binary black hole
(BBH) system. Later on, the GWs of binary neutron star (BNS) [22] and binary neutron star-
black hole (NSBH) [33] systems have also been detected. The first detection gave a boost to
the subfield of physics called GW astronomy.

With the first detection of GWs, the need for accurate waveform models arose. To extract
information from observed GWs, accurate waveform templates need to be modelled. Nowa-
days, numerical simulations exist that can produce accurate waveforms for a given set of system
parameters [44, 55, 66]. It is not possible yet however, to cover the entire parameter space with
numerical relativity (NR) waveforms, where NR simulations generate waveforms with code that
simulates matter subject to Einstein’s equations. This is because one NR simulation for a given
set of system parameters can take up to months of simulation time on supercomputer clusters.
Therefore, the need for more simple, easy-to-generate waveform models remains. This work
aims to contribute to the family of easy-to-generate NSBH waveform models. Such a waveform
model can be used to extract information about the equation of state (EOS) of the neutron
star. The strong gravitational compression inside a neutron star pushes its matter densities
well above normal nuclear matter densities. It is yet unknown what the composition of this
extremely dense matter is, and its properties are also unknown, i.e. we do not yet know what
the EOS of a neutron star should be. GWs could therefore be of essential use in discovering
this EOS, and an accurate NSBH waveform model could thus contribute to new physics being
discovered.

In chapter 11 we revisit the calculations of Einstein leading to the proposition of GWs to give
the reader a full historical perspective. Furthermore, we use this theory together with New-
tonian theory to qualitatively discuss the first detection of GWs. We are able to find rough
estimates for the chirp mass - for now, think of it as a composite parameter containing both
the component masses - and are also able to conclude that the signal must have been from
a BBH. Furthermore, we will discuss the first detection of GWs from an NSBH and conclude
that a qualitative analysis becomes more difficult in this regard. We will therefore continue
with a more in-depth analysis.

The unique feature of an NSBH system is that the companion black hole can tidally dis-
rupt the neutron star before it merges into the black hole. i.e. the tidal effects due to the
external tidal field of the black hole can become so strong that they can disrupt the neutron
star. In a BNS system the gravity is not strong enough to completely disrupt either of the
neutron stars. Furthermore, all the matter effects in an NSBH system can be attributed to
the neutron star alone, whereas a BNS has complex matter interactions of the different stars
that have complex imprints on the GWs. The disruption of the neutron star is a dynamic
process which will be discussed in chapter 22. Parts of chapter 22 carry over to the more general
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description of a binary system of any two compact objects. We will construct an effective
action which takes these dynamical tidal effects into account, where by dynamical we mean
that we allow for fast evolution of the orbital scale of the system compared to the internal scale
of the system. We will also take spin interactions into account. We can assign four different
angular momenta to the NSBH system, the neutron star and black hole angular momenta, the
orbital angular momentum and a tidal bulge angular momentum. The latter represents the
spin of the tidal bulge, i.e. the deformed mass bulge due to tidal effects, of the neutron star.
These four different spins can interact in different ways, which will all be discussed. The final
effective action can be used to calculate a tidal energy.

We will consider the point where the tidal energy exceeds the self-gravitational energy as
the point of tidal disruption. Equating the tidal energy with the self-gravitational energy gives
us an energy balance which in turn can be used to calculate a tidal disruption frequency. This
will be outlined in chapter 33. The final merger frequency of the NSBH is modelled by the tidal
disruption frequency in the disruptive regime, i.e. the regime where the neutron star is tidally
disrupted before it merges with the black hole. The final merger frequency of the NSBH is
modelled by the merger frequency as if the two bodies were black holes in the non-disruptive
regime, i.e. the regime where the neutron star plunges into the black hole before being dis-
rupted. Subsequently, we will compare our model to NR simulations. The NR simulations
parameter space region is given by [44, 55, 66]: Λ2 ∈ [288, 2324], Q ∈ [2, 7], χNS ∈ [−0.2, 0.0]
and χBH ∈ [0, 0.9]. Where Λ2 is the dimensionless tidal deformability parameter, Q the mass
ratio between the black hole and the neutron star and χNS and χBH are the dimensionless
spin parameters of the neutron star and the black hole. We find an average absolute relative
error of 4.8%. To put this into perspective, comparing the PhenomNSBH model [77] to the
NR data gives a 46% average absolute relative error. We are therefore confident to pose a
region of validity of our model that goes beyond the verification against the NR simulations
of Λ2 ∈ [1, 5000], Q ∈ [1, 10], χNS and χBH ∈ [−0.5, 0.5]. We included spin interactions up to
linear order in the black hole spin in our model. For higher black hole spins we see that our
model starts to slightly diverge from the NR data, which can be directly attributed to this
truncation. For the neutron star, we do not have any NR data to check its behaviour for higher
spins. Therefore, we do not include dimensionless spin above 0.5 for both the neutron star and
the black hole spin. Naturally, the parameter space region of validity can be improved by tak-
ing higher order spin interactions into account. We also recommend, from a model verification
point of view, for NR simulations to be done in the non-zero neutron star spin regime to check
whether higher order neutron star spin interactions should be included.

An independent merger frequency model for an NSBH is a key ingredient in subsequently
constructing a waveform model. Our model does not require the introduction of free fit pa-
rameters, while the existing waveform models in the literature do [77, 88]. This makes these
models less robust to changes of parameters. These models also do not consider the merger
frequency of an NSBH system as a benchmark to model the peak amplitude of the gravita-
tional waveform. In contrast, our model is based on physical considerations and first-principles
calculations, which can pinpoint the clear peak amplitude of the gravitational waveform by
making use of the merger frequency. No fitting to the NR data is needed to find already an
excellent dependence on the different parameters in a vast parameter regime. In chapter 44 we
discuss these findings and conclude that we see promising signs to use our merger frequency
model for future NSBH waveform models.

We will use the convention that latin indices denote spatial indices which run over 1,2,3 while
greek indices denote spacetime indices which run over 0,1,2,3 or t, x, y, z. We will use the
Einstein summation convention, i.e. repeated indices will be summed over. We will use the
(−,+,+,+) metric signature. Derivatives will be denoted by ∂µ = ∂

∂xµ . The d’Alembertian
or box operator is given by ∂µ∂

µ = □. For convenience we will also work in geometric units
where G = c = 1. Where needed we can easily recover SI-units by dimensional analysis.
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A reader with only a general physics background can read the introduction at the begin-
ning of every chapter until the first section starts together with the sections with a * denoted
next to the title. The other chapters go into more technical details that can be skipped to still
get a taste of the bigger picture.



Chapter 0

Preliminaries

Before introducing GWs we will introduce several quantities and concepts from GR which will
be used later in this thesis. We will however assume that the reader is familiar with basic
concepts of GR. For an introduction to GR the reader is referred to [99]. To summarise: space
and time are connected through the metric tensor gµν which denotes the curvature of four-
dimensional spacetime (one time and three spatial dimensions). The metric determines an
invariant spacetime interval according to:

ds2 = gµνdx
µdxν , (0.1)

where dxµ represents the difference between the coordinates xµ that label points in spacetime.
The vectors dxµ and xµ are four-dimensional vectors with one time and three spatial dimensions
and are called four-vectors, gµν is a symmetric spacetime tensor and therefore naturally has
ten independent components. Locally, i.e. in special relativity, spacetime is flat and is given
by the Minkowski metric:

ηµν = diag(−1,+1,+1,+1). (0.2)

In GR however, spacetime is curved, the geometry becomes dynamical and is described by
the field gµν . This means that every point in space and time has a metric value associated
with it. The dynamics of spacetime are described by the Einstein equation, which without a
cosmological constant is given by:

Gµν = Rµν − 1

2
Rgµν = 8πTµν . (0.3)

Here Gµν is the Einstein tensor which is defined in terms of Rµν , R and gµν , quantities that all
depend on the metric only and are different measures of the curvature of spacetime. The Ricci
tensor Rµν can be computed from the Riemann tensor as Rσν = Rρ

σρν , where the Riemann
curvature tensor is given by:

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ, (0.4)

where Γρ
νσ denotes the Levi-Civita connection which is given in terms of the metric as:

Γσ
µν =

1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (0.5)

The Ricci scalar R is the trace of the of the Riemann tensor and is a scalar describing the
curvature of the geometry. Finally, Tµν is the energy-momentum tensor describing the energy
and momentum which acts as a source for the gravitational field or curvature through the
Einstein equation. The above equations are the building blocks of GR and are posted here
merely as a summary to which we can refer in later texts, not as a full theoretical introduction
to GR. With these equations at our disposal we are ready to explore the world of GWs.
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Chapter 1

Gravitational Waves

We will begin this thesis with an introduction to GWs similar to the way Einstein derived
them over a hundred years ago in sections 1.11.1, 1.21.2 and 1.31.3. In section 1.41.4 a concrete example
of a system that can produce GWs is discussed. In section 1.51.5 an effective energy-momentum
tensor for GWs propagating through vacuum is derived. Section 1.61.6 then uses this result to
discuss the energy that can radiate by GWs. A review of the creation of the GW theory by
Einstein and his initial problems can be found in [1010]. The original article by Einstein is given
by [1111]. A problem with the formulation of GWs from Einstein was that it heavily depended on
the choice of gauge, i.e. which coordinate system one uses. A gauge independent formulation
of the theory of GWs was only derived much later in 1980 by James M. Bardeen in [1212]. In
the following section we will linearise the Einstein equation, which is the approach Einstein
followed, but we will do it in the gauge independent way proposed by Bardeen. In [1313] a similar
approach can be found. In section 1.71.7 we will show the signal of the first GW observation. We
will use the theoretical description set up in the first sections to constrain the parameters of
what must have been the source of the first GW observation.

1.1 Linearised Gravity
Although this section will be similar to Einstein’s derivation of GWs, it will mostly be based
on [99]. We will also follow Appendix B from [1414] for the gauge independent formulation of
the linearised Einstein equation. GWs are ripples that travel trough spacetime at the speed
of light, and they can be generated by sources. Once the waves propagate far away enough
from the source, their wavelengths are generally much larger than the radius of curvature of
the background spacetime through which they propagate. We will therefore assume that we
can write the metric that describes the structure of spacetime as small perturbations around
Minkowski spacetime:

gµν(x) = ηµν + hµν(x), |hµν | ≪ 1. (1.1)

It will be our goal to solve Einstein’s equation using this metric. For this, it will be convenient
to decompose the components of the metric perturbation according to their transformation
properties under spatial rotations. This is analogous to decomposing the electromagnetic field
strength tensor into electric and magnetic fields, which is also where Einstein was inspired by
[1010]. The full decomposition of the metric perturbation can be found in Appendix AA. The
important results will be discussed here. To solve the Einstein equation in terms of the metric
(1.11.1) we need to evaluate the Riemann tensor (0.40.4). The Riemann tensor for the metric (1.11.1)
up to first order in the metric perturbation hµν is given by:

Rρσµν = 1
2 (∂µ∂σhρν + ∂ν∂ρhµσ − ∂µ∂ρhνσ − ∂ν∂σhρµ). (1.2)

The Ricci tensor and scalar can be straightforwardly computed from the above expression.
The Einstein equation can be expressed in terms of the decomposed quantities outlined in

9
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Appendix AA. The only component of the Einstein equation that represents radiating degrees
of freedom is:

□hTT
ij = 0, (1.3)

which is the wave equation for GWs. The GW amplitude hTT
ij is a gauge invariant quantity

which is the transverse traceless part of the metric perturbation. Note that this applies only
to linear perturbations. In anything beyond linear theory, hTT

ij is not gauge invariant anymore.
We can also remark that we started out with a theory with ten degrees of freedom contained
in the metric perturbation hµν . Four degrees of freedom are eliminated by fixing the gauge
to construct a total of six gauge independent degrees of freedom. The only freely propagating
degrees of freedom are from hTT

ij and thus hTT
ij represents the two physical degrees of freedom

of gravity in the absence of matter.

1.2 Gravitational Waves Acting on Matter
We will assume a plane wave propagating in an arbitrary direction as solution to the wave
equation (1.31.3). The plane wave is given by:

hTT
ij = Aσϵ

σ
ij cos(−kµxµ) (1.4)

where Aσ is a constant, ϵσij is the polarisation tensor, which specifies the polarisation of the
wave and kµ = (ω, k1, k2, k3) is the four-wavevector. Plugging the ansatz back into the wave
equation give us the dispersion relation ω2 = kik

i. Considering a wave that travels in the
z-direction gives kµ = (ω, 0, 0, k3) = (ω, 0, 0, ω). The polarisation tensor can be specified by
considering the transverse condition ∂ihTT

ij = 0 which gives:

∂ihTT
ij = kiAσϵ

σ
ij sin(−kµxµ) = 0, (1.5)

such that we must have:
kiAσϵ

σ
ij = ωAσϵ

σ
3j = 0. (1.6)

This means that all the ϵσ3j components of the polarisation tensor are zero and since it was
already only a spatial tensor, the only remaining components of ϵσij can be:

ϵσij =

 ϵ11 ϵ12 0
ϵ12 −ϵ11 0
0 0 0

 , (1.7)

where we can see that the GW is described by two degrees of freedom. We can split the
polarisation tensor into two independent polarisations, plus polarised and cross polarised:

ϵ+ij =

 1 0 0
0 −1 0
0 0 0

 , ϵ×ij =

 0 1 0
1 0 0
0 0 0

 , (1.8)

where we normalised the individual components. The solution (1.51.5) with the above given po-
larisation tensors represents GWs in the absence of matter. GWs are ripples travelling through
spacetime and therefore distort spacetime as they pass by. It is insightful to investigate the
effect of the GW on a group of test particles. This can be done by considering the geodesic
deviation equation, which reads for a separation vector Sµ between two nearby particle trajec-
tories:

D2

dτ2
Sµ = Rµ

νρσ

dxν

dτ

dxρ

dτ
Sσ. (1.9)

Where D
dτ is the directional covariant derivative that is given by dxµ

dτ ∇µ and τ is the proper
time. If we assume the particles to be slowly moving and expand the r.h.s. up to first order
in hTT

ij we can write dxν

dτ = (1, 0, 0, 0) since the Riemann tensor is already first order in hTT
ij
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Figure 1.1: The effect of a + polarised GW moving in the plane perpendicular
to the page on a ring of free particles floating in space. The dots represent point
particles.

and spatial corrections to the particle’s trajectory will also be of first order in hTT
ij . Using the

Riemann tensor in terms of the metric perturbation (1.21.2) gives us:

Rµ
00σ = 1

2 (∂0∂0h
TT
µσ + ∂σ∂µh

TT
00 − 1

2∂σ∂0h
TT
µ0 − 1

2∂µ∂0h
TT
σ0 ), (1.10)

but since ϵσ0j = 0 and thus hTT
µ0 = 0 this reduces to:

Rµ
00σ = 1

2∂0∂0(h
TT)µσ. (1.11)

For slowly moving particles to lowest order we have τ = t such that the geodesic deviation
equation becomes:

∂2

∂t2
Sµ = 1

2∂0∂0(h
TT)µσS

σ. (1.12)

Since only (hTT)µ1 and (hTT)µ2 are non-zero components, only S1 and S2 will be affected. This
is analogous to electromagnetism where the electric and magnetic fields in a plane wave are
perpendicular to the wave vector. Considering only the plus polarised wave tensor yields as
only non-zero components:

∂2

∂t2
S1 = − 1

2ω
2A+ cos(−kµxµ)S1

∂2

∂t2
S2 = 1

2ω
2A+ cos(−kµxµ)S2.

(1.13)

We can solve the above differential equations up to first order in the amplitude A+ by saying
that S1 and S2 must be of zeroth order in A+, i.e. S1 = S1

(0) and S2 = S2
(0). This allows us to

integrate to yield the solutions:

S1
(1) =

1
2A+ cos(−kµxµ)S1

(0)

S2
(1) = − 1

2A+ cos(−kµxµ)S2
(0).

(1.14)

Particles initially separated in the x-direction, will oscillate in the x-direction, while particles
initially separated in the y-direction will oscillate in the y-direction. If the x-direction separated
particles start oscillating inwards, then the y-direction separated particles will start oscillating
outwards. If we were to consider a ring of test particles in the xy-plane, these particles oscillate
in the shape of a ‘+’ as the GW passes, see Figure 1.11.1. Analogously, we have as a solution for
the cross polarised wave tensor:

S1
(1) =

1
2A× cos(−kµxµ)S1

(0)

S2
(1) =

1
2A× cos(−kµxµ)S2

(0).
(1.15)

Where we can see that a ring of test particles will now be distorted in the shape of an ‘×’, see
Figure 1.21.2.
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Figure 1.2: The effect of a × polarised GW moving in the plane perpendicular
to the page on a ring of free particles floating in space. The dots represent point
particles.

1.3 Gravitational Waves from a Source
In the previous discussion we considered GWs far away from sources and therefore assumed
Tµν = 0, resulting in plane-wave solutions to the linearised vacuum Einstein equation. We will
now consider sources that can generate GWs. In the presence of a source we cannot assume
anymore that our solution is that of the transverse traceless tensor. The metric perturbation
has now been supplemented with non-zero scalar and vector components on top of the strain
tensor representing GWs. We will decompose the energy-momentum tensor in a similar manner
to that of the decomposition of the metric perturbation. The details of the decomposition can
be found in Appendix BB. The approach there is similar to [1313], but the results are derived
independently and worked out with the same decomposition variables used with the metric
perturbation. Here we find out that the only component of the Einstein equation representing
radiating degrees of freedom is:

□hTT
ij = −16πσTT

ij , (1.16)

where σTT
ij represents the transverse traceless part of the energy-momentum tensor. We can

conclude that, even with a source, the only freely propagating degrees of freedom are given
by the transverse traceless piece of the metric perturbation hTT

ij , at sufficiently large distances
from the source.

Expressing the Einstein field equations in terms of gauge invariant observables has allowed
us to conclude that the only radiating degrees of freedom of the metric perturbation are its
transverse traceless degrees of freedom. This holds for vacuum spacetimes as well as spacetimes
with a source, evaluated far from the source. Although it is possible to choose a gauge in which
other metric perturbation components appear to be radiative, we now know that they will not
be. They only appear to be radiative due to the choice of coordinates. Einstein struggled very
much himself with the gauge-dependent nature of GWs. It took him several times of getting it
wrong before he managed to figure out what the real physical modes were and what the pure
gauge modes were [1111].

We can therefore say that the above analysis, done in a gauge independent way, is of great
value to us. We can freely pick a gauge without having to fear that we will wrongly identify
gauge modes for physical radiation. In Box 1 the linearised Einstein equation with a source is
solved in the Lorenz gauge, which is a popular gauge in the literature. We will continue, how-
ever, with the transverse traceless equation of (1.161.16). The analysis in Box 1 will be completely
analogous to this.

Equation (1.161.16) is a wave equation with a source, where σTT
ij is the transverse traceless spatial

part of the Energy-Momentum tensor. A wave equation with a source is a well-studied prob-
lem and can be solved using the Green’s function method. The Green’s function for the wave
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operator □ is the solution to the wave equation with the delta-function as a source:

□G (t,x; t′,x′) = δ (t− t′) δ (x− x′) . (1.17)

The field that arises from our actual source is given by integrating the Green’s function over
the source σTT

ij :

hTT
ij (t,x) = −16π

∫
dt′d3x′G (t,x; t′,x′)σTT

ij (t′,x′). (1.18)

The Green’s function associated with the wave operator is well known, see for example [1515].
It has two solutions, namely a ‘retarded’ and ‘advanced’ solution, depending on whether it
represents waves travelling forward or backwards in time. We are interested in the retarded
Green’s function since it represents all the effects of signals to the past of the points under
consideration. The retarded solution is given by:

G (t,x; t′,x′) = −δ (t
′ − [t− |x− x′|])
4π |x− x′|

θ(t− t′), (1.19)

where θ(t − t′) denotes the theta function which equals 1 for t > t′ and is 0 otherwise. The
quantity t−|x− x′| ≡ tr is referred to as retarded time and takes into account that information
cannot be transmitted instantly from events taking place at position x to x′. The above solution
for G (t,x; t′,x′) can be plugged into the integral of hij(t,x), where the t′ integral can be done
to yield.

hTT
ij (t,x) = 4

∫
d3x′

σTT
ij (tr,x

′)

|x− x′|
. (1.20)

We will make the assumption that the source is isolated and far away such that |x− x′| = r.
We then have:

hTT
ij (t,x) =

4

r

∫
d3x′σTT

ij (tr,x
′) . (1.21)

We can rewrite this by making use of the Leibniz rule:

∂k
[
σTT
ki x

j
]
=
[
∂kσ

TT
ki

]
xj + σTT

ji , (1.22)

and energy-momentum conservation ∂µTµν = 0, which implies ∂0T0i = ∂kTki, to yield:

hTT
ij (t,x) =

4

r

∫
d3x′

(
∂k
[
σTT
ki x

′j]− [∂kσTT
ki

]
x′j
)

=
4

r

∫
d3x′

(
∂k
[
σTT
ki x

′j]− [∂0σTT
0i

]
x′j
)
.

(1.23)

Using the divergence theorem the first term can be written as a surface integral. Since the
source is isolated and far away, the surface can be chosen outside of the source, and the first
term vanishes:

hTT
ij (t,x) = −4

r
∂0

∫
d3x′x′jσTT

0i (tr,x
′) . (1.24)

We took the time derivative outside the integral since only T0i depends on time. We can make
use of the Leibniz rule again to rewrite T0ix′j :

∂k
[
σTT
k0 x

jxi
]
=
[
∂kσ

TT
k0

]
xjxi + σTT

j0 x
i + σTT

i0 xj

= ∂0
[
σTT
00 x

jxi
]
+ σTT

j0 x
i + σTT

i0 xj ,
(1.25)

where in going to the second line we made use of energy-momentum conservation. Integrating
both sides yields:

0 =

∫
d3x′∂0

[
σTT
00 x

′jx′i
]
+ 2

∫
d3x′σTT

i0 x′j , (1.26)
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where the l.h.s. again vanishes because the source is isolated. We combined the last two terms
because we assumed Ti0xj to be symmetric since Tij is also symmetric and thus so is hij . Using
the above identity we have:

hTT
ij (t,x) =

2

r
∂20

∫
d3x′x′ix′jσTT

00 (tr,x
′) , (1.27)

which is called the Einstein quadrupole formula. It is usually written as:

hTT
ij (t,x) =

2

r

d2Ikl (tr)

dt2
(
PikPjl − 1

2PijPkl

)
, (1.28)

where Ikl is defined as the quadrupole moment tensor:

Ikl(t) =

∫
d3x′

(
x′kx′l − 1

3 |x
′|2 δkl

)
T00 (t,x

′) , (1.29)

and Pij is defined as a transverse traceless projection operator:

Pij = δij − ninj , (1.30)

where ni is a unit vector along the direction of propagation. The metric perturbation hTT
ij is

now manifestly traceless and transverse, since Pij eliminates the parts that are parallel to the
direction of propagation of the GW. This also allows us to write T00 instead of σTT

00 . Remem-
ber that we derived the quadrupole formula for an isolated source, that is far away and slowly
moving. Also, the above formula assumes the linearised Einstein equation. For systems which
are dominated by self-gravity the Einstein quadrupole formula loses its validity. In weakly
gravitating systems, however, the gravitational-binding energy will be negligible to the rest-
mass energy and it can be shown that the quadrupole formula (1.281.28) can still be used as an
approximation to describe self-gravitating systems such as a binary star system [1313].

Box 1: Linearised Einstein Equation in the Lorenz Gauge
Let us introduce the trace-reversed metric perturbation:

h̄µν = hµν − 1
2hηµν , (1.31)

where the trace of the trace-reversed metric perturbation is given by h̄ = ηµν h̄µν = −h.
Under the gauge transformation (A.9A.9), the trace-reversed metric perturbation transforms
as:

h̄µν → h̄µν = h̄µν − 2∂(µξν) + ηµν∂
λξλ. (1.32)

By choosing the gauge parameter ξ to satisfy:

□ξµ = ∂λh̄λµ, (1.33)

we can set:
∂µh̄µν = 0, (1.34)

which is known as the Lorenz gauge. It is always possible to find ξ such that the Lorenz
gauge condition can be met. The Einstein tensor for the metric perturbation can be
found from the expressions of the Ricci tensor and scalar that we derived above and is
given by:

Gµν = Rµν − 1

2
Rηµν

=
1

2
(∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−□hµν − ηµν∂µ∂νh

µν + ηµν□h) .
(1.35)
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In the Lorenz gauge it reduces to the simple form:

Gµν = − 1
2□h̄µν , (1.36)

which is just the wave operator operating on the trace-reversed metric perturbation. The
linearised Einstein equation is then given by:

□h̄µν = −16πTµν , (1.37)

which is a wave equation with a source. We know exactly how to solve this now using
the Green’s function method. From which we will obtain the result:

h̄µν(t,x) = 4

∫
d3x′

Tµν (tr,x
′)

|x− x′|
. (1.38)

We know by now that the freely propagating degrees of freedom are contained entirely
in the transverse traceless spatial part of the metric. We will therefore consider only the
spatial part of the metric. After making the assumption that the source is far away and
isolated we then have:

h̄ij(t,x) =
4

r

∫
d3x′Tij (tr,x

′) . (1.39)

This can be massaged a bit by making repeated use of the Leibniz rule - which can also
be thought of as integration by parts in reverse - and by making use of energy-momentum
conservation (B.2B.2):

h̄ij =
2

r
∂20

∫
d3x′T00x

′ix′j . (1.40)

This seems to be already the desired result except that the quadrupole moment tensor is
not yet transverse and traceless. Removing the trace gives us the expression:

h̄ij =
2

r
∂20

∫
d3x′T00

(
x′ix′j − 1

3 |x|
2
δij

)
. (1.41)

To project out the non transverse pieces we can use the transverse traceless projection
operator Pij such that the transverse traceless metric perturbation is given by:

h̄TT
ij =

2

r
∂20

∫
d3x′T00

(
x′kx′l − 1

3 |x
′|2 δkl

) (
PikPjl − 1

2PijPkl

)
, (1.42)

which exactly agrees with (1.281.28). Thus, far away from the source, the trace-reversed
metric perturbation in the Lorenz gauge is equal to the original metric perturbation.

Let us think for a moment what the Einstein quadrupole formula actually means. We can see
that the GW produced by an isolated source that is slowly moving and evaluated far away is
proportional to the second time derivative of the quadrupole moment of the energy density. As
a reminder, in electromagnetism the electric potential is given by the multipole expansion of
the charge density. If a system has a net total charge the first non-zero term in the multipole
expansion will be given by the monopople moment, which is then usually a good approximation
for the electric potential. The monopole moment is given by the charge density integrated over
the volume of the charge distribution and denotes the net charge of the system. If a system has
a net zero charge the first non-zero term in the multipole expansion will be given by the dipole
moment, which is then usually a good approximation for the electric potential at distances
far away from the charge distribution. The dipole moment denotes the polarity of the charge
distribution. In electromagnetism, charge distributions usually consist of a superposition of
dipole moments - most atoms have non-zero dipole moments, it is however, possible to find
charge distributions for which the net polarity is zero. In this case, the quadrupole moment
will be the first non-zero term in the multipole expansion, and it will be a measure of the shape
of the charge distribution. A complete description of the system is given by all the terms in the
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multipole expansion, but truncating at the first non-zero contribution will usually be a good
approximation. Electromagnetic radiation corresponds to the change in the multipole moment.
The leading term in electromagnetic radiation is therefore usually given by the change of the
dipole moment, since charge is a conserved quantity. A changing dipole moment corresponds
to motion of the centre of charge density.

Analogous to electromagnetism, for gravity, we have the multipole expansion of the energy
density: the monopole moment is given by the density integrated over the volume of mass
distribution, i.e. the mass of the system; the dipole moment is a measure of the mass density
distribution around the center of mass of the system and the quadrupole moment is a measure
of the shape of the system, i.e the moment of inertia. This leads us to the Einstein quadrupole
formula derived above: GWs are proportional to the second derivative of the quadrupole mo-
ment of the energy density. This begs the question: why is there no contribution from the
dipole moment? We know that mass is a conserved quantity in closed systems such that there
is no contribution from the monopole moment to gravitational radiation. A changing dipole
moment corresponds to motion of the centre of mass of the system, which violates conservation
of momentum in a closed system. The changing quadrupole moment is therefore the first non-
zero term generating gravitational radiation, and it corresponds to changes in the shape of the
system around the centre of mass. This means that a star on its own and even a rotating star
will not emit GWs, i.e. systems with spherical and rotational symmetry do not emit GWs. An
example of a system that does emit GWs is a binary system of two bodies orbiting each other,
which we will consider more closely in the next section.

1.4 Binary Star System
Let us consider two stars of mass MA and mass MB in a circular orbit in the xy-plane separated
by a distance rA and rB respectively from their center of mass. We assume the masses to be
point masses, we will define the path of star A to be given by:

x1A = xA = rA cosωt, x2A = yA = rA sinωt (1.43)

and the path of star B to be given by:

x1B = xB = −rB cosωt, x2B = yB = −rB sinωt. (1.44)

The 00-component of the energy-momentum tensor is defined as the mass density or energy
density of the system, and since the bodies are point masses, it is given by:

T00 =MAδ (x− rA cos(Ωt)) δ (y − rA sin(Ωt)) δ(z)

+MBδ (x+ rB cos(Ωt)) δ (y + rB sin(Ωt)) δ(z). (1.45)

We will evaluate the field on the z-axis such that the direction of propagation is in the z-
direction. The projection operators serve to remove the zx- and zy-components of the tensor.
Plugging T00 in (1.291.29) yields the following non-zero quadrupole moment tensor components:

Ixx =MA

[
r2A cos2(Ωt)− 1

3
r2A

]
+MB

[
r2B cos2(Ωt)− 1

3
r2B

]
,

Iyy =MA

[
r2A sin2(Ωt)− 1

3
r2A

]
+MB

[
r2B sin2(Ωt)− 1

3
r2B

]
,

Izz =MA

[
−1

3
r2A

]
+MB

[
−1

3
r2B

]
,

Ixy = Iyx =MA

[
r2A cos(Ωt) sin(Ωt)

]
+MB

[
r2B cos(Ωt) sin(Ωt)

]
.

(1.46)

In a center of mass frame we have:

R = rA + rB , MArA −MBrB = 0, (1.47)
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from which immediately follows:

rA =
MB

MA +MB
R, rB =

MA

MA +MB
R, (1.48)

such that:
MAr

2
A +MBr

2
B = µR2, (1.49)

where we defined the reduced mass as: µ = MAMB/(MA +MB). The non-zero quadrupole
moment tensor components can therefore be written as:

Ixx =
µR2

2

[
cos(2Ωt) +

1

3

]
, Iyy =

µR2

2

[
− cos(2Ωt) +

1

3

]
,

Izz = µR2

[
−1

3

]
, Ixy =

µR2

2
[sin(2Ωt)],

(1.50)

where we also made use of trigonometric identities. The non-vanishing second time derivatives
become:

¨Ixx = − ¨Iyy = −2µR2Ω2 cos(2Ωt), ¨Ixy = −2µR2Ω2[sin(2Ωt)]. (1.51)

The metric perturbation components can now be evaluated and are given by the Einstein
quadrupole formula (1.281.28):

hTT
ij (t,x) =

4µ

r
Ω2R2

 − cos 2Ωtr − sin 2Ωtr 0
− sin 2Ωtr cos 2Ωtr 0

0 0 0

 . (1.52)

This represents the GWs radiated from a binary system measured at a distance r from the
source. These waves have an amplitude of h = 4Ω2R2µ/r. Let us now insert plausible numerical
values to get a feeling of what signals GW detectors are looking for. For a binary neutron star
system of equal masses typical parameter values could look like [1313]:

h ≃ 10−22

(
M

2.8M⊙

)5/3(
0.01 s
P

)2/3(
100 Mpc

r

)
(1.53)

where M⊙ denotes the number of solar masses, P denotes the orbital period P = 2π/Ω and
h is the magnitude of the GW described by hTT

ij (t,x); h is also called the GW strain and is
a dimensionless quantity. The strain represents the distortion of an object by GWs. Remem-
ber that GWs travelling trough vacuum distorted particles in the ‘plus’ and ‘cross’ direction
perpendicular to the direction of propagation of the GW. The GWs produced by sources are
no different. Here the ‘plus’ polarised amplitude is given by h+ = hxx = −hyy and the ‘cross’
polarised amplitude is given by h× = hxy = hyx. The information that is encompassed in the
strain can be viewed as depicted in Figure 1.31.3. Particles initially displaced by d will oscillate
between a displacement of d −∆d and d + ∆d as a GW passes by. We can derive a relation
between the displacement and the GW strain. Consider a GW propagating in the z-direction
and two test particles at z = 0 separated along the x-axis by a distance d in their coordinate
frame. The proper distance between the two particles as a result of a GW passing by is then
given by:

d+∆d =

∫ d

0

dx
√
gxx =

∫ d

0

dx
√
1 + hTT

xx (t, z = 0)

≃
∫ d

0

dx

[
1 +

1

2
hTT
xx (t, z = 0)

]
= d

[
1 +

1

2
hTT
xx (t, z = 0)

]
,

(1.54)

from which we can see that the strain is given by the total change in displacement relative to
the displacement of the particles or h = 2∆d

d . For GWs with an amplitude of h ≃ 10−22, we
can calculate how much the earth would be distorted. With a radius of r ≃ 6 · 106 the earth
would be distorted by approximately 10−16 metres, which is many orders of magnitude smaller
than the size of atoms. No wonder it took until 2015 for the first direct detection of GWs to
occur. The next section will devote some words to the first detection of GWs and why GW
theory is essential to be able to detect these waves.
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Figure 1.3: Particles displaced by d are displaced by d +∆d a quarter period
later by a × polarised GW.

1.5 Effective Energy-Momentum Tensor
We will first investigate the energy flux due to GWs, i.e. the energy loss due to gravitational
radiation. The notion of energy in GR, however, is tricky. In Newtonian physics, one must
include the gravitational potential energy for energy conservation to hold. In GR, the gravi-
tational potential energy is encompassed in the metric. The notion of energy as a conserved
quantity along the trajectory of some point particle does not carry over to GR. The equivalence
principle dictates that in a local inertial frame there cannot exist GWs. This also dictates that
a local coordinate-invariant definition of the energy is not possible. There is a regime where
attempts of considering energy and energy conservation can be done, which is in the weak field
limit. Here we think of gravitation as being described by a symmetric tensor propagating on
a fixed background metric. The goal is to derive an energy-momentum tensor for the metric
perturbation hµν . Although Einstein already was able to produce an expression for the dissi-
pation of energy from GWs, it has been the subject of controversy among physicists over the
course of history. In the literature many approaches can be found. An interesting approach is
using a Hamiltonian perspective, outlined in [1616] which can also be found in Appendix DD. The
approach followed by [99], which is the standard approach in most textbooks such as originally
[1717] or more recently in [1818], requires the expansion of both the metric and the Ricci tensor up
to second order and is the approach followed here.

We have seen that GWs can propagate in vacuum. Our task is to find the energy of these
waves. In field theory, the energy can be calculated from the energy-momentum tensor. Al-
though the full energy-momentum tensor can only be found by considering the full theory, it is
possible to set up an expression for an effective energy-momentum tensor in linearised gravity.
A technical problem arises, however, when considering the linearised Einstein equation. We
know that the Einstein equation in vacuum up to linear order in the metric perturbation is
given by G(1)

µν [h(1)] = 0, where the superscript notation (1) indicates that Gµν is first order in
h(1), where h(1) is the first order metric perturbation. We also know that the spatial transverse
traceless degrees of freedom are the only radiating degrees of freedom. This means that we can
impose the Lorenz gauge such that we have G(1)

µν [h(1)] = − 1
2□h

(1)
µν = 0. Unfortunately, it is not

possible to identify an effective energy-momentum tensor here. This means that we have to
consider one order above linear theory: we have to include second order metric perturbations.
The metric can therefore be written as:

gµν = ηµν + h(1)µν + h(2)µν , (1.55)

such that the Einstein equation up to second order in the metric perturbations includes the
first order metric perturbation, the second order metric perturbation as well as products of the
first order metric perturbation. We already saw that up to first order we have G(1)

µν [h(1)] = 0.
The Einstein equation in vacuum up to second order in the metric perturbation will look like

G(2)
µν [h

(1)] +G(1)
µν [h

(2)] = 0. (1.56)
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We know that G(1)
µν [h(2)] must be equal to − 1

2□h
(2)
µν , since this involves exactly the same cal-

culation as for G(1)
µν [h(1)]. If we define G(2)

µν [h(1)] = −8πtµν , where tµν represents the effective
energy-momentum tensor, the Einstein equation up to second order in the metric perturbation
can be written as:

G(1)
µν [h

(2)] = − 1
2□h

(2)
µν = 8πtµν . (1.57)

The identification of tµν as an effective energy-momentum tensor seems reasonable. It is a
symmetric tensor, quadratic in hµν . In electromagnetism or scalar field theory, the energy-
momentum tensor is also quadratic in the relevant fields. The effective energy-momentum
tensor tµν represents how the perturbations affect spacetime just like the usual matter energy-
momentum tensor would. It is also conserved in flat background spacetime ∂µtµν = 0 which fol-
lows from the Bianchi identity ∂µGµν = 0. Naively, we could just calculate tµν = 1

8πG
(2)
µν [h(1)].

There is still a problem, however, tµν is not invariant under gauge transformations. This is
the problem we touched on before. A local coordinate-invariant definition of the energy is not
possible because of the equivalence principle. We can circumvent this problem by averaging
tµν over several wavelengths, an operation that is denoted by angle brackets ⟨...⟩. If we average
over enough wavelengths, enough of the physical curvature should be encapsulated in tµν to
make it a gauge-invariant measure. The limit of a large averaging region compared to the
wavelength also has the practical advantage that derivatives vanish:

⟨∂µF (x)⟩ = 0, (1.58)

which allows us to integrate by parts under the averaging brackets:

⟨F (x)∂µG(x)⟩ = −⟨G(x)∂µF (x)⟩, (1.59)

since the boundary term can be neglected in the leading order approximation. To calculate the
effective energy-momentum tensor tµν , we have to consider the Einstein equation up to second
order in the metric perturbation, which requires a lengthy calculation that can be found in
Appendix CC. This calculation is skipped in the textbooks referenced above, but is by no means
trivial. We can therefore consider the result in Appendix CC a result of this thesis. The final
result is given by:

⟨tµν⟩ = 1
32π ⟨η

αβηγζ∂µh
(1)
αγ∂νh

(1)
βζ

〉
, (1.60)

where it is implied that h(1) is the transverse traceless part of the metric perturbation.

1.6 Energy Flux from Gravitational Waves
We can use the effective energy-momentum tensor to derive the energy flux radiated by GWs.
This is again a derivation that is omitted by textbooks such as [99], [1717] and [1818]. The average
energy flux from GWs in some spatial direction i is given by ⟨t0i⟩. The total energy radiation
from GWs at a distance r far away from the effective source tµν is then given by the integral:〈

dE

dt

〉
=

∫ π

0

∫ 2π

0

dθdϕr2 sin θ⟨t0µ⟩nµ, (1.61)

where we can choose our integration domain in a way such that ni = r̂. The integral then
reduces to: 〈

dE

dt

〉
= 4πr2⟨t0r⟩ =

r2

8

〈
∂0h

(1)βζ∂rh
(1)
βζ

〉
. (1.62)

The only freely propagating degrees of freedom are the spatial transverse traceless degrees of
freedom of the metric, which we already assumed for the metric perturbation in the above
expression. We can therefore use the expression for the spatial transverse traceless first order
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metric perturbation hTT
ij from equation (1.281.28) to yield:〈

dE

dt

〉
=
r2

8

〈
2

r

d3Iij (tr)

dt2
(
PikPjl − 1

2PijPkl

)
∂r

2

r

d2Iij (tr)

dt2
(
PikPjl − 1

2PijPkl

)〉
= − 1

2

〈 ...
Iij (tr)

(
PikPjl − 1

2PijPkl

) ...
Iij (tr)

(
PikPjl − 1

2PijPkl

)〉
+O( 1r )

≈ −r
2

8

〈
˙hTT
ij

˙hTT
ij

〉
,

(1.63)

where going from the first to the second line we used that Iij only depends on tr = t− r such
that ∂rIij = −∂tIij . Also, since the above energy considerations are only valid for large r, we
can neglect all higher order terms in 1/r. Using (1.301.30) we can expand the projection operators
in the definition of hTT

ij as:

hTT
ij =

1

r

(
2Ïij − Ïkkδij + nknlÏklδij + ninj Ïkk + ninjnknlÏkl − 2njnk Ïik − 2nink Ïjk

)
,

(1.64)
such that the energy dissipation formula is given by:〈

dE

dt

〉
= −1

8

〈
4

...
I ij

...
I ij + 4

...
I ijninj

...
I mnnmnn − 16

...
I ij

...
I imnjnm − 3

...
I ijninj

...
I mnnmnn

−7
...
I ijninj

...
I mnnmnn + 8

...
I ij

...
I imnjnm + 8

...
I ijninj

...
I mnnmnn

〉
= −1

8

〈
4

...
I ij

...
I ij + 2

...
I ijninj

...
I mnnmnn − 8

...
I ij

...
I imnjnm

〉
.

(1.65)
Finally, using the relations [1919]:

⟨ninj⟩ =
1

3
δij , ⟨ninjnknl⟩ =

1

15
(δijδkl + δikδjl + δilδjk) , (1.66)

we obtain the energy dissipation formula for GWs far away from a slowly moving source that
is not dominated by self-gravity:

⟨Ė⟩ = −1

5

〈 ...
I ij

...
I ij

〉
. (1.67)

Let us go back to the binary star system example given by (1.431.43), (1.441.44) and the energy density
(1.451.45). The only non-zero third time derivatives of the quadrupole moment tensor (1.291.29) are
given by: ...

I xx = −
...
I yy = 4Ω3µR2 sin(2Ωt),

...
I xy = −4Ω3µR2 cos(2Ωt), (1.68)

such that the energy dissipation due to GWs for this binary system is given by:

⟨Ė⟩ = −1

5

〈
16Ω6µ2R4 sin2(2Ωt) + 16Ω6µ2R4 sin2(2Ωt) + 32Ω6µ2R4 cos2(2Ωt)

〉
= −32µ2R4Ω6

5
. (1.69)

The above energy dissipation relation was one of the first results of GWs that has been tested.
In 1974 Hulse and Taylor discovered a binary system with relatively small component masses
of which one of the two was a pulsar [2020]. The extremely small orbital period of about eight
hours and the fact that one of the two stars was a pulsar provided a very accurate clock that
made it possible to measure the change in the period of the orbit as the system lost energy due
to gravitational dissipation. The energy loss was consistent with the prediction from general
relativity derived above. This was the first, although indirect, experimental confirmation of
GWs. Hulse and Taylor received the Nobel prize in physics in 1993 for their findings.
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1.7 The First Detection of Gravitational Waves*
We have now seen that, at least theoretically, GWs cause distortions of spacetime. A GW
passing by will displace particles in a certain direction. One would think that distortions of
spacetime could easily be measured. In the previous section, however, we have seen that the
distortion of the earth from GWs are in the order of magnitude of 10−16 metres for binary
neutron star systems and only one or two orders of magnitude more for binary black hole
systems. A long history of failed detections preceded the eventual first detection of a GW by
the advanced LIGO detectors on September 14, 2015 [11]. The advanced LIGO detectors, which
stands for Laser Interferometer Gravitational-Wave Observatory, are GW detectors based on
laser interferometry. Two arms of four kilometre length are able to measure distortions of
spacetime down to 10−20 metres. In [2121] the full specifics of the advanced LIGO detector can
be found. It goes without saying that the effect of GWs discussed in the previous section is
idealised. We do not expect the GWs to perfectly align with our detectors and therefore, we
will not observe a perfectly + or × polarised GW. In general, the detector will be sensitive
to some weighted combination of the two polarisations, with the weights depending on the
location in the sky of the source and the relative orientation of the source and the detector.
The first detection event, referred to in the literature as GW150914, was reason for the Nobel
committee to give Kip Thorne, Rainer Weiss, and Barry Barish the 2017 Nobel prize in physics
for their contributions to the LIGO detector. Kip Thorne, has been a great contributor to the
theoretical understanding of GWs, of which aspects will be more extensively discussed later in
this thesis. The direct observation of GWs was also a confirmation of the theory of GR, since
Einstein’s GR predicted these waves for over a century now. We will now look at the signal
that was published by the LIGO collaboration [11] and see which properties can be extracted
from the signal with our knowledge from section 1.11.1.

In Figure 1.41.4 the GW signal GW150914 detected on September 14, 2015, by the LIGO col-
laboration, can be seen. The two topmost figures show the observed strain data from the two
LIGO detectors. The middle figures show the best overlapping constructed waveform, of which
below, the difference with the signal is shown. The lower two figures show the frequency that
the detectors observe over time. This Figure was only published in [11] on February 11, 2016,
because it took a long time to verify the detection through the data analysis. Numerous checks
needed to be done to make sure this really was a GW signal. The data analysis had to reveal
the properties of the source, such as for example the mass of the objects - where we allowed
ourselves to prematurely assume the source to be a binary system.

With merely simple Newtonian physics and the concepts of general relativity that we dis-
cussed in the previous section we will be able to extract properties of the source from the
waveform depicted in Figure 1.41.4. This simplified analysis is qualitatively consistent with a
fully general relativistic analysis. The analysis below extracts concepts from [2222] where a com-
plete analysis can be found accessible for anyone with a general physics background. Some
explicit properties that we can extract from Figure 1.41.4 are the frequency and amplitude of the
gravitational waveform. We will discuss what properties of the source we can extract from
these observables. The energy dissipation due to GWs for a binary system is given by equation
(1.691.69). As long as the velocities in the binary system are not too close to the speed of light,
the orbital radius increases only adiabatically and has a period that is described by Kepler’s
third law, we can use concepts of Newtonian physics as a rough approximation to the binary
system. The energy that is lost due to GW dissipation is at the expense of orbital energy. In a
center of mass frame, the orbital energy in a Newtonian approximation is given by Eorb = Mµ

2R ,
where we have introduced the total mass M , the reduced mass µ and the orbital separation
between the bodies R before. The energy that is lost due to gravitational dissipation that is
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Figure 1.4: The observational data of the LIGO detector from the first GW
event GW150914 with from top to bottom: the observed GW strain, the best
overlapping constructed waveform, the difference between the observed data and
the constructed waveform, the frequency of the observed GW strain as a function
of time [11].
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at the expense of orbital energy can be given as the following energy conservation balance:

dEorb

dt
= −dEGW

dt
Mµ

2R2
Ṙ =

32µ2R4Ω6

5

(1.70)

which we can rewrite using Kepler’s third law R3 = M
Ω2 and its time derivative Ṙ = − 2RΩ̇

Ω :

Ω̇3 =

(
96

5

)3

Ω11µ3M2 =

(
96

5

)3

Ω11M5, (1.71)

where we defined the chirp mass as M ≡ (µ3M2)1/5. To eliminate the time derivative of the
orbital frequency we can rewrite the above equation as:

Ω−11/3Ω̇ =
96M5/3

5
, (1.72)

which we can integrate from time t and orbital frequency Ω to the time of coalescence tc where
we assume the orbital frequency to diverge, i.e. Ω = ∞:∫ ∞

Ω

Ω′−11/3dΩ′ =

∫ tc

t

96M5/3

5
dt′, (1.73)

which can be easily solved to yield:

Ω =
1

8

[
125

M5(tc − t)3

]1/8
(1.74)

or, using the relation between the orbital angular frequency and the GW frequency Ω = πfGW :

fGW =
1

8π

[
125

M5(tc − t)3

]1/8
. (1.75)

The above formula can be used to calculate the chirp mass from the time between zero crossings
in the strain data of Figure 1.41.4. First, to obtain a chirp mass in units of kg we have to recover
units, because we have worked in units in which G = c = 1. The left-hand side has units of
1/s while the right-hand side has units of kg−5/8s−3/8. We can recover the correct units by
multiplying with the appropriate factors of G and c, which have units:

[G] =
Nm2

kg2
=

m3

s2kg

[c] = m/s.

(1.76)

Multiplying the right hand side with G−5/8 yields units of s7/8m−15/8 after which subsequently
multiplying with c15/8 gives us the desired units of 1/s. The GW frequency in SI-units is
therefore given by:

fGW =
1

8π

[
125

(GM/c3)5(tc − t)3

]1/8
. (1.77)

In 1.11.1 the chirp mass is calculated for some very crudely calculated times between zero cross-
ings from Figure 1.41.4. Note that close to t = tc the frequency diverges such that the above
formula becomes less invalid. Using the real data instead of reading off the figure by eye would
increase the accuracy. The LIGO team have estimated the binary system responsible for the
GW150914 event to be an equal mass binary system of 35M⊙ component masses [2323]. This
equals a chirp mass of around M = 30M⊙, leaving us to conclude that our crude approxima-
tions techniques can indeed be used as an approximation. Note that in order to constrain the
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T (s) tc(s) - t(s) M(M⊙)

0.01 0.05 35
0.075 0.025 34
0.005 0.005 31

Table 1.1: Period between zero crossings for three periods of the GW from
Figure 1.41.4. The second zero crossing for the three chosen wave parts are at
t = 0.37s, t = 0.395 and t = 0.415 respectively and tc = 0.42.

component masses of the binary more in depth analysis is needed that is beyond the scope of
this crude estimate.

As a next step in our crude approximation, we want to say something about the proper-
ties of the components of the binary system. Let us assume that the components of the binary
system have equal masses of 35M⊙. Assuming that the orbit stays Keplerian until the point of
peak amplitude gives us the orbital separation of the two bodies during peak amplitude from
Kepler’s third law:

R =

(
GM

Ω2
|max

)1/3

≈ 350km (1.78)

where we estimated the peak frequency to be fGW|max = 150Hz using the zero crossings or the
frequency plot from Figure 1.41.4 such that Ω|max = π150Hz. The orbital separation indicates
that the objects must be extremely compact. Main-sequence stars have radii of order hundreds
of thousands of kilometres and would have merged long before reaching an orbital separation
of 350km. The most compact stars are neutron stars, which have radii of order ten kilometres.
However, the maximum mass that a neutron star can have before collapsing into a black hole
is around 3M⊙ [2424, 2525, 2626]. The inevitable conclusion is therefore quickly made that the two
compact objects responsible for the GW150914 event must be two black holes.

A final factor to include in our approximation scheme is the fact that GWs are stretched out,
or redshifted, as they travel across the expanding universe. Their wavelength increases while
their frequency decreases. The GWs measured in the detector frame on earth are therefore
redshifted compared to when they were originally emitted. The masses inferred from the GW
data above are also scaled because of redshift. We therefore want to know how far away the
source is from the GW detector. Using the strain equation (1.521.52) for our binary star example
gives us a strain amplitude of:

h =
4Gµ(πfGW)2R2

rc4
, (1.79)

where we recovered the correct SI-units. From Figure 1.41.4 we know that the peak amplitude
is around h ∼ 10−21. Plugging in the numbers evaluated at the peak amplitude gives us a
distance of around 1000Mpc. This corresponds to a redshift of around z = 0.2, which means
that the masses are scaled by a factor of 1 − z = 0.8. It turns out that the actual distance
calculated by LIGO is around 400Mpc [2323]. This corresponds to a smaller redshift of around
z = 0.1, such that the scaling effect on the masses becomes insignificant in this crude analysis.

We have seen that we are able to calculate the order of magnitudes of the respective quantities
and in some cases even quite accurate approximations. It seems that our approximations are a
bit too crude to accurately calculate the distance of the source. Problems with the approxima-
tion are for instance: equation (1.521.52) becomes less accurate for systems with large self-gravity
compared to the rest-mass energy of the system; Kepler’s third law only holds for the beginning
of the inspiral where the orbital motion has an adiabatically changing radius and the binary
is at nearly infinite separation so that relativistic corrections are negligible. In chapter 22 we
will go into a much more detailed analysis: this is where the crude approximations will not do
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anymore.

1.8 Detection of Gravitational Waves from a Neutron Star-
Black Hole Binary System

We have seen that the chirp mass is a relatively easy property of a binary system to constrain
from GW data. We have also seen that to constrain the individual component masses from
signals with measurable inspirals, a more detailed analysis is needed. One would construct
a waveform numerically [2727], phenomenologically [77] or as a combination of the two [88] and
choose the free parameters such that the overlap integral from the constructed waveform with
the observed gravitational waveform is minimised. This is the resulted waveform that can be
seen in the second row of Figure 1.41.4. It is difficult to employ the simple analysis from above
to conclude that observed gravitational waveform data is from an NSBH binary system. It is
however, possible to conclude that a waveform must be from an NSBH binary source using
the more advanced techniques. The waveforms that are constructed in this way do not make
assumptions like the adiabatic assumption and also allow for relativistic effects. In chapter 22
these effects will be discussed.

We will however, first touch on the importance of studying NSBH mergers as opposed to
BBH mergers. The GW signal of a BBH merger only depends on the masses, spins and possi-
bly the charges of the progenitor black holes, a property that is known as the no hair theorem.
For binary mergers, which have at least one component that is not a black hole, more param-
eters enter the system. NSBH and binary neutron star (BNS) systems, emit GWs that have a
dependency on not only the mass, spin and possibly charge of the two objects, but also on the
EOS of the neutron star. Studying GWs from these systems can therefore give us information
about the EOS of neutron stars. The interior of a neutron star is, apart from black holes, the
place where one can find the highest energies in the universe. Furthermore, BBHs are systems
of only pure gravity, while NSBHs involve strong gravity with extreme states of matter. NSBHs
are therefore excellent candidates to use as an experimental ground to find out more about
these extreme states of matter. We do not yet accurately know the exact composition of the
interior of neutron stars. Uncovering these secrets is therefore of great interest to us and might
lead to new physics being discovered.

The advantage of mergers that have at least one component mass which is not a black hole is
that they can emit electromagnetic counterparts. Since both GWs and electromagnetic radi-
ation move with the speed of light, the two signals will be observed simultaneously on earth.
Short gamma-ray bursts are an example of an electromagnetic counterpart which can be emit-
ted shortly after the merger of a relevant binary system. Two different signals from the same
event can help to increase the accuracy of the measurements of properties of the system. This
technique of combining different signals is called multi-messenger and is a promising extra tool
that can be used to increase the parameter extraction accuracy for NSBH and BNS merger
events. NSBH binaries generally emit stronger signals than BNS binaries since the total mass
of NSBH binaries can reach higher values. NBSH binaries are therefore a good candidate to
study since they have all the multi-messenger advantages while maintaining a relatively strong
signal compared to BNS mergers. It is still uncertain whether NSBH systems are expected
to generally have strong electromagnetic counterparts or not [2828], but the potential is there.
It is however, certain that the new generation of GW detectors: LISA [2929] and the Einstein
telescope [3030], will have a positive impact on the detection rate of multi-messenger events.
There has been at least one observed multi-messenger event, namely GW170817 [22], which was
a BNS merger. The multi-messenger nature of the event has opened up all kinds of interesting
analyses, such as for example an alternative way to accurately measure the Hubble constant to
relieve the Hubbel tension [3131] among other interesting applications. The first NSBH mergers
were observed after the first BNS merger. On January 5 and January 15, 2020, the GW events
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GW200105 and GW200115 occurred [33]. It can be concluded that these events were from
NSBH binary sources. The reason that only a handful of NSBH binaries have been observed
while many more BBH binaries are observed is both because the systems are simply rarer in
the universe and because it generates a much weaker signal than BBH systems. BBH systems
are also much wider studied because of this. We now know however, that studying NSBH
binary waveforms can give us information about the EOS of the neutron star. A waveform
model for an NSBH system, fast-to-generate yet accurate over a wide parameter space region, is
therefore crucial to extract source parameters from NSBH GW signals. Similar to section 1.71.7,
but now applying the full state-of-the-art physics knowledge, we can construct the ingredients
for a sophisticated waveform model. A key input parameter, namely the merger frequency of
the NSBH, will be discussed in full detail in the next chapters. This discussion aims to further
advance the waveform modelling for the data analysis of GW. We will start with giving the
reader more motivation as to why we study these systems along with giving the reader some
intuition. Subsequently, the unique dynamics of NSBH systems will be discussed together with
the imprints they have on their gravitational waveforms.



Chapter 2

A Binary System of Compact
Objects

Now that we have seen that a changing quadrupole moment of a system can generate GWs,
we will consider a binary system of two compact objects more closely, a system of which one
of the two objects is an extended object. This could be an NSBH binary system for example.
It is useful to construct this chapter by explicitly considering the NSBH binary system as the
specification of the system at hand. The theory is however, applicable to other binary systems.
To deeply understand the GWs such a system can generate, we need to deeply understand the
dynamics of the system. We will begin the chapter with some observations in section 2.12.1 that
should give the reader motivation as to why an NSBH binary is interesting to study. After
which we will get into the physical phenomenon that makes the dynamics of an NSBH binary
unique compared to binary systems without an extended object, namely tidal effects. Section
2.22.2 will consider tidal effects from a classical Newtonian perspective, which makes it a legible
section for the less experienced physicists. In the remaining sections the action of a compact
object binary system will be carefully set up in which section 2.32.3 sets up an action still without
any spin couplings. This action is evaluated in the adiabatic regime in section 2.42.4, and the
dynamic regime in 2.52.5. Finally, section 2.62.6 discusses the action with spin coupling terms up to
first order in the spin.

2.1 Observations from Numerical Studies
In the not too distant past, a physicist used observations to gain intuition on where to start
looking, i.e. to find out which properties or dynamics play the most important role in under-
standing the system at hand. We all know the story of Newton’s observation of an apple falling
straight to the ground that led him to develop his universal law of gravitation. The apple told
Newton where to look, namely that there must exist some law that dictates that every body in
the universe is attracted to every other body. In the same way, we want to start our research
with an observation that can give us a hint on where to start looking. These days however, a
physicist is not limited to only observations anymore. We have the luxury of computers that
can simulate reality. These computers give us the ability to ‘observe’ quantities of systems that
would be out of the field of view of our telescopes or GW detectors. This brings us to the SXS
Gravitational Waveform Database [44]. Here we can find waveforms of GWs emitted by Black
Hole-Black Hole binary systems (BBH) as well as NSBH binary systems for a wide range of
parameters that describe these systems. A gravitational waveform is the representation of the
GW strain h plotted over time. These waveforms are generated by code that simulates matter
subject to Einstein’s equations, i.e. NR simulations. An exact description of their methods
can be found in [2727]. For now, we will use the results from these simulations and treat them
as real observations that will give us direction on where to start looking.

27
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Figure 2.1: GW strain and the angular frequency as a function of retarded time
as dimensionless quantities in geometric units from the plus polarised gravita-
tional waveform emitted by a BBH and an NSBH binary for mass ratio Q = 6.
Data is from numerical relativity simulations [44].

An NSBH binary system is characterised by parameters such as the mass ratio Q between
the black hole and the neutron star, the angular momentum of both the black hole and the
neutron star, the equation-of-state of the neutron star and many more. We want to use these
‘observations’ to gain intuition on how the system responds to changes in these parameters.
Intuitively, the parameter that must have a significant, if not the most significant, influence
on the system is the mass ratio. Since we know that the larger scales can be described by
the theory of GR, which is a theory about the interaction of masses. Therefore we started
investigating how different mass ratios affect the dynamics of the binary system and thus also
the gravitational waveform of the binary system.

In the top panel of Figure 2.12.1 we can see the waveform of a BBH laid over the waveform
of an NSBH binary system for mass ratio Q = 6 - this means that the black hole is six times
as massive as the neutron star. Here we can see that the waveforms of the two systems almost
completely overlap. Before we move on to further observations, it is important to familiarise
ourselves with some terminology that is used to describe different stages of a binary system
and to connect the different stages of a binary system to different parts of the waveform. The
first part, when the two bodies are in orbit around each other, is called the inspiral phase. The
second part, when the two bodies merge, is called the merger phase. The final part, when all
that is left is a remnant black hole, is called the ringdown phase. According to Kepler’s third
law, we have Ω2 ∼ R−3 such that the quadrupole formula of chapter 11 equation (1.521.52) tells
us that the amplitude of the GWs coming from a binary system grows inversely proportional
to the distance between the two bodies. We can therefore conclude that the first part of the
waveform of Figure 2.12.1 corresponds to the inspiraling phase of the binary system, since the
amplitude is slowly increasing. The same quadrupole formula tells us that GWs are emitted
because of a change in the quadrupole moment of the system, and thus, because of changes in
the shape of the system. We can therefore conclude that the maximum amplitude in the grav-
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Figure 2.2: GW strain and the angular frequency as a function of retarded time
as dimensionless quantities in geometric units from the plus polarised gravita-
tional waveform emitted by a BBH and an NSBH binary for mass ratio Q = 2.
Data is from numerical relativity simulations [44].

itational waveform is reached during the merger phase, when the system changes from being a
binary system to being just a single body. Finally, after the binary system has become a single
body, it stops radiating GWs. This is the ringdown phase, for which we can now conclude
that it must correspond to the final part of the waveform. A summary of the different phases
corresponding to the different parts of the waveform can be seen in Figure 2.32.3.

We can now look at the angular frequency of the binary system, which can be seen in the
bottom panel of Figure 2.12.1. We can see that the angular frequency is increasing the most
rapidly, at the point of maximum amplitude in the gravitational waveform, i.e. at the point
of merger. We can also see that the angular frequency behaviour of the two systems again
closely matches - apart from some numeric instability at the end of the angular frequency of
the NSBH binary.

From the above observations we can conclude that the dynamics of an NSBH with mass ratio
Q = 6 must not differ greatly from the dynamics of a BBH. What about binary systems with
smaller mass ratios?

In the top panel of Figure 2.22.2 we can see the waveform of a BBH laid over the waveform
of an NSBH binary system for mass ratio Q = 2. Here we can see that the waveforms of the
two systems do not overlap anymore. The waveforms quickly start getting out of phase and
the merger amplitude also differs. In the bottom panel of Figure 2.22.2 we can observe that the
angular frequencies of a BBH and NSBH binary now completely differ.

The intuition we gain from these observations is that NSBH binaries with great mass ra-
tios seem to behave just like a BBH while NSBH binaries with mass ratios closer to 1 seem to
behave differently - this claim is also supported by more NR data investigation and not just
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Figure 2.3: The three different phases of a binary merger: the two bodies start
out in mutual orbit, due to gravitational radiation orbital energy is lost and the
two bodies start oscillating at a higher orbital frequency at a smaller orbital
separation until eventually merging into a remnant black hole. The horizontal
axis represents time evolution.

by the two discussed cases. In section 1.71.7 we stated that BBH systems are well studied. It is
therefore not interesting for us to focus on the large mass ratio regime. However, the theory
of NSBH binaries is much lesser-known. The regime of mass ratios close to Q = 1 is therefore
a very interesting regime for us to study.

Let us first qualitatively hypothesise why NSBH binaries of equal mass ratios behave so differ-
ently than NSBH binaries or much larger mass ratios. Let us do a thought experiment about
the different limits we can have. Consider an NSBH binary with an infinite mass ratio. It is
not hard to see that such a system corresponds to a black hole with a neutron star companion
that can be seen as a point mass. The backreaction of the point mass on the larger object
of infinite mass is negligible and the background metric is fixed. The dynamics of the system
will be completely described by the trajectory of the point mass around the black hole. We
know from GR that a point mass will follow the geodesics induced by the metric of the black
hole. The geodesic of the neutron star will be of decreasing radius since energy is lost due to
gravitational radiation, such that eventually the point mass will merge with the black hole.
If we assume that the point mass is a black hole instead of a neutron star, all the dynamics
stay exactly the same since a point mass has no equation-of-state type characteristics. Now
consider a NSBH with mass ratio Q = 1. Since black holes are the most compact objects in
the universe, we can assume that the radius of the neutron star will be at least not smaller
than that of the black hole. The size of the neutron star has implications, namely that the
gravitational force from the black hole at one point at the surface of the neutron star can be
vastly different from this force on another point at the surface of the neutron star. This differ-
ence in gravitational force is called the differential tidal force or just tidal force. The difference
in gravitational force on the surface is negligible when the distance between the neutron star
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Figure 2.4: Time evolution of a disrupting NSBH binary [3232].

and the black hole is large enough, but when the orbital distance between the black hole and
the neutron star becomes smaller, the differential tidal force can be so big that the neutron
star can be ripped apart. The evolution of such a merger where the neutron star is ripped
apart can be seen in Figure 2.42.4. Since these effects come into play because of the neutron
star not being a point mass anymore, i.e. because of the neutron star not having an infinitely
small size, they are called finite size effects. Intuitively it comes as no surprise that the way
an object is ripped apart depends highly on the type of object we are considering, i.e. on the
equation-of-state of the object. It should therefore now come as no surprise that for mass ra-
tiosQ closer to 1, the dynamics of a binary system highly depend on the type of objects at hand.

We had already established that NSBH binaries with mass ratios close to Q = 1 were interest-
ing to study, but we have now also qualitatively established that tidal effects are responsible
for this interesting behaviour. The reader should therefore be motivated enough to accept that
to understand an NSBH binary, we must study tidal effects, which will be the topic of the
remainder of this section.

2.2 Tidal Effects in Classical Newtonian Mechanics*
In this section we will study the tidal effects that are the cause of the interesting dynamics of
an NSBH binary. First, we will study these tidal effects in a classical Newtonian mechanics
formalism. In the next section we will study the tidal effects in a classical Lagrangian mechan-
ics formalism which can be easily carried over to a general relativistic description of the system.

In section 2.12.1 we have seen observational evidence that at a certain point during the inspiral
of an NSBH binary, the masses of the stellar objects can not be estimated as point masses
anymore and that one of the main processes that becomes of great significance during the final
phase of the inspiral is tidal disruption. All bodies that are not point masses are subject to
tidal forces. The difference between the gravitational force of the black hole on a point mass
in the centre of the neutron star and a point mass at the surface of the neutron star is what
is known as the differential tidal force ∆F⃗ or just tidal force. This is the force relative to the
centre of the neutron star, which we can derive using Newtonian theory.

We will derive the tidal force field in two spatial dimensions, which can be straightforwardly
extended to three spatial dimensions. Consider a neutron star in the form of a spherical body
with radius RNS , subject to the gravitational field of a black hole with mass MBH . The orbital



CHAPTER 2. A BINARY SYSTEM OF COMPACT OBJECTS 32

Figure 2.5: Geometry for calculating the differential tidal force. The left object
is considered to be the neutron star that will be subject to tidal effects from the
black hole.

separation of the two objects is given by r, which will be assumed to be much greater than RNS

(r ≫ RNS). A test-mass m in the centre of the neutron star is subject to the gravitational
force of the black hole by:

F⃗C =
MBHm

r2
êx, (2.1)

where G is Newtons gravitational constant and êx is the unit vector in the x-direction. Simi-
larly, a test-mass m on the surface of the neutron star is subject to the gravitational force of
the black hole. We will use θ as the angle between the neutron star-black hole line and the
radial line to m from the neutron star, ϕ as the same angle but with the radial line to m from
the black hole and finally s as the radial line to m from the black hole, see Figure 2.52.5. We
then have:

F⃗S =
MBHm

s2
(cos(ϕ)êx − sin(ϕ)êy). (2.2)

The difference between the gravitational force from the black hole on the test-mass on the
surface of the neutron star and in the centre of the neutron star is then given by:

∆F⃗ =MBHm

((
cos(ϕ)

s2
− 1

r2

)
êx − sin(ϕ)

s2
êy

)
. (2.3)

Since we have r ≫ RNS , we can approximate cos(ϕ) ≈ 1. From trigonometry we also have:

sin(ϕ) =
RBH sin(θ)

s
≈ RNS sin(θ)

r
, (2.4)

as well as:

s2 = (r −RNS cos(θ))
2 + (RNS sin(θ))

2 = r2
(
1− 2RNS cos(θ)

r
+
R2

NS

r2

)
1

s2
=

1

r2

(
1− 2RNS cos(θ)

r

)−1

≈ 1

r2

(
1 +

2RNS cos(θ)

r

)
,

(2.5)

where we neglected the R2
NS/r

2 term and Taylor expanded the third term because r ≫ RNS .
We can write equation (2.32.3) as:

∆F⃗ =
MBHmRNS

r3

(
2 cos(θ)êx − sin(θ)êy

)
. (2.6)

Here we can see that for θ = 0 the tidal force is directed at the black hole, while for θ = π,
counter-intuitively, the tidal force is directed away from the black hole. The net force is still
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Figure 2.6: Tidal tidal displacement field of a neutron star from the presence
of a companion black hole in the body frame of the neutron star. Note that ϕ
is now the angle denoting the phase of the orbit of the black hole around the
neutron star in anticipation of next sections.

directed in the direction of the black hole, but the tidal force denotes the force on the surface of
the neutron star relative to the force on the centre of the neutron star because of the gravita-
tional pull of the black hole. We can see that the tidal force wants to pull the neutron star into
an ellipsoidal form. See Figure 2.62.6 for a visualisation of the tidal displacement field. As long
as the self-gravitational force of the neutron star can counteract the tidal force, the neutron
star will remain in compact form, but when the tidal force starts to become much greater than
the self-gravitational force from the neutron star, the star starts to become tidally disrupted
and will no longer be close to a spherical object in space.

We can note that the tidal force is maximal for θ = 0. Before any tidal disruption, the
neutron star will still be spherical of form, and therefore the self-gravitational force will be
constant along the surface of the neutron star. We will therefore compare the self-gravitational
force of the neutron star with the tidal force along the neutron star-black hole line. When the
magnitude of the tidal force at θ = 0 exceeds the magnitude of the self-gravitational force, the
tidal disruption process will start taking place, beginning along the θ = 0 line before slowly
expanding to the rest of the neutron star. This also confirms the time evolution of the tidal
disruption prematurely depicted in the previous section in Figure 2.42.4.

The force balance of the self-gravitational force with the tidal force at the the surface of
the neutron star along the common axis of the neutron star and the black hole is given by:

2MBHmRNS

r3
=
MNSm

R2
NS

. (2.7)

We can therefore estimate that tidal disruption starts taking place for orbital radii rtidal that
are approximately larger than:

rtidal = RNS

(
2MBH

MNS

)1/3

. (2.8)

We should keep in mind that we made the assumption that r ≫ RNS , which might not hold
during the final phase of the inspiral. Also, we know that Newtonian theory does not apply
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to compact objects and to relativistic motion. Ref. [3333] proposes a correction based on a
comparison of the estimated tidal deformation radius with NR results. This correction ensures
that compact objects are more strongly bound:

r̃tidal = rtidal(1− 2MNS/RNS). (2.9)

A much better way to incorporate effects from the compactness MNS/RNS of the objects as well
relativistic effects is to derive the mechanisms that are responsible for these effects ourselves.
This can be done more easily using another formalism, namely that of an action principle which
will be discussed in the next section. This formalism has the advantage that it easily carries
over to a general relativistic formulation of the problem. Another advantage of this approach
is that we will be able to derive the energy of the system, which we can use to estimate a
more accurate tidal disruption radius. The radius we have estimated now is calculated from a
force balance evaluated at one certain point at the surface of the neutron star, while an energy
balance can be used to take the entire system into account.

2.3 Tidal Effects in Classical Lagrangian Mechanics
In the previous section we have discussed tidal forces using Newtonian mechanics. We showed
that we can set up a force balance between the self-gravitational force and the tidal force.
This force balance gave us an estimate for the radius at which tidal disruption starts having an
influence on the behaviour of the binary system. We will now discuss tidal interactions in a dif-
ferent light, namely that of an action principle. Note that the analysis below is still Newtonian.

The analysis below can be considered to be general for any extended compact object denoted
by the subscript A and a point mass denoted by the subscript B. The spherical symmetry of
the system allows us to express the different potentials as a multipole expansion, which in turn
can be written in terms of spherical harmonics. The discussion is based on [3434].

In Newtonian gravity the gravitational potential UA generated by a mass distribution with
density ρA at a field point in space x is given by the Poisson equation:

∇2UA = −4πρA, (2.10)

which can be solved using the Green’s function method to yield:

UA(t,x) =

∫
d3x′ρA (t,x′)

1

|x− x′|
, (2.11)

for points x > x′ outside the body’s mass distribution. The inverse distance term can be
Taylor expanded around a moving reference point zA(t) as:

1

|x− x′|
=

1

|x− zA|
− (x′1 − zA)

(
∂

∂x′1

1

|x− x′|

)∣∣∣∣
x′=zA

− (x′2 − zA)

(
∂

∂x′2

1

|x− x′|

)∣∣∣∣
x′=zA

− (x′3 − zA)

(
∂

∂x′3

1

|x− x′|

)∣∣∣∣
x′=zA

+ 1
2 (x

′
1 − zA)

2

(
∂2

∂2x′1

1

|x− x′|

)∣∣∣∣
x′=zA

+ 1
2 (x

′
2 − zA)

2

(
∂2

∂2x′2

1

|x− x′|

)∣∣∣∣
x′=zA

+ 1
2 (x

′
3 − zA)

2

(
∂2

∂2x′3

1

|x− x′|

)∣∣∣∣
x′=zA

+ (x′1 − zA)(x
′
2 − zA)

(
∂2

∂x′1∂x
′
2

1

|x− x′|

)∣∣∣∣
x′=zA

+ (x′1 − zA)(x
′
3 − zA)

(
∂2

∂x′1∂x
′
3

1

|x− x′|

)∣∣∣∣
x′=zA

+ (x′2 − zA)(x
′
3 − zA)

(
∂2

∂x′2∂x
′
3

1

|x− x′|

)∣∣∣∣
x′=zA

+O(x′3).

(2.12)
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We will write this compactly as:

UA =

∫
d3x′ρA (t,x′)

∞∑
ℓ=0

1

ℓ!
(x′ − zA)

L
(

∂

∂x′L
1

|x− x′|

)∣∣∣∣∣
x′=zA

=

∫
d3x′ρA (t,x′)

∞∑
ℓ=0

(−1)ℓ

ℓ!
(x′ − zA)

L
∂L

1

|x− zA|
,

(2.13)

where we introduced the notation L which denotes a string of indices L = a1a2...aℓ and
∂/∂x′L = ∂L. The full expression of the expanded potential (2.122.12) is given to make the map
to the compact notation from above (2.132.13) explicit. It can be shown that ∂L |x− zA|−1 is a
symmetric trace-free (STF) tensor. The symmetric part can be seen immediately since partial
derivatives commute. The trace-free part can be shown by calculating the trace. Let us choose
the origin of the coordinate system such that we have zA = 0, ∂L |x− zA|−1 is then given by:

∂l

∂a1∂a2...∂al

1

|x− zA|
=

∂l

∂a1∂a2...∂al

1

|r|
(2.14)

in spherical coordinates. Taking the trace yields:

∂l

∂a1∂a1...∂al

1

|r|
=

∂l

∂a3∂a4...∂al
∇2 1

|r|
. (2.15)

Note that taking the trace is done by setting any two indices equal. The Laplacian in spherical
coordinates is given by:

∇2 1

|r|
=

1

r2
∂

∂r

(
r2
∂

∂r

1

|r|

)
+

1

r2
∇2

θ

1

|r|
= 0, (2.16)

where |r| = r. This holds for all points outside the body A. We can therefore conclude that
∂L |x− zA|−1 is trace-free. Note that this result holds true for any choice of origin of the
coordinate system. The derivatives project out only the trace-free part of the potential. We
can therefore define the Newtonian mass multipole moments as:

MA =

∫
A

d3xρA(t,x), QL
A =

∫
A

d3xρA(t,x) (x− zA)
<L>

, (2.17)

where the < L > notation denotes the symmetric trace-free projection of the tensor, and write
the potential in terms of these multipole moments:

UA(t,x) =
MA

|x− zA|
+

∞∑
ℓ=2

(−1)ℓ

ℓ!
QL

A∂L
1

|x− zA|
. (2.18)

Note that the mass dipole ℓ = 1 term has been omitted from the expansion. The spherical
symmetry of the system enforces that this term can always be made to vanish by choosing
the reference point zA to be the center of mass of the system. The derivatives can be further
evaluated. We will do this by evaluating the first three terms and using the generated pattern
to set up a general expression. We will denote |x− zA|−1 as |r|−1 for convenience and we will
use the notation r = |r| n̂ = rn̂. The derivatives of r and n̂ are given by:

∂ir = ∂i (xjxj)
1/2

=
1

2
(xkxk)

−1/2
∂i (xjxj) =

1

2r
2xjδij =

xi
r

= n̂i

∂in̂j = ∂i

(xj
r

)
=
δij
r

− 1

r2
xj∂ir =

1

r
(δij − n̂in̂j) .

(2.19)
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The first three derivative terms of the expansion are then given by:

∂i

(
1

r

)
= − 1

r2
n̂i

∂i∂j

(
1

r

)
=

3

r3
n̂in̂j −

δij
r3

∂i∂j∂k

(
1

r

)
= −15

r4
n̂in̂j n̂k +

3

r4

(
n̂iδjk + n̂jδik + n̂kδij

)
.

(2.20)

Note that the tracelessness is manifest in these expressions. The general formula, which can
be proven by induction, is given by:

∂ℓ

∂a1∂a2...∂aℓ

1

|x− zA|
=

(−1)ℓ(2ℓ− 1)!!

|x− zA|ℓ+1
n̂<L>. (2.21)

The potential can be written as:

UA(t,x) =
MA

|x− zA|
+

∞∑
ℓ=2

(2ℓ− 1)!!

ℓ! |x− zA|ℓ+1
QL

An̂
<L>. (2.22)

Note that the double factorial is defined as n!! = n · (n − 2) · (n − 4) · ... · 3 · 1 for odd n.
We have seen earlier that QL

A is an STF-tensor, which is invariant under rotations. Therefore
there exists a one-to-one mapping to spherical harmonics of order ℓ. More technically stated:
The set of all symmetric trace-free tensors of rank ℓ generates an irreducible representation of
the rotation group of weight ℓ, hence there exists a one-to-one mapping between them and the
spherical harmonics of order ℓ [3535]. We want to make this mapping explicit, for which we will
follow the discussion of [3535] and [1919]. We can define the spherical-harmonic multipole moments
in terms of the Cartesian multipole moments as:

QA
ℓm =

4π

2ℓ+ 1
yℓmL

∗QL
A, (2.23)

where yℓmL are complex STF-tensors with constant complex coefficients discussed in more detail
below, and the ∗-operator is the complex conjugation operator. The inverse can be found by
projecting with y

′

L and summing over m′:

QL
A =

ℓ!

(2ℓ− 1)!!

ℓ∑
m=−ℓ

QA
ℓmy

ℓm
L . (2.24)

Where we can see that the conversion between unit vectors n̂ and spherical harmonics gives
rise to the conversion factor yℓmL . The conversion is given by:

Yℓm = yℓmL n̂<L>, (2.25)

which can be inverted as:

n̂<L> =
4πℓ!

(2ℓ+ 1)!!

ℓ∑
m=−ℓ

yℓmL Y ∗
ℓm. (2.26)

The explicit form of the conversion factor will be omitted here but can be found in [3535] and
[1919]. Finally, plugging the spherical-harmonic expansion of QL

A into the potential UA yields:

UA(t,x) =
MA

|x− zA|
+

∞∑
ℓ=2

ℓ∑
m=−ℓ

(2ℓ− 1)!!

ℓ! |x− zA|ℓ+1

ℓ!

(2ℓ− 1)!!
QA

ℓmy
ℓm
L n̂<L>

=
MA

|x− zA|
+

∞∑
ℓ=2

ℓ∑
m=−ℓ

QA
ℓm

|x− zA|ℓ+1
Yℓm.

(2.27)
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Here the spherical harmonics Ylm(θ, ϕ) are generally given as a function of spherical coordi-
nates (x− zA)

i/ |x− zA| = (sin θ cosϕ, sin θ sinϕ, cos θ).

Consider now a binary system of bodies A and B in orbit around each other. The poten-
tial because of external sources that is felt by body A is given by Uext

A and can be written as
a Taylor expansion:

Uext
A (t,x) =

∞∑
ℓ=0

1

ℓ!
(x− zA)

L

(
∂

∂xL
Uext
A (t,x)

)∣∣∣∣
x=zA

. (2.28)

In a binary system, the source of the potential is the potential of body B given by UB . The
tidal moments of body A can be defined in terms of the external potential and thus in terms
of the potential of body B:

EL
A = −

(
∂

∂xL
UB(t,x)

)∣∣∣∣
x=zA

. (2.29)

The external potential can therefore be written as:

Uext
A (t,x) = −

∞∑
ℓ=0

1

ℓ!
(x− zA)

LEL
A . (2.30)

Now that we have derived an expression for the self-gravitational potential of an isolated body
A as a spherical harmonic expansion and have shown that we can state the potential from the
presence of an external body as an expansion of the tidal moments, we are ready to summarise
the dynamics by an action principle, which was ultimately the goal of this section. In classical
mechanics the Lagrangian is given by L = T − V , where T is the total kinetic energy of the
system and V the total potential energy of the system. The kinetic energy of body A will be
given by:

TA =
1

2

∫
A

d3xρA(t,x) ˙zA
2 + T int

A , (2.31)

where T int
A is the internal contribution of the body that comes from the body not being a point

mass [3636]. The potential energy of body A is given by:

VA = −1

2

∫
A

d3xρA(t,x)UB(t,x) + V int
A , (2.32)

where we can again see an internal contribution. We will now assume body A to be an extended
body and body B to be a point mass. The total kinetic energy can easily be calculated since
zA only depends on time:

T = TA + TB =
1

2
MA ˙zA

2 + T int
A +

1

2
MB ˙zB

2. (2.33)

It is useful to transform this expression to a barycentric frame, i.e. a frame where the center
of mass coincides with the origin. In a barycentric frame we have:

r = zA − zB , MAzA +MBzB = 0, (2.34)

from which immediately follows:

zA =
MB

MA +MB
r, zB = − MA

MA +MB
r. (2.35)

The total kinetic energy is then given by:

T =
1

2

MAM
2
B

(MA +MB)2
ṙ2 +

1

2

MBM
2
A

(MA +MB)2
ṙ2 + T int

A

=
1

2

MAMB(MA +MB)

(MA +MB)2
ṙ2.

(2.36)
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We will now introduce the reduced mass as µ = MAMB/(MA + MB), the total mass as
M =MA+MB and the velocity as v2 = ṙ2, such that the total kinetic energy in the barycentric
frame is given by:

T =
1

2
µv2 + T int

A . (2.37)

We can see that in the barycentric frame the kinetic energy of a binary system reduces to the
kinetic energy of a one-body system with mass µ. For the total potential energy, we have to
be a bit more careful since only body A is an extended body. The total potential energy is
therefore given by:

V = VA+VB = −1

2

∫
A

d3xρA(t,x)UB(t,x)+V
int
A − 1

2

∫
B

d3xρB(t,x)UA(t,x)δ(x−zB). (2.38)

For the VA integral we can use the expression for UB = Uext
A we derived earlier such that we

have:

VA = −1

2

∫
A

d3xρA(t,x)UB(t, zA) +
1

2

∫
A

d3xρA(t,x)

∞∑
ℓ=2

1

ℓ!
(x− zA)

LEL
A + V int

A

= −1

2

MAMB

|zA − zB |
+

1

2

∞∑
ℓ=0

1

ℓ!
QL

AEL
A + V int

A .

(2.39)

Here the mass dipole moment again vanishes. For the VB integral we can use the STF form of
the self-gravitational potential, such that we have:

VB = −1

2

MBMA

|zB − zA|
− 1

2
MB

∞∑
ℓ=2

(2ℓ− 1)!!

ℓ! |zB − zA|ℓ+1
QL

An̂
<L>. (2.40)

For systems where the separation between the bodies is large compared to the characteristic
size of the bodies the tidal moments are given by:

EL
A = −

(
∂

∂xL
UB(t,x)

)∣∣∣∣
x=zA

= −
(

∂

∂xL
MB

|x− zB |

)∣∣∣∣
x=zA

= −(−1)ℓ(2ℓ− 1)!!
n̂<L>

|zA − zB |ℓ+1
MB . (2.41)

Naively one could now write the potential energy VB in terms of the tidal moments and one
would think that the tidal moments of VA cancel against the tidal moments of VB . We have to
be careful though, in the expression of VB the unit vector n̂<L> = n̂i1...n̂iℓ has its components
given by:

n̂i =
ziB − ziA

r
, (2.42)

while in the expression of EL
A the components are given by:

n̂i =
ziA − ziB

r
, (2.43)

such that n̂<L>
AB = n̂<L>

BA when ℓ is even and n̂<L>
AB = −n̂<L>

BA when ℓ is odd. The meaning of
the subscript notation is the obvious. The potential energy of body A then becomes:

VB = −1

2

MBMA

|zB − zA|
+

1

2

∞∑
ℓ=2

1

ℓ!
QL

AEL
A , (2.44)
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such that the total potential energy in the barycentric frame is given by:

V = −µM
r

+

∞∑
ℓ=2

1

ℓ!
QL

AEL
A + V int

A . (2.45)

The first term represents the potential energy of the binary system as if the bodies were point
masses. We can see that in the barycentric frame, the potential energy of a binary system
reduces to that of the potential energy of a binary system of bodies with masses µ and M .
The second term gives the tidal corrections because of body A being an extended body. The
Lagrangian can be split up into a part that describes the orbital motion of point masses, a
part that describes the tidal corrections and a part that describes the internal dynamics of the
multipole moments that we will leave unspecified for now. The total action is now given by:

S =

∫
dtL =

∫
dt

[
1

2
µv2 +

µM

r
−

∞∑
ℓ=2

1

ℓ!
QL

AEL
A + Lint

]

= Sorbit +

∫
dt

[
−

∞∑
ℓ=2

1

ℓ!
QL

AEL
A + Lint

]
.

(2.46)

We have the dynamics of the binary system encapsulated in a single scalar function. While an
advantage on its own, the main advantage of all this preparation is that the formalism carries
easily over to a general relativistic description of the system, which will be explored later.

We will now let go of the specifics of a system with two bodies but will instead focus on
the case of a spherically symmetric body in isolation whose multipole moments result from the
response to the companion’s tidal field. The internal Lagrangian depends on the type of body
considered. The body of our interest is a neutron star. For now, we will not work through the
derivation of the internal Lagrangian of a neutron star but merely post the result:

Lint =

∞∑
ℓ=2

1

2ℓ!λℓω2
0ℓ

[
Q̇LQ̇

L − ω2
0ℓQLQ

L

]
. (2.47)

Here ω0ℓ denote the fundamental-mode (f-mode) frequencies. The parameters λℓ are the tidal
deformability coefficients. An explicit derivation can be found in [3737]. We can however, reason
where this Lagrangian comes from and why it should be there. Just like a bridge has an f-mode
frequency, which can be excited by a large group of people all walking in the same frequency on
it; just like a kid on a swing has an f-mode frequency which can be excited by its parent pushing
in just the right frequency; just like the tidal waves in the ocean have an f-mode frequency,
which can be excited by a bay or an inlet having just the right length such that the tidal wave’s
resonance frequency is excited; á compact object like a neutron star has an f-mode frequency,
which can be excited by an external object orbiting it at just the right frequency. To be a
bit more precise: the f-mode frequency, in this case, is the f-mode frequency of the multipole
moments of the neutron star. This means that the mass distribution of the neutron star has a
preferred frequency in which it wants to oscillate. An orbiting object like a companion black
hole lets the mass distribution of the neutron star oscillate. It would therefore also be possible
for the black hole to orbit at exactly the right frequency such that the f-modes are excited. At
this point, resonance would occur and the tidal disruption process would be enhanced. This
resonance process is what is encapsulated in the internal Lagrangian and ω0ℓ is exactly this
preferred frequency in which the mass distribution wants to oscillate. It should therefore come
as no surprise that the given internal Lagrangian has the form of a Lagrangian that describes
a harmonic oscillator. This is illustrated in Box 2.
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Box 2: Neutron Star as a Harmonic Oscillator
The internal Lagrangian of a neutron star

Lint =

∞∑
ℓ=2

1

2ℓ!λℓω2
0ℓ

[
Q̇LQ̇

L − ω2
0ℓQLQ

L

]
(2.48)

is analogous to a simple harmonic oscillator with

L = T − V =
1

2
mẋ2 − 1

2
kx2 =

1

2λω2

(
ẋ2 − ω2x2

)
(2.49)

with k/m = ω2 and k = 1/ (ℓ!λℓ), where the factor ℓ! comes from the definition of the
tidal deformability.

In a simple harmonic oscillator x represents the deviation from equilibrium. A force
that brings the system out of equilibrium will induce an oscillating x. The amplitude
of the oscillation will be magnified close to its f-mode frequency. Completely analogous,
the neutron star’s multipole moments describe the deformation from spherical symmetry,
in this case, induced by mass density perturbations from the presence of a companion.
Mass density perturbations that bring the neutron star away from spherical symmetry
will therefore induce an oscillating QL. Oscillations close to the f-mode frequency will be
magnified because of resonance. Therefore in this example x2 →

∑
ℓQLQ

L [3838].

2.4 Adiabatic Tides
We have set up the total action of the system - we will talk about spin interactions later
- and now want to find a solution for the multipole moments of the neutron star. We will
later also derive an expression of the energy of the system. This section is not based on any
literature and can therefore be seen as a result of this thesis. From this point, we will also
specialise to an NSBH system again, and the A and B subscripts will be NS and BH subscripts.

We can define λℓ by considering QL as our dynamical field and varying the action w.r.t.
QL. We will start by considering the adiabatic limit, the limit where the body’s inter-
nal dynamics have enough time to equilibrate to the tidal field, i.e. where the internal
timescales τ int ∼

√
R3

NS/MNS are fast compared to the time scale of variations in the tidal
field τorb ∼

√
r3/M . The adiabatic limit is the simplest way of considering the tidal effects of

an NSBH binary and therefore works as a didactic tool to familiarise ourselves with the system
at hand and the different calculations involved. Once we have set up a description of adiabatic
tides, we will move on to dynamic tides where we let go of the adiabatic limit. The calculations
involving dynamic tides are also of instructive nature and will therefore be presented in full
glory before we move on to add more effects to our description of the system. A full description
will consist of extra couplings of the different angular momenta of the bodies to the tidal bulge
of the neutron star. The calculations for a full description again require a different approach
which will be presented at the end of this chapter.

The action with the internal Lagrangian included is given by:

S = Sorbit +

∫
dt

∞∑
ℓ=2

[
− 1

ℓ!
QLEL +

1

2ℓ!λℓω2
0ℓ

[
Q̇LQ̇

L − ω2
0ℓQLQ

L

]]
. (2.50)

We derived this action for the Newtonian case. In this form however, it can be straightfor-
wardly generalised to a relativistic action. The equivalence principle states that locally the
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relativistic and the Newtonian action should match. The coefficients in the action that contain
the strong field parameters characterising the details of how the neutron star responds to the
tidal perturbation, e.g. the tidal deformability parameter λℓ and the f-mode frequencies ω0ℓ,
come from the full GR description and therefore do not represent Newtonian versions of these
quantities.

In the adiabatic limit Q̇L = 0. The variation of the action (2.502.50) is given by.

δS

δQL
= − 1

ℓ!
EL − 1

ℓ!λℓ
QL = 0. (2.51)

The tidal deformability coefficients characterise the equation-of-state dependent ratio between
the induced multipole moments and the tidal field as a linear response relation:

Qadiab
L = −λℓEL, (2.52)

which is the solution for the multipole moments of the neutron star in the adiabatic case.

We mentioned before that in the action (2.502.50) the quantities λℓ and ω0ℓ are computed from
the full GR description. Quantities at the orbital scale however, like the explicit expressions
for the tidal moments given below, can at large orbital separations be approximated by their
Newtonian result to leading order.

The expression for the tidal moments is given by (2.412.41) and can be evaluated up to quadrupole
order as:

Eij = −
(
∂i∂j

1

r

)
MBH

= −
(

3

r3
n̂in̂j −

δij
r3

)
MBH.

(2.53)

Using the unit vector n̂ in spherical coordinates:

n̂ = sin θ cosϕêx + sin θ sinϕêy + cos θêz, (2.54)

we can explicitly write down the tidal moment matrix in the equatorial plane as:

Eij = −

 1
2r3 + 3 cos 2ϕ

2r3
3 sin 2ϕ
2r3 0

3 sin 2ϕ
2r3

1
2r3 − 3 cos 2ϕ

2r3 0
0 0 − 1

r3

MBH. (2.55)

Note that this matrix is manifestly symmetric and trace-free, as expected. With the linear
response relation between the quadrupole moment of the neutron star and the tidal moment,
we have an explicit expression for the quadrupole moment of the neutron star.

Now that we have found the first meaningful solution to the NSBH binary system, it is a
good moment to reflect on what we have done and what this solution actually means. We have
seen that the gravitational potential generated by some mass distribution can be expressed
as a multipole expansion. We have given the expansion as a Cartesian multipole expansion,
which is a series of STF-tensors, and as a spherical harmonics expansion. Furthermore, we
have seen that the potential induced by external sources that is felt by a neutron star can
be written as a Taylor expansion where the tidal moments tensor is given by the derivatives
of the potential in the expansion. Up to quadrupole order, the tidal moments tensor can be
evaluated, as is done above. This allows us to evaluate the quadrupole moment tensor using
the linear response relation between the tidal quadrupole moment tensor and the quadrupole
moment tensor, which yields:

Qij = λ2

 1
2r3 + 3 cos 2ϕ

2r3
3 sin 2ϕ
2r3 0

3 sin 2ϕ
2r3

1
2r3 − 3 cos 2ϕ

2r3 0
0 0 − 1

r3

MBH. (2.56)
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For our approximation of adiabatic tidal effects, the only generators of a non-zero quadrupole
moment, are the tidal effects from the presence of a companion black hole, illustrated by the
simple linear response relation. The quadrupole moment tensor gives the mass deformation
away from spherical symmetry of the neutron star. In this case, this mass deformation is only
because of tidal effects and comes from the tidal deformation field of the black hole. This is
exactly the same tidal displacement field that we derived in section 2.22.2 where we named it the
differential tidal force given by (2.32.3). This shows us that truncating up to quadrupole order is
analogous to the truncation scheme used in section 2.22.2. The quadrupole tensor given above is
evaluated in the body frame of the neutron star. The ϕ-coordinate gives the angle of the black
hole with the x-axis. For example for ϕ = 0 we can see that the deformation of the neutron star
on the x-axis is given by 2λ2MBH

r3 êx, which can be found by multiplying the first row or column
with (êx, êy, êz). Note that by the deformation on the x-axis we mean the deformation of the
neutron star where the x-axis intersects the surface of the neutron star. The deformation of
the neutron star on the y-axis is given by −λ2MBH

r3 êy. Note that this is equal to (2.32.3) with
θ = 0, up to the difference of the tidal deformability parameter that has not been taken into
account in section 2.22.2. Through the tidal deformability parameter, the radius of the neutron
star comes into the equation. In Figure 2.62.6 the tidal displacement field is visualised, which can
be done by letting the black hole orbit the neutron star and extrapolating the displacements
back to the frame of the neutron star.

We can use the action to derive an expression for the energy of the system. The linear response
relation (2.522.52) allows us to write the action for adiabatic motion as:

Sadiab = Sorbit +

∫
dt

∞∑
ℓ=2

[
− 1

ℓ!
Qadiab

L EL − 1

2ℓ!λℓ
Qadiab

L Qadiab
L

]

= Sorbit +

∫
dt

∞∑
ℓ=2

[
λℓ
2ℓ!

ELEL

]
.

(2.57)

Note that we do not yet have to work up to only quadrupole order since the linear response
relation (2.522.52) for adiabatic motion allows us to write the mass multipole moments in terms of
the tidal moments. Using the explicit expression of the tidal moments EL (2.412.41) we can write
the action as:

Sadiab = Sorbit +

∫
dt

∞∑
ℓ=2

[
λℓ
2ℓ!

[
(2ℓ− 1)!!

]2 n̂<L>n̂<L>

r2(ℓ+1)
M2

BH

]
, (2.58)

where the contraction of two STF-tensors is given by:

n̂<L>n̂
<L> =

ℓ!

(2ℓ− 1)!!
, (2.59)

such that we have:

Sadiab = Sorbit +

∫
dt

∞∑
ℓ=2

[
(2ℓ− 1)!!λℓ
2r2(ℓ+1)

M2
BH

]
. (2.60)

For motion in the equatorial plane, in which v2 = ṙ2+r2ϕ̇2 in spherical coordinates, the action
is given by:

Sadiab =

∫
dt

[
1

2
µṙ2 +

1

2
µr2ϕ̇2 +

µM

r
+

∞∑
ℓ=2

(2ℓ− 1)!!λℓ
2r2(ℓ+1)

M2
BH

]
. (2.61)

The Euler-Lagrange equation for ϕ is given by:

d

dt

∂L
∂ϕ̇

− ∂L
∂ϕ

=
d

dt

[
µr2ϕ̇

]
= 2µrṙϕ̇+ µr2ϕ̈ = 0, (2.62)
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and for r:

d

dt

∂L
∂ṙ

− ∂L
∂r

= µr̈ − µrϕ̇2 +
µM

r2
+

∞∑
ℓ=2

(ℓ+ 1)(2ℓ− 1)!!λℓ
r2ℓ+3

M2
B = 0. (2.63)

For stable circular orbits, i.e. when ṙ = r̈ = 0 we can immediately conclude from the ϕ Euler-
Lagrange equation that ϕ̇ = constant. We will therefore define the orbital frequency as ϕ̇ = Ω.
For stable circular orbits the r Euler-Lagrange equation becomes:

− µrΩ2 +
µM

r2
+

∞∑
ℓ=2

(ℓ+ 1)(2ℓ− 1)!!λℓ
r2ℓ+3

M2
BH = 0. (2.64)

The final term represents the tidal correction to the circular motion. We want to solve this
equation for r. We can see that the tidal correction scales with at least r−7 for widely separated
bodies. We will therefore work to linear order in the tidal effects: r = r0(1 + δr), where the δr
represents the tidal correction. For no tidal corrections, the final term just vanishes, and the
above equation reduces to Kepler’s third law, which allows us to solve for r0:

r0 =
M1/3

Ω2/3
. (2.65)

Dividing the r equation of motion by µr and expanding to linear order in the tidal effects yields
the following equation for the linear tidal corrections:

− 3δr
M

r30
+

∞∑
ℓ=2

(ℓ+ 1)(2ℓ− 1)!!λℓ

µr2ℓ+4
0

M2
BH = 0. (2.66)

Note that the tidal correction term was already linear in the tidal effects, and we could therefore
just replace r with r0. Also, note that the Ω2 term has no tidal contribution such that at linear
order in the tidal contributions this term vanishes. Substituting Kepler’s third law for r0 and
solving for δr gives for the linear order tidal corrections:

δr =

∞∑
ℓ=2

(ℓ+ 1)(2ℓ− 1)!!λℓ

3Mµ
(
M1/3Ω−2/3

)2ℓ+1
M2

BH. (2.67)

The stable circular orbit radius as a function of the orbital frequency is given by:

r(Ω) =
M1/3

Ω2/3
+

∞∑
ℓ=2

(ℓ+ 1)(2ℓ− 1)!!λℓ

3Mµ
(
M1/3Ω−2/3

)2ℓM2
BH. (2.68)

Here we can see that the tidal effects come in as a correction to Kepler’s third law. Now that
we have the radius as a function of the orbital frequency, we also want to find an expression
for the energy of the system as a function of Ω. The energy of the system for motion in the
equatorial plane for stable circular orbits can be immediately read of the action, i.e. switch
the sign of all non-kinetic terms and is given by:

E =
1

2
µr2Ω2 − µM

r
−

∞∑
ℓ=2

(2l − 1)!!λℓ
2r2(ℓ+1)

M2
BH. (2.69)

We will again assume the tidal corrections to be small and expand to linear order in the tidal
corrections:

E =
1

2
µr20Ω

2(1 + 2δr)−
µM

r0
(1− δr)−

∞∑
ℓ=2

(2ℓ− 1)!!λℓ

2r
2(ℓ+1)
0

M2
BH, (2.70)

where we can now substitute the known results for r0 and δr to yield the final expression for
the energy of the system for adiabatic motion in the equatorial plane as a coordinate invariant
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expression:

E(Ω) =
1

2
µ(M1/3Ω−2/3)2Ω2 +

∞∑
ℓ=2

Ω2(ℓ+ 1)(2ℓ− 1)!!λℓ

3M
(
M1/3Ω−2/3

)2ℓ−1
M2

BH − µM

M1/3Ω−2/3

+

∞∑
ℓ=2

(ℓ+ 1)(2ℓ− 1)!!λℓ

3
(
M1/3Ω−2/3

)2ℓ+2
M2

BH −
∞∑
ℓ=2

(2ℓ− 1)!!λℓ
2(M1/3Ω−2/3)2(ℓ+1)

M2
BH

= −1

2
µ
(
MΩ

)2/3
+

∞∑
ℓ=2

λℓM
2
BH

(M1/3Ω−2/3)2(ℓ+1)

[
2

3
(ℓ+ 1)(2ℓ− 1)!!− 1

2
(2ℓ− 1)!!

]
. (2.71)

Here we can again see that the finite size effects come in as a correction to the energy of a
system given by point masses. For now, we have derived expressions for all the quantities
that we need to describe the system, namely the energy of the system and the quadrupole
moment. These expressions can be found up to quadrupole order in the literature, higher
order quadrupole moments are usually negelected in the literature and this result can therefore
be used as reference. In the next section we will let go of the adiabatic approximation and we
will therefore also have to let go of keeping higher quadrupole moment terms.

2.5 Dynamic Tides
For the early inspiral, we have seen that the internal structure of the neutron star depends only
on the tidal deformability parameters λℓ. For the final phase of the inspiral, we have to let go of
the adiabatic approximation, since when the orbital motion approaches the resonance frequency
it no longer holds, i.e. we can no longer set Q̇L = 0. Note that this is true for the f-modes,
higher modes can be excited early in the inspiral. The f-mode has the greatest influence on
the dynamics of the system however, and therefore the effect of the higher modes is neglected.
Before we move to a complete description of the system, we will analyse the dynamic case,
which is given by the same Lagrangian as the adiabatic case but this time without Q̇L = 0. We
will start with this Lagrangian without the addition of any other effects because it is instructive
to see the calculations involved. The addition of the extra terms requires another approach
to solve the system. It will be valuable to the reader to have seen all the different methods
available. The approach in this section is similar to the approach discussed in [3939]. The results
for the circular orbit radius and the energy are independently derived results of this thesis
that agree with existing literature [4040]. We can make use of the total action (2.502.50) to find the
equation of motion for the dynamical field QL. The Euler-Lagrange equation gives us:

d

dt

∂L
∂Q̇L

− ∂L
∂QL

=
Q̈L

ω2
0ℓ

+QL = −λℓEL. (2.72)

We no longer have the simple linear response relation between the multipole moments and the
tidal moments of the neutron star, but instead, we have a tensorial differential equation. Until
this point, we could include the higher multipole moments without extra work, but from this
point onward, the equations will simplify greatly when we only consider the quadrupole mo-
ment. We will therefore start by considering the above differential equation for the quadrupole
moment Qij and tidal quadrupole moment Eij . In a differential equation with matrices, all
the components should also separately obey the differential equation. We know that Qij and
Eij are symmetric and trace-free, and we also know the components of Eij explicitly. We can
use this information to constrain the components of Qij . We will parametrise Qij to be of the
same form as the tidal quadrupole moment, namely in the form:

Qij =

a+ b c 0
c a− b 0
0 0 −2a

 . (2.73)
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The equation of motion for the field Qij can therefore be written as:

1

ω2
02

ä+ b̈ c̈ 0

c̈ ä− b̈ 0
0 0 −2ä

+

a+ b c 0
c a− b 0
0 0 −2a

 = λ2

 1
2r3 + 3 cos 2ϕ

2r3
3 sin 2ϕ
2r3 0

3 sin 2ϕ
2r3

1
2r3 − 3 cos 2ϕ

2r3 0
0 0 1

r3

MBH.

(2.74)
Evaluating the different components of the the above differential equation gives us three equa-
tions for a, b and c: 

ä

b̈
c̈

+ ω2
02

 a
b
c

 = ω2
02A

 1/3
cos(2ϕ)
sin(2ϕ)

 . (2.75)

Here we have defined the tidal force amplitude as:

A =
3λ2MBH

2r3
. (2.76)

Note that the a-equation is obtained by adding the (11)-component of the equation of motion
to the (22)-component, the b-equation is obtained by subtracting the (22)-component from the
(11)-component and the c-equation is obtained by evaluating the (12)-component. It is also
important to note that the radial coordinate r is not constant in time. The binary system
inspirals because of gravitational damping. The linear system above can be solved using the
method variation of parameters and with trigonometric identities [3939].

2

ω02

{
b
c

}
= cos (ω02t)

∫
dtA

{
− sin (2ϕ+ ω02t)
cos (2ϕ+ ω02t)

}
+ sin (ω02t)

∫
dtA

{
cos (2ϕ+ ω02t)
sin (2ϕ+ ω02t)

}
+ cos (ω02t)

∫
dtA

{
sin (2ϕ− ω02t)

− cos (2ϕ− ω02t)

}
+ sin (ω02t)

∫
dtA

{
cos (2ϕ− ω02t)
sin (2ϕ− ω02t)

}
+

{
cb1
cc1

}
cos (ω02t) +

{
cb2
cc2

}
sin (ω02t) ,

(2.77)

with unspecified integration constants in the homogeneous solution (last two terms). Note
that the phase coordinate ϕ is dependent on time through ϕ = Ωt. For Ω ∼ ω02/2 resonance
will occur, for which we should be careful. For the moment we will consider the regime away
from resonance. We will therefore also assume the boundary condition that the initial mode
oscillations are zero, i.e. the integration constants are set to zero. Also, locally in time the
gravitational damping can be neglected and A is constant in time. In this limit a is a static
component and is given by a = A/3. The integrals above can be evaluated to:

2

ω02

{
b
c

}
= cos (ω02t)

A
2Ω + ω02

{
cos (2ϕ+ ω02t)
sin (2ϕ+ ω02t)

}
+ sin (ω02t)

A
2Ω + ω02

{
sin (2ϕ+ ω02t)

− cos (2ϕ+ ω02t)

}
+ cos (ω02t)

A
2Ω− ω02

{
− cos (2ϕ− ω02t)
− sin (2ϕ− ω02t)

}
+ sin (ω02t)

A
2Ω− ω02

{
sin (2ϕ− ω02t)
− cos (2ϕ− ω02t)

}
.

(2.78)

Making use of trigonometric identities this can be written as:{
b
c

}
=

A
1− 4Ω2

ω2
02

{
cos(2ϕ)
sin(2ϕ)

}
. (2.79)
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We can see that close to resonance this will diverge. Far away from resonance we now have
solved the equation of motion for Qij . Qij is given by:

Qij = A


1
3 + cos(2ϕ)

1− 4Ω2

ω2
02

sin(2ϕ)

1− 4Ω2

ω2
02

0

sin(2ϕ)

1− 4Ω2

ω2
02

1
3 − cos(2ϕ)

1− 4Ω2

ω2
02

0

0 0 −2
3

 . (2.80)

We can see that the above expression is the same as for the adiabatic case except for the
included resonance factor. For angular frequencies of Ω ∼ ω0/2 resonance will occur. To see
why this is the resonance frequency one can look back at Figure 2.62.6. Let us say that ω02 is
the preferred frequency of the neutron star in which it wants to oscillate. Oscillation of the
quadrupole moment can be thought of as the equatorial tidal bulge oscillating outwards and
inwards while the polar tidal bulge is oscillating inwards and outwards. When the black hole
has orbited halfway around the neutron star, the tidal displacement field has undergone a full
cycle, i.e. the tidal displacement field is precisely equal to the displacement field at the begin of
the orbit. Half an orbit of the black hole, therefore corresponds to a full period of oscillations
for the tidal bulges. For the angular frequency to be fully in phase with the f-mode frequency
it needs to be Ω ∼ ω0/2.

Now that we have found explicit relations for Qij and Eij we can follow the same approach
as for the adiabatic case to find a coordinate independent expression of the energy of the sys-
tem. The total action can be found by substituting the found quadrupole moments and tidal
moments into the total action:

S = Sorbit +

∫
dt

[3λ2M2
BH

(
1− Ω2

ω2
02

)
2r6
(
1− 4Ω2

ω2
02

) ]
. (2.81)

We can see that in the adiabatic limit, Ω ≪ ω0, the action precisely reduces to the adiabatic
action up to quadrupole moment that we derived above. For motion in the equatorial plane,
the action becomes:

S =

∫
dt

[
1

2
µṙ2 +

1

2
µr2ϕ̇2 +

µM

r
+

3λ2M
2
BH

(
1− Ω2

ω2
02

)
2r6
(
1− 4Ω2

ω2
02

) ]
. (2.82)

For stable circular orbits the Euler-Lagrange equation for r then becomes:

d

dt

∂L
∂ṙ

− ∂L
∂r

= −µrΩ2 +
µM

r2
+

9λ2M
2
BH

(
1− Ω2

ω2
02

)
r7
(
1− 4Ω2

ω2
02

) = 0. (2.83)

Where for stable circular orbits we have ṙ = r̈ = 0 and ϕ̇ = Ω. Analogous to the adiabatic case
we can divide the r equation of motion by µr and expand to linear order in the tidal effects to
yield for the linear tidal corrections:

− 3δr
M

r30
+

9λ2M
2
B

(
1− Ω2

ω2
02

)
µr80
(
1− 4Ω2

ω2
02

) = 0. (2.84)

Substituting Kepler’s third law, r0 =M1/3Ω−2/3, and solving for δr yields:

δr =
3λ2M

2
BH

(
1− Ω2

ω2
02

)
µM8/3Ω−10/3

(
1− 4Ω2

ω2
02

) , (2.85)

such that the stable circular orbit radius is given by:

r(Ω) =
M1/3

Ω2/3
+

3λ2M
2
BH

(
1− Ω2

ω2
02

)
µM7/3Ω−8/3

(
1− 4Ω2

ω2
02

) . (2.86)
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The energy can again be read of the action by reversing the sign of all the potential terms:

E(Ω) =
1

2
µr2Ω2 − µM

r
+

1

2
QijE ij +

1

2λω2
0

[
Q̇ijQ̇

ij + ω2
02QijQ

ij

]

E(Ω) =
1

2
µr2Ω2 − µM

r
−

3λ2M
2
BH

(
1− 11Ω2

ω2
02

+ 4Ω4

ω4
02

)
2r6
(
1− 4Ω2

ω2
02

)2 .

(2.87)

Expanding to linear order in the tidal effects gives:

E(Ω) =
1

2
µr20Ω

2(1 + 2δr)−
µM

r0
(1− δr)−

3λ2M
2
BH

(
1− 11Ω2

ω2
02

+ 4Ω4

ω4
02

)
2r60
(
1− 4Ω2

ω2
02

)2 , (2.88)

where we can now again substitute the known results for r0 and δr:

E(Ω) =
1

2
µ(M1/3Ω−2/3)2Ω2 +

3λ2M
2
BH

(
1− Ω2

ω2
02

)
M6/3Ω−12/3

(
1− 4Ω2

ω2
02

)
− µM

(M1/3Ω−2/3)
+

3λ2M
2
BH

(
1− Ω2

ω2
02

)
M2Ω−12/3

(
1− 4Ω2

ω2
02

) − 3λ2M
2
BH

(
1− 11Ω2

ω2
02

+ 4Ω4

ω4
02

)
2(M1/3Ω−2/3)6

(
1− 4Ω2

ω2
02

)2
= −1

2
µ(MΩ)2/3 +

9λ2Ω
4M2

BH

(
1− 3Ω2

ω2
02

+ 4Ω4

ω4
02

)
2M2

(
1− 4Ω2

ω2
02

)2 .

(2.89)

The expressions r(Ω) and E(Ω) coincide with the literature [4040]. Note that in the limit Ω ≪ ω02

we retrieve back the energy for the adiabatic case (2.712.71). For angular frequencies of Ω ∼ ω02/2
resonance will occur.

2.6 Spin interactions
Finally, we also want to consider the interactions that the different angular momenta of the
system can have. In Newtonian gravity, a spinning object does not affect the gravitational
potential around itself. Fictitious forces can arise however, due to the rotation of the reference
frame. Furthermore, in GR, a spinning object distorts the spacetime around it. Therefore
spinning objects do alter the gravitational potential around themselves. These spin interactions
come in as spin-couplings in the Lagrangian. The present angular momenta of the system are
the angular momenta of the neutron star, the black hole and the orbital angular momentum.
Additionally, we have seen that the neutron star gets deformed due to tidal effects. This
deformation away from spherical symmetry, which we call the tidal bulge of the neutron star,
can also be considered as a spin which can interact with the other spins. The spin-spin and spin-
orbit interaction terms in the Lagrangian can be derived in an effective field theory formalism
which is outside the scope of this thesis. We will use the first post-Newtonian order results
from [4141]. The post-Newtonian (PN) expansion is the expansion of the Einstein equation in
orders of v2/c2, which amounts to orders of deviation away from Newtonian gravity. The first
order PN spin-spin interaction Lagrangian is given by:

LSS = − 1

r3

[
3n̂iS

i
An̂jS

j
B − SAiS

i
B

]
, (2.90)

where Si
A represents an angular momentum vector and n̂i the unit normal vector through the

common axis of the two objects. For aligned spin systems the first term vanishes. The first
order PN spin-orbit interaction Lagrangian is given by:

LSO = − 1

r3
Si
ALi

[
2 +

3

2

MB

MA

]
− 1

r3
Si
BLi

[
2 +

3

2

MA

MB

]
, (2.91)
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where Li represents the orbital angular momentum vector.

It is now possible to construct the couplings between the neutron star’s spin Si
NS, the black

hole’s spin Si
BH, the tidal spin Si

Q and the orbital angular momentum Li. The tidal spin is the
spin associated with the quadrupole moment of the neutron star and can be expressed as:

Si
Q =

1

2λ2ω2
02

ϵijkQ
j
l Q̇

kl, (2.92)

where ϵijk is the Levi-Civita tensor. One can check that this has the properties of an angular
momentum vector, with units of kg2m2s−1. In section 2.6.12.6.1 the coupling between the tidal spin
Si
Q and the neutron star’s spin Si

NS will be discussed. In Appendix EE the coupling between Si
Q

and both Si
BH and Li are discussed, which have negligible effects on the energy of the system.

In section 2.6.22.6.2 the coupling between Si
BH and Li is discussed. The couplings between Si

NS and
both Si

BH and Li are neglected because the neutron star spin is not expected to reach extremal
values. Realistically, a dimensionless spin χNS of at most 0.7 can be acquired [4242].

2.6.1 Angular Momentum of the Neutron Star
We will first discuss the interaction of the neutron star’s angular momentum with the tidal
spin. We discussed above that the interaction terms with the other spins, Si

B and Li, can be
neglected. With this new term included in the action, a new approach to solving the system
is required. The approach of the previous section does not work anymore, i.e. the tensorial
differential equation cannot be solved anymore. Therefore we will present a final approach in
this section where we will try to solve for the degrees of freedom of the quadrupole moment
tensor independently. The results in this and the following subsections are not present in the
literature and are therefore a contributing result of this thesis.

The effects that we want to capture in this new term are effects attributable to the angu-
lar momentum or spin of the neutron star. Intuitively, the spin of the neutron star should alter
the frequency at which resonance occurs. Spin in the same direction of the orbital velocity
should increase the orbital velocity that is needed for resonance to occur and spin in the oppo-
site direction as the orbital velocity should lower the orbital velocity needed for resonance to
occur. According to the spin-spin interaction term (2.902.90) we can write down the contributing
term in the Lagrangian:

LSS =
1

2λ2ω2
02

CNSϵijkS
k
NQ

i
kQ̇

jk, (2.93)

where the coefficient CNS replaces the 1/r3 factor in (2.902.90) following a matching procedure
coming from the effective field theory formalism. The coefficient CNS is a yet to be determined
coefficient which depends on the neutron star’s equation-of-state which must have dimension
[CNS] = m−3, which is included following [4343]. Although this term arises directly from plugging
Si
Q and Si

NS in (2.902.90) and thus from the effective field theory approach, it can also be considered
as a description of the Coriolis effect, a fictitious force that arises in a rotating frame of reference.
In our case, a spinning neutron star, i.e. the rotating neutron star’s body frame, generates a
Coriolis-like term in the Lagrangian. The total action is given by:

S = Sorbit +

∫
dt

[
− 1

2
QijE ij +

1

4λ2ω2
02

[
Q̇ijQ̇

ij − ω2
02QijQ

ij

]
+

1

2λ2ω2
02

CNSϵijkS
k
NSQ

i
kQ̇

jk

]
.

(2.94)
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Box 3: From the Neutron Star’s Body Frame to a Corotating
Frame
If the quadrupole moment tensor in the neutron star’s body frame is given by:

Qij = R−1(ϕ)QijR(ϕ) =

a+ b c 0
c a− b 0
0 0 −2a

 , (2.95)

we can easily transform this to a corotating frame by making use of the rotation matrix
around the z-axis with an angle ϕ, which is given by:

R(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

 . (2.96)

The quadrupole moment tensor in the corotating frame is then given by:

Q̃ij = R−1(ϕ)QijR(ϕ) =

a+ b cos 2ϕ+ c sin 2ϕ c cos 2ϕ− b sin 2ϕ 0
c cos 2ϕ− b sin 2ϕ a− b cos 2ϕ− c sin 2ϕ 0

0 0 −2a

 .

(2.97)
We can parametrise the quadrupole tensor in the corotating frame in terms of new coro-
tating frame variables α, β and γ as:

Q̃ij =

α+ β γ 0
γ α− β 0
0 0 −2α

 , (2.98)

such that the relation between the variables in the two frames is given by:

α = a, β = b cos 2ϕ+ c sin 2ϕ, γ = c cos 2ϕ− b sin 2ϕ. (2.99)

Using the above transformation laws, it is also possible to express Qij in the body frame
in terms of the corotating frame variables:

Qij =

α+ β cos 2ϕ− γ sin 2ϕ γ cos 2ϕ+ β sin 2ϕ 0
γ cos 2ϕ+ β sin 2ϕ α− β cos 2ϕ+ γ sin 2ϕ 0

0 0 −2α

 . (2.100)

In Figure 2.72.7 the transformation of the neutron star body frame to the corotating frame
is visualised, which is done by rotating the body frame by an angle ϕ.

We will consider the aligned spin case in which we have Si
NS = (0, 0, Sz

N ). In the previous
section we were able to solve the differential equations that arose from the Euler-Lagrange
equation that the independent components of the quadrupole moment tensor obeyed, this is
however not possible anymore. There is another way though, we can express the quadrupole
moment tensor in terms of corotating frame variables, see (2.1002.100) in Box 3. This transformation
of the neutron star’s body frame to the corotating frame is also depicted in Figure 2.72.7. Using
the parametrisation of (2.1002.100) we can explicitly perform the contractions such that we have
3 new Euler-Lagrange equations for the 3 new dynamical variables α(t), β(t) and γ(t). For
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(a) (b)

Figure 2.7: NSBH binary from the perspective of a: (a) body refer-
ence frame in which the quadrupole moment tensor components induced by the
companion black hole are dynamic (b) corotating reference frame in which the
quadrupole moment tensor components induced by the companion black hole are
static.

stable circular orbits, in which ϕ̇ = Ω, we then have:

d

dt

∂L
∂α̇

− ∂L
∂α

= −3MBH

2r3
+

3α

λ2
= 0,

d

dt

∂L
∂β̇

− ∂L
∂β

= −3MBH

2r3
+

4ω2
02β − 16Ω2 − 16ΩCNSS

z
NSβ

4λ2ω2
02

= 0,

d

dt

∂L
∂γ̇

− ∂L
∂γ

= −8ΩCNSS
z
NSγ +

4ω2
02γ − 16Ω2γ − 16ΩCNSS

z
NSγ

4λ2ω2
02

= 0.

(2.101)

The key reason that we use corotating frame variables is that they should all be static in the
non-spinning neutron star case. This can also be seen in Figure 2.72.7, where we can see that in
the corotating frame, the induced quadrupole moment rotates along with the reference frame.
For Sz

NS = 0 the above relations should therefore reduce to the non-spinning case. From which
we can conclude that all the derivatives of α(t), β(t) and γ(t) should vanish and therefore have
been set to zero to obtain the above expressions. We can now easily solve the Euler-Lagrange
equations to find an expression for the quadrupole moment tensor:

Qij = A


1
3 +

ω2
02 cos 2ϕ

(ω2
02−4Ω2−4ΩCNSSz

NS)
ω2

02 sin 2ϕ

(ω2
02−4Ω2−4ΩCNSSz

NS)
0

ω2
02 sin 2ϕ

(ω2
02−4Ω2−4ΩCNSSz

NS)
1
3 − ω2

02 cos 2ϕ

(ω2
02−4Ω2−4ΩCNSSz

NS)
0

0 0 − 2
3

 . (2.102)

Where again A = 3λ2MBH

2r3 . Note that this expression is similar to the quadrupole moment
tensor derived in the previous section up to the resonance frequency, which was what we
expected. The resonance frequency is now altered by the spin of the neutron star. We can
perform the same analysis as we have done twice before, namely substituting the above-found
quadrupole moment tensor as well as the tidal moment tensor into the action and performing
all the contractions, after which we can use the r Euler-Lagrange equation to find an expression
for r(Ω), which in turn can give us an expression for E(Ω). We will post merely the final results
here. For the individual steps in the derivation, the reader is referred back to the previous
sections. The stable circular orbit radius is given by:

r(Ω) =
M1/3

Ω2/3
+

3λ2Ω
8/3M2

BH

(
ω2
02 − Ω2 − ΩCNSS

z
NS

)
M7/3µ (ω2

02 − 4Ω2 − 4ΩCNSSz
NS)

, (2.103)
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and the energy is given by:

E(Ω) = −1

2
M2/3µΩ2/3 +

9λ2Ω
4M2

BH

(
ω4
02 − 3ω2

02Ω
2 + 4Ω4 − Ω

(
5ω2

02 − 8Ω2
)
CNSS

z
NS

)
2M2 (ω2

02 − 4Ω2 − 4ΩCNSSz
NS)

2 .

(2.104)
Apart from expanding to linear order in the tidal effects, we also kept only terms up to linear
order in the neutron star’s spin. Note that in the limit of a non-spinning neutron star the above
expressions reduce exactly to the expressions from section 2.52.5. We can see that the resonance
frequency is now altered by the neutron star’s spin. Instead of resonance at Ω ∼ ω02/2, we
have resonance at Ω ∼ 1

2

((
ω2
02 + C2

NSS
z
NS

2
)1/2 − CNSS

z
NS

)
.

2.6.2 Angular Momentum of the Black Hole
We also want to allow for the black hole to have a non-zero angular momentum in our system.
In the same way that the neutron star’s angular momentum can couple to the tidal spin, which
we have discussed in the previous section, the black hole’s angular momentum and the orbital
angular momentum can couple to the tidal spin. These effects are called frame dragging effects.
The spin of the companion black hole, as well as the orbital spin of the system cause spacetime
to distort and lead to precession of the orbit of the neutron star and thus the neutron star’s
body frame. These effects are small however, and will be discussed in Appendix EE. The
biggest effect of the black hole’s angular momentum comes from the coupling to the orbital
angular momentum. According to the spin-orbit interaction term (2.912.91) we can write down
the contributing term in the Lagrangian:

LSO = − 1

r3
Si
BHLi

[
2 +

3

2

MBH

MNS

]
. (2.105)

For stable circular orbits and aligned spins in the xy-plane, expressed in the barycentric frame,
we have Si

NS = (0, 0, Sz
NS) and Lz = µr2Ω. The total action including all effects is given by:

S =

∫
dt

[
1

2
µṙ2 +

1

2
µr2ϕ̇2 +

µM

r
− 1

2
QijE ij +

1

4λ2ω2
02

[
Q̇ijQ̇

ij − ω2
02QijQ

ij

]
+

1

2λ2ω2
02

CNSϵijkS
k
NSQ

i
kQ̇

jk − 1

r3
Si
BHLi

[
2 +

3

2

MBH

MNS

] ]
.

(2.106)

We can use the techniques discussed in the previous sections to calculate all the desired quanti-
ties. The spin-spin and spin-orbit interaction terms are given up to linear order in the separate
spins, we will therefore also work up to linear order in the black hole and neutron star angular
momenta. The spin-orbit term does not alter the quadrupole moment of the neutron star,
which is therefore given by (2.1022.102). The stable circular orbit radius as a function of the orbital
frequency is given by:

r(Ω) =
2M − Ω

(
3MBH

MNS
+ 4
)
Sz
B

2M2/3Ω2/3

−
3λΩ8/3M2

BH (7Ω (4MNS + 3MBH)S
z
BH + 2MMA)

(
ΩCNSS

z
NS − ω2 +Ω2

)
2µM10/3MNS (−4ΩCNSSz

NS + ω2 − 4Ω2)
.

(2.107)

We can see that the first term is altered by the black hole’s spin, i.e. a modified Kepler’s third
law. Positive (aligned) black hole spin decreases the stable circular orbit radius, while negative
(anti-aligned) black hole spin increases the stable circular orbit radius. The tidal correction
term is altered in the same way: positive (aligned) black hole spin decreases the tidal correction
radius, while negative (anti-aligned) black hole spin increases the tidal correction radius.
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The energy as a function of the orbital frequency is given by:

E(Ω) = −1

2
M2/3µΩ2/3 − Sz

BH

µΩ5/3 (4MNS + 3MBH)

2M1/3MNS

+
9λ2Ω

4M2
BH

(
ω4
02 − 3ω2

02Ω
2 + 4Ω4 − Ω

(
5ω2

02 − 8Ω2
)
CNSS

z
NS

)
2M2 (ω2

02 − 4Ω2 − 4ΩCNSSz
NS)

2

+ Sz
BH

3λ2Ω
5M2

BH (4MNS + 3MBH)
(
11ΩCNS

(
8Ω2 − 5ω2

02

)
Sz
NS + 11ω4

02 − 37ω2
02Ω

2 + 44Ω4
)

2M3MNS (ω2
02 − 4Ω2 − 4ΩCNSSz

NS)
2

.

(2.108)
The above energy can be used to calculate a tidal disruption frequency that can in turn be
used to calculate a tidal disruption radius. Instead of the approach from section 2.22.2 where
we compared the self-gravitational force of the neutron star to the tidal force because of the
companion black hole, we are now able to compare the self-gravitational energy to the tidal
energy. The advantage of comparing energies is that we can make statements about the system
as a whole. With the force balance approach we had to choose a point at the surface of the
neutron star to compare the forces. The fact that tidal disruption starts taking place at
a certain point does not mean that tidal disruption has a significant impact on the whole
system and therefore on the GW it produces. With an energy consideration it is possible
to more generally derive a point at which the system starts to become tidally disrupted as
a whole. Also, the energy calculated above has a very complex resonance dependence that
is not included in the force balance from section 2.22.2. To explicitly compute energies from
the waveforms of explicit binary systems we need expressions in physical units. From [4343] we
deduce that CN = −3/4I, where I is the moment of inertia of the Neutron star. Recovering
units by dimensional analysis allows us to express the distance r(Ω) and the energy E(Ω) in
dimensionless variables:

r̃(x) =

(
2XNS − 3x3/2χBHX

2
BH (4XNS + 3XBH)

2x3XNS

)1/3

+
12 3

√
2Λ2x

4X
22/3
NS X2

BH

(
x3/2ĨχNS +XNSx

3 − y3
)

ν
(
2XNS − 3x3/2χBHX2

BH (4XNS + 3XBH)
)
7/3
(
4x3/2ĨχNS + 4XNSx3 − y3

) , (2.109)

and

Ẽ(x) = −νx
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− χBH
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x3/2ĨXNSχNS
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11x3/2ĨXNSχNS

(
8x3X2

NS − 5y3
)
+ 44x6X4

NS − 37x3y3X2
NS + 11y6

)
2
(
y3 − 4x3X2

NS − 4x3/2ĨXNSχNS
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(2.110)
where we defined dimensionless quantities, partly analogous to [4343]:

x =

(
GMΩ

c3

)2/3

, y =

(
GMNSω02

c3

)2/3

, XNS =
MNS

M
, XBH =
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M
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G2M3
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GM2
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µ

M
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rc2

GM
, Ẽ =

E

Mc2
.

(2.111)



Chapter 3

Tidal Disruption Frequency

We can use the energy for an NSBH binary system derived in the previous chapter to calculate
a tidal disruption frequency Ωtidal. This will be outlined in section 3.13.1. In section 3.23.2 the
dependence of the tidal disruption frequency as a function of the different parameters is shown:
Λ2 in section 3.2.13.2.1, Q in section 3.2.23.2.2, χNS in section 3.2.33.2.3 and χBH in section 3.2.43.2.4. We will
compare the tidal disruption frequency to NR simulations to verify the model. It is not possible
to derive an explicit analytic expression for the tidal disruption frequency, in section 3.33.3 a fitting
procedure is outlined to generate an explicit functional form of the tidal disruption frequency
as a function of the four model parameters Λ2, Q, χNS and χBH. Note that fitting a function
of four variables, in this case Ω(Λ2, Q, χNS, χBH), to the tidal disruption frequency data, can
be a research project on its own. We therefore by no means claim that the fit produced in
section 3.33.3 is an end product to be used for the generation of gravitational waveforms. The
purpose of this section is to show a simple way to generate an explicit functional form of the
model. Once the validity of the model is confirmed, more advanced fitting techniques should
be applied.

3.1 Calculating the Tidal Disruption Frequency from the
Energy Balance

Equating the tidal energy of the NSBH binary system to the self-gravitational energy of the
neutron star and solving for the orbital frequency will yield the tidal disruption frequency. The
tidal energy is given by the terms proportional to Λ2 in (2.1102.110). The self-gravitational energy
can be obtained from the difference between the gravitational mass and the baryonic mass or
rest mass Mbar of the neutron star. The gravitational mass is what we usually denote as just
the mass of the neutron star and is given by MA. The baryonic mass is the mass obtained
by integrating the density over the matter distribution using the appropriate metric factor√
grr for the radial integration. In [4444] an empirical formula relating the baryonic mass to the

compactness MNS/RNS of the neutron star is given:

Mbar

MNS
= 1 + 0.8858

(
MNS

RNS

)1.2082

. (3.1)

The baryonic mass in the self-gravitational energy, and both the f-mode frequency and the
moment of inertia in the tidal energy are EOS-dependent. There exist however, universal
relations between MNS/RNS, ω02, I and Λ2. These relations are of the form:

x =

2∑
k=0

ak (lnΛ2)
k
. (3.2)

The self-gravitational energy:
ESG = (Mbar −MNS), (3.3)
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x k = 0 k = 1 k = 2 k = 3 k = 4

lnM−3
NS I 1.47 8.17× 10−2 1.49× 10−2 2.87× 10−4 −3.64× 10−5

MNSω02 1.820× 10−1 −6.836× 10−3 −4.196× 10−3 5.215× 10−4 −1.857× 10−5

MNSR
−1
NS 3.60× 10−1 −3.55× 10−1 7.05× 10−4 0 0

Table 3.1: Estimated numerical coefficients for the fitting formulas relating
MNSR

−1
NS-Λ2 [4545], ω02-Λ2 [4646] and I-Λ2 [4747].

therefore only depends on Λ2, and Q after using the relation 3.23.2 with coefficients given in Table
3.13.1. Furthermore, the tidal energy (2.1102.110) only depends on Ω̄, Λ2, Q, χNS and χBH after using
the relations:

x = Ω̄2/3, XNS =
1

1 +Q
, XBH =

Q

1 +Q
, ν =

Q

(1 +Q)2
, (3.4)

and 3.23.2 with coefficients given in Table 3.13.1. It is more convenient to have a dimensional param-
eter directly proportional to Ω instead of x being proportional to Ω2/3. We therefore redefined
x such that Ω̄ is proportional to Ω.

In theory, it is possible to solve the energy balance Etidal(Ω̄,Λ2, Q, χNS, χBH) = ESG(Λ2, Q) for
Ω̄. Since this is an important result of this thesis, the energy balance will be explicitly stated
here for clarity, using (2.1082.108) and (3.33.3):

ESG(Λ2, Q)/M = Etidal(Ω̄,Λ2, Q, χNS, χBH)/M

Mbar

M
(Λ2, Q)− 1

1 +Q
= −χBH
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2(Q+ 1)2
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+
9ΛQ2Ω̄4

(
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(
5(Q+ 1)2y3 − 8Ω̄2

)
+ (Q+ 1)4y6 − 3(Q+ 1)2y3Ω̄2 + 4Ω̄4

)
2(Q+ 1)7

(
−4(Q+ 1)Ω̄ĨχNS + (Q+ 1)2y3 − 4Ω̄2

)
2

+ χBH

3Λ2Q
4(3Q+ 4)Ω̄5

(
11(Q+ 1)4y6 − 37(Q+ 1)2y3Ω̄2 + 44Ω̄4

)
2(Q+ 1)9

(
−4(Q+ 1)Ω̄ĨχNS + (Q+ 1)2y3 − 4Ω̄2

)
2

− χBHχNS

33Λ2Q
4(3Q+ 4)Ω̄6Ĩ

(
5(Q+ 1)2y3 − 8Ω̄2

)
2(Q+ 1)8

(
−4(Q+ 1)Ω̄ĨχNS + (Q+ 1)2y3 − 4Ω̄2

)
2

(3.5)
where y and Ĩ now explicitly depend on Λ2 and Q. The complex dependence of the tidal energy
on the orbital frequency makes it difficult to solve the equation analytically. We will therefore
generate a fitting formula for the tidal disruption frequency in section 3.33.3. Once the system is
specified however, i.e. when Λ2, Q, χNS and χBH are known, the tidal disruption frequency can
be computed. It is possible to write functions in computer programming languages that give
you a tidal disruption frequency once Λ2, Q, χNS and χBH are specified. Such a function can
be used in any kind of model, e.g. a model which generates NSBH binary system waveforms.
To test the behaviour of the tidal disruption frequency, we will plot ESG together with Etidal

with different variables being held constant.

3.1.1 Energy as a Function of the Tidal Deformability Parameter Λ2

In Figure 3.13.1 the tidal energy and the self-gravitational energy as a function of the orbital
frequency are shown for different Λ2. The mass ratio Q is fixed at Q = 2 and both the spins
are set to zero. The tidal disruption frequency is the frequency at which the two energy curves
intersect for the first time. We observe that indeed the tidal disruption occurs close to the
point of resonance, i.e. the point where the tidal energy diverges. This will also be the case
when considering the dependence on the other variables. From Figure 3.13.1 it can be observed
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Figure 3.1: The tidal energy and and the constant self-gravitational energy
plotted as a function of the orbital frequency for different Λ2. For an NSBH
system with Q = 2, χNS = 0 and χBH = 0.

that the higher the tidal deformability parameter Λ2 of the neutron star, the earlier in the
inspiral the neutron star gets tidally disrupted - indeed, the tidal deformability parameter is
a measure for how easily the star gets tidally deformed. Furthermore, we observe that the
spacings between Ωtidal increase with constant reductions of Λ2. This behaviour is general for
most parameter settings, i.e. for different Q, χNS and χBH. The exact behaviour of the tidal
disruption frequency will be more explicitly visible when plotting Ωtidal against Λ2 in section
3.2.13.2.1.

3.1.2 Energy as a Function of the Mass Ratio Q

In Figure 3.23.2 ESG and Etidal as a function of Ω are shown for different Q. The tidal deforma-
bility is fixed at Λ2 = 1110 and both the compact objects are spinless. We observe that the
higher the mass ratio Q, the higher the tidal disruption frequency. This confirms our intuition
built up in section 2.12.1: the higher the mass ratio, the more the NS can be seen as a point
mass-like object relative to the black hole, the more the system behaves like a BBH, the later
in the inspiral finite size effects come in. We observe that the spacings between Ωtidal are close
to constant, even though the spacings between ESG for different Q are not. This translates to
a linear Ωtidal-Q relation in section 3.2.23.2.2.

3.1.3 Energy as a Function of the Neutron Star’s Angular Momentum
χNS

In Figure 3.33.3 ESG and Etidal as a function of Ω are shown for different χNS. The tidal de-
formability is fixed at Λ2 = 1110, the mass ratio at Q = 2 and χBH = 0. We observe that the
lower χNS, the earlier in the inspiral tidal disruption takes place. This is expected following
our discussion in 2.6.12.6.1. The spacings between Ωtidal seem to increase slightly for increasing
NS spins, but the exact Ωtidal-χNS behaviour will be shown in 3.2.33.2.3. One thing to point out is
that the variation of Λ2, Q and χNS all lead to both a shift and a widening/narrowing in the
resonance peak.
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Figure 3.2: The tidal energy and the constant self-gravitational energy plotted
as a function of the orbital frequency for different Q. For an NSBH system with
Λ2 = 1110, χNS = 0 and χBH = 0.
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Figure 3.3: The tidal energy and the constant self-gravitational energy plotted as a function of the
orbital frequency for different χNS. For an NSBH system with Λ2 = 1110, Q = 2 and χBH = 0.
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Figure 3.4: The tidal energy and and the constant self-gravitational energy
plotted as a function of the orbital frequency for different χBH. For an NSBH
system with Λ2 = 1110, Q = 2 and χNS = 0.

3.1.4 Energy as a Function of the Black Hole’s Angular Momentum
χBH

In Figure 3.43.4 ESG and Etidal as a function of Ω are shown for different χBH. The tidal
deformability is fixed at Λ2 = 1110, the mass ratio at Q = 2 and χNS = 0. We observer
that the higher χBH, the earlier in the inspiral tidal disruption takes place. The spacings
between Ωtidal seem to increase slightly for decreasing BH spins, but the exact Ωtidal-χNS

behaviour will be shown in 3.2.33.2.3. While the variation of Λ2, Q and χNS all lead to both a
shift and a widening/narrowing in the resonance peak, the variation of χBH leads to only a
widening/narrowing of the resonance peak. This is directly attributable to the term in the
Lagrangian where the black hole spin enters (2.1052.105) not being coupled to the tidal parameter
λ2.

3.2 The Tidal Disruption Frequency Model Results
In the previous section 3.13.1 we have shown how to find the tidal disruption frequency Ωtidal

from the energy balance Etidal(Ω̄,Λ2, Q, χNS, χBH) = ESG(Λ2, Q). To verify our model, we
compare our results to NR results. In section 2.12.1 we discussed that these simulations simulate
matter subject to the Einstein field equation 0.30.3. As of today, we have no reason to doubt that
GR describes the universe on the scales relevant in this study. We can therefore treat these
numerical simulations as observed data with which our model should agree. The problem with
these NR simulations is that they are very limited in their coverage of the parameter space.
This is a consequence of the computation power that is needed for these simulations. One
simulation can take up to months, already using large computer clusters. This once again em-
phasises the need of computational light methods to generate gravitational waveforms, since we
simply cannot cover the entire parameter space with waveforms generated from NR simulations.

We will hypothesise that the tidal disruption frequency coincides with the frequency at which
the GW amplitude is at a maximum. This can be qualitatively argued as follows: the disrup-
tion of the matter of the neutron star is subject to the energy balance between the tidal energy
and the self-gravitational energy. Once the tidal energy has overcome the energy barrier of the
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self-gravitational energy, the matter of the neutron star is not gravitationally bound anymore
to a common centre of mass; the matter is gravitationally bound to the black hole’s centre
of mass. At exactly the point where this energy barrier is overcome, the biggest evolution of
mass density in the system happens, which according to Einstein’s quadrupole formula (1.281.28)
corresponds to a maximum in the GWs. This is also what the NR simulations tell us: the
maximum GW amplitude coincides with a rapid decrease in the central density of the neu-
tron star, taking retarded time into account. A small systematic offset of the tidal disruption
frequency compared the NR data however, might still be attributable to this hypothesis not
being completely valid.

Following the preceding argument, we can say that the tidal disruption mechanism has the
effect that all the matter in the binary system will have a common centre of mass at an earlier
time in the inspiral compared to a BBH system with equal other parameters, i.e. tidal disrup-
tion expedites the merger process. The frequency at which the merger happens of an NSBH
system can therefore never exceed the frequency at which a BBH system with equal parame-
ters would merge. Given the frequency ΩBBH at which a BBH with the same parameters as
the corresponding NSBH has its maximum amplitude, the final model predicting the merger
frequency is given by:

Ω = min(Ωtidal,ΩBBH). (3.6)

A fitting formula for the BBH merger frequency is given by [4848] and reads:

ΩBBH = 0.28134 +

(
0.0008715Q2χBH + 0.0008715χNS − 0.043531Q2 − 0.043531

)
Q2 + 1

× ln

(
Q2(Q(21.1199 − 25.8198Q)− 25.8198)χBH + (Q(21.1199 − 25.8198Q)− 25.8198)χNS

(Q+ 1)2 (Q2 + 1)

+
25.8504

(
Q2 + 1

)
(Q(Q− 0.412082) + 1)

(Q+ 1)2 (Q2 + 1)

)
.

(3.7)
The tidal disruption frequency calculated from (3.53.5) can be compared with the merger fre-
quency at which the NR waveforms reach their maximum amplitude. We obtained NR data
from the SXS waveform database [44] and from the SACRA waveform database [66, 55]. The
merger frequencies and their associated parameter settings form the NR simulations can be
found in Tables F.1F.1 and F.2F.2 from Appendix FF. We will also compute the maximum amplitude
frequency from waveforms of the existing waveform model PhenomNSBH [77]. This model uses
the Newtonian force balance discussed in 2.22.2. These waveforms can be generated by the LAL-
suite from the LIGO scientific collaboration [4949].

In the next sections we will present one single plot for every parameter that Ω from (3.63.6)
is dependent on to visualise the general behaviour of the model compared to the NR data. The
parameter space spans however, a vastly bigger region than just four one-dimensional plots.
We will therefore also compute the average relative error of the model compared to the NR
data and compare this to the average relative error of the PhenomNSBH model.

3.2.1 Tidal Deformability Parameter Λ2

In Figure 3.53.5 the NSBH merger frequency calculated from (3.63.6) as a function of the tidal
deformability parameter Λ2 is shown for fixed Q = 2 and spinless NS and BH. We observe that
our model agrees with the general trend from the NR simulations, although slight deviations
can be seen. A part of the explanation could be that we worked to linear order in the tidal
effects. We also only included the quadrupole moment in the multipole expansion of the
neutron star and the octopole moment could bring additional dependences on Λ2. The model
will therefore not fully capture the dependence on Λ2. We can also observe that the model
outperforms the PhenomNSBH model.



CHAPTER 3. TIDAL DISRUPTION FREQUENCY 59

This work

NR

PhenomNSBH

0 500 1000 1500 2000 2500 3000

0.05

0.10

0.15

0.20

Λ2

Ω
M

Figure 3.5: NSBH merger frequency (3.63.6) as a function of Λ2 for fixed Q = 2
and spinless neutron star and black hole compared to NR simulations and the
PhenomNSBH model [77].

3.2.2 Mass Ratio Q

In Figure 3.53.5 the NSBH merger frequency calculated from (3.63.6) as a function of the mass ration
Q is shown for fixed Λ2 = 1211 and spinless NS and BH. We observe that the model agrees
very well with the trend of the NR data. The deviation at Q = 5 can be explained by the
fact that we do not have any transition between the Ωtidal and ΩBBH. We just simply take the
minimum of the two frequencies. In practice, we expect the frequency to smoothly transition
from the disruptive regime where Ωtidal describes the merger frequency, to the non-disruptive
regime where ΩBBH describes the merger frequency. This is also the behaviour that is seen in
the NR data.

3.2.3 Angular Momentum of the Neutron Star χNS

In Figure 3.53.5 the NSBH merger frequency calculated from (3.63.6) as a function of the neutron
star spin χNS is shown for fixed Λ2 = 1211, Q = 2 and a spinless BH. Figure 3.53.5 shows
that there are limited NR simulations done for non-zero χNS. It is therefore not possible to
make any observation regarding the trend of the NSBH merger frequency as a function of the
neutron star spin. The validation of the model in the neutron star spin regime requires more
NR simulations to be done.

3.2.4 Angular Momentum of the Black Hole χBH

In Figure 3.83.8 the NSBH merger frequency calculated from (3.63.6) as a function of the black
hole spin parameter χBH is shown for fixed Λ2 = 2324 Q = 5 and spinless NS and BH. We
observe that our model agrees with the general trend from the NR simulations, although slight
deviations can be seen for higher black hole spin. For χBH > 0.5, the NR data really starts to
diverge. This can be explained by the fact that we work to linear order in the black hole spin.
The model will therefore not fully capture the dependence on χBH. We can also observe that
the model greatly outperforms the PhenomNSBH model.

In general, it is remarkable how the model of the merger frequency of an NSBH presented in
this thesis captures the dependence on the parameters well. It outperforms the PhenomNSBH
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Figure 3.6: NSBH merger frequency (3.63.6) as a function of Q for fixed Λ2 = 1211
and spinless neutron star and black hole compared to NR simulations and the
PhenomNSBH model [77].
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Figure 3.7: NSBH merger frequency (3.63.6) as a function of χNS for fixed Λ2 =
1211, Q = 2 and a spinless black hole compared to NR simulations and the
PhenomNSBH model [77].
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Figure 3.8: NSBH merger frequency (3.63.6) as a function of χBH for fixed Λ2 =
2324, Q = 5 and a spinless black hole compared to NR simulations and the
PhenomNSBH model [77].

model in all aspects. We observe unphysical wiggles in the merger frequency of the Phe-
nomNSBH model in Figures 3.53.5, 3.63.6 and 3.83.8, which could arise from other aspects involved
when constructing the waveform than just the calculation of the merger frequency, but this
is only speculation. We observe no anomalies in our model for the Λ2 and Q dependence.
The range of validity can therefore be set to Λ2 ∈ [1, 5000] and Q ∈ [1, 10] although more NR
simulations in the outer regions of the parameter space would be welcome to further validate
the model. For the spin dependencies we will restrict the models regime of validity to χNS and
χBH ∈ [−0.5, 0.5]. The expansions up to linear order in the spin parameters restrict us from
allowing higher spins. The observation that for χBH > 0.5 we see the NR data deviating from
our model enforces this restriction. For this parameter region, the average absolute relative
error can be calculated, both for our model and the PhenomNSBH model compared to the
NR data. We will use all the NR data that fits in the above-mentioned region of validity.
The χNS = −0.2 SXS data will be excluded since the PhenomNSNH model does not allow for
neutron star spin. We report an average absolute relative error of 4.8% of our model. The
PhenomNSBH exhibits an average absolute relative error of 46%. In conclusion, our model
significantly increases the accuracy of predicting the merger frequency compared to the Phe-
nomNSBH model.

From the Figures 3.53.5, 3.63.6 and 3.83.8, we also observe that the PhenomNSBH model generally
underreports the merger frequency, i.e. the merger frequency is always below the frequency
from the NR data. The merger frequencies from the PhenomNSBH model and the NR simu-
lations are obtained in exactly the same way, so errors in comparing the two are not able to
enter here. The PhenomNSBH model can be however, subject to all kinds of other systematic
errors. We can correct for systematic errors by shifting the relative errors by their mean value.
These shifted relative errors give an average absolute relative error 11% for the PhenomNSBH
model. The relative errors and their shifted counterparts are shown in Figure 3.93.9. For our
model we also observe a slight shift to the negative side in the relative errors. One explanation
could be that our hypothesis of the tidal disruption frequency corresponding one to one to the
merger frequency is not entirely correct. This deviation is small however, and only decreases
the average absolute relative error down to 4.0%. This small systematic offset leaves us to
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Figure 3.9: The relative errors from the PhenomNSBH model com-
pared to 57 NR simulations from Table F.1F.1 with χBH = 0.75 excluded:
(a) not corrected (b) shifted to a zero mean value.

conclude that our hypothesis that the tidal disruption frequency coincides with the frequency
at which the gravitational wave amplitude is at a maximum seems reasonable. The relative
errors and the shifted zero mean value relative errors are shown in Figure 3.103.10. Even with the
corrections for systematic errors our model has a better accuracy of almost a factor of three.
This means that in any case it captures the dependence of the parameters better.
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Figure 3.10: The relative errors from our model compared to 57 NR
simulations from Table F.1F.1 with χBH = 0.75 excluded: (a) not corrected
(b) shifted to a zero mean value.

3.3 Fitting Procedure
To explicitly find a functional form of Ωtidal as a function of the four model parameters Λ2, Q,
χNS and χBH we can fit a model to data generated from (3.53.5). We will not fit (3.63.6), since it
will be harder to fit to such a composite function. Once we have an explicit function for Ωtidal

we can use the explicit version of ΩBBH to calculate the merger frequency according to (3.63.6).
We will generate a table that spans the following parameter space: Λ2 ∈ {1, 101, ..., 5001},
Q ∈ {1, 2, ..., 10}, χNS ∈ {−0.5,−0.4, ..., 0.5} and χBH ∈ {−0.9,−0.8, ..., 0.9}. Subsequently, we
can fit a model to the table {Λi

2, Q
i, χi

NS, χ
i
BH,Ω

i
tidal} using the NonLinearModelFit function

from Wolfram Mathematica. Finding a model that fits the data however, is very challenging.
The Wolfram documentation [5050] states the following on the subject:

One of the most difficult topics in all of data analysis in the physical sciences is fitting data
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to nonlinear models. Often such fits require large computational resources and great skill, pa-
tience, and intuition on the part of the analyst. These difficulties are one of the reasons that,
as we shall see, the whole topic of spectral line shapes is still a very active subject of research
spanning the fields of chemistry, physics, astronomy, and more. In addition, computational
methods of nonlinear fitting are still a current research topic in computer science.

With this in mind, we do not claim to find the optimal fitting formula here. We merely
present an approach in which the fitting procedure can be done. The approach is inspired by
[5151]. The fitting models are mostly just based on intuition gained from the sensitivity of Ω on
the different parameters.

3.3.1 One and Two-Dimensional Fits
We will start with one-dimensional subspace fits to find a good model for the four possible
subspaces and to generate good initial conditions for the full final fit. Figure 3.53.5 inspires the
following model for the Ω-Λ subspace:

exp
{
α+ β ln Λ2 + γ(lnΛ2)

2
}
, (3.8)

which represents a polynomial on a log-log scale. The other variables do not operate on these
larger scales and can therefore independently be modelled by polynomials. The trend of the
Ω-Q subspace plots appears to depend heavily on the choice of fixed χBH. The Ω-Q subspace
is therefore modelled by polynomials with coefficients that depend on χBH which therefore also
models the Ω-Q-χBH subspace. Instead of a pure polynomial, we will use the following rational
function: ∑3

i=0 aiχ
i
BHQ+

∑3
i=0 biχ

i
BHQ

2 +
∑3

i=0 ciχ
i
BHQ

3

1 +
∑3

i=0 diχ
i
BHQ

, (3.9)

where a rational function of polynomials of lower order can approximate a polynomial of higher
order, or any other function, according to the Padé approximant [5252]. The neutron star spin
parameter χNS has a much smaller impact on the trend of the other subspace plots. The
polynomial in χNS will therefore be just added to the model. Also, the Λ2 parameter is most
sensitive to changes in χBH and Q, (3.83.8) will therefore be multiplied with the polynomial that
is a function of Q and χBH . We first fit (3.83.8) to the data {Λi

2,Ω
i
tidal}. We will use the limit

of high mass ratio (Q = 10) and black hole spin χBH = 0.5 as fixed values. The reason is
that in the final model, the Ω-Λ subspace model (3.83.8) will be multiplied with the Ω-Q-χBH

subspace model (3.93.9) and it is the most important to find initial parameters for when the
sensitivities of these subspace functions are the greatest. The best fit parameters which will
serve as initial conditions for the final fit are shown in Table 3.23.2. Subsequently, we fit (3.93.9) to
the data {Qi, χi

BH,Ω
i
tidal} with intermediate fixed values for the tidal deformability parameter

(Λ2 = 1001) and the neutron star’s spin (χNS = 0). The best fit parameters which will serve
as initial conditions for the final fit are shown in the left column of Table 3.23.2.

3.3.2 Full-Dimensional Fit
The final fitting model for the tidal disruption frequency consists of (3.83.8) multiplied with (3.93.9)
and a polynomial in χNS added:

Ω = exp
{
α+ β ln Λ2 + γ(lnΛ2)

2
}∑3

i=0 aiχ
i
BHQ+

∑3
i=0 biχ

i
BHQ

2 +
∑3

i=0 ciχ
i
BHQ

3

1 +
∑3

i=0 diχ
i
BHQ

+

3∑
i=1

eiχ
i
NS.

(3.10)
The model with the initial conditions from Table 3.23.2 can be fit to the data {Λi

2, Q
i, χi

NS, χ
i
BH,Ω

i
tidal}

using NonLinearModelFit. We included the constraint |α| < 1 to ensure the fitting formula
is well behaved. The final fit parameters are shown in the middle column of Table 3.23.2. The
merger frequency is again given by the minimum of the frequency obtained from the fit and
the BBH merger frequency.
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a0 2.88589 a0 6910.96 a0 37030.2
a1 25.004 a1 167606. a1 −267867.
a2 77.4691 a2 555439. a2 664730.
a3 33.9088 a3 274936. a3 −477051.
b0 2.73311 b0 7026.48 b0 78145.5
b1 24.6834 b1 178265. b1 −9023.64
b2 74.4328 b2 517780. b2 −273972.
b3 20.0229 b3 60698. b3 223018.
c0 −0.000772169 c0 −10.2872 c0 −7269.02
c1 −0.309261 c1 −4154.87 c1 1735.72
c2 −1.18553 c2 −13337.1 c2 29650.4
c3 −0.913701 c3 −2163.82 c3 −26887.2
d0 205197. d0 70515.3 d0 1.91904× 108

d1 1.79948× 106 d1 1.70683× 106 d1 −2.59297× 108

d2 5.48092× 106 d2 5.32785× 106 d2 1.19994× 108

d3 1.92115× 106 d3 1.81105× 106 d3 −6.49771× 107

α −8.99429317474172× 10−8 α 0.00111765 α 5.68328
β −1.24268× 10−4 β −0.0840207 β 0.0840207
γ −8.19994× 10−3 γ −0.0112478 γ −0.00818597

e1 0.243007 e1 0.113971
e2 0.0503988 e2 0.0503988
e3 −0.191301 e3 0.191301

Table 3.2: Left column: initial conditions for the fitting model (3.103.10). Middle
column: best fit parameters for (3.103.10) fitted to the data from our tidal disruption
frequency model {Λi

2, Q
i, χi

NS, χ
i
BH,Ω

i
tidal}. Right column: best fit parameters for

(3.103.10) fitted to the NR data with the middle column as initial parameters.

3.3.3 Fit Including Numerical Relativity Data
The fitting formula (3.103.10) can also be fitted again to the NR data by using the same model with
the best fit parameters found in the middle column of Table 3.23.2 as initial parameter values.
The final fitting model is (3.103.10) with the best fit parameters given by the right column of Table
3.23.2.

The hope is that the normal merger frequency model (3.63.6) captures the dependence on the
parameters and that a fitting procedure against the NR simulations will only just alter the
coefficients such that better agreement with the NR data is reached. A closed-form expression,
which can be reached using a fitting procedure, is computationally more efficient to include
in a model than having to solve the energy balance every time one wants to generate a wave-
form. However, as stated at the beginning of this section 3.33.3, finding an excellent fit is an art.
Especially with a function dependent on four variables. The fits produced here are therefore
not of great quality, and the relative errors supersede the relative errors of our normal merger
frequency model (3.63.6). One two-dimensional subspace plot is shown in Figure 3.113.11. An inter-
esting feature that can be observed is that the model fitted to the NR data behaves similar
to the PhenomNSBH model. The model fitted to NR trends downward for higher Q because
in other regions of the parameter space, namely that of higher χBH, this feature is present.
The fitting formula is unable to have the correct sensitivity to all the parameters in the entire
regime. This could be a reason for the behaviour of the PhenomNSBH model, because this
model is calibrated to NR data. This is just speculation however.
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Figure 3.11: NSBH merger frequency (3.63.6) as a function of Q for fixed Λ2 =
1211 and a spinless neutron star and black hole compared to NR simulations, the
PhenomNSBH model [77] and the two fitting functions to the merger frequency
(3.63.6) and the NR data.



Chapter 4

Discussion

With the first observations of BBHs, BNs and NSBHs with the LIGO and VIRGO detectors,
the need for accurate waveform models came along. While BBHs and BNSs have been the
subject of many studies over the past years, NSBHs have been left behind a little bit. NSBHs
can give us yet still unknown information about the EOS of the NS. NSBHs are especially in-
teresting to achieve this goal because in an NSBH system, all matter effects can be attributed
to the single neutron star, as opposed to a BNS system where matter from the different stars
interacts in all sorts of ways. Accurate NSBH waveform models are therefore called for. We are
not yet at the point where NR simulations can cover the entire parameter space with waveform
templates. The need for computational light, easy-to-use waveform models thus remains.

A unique feature of NSBHs compared to BBHs is that tidal disruption can occur before the
neutron star merges with the black hole. The key input parameter for an NSBH waveform
model is therefore the tidal disruption frequency. In this thesis, we presented a novel way of
calculating the tidal disruption frequency. We calculated the tidal disruption frequency by con-
sidering an energy balance that is constructed from setting up a classical action of the NSBH
system. This action included first PN order spin-coupling terms coming from an effective field
theory description to incorporate the different angular momenta of the system. The action thus
also includes general relativistic effects and can therefore be viewed as an effective action. We
showed that the model presented in this thesis greatly outperforms the PhenomNSBH model
[77] when comparing our merger frequency with theirs.

The parameter region of validity is given by Λ2 ∈ [1, 5000], Q ∈ [1, 10], χNS and χBH ∈
[−0.5, 0.5]. The model is valid for aligned spins. The tidal disruption model depends on em-
pirical fits for Mbar (3.13.1), I, ω02 and MNS/RNS (3.23.2). The final merger frequency also depends
on the BBH frequency fit (3.73.7). These quantities all come with uncertainties of less than a
few percent [4444, 4545, 4646, 4747, 4848]. Furthermore, several approximations have been made: we
worked to linear order in the tidal effects and with it to linear order in the tidal deformability
parameter λ2; we worked to linear order in the NS and BH spin; we included only the first
multipole moment Qij and with it only the fundamental-mode frequency ω02 of the neutron
star. With these approximations in place, we still managed to predict the merger frequency
of an NSBH system with an average absolute relative error of 4.8% compared to 57 NR sim-
ulations. We view the inevitable conclusion therefore as that the presented approach in this
thesis is a success worth pursuing till the end.

The tidal disruption frequency presented in this thesis can also be used as a tool to find
regimes where NR simulations can be worth the computation power. The disruptive regime,
which we predict as the regime where Ωtidal < ΩBBH, is the regime where NSBH NR simula-
tions can be worth it. Simulating an NSBH that behaves exactly like a BBH is considered a
waste of resources. We can prevent this by using the condition presented in this thesis.

66
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Naturally, the first extensions of the model consist of including higher orders. For now, the
black hole spin parameter region is a regime where profit can be made. Thus, adding terms to
the Lagrangian with higher order spin can make a positive contribution. These higher order
spin terms are already given in [4141]. The neutron star spin parameter cannot be discussed
because there are no NR simulations in the regime sensitive to χNS spin variation. Pure from a
model validation standpoint, we therefore recommend more simulations with non-zero neutron
star spin to be done. The preferred region is the negative neutron star spin region, since this
corresponds to the most disruptive regime.

Another viable extension of the model includes a smooth transition between the Ωtidal and
ΩBBH, i.e. between the disruptive and the non-disruptive regime. This makes the model
accurate in the regime where the tidal disruption frequency does not fully yield the merger
frequency but where the BBH merger frequency also does not fully yield the merger frequency
of the NSBH.

A big strength of our model is that it does not require the introduction of free fit param-
eters. Current waveform models highly depend on these free fit parameters and overfitting
therefore always lurks around the corner. Our model merger frequency model could be part of
a much more independent waveform model that does not rely on these fit parameters. In sec-
tion 3.33.3 we outlined a procedure to find an explicit formula for the tidal disruption frequency,
but such a fitting function would only be a viable option to use when it is more accurate. Even
though the NR data was used in constructing the fitting formula, the predictive power of the
model decreased compared to our normal frequency model (3.53.5). A closed-form expression is
the most efficient way of computing a merger frequency, which is advantageous to generate
waveforms fast, but improvements on the accuracy of the fit have to be made for it to qualify
as a contender to use in waveform models. We therefore recommend to use (3.63.6) together with
the energy balance (3.53.5) in a waveform model to model the merger frequency of an NSBH. The
energy balance can be solved as soon as the other parameters are known.

Apart from more sophisticated methods for the fitting formula, it can also be improved by
ensuring that it goes to the BBH merger frequency in the appropriate limits. The nature of
the fitting formula allows it to stay under the BBH merger frequency for parameter values
which are in the non-disruptive regime. In Figure 3.113.11 it can be seen that the fitting function
trends down again, while it has reached the non-disruptive regime. If the fitting formula reaches
values above the BBH merger frequency, the BBH merger frequency would automatically take
on the NSBH merger frequency for the fitting model according to Ω = min(Ωtidal,ΩBBH).
Incorporating these appropriate constraints into the fitting procedure could therefore also im-
prove its accuracy.

Finally, we want to devote some words to the big difference in the average absolute rela-
tive error of our model compared to the PhenomNSBH model. It has to be noted that the
PhenomNSBH model, as well as other waveform models in the literature, e.g. [88], do not use
the distinct peak in the waveform amplitude as a benchmark to model the waveform, i.e. it
was not their main goal to get the best merger frequency when constructing their model. This
does not mean however, that it has no meaning to compare to these models. On the contrary,
the peak amplitude of a gravitational waveform is one of a GWs most clearly visible features
and therefore also the most clearly visible in the GW signals measured by the detectors. In
our eyes, this should therefore also be the most important aspect of a waveform model. We
therefore conclude that the approach to construct waveforms for NSBHs can be improved by
adopting this new point of view: constructing the waveforms using the merger frequency as a
diagnostic for the peak amplitude of the waveform. This work has presented exactly how this
merger frequency can be calculated, which is ready to be used in future NSBH waveform models.

As an outlook, the first immediate steps are to finish this work by realising an actual waveform
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model using the merger frequency presented in this thesis. This will not be done however,
before we attempt to include higher order black hole spin interactions, since we think that
this is where we can make the most profit in the accuracy of the model. To achieve this goal,
existing BBH and NSBH waveform models can be modified using their publicly available codes
from the LALsuite library [4949]. Once it is possible to generate waveforms, it is also possible
to statistically analyse the waveforms in depth. A usual method is to calculate the overlap
integral of the two waveforms to test their agreement.
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Appendix A

Decomposition of the Metric
Perturbation into Gauge Invariant
Quantities

We assume that the metric is given by the Minkowski metric with small perturbations. To
decompose this metric perturbation into gauge invariant quantities we will first consider the
behaviour of the metric perturbation when subject to rotations.

The metric perturbation hµν(x), which is a second rank tensor, transforms as:

h̃µν(x̃) =
∂xα

∂x̃µ
∂xβ

∂x̃ν
hαβ(x). (A.1)

Under spatial rotations our coordinates transform as:

t→ t̃ = t, xi → x̃i =
∂x̃i

∂xj
xj = Ri

jx
j . (A.2)

The 00-component of the metric perturbation therefore transforms as:

h̃00(x̃) =
∂xα

∂t

∂xβ

∂t
hαβ(x) = h00(x), (A.3)

and thus transforms as a scalar. The 0i-component transforms as

h̃0i(x̃) =
∂xα

∂t

∂xβ

∂x̃i
hαβ(x) =

∂xβ

∂x̃i
h0β(x) = Rβ

i h0β(x), (A.4)

and thus transforms as a spatial three-vector. Finally we have

h̃ij(x̃) =
∂xα

∂x̃i
∂xβ

∂x̃j
hαβ(x) = Rα

i R
β
j hαβ(x), (A.5)

such that hij(x) transforms as a symmetric spatial tensor of rank two. We will now relabel the
scalar as:

h00 = 2ϕ. (A.6)

The spatial three-vector under spatial rotations can be further decomposed as:

h0i = Bi + ∂iS (A.7)

where Bi is the transverse (divergence-free) part that obeys ∂iBi = 0 and ∂iS is the longitudinal
(curl-free) part of h0i, since indeed ∇×(∇S) = 0 holds for any scalar function. The symmetric
spatial tensor under spatial rotations can be decomposed as:

hij = 2δijψ + 2∂i∂jE + ∂iFj + ∂jFi + hTT
ij . (A.8)
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Here ψ and E are scalar functions, Fj is a transverse vector that obeys ∂jFj = 0 and hTT
ij is

a transverse traceless tensor that obeys ∂ihTT
ij = 0 and (hTT)ii = 0. The transverse traceless

tensor is known as the strain and will turn out to contain GWs. We will examine how the
introduced quantities behave under infinitesimal coordinate transformations. Consider the
infinitesimal coordinate transformation:

xµ → x̃µ = xµ + ξµ(x), |ξ| ≪ 1. (A.9)

The metric (1.11.1) transforms according to the same transformation law as the metric pertur-
bation (A.1A.1). Using the above coordinate transformation law, both the l.h.s. and the r.h.s. of
the transformed metric can be Taylor expanded as:

g̃µν(x) + ξα∂αgµν(x) = (δαµ − ∂µξ
α(x))(δβν − ∂νξ

β(x))gαβ(x)

= gµν(x)− gαν∂µξ
α(x)− gµβ∂νξ

β(x),
(A.10)

up to first order in ξ. Using the definitions of the covariant derivative ∇µξν = ∂µξν − Γα
µνξα

and the connection Γα
µν = 1

2g
αρ (∂µgνρ + ∂νgρµ − ∂ρgµν) we can write the above expression as:

g̃µν(x) = gµν(x)−∇µξν(x)−∇µξν(x). (A.11)

Using (1.11.1) we can immediately see that hµν transforms under infinitesimal coordinate trans-
formations as:

h̃µν(x) = hµν(x)− ∂µξν(x)− ∂µξν(x). (A.12)

We have seen that under spatial rotations ξµ can be decomposed into a scalar ξ0 and a vector
ξi = ξTi + ∂iξ

S . We can therefore derive the transformation rules for ϕ, Bi, S, ψ, E, Fi and
hTij by first evaluating how h00(x), h0i(x) and hij(x) transform:

h00 → h̃00 = h00 − 2∂0ξ0

= 2ϕ̃ = 2ϕ− 2∂0ξ0

h0i → h̃0i = h0i − ∂0(ξ
T
i + ∂iξ

S)− ∂iξ0

= B̃i + ∂iS̃ = Bi + ∂iS − ∂0(ξ
T
i + ∂iξ

S)− ∂iξ0

hij → h̃ij = hij − ∂i(ξ
T
j + ∂jξ

S)− ∂j(ξ
T
i + ∂iξ

S) = hij − ∂iξ
T
j − ∂jξ

T
i − 2∂i∂jξ

S

= 2δijψ̃ + 2∂i∂jẼ + ∂iF̃j + ∂jF̃i + h̃TT
ij

= 2δijψ + 2∂i∂jE + ∂iFj + ∂jFi + hTT
ij − ∂iξ

T
j − ∂jξ

T
i − 2∂i∂jξ

S .

(A.13)

By comparing the scalar, transverse, longitudinal and transverse traceless parts we then have:

ϕ(x) → ϕ̃(x) = ϕ(x)− ∂0ξ0(x)

S(x) → S̃(x) = S(x)− ξ0(x)− ∂0ξ
S(x)

ψ(x) → ψ̃(x) = ψ(x)

E(x) → Ẽ(x) = E(x)− ξS(x)

Bi(x) → B̃i(x) = Bi(x)− ∂0ξ
T
i (x)

Fi(x) → F̃i(x) = Fi(x)− ξTi (x)

hTT
ij (x) → h̃TT

ij (x) = hTT
ij (x)

. (A.14)

We can immediately see that ψ(x) and hTT
ij (x) are invariant under the considered linear co-

ordinate transformation, i.e. they are gauge invariant. We can construct even more gauge
invariant quantities by taking the appropriate combinations of the transformation laws above.
This gives us the gauge invariant scalar Φ(x) = ϕ(x)− ∂0S(x) + ∂20E(x) and the gauge invari-
ant transverse vector Bi(x) = Bi(x) − ∂0Fi(x). The two gauge invariant potentials Φ(x) and
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ψ(x) = Ψ(x) are known as the Bardeen potentials.

We are now ready to look at Einstein’s equation, we will need expressions for the Ricci tensor
and scalar, for which we will first evaluate the Riemann tensor (0.40.4). The Riemann tensor for
the metric (1.11.1) up to first order in the metric perturbation hµν is given by:

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ

= 1
2∂η(η

ρλ(∂νhσλ + ∂σhλν − ∂λhνσ))− 1
2∂ν(η

ρλ(∂µhσλ + ∂σhλµ − ∂λhµσ))

= 1
2η

ρλ(∂µ∂σhλν + ∂ν∂λhµσ − ∂µ∂λhνσ − ∂ν∂σhλµ).

(A.15)

Because we have a flat metric background indices can be lowered and raised by the Minkowski
metric to obtain:

Rρσµν = 1
2 (∂µ∂σhρν + ∂ν∂ρhµσ − ∂µ∂ρhνσ − ∂ν∂σhρµ). (A.16)

The Ricci tensor is given by:

ηρµRρσµν = Rσν = 1
2 (∂σ∂

αhαν + ∂ν∂
αhασ −□hνσ − ∂ν∂σh), (A.17)

where h = hαα is the trace of hνσ. Let us now calculate the different components of the Ricci
tensor in terms of the decomposition variables. For R00 we have:

R00 = 1
2 (2∂0∂

ih0i00 − ∂20h
i
i)

= −∇2(ϕ− ∂0S + ∂20E)− 3∂20ψ

= −∇2Φ− 3∂20Ψ,

(A.18)

where we used that Bi and Fi are divergence-free and ∇2 = ∂2i denotes the flat space Laplacian.
For R0i we have:

R0i =
1
2 (∂0∂

jhij − ∂2i h0i + ∂i∂
jhj0 − ∂0∂ih

i
i)

= 1
2 (−∇2(Bi + ∂iS) + ∂i∂

j(Bj + ∂jS)− 6∂0∂iψ + 2∂0∂jδ
j
iψ + ∂0∂

j∂jFi)

= − 1
2∇

2(Bi − ∂0Fi)− 2∂0∂iψ

= − 1
2∇

2Bi − 2∂0∂iΨ,

(A.19)

and finally for Rij

Rij = − 1
2∂i∂

0h0j +
1
2∂i∂

khki − 1
2∂j∂

0h0i +
1
2∂j∂

khki +
1
2

(
∂20 −∇2

)
hij − 1

2∂i∂j
(
−h00 + hkk

)
= ∂i∂j

[
ϕ− ∂0S + ∂20E

]
− 1

2∂0 [∂iBj − ∂0∂iFj + ∂jBi − ∂0∂jFi]− ∂i∂jψ − δij□ψ − 1
2□h

TT
ij

= ∂i∂j [Φ−Ψ]− 1
2∂0∂iBj − 1

2∂0∂jBi − δij□Ψ− 1
2□h

TT
ij .

(A.20)
The Ricci scalar can now also be calculated and is given by:

R = ηµνRµν = −R00 + δijRij

= 2∇2Φ+ 2
(
3∂20 − 2∇2

)
Ψ.

(A.21)

We can now see that the Ricci tensor as well as the Ricci scalar can be expressed in terms of
gauge independent quantities. Thus, for linear coordinate transformations around Minkowski
background all components of the Ricci tensor as well as the Ricci scalar are gauge independent.
From the Einstein equation (0.30.3) we can conclude that if the components of Tµν are gauge
invariant, then the Einstein equation is also gauge invariant. The different components of the
Einstein tensor become:

G00 = R00 +
1

2
R = −2∇2Ψ

G0i = R0i = −1

2
∇2Bi − 2∂0∂iΨ

Gij = Rij +
1

2
δijR = ∂i∂j [Φ−Ψ]− ∂0∂(iBj) −

1

2
□hTT

ij + δij∇2Φ+ δij
(
4∂20 − 3∇2

)
Ψ

(A.22)
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where we only see gauge invariant quantities appear. The brackets in ∂(iBj) denote the sym-
metric combination ∂(iBj) =

1
2∂iBj +

1
2∂jBi. The 00-component in the absence of matter is

given by:
∇2Ψ = 0, (A.23)

which means that with the boundary condition that Ψ → 0 at spatial infinity we have Ψ = 0
everywhere. This implies for the 0i-component:

∇2Bi = 0, (A.24)

which with the boundary conditions that Ψ → 0 at spatial infinity again implies Bi = 0. The
ij-component in the absence of matter can be split up into a longitudinal part:

∂i∂j [Φ−Ψ] = 0, (A.25)

which implies that Φ = Ψ = 0, and into a transverse part:

□hTT
ij = 0, (A.26)

which is the wave equation for GWs in which the GW amplitude hTT
ij is a gauge invariant

quanity. Note that this applies only to linear perturbations. In anything beyond linear theory,
hTT
ij is not gauge invariant anymore. We can also remark that we started out with a theory with

ten degrees of freedom contained in the metric perturbation hµν . We eliminated four degrees
of freedom with the gauge transformation (A.9A.9) to construct a total of six gauge independent
degrees of freedom. We have seen that the only freely propagating degrees of freedom are from
hTT
ij and thus hTT

ij represents the two physical degrees of freedom of gravity in the absence of
matter.



Appendix B

Decomposition of the
Energy-Momentum Tensor into
Gauge Invariant Quantities

We will decompose the energy-momentum tensor in a similar manner to that of the decompo-
sition of the metric perturbation:

T00 = ρ

T0i = Ki + ∂iL

Tij = 2Pδij + σTT
ij + 2∂(iσj) + 2∂i∂jσ. (B.1)

Where ρ, σ and P are scalar functions, Ki and σi are transverse vectors, σTT
ij is a transverse

traceless tensor and ∂iL is the longitudinal part of T0i. Conservation of Energy-momentum

∂αTαβ = −∂0T0β + ∂iTiβ = 0, (B.2)

allows us to express L, σ and σi in terms of the other variables. The conservation equations
are:

−ρ̇+∇2L = 0, (β = 0)

−K̇j − ∂jL̇+ 2∂jP +∇2σj∂j∇2σ = 0, (β = j).
(B.3)

Comparing the scalar, transverse and longitudinal parts yields:

∇2L = ρ̇

∇2σ = −P + 1
2 L̇

∇2σi = K̇i.

(B.4)

The above conservation equations allow us to write the Einstein equation (0.30.3), using the
Einstein tensor (A.22A.22) and the energy-momentum tensor (B.1B.1), in the form:

G00 = −2∇2Ψ

= 8πρ

G0i = −1

2
∇2Bi − 2∂0∂iΨ

= 8π(Ki + ∂iL)

Gij = ∂i∂j [Φ−Ψ]− ∂0∂(iBj) −
1

2
□hTT

ij + δij∇2Φ+ δij
(
4∂20 − 3∇2

)
Ψ

= 8π(2Pδij + σTT
ij + 2∂(iσj) + 2∂i∂jσ),

(B.5)
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which can be solved by making use of the conservation equations:

∇2Ψ = −4πρ

∇2Bi = −16πKi

∇2Φ = 4π(L̇− 2P − ρ)

□hTT
ij = −16πσTT

ij , (B.6)

where the first equation is obtained from the 00-component of the Einstein equation, the
second equation from the 0i-component and the third and fourth from the ij-component by
comparing the scalar, transverse and longitudinal parts. We can see that only hTT

ij obeys a
wave-like equation. The other variables are given by a Poisson-type equation. We can expand
the four gauge-independent variables in powers of 1/r. At sufficiently large distances only the
1/r terms will dominate. Since the variables Ψ, Bi and Φ are given by Poisson-type equations,
the coefficients will be given by conserved quantities11 and therefore Ψ, Bi and Φ will not be
time-dependent. Thus, even with a source, the only freely propagating degrees of freedom are
given by the transverse traceless piece of the metric perturbation hTT

ij , at sufficiently large
distances from the source.

1See section 2.32.3 for a detailed Taylor expansion of the Poisson equation.



Appendix C

Effective Energy-Momentum
Tensor in Linearised Gravity

If we define G(2)
µν [h(1)] = −8πtµν , where tµν represents the effective energy-momentum tensor,

the Einstein equation up to second order in the metric perturbation can be written as:

G(1)
µν [h

(2)] = − 1
2□h

(2)
µν = 8πtµν . (C.1)

A local coordinate-invariant definition of the energy is not possible because of the equivalence
principle. We can circumvent this problem by averaging tµν over several wavelengths. An
operation that is denoted by angle brackets ⟨...⟩. If we average over enough wavelengths,
enough of the physical curvature should be encapsulated in tµν to make it a gauge-invariant
measure. The limit of a large averaging region compared to the wavelength also has the
practical advantage that derivatives vanish:

⟨∂µF (x)⟩ = 0, (C.2)

which allows us to integrate by parts under the averaging brackets:

⟨F (x)∂µG(x)⟩ = −⟨G(x)∂µF (x)⟩, (C.3)

since the boundary term can be neglected in the leading order approximation.

With this machinery, let us try to calculate tµν . We have to consider the Einstein equa-
tion up to second order in the metric perturbation. The full Einstein equation in vacuum in
terms of the metric using the known expressions for the Riemann tensor and the Ricci scalar
in terms of the metric is given by:

Gµν = Rµν − 1

2
Rηµν = 0

= 1
8g

αβ
(
gγζ
(
−2∂αgµν∂βgγζ − 4∂βgνζ∂γgµα + 4∂αgµν∂ζgβγ

+ gθϑgµu∂γgαβ∂ζgθϑ + 4∂γgµα∂ζgνβ − 4gµν∂ζ∂βgαγ + 4gµν∂ζ∂γgαβ

+ 2gθϑgµν∂ζgβϑ∂θgαγ − 3gθϑgµν∂θgαγ∂ϑgβζ + 4gθϑgµν∂βgαγ∂ϑgζθ

− 4gθϑgµν∂γgαβ∂ϑgζθ + 2(∂βgγζ − 2∂ζgβγ)∂µgνα + 2∂µgαγ∂νgβζ + 2∂βgγζ∂νgµα

− 4∂ζgβγ∂νgµα
)
− 4(∂β∂αgµν − ∂β∂µgνα − ∂β∂νgµα + ∂ν∂µgαβ)

)
.

(C.4)

We know that the only radiating degrees of freedom are the transverse traceless parts of the
metric, therefore we can impose the Lorenz gauge without loss of any radiation information.
Remember that the Lorenz gauge condition is given by:

gνα∂αgγν − 1
2g

να∂γgνα = 0, (C.5)
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and its derivative

gνα∂α∂βgγν + 1
2g

ζθgνα∂βgνζ∂γgαθ − 1
2g

να∂γ∂βgνα − gζθgνα∂βgαθ∂ζgγν = 0, (C.6)

such that the full Einstein equation in terms of the metric in the Lorenz gauge is given by:

Gµν = 1
4

(
− 2gαβ∂β∂αgµν − 2gαβgγζ∂βgνζ∂γgµα + 2gαβgγζ∂γgµα∂ζgνβ + gαβgγζgµν∂ζ∂γgαβ

− gαβgγζgθϑgµν∂ζgβϑ∂θgαγ − 1
2g

αβgγζgθϑgµν∂θgαγ∂ϑgβζ + 2gαβgγζ∂γgνα∂µgβζ

+ 2gαβgγζ∂γgµα∂νgβζ − gαβgγζ∂µgαγ∂νgβζ
)
= 0.

(C.7)
We know that up to second order in the metric perturbation this is given by G

(2)
µν [h(1)] −

1
2□h

(2)
µν = 0. Using the metric (1.551.55), yields for the Einstein equation in vacuum up to second

order in the metric perturbation in the Lorenz gauge:

□h(2)µν = 1
2

(
− ηαβηµνh

(1)γζ∂β∂αh
(1)
γζ + 2h(1)αβ∂β∂αh

(1)
µν − 2ηαβηγζ∂βh

(1)
νζ ∂γh

(1)
µα

+ 2ηαβηγζ∂γh
(1)
µα∂ζh

(1)
νβ − ηαβηµνh

(1)γζ∂ζ∂γh
(1)
αβ − ηαβηγζηθϑηµν∂ζh

(1)
βϑ∂θh

(1)
αγ

− 1
2η

αβηγζηθϑηµν∂θh
(1)
αγ∂ϑh

(1)
βζ + 2ηαβηγζ∂γh

(1)
να∂µh

(1)
βζ

+ 2ηαβηγζ∂γh
(1)
µα∂νh

(1)
βζ − ηαβηγζ∂µh

(1)
αγ∂νh

(1)
βζ

)
,

(C.8)

where we can see that the first order non-linear metric perturbations act as a source for the
second order metric perturbation. We can set the first term on the r.h.s. to zero since it must
obey the wave equation for h(1)µν and we can set the trace of h(1)µν to zero at no cost to the energy
radiation information:

□h(2)µν = 1
2

(
2h(1)αβ∂β∂αh

(1)
µν − 2ηαβηγζ∂βh

(1)
νζ ∂γh

(1)
µα

+ 2ηαβηγζ∂γh
(1)
µα∂ζh

(1)
νβ − ηαβηγζηθϑηµν∂ζh

(1)
βϑ∂θh

(1)
αγ

− 1
2η

αβηγζηθϑηµν∂θh
(1)
αγ∂ϑh

(1)
βζ + 2ηαβηγζ∂γh

(1)
να∂µh

(1)
βζ

+ 2ηαβηγζ∂γh
(1)
µα∂νh

(1)
βζ − ηαβηγζ∂µh

(1)
αγ∂νh

(1)
βζ

)
.

(C.9)

The effective energy-momentum tensor averaged over several wavelengths is thus given by:

⟨tµν⟩ = − 1
16π ⟨□h

(2)
µν ⟩ = − 1

32π

〈
2h(1)αβ∂β∂αh

(1)
µν − 2ηαβηγζ∂βh

(1)
νζ ∂γh

(1)
µα

+ 2ηαβηγζ∂γh
(1)
µα∂ζh

(1)
νβ − ηαβηγζηθϑηµν∂ζh

(1)
βϑ∂θh

(1)
αγ

− 1
2η

αβηγζηθϑηµν∂θh
(1)
αγ∂ϑh

(1)
βζ + 2ηαβηγζ∂γh

(1)
να∂µh

(1)
βζ

+ 2ηαβηγζ∂γh
(1)
µα∂νh

(1)
βζ − ηαβηγζ∂µh

(1)
αγ∂νh

(1)
βζ

〉
.

(C.10)

Let us investigate the above expression term by term, for the first term we have:

⟨h(1)αβ∂β∂αh(1)µν ⟩ = −⟨∂βh(1)αβ∂αh(1)µν ⟩

= − 1
2 ⟨h

(1)
ρσ ∂

αh(1)ρσ∂αh
(1)
µν ⟩

= 1
2 ⟨h

(1)
ρσ ∂

2h(1)ρσh(1)µν ⟩ = 0,

(C.11)

where in the first line we used integration by parts, in the second line we used the Lorenz
gauge condition and in the third line we used the wave equation for h(1)µν . Note that going
from the second to the third line we could have also used integration by parts again with the
first derivative such that the expression vanishes because of the traceless condition. This can
always be done when a term of the Lorenz gauge condition can be identified. For the second
term we have:

⟨ηαβηγζ∂βh(1)νζ ∂γh
(1)
µα⟩ = ⟨∂ζh(1)νζ ∂

αh(1)µα⟩ = 0 (C.12)
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where we used integration by parts repeatedly after which the Lorenz gauge condition allows
us to conclude that the term must vanish. The third term yields:

⟨ηαβηγζ∂γh(1)µα∂ζh
(1)
νβ ⟩ = −⟨ηαβ∂2h(1)µαh

(1)
νβ ⟩ = 0, (C.13)

where single use of integration by parts yields the wave equation for h(1), which vanishes. We
can make similar arguments - using integration by parts and either the Lorenz gauge condition
or the wave equation for h(1) - to conclude that all the subsequent terms except the last one
vanish. The effective energy-momentum tensor is therefore given by:

⟨tµν⟩ = 1
32π ⟨η

αβηγζ∂µh
(1)
αγ∂νh

(1)
βζ

〉
. (C.14)



Appendix D

Hamiltonian Approach to
Calculating the Energy of
Gravitational Waves

This is a relatively new approach in the literature. If we choose a given Hamiltonian as our
starting point the approach has the advantage of being much less involved in considering the
energy dissipated by GWs and is therefore the approach which we will follow here. The most
common Hamiltonian perspective of GR is the formalism developed by Arnowitt, Deser, and
Misner which is called the ADM formalism. In [5353] energy considerations of GWs in the ADM
formalism can be found and in [5454] a general review of the Hamiltonian formulation of GR
can be found. The advantage of a Hamiltonian formalism is that once the Hamiltonian of a
closed system is found, it is easy to consider its energy. The drawback is that usually it is
not easy to set up the Hamiltonian of the system. We will ‘cheat’ a bit here by immediately
posing the Hamiltonian of the system. However, once the correct Hamiltonian is found, it
should not be hard to convince the reader that it produces the right equations of motions
and therefore this approach should not take away anything of the rigour of the story posed
here. When considering an isolated body, whose geometry becomes flat far away, where a
perturbation is introduced that can be treated as a wave, the Hamiltonian can be used for
energy considerations of the system. We will work in the Lorenz gauge introduced in Box 1.
The linearised Einstein equation for the trace reversed metric perturbation is given by:

□h̄µν = □hµν − 1
2□hηµν = −16πTµν . (D.1)

We will now show that this equation of motion can be derived from the following Hamiltonian
for the metric perturbation hµν and its conjugate momentum πµν [5353, 1616]:

H =
1

32π

∫
d3x

[
1

2
π2
µν − 1

4
πλ2
λ +

1

2
(∇hµν)2 −

1

4

(
∇hλλ

)2 − 16πhµνTµν

]
. (D.2)

Following [5454], the Hamilton equations for the Hamiltonian H are given by:

ḣµν = 32π
δH

δπµν
= πµν − 1

2
ηµνπ

λ
λ (D.3)

π̇µν = −32π
δH

δhµν
= ∇2hµν − 1

2
ηµν∇2hλλ + 16πTµν . (D.4)

We can use the ḣµν equation (D.3D.3) to write πµν as:

π̇µν = ḧµν +
1

2
ηµν π̇

λ
λ . (D.5)
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The trace of the π̇µν equation (D.4D.4) is given by:

π̇µ
µ = ηµν ˙πµν = ηµν∇2hµν − 2∇2hλλ + 16πηµνTµν , (D.6)

which we can plug into (D.5D.5) to yield:

π̇µν = ḧµν + 2∇2hµν − ηµν∇2hλλ + 32πTµν . (D.7)

Taking the trace of (D.5D.5) implies π̇λ
λ = −ḧλλ, combining this with (D.6D.6) and multiplying with

ηµν yields:
∇2hµν − 1

2ηµν∇
2hλλ + 16πTµν + 1

4ηµν ḧ
λ
λ = 0. (D.8)

Combining (D.7D.7) with (D.4D.4) also yields:

∇2hµν − 1
2ηµν∇

2hλλ + 16πTµν + ḧµν = 0. (D.9)

We can conclude from (D.8D.8) and (D.9D.9) that:

ḧµν = 1
4ηµν ḧ

λ
λ

1
2 ḧµν + 1

2 ḧµν = 1
4ηµν ḧ

λ
λ,

(D.10)

which gives us the identity:
ḧµν = −ḧµν + 1

2ηµν ḧ
λ
λ. (D.11)

Plugging this identity into (D.9D.9) gives us the equation of motion for the metric:

∇2hµν − 1
2ηµν∇

2hλλ + 16πTµν − ḧµν + 1
2ηµν ḧ

λ
λ = 0

□hµν − 1
2□hηµν + 16πTµν = 0.

(D.12)

We want to use the Hamiltonian to find the energy radiated from GWs for some system. For a
source that is isolated in a geometry that becomes flat far away from the source, it is possible
to derive an expression of the energy of the field in a certain volume. We want to average this
energy over several wavelengths, since we know that locally the spacetime structure does not
have any energy at all. Consider some volume V , the integral (D.2D.2) over the volume V at a
fixed time t can be considered as the total energy of the field in that volume, the time average
of the change of the energy over time is then given by:〈

dEV

dt

〉
=

〈
1

32π

d

dt

∫
V

d3x

[
1

2
π2
µν − 1

4
πλ2
λ +

1

2
(∇hµν)2 −

1

4

(
∇hλλ

)2 − 16πhµνTµν

]〉
=

〈
1

32π

∫
V

d3x
[
∇ · (πµν∇hµν)− 16πhµν Ṫµν

]〉
=

〈
1

32π

∮
∂V

d2σπµν∇nhµν − 1

2

∫
V

d3xhµν Ṫµν

〉 (D.13)

where ∂V represents the boundary of V and d2σ a boundary surface element, ∇n is the normal
component to the surface element of the gradient and the angle brackets ⟨...⟩ denote the time
average of the expression. Going from the second line to the third line we used the divergence
theorem. We can see that the energy only changes due to gravitational radiation flux through
the boundary apart from variations in the energy-momentum density from the source. We
will assume that the time averaged change of the energy-momentum tensor vanishes. For the
example of a binary system discussed before this holds. We then have:〈

dEV

dt

〉
=

1

32π

〈∮
∂V

d2σπµν∇nhµν

〉
. (D.14)

The GW flux at far distances r from the source is then given by the integral:〈
dEV

dt

〉
=

1

32π

〈∫ π

0

∫ 2π

0

dθdϕr2 sin θπµν∇nhµν

〉
. (D.15)
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Where a spherical surface is chosen with the source in the centre and with radius r large enough
such that Tµν vanishes on the surface. Using (D.3D.3), the energy flux is given by:〈

dEV

dt

〉
=

〈
r2

8

(
ḣµν∇rhµv −

1

2
ḣvv∇rh

µ
µ

)〉
. (D.16)

We know that the only propagating degrees of freedom are the spatial transverse traceless
degrees of freedom of the metric. Therefore the second term vanishes and we are only left with
the spatial parts of the first term. Using (1.281.28) this then becomes:〈

dEV

dt

〉
=

〈
r2

8

(
2

r

d3Iij (tr)

dt2
(
PikPjl − 1

2PijPkl

)
∇r

2

r

d2Iij (tr)

dt2
(
PikPjl − 1

2PijPkl

))〉
= −

〈
1
2

( ...
Iij (tr)

(
PikPjl − 1

2PijPkl

) ...
Iij (tr)

(
PikPjl − 1

2PijPkl

))〉
+O( 1r )

≈ −r
2

8

〈
˙hTT
ij

˙hTT
ij

〉
,

(D.17)
where going from the second to the third line we used that Iij only depends on tr = t− r such
that ∇rIij = −∂tIij . Also, since the above energy considerations are only valid for large r, we
can neglect all higher order terms in 1/r. Using Pij = δij −ninj we can expand the projection
operators in the definition of hTT

ij as:

hTT
ij =

1

r

(
2Ïij − Ïkkδij + nknlÏklδij + ninj Ïkk + ninjnknlÏkl − 2njnk Ïik − 2nink Ïjk

)
,

(D.18)
such that the energy dissipation formula is given by:〈

dEV

dt

〉
= −1

8

〈
4

...
I ij

...
I ij + 4

...
I ijninj

...
I mnnmnn − 16

...
I ij

...
I imnjnm − 3

...
I ijninj

...
I mnnmnn

−7
...
I ijninj

...
I mnnmnn + 8

...
I ij

...
I imnjnm + 8

...
I ijninj

...
I mnnmnn

〉
= −1

8

〈
4

...
I ij

...
I ij + 2

...
I ijninj

...
I mnnmnn − 8

...
I ij

...
I imnjnm

〉
.

(D.19)
Finally, using the relations:

⟨ninj⟩ =
1

3
δij , ⟨ninjnknl⟩ =

1

15
(δijδkl + δikδjl + δilδjk) , (D.20)

we obtain the energy dissipation formula for GWs far away from a slowly moving source that
is not dominated by self-gravity:

⟨Ė⟩ = −1

5

〈 ...
I ij

...
I ij

〉
, (D.21)

which agrees with (1.671.67).



Appendix E

Frame Dragging Effects

Although the coupling of the tidal spin Si
Q to the black hole’s spin Si

BH and the orbital spin
Li gives rise to small effects, at some point one might decide to include them in the analysis.
In this work these effects are left out, but the effect on the dynamics of the system will be
outlined here for reference. These spin-couplings represent the so-called frame dragging effects.
The spin of the companion black hole as well as the orbital spin of the system cause spacetime
to distort and lead to precession of the orbit of the neutron star and thus the neutron star’s
body frame. The black hole spin coupled to the tidal spin, i.e. the spin-spin coupling, is given
by (2.902.90) and becomes:

LSS =
1

2λ2ω2
02r

3

[
3n̂iϵ

i
jkQ

j
l Q̇

kln̂iS
i
BH − ϵijkQ

j
l Q̇

klSi
BH

]
. (E.1)

The tidal spin coupled to the orbital spin, i.e. the spin-orbit coupling, is given by (2.902.90) and
becomes:

LSO =
1

2λ2ω2
02r

3
ϵijkQ

j
l Q̇

klLi

[
2 +

3

2

MBH

MNS

]
11, (E.2)

where Li represents the orbital angular momentum, which is given by Lz = µr2Ω for stable
circular orbits in the xy−plane. The total action, where we have excluded the Si

BH-Li coupling
term to keep the expressions below manageable, is now given by:

S = Sorbit +

∫
dt

[
− 1

2
QijE ij +

1

4λ2ω2
02

[
Q̇ijQ̇

ij − ω2
02QijQ

ij + 2CNSϵijkS
k
NSQ

i
kQ̇

jk

− 2

r3
ϵijkQ

j
l Q̇

klLi

[
2 +

3

2

MBH

MNS

]
− 2

r3

[
3n̂iϵ

i
jkQ

j
l Q̇

kln̂iS
i
BH − ϵijkQ

j
l Q̇

klSi
BH

] ]]
,

(E.3)

from which we can calculate all the desired quantities in the same way as above. The quadrupole
moment tensor is given by:

Qij = A

 1
3 +

MNSω
2
02 cos(2ϕ)
R

MNSω
2
02 sin(2ϕ)
R 0

MNSω
2
02 sin(2ϕ)
R

1
3 − MNSω

2
02 cos(2ϕ)
R 0

0 0 −2
3

 , (E.4)

with amplitude A = 3λ2MBH

2r3 and resonance factor R:

R = 2
rµΩ

2 (4MNS + 3MBH)− 4
r3ΩMNSS

z
BH −MNS

(
−ω2

02 + 4Ω2 + 4ΩCNS
z
N

)
. (E.5)

We can see that all the different mechanisms discussed above, namely the Coriolis effect and
the spin-spin and spin-orbit frame dragging effects, together have a complex effect on the

1This term is also included in the analysis in [3939]. Note that equation (3.17) in [3939] should be proportional
to 1/r3.
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frequency at which resonance occurs. The spin-orbit coupling, represented by the first term
seems to increase the resonance frequency, i.e. resonance occurs for higher orbital frequency or
later in the inspiral. The spin-spin coupling, represented by the second term, seems to decrease
(increase) the resonance frequency for counter-clockwise (clockwise) spin of the black hole. It
can also be seen that the influence of the spin of the black hole term decreases quickly as the
orbital separation increases while spin-orbit coupling term effect decreases only as 1/r with the
increase of the orbital separation. Furthermore, the stable circular orbit radius as a function
of the orbital frequency is given by:

r(Ω) =
MNS

R̃

(
2MNS

(
− 2µM8/3

(
ω2 − 4Ω2

) (
8Ω3Sz

BH + 8MΩCNSS
z
N −M

(
ω2 − 4Ω2

))
+ 3λ2Ω

10/3M2
BH

(
Ω3
(
16Ω2 − 7ω2

)
Sz
BH + 2M

(
ΩCNS

(
8Ω2 − 5ω2

)
Sz
N + ω4 − 5ω2Ω2 + 4Ω4

)))
+ µM2/3Ω8/3 (3MBH + 4MNS)

(
3λ2Ω

10/3M2
BH

(
7ω2 − 16Ω2

)
+ 16µM8/3

(
ω2 − 4Ω2

)))
,

(E.6)
where R̃ is given by:

R̃ = 4µM4/3Ω2/3
(
MNS

(
−4
(
Ω3Sz

BH +MΩCNSS
z
NS

)
+8µM2/3Ω8/3 +M

(
ω2 − 4Ω2

))
+ 6µM2/3Ω8/3MBH

)
2.

(E.7)

Finally, the energy as a function of the orbital frequency is given by:

E(Ω) = −1

2
M2/3µΩ2/3 +

9

8
λ2Ω

4M2
BH

(
1

M2

+
ω2MMNS

(
6M2/3µΩ8/3MBH +MNS

(
8M2/3µΩ8/3 − 4Ω3Sz

BH +M
(
3ω2 − 4Ω2 − 12ΩCNS

z
N

)))(
6M2/3µΩ8/3MBH +MNS

(
8M2/3µΩ8/3 − 4Ω3Sz

BH +M (ω2 − 4Ω2 − 4ΩCNSz
N )
))2 .

(E.8)
To explicitly compute energies from the waveforms of explicit binary systems we need expres-
sions in physical units. From [4343] we deduce that CNS = −3/4I, where I is the moment of
inertia of the Neutron star. Recovering units by dimensional analysis allows us to express the
distance r(Ω) and the energy E(Ω) in dimensionless variables:

r̃(x) =
XNS

R̃

(
12Λx13/2ĨX8

NSX
2
BHχNS

(
8x3 − 5y3

)
+ 32νx3/2ĨX3

NSχNS

(
4x3 − y3

)
+9Λνx9X5

NSX
3
BH

(
7y3 − 16x3

)
+ 4νXNS

(
4x3 − y3

) (
8x9/2χBHX

2
BH − 16νx4 + 4x3 − y3

)
+6Λx5X6

NSX
2
BH

(
x4
(
16x3 − 7y3

) (√
xχBHX

2
BH − 2ν

)
+ 2

(
4x6 − 5x3y3 + y6

))
+48ν2x4XBH

(
y3 − 4x3

))
,

(E.9)
where R̃ is now given by:

R̃ = 4νx
(
−4x3/2ĨX3

NSχNS +XNS

(
−4x9/2χBHX

2
BH + 8νx4 − 4x3 + y3

)
+ 6νx4XBH

)
2,

(E.10)
and

Ẽ(x) = −1

2
νx+

9

8
Λ2x

6X5
NSX

2
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+
y3XNS
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2
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(E.11)



APPENDIX E. FRAME DRAGGING EFFECTS 86

Where we defined the following dimensionless quantities:

x =

(
GMΩ

c3

)2/3

, y =

(
GMω

c3

)2/3

, XNS =
MNS

M
, XBH =

MBH

M
, Ĩ = − 3

4I

G2M3
NS

c4

χNS =
cSz

NS

GM2
NS

, χBH =
cSz

BH

GM2
BH

, Λ2 = Gλ2

(
c2

GMNS

)5

, ν =
µ

M
, r̃ =

rc2

GM
, Ẽ =

E

Mc2

(E.12)



Appendix F

Numerical Relativity Parameter
Settings

Λ2 Q χNS χBH Ω̄

791 3 0 0.9 0.0982903
791 4 0 0.9 0.121301
791 1 −0.2 0 0.0520975259069178798
791 2 −0.2 0 0.0746469

Table F.1: NR simulations parameter settings generated from the SXS code [44]
together with the dimensionless merger frequency calculated as the frequency at
the point of maximum amplitude of the gravitational waveform. The neutron
star mass is 1.4 solar masses.
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Λ2 Q χNS χBH Ω̄ Λ2 Q χNS χBH Ω̄

323 3 0 0.5 0.155299 607 4 0 0 0.151837
734 3 0 0.5 0.12092 288 4 0 0 0.166286
1110 3 0 0.5 0.106031 2324 5 0 0 0.142958
1740 3 0 0.5 0.0937559 1211 5 0 0 0.153271
323 5 0 0.5 0.182615 607 5 0 0 0.155074
734 5 0 0.5 0.164517 288 5 0 0 0.150265
1110 5 0 0.5 0.158517 2324 3 0 0.25 0.0872545
1740 5 0 0.5 0.140808 1211 3 0 0.25 0.108859
323 7 0 0.5 0.179823 607 3 0 0.25 0.136309
734 7 0 0.5 0.172205 288 3 0 0.25 0.157062
1110 7 0 0.5 0.177835 2324 4 0 0.25 0.108432
1740 7 0 0.5 0.174083 1211 4 0 0.25 0.135237
323 3 0 0.75 0.145979 607 4 0 0.25 0.16258
734 3 0 0.75 0.118379 288 4 0 0.25 0.171547
1110 3 0 0.75 0.100803 2324 5 0 0.25 0.134259
1740 3 0 0.75 0.0887119 1211 5 0 0.25 0.162933
323 5 0 0.75 0.182588 607 5 0 0.25 0.169767
734 5 0 0.75 0.158277 288 5 0 0.25 0.166894
1110 5 0 0.75 0.149742 2324 3 0 0.5 0.0838467
1740 5 0 0.75 0.131007 1211 3 0 0.5 0.103683
323 7 0 0.75 0.178638 607 3 0 0.5 0.12836
734 7 0 0.75 0.212258 288 3 0 0.5 0.160862
1110 7 0 0.75 0.15913 2324 4 0 0.5 0.104552
1740 7 0 0.75 0.161974 1211 4 0 0.5 0.126888
2324 2 0 0.75 0.0626452 607 4 0 0.5 0.150138
1211 2 0 0.75 0.0772153 288 4 0 0.5 0.193606
607 2 0 0.75 0.095872 2324 5 0 0.5 0.127353
422 2 0 0.75 0.105355 1211 5 0 0.5 0.154565
288 2 0 0.75 0.116268 607 5 0 0.5 0.167278
2324 2 0 0 0.0669978 288 5 0 0.5 0.183236
1211 2 0 0 0.0820339 2324 3 0 0.75 0.0817907
607 2 0 0 0.103022 1211 3 0 0.75 0.097785
422 2 0 0 0.117908 607 3 0 0.75 0.12334
288 2 0 0 0.132699 288 3 0 0.75 0.155966
2324 2 0 0 0.0669978 2324 4 0 0.75 0.0984636
1211 2 0 0 0.0820339 1211 4 0 0.75 0.12227
607 2 0 0 0.103022 607 4 0 0.75 0.14332
288 2 0 0 0.132699 288 4 0 0.75 0.158725
2324 3 0 0 0.0914112 2324 5 0 0.75 0.116144
1211 3 0 0 0.11648 1211 5 0 0.75 0.14434
607 3 0 0 0.134576 607 5 0 0.75 0.164945
288 3 0 0 0.154963 288 5 0 0.75 0.199149
2324 4 0 0 0.116065
1211 4 0 0 0.14149

Table F.2: NR simulations parameter settings generated from the SACRA
code [66, 55] together with the dimensionless merger frequency calculated as the
frequency at the point of maximum amplitude of the gravitational waveform.
The neutron star mass is 1.35 solar masses.
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