
Towards speech-based
brain-computer interfaces:

finding most distinguishable word
articulations with autoencoders

Eli Stolwijk
6000738

Master Artificial Intelligence
Faculty of Science
Utrecht University

Netherlands

Julia Berezutskaya
University Medial Centre Utrecht

Daily Supervisor

Chris Klink
University Utrecht
First Supervisor

Ben Harvey
University Utrecht
Second Supervisor

December 23, 2022



1 Abstract

People that suffer from locked-in syndrome are severely limited in their means
of communication. Recent advances in BCI technology have allowed commu-
nication by typing letters on a screen through the decoding of brain activity.
However, direct word decoding, meaning decoding whole words at a time in-
stead of characters, can provide a big increase in communication speed and
efficiency. To find out which words are most suitable for such applications we
want to find the words for which the neural activation of their attempted ar-
ticulation are most easily distinguishable. Instead of measuring differences in
brain activity directly, we will measure the differences in the patterns of muscle
movements during articulation and use those as representatives for the brain
activity instead. We will find the set of most distinct words by using two neu-
ral network autoencoder architectures to condense rtMRI videos of speech into
representative vectors. We then cluster these vectors into 20 clusters and ex-
tract the representatives of each cluster to get the set of 20 most distinct words
in their articulation. We will try two different autoencoder architectures, one
using only 3-dimensional convolutions (3D-CNN) and the other using a com-
bination of 3-dimensional convolutions and GRU cells (ConvGRU). To nudge
the models into learning relevant word embeddings, we introduced phonemic
information of the word labels in two different ways. The first being a one hot
encoded phoneme content vector for each word, and the second being a custom
component to the loss function that incorporated a phonemic distance metric
inspired by the classic Levenshtein distance. We found that both architectures
were capable of generating relevant word embeddings while reconstructing the
input of rtMRI videos of speech. We further found that the ConvGRU outper-
formed the 3D-CNN on almost every metric discussed. Additionally, we found
that the results from the ConvGRU generalized well over multiple participants
suggesting a generalizability to people with LIS. The set of 20 words generated
by the ConvGRU made sense on informal and formal inspection of the cluster
space and were therefore chosen as the set of most distinct words for future
direct word decoding BCI applications.
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2 Introduction

Communication is an essential part of being human. People that become par-
alyzed can completely lose the ability to communicate with the outside world,
they become locked-in. The term locked-in syndrome (LIS) describes people
that are fully conscious but have no means of voluntary muscle control, prevent-
ing them from producing speech, limb or facial movements (Lulé et al., 2009).
LIS can be caused by many different conditions. The most frequent causes of
LIS are vascular-related with the most frequent cause being brain stem stroke
(Vidal, 2020). LIS is also observed in the late stages of neurodegenerative dis-
eases like amytrophic lateral sclerosis (ALS). Other more rare etiologies include
drug abuse, head trauma, tumors, encephalitis, arthritis and toxin exposure
(Patterson and Grabois, 1986).

The LIS can be divided into three categories: Classical, Incomplete and To-
tal (Bauer et al., 1979). Classic LIS is characterized by quadriplegia (paralysis
of all four limbs and torso) and aphonia (inability to produce sound) with pre-
served consciousness, vertical eye-movements and blinking. Incomplete LIS is
characterized by the same characteristics as Classic LIS, but with the addition
of some preservation of voluntary movement other than vertical eye movements.
Total LIS is characterized by a complete immobility, including the eyes.

Unlike common belief, people with LIS can still live a happy life. Multiple
studies have shown that people with LIS report a similar quality of life (QoL)
compared to age-matched healthy individuals (Rabkin et al. (2000); Kübler
et al. (2005); Laureys et al. (2005)). Furthermore, the 10-year survival rate of
people with LIS is over 80% (Doble et al., 2003)), with some returning back to
work (Smith and Delargy, 2005), and some even writing a book (Bauby, 2008).
Thus, despite their severe handicap, LIS patients can still live a life worth living.
Albrecht and Devlieger (1999) found that the main determinant for the QoL of
people with severe paralysis is the subjective feeling of control over their life.
In order to obtain this feeling, it is essential for locked-in people to be able
to communicate with their surroundings. Furthermore, Rousseau et al. (2015)
found that sociodemographic variables such as gender and education level, which
traditionally influence QoL, were not found as factors of the QoL in people with
LIS. Instead, they found that the restriction on their communication had the
most significant (negative) association with QoL. This is further backed up by
Bruno et al. (2011), who found that the ability to produce speech is among the
main predictors for happiness in people with LIS.

Classically, the most used form of communication with locked-in people is
through some sort of code using the eyelids. It may be clear that this method
is not an option for people with Total LIS and even for those locked-in that
can use this blinking code, communication is slow and inefficient. Usually the
blinking code has to be initiated by a care giver and is limited to answering only
binary questions (e.g. blink once for yes and twice for no) (Olivia Gosseries
et al., 2009). More expressive ways of communication using only the eyelids
are possible, but the increase in expressivity usually comes with a decrease in
communication speed. An often used method involves selecting one letter at a
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time by blinking to indicate when a caregiver should stop scrolling through a set
of letters (León-Carrión et al., 2002). Though infinitely expressive, this method
is very slow. As the restriction on communication has one of the most significant
negative affects on QoL, one way to improve the QoL for people with LIS is
to enhance their communication capabilities through the means of electronic
aid devices. Such devices can provide quicker and more expressive ways of
communication. Additionally, electronic aid devices can allow someone with
LIS to initiate communication independently, where traditional communication
through blinking requires a caregiver to pay attention. Such electronic devices
can incorporate eye trackers (Yumang et al., 2020) or exploit possible remnants
of voluntary movement, for example by using a mouthstick (Smith and Delargy,
2005). However, in the last few decades technology has allowed applications that
locked-in patients can control with their brain directly. This paper will focus
on such devices, which interface directly with the brain, also know as Brain
Computer Interfaces (BCI).

Since LIS does not necessarily involve degradation of grey matter itself, neu-
ral patterns of attempted movement can still be observed in the motor cortex.
Locked-in people with vascular causes usually suffer from damage in the path-
ways leading out from the brain, not the brain itself. In the case of degenerative
diseases, like ALS, it is not entirely clear how the motor degradation occurs,
but Pandarinath et al. (2015) showed that motor cortex signals in ALS patients
were comparable to healthy non-human primates suggesting that, despite the
neural degradation, the motor cortex may be able to retain its core functional-
ity. Therefore, when someone who is locked in attempts to move a particular set
of muscles (for example raise their arm), it is expected that neural activation
in the brain occurs in a similar way as in a healthy individual. Based on this
assumption, the brain activity of attempted movement should be able to be
detected and decoded into physical behaviour by a BCI.

There are many different kinds of BCIs, however for LIS patients, the most
important one is the communication BCI (Wolpaw, 2007). A communication
BCI is a device that attempts to decode neural activity of the brain into physical
behaviour. An example of this would be a program that cycles through a set of
letters and a BCI user selecting the currently shown letter by attempting some
kind of movement, e.g. raising an arm. The BCI recognizes this neural activity,
selects the current letter and continues scrolling until further input by the user.
In the last few decades, many communication BCIs have been proposed, but
with mixed success. Depending on the measurement techniques, hardware of the
system, software of the system and the abilities of the user, many trade-offs have
to be made regarding performance, reliability, sustainability and invasiveness.

Previous communication BCIs have mostly worked by enabling on-screen
typing or writing, using individual characters (Gilja et al., 2015; Vansteensel
et al., 2016; Nuyujukian et al., 2018). Recently some advances have been made
using a different type of character based BCI that uses attempted handwrit-
ing (Willett et al., 2021) (90 characters per minute with 94 percent accuracy).
However, a BCI that works by decoding entire words at a time can provide
a faster and more natural way of communication. Moses et al. (2021) have
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shown promising results on direct word decoding, achieving 15 decoded words
per minute with 75 percent accuracy.

Although these results are promising, there is possibility for an efficiency
increase by using only sets of words that are theoretically most dissimilar in the
neural activity of their attempted articulation. More distinct neural patterns
mean higher distinguishability and therefore provide a more reliable decoding.
Previous work has shown that different neural patterns in the motor cortex
correspond to different motor patterns in the muscles, including facial muscles,
during speech production (Bouchard et al., 2013; Chartier et al., 2018; Mugler
et al., 2018). This research suggests that neural patterns in the motor cortex
reflect the spatial organization of body parts and associated muscles. In other
words, each unique pattern of muscle movement arises from a unique pattern
of activation in the brain. This implies that there is a unique pair of neural
activation and muscle movements for each word in speech. This allows us to
use the pattern of muscle movements (articulation pattern) as a representative
for the pattern of neural activation (neural pattern). Therefore, following this
assumption, identifying a closed set of words with most distinct patterns in the
muscle movements of their articulation by healthy individuals provides us the
set of words that are most distinct in the neural pattern of their attempted
speech, and thus the set of words that should be most reliably decoded by a
BCI application.

Achieving a representation of an articulation pattern requires information
about the movements of all the muscles that constitute it, at each time step.
Moreover, articulation patterns cant be measured directly on people that are
locked-in due to their inability to produce speech, so the resulting set of distinct
articulation patterns found on healthy individuals should generalize well across
multiple people. When results are specific to each participant separately, their
is no point in using the findings of a healthy participant on someone who is
locked-in. When results generalize over multiple healthy people we can be more
confident that these results will also generalize over to people with LIS.

There are multiple measurement techniques that can capture the movements
of (parts of) the mouth when producing speech. Ultrasound probes provide a
non-invasive technique to visualize muscles during articulation, but they are
limited to only a small area, usually just the contours of the tongue (Akgul
et al., 1998; Wilson, 2014; Saito et al., 2021). Electromyography (EMG) mea-
sures electric muscle activity through sensors that are placed on the skin. This
technique can cover a wider area of the face than ultrasound, but misses the
muscles within the mouth and throat (Honda, 1983; Schultz and Wand, 2010).
Electromagnetic Articulography (EMA) uses an electromagnetic field to capture
the movements of electrodes within and outside the mouth (Schönle et al., 1987;
Rebernik et al., 2021). Since the electrodes can be placed on the muscles within
the mouth and on the skin of the throat, EMA is able to follow most of the mus-
cles that form the articulation pattern. However, as there is only a (small) fixed
amount of electrodes, the coverage is limited to the points where an electrode
is attached, all other information is lost. Moreover, the placement of electrodes
on inner mouth surfaces like the tongue is likely to alter the articulation pattern
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(Katz et al., 2006).
Magnetic Resonance Imaging (MRI) is a technique that measures how differ-

ent tissues react to a strong magnetic field, thereby creating clear pictures of the
body parts within the scanner (Hoult and Bhakar, 1997). Recent advances in
MRI technology have allowed the capture of processes in real time. The advan-
tage of real-time MRI (rtMRI) for the extraction of articulation patterns is that
the footage of the mid-sagittal slice contains a clear view of all the muscles used
during articulation at many frames per second. Hence, a minimal amount of in-
formation is lost during measurement (Csapó, 2020). Moreover, the non-invasive
nature and the high capture quality make mid-sagittal rtMRI footage the most
suitable measurement technique for the extraction of articulation patterns.

The most straightforward way to identify which articulation patterns are
similar and thus which ones are dissimilar is by clustering them. However, mid
sagittal rtMRI video data is complex and high-dimensional, describing complex
spatio-temporal dynamics. Therefore, raw rtMRI data may not be suitable for
conventional clustering (Assent, 2012). Therefore, clustering the articulation
patterns can only be done effectively when the rtMRI videos are reduced in
dimensionality. Many dimensionality reduction methods exist, however autoen-
coders have shown the most promise extracting meaningful features in image
processing (Meng et al., 2018). An autoencoder consists of an encoder and a
decoder, usually made up of neural networks. The idea of an autoencoder is
that you give it an input, let the encoder learn a condensed representation of
that input and then let the decoder reconstruct the original input only from
that representation. After reconstruction, the difference between the input and
the reconstructed input is used to adjust the parameters of the model. The layer
between the encoder and decoder is called the bottleneck layer. The bottleneck
layer is where the input has been most condensed. Since this condensed repre-
sentation contains all information necessary for the reconstruction of the input,
it contains all the representative features of the input, despite being reduced in
dimensionality. Hence, by extracting the bottleneck layer representation of the
input, an autoencoder can be used as a dimensionality reduction method (Bank
et al., 2020).

Since rtMRI videos of mid sagittal slices constitute 3-dimensional data (2
spatial, 1 temporal and no color channels), the encoder and decoder need to be
able to capture dependencies across all three dimensions. Recent advances in
the field of computer vision have allowed for neural networks to be more adept at
handling three dimensional input. The two main methods of dealing with three
dimensional input is to either use only 3-dimensional convolutional operations
(Ji et al., 2013) or to use some combination of convolutional operations and
recurrent neural networks (Vinyals et al., 2014; Shi et al., 2015). Many studies
have already successfully incorporated three-dimensional neural networks within
autoencoder frameworks in many different domains (Srivastava et al., 2015;
Haugen et al., 2019; Dastider et al., 2021). This suggests that such architectures
generalise well across domains providing the motivation for us to use these
architectures for our approach.

The present study aims to identify a set of 20 words that are most
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distinct in terms of their articulation pattern, extracted from mid-
sagittal rtMRI footage. A set of 20 words will allow 20 degrees of freedom
in tasks such as selecting menu items or giving commands, while remaining a
manageable number for the development and implementation of a speech BCI.
We are not aiming for the incorporation of full languages yet, as this would lead
to highly complex and unreliable applications. Instead, we are aiming at an
efficiency increase for direct word decoding BCI applications that incorporate
small sets of words to provide the user with a more limited but more reliable
application. Narayanan et al. (2014) has provided a dataset (USC-TIMIT) of
mid-sagittal rtMRI footage of 10 participants during a speech production task,
in which they read sentences from the TIMIT dataset. In order to cluster the
words effectively, we will reduce the rtMRI videos in dimensionality using two
different autoencoder architectures. One architecture uses only 3-dimensional
convolutions (3D-CNN) and the other uses a combination of 3-dimensional con-
volutions and recurrent neural networks (ConvGRU). After each word is reduced
to a representative vector, we cluster the vectors into 20 clusters and extract the
representatives of each cluster and present them as the 20 most distinct words
in their neural/articulation patterns.

3 Method

3.1 Preprocessing

Figure 1: Mid sigattal slice extracted from a video of participant F1

For our research we used the freely available USC-TIMIT dataset, provided
by Narayanan et al. (2014). This dataset consists of both real time Resonance
Magnetic Imaging (rtMRI) and ElectroMagnetic Articulography (EMA) data
collected in healthy human subjects who read English sentences out loud. We
will use the rtMRI data as input and output for our models and the EMA data
as a correlation metric to evaluate model performance. The MRI data consists of
rtMRI footage of the mid-sagittal slices (see Figure 1) of 10 participants (5 male,
5 female), all speaking the same set of 460 sentences. For each participant, the
footage is separated into videos of 5 sentences, about 20 to 30 seconds long with
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a frame rate of 23.18 frames per second and a resolution of 68 x 68 pixels. Audio
was recorded simultaneously with the MRI recording and was later denoised and
synchronized to the footage. The dataset also provides a transcription of the
produced speech at the level of sentences, words and phonemes.

The original videos in the dataset each contain 5 full sentences. First, we
split these videos to contain only one word each. This was done by selecting
the frame that corresponds to the beginning of a word and the frame that
corresponds to the end of a word according to the transcription. All frames in
between these two frames are extracted and saved with the label of the respective
word. It is worth noting that there are duplicate words between sentences, so
there are instances where multiple videos have the same label. These instances
can be used during the evaluation of the model performance as identical words
should have high similarity in their embedding space. Furthermore, because of
the inter-subject differences in facial anatomy and positioning in the scanner
we train separate models for each participant, similar to Csapó (2020) and Yu
et al. (2021).

3.1.1 Feature reduction

Figure 2: Variance heat maps for participants F1, F2, M2, M3 respectively.
The red rectangles are the borders that contain all pixels with above average
variance

A large portion of the pixels in the videos represent empty space (see Figure
1). These pixels don’t contribute any information about the articulation pat-
terns. As every pixel is a feature to the model, we don’t want to include all these
non-informative features. To exclude the non-informative features we need to
determine which pixels are informative and which are not. First, we calculate
the variance of each pixel for every video, effectively creating a variance heat
map per video. Then we sum all the pixel variance values, for every variance
heat map, creating a variance heat map over all videos for each participant.
Then, we calculate the average value for each pixel. Then we calculate the min-
imal frame size (height x width) that still contains all above-average variance
pixels for each participant. Therefore, we calculate the 4 borders (upper, bot-
tom, left, right) that are as far away from the original 68 x 68 border, that still
include all pixels with above average variance. Figure 2 shows some examples
of these minimum frame sizes for some of the participants. Since we want to use
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the same frame size for all participants to allow for transfer learning, we take
the largest minimal height (participant F2) and largest minimal width (partic-
ipant M3) and come to a universally required minimum frame size of 48 x 44.
This reduces the number of input features per frame of a video from 4624 to
2112, effectively halving the amount of input features without the loss of any
above-average informative feature.

Originally the videos are in the RGB color scheme. However, as the videos
are in black and white, this extra color channel dimension provides no useful
information. Therefore, we will convert the RGB videos to gray scale, further
reducing the feature space by 66 percent (3 color channels becoming 1) without
any decrease in representational power.

3.1.2 Padding

One important property of the 3D-CNN architecture that we are going to use,
is the requirement of a fixed input size. The input size being fixed is not a
problem for the height and width dimensions of our data as these are fixed
to 48 x 44. The time dimension however will vary for each word as different
words take different amounts of time to be articulated. This results in our
data having different amounts of frames per video. To make the data suitable
for a 3D-CNN architecture we will need to use padding. Padding consists of
adding non-expressive data around the shorter sequences to in essence ‘fill up’
the sequence until it is the required size. In our case, this means that we will
have to add frames containing all zeros to the original video until it has the same
amount of frames as the video with the highest amount of frames in our data.
For example, assuming the longest video in our data is 10 frames long, we have
to add all-zeros frames to all videos that do not have 10 original frames, until
the original and padded frames of each video combine to a count of 10. We add
padded frames to the left and right equally meaning that the original frames
will be in the centre of the padded sequence. I.e., in our previous example a
video of 4 original frames will have 3 padded frames to the left and 3 padded
frames to the right.

However, padding can come with a cost (Dwarampudi and Reddy, 2019;
Lopez-del Rio et al., 2020). Since padding adds data (0’s), it slightly alters
the original input. This does not necessarily have to come with a decrease in
performance, however as the amount of padding increases it is more likely for
a decrease in performance to be observed. For example, a video of 99 original
frames and 1 padded frame will be expected to suffer a low padding costs as
only 1 percent of the data is non-expressive. A video of 10 original frames and
90 padded frames however is expected to have a relatively high padding costs as
the data consists for 90 percent of 0’s. To circumvent the problem of padding,
we used a second architecture that uses Recurrent Neural Networks (RNN).
RNN’s do not suffer from the necessity of padding since nodes in an RNN are
allowed to create connections with themselves. Due to these cycles, the network
can feed into a next time step instead of a next layer, thereby allowing for the
processing of sequences of arbitrary length.
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3.1.3 Frame counts
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Figure 3: Frame count histogram for participant F1. Words outside the red
lines were excluded from this study

The pronunciation of different words takes different amounts of time based
on the length of the word, context within the sentence and reading speed of the
speaker. We need to determine to what size we fix the time dimension. If we
choose the size of the time dimension to be too large, the smaller words will
need to have too much padding. If we make the time dimension too small, we
might have to exclude too much of our data to successfully train our model.
Figure 3 shows the distribution of frames for participant F1. We can see that
videos with low frame counts occur the most. However, due to their low frame
count they don’t contain much information. Recall that the videos were shot at
23.18 frames per second resulting in a little over 0.04 seconds per frame. Videos
with 1 frame are not videos but images so we will exclude those. Videos with 2,
3 and 4 frames contain so few frames, and thus such little information, that it is
not worth including them into our data as the padded frames will dominate the
original sequence. Therefore, we only considered videos with at least 5 frames.
We think this boundary is high enough to get meaningful information within the
videos and low enough to include enough data points to successfully train our
model. For the upper boundary, we decided t draw the line at 20 frames. From
this point, the benefit of additional data points does not outweigh the cost of
the required additional padding on all other words. Thus, we decided to include
all videos with 5 ≤ frame counts ≤ 20, resulting in a dataset of 1904 videos
(out of an original 3453). For all other participants the distributions followed
similar patterns as shown in Figure 3, so we used these frame count cutoffs for
all participants.
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3.1.4 Phonemes

Neural networks can learn in many different ways. However, for this research, we
want our model to behave in a way that is useful for our goal of finding distinct
articulation patterns. In other words, we want the model to learn embeddings
that represent specific articulation properties from their corresponding words.
Therefore, we implemented a second data stream to nudge the model in this
direction. We did this by adding a one-hot encoding of the phonemic content of
the written word as additional input for the last linear layer. Furthermore, we
also incorporated the phonemic content of the word into a custom loss function,
again, to try to nudge the model into learning relevant features for our research.
To get the phonemic content of each word, we used the open-source nltk cmudict
library (Wagner, 2010). Consequently, every word that was not present in this
library had to be excluded from the dataset, leaving us with 1885 videos for
participant F1. Some of the other participants were left with more words (max
= 2225), some with much less due to errors in the data acquisition (min =
1219), however this did not impact the current study as we only needed small
sets (< 650) of words for all participants other than F1 (see Section 2.5).

Much like the variability in video length, there is also a variability in word
length, and more specifically, phoneme count. In our second data stream we feed
the model extra information about the phoneme content. We do this by one
hot encoding the phonemes present in the label. This means that each phoneme
has an index and whenever that phoneme is present, the value of that index is
1 and all others are 0. Given that we have 39 phonemes, a word comprised of 5
phonemes would have a one hot encoded vector of 5 x 39, with 5 of those cells
being 1 and all others being 0. However, not all words have 5 phonemes and
our models can not deal with this variability. Therefore we also applied padding
for the phoneme content. The word with the highest number of phonemes in
the used data of F1 had 13 phonemes for the 3D-CNN and 15 phonemes for
the ConvRNN. This meant that all other phoneme one-hot encodings had to be
padded to this maximum count. We did this in the same way as we did for the
videos, padding with all zeros, to the left and the right sides equally.

3.2 Model training

During training of both convolutional (3D-CNN) and RNN (ConvGRU) models
we used a learning rate of 0.001. For the optimizer we used the Adam optimizer
as described by Kingma and Ba (2014), and to prevent overfitting we used a
weight decay of 10−8. The models were implemented using Pytorch (Paszke
et al., 2019) and trained on a single GPU (NVIDIA GeForce RTX 2080 Ti).
We randomly divided the data into three datasets, the training set, validation
set and the test set using a 80/10/10% split. The data points in the training
set were used to train the model in batches of size 10. To minimize overfitting,
we implemented an early stopping technique. After each epoch, i.e. when
all training data points have been used to update the model’s parameters, the
model is validated on the data points in the validation set. If the updated model
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performs better on the validation set than all other models in previous epochs,
it is saved as the best performer so far. After the last training epoch is finished,
the model that performed the best on the validation set at any given epoch is
used for further purposes. Importantly, even though the validation set is not
used to update the parameters of the model, we do use it to select the best
performing model and therefore introduce bias towards it. To assess how well
the model generalizes to unseen data, we compute its performance on the test
set. Hence, throughout the Results and Discussion sections, when we describe
model performance we refer to its performance on the test set only.

3.2.1 Custom loss function

We want our model to learn in a way that is relevant for our research. To nudge
the models in the right direction, we used linguistic features of the words, more
specifically the phonemic content, as proxies for the articulation information
inside a custom loss function. The standard way to use an autoencoder for
representation learning is to simply use the difference, the Mean Squared Error
(MSE), between the input and the reconstructed output as the loss during the
training phase. In addition, our custom loss function will use the phonemic con-
tent of the labels, more specifically the differences in phonemic content between
words, to further adjust the parameters of the model. Formally, our custom
loss function is as follows, with R being the standard reconstruction MSE, w a
weight and P the custom loss component based on the phonemic Levenshtein
distances between data points in the batch:

CustomLoss = R+ w ∗ P (1)

The classic Levenshtein distance gives a metric of difference between two strings
of letters (Levenshtein et al., 1966). It basically counts how many operations
it has to take to transform the first string into the second string and returns
that number as their distance. We slightly adjusted this method to work on
a list of phonemes instead of a string of characters, creating the Phonemic
Levenshtein Distance (PLD). For every batch during training, a phonemic Lev-
enshtein distance matrix is generated based on the labels of the data points in
the batch. Additionally a Euclidean distance matrix is generated based on the
embeddings in the bottleneck layer generated during the reconstruction of each
data point. Then the MSE loss is calculated between the two distance matrices,
multiplied by a weight and added to the standard reconstruction loss R to cre-
ate CustomLoss. From now on, we will refer to w as the Custom Component
Weight (CCW).

3.3 Model architectures

3.3.1 2-Dimensional Convolutions

Convolutional Neural networks use a convolutional function to reduce the re-
quired number of parameters compared to fully-connected operations. In fully-
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connected layers, each node is directly connected to all other nodes in both the
preceding and the following layer. When using fully-connected layers with our
data, connecting our input layer, which is 48 × 44 × 20 in size to only one
neuron, would require 48 × 44 × 20 = 42240 connection weights. Assuming we
will need a lot more than one neuron for the processing of our data, the number
of parameters can quickly become infeasibly large.

Inspired by the observations of Hubel & Wiesel on the visual processing of
cats and monkeys (Hubel and Wiesel, 1962, 1968), it was found that in computer
vision, it is more efficient to look at local regions of an image instead of using
fully-connected layers on the entire image (Fukushima and Miyake, 1982). In
other words, nodes of the next layer will only get inputs from a small part of
the image in the previous layer. By mapping nodes of the next layer to only
small windows of nodes in the previous one, the number of parameters is greatly
reduced. As an example, let’s say we have an RGB image of (heigth × width ×
#colorchannels) = 64 × 64 × 3 in size and we want the next layer to have 32
× 32 nodes. If we use convolutions with windows of size 5 × 5, we will need (32
× 32) × (5 × 5 × 3) = 76800 parameters. If we would use a fully-connected
layer, we would need (64 × 64 × 3) × (32 × 32) = 12.582.912 parameters.

By shifting a window, called the kernel, over the original input image, a
convolutional function multiplies what it sees through this window with its
learned weights and summarizes it into one cell of a feature map before shifting
the kernel over to another part of the image to fill the next cell of the feature
map. Doing this for all local areas of the image effectively creates a set of
local filters. Multiple of these convolutional operations can be added on top of
each other, resulting in a stack of filters for each local region, similar to how
the hierarchical receptive fields are structured in the visual cortex of mammals.
Each filter can extract different features which means that a convolutional layer
is able to capture multiple features at a time for each local region. Formally,
the value of a unit at position (x, y) in the jth feature map in the ith layer,
denoted by vxyij , is given by Equation 2

vxyij = f

(
bij +

∑
m

Pi−1∑
p=0

Qi−1∑
q=0

wpq
ijmv

(x+p)(y+q)
(i−1)m

)
(2)

where f is an activation function, bij is the bias for that particular feature map
and m indexes over the set of feature maps in the ith layer that is connected
to the current feature map. Pi and Qi are the height and width of the kernel,
meaning p and q index the position within the kernel. wpq

ijm is the value at
position (p, q) of the kernel connected to the kth feature map (Ji et al., 2012).

3.3.2 3-Dimensional Convolutions

Our data consists of videos, which are 3-dimensional. In addition to the two spa-
tial dimensions there is also a time dimension. Hence we need our convolutional
model to also be able to capture dependencies on the time axis. Traditional
2D convolutions applied to videos, are not able to capture motion continuity or
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Figure 4: 3D-CNN architecture

other temporal correlations which makes them inadequate for the processing of
videos (Budden et al., 2017; Tran et al., 2015). By extending the convolutional
operation to a 3-dimensional convolution, the output of the convolution will pre-
serve the temporal relations present in its input (Zhao et al., 2019; Al-Hammadi
et al., 2019). A 3D convolution is performed by convolving with a 3D kernel
over the 3D input data cube created when we stack images into a video. This
means that the feature maps in the convolutional layer are connected to multiple
contiguous frames in the previous layer, therefore also capturing dependencies
over the third dimension. Formally, the value of a unit at position (x, y, z) in
the jth feature map in the ith layer, denoted by vxyzij , is given by Equation 3

vxyzij = f

(
bij +

∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)
(3)

where Ri is the size of the 3D kernel in the third dimension and wpqr
ijm is the

(p, q, r)th value of the kernel that is connected to the mth feature map in the
previous layer (Ji et al., 2012).

3.3.3 3D-CNN AE Architecture

Our architecture is shown in Figure 4 where green represents the encoder, yellow
the bottleneck layer, orange the decoder and purple the phoneme data-stream.
For the encoder and decoder of the model, we took inspiration from the works
of Yu et al. (2021). In addition, we used a second data stream and a linear layer
to combine the two data streams into one vector. This way, we can combine
the one hot encoded phonemic content with the condensed input and condense
it further to a vector of arbitrary length.

The encoder condenses the input through four convolutional layers and two
max pooling layers, going from dimensionality (20× 48 × 44) to (16 × 9 ×
8). The output of the encoder and the phonemic data are then flattened to a
1-dimensional vector and fed into a linear layer condensing it further to a vector
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of size 100. Another linear layer transforms it back into a 1 dimensional vector
of size 1152 and then reshapes it to the required input size of the decoder (16
× 9 × 8). Then all operations of the encoder are ”reversed” in the decoder
by application of transposed convolution instead of the standard convolution.
Transposed convolutions work by swapping the forward and backward passes of
a standard convolution (Dumoulin and Visin, 2016). Where a standard convolu-
tion summarizes what it sees through its window of size x × y into one cell, the
transposed convolution expands what it sees in the one cell towards a window
of size x × y.

3.4 Convolutional Recurrent Neural Network

Recurrent Neural Networks (RNN) are networks where connections between
nodes can create cycles. Because of these cycles, the derivative of each node is
dependant on all earlier nodes, effectively allowing the cell to have memory (also
called the hidden state of the cell). Furthermore, since this chain dependency
can be arbitrarily long, a RNN allows for an arbitrarily long input sequence.
This is particularly interesting for our research as it will allow us to circumvent
the problem of padding. However, the longer the input sequence, the harder
the model will be to train (Bengio et al., 1994). This effect is also known as
the vanishing gradients problem. This problem arises due to the fact that when
you apply the chain rule for the gradient calculation during training, you are
multiplying small numbers (numbers between 1 and -1) with each other, result-
ing in even smaller numbers. As the size of the input sequence increases, and
thus the number of multiplied small numbers increases, the gradients become
so vanishingly small, that the model is effectively prevented from updating its
weights. To combat the vanishing gradients problem, the principal of gates was
proposed. These gates control what information is kept and what information
gets forgotten. The most popular architectures incorporating the gated principal
are the Long-Short-Term Memory cell (LSTM) (Hochreiter and Schmidhuber,
1997) and the Gated Recurrent Unit (GRU) Cho et al. (2014). After brief ex-
perimentation we decided to use the GRU in this study, given that they provide
a simpler architecture, require less memory, are easier to train and some existing
work indicates that GRUs may lead to better performance compared to LSTM’s
Amiriparian et al. (2017).

3.4.1 Gated Recurrent Unit (GRU)

The GRU was originally proposed by Cho et al. (2014). A GRU cell incorporates
two gates, the update gate zt and the reset gate rt to control the flow of informa-
tion, allowing the network to adaptively capture dependencies on different time
scales. The reset gate helps capture short term dependencies and the update
gate helps capture long term dependencies. The activation ht of the GRU is
defined by the following equations, where ⊙ is an element-wise multiplication
and σ a sigmoid acitvation function:
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zt = σ(Wzxt + Uzht−1), (4)

rt = σ(Wrxt + Urht−1), (5)

h̃t = tanh(Wxt + U(rt ⊙ ht−1)), (6)

ht = (1− zt)ht−1 + zth̃t (7)

The update gate zt decides to what degree the unit updates its hidden state.
The reset gate rt decides when information from previous states will be forgot-
ten. When rit in a unit is close to 0, it forgets the previously computed state,
effectively resetting the unit’s memory making it act as if the current sequence
is the first sequence it has seen. h̃t is the candidate activation, ht is the final
activation after incorporating the information from the update gate.

3.4.2 Convolutional GRU

GRUs were originally proposed for machine translation and use fully-connected
layers to model the input to hidden and hidden-to-hidden transitions. In our
research however, we are working with video frames, and therefore prefer con-
volutional operations. Combining convolutional mappings with standard GRUs
becomes problematic quickly as convolutional mappings are 3D tensors, leading
to an explosion in parameter numbers due to the fully-connected matrix. To
combat this, Ballas et al. (2015) proposed the Convolutional GRU (ConvGRU).
The ConvGRU cell is similar to the standard GRU cell but replaces the fully-
connected matrix multiplications with convolutional operations. The activation
ht of the ConvGRU is defined by the following equations, where ∗ denotes a
convolutional operation, ⊙ is an element-wise multiplication and σ a sigmoid
acitvation function:

zt = σ(Wz ∗ xt + Uz ∗ ht−1), (8)

rt = σ(Wr ∗ xt + Ur ∗ ht−1), (9)

h̃t = tanh(W ∗ xt + U ∗ (rt ⊙ ht−1)), (10)

ht = (1− zt)ht−1 + zth̃t (11)

3.4.3 ConvGRU AE architecture

The ConvGRU architecture we used in this study is shown in Figure 5. For
the overall architecture, we took inspiration from the works of Chong and Tay
(2017). Similar to Chong and Tay, we used 2-layer 3D-CNN’s to condense the
input before feeding it into the encoding RNN layer. Contrary to Chong and
Tay we used two RNN layers instead of three and used ConvGRU cells instead
of ConvLSTM cells. Furthermore, after each element of an input sequence has
gone through the encoding GRU cell, the hidden state of the cell which has
size (32 × 11 × 11) is flattened and concatenated with the flattened one-hot
encoded phonemes of the label into a 1 dimensional vector of size 4457 which
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Figure 5: ConvGRU architecture

is then used as input to a linear layer that condenses it to a vector of length
100. This vector is then brought back to a vector of size 3872 after which it is
reshaped to the size of the hidden state of the decoding GRU cell (32× 11 ×
11). Thus, the hidden state of the last time point of the encoding GRU cell is
condensed into the bottleneck representation and then reshaped back to be the
hidden state of the decoding GRU cell at the first time point.

3.4.4 Batching

We trained our models in batches of 10. Training in batches means that the
gradients are computed over a small set of data points rather than for every
data point separately. Not only does this speed up the training process, taking
multiple data points into account during computation may help to smooth out
the gradient (Breuel, 2015).

The main advantage of a RNN is that it can deal with varying length inputs.
However, when training the model in batches, the items within a batch are still
required to be of the same size. This problem can be dealt with in three ways:
(1) padding, (2) using a batch size of 1 or (3) forcing equal-sized batches. Since
we chose to use a RNN to escape the costs of padding, we decided against using
padding. Using a batch size of 1 effectively means that the model updates its
weights after every training instance. Not only does this make training a lot
slower, it prevents us from using our custom loss component. The custom loss
component requires the batch size to be larger than 1 since it compares the
relative distances between the instances of a batch. Therefore, we went with
the third option, forcing equal-sized batches.

By forcing equal-sized batches, we mean enforcing that whenever one item in
a batch is of size x, then all other items also have to be of size x. We did this by
dividing the data into groups based on their sequence length. During training,
batches are extracted from a random group (without replacement). When all of
the instances of a group are used up, it will be flagged as empty and will not be
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a candidate for subsequent extraction. When all groups are empty, the epoch is
finished and the groups are reinitialised and randomly shuffled within groups.

3.4.5 Parameter optimization

After training a 3D-CNN or ConvGRU model, we input all the words in our
datasets (train, validation and test sets), to extract the embeddings from the
bottleneck layer. Before clustering the embeddings, we need to determine their
quality. Our models effectively have two target functions. The first is the
reconstruction of the original video. It is easy to quantify the error between the
original image and the reconstructed image, allowing active penalization for any
deviations from that function. In contrast, there is no straightforward metric
to asses the quality of the learned embeddings. We want our model to learn
representative feature vectors for the articulation pattern of each word. Without
a quantifiable assessment metric, we can not actively penalize the model for
deviating from this target. Not having a ground truth to compare the learned
embeddings with, makes it difficult to know whether the model actually learned
relevant embeddings or not, so the best thing we can do is approximate the
quality by correlating the embeddings with proxy metrics. We used two different
proxy functions: the PLD matrices and the EMA matrices.

First, we generate Euclidean distance matrices for each group of identical
syllable counts based on the embeddings generated by the model (every group
should only contain members with the same number of syllables due to how
the EMA matrices are structured). Then we compute the correlation of these
Euclidean distance matrices per syllable count with the corresponding PLD
and EMA distance matrices. The CCW that produced the model with the best
correlations, and is thus expected to have the highest quality embeddings, will
then be used for clustering.

We use the correlation with the PLD distance matrix because we have in-
corporated the Phonemic Levenshtein information in the custom loss function.
By correlating the embeddings with the PLD matrices, we can get an insight
in the extend to which the phonemic information has been incorporated in the
embeddings. A very low correlation would mean that the embeddings do not
represent any phonemic information. A very high correlation would mean that
the embeddings effectively mirror the phonemic information. We are looking
for correlation values somewhere in between as low correlations mean that the
addition of the phonemic information has been redundant and high correlations
mean that we are basically using the phonemic levenshtein matrix as embedding,
thus making the autoencoder redundant. The PLD correlation metric also gives
us an insight in how different values for CCW influence the generated embed-
dings. If the PLD correlation is too low we would want to increase the weight,
and if the PLD correlation is too high we would want to lower the weight.

Secondly, we need to make sure that the learned embeddings not only cap-
ture linguistical features, but also capture meaningful information about the
words articulation. For this we evaluated how well the learned embeddings cor-
related with the articulation data collected with EMA. The EMA matrices are
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provided by a colleague who performed clustering of articulation patterns us-
ing Electromagnetic Articulography (EMA) data, instead of MRI. We use these
correlations as an approximation of how close the difference between learned
embeddings is to the difference in EMA profiles across words. Taken together,
we are looking for model embeddings that have intermediate levels of correlation
with the PLD matrices and high correlation with the EMA matrices.

We will start training both architectures with a CCW of 0, giving us the
embeddings generated by the vanilla MSE loss. Then we start training the
architectures with a CCW of 1.0E-6. If we don’t see significant PLD correlations
we increase the CCW by a factor of 10 and try again. Seeing an increase in PLD
correlation indicates that the custom component of the loss function is starting
to have an effect. From the point that we see an increase in PLD correlation we
start increasing the CCW with smaller increments until the EMA correlations
start to drop.

3.5 Cross participant transferability

Due to time restraints, it is not feasible to perform an in depth parameter opti-
mization for each participant separately. Therefore, we will do the optimization
steps discussed in the previous section for participant F1 only. When we have
determined the optimal parameters for F1, we investigate the degree of trans-
ferability of the model to the other participants. We will do this by first testing
the model trained on the F1 training set on the test sets of the other partic-
ipants. This will give us an idea of how well the model generalizes to unseen
facial structures.

It is hard to gather as much words as Narayanan et al. (2014). Therefore,
it would a valuable asset if a pre-trained model would only need a small set of
words to be fine-tuned for a new participant. Therefore, we will investigate how
many words are needed to fine-tune our model to a new participant. We will do
this by fine-tuning the best performing model M that was trained and tested on
the train set trf1 and test set tef1 of participant F1, on train sets of increasing
size of the other participants tro. First, we train M on tro for 20 epochs and
then the fine-tuned model is tested on the test set of the other participant teo.
We start with a fine-tune set of size 100 and iteratively increase it by 100 until
it is of size 500.

3.6 Embedding space quality

To get an insight in the quality of the embedding space itself we will calculate
some properties of the space: the Average Duplicate Distance (ADD), Average
Duplicate Ending Distance (ADED) and Average Duplicate Beginning Distance
(ADBD). The ADD represents the average Euclidean distance between dupli-
cate labels within the embedding space. As duplicate labels represent multiple
articulations of the same word, these data points should be close to each other in
the embedded space. The ADED represents the average Euclidean distance be-
tween labels that end with the same 2 phonemes and the ADBD represents the
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average Euclidean distance between labels that begin with the same 2 phonemes.
We then divide these metrics with the Average Non-duplicate Distance (AND),
which represents the average distance between any non-duplicate pair, to scale
our metric values compared to the non duplicate words. Through this compar-
ison we can get an insight in how similar words are distributed over the space
compared to dissimilar ones.

3.7 Clustering

Dividing a set of data points into a set of clusters is a difficult computational
problem. Inspecting every single cluster combination quickly becomes infeasible
as the number of data points increases. Over the years, many cluster algorithms
have been proposed that avoid using brute force techniques in order to save
computational time. For our research we will use the K-means algorithm.

The K-means algorithm partitions N objects, each having P features into
K classes (C1, ..., CK) where Ck is the set of nk objects in cluster k. To avoid
using brute force, the K-means algorithm uses an iterative approach in which it
tries to partition the data so that the squared Euclidean distance between the
row vector for any data point and the centroid vector of its respective cluster
is at least as small as the distances to the centroids of the remaining clusters
(Steinley, 2006). The centroid of a cluster ck is found by averaging each variable

over the objects within the cluster. E.g., the centroid value x̄
(k)
j is given by:

x̄
(k)
j =

1

nk

∑
i∈Ck

xij (12)

The K-means algorithm finds the clusters in the following 4 iterative steps:

1. K initial seeds (S1, ..., SK) are defined by P -dimensional vectors (sk0 , ...,
skP ) and the squared Euclidean distance between the ith object and the
kth seed vector, d2(i, k) is given by:

d2(i, k) =

P∑
j=1

(xij − s
(k)
j )2 (13)

Each object is allocated to the cluster for which d2(i, k) is the lowest.

2. After the initial object allocation, the cluster centroids are obtained with
Equation 12. Then each object is moved to the cluster which centroid is
closest (using d2(i, k)).

3. Cluster centroids are recalculated with the updated set of members.

4. Step 2 and 3 are repeated until no object can be moved between clusters
anymore.
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After generating the clusters, we find the center point of the clusters in the
embedding space. Than we find the data point that is closest to the centre and
mark this point as the representative of the cluster. Since we want to find the
20 most distinct words we used K = 20, resulting in 20 clusters.

3.8 Assessing cluster quality

As mentioned in the previous section, a set of data points can be clustered in
many different ways. In our case, we want the clusters to represent similarities
in articulation patterns. To evaluate our clusters we introduce the following
metrics: the Separated Duplicates (SD), Average Character Count Difference
(ACCD) and Average Levenshtein Difference (ALD) within and outside of the
clusters. The SD score represents the percentage of duplicates that were not
assigned to the same cluster. As duplicate words have the same articulation
pattern, we want them to be clustered in the same cluster and thus we want the
SD score to be as low as possible.

The ACCD represents to what extend words of similar length are grouped
together. The ACCD is computed as follows: for each cluster c, the character
count difference is calculated between every member mc and the representative
of the cluster rc, and the average is taken. Then, for every member of every
other cluster mo, the character count difference is calculated compared to rc.
We do this for each cluster resulting in 2 lists of 20 average character count
differences, one for the members within the clusters and one for the members
outside the clusters. Then we apply a Wilcoxon test between the two lists. A
Wilcoxon test is used to compare two groups and see whether they are signif-
icantly different from each other (Wilcoxon, 1945). The ACCD score will give
us an insight in how words with different lengths are distributed over the clus-
ters. If the within ACCD score is lower than the outside ACCD score, we know
that members within a cluster are more similar in size than those outside of the
cluster, indicating that the clustering has taken word length into account.

In a similar way we will compute the ALD score. The ALD score represents
to what extend words with similar phoneme content are grouped together. For
each cluster c, the phonemic Levenshtein difference is calculated between every
membermc and the representative of the cluster rc, and the average is taken. We
again do this for each cluster and apply a Wilcoxon test. The ALD score will give
us an insight in how similar words in their phonemic content are distributed over
the clusters. Similar to the ACCD score, a low within ALD score compared to
the outside ALD score will indicate that words within a cluster are phonemically
more similar to those outside of the cluster, indicating that the clustering has
taken the phonemic content into account.
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(a) 40 loss (b) 100 loss (c) 300 loss (d) 500 loss

Figure 6: Examples of some reconstructed frames for participant F1 with dif-
ferent accuracy’s on the test set. The top row represents the original input,
the middle row represents the corresponding reconstructed output. The bottom
row represents the difference between the top and middle row per pixel

4 Results

4.1 Reconstruction accuracy

Both the 3D-CNN and the ConvGRU models were able to reconstruct well. The
3D-CNN took around 60 minutes to train 100 epochs, and the Conv-GRU about
45 minutes. The best performing 3D-CNN model for participant F1 achieved
an average reconstruction loss of 28 on the test set and the best performing
ConvGRU model a reconstruction loss of 7. The addition of the custom loss
component did not have a large impact on the reconstructive capabilities of the
models. The test loss fluctuated within a range of 30 points for different CCW’s
for both the 3D-CNN and ConvGRU. This means that all models reported in
this section are well within an acceptable range of reconstructive accuracy (see
Figure 6 for reference to what different loss values imply)

Thus, the ConvGRU model achieved a test loss that was on average four
times lower than the 3D-CNN. On top of this, the test loss for the 3D-CNN
models are calculated over both padded and non-padded frames. Since padded
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frames, are generally easier to reconstruct, the reconstruction loss on only the
non-padded input frames will be slightly higher than what is reported for the
3D-CNN. As the ConvGRU does not use padding, it does not suffer from this
phenomenon. Therefore, the gap in reconstructive performance between the two
architectures is slightly higher than the numbers would suggest.

4.2 Parameter optimization

Weight: 0 Weight: 0.1 Weight: 0.5 Weight: 1

Test loss: 28 Test loss: 55 Test loss: 42 Test loss: 50

syl r p syl r p syl r p syl r p

1 0.135 0 1 0.149 0 1 0.381 0 1 0.632 0
2 0.094 0 2 0.131 0 2 0.709 0 2 0.883 0

PLD 3 0.052 3.8E-18 3 0.180 7.7E-205 3 0.561 0 3 0.720 0
4 -0.031 0.244 4 0.054 0.043 4 0.367 3.9E-45 4 0.573 6.8E-121
5 0.004 0.970 5 0.175 0.125 5 0.421 1.2E-4 5 0.576 3.4E-8

1 0.042 3.2E-41 1 0.098 2.7E-193 1 0.121 1.8E-296 1 0.123 2.3E-305
2 0.077 3.0E-88 2 0.087 2.2E-102 2 0.068 4.1E-64 2 0.0457 1.0E-29

EMA 3 0.015 0.164 3 0.002 0.868 3 0.034 2.3E-3 3 0.079 2.1E-12
4 0.046 0.327 4 0.048 0.351 4 0.182 3.7E-4 4 0.096 0.061
5 0.126 0.464 5 0.186 0.278 5 0.427 9.4E-3 5 0.711 1.0E-6

Weight: 1.5 Weight: 2 Weight: 5 Weight: 10

Test loss: 64 Test loss: 60 Test loss: 48 Test loss: 43

syl r p syl r p syl r p syl r p

1 0.641 0 1 0.611 0 1 0.957 0 1 0.975 0
2 0.866 0 2 0.840 0 2 0.646 0 2 0.967 0

PLD 3 0.759 0 3 0.690 0 3 0.830 0 3 0.905 0
4 0.590 7.7E-130 4 0.445 3.9E-68 4 0.666 1.4E-177 4 0.798 3.7E-305
5 0.654 8.4E-11 5 0.350 1.6E-3 5 0.397 3.2E-4 5 0.610 3.0E-9

1 0.103 6.4E-215 1 0.108 2.0E-239 1 0.081 4.8E-132 1 0.068 2.7E-95
2 0.049 2.4E-34 2 0.056 2.2E-44 2 0.014 4.2E-132 2 0.025 4.3E-10

EMA 3 0.039 4.6E-4 3 0.052 3.0E-6 3 0.037 1.1E-3 3 0.048 1.8E-5
4 0.094 6.7E-2 4 0.189 2.2E-4 4 0.080 0.121 4 0.042 0.413
5 0.570 2.8E-4 5 0.531 8.5E-4 5 0.578 2.2E-4 5 0.429 0.009

Table 1: Correlation values for the embeddings produced by the 3D-CNN model,
trained with different CCW’s, correlated with the PLD and EMA distance ma-
trices

Table 1 and 2 show the results of the embedding correlations for the 3D-
CNN and ConvGRUmodel respectively. Each model was trained with a different
CCW and correlated to both the PLD and EMA distance matrices. An increase
in PLD correlation can be observed as we increase the CCW for both the 3D-
CNN and the ConvGRU. However for the 3D-CNN the correlations seem to
decrease again after the CCW increases from 1 and for the ConvGRU when the
CCW increases from 0.006.

None of the 3D-CNN and ConvGRUmodels produced significant correlations
with the EMA data for words that have less than 5 syllables. For the 5-syllable
words however, we do observe significant correlations. For the 3D-CNN, when
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Weight: 0 Weight: 0.0001 Weight: 0.001 Weight: 0.002

Test loss: 30 Test loss: 11 Test loss: 7 Test loss: 7

syl r p syl r p syl r p syl r p

1 0.004 0.002 1 0.170 0 1 0.884 0 1 0.668 0
2 -0.009 5.5E-5 2 0.531 0 2 0.913 0 2 0.853 0

PLD 3 -0.007 0.187 3 0.569 0 3 0.831 0 3 0.812 0
4 -0.036 0.091 4 0.442 1.8E-106 4 0.714 0 4 0.732 0
5 -0.075 0.384 5 0.262 0.002 5 0.512 1.8E-10 5 0.558 1.8E-12

1 0.028 1.2E-17 1 0.011 0.001 1 0.037 1.6E-29 1 0.025 3.9E-14
2 0.006 0.136 2 0.011 0.004 2 0.012 2.7E-3 2 0.021 1.0E-7

EMA 3 0.015 0.163 3 0.018 0.099 3 0.041 1.8E-4 3 0.047 2.0E-5
4 0.005 0.914 4 -0.005 0.916 4 -0.018 0.694 4 -0.008 0.853
5 -0.114 0.405 5 -0.082 0.554 5 0.202 0.139 5 0.292 0.031

Weight: 0.004 Weight: 0.006 Weight: 0.008 Weight: 0.1

Test loss: 12 Test loss: 10 Test loss: 17 Test loss: 12

syl r p syl r p syl r p syl r p

1 0.918 0 1 0.878 0 1 0.852 0 1 0.476 0
2 0.937 0 2 0.923 0 2 0.903 0 2 0.693 0

PLD 3 0.826 0 3 0.839 0 3 0.816 0 3 0.748 0
4 0.738 0 4 0.767 0 4 0.716 0 4 0.703 0
5 0.737 1.4E-24 5 0.560 1.2E-14 5 0.670 4.6E-19 5 0.608 4.1E-15

1 0.042 1.4E-36 1 0.018 8.9E-8 1 0.018 4.8E-8 1 0.017 2.0E-7
2 0.013 8.4E-4 2 0.024 1.8E-9 2 0.009 0.003 2 0.01 0.01

EMA 3 0.043 7.9E-5 3 0.033 0.002 3 0.02 0.007 3 0.036 9.5E-4
4 -0.011 0.802 4 -0.004 0.933 4 -0.02 0.662 4 -0.04 0.417
5 0.302 0.025 5 0.4 0.025 5 0.261 0.054 5 0.238 0.08

Table 2: Correlation values for the embeddings produced by the ConvGRU
model, trained with different CCW’s, correlated with the PLD and EMA dis-
tance matrices

the CCW is 0 and thus not used, no significant correlation was found between
the embeddings and the EMA data (r=0.126, p=0.464) However, by adding the
custom component to the loss function, this correlation increases to a highly
significant correlation, in the case of CCW = 1 (r=0.711, p=1.0E-6). From
there it goes back down again to a lower but still significant correlation of
(r=0.429, p=0.009) for CCW = 10. For the ConvGRU, the EMA correlations
also increase from no significant correlation at CCW = 0 (r=-0.114, p=0.405)
to a significant correlation of (r=0.4, p=0.025) at CCW = 0.006. For higher
weights the correlations decrease again. Based on these results we decided to
use the following weights for the models used for the rest of the results: 3D-CNN
model with weight = 1 and ConvGRU model with weight = 0.006.

4.3 Cross participant transferability

So far, all the results were gathered on the data of participant F1 only. Now
we will show the results of the fine-tune experiments for the other participants.
Table 3 shows the results for the F1 optimized 3D-CNN and ConvGRU model
tested on all other participants.

For the 3D-CNN model, the initial test losses, thus without fine-tuning, on
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F2 F3 F4 F5 M1 M2 M3 M4 M5

3D-CNN
Without fine-tuning 370.41 403.26 309.81 273.92 530.79 450.91 388.76 346.84 640.66
After fine-tuning 82.79 88.55 80.43 72.3 66.63 76.74 84.57 84.1 122.98

ConvGRU
Without fine-tuning 58.37 77.17 51.06 54.09 49.03 82.51 60.45 46.10 101.56
After fine-tuning 14.37 16.74 12.79 11.19 8.78 13.79 10.88 12.03 22.23

Table 3: Test losses of models trained on F1, tested on other participants, before
and after fine-tuning with fine-tune set size = 500

the test sets of the other participants were quite poor with the best performance
seen on participant F5 (273.92) and the worst on M5 (640.66). However, fine-
tuning the model on small sets of data significantly improved performance.
Although for none of the participants the model achieved the same test loss as
it did on participant F1 (50), the performance did get below a loss of 90 for 8
out of 9 participants with participant M1 performing the best (66.63) and M5
the worst (122.98). For the ConvGRU we see that the initial test losses are a
lot lower than was the case for the 3D-CNN, with the best performance seen on
participant M4 (46.10) and the worst, again, on M5 (101.56).
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Figure 7: Test losses for the model originally trained on F1 and fine-tuned on
the other participants with increasing fine-tune set sizes

Therefore, the GRU model, on average, generalizes better across participant
without fine-tuning than the fine-tuned 3D-CNN models. After fine-tuning the
GRU models, 4 out of 9 participants achieved a test loss within 20 percent of
the original test loss on F1 (10) and one participant performed even better than
that (participant M1). The other participants did not get within 20 percent
of the original test loss but did get close with the worst being participant M5
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again with a test loss of only 22.23.
Figure 7a and 7b show the intermediate fine-tuning results for the 3D-CNN

and ConvGRU respectively. The blue line shows the mean values over all par-
ticipants and the shade borders show the maximum and minimum values. The
first thing to note is that the y-axis is of different scales. Not only did the
ConvGRU model achieve high performance with a fine-tune set size of 500, it
already showed good results with a fine-tune set size of 100. The addition of 400
extra fine-tune samples only decreased the mean loss with a few points. For the
3D-CNN the difference in performance between 100 and 500 fine-tune samples
is a lot bigger, indicating that the 3D-CNN model requires a larger fine-tune set
size than the Conv-GRU.

4.4 Quality of the embedding space

F1 Mean Median Std Min Max

3D-CNN
ADD 0.58 0.59 0.60 0.03 0.54 0.64
ADBD 0.97 0.96 0.96 0.01 0.95 0.97
ADED 1.03 1.02 1.02 0.004 1.01 1.03

ConvGRU
ADD 0.39 0.49 0.50 0.02 0.46 0.51
ADBD 0.94 0.95 0.94 0.01 0.94 9.96
ADED 0.99 0.99 0.99 0.01 0.96 1.00

Table 4: Quality metrics of the embedding space

To get a better idea of the quality of the embedding space, we calculated the
ADD, ADED and ADBD, which are shown in Table 4. As the parameters were
optimized for F1, we show the results for the F1 model separately. The other
metrics are the mean, median and standard deviations for the metrics across
all the fine-tuned models for each of the 10 participants. For the 3D-CNN
and ConvGRU, the average distance between a duplicate pair is around twice
as small as the average distance between a non-duplicate pair. This means
that words with the same label lay twice as close together in the embedded
space compared to words with differing labels. A similar but smaller relation is
observed for the ADBD, meaning that words with similar beginnings lay slightly
closer to each other than words with different beginnings. The ADED score tells
us that words that have similar endings do not lay closer to each other than
words with different endings. One more thing to not is that the devation across
participants is very low, indicating that the quality of the embedding space
generalizes over participants.
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4.5 Clusters

We used the t-SNE algorithm following the guidelines set by Wattenberg et al.
(2016) to create a 2-dimensional visualization of the 100-dimensional embedding
space generated by the models trained on F1. In this 2-dimensional space, we
coloured the data points based on what cluster they were assigned to by the
Kmeans algorithm and labelled the cluster representatives. The results of the
3D-CNN and ConvGRU are shown in Figure 8a and 8b respectively.
We can see how the data points do not form perfect clusters but that the color
assignment is not random either. Additionally the cluster representatives can
be seen in the legends of the two plots. We can see how the clusters generated
by the 3D-CNN model produce one duplicate representative pair (OUT(2) and
OUT(4)). The clusters generated by the ConvGRU do not contain a duplicate
representative pair. Because the t-SNE algorithm makes various adjustments to
enable the mapping of the high-dimensional space to a 2D representation, this
2D-representation should be interpreted with caution. Therefore, we addition-
ally provide the SD, ACCD and ALD score in Table 5.

Score Wilcoxon statistic Wilcoxon p

3D-CNN
SD 0.293 - -
ACCD 0.503 9 6.2E-5
ALD 0.989 70 0.202

ConvGRU
SD 0.106 - -
ACCD 0.503 6 2.7E-5
ALD 0.946 32 0.004

Table 5: Quality metrics of the clusters generated by the two models

The SD score is a value between 0 and 1 which can be interpreted as the percent-
age of separated duplicate pairs out of all duplicate pairs. The ACCD and ALD
scores are reported as the within score divided by the outside score. Therefore,
a value below 1 indicates a smaller difference between members within the same
cluster compared to those outside and a value above 1 indicates a larger differ-
ence between members of the same cluster compared to outside. Additionally
the results from the Wilcoxon test are shown for both the ACCD and ALD com-
parisons between within cluster and outside cluster averages. The results show
that the clusters generated by the ConvGRU model outperform the 3D-CNN.
The SD score of the 3D-CNN shows that almost 30 percent of the duplicate
pairs are seperated in different clusters compared to only 11 percent for the
ConvGRU.

The ALD score for the 3D-CNN is only slightly lower than 1 indicating that
the phonemic content of the words are distributed across clusters instead of
within. This is further shown by the results of the Wilcoxon test which, with a
p-value of 0.202, does not produce a p-value below 0.05 meaning we cannot reject

27



(a) 3D-CNN cluster space

(b) ConvGRU cluster space

Figure 8: t-SNE visualization of the embedding space for the 3D-CNN and Con-
vGRU respectively. Data points are coloured based on their cluster membership
and cluster representatives are labelled
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the null-hypothesis that the phonemic Levenshtein distances between clusters is
equal. For the Conv-GRU we see a lower ALD score of 0.946 which indicates a
higher seperation of phonemic content across clusters compared to the 3D-CNN.
This is further shown by the results of the Wilcoxon test which results in a p-
value of 0.004 which is lower than 0.05 meaning we can accept the alternative
hypothesis that the phonemic Levenshtein distances between clusters are not
equal in a statistically significant way.

The ACCD score is equal for both models at 0.503 which is a lot lower than
1. This indicates that words within a cluster are on average twice as close to
each other in length as words outside of their cluster and therefore indicates
that word length is a big separating factor (this can also be observed in the
visualizations of Figure 8a and 8b). The results of the Wilcoxon tests further
show that this relation is highly significant in both the 3D-CNN and Conv-GRU
with values of 6.2E-5 and 2.7E-5 respectively.

5 Discussion

We have seen that a ConvGRU autoencoder architecture creates a higher qual-
ity embedding space and higher quality cluster space and is therefore better
suited for the purpose of creating word embeddings than a 3D-CNN archi-
tecture. Therefore, going forward, convolutional recurrent models should be
used over solely convolutional ones when generating embeddings from spoken
word sequences. Furthermore, we have seen that the combination of a second
datastream of phonemic content and a custom loss function incorporating the
relative PLD of the items in each batch, resulted in a more interpretable embed-
ding space. Model performance did not differ substantially across participants,
suggesting high generalizability across healthy people, which further suggests a
generalizability to people with LIS. We found 20 clusters in the embedding space
of participant F1, and saw how the representatives did not include duplicates or
multiple similar words and were ordered on length across the embedding space.
Therefore, for further research on direct word encoding using BCIs, we recom-
mend using the representatives of the 20 clusters generated by the ConvGRU
model trained on participant F1 which can be found in Table 6. Our findings
suggest that these 20 words should provide BCI applications the most reliable
decoding while still providing 20 degrees of freedom for the user.

5.1 Data quality

The transcriptions included in the USC-TIMIT dataset unfortunately suffered
from accuracy problems. During our research we primarily focused on the tran-
scriptions of participant F1, and to the best of our guess we approximate that
an error occurred in the transcription of between 2 to 5% of the words. This
means that some words are cut off early, some words are cut off late and some
words have a completely different label. Furthermore, from quick inspection
of the other participants’ transcriptions, we found similar issues and therefore
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Figure 9: Example of a clean frame (left) and noisy frame (right) of participant
M5

expect this to be a dataset wide problem. We did make an effort to create
our own transcriptions, but without luck. Unfortunately, our transcriptions
also suffered from mistakes in around the same percentage range as the origi-
nal transcriptions. This was probably caused by the poor quality of the sound
files, which were recorded within the noisy environment of an MRI machine.
Therefore we decided to go with the original transcriptions and accept the 2-5%
noise. Additionally to the transcription noise, some of the participants included
noisy capture quality, especially participant M5. As can be seen in Figure 9,
occasionally the frames of a video would contain strange circular patterns. This
could explain why the models fine tuned on participant M5 produced such poor
results compared to the other participants. Therefore, for further research we
would suggest using transcriptions that were manually transcribed making sure
that every word contains all the appropriate frames and no more than that.
Furthermore, we would suggest further research using this dataset to exclude
the data of participant M5 due to the reduced capture quality.

For further research on direct word decoding, we would suggest using MRI
videos of single spoken words only. The data used for this research consisted of
broken down sentences which will be effected by coarticulation. Coarticulation
arises when multiple words are spoken in quick succession where the endings of
the previous word and beginning of the next somewhat morph in to each other
during articulation. This can result in the articulated phonemes not exactly
corresponding to the phonemic content of the words. Therefore, there is an ex-
pected factor of noise between the phonemic datastream, where the phonemic
content was determined on the string of the word only, and the actual articu-
lated phonemes by the speaker. Moreover, the ADBD and ADED scores could
potentially have been affected by coarticulation. It is hard to quantify the ex-
act effect coarticulation has had on the word embeddings, but to exclude it all
together, we advise further research to use data of single spoken words only.
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Figure 10: Average contribution to loss per frame position for the 3D CNN
model trained with CCW = 1

5.2 3D-CNN vs. ConvGRU

We have seen that both deep learning architectures were suitable for use in an
autoencoder framework to condense rtMRI videos of word articulation into a
representative vector of 100 values and then reconstruct it back into the orig-
inal input with acceptable accuracy. However, we have seen that purely on
reconstruction accuracy, the ConvGRU achieved a loss 4 times as low as the
3D-CNN. Furthermore, we have seen that, following our proposed metrics, the
quality of the cluster space was higher for the ConvGRU compared to the 3D-
CNN. The most likely explanation for the underperformance of the 3D-CNN
model is the necessity of padding. Although a necessity, this padding comes
with a cost. This cost is illustrated in Figure 10. This figure shows the average
reconstruction error for each frame position of a video. We can see a concave
pattern in the average loss contribution for each frame position. This can be
explained by the fact that the videos were padded from the centre outward, so
the more left/right a frame is, the more often this frame will have been padded.
It is worth noting that the average is taken only over the frames that were not
padded i.e. when a video only had 14 frames, the three left most and three
right most frames were excluded from the calculation of the average. The big
spike in the first position might be explained by the fact that whenever a video
had an odd amount of frames, the left was padded one more than the right.
Therefore, videos with 19 frames would only have a padded frame on the left
side. Because we see this concave pattern, short sequences will have a higher
reconstruction accuracy than longer sequences. This means there is a perfor-
mance bias for shorter sequences which could be the explanation for why the
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3D-CNN performed worse than the ConvGRU.

5.3 Phonemic information

We have seen that adding a second datastream of phonemic content and a
phonemic Levenshtein custom component to the standard loss function had a
significant positive effect on the learned embeddings. We saw that without
the custom loss component, the models learned embeddings that did not cor-
relate with either phonemic information (PLD), nor articulatory information
(EMA). By adding the custom component, and thus adding PLD information,
we did not only see an increase in PLD correlation, but also in EMA correla-
tion. This suggests that adding phonemic information to the model made it
produce embeddings that better resembled the articulation patterns. On top of
the custom loss component, the phonemic datastream was also of importance.
During experimentation without this second datastream, some correlation could
be observed between the embeddings and the PLD but no model achieved higher
correlations than r=0.2 on the PLD matrices and no model achieved any signif-
icant correlation with the EMA matrices.

This indicates that the model needs both the phonemic datastream and the
loss function to produce the right embeddings. This could be explained by the
fact that although both additions provide the same phonemic information, they
do it in different ways. The phonemic datastream provides information about
the phonemic content of the word itself. The custom loss component provides
phonemic information relative to other words. Therefore, the combination of the
two allows for each data object (word) to have knowledge about what phonemic
content it possesses itself and how that content relates to the content of the
data objects around it.

5.4 Embedding space

Despite the embeddings of the 3D-CNN producing higher correlations with the
EMA data, words with the same label were on average farther apart than those
in the ConvGRU embedding space, but not by much. Furthermore, words with
identical beginnings (ADBD) and identical endings (ADED) lay on average al-
most equally far apart in the embedding spaces of both architectures. Therefore,
it is hard to determine which architecture produced the highest quality of em-
beddings. Looking only at the participant which was optimized, we can say
that the ConvGRU model outperformed the 3D-CNN model. However when
we take the fine-tuned models of all other participants into account the two
architectures seem to generate embeddings of similar quality.

Furthermore the results of the ADBD and ADED seem to suggest that the
last part of a word has less influence on the differentiability between two words
than the first part of a word. For both the 3D-CNN and ConvGRU, the ADBD
is lower than the ADED. This means that words with similar beginnings are
closer to each other in the embedding space than words that have similar end-
ings. Although the differences are not large, they could suggest an interesting
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relation between articulation differentiability and character position within the
word, namely that the characters at the beginning of a word provide more char-
acteristic features than those at the end. This could potentially be of use in
the decision process of what words to use in a BCI application as these findings
suggest that the focus should be more on words with distinct beginnings than
distinct endings. However, more research is needed to determine the extend of
this relation.

5.5 Generalizability

We have seen that the models used, especially the ConvGRU architecture, have
a high degree of transferability across different participants, both within and
outside of the same gender. We saw how the ConvGRU model trained on the
train set of participant F1 was able to achieve good test accuracy’s on test sets of
other participants without any fine-tuning despite the differences in their facial
anatomy (see Figure 2). Furthermore, we saw that it only takes a small amount
of data to fine-tune the Conv-GRU model to achieve similar performance on
other participant as it did on the test set of the same participant that it was
trained on. In practice this will mean that this approach can easily be applied on
multiple different participants. Instead of having to gather thousands of words
to train a new model for every participant, we only need to have a pre-trained
model and gather a small set of words per participant (around 100 samples).
Therefore, the neural network approach covered in this research can provide an
important addition to the articulation pattern research. Where the clustering
of EMA data suffers from the necessity of padding and a lack of transferability
across participants, the ConvGRU approach can provide a useful alternative as
it does not suffer from these issues.

One disadvantage of the ConvGRU model however, is the phonemic infor-
mation datastream. This second datastream of phonemic content is hard coded
to the English language. The high generalizability across participants shows
promise to be generalizable across languages, however this is made difficult
by the phoneme data stream as it incorporates the one hot encoding of only
the 39 phonemes present in English. Other languages have different numbers
of phonemes, Dutch for example only has 35. However, Dutch also includes
phonemes that are not present in English. Therefore the one hot encoding of
the English phonemes can not simply be reused for a language such as Dutch
by padding the phonemes that are present in English but not in Dutch. The
phonemes that are present in Dutch but not in English also have to get their
spot in the one hot encoding. Thus, although the ConvGRU approach gen-
eralizes well over multiple people within the same language, to know whether
it can generalize across languages further research has to be done. A possible
solution could be to enlarge the one-hot encoded vector to be large enough to
accommodate the largest number of phonemes present in all languages of in-
terest and use padding for the languages that possess less phonemes. Another
potential solution could be to add one linear layer to the phoneme stream that
takes the one hot encoded phonemes of any given language as input and outputs
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the required size of the English one hot encoded phonemes.

5.6 Clusters

We have seen that the clusters generated by the ConvGRU model were of higher
quality than those generated by the 3D-CNN. Firstly, we saw how the 3D-CNN
model produced a duplicate representative pair. Two different clusters having
the same representative gives a big warning that something is going wrong.
Ideally we want all duplicates of a unique word to be in the same cluster as
their articulation pattern is supposed to be the same. On further informal
inspection of the clusters created by the ConvGRU, the set of representatives
includes shorter words, longer words and does not contain many words that
either start or end the same. Furthermore, we can see in Figure 8b that the
representative words gradually increase in length when we look from the upper
left to the bottom right. Similar patterns of gradual increase in word length
across the cluster space can be observed for the fine-tuned models.

On more formal inspection, the SD scores further show the difficulties the
3D-CNN model had with effectively clustering duplicates together. The ALD
scores were worse for the 3D-CNN compared to the ConvGRU and the ACCD
was equal for the two architectures. However, where the ConvGRU showed a
significant clustering of phonemic Levenshtein information, the 3D-CNN failed
to produce a significant result. Therefore, by informal and formal inspection
of the cluster spaces of the two architectures, we can conclude that the clus-
ters generated by the ConvGRU embeddings were of higher quality than those
generated by the 3D-CNN embeddings.

However, as mentioned before, the clustering of data can be done in many
different ways, even by the same algorithm. It is likely that setting the number
of clusters to 20 did not lead to the most optimal clustering. We have set this
number to 20 for the pragmatic reason of providing as much degrees of freedom
for the user of a BCI application while staying manageable for the application
engineers. Brief experimentation with a range of cluster counts between 2 and
100 resulted in an optimal clustering when the cluster count was 2 and gradually
decreased in quality when the number of clusters increased. Though 2 words
does not provide a pragmatic solution for BCI applications, this experiment
does suggest there is a trade-off to be made between the amount of words to
include and the overall reliability of the system. With less words, the system
will have high reliability but low expressivity, and with more words the system
will have higher expressivity but lower reliability.

Jaw Crooked And Irate Annoying

Sought Teaspoons So All Exciting
Triumphant Original Anecdotal Items Confirm

Novel Frustration Spray Orange Bagpipes

Table 6: 20 most distinct articulation patterns
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Since the models were trained on a dataset consisting of only 2800 unique
words, it is likely that there are more distinct articulation patterns to be found
in the words outside of this dataset. The English language consists of over 1
million words, meaning that many words that could have been very distinct
in their articulation pattern were never considered in this research. Moreover,
as mentioned in section 4.1, the quality of the data itself could also be im-
proved on multiple aspects (frame rate, sound quality, transcription), which
would lead to higher quality embedding spaces making the clustering more re-
liable. Therefore, this research wants to recommend the use of the 20 cluster
representatives generated by the ConvGRU approach (shown in Table 6) as the
20 most discriminable words for direct word encoding BCI applications. Addi-
tionally, one of the benefits of the ConvGRU approach is that the number of
clusters is a parameter and can therefore be changed to fit what the researchers
need. For the research of the earlier mentioned Moses et al. (2021) for exam-
ple, instead of using the 50 words they chose because they are common in the
English language, we would recommend them to use our ConvGRU approach
with 50 clusters to get 50 words that should be more distinct from each other
and therefore more reliably decoded. However, in such cases, we do recommend
to use the ConvGRU approach on data consisting of only manually transcribed
single word spoken rtMRI videos. This data should be better suitable and is
therefore expected to generate better word embeddings and consequently better
clusters/representatives.

6 Conclusion

Following our results, a convolutional recurrent approach outperforms a pure
convolutional one when generating word embeddings from rtMRI videos. Fur-
thermore, these embeddings get closer to EMA observations when we provide
the model with phonemic content information. The results generalized well over
multiple participants suggesting that the results found on one healthy partic-
ipant also count for other healthy people, and therefore potentially for people
with LIS. We also found that our autoencoders could easily be fine-tuned to
new participants allowing them to be a valuable addition to the articulatory
research field as generating word embeddings for a new participant does not
require large training set sizes. With our best performing autoencoder archi-
tecture we determined the 20 words that should be the most distinct in their
articulation pattern, which following the literature should be the most distinct
in their neural patterns. Therefore, these 20 words provide the set of most
reliably decoded words in direct word encoding BCI applications.
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