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Abstract

This report aims to answer two primary research questions: how aggressive policymakers should be in
their approach to mitigation while the Equilibrium Climate Sensitivity (ECS) is still largely uncertain,
and whether policymakers should adapt their strategy as understanding of the ECS evolves. An agent-
based integrated assessment model, the DSK model, is modified to incorporate adaptive policymakers,
who learn the climate sensitivity as the global mean surface temperature increases and update their
strategy accordingly. The learning process is a combination of Bayesian inference and externally imposed
probability distribution functions, which aim to simulate developments in climate science. The outcomes,
in global warming and unemployment, seen under adaptive policymakers are compared with the outcomes
under non-adaptive policymakers, who maintain the same approach as temperature increases. Risk-
neutral policymakers, concerned with the expected ECS are compared with risk-averse policymakers, who
are concerned with the 99th percentile value. These four policymakers are compared under two policies:
a carbon tax with no accompanying policy, and a carbon tax, 50% of the revenue of which is used to fund
the building of renewable energy sources. It is concluded that only risk-averse policymaking is effective,
where meeting the Paris Climate Agreement goals are concerned. Among risk-averse policymakers, when
the results are aggregated across different ECSs according to their current estimated probability, non-
adaptive policymaking achieves the greatest climate mitigation. However it also leads to higher expected
unemployment, even under the second policy. While which of these policymaking strategies is preferable
may be debatable, it is clear that it is the choice of policy that has the most impact, in terms of both
unemployment and climate change.
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Chapter 1

Introduction

As a developing global phenomenon and topic of research, anthropogenic climate change is increasingly
important: it has gone from a largely theoretical concern 50 years ago to a key factor in unprecedented
floods effecting over 30 million people [1], wildfires north of the Arctic circle [2], and the subject of several
years of school strikes [3]. It has been noted that there has recently been an increase in concern about
climate change, particularly since the publication of the Intergovenmental Panel on Climate Change
(IPCC)’s ‘Global Warming of 1.5◦C’ in October 2018 [4]. This is reflected in the language employed
by news media to describe climate change: since 2019, for instance, the UK’s Guardian newspaper has
been followed by Germany’s Der Spiegel, Poland’s Gazeta Wyborcza and the Spanish-speaking EFE and
Noticias Telemundo, among others, in favouring the terms ‘climate emergency’ and ‘climate crisis’ over
‘climate change’ [5]. This heightened sense of urgency is well-founded: in October 2022, the United
Nations Environment Program (UNEP) published their Emissions Gap Report 2022, which noted that
‘incremental change’ was no longer sufficient [6]. UNEP affirms that ‘broad-based economy-wide trans-
formations are required to avoid closing the window of opportunity to limit global warming to [the Paris
agreement goals of] well below 2◦C, preferably 1.5◦C’ [6].

Economists working in the fields of ecological and environmental economics have developed differing solu-
tions on just how labour and resources might be mobilised on such an ‘economy-wide’ scale to effectively
mitigate climate change. For some, the climate crisis amounts to a market failure - perhaps ‘the greatest
example of market failure we have ever seen’ - which can be corrected through a combination of carbon
pricing, stimuli and regulation [7]. A carbon tax, perhaps the simplest form of carbon pricing, consists
of a tax levied on the emittors of carbon-dioxide-equivalent (CO2e) gas, with a certain value per tonne
of CO2e emitted, with the goal of reducing demand for fossil fuels and encouraging the pursuit of al-
ternatives, thus reshaping the market to reflect the negative externality of global warming [8]. Others
believe that more stridently interventionist measures will be required, such as a steadfast commitment by
governments to maintain full employment, the mobilisation of a ‘carbon army’ of workers to build green
infrastructure and a broader project of pursuing public ownership of energy infrastructure and financial
institutions [9]. Another viewpoint among some environmental and ecological economists is that any
effective strategy for climate mitigation would have to be agnostic about - if not completely run counter
to - economic growth itself, potentially requiring a conscious effort to free the economy of its perceived
growth-dependence [10, 11]. It should be noted that these points of view are not strictly mutually ex-
clusive [12]. To help arrive at - and defend - these conclusions, environmentally-concerned economists
employ a range of computational and analytical tools, one of which, of particular interest to this work,
is integrated assessment modelling.

1.1 Integrated Assessment Modelling

While the strict definition of what integrated assessment models (IAMs) consist of is not perfectly uniform
among environmental economists [13], a broad definition can be developed, based on that in Ackerman
et al. (2009) [14]. IAMs are multi-equation computational models combining climate simulations fitted
to General Circulation Models (GCMs) with economic models to assess the benefits and costs of different
climate policy options. First developed by William Nordhaus through his Dynamic Integrated Climate-
Economy (DICE) model in 1992, some IAMs offer the ability to optimise policy according to the quantity
of economic welfare. This is achieved through the use of a ‘damage function’, which determines the amount
of damage inflicted by global warming on the modelled economy’s productivity, and hence welfare, which
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is defined so that it is related to GDP through consumption [15].

One relatively recent development in IAMs is the incorporation of the technique of agent-based modelling
into their economic component [16]. Agent-Based Models (ABMs) are models which seek to ‘replicate the
known characteristics and behaviour(s) of real-world system[s]’ - and aid in investigating the dynamics of
such systems under different conditions - by modelling elements of these systems as autonomous agents
[17]. Benefits of agent-based modelling include the fact that the model’s agents often map intuitively to
components of the system being investigated, potentially making the assumptions upon which the model
rests more easily communicable, and the fact that heterogeneous agents can be explicitly modelled, cap-
turing complexities which would otherwise have to be parametrised in some way if a top-down modelling
approach had been used [17]. In the context of economic models, non-equilibrium effects, such as business
cycles, can be captured without the need for parametrisations, since they may emerge from the interac-
tions of the explicitly modelled individual agent-firms [16]. The Dystopian Schumpeter-Meeting-Keynes
model, hereafter abbreviated as the DSK model, is one such agent-based IAM; its structure will be ex-
pounded in chapter ?? [16]. The DSK model is not the only agent-based IAM, with at least four other
examples existing to the author’s knowledge at the time of writing [18].

IAM’s have been criticised, with one complaint being the great sensitivity of many IAMs to arguably
arbitrarily chosen parameters, such as the rate at which future welfare is ‘discounted’, relative to the
present. The damage function is also a major source of divergence between the results of different studies
involving IAMs, and has consequently been criticised along similar lines [19]. It should be noted that
the DSK model, in the form used and adapted in this work, makes use of neither a damage function
nor discounting, and is thus not affected by these criticisms. Nonetheless, criticisms that could apply to
the DSK model include the lack of consideration of ‘tail risks’ of potentially catastrophically high global
warming, and of the large degree of uncertainty which still surrounds the Earth’s climate sensitivity [19].

1.2 Climate Sensitivity and IAMs

The equilibrium climate sensitivity (ECS) - the chosen measure of climate sensitivity in this work -
is defined as the equilibrium change in global mean surface temperature following a doubling of CO2

concentrations from pre-industrial conditions [20]. At the time of writing, the IPCC’s latest report on
the ‘physical science basis’ of climate change states with high confidence that there is at least a 66%
chance that the ECS lies between 2.5 and 4◦C/doubling CO2, placing their best estimate at an ECS of
3◦C/doubling CO2 [21]. Similarly, a 2020 estimation of the probability distribution of ECS by Sherwood
et al., used extensively in this work, gives a 66% range of 2.3-4.5◦K/doubling CO2 [22]. Considering that
by 2019, atmospheric CO2 concentrations had already increased by 47% since 1750 [21], and an estimated
20 million people globally would be subject to heat stress exceeding the survivability threshold with just
2.5◦C of warming [23], the prospect of an ECS at the upper end of this range - or even beyond it - is
major cause for concern, and is deserving of attention by studies that make use of IAMs.

The uncertainty surrounding the ECS formed a large part of economist Martin Weitzman’s criticism of
the application of cost-benefit analysis to the problem of climate mitigation. Weitzman used the example
of a climate sensitivity probability density function (PDF) with a fat tail to argue that such fat-tail
probabilities with negative consequences can outweigh the discount factor used, to render cost-benefit
analysis practically unusable [24]. While research on the effects of different possible climate sensitivities on
IAM outcomes has been conducted since Weitzman’s criticism [25], it is a comment by William Nordhaus
in his response to Weitzman’s original criticism that this work uses as a prompt to pose its primary
research questions:

‘This means that we can learn [the ECS], and then act when we learn, and perhaps even do
some geoengineering while we learn some more or get our abatement policies or low-carbon
technologies in place.’[26]

This comment, and the assumptions on which it appears to lie, raises several questions. First among these
is what the strategy should be when the ECS is still uncertain: when most of the learning is yet to be done.
As our conceptual ECS PDF evolves, would it prove wiser to focus only on the expected ECS, or should
a conscientious policymaker be more preoccupied with the long tail of the PDF? Second, and perhaps
more fundamentally, are there any genuine benefits to changing strategy as the knowledge evolves? As
mentioned, there appears to be broad consensus that the window of opportunity for the implementation
of policies that could feasibly put global emissions on a pathway to stabilising temperature change below 2
degrees is rapidly fading [6]. The question is thus raised of whether we are already at the stage where the
policy that needs to be implemented is the most stringent one that is feasible - in this light, learning that
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the ECS is higher or lower than previously expected may not necessarily radically alter the policies that
might be the most favourable to this end. Finally, there is a broader question of how these policies may
be reached without the explicit use of cost-benefit analysis. As noted above, the model used in this work
does not make use of a damage function; this, combined with the model’s greater complexity and thus
computational run-time, renders the optimisation of policy through cost-benefit analysis impractical.
While this might complicate the comparison of the outcomes of different policies, it provides certain
opportunities for qualitative analysis, as it becomes necessary to analyse in some detail the behaviour of
different indicators under different policies.

1.3 Research Questions

In sum, then, the research questions this work will be concerned with can be stated as follows:

1. How aggressive should policymakers be in their approach to mitigation while the Equilibrium Cli-
mate Sensitivity is still largely uncertain?

2. Should policymakers adapt their strategy as understanding of the ECS evolves?

It is hoped that the method for policy evaluation that this work follows, combining quantitative prediction
and aggregation over different possible ECSs with more qualitative comparison and discussion, will to
some extent satisfy the above-mentioned desire to understand how appropriate policies might be selected
without relying on explicit cost-benefit analysis.
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Chapter 2

The DSK Model

What follows in this chapter is a brief overview of the DSK model and the way its climate module has
been modified and calibrated to have the desired initial conditions for this research project.

2.1 Overview

The version of the DSK model used in this work is based on an udpated version of that outlined in
Lamperti et al.’s initial presentation of the DSK model [16]. A schematic of the main features of the
model is presented in fig. (2.1). The economic component of the model is centred around two sectors,
modelled following an agent-based approach in which individual firms are modelled as agents interacting
in an imperfect market, which together make up a stylised industrial sector. Sector 1, the capital goods
sector, comprises 50 firms which produce the machines which are sold to and used by the 200 firms which
make up the consumption goods sector. Consumption goods firms produce a homogeneous consumer
good which is sold to households, which are modelled as an aggregated mass of labourers and consumers.
The model features a banking sector comprised of private banks which interact with a central bank and
the government. Banks play the role of buying government bonds and supplying credit to consumption
good firms. Crucial to this work is the energy sector, which consists of a monopoly energy provider which
generates electricity from a combination of brown and green plants. Brown plants represent fossil-fuel
based energy production, producing CO2 emissions proportional to the amount of electricity generated,
while the green plants are an idealised amalgam of renewable energy sources and produce no emissions.
Conceptually, the economic component of the DSK model might be thought of as a model of a small,
statistically representative country, rather than an explicit model of the global economy. This distinction
is made due to the small number of firms and small working-age population, which is held constant at
250,000 people.

CO2 can be emitted from two sources in the DSK model. These are the electricity firm, as previously
stated, and sector 1 firms, which can source their electricity from the electricity firm or generate it
themselves by burning fuel: crucially, this is not an option consumer goods firms have. Consequently,
two conditions are required in order to reach zero-emissions1: the entirety of the electricity provided by
the energy firm must be generated by green plants, and sector 1 firms must entirely electrify. For their
part, the CO2 emissions form the input for the DSK’s climate component, which was initially simulated
using the Climate Rapid Overview And Decision Support (C-ROADS) model, presented in [28]; however,
for this work the climate model used is the Finite Amplitude Impulse Response (FAIR) model, for reasons
detailed in the following section. The increased temperature resulting from the CO2 emissions output by
the DSK’s sector 1 and electricity sectors does not cause any damages to the non-climate component of
the DSK, unlike in the version of the DSK presented in [16]. It is partly as a consequence of this that the
modelled temperature increase itself will be one of the outcomes used to judge the relative effectiveness of
different policies. As noted in chapter 1, this is very much distinct from the method of policy evaluation
used in models like DICE, in which it is assumed the damage inflicted on the economy’s productivity in
the model by rising temperatures is sufficient that the GDP-derived welfare is the only indicator needed
to judge the effectiveness of different policies.

1The DSK model, in its current implementation, features neither negative emissions technologies nor opportunities for
land-use change which might increase carbon sequestration. The latter point results from the fact that land use is not
currently simulated by the DSK model. Therefore, it makes little sense to refer to net-zero emissions when discussing the
DSK model; the term is thus eschewed in favour of ‘zero-emissions’.
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Figure 2.1: Schematic representation of the Dystopian Schumpeter meeting Keynes (DSK) model. Figure
adapted from [27].

In addition to temperature change, unemployment will be used as the primary economic indicator of the
relative merits of different policies2. As can be seen in fig. (2.1), all employment in the DSK model
is concentrated in capital and consumer goods firms and the energy sector. Each timestep, the labour
demand of each firm in the industrial sector is computed, as is the labour demand of the electricity
firm. When the costs incurred on firms by a carbon tax are high, as will be the case in many of the
simulations discussed in chapter 4, the aggregate labour demand will drop as a result of the decrease in
labour demand in the individual firms. It should be noted that the labour demand of the electricity firm
is also dependent on the firm’s activities. Intuitively, the more green (or brown) plants being built in a
given timestep, the higher the labour demand of the electricity firm. Additionally, if the number of green
plants is being expanded very rapidly, as can be the case when there are far too few green plants to meet
the demand for electricity and there is a high carbon tax, the price of each new green plant is higher than
the last, rising according to

Cg(n) = Cg(1)

(
1 +

1

Nlim
max {1, n−Nlim}

)
, (2.1)

where Cg(n) is the cost of the nth green plant built in a given timestep and Nlim the threshold beyond
which this additional cost is applied. In this work Nlim is 20% of the existing green plant stock. Since all
the costs associated with green plants in the DSK model are assumed to be labour costs, the building of
each new plant beyond this threshold will require more labour than the last. Thus, in years when there
is a massive expansion in the number of green plants being built, labour demand will increase steeply.
It should be noted that the labour demand associated with new green plants is split evenly between
the timestep in which the green plant is built and the green plant’s lifetime, the latter representing
maintenance costs. This split was a change made to the DSK model for this project: initially all green
plant costs were associate with plant building3. Once labour demand in a given timestep has been met,
the remainder of the working-age population is paid unemployment benefits by the government, funded
through a combination of taxes and the issuing of bonds.

2Unemployment is favoured over the GDP as an indicator in this work for two main reasons. First, there is some
controversy surrounding the use of GDP as a well-being indicator [29]. Second, polling in the USA and UK indicate that
more people than not believe that more focus should be put on environmental protection, even at the expense of economic
growth [30, 31]. There is little evidence, however, that this holds for unemployment. Nonetheless, the effects of the policies
tested on GDP will be shown in much of the results section, so the reader may come to their own conclusions.

3The 50-50 split between building and maintenance was reached by taking data provided by the International Renewable
Energy Agency (IRENA) and a report for the Canadian Hydropower Association on the jobs created by solar [32], wind
[33, 34] and hydropower plants [35], and weighting them by the number of people currently employed for each form of
electricity generation [36].
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2.2 Initial Conditions and the Choice of Climate Model

As stated in chapter 1, the research questions this report addresses necessarily involve simulating policy-
making strategies over a range of different ECSs, as the true ECS is still largely uncertain. One problem
that presents itself when using a simple climate model, such as C-ROADS, is how to justify having the
same conditions at the start of the climate and policy simulations - the year 2020 - for a range of different
ECSs. In order to lay the groundwork for this discussion, though, a note will first be made on the way
that warming is referred to in this report, and its relation to global mean surface temperature (GMST).

2.2.1 A note on baselines

Of central importance to any discussion involving the limits within which signatories of the Paris Climate
accords have agreed to stabilise GMST is the baseline that is used [37]. Consequently, a note is made
here that the ‘temperature change’ referred to in this work is always the temperature anomaly in degrees
Kelvin (or Celsius), relative to the 1850-1900 GMST. This baseline corresponds to the pre-industrial
baseline used by the World Meteorological Organization (WMO) and IPCC [38, 37].

2.2.2 ECS and TCR

According to the WMO’s State of the Global Climate 2020 report, in 2020 GMST had increased by
approximately 1.2◦K, relative to the pre-industrial baseline. Consequently, a GMST anomaly of 1.2◦K is
the desired temperature initial condition for all policy simulations. However, this presents a problem in
terms of the logical consistency of the model - if the ECS is the only measure of climate sensitivity that
can be specified for in a given climate model, then that model, given the same dataset of historical CO2e
emissions, will yield different degrees of warming by 2020 for different ECSs. This is demonstrated in fig.
(2.2(a)), which shows the modelled evolution of the temperature anomaly for all different ECSs resulting
from historical CO2e emissions (including land use change). The data used for these simulations was
retrieved from Our World in Data, and is originally from [39]. For an explanation of the irregularly-spaced
ECS values simulated, see chapter 3.
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Figure 2.2: Simulated temperature change, relative to the 1850-1900 mean, in the FAIR model, resulting
from historical CO2e emissions, for 7 different ECSs. Panel (a) shows the simulated result for a fixed TCR of
1.8◦K/doubling CO2, while (b) shows the modelled temperatures when TCR is adapted to each ECS to ensure
that the 2020 temperature anomaly is 1.2◦K. See chapter 3 for an explanation of the irregularly-spaced ECS
values. The CO2e emissions data includes land use change and was retrieved from Our World in Data, originally
from [39].

In order to make the climate model initialisation more logically consistent, the decision was made to use
a climate model in which the Transient Climate Response (TCR) can be specified, in addition to, and
independently of, the ECS. The TCR is defined as the GMST response, relative to the pre-industrial
value, to a scenario in which CO2 concentration increases from preindustrial levels by 1% every year,
at the time of doubling (70 years after the start of the increase) [20]. As such, the TCR is a measure
of immediate, as opposed to equilibriated, climate sensitivity, thus being also a measure of the speed of
the climate’s response to increased CO2 concentrations. It follows, then, that in a model in which both
the ECS and the TCR can be independently specified, there is a value of the TCR for every ECS that
can assure that the temperature anomaly in 2020 is 1.2◦K. The model used to this end was the Finite
Amplitude Impulse Response (FAIR) climate model, which is an adapted version of a simple climate
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model developed for the IPCC’s 5th Assessment Report, tuned to reproduce the behaviour of higher
complexity Earth System Models [40].

2.2.3 The FAIR model

The FAIR model consists of a simplifed carbon cycle model, coupled to 2 temperature reservoirs by a
simple radiative forcing equation, with the sum of the two temperature reservoirs yielding a value for the
modelled GMST [40]. The carbon cycle consists of 4 carbon reservoirs, each with a carbon concentration
anomaly Ri, the evolution of which is governed by

dRi
dt

= aiE −
Ri
ατi

; i = 1− 4 (2.2)

where E represents the yearly carbon emissions, ai the coefficient which determines the fraction of
emissions taken up by the ith reservoir, τi a timescale factor and α an additional coefficient which varies
slightly each timestep and parametrises the 100-year integrated impulse response function4. The sum
over the carbon reservoirs yields the total atmospheric carbon concentration, which in turn determines
the radiative forcing:

F = Fext factor
F2×

ln(2)
ln

(
C

C0

)
;C = C0 +

∑
i

Ri. (2.3)

Note that Fext factor represents a non-CO2 forcing factor5, while F2× is the forcing due to a doubling in
CO2. Finally, the evolution of the two temperature reservoirs is determined by

dTj
dt

=
qjF − Tj

dj
; j = 1, 2, (2.4)

where dj is the timescale associated with each temperature reservoir. The values for all parameters,
excluding q1 and q2, are detailed in table (2.1). The reason for these three parameters being omitted
from the table is that their values determine the ECS and TCR, through

q1 =
1

F2×

A2ECS − TCR
A2 −A1

(2.5)

and

q2 =
ECS

F2×
− q1, (2.6)

where A1 and A2 have been defined, for the sake of notational brevity, as

Aj = qj

(
1− dj

70

(
1− exp

[
−70

dj

]))
; j = 1, 2.

The relations in eqs. (2.5) and (2.6) were obtained by reformulating eqs. (4) and (5) in [40].

To find the TCR for each ECS, such that the 2020 temperature anomaly resulting from historical CO2e
emissions was constrained by the desired value, the FAIR model was run for 100 different ECSs be-
tween 1 and 8◦K/doubling CO2. For each of these values, the TCR was found that would minimise
the difference in simulated 2020 temperature anomaly from the desired value of 1.2◦K using scipy’s
optimize.minimize() function. As the required TCR’s relationship to the ECS turned out to be virtu-
ally indistinguishable from a linear function, a linear fit was found using a least-squares method, so that
the TCR could be found for any ECS in that range. The resulting modelled temperature time series, with
the TCR adapted to each ECS, is shown in fig. (2.2(b)); as can be seen, the temperature is successfully
constrained by the desired 2020 value under every ECS. An important consequence of the choice to adapt
the TCR according to the modelled ECS is that in higher ECS cases, GMST will take longer to stabilise
once CO2 emissions have reached zero, as will be seen in chapter 4.

4The 100-year integrated impulse response function represents the 100-year average airborne fraction of a pulse of CO2;
the authors of the FAIR model noted that this better reflects the impact of CO2 emissions than the airborne fraction at
any particular moment in time [40]

5In the FAIR model as presented in [40], the non-CO2 forcing parameter was an additive constant, rather than a factor.
However, as there is currently no source of non-CO2 forcing outputted by the DSK model, and it seemed unwise to assume
a constant value for the non-CO2 forcing, the simplfying assumption is made that non-CO2 forcing is proportional to the
CO2 forcing.

7



Parameter Value - FAIR Guiding analogues
a0 0.2173 Geological re-absorption
a1 0.2240 Deep ocean invasion/equilibration
a2 0.2824 Biospheric uptake/ocean thermocline invasion
a3 0.2763 Rapid biospheric uptake/ocean mixed-layer invasion
τ0 (year) 1× 106 Geological re-absorption
τ1 (year) 394.4 Deep ocean invasion/equilibration
τ2 (year) 36.54 Biospheric uptake/ocean thermocline invasion
τ3 (year) 4.304 Rapid biospheric uptake/ocean mixed-layer invasion
q1 (KW - Thermal equilibration of deep ocean
q2 (KW m2 ) - Thermal adjustment of upper ocean
d1 (year) 239.0 Thermal equilibration of deep ocean
d2 (year) 4.1 Thermal adjustment of upper ocean
F2×(Wm−2) 3.74 Forcing due to CO2 doubling

Table 2.1: Parameters used in the FAIR model, as implemented in this work. The values for q1 and q2 are left
blank in this table as these are used as a proxy for the desired ECS and TCR, and, as such, are different depending
on the different values the policies are tested under. It should be noted that the guiding analogues are only rough
interpretations, as the FAIR model is an empirical fit tuned to accurately represent temperature responses, and
does not attempt to explicitly model the specific behaviours of each carbon and temperature reservoir. Table
adapted from [40].
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Chapter 3

Modelling and Evaluating Policy

In addressing the two main research questions outlined in chapter 1, a key addition to the DSK model
was a form of policymaker whose understanding of the ECS, represented through the ECS PDF, updated
as the model ran. This was achieved through a combination of Bayesian learning and simulated research
on the ECS, which constrains the learning process, guiding it towards the simulated ECS.

3.1 Bayesian Learning, Realistic Noise and Research Functions

Bayesian inference, the primary method through which adaptive policymakers in this work update their
understanding of the ECS, is based on the repeated application of Bayes’ theorem,

p(θ|y) =
p(θ)p(y|θ)
p(y)

, (3.1)

on a probability distribution [41]. In this notation, θ corresponds to a hypothesis - in this context a
possible value of the ECS - while y corresponds to a measurement - in this context, a temperature
measurment. Thus, the ECS PDF, noted p(ECS), is updated each timestep through a process of Bayesian
inference based on the GMST measured in that timestep. Noting that the PDF is discretised into values
labelled ECSi, evenly separated in steps of dECS = 0.005◦K/doubling CO2, the probability density for
each ECSi is updated each timestep, as

p(ECSi)t+1 =
p(ECSi)tp(t|ECSi)

Z
. (3.2)

Note that p(y) from eq. (3.1) does not need to be explicitly calculated, but can rather be taken as a
normalisation constant, to ensure that the definite integral of p(ECS) over the whole domain is equal
to 1. Bearing in mind the discretised nature of the PDF, the normalisation constant, denoted Z in eq.
(3.2), is simply

Z =
∑
i

p̃(ECSi)t+1 =
∑
i

p(ECSi)tp(t|ECSi).

Measurement error is assumed to be negligible. Each timestep, for each potential ECS considered, the
expected temperature is calculated using the FAIR model, using the history of CO2 concentrations 1. The
policymaker is assumed to know the true TCR. Consequently, for p(t|ECSi), the probability of measuring
a temperature t when the ECS is ECSi, to not take the form of a Dirac delta function, stochastic noise
had to be added to the temperature signal. This noise can be seen as representing atmosphere-ocean
interactions, such as the El Niño Southern Oscillation.

3.1.1 Introducing noise to the FAIR model

The decision was made to make the noise broadly similar to inter-annual variations in the GMST measured
in the Earth system, in order to simulate potential future Bayesian learning processes as faithfully as
possible. To this end, it would be desirable to tune the frequency spectrum of the noise produced by
the adapted FAIR model to the real-world GMST noise frequency spectrum. This would ensure that
the variability in the temperature signal is seen at realistic scales over realistic timescales. However,

1In fact, the code written for this work followed a slightly different method, due to personal error. For more information
see section 3.1.3
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given the number of assumptions that would have been involved in isolating noise from the idealised true
warming signal in real world datasets - if this were possible without making any prior assumptions, the
uncertainty surrounding the ECS would likely be negligible - an Earth System model set to simulate
surface temperature under constant CO2 concentrations was used instead. Specifically, the dataset used
for the tuning was the output of Community Earth System Model Version 2 (CESM2) under pre-industrial
control settings, which keep global CO2 concentrations at pre-industrial levels [42].

The introduction of noise to the FAIR model was achieved through the addition of two stochastic terms
to eqs. (2.4), the equations which govern temperature in the model. Specifically, normally-distributed
random noise terms were added to the differential equation governing the second temperature reservoir
- that is, the one with the 4.1-year timescale - and the equation which sums over the two temperature
reservoirs to yield the GMST analogue outputted by the FAIR model. The reason for this combination
is that the latter stochastic term alone would not affect the evolution of the temperature at all: the
system has no memory of this term, and the resulting white noise would have a frequency spectrum with
uniform intensity [43]. The former stochastic term, however, does impact the temperature’s evolution -
consequently, the combination of the two terms, weighted appropriately, can be tuned to offer a reasonable
approximation of CESM2’s noise spectrum. With the differential equations discretised according to
the forward-Euler method and Euler-Maruyama method [44] - for the non-stochastic and stochastic
differential equations, respectively - the adapted equations read

T1,t+1 =
dt

d1
(q1F − T1,t)

T2,t+1 =
dt

d1
(q1F − T2,t) + σadWt

T = T1 + T2 + σbX,

(3.3)

where Wt is the Wiener process [44], and X a random variable following a standard normal distribution.
The values σa = 0.078 and σb = 0.024 led to a noise spectrum that was relatively similar to the CESM2
spectrum, as can be seen in fig. (3.1).
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Figure 3.1: Fast Fourier Transform of a 400-year time series of temperature with constant, pre-industrial
atmospheric carbon concentrations outputted by (a) CESM2 and (b) the FAIR model with the added stochastic
terms. The orange lines in each panel shows a smoothed noise spectrum, obtained by applying a Savitzky–Golay
filter, so that the two spectra can be more easily compared. It should be noted that, due to the finite nature of
the time series and stochastic nature of the program, the noise spectrum outputted by the adapted FAIR model
does not always look exactly as it does in panel (b). The variation between different simulations is greatest for
lower frequencies, particularly as ν = 1/400yr−1 is approached. Nonetheless, the spectrum shown in panel (b) is
a broadly representative example.

3.1.2 The learning process

The FAIR model is run each timestep for every potential ECS considered, ranging from 0.1◦K/doubling
CO2 to 10◦K/doubling CO2 with a gridsize of 0.005◦ K/doubling CO2. As stated, the policymaker is
assumed to know the true TCR. However, it is not assumed that the policymaker is aware of the exact
structure of the FAIR model’s noise terms: the policymaker instead assumes a white noise spectrum,
in which a normally-distributed random term is added to the temperature each year, with a standard
deviation of 0.1◦K, chosen as it is the standard deviation of the temperature in the CESM2 time series.
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p(t|ECSi) is thus a Gaussian distribution with standard deviation of 0.1◦K, centred around the temper-
ature predicted by the strictly deterministic FAIR model for a given ECS. The initial PDF is a lognormal
fit of the ECS PDF detailed in Sherwoord et al.’s 2020 estimate [22].

(
a)

(
b)

(
c)

(
d)

Figure 3.2: Time evolution of the ECS PDF using different methods and under different true ECSs. In each
panel, the probability density is plotted as a heatmap with a logarithmic colour scale, shown on the right-hand
side of each panel. Panels (a) and (c) show the evolution of the ECS PDF in the situation where the model’s
true ECS is 3◦K/doubling CO2, with (b) and (d) showing the evolution under a true ECS of 6◦K/doubling CO2.
(a) and (b) show the evolution of the PDF when Bayesian inference is the only method through which new
information about the ECS is learned and incorporated into the PDF; (c) and (d) show the evolution when the
Bayesian inference process is supplemented with the research functions described in section 3.1.2. In all cases,
the climate simulation starts from 2020 conditions, and the carbon concentration scenario modelled is one in
which atmospheric CO2 concentration increases each year by 0.5%: according to the data available at [45], this
approximately corresponds to a continuation of the trend of the past 40 years. In each panel, the thick black line
shows the modelled true ECS, with the white and black dashed lines, respectively, showing the expectation and
99th values of the ECS.

Panels (a) and (b) of fig. (3.2) show the evolution of the ECS PDF under ECSs of 3◦K/doubling CO2

and 3◦K/doubling CO2, respectively. In both cases, the atmospheric CO2 concentration starts at 2020
levels, as does the warming, and increases by 0.5% per year. Even under this somewhat pessimistic
CO2 concentration trajectory - according to the NOAA’s climate globally averaged CO2 trends [45], this
trajectory is approximately equivalent to a continuation of the trend of the last 40 years - it takes 50
years for the expected ECS to consistently stay within 0.5◦K/doubling CO2 of the true value in the lower
ECS case. In the higher ECS case this takes almost a century. Considering the width of the PDF, it
takes a century for the 99th percentile to reach similar levels of agreement with the true value in the lower
ECS case, and a similar amount of time in the higher ECS case.

Given that this project will compare the outcomes of policymakers with differing levels of risk-aversion
who adapt to changing ECS knowledge, panels (a) and (b) of fig. (3.2) show that these policymakers will
likely have significantly different policies for a period of around a century. This timeframe is judged to be
too long for the purposes of this project. The reasons for this are twofold. First, the coming decades are
the most crucial in terms of abating CO2 emissions [6], so it makes more sense that divergences in different
policy approaches be most significant in the near future, as opposed to over an entire century. Second, the
assumption that the policymaker would not have access to any research beyond the latest measurements
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of GMST is difficult to justify. The very existence of the IPCC’s Working Group 1’s reports, themselves
reflective of a vast body of climate research including research - including ECS estimations as have already
been cited in this report [21] - demonstrate the unrealistic nature of this assumption. Consequently, the
choice has been made to constrain the evolution of the ECS PDF with the publication of 5 ‘researched’
PDFs, over 40 years, which are incorporated into the policymaker’s pdf as additional Bayesian learning
steps.

The researched PDFs, as with the initial ECS PDF, are defined by a lognormal function, which can be
defined in terms of the parameters µ and σ as [46]

ρ(x;µ, σ) =
1

xσ
√

2π
exp

(
− (ln(x)− µ)2

2σ2

)
. (3.4)

Note that µ and σ are not the mean and standard deviation, respectively, of the lognormal distribution:
these are given by [46]

µx = eµ+
1
2σ

2

,

σx = eµ+
1
2σ

2
√
eσ2 − 1.

(3.5)

The initial PDF used is simply the initial PDF for the Bayesian learning. Each subsequent researched
PDF linearly approaches the true ECS, such that the peak of the distribution reaches the true value in
the last PDF, while the standard deviation of the distribution reaches a value of one step in ECS (dECS)
in the final PDF. Due to the narrowness of the distribution once the final researched PDF has been
incorporated, subsequent Bayesian steps have little effect on the PDF after this point. The four panels
of fig. (3.2) show the evolution of the ECS PDF, with and without the research functions. The research
functions have the desired effect of constraining the learning process so that it is effectively complete
after 40 years, by 2060.

3.1.3 Difference between the theory and the implementation

Due to personal oversight, there is a discrepancy between the way the Bayesian learning process is
described in previous sections and the way it was implemented in the code used for this project. The
difference lies in the calculation of the expected temperature, for each ECS considered, each timestep. The
method chosen was to update these expected temperatures each timestep from the expected temperature
of the previous timestep, for each ECS. However, in the code, a new expected temperature is developed
each timestep for each ECS from the actual temperature measured in the last timestep. Qualitatively, this
is likely to lead to slower learning, as the noisy true temperature signal affects the expected temperature in
the following timestep, leading to a less consistent evolution in the expected temperatures, stymying the
learning process. However, due to the addition of the research functions, this is unlikely to significantly
affect the evolution of the expected and 99th percentile values of the ECS - and, by extension, the strategies
of the adaptive policymakers. This is demonstrated in fig. (3.3), which can be used to compare the
evolution of the ECS PDF under two ECSs with correctly and wrongly implemented code. Nonetheless,
this is a mistake and as such should be corrected if the work presented in this report is to be taken
further.

3.2 Policies and Policymakers

Recalling the aims laid out in the introduction, it should be noted that this work’s research questions
make no assumptions about the type of policy that should be followed. Furthermore, there is no reason
to assume that the answers to these questions will be the same for all types of policies. Consequently,
different policymakers are compared while applying different types of policy.

Two types of policy are focused on. The first is a carbon tax, with no other policy; in the second, a
carbon tax funds the building of green plants by the government. In the case of the second policy, 50%
of the carbon tax revenue funds a green plant-building scheme, with the other 50% left free for other
purposes not considered explicitly in the model - this might include providing additional funds for public
transport, schools or hospitals, for example. The carbon tax is set at the same level for both policies:
consequently, we expect to see CO2 emissions abatement to be greater for the second policy than the first,
all other factors being held constant. These policies will henceforth be labeled P1 and P2, respectively.
For both P1 and P2, the carbon tax is ramped up over the first 5 years of the model run to the level the
policymaker wishes it to be.
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Figure 3.3: Evolution of the ECS PDF when Bayesian inference is supplemented with researched PDFs, under
two ECSs, shown in the left and right panels as in fig. (3.2). The top panels, (a) and (b), are identical to panels
(c) and (d) in fig. (3.2), showing the evolution of the PDF when the Bayesian inference process is implemented as
intended. Panels (c) and (d) of this figure show the evolution of the PDF with the mistaken method used in the
adapted DSK model in this project. Qualitatively, there is little visible difference in the evolution of the expected
and 99th percentile values of the ECS between the correctly and wrongly implemented code. It should be noted
that, due to the stochastic nature of the temperature signal, the evolution of the PDF is different each time the
code is run. Consequently, when comparing (b) and (d) it should not be concluded that the 99th percentile ECS
value never overshoots the true ECS in the wrongly implemented code: as is seen in the figures in chapter 4, this
is clearly not always true.

For each policy, four policymakers are considered:

1. Risk-neutral, non-adaptive;

2. Risk-averse, non-adaptive;

3. Risk-neutral, adaptive;

4. Risk-averse, adaptive.

Non-adaptive policymakers impose a constant carbon tax - with the exception of the five-year ramp-up
- over the whole model run, based on their level of risk aversion. Adaptive policymakers, by contrast,
change the carbon tax level according to their evolving knowledge of the ECS. The difference between
risk-neutral and risk-averse policymakers is implemented in the model through the percieved, or virtual,
ECS, labeled VECS. This is the ECS, identified by some property of the ECS PDF, that the policymaker
takes as their estimate of the true ECS. In other words, the policymaker choses to focus on a position on
the ECS PDF, determined by their level of risk-aversion, and sets their carbon tax according to that ECS.
Risk-neutral policymakers use the expectation value of the ECS, with risk-averse policymakers focusing
on the 99th percentile value. A non-adaptive, risk-averse policymaker will therefore set their carbon tax
as if the ECS were the 99th percentile of the Sherwood et al. PDF [22] and maintain this level over the
course of the model run.

The carbon tax scales with VECS according to

CT = cV ECS2, (3.6)
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where c is a coefficient that has been calibrated such that a non-adaptive, risk-averse policymaker using
P1 is able to consistently keep warming by 2100 to under 2◦K, if the true ECS is 2.99◦K/doubling CO2.
The quadratic relationship has been chosen so that the warming that occurs under adaptive policymakers
does not increase too drastically if the ECS is increased. Keeping the warming seen constant with respect
to ECS for the adaptive policymakers was not used as a strict constraint, as the carbon tax would need
to be so high that unemployment would regularly exceed 50%. For this reason it seemed unreasonable to
maintain such a constraint, especially considering the fact that P1 only uses one of the mitigating policies
available to the policymaker.

3.3 Evaluating Over Different ECSs

All policymakers - and all policies - must be evaluated under a range of different values of the ECS. This
leads to difficulty when it comes to evaluating that policymaker and policy overall. While the outcomes
of different policymakers following different policies will be shown in chapter 4 for several ECSs, another
approach which will be used is to aggregate these outcomes over all ECSs tested. A risk-neutral way of
aggregating the outcomes of a given policy is to take the probability-weighted average of the indicator of
interest, Ik, over the N different ECS values, ECSi tested:

Īk =

N∑
i=1

Ik,iP (ECSi). (3.7)

Note that P (ECSi) here refers to the probability of the ECS falling between (ECSi−1 + ECSi)/2 and
(ECSi +ECSi+1)/2. If each ECSi considered is separated by a step in ECS, labelled dECS′, P (ECSi)
can be approximately computed by numerically integrating the PDF as a Riemann sum with the more
fine-grained step in ECS, dECS,

P (ECSi) =

ECSi+1/2∑
ECSj=ECSi−1/2

ECSj · ρ(ECSj) · dECS,

where ECSi±1/2 is short-hand for ECSi ± dECS′/2. In theory, then, Īk should be equivalent to the
expectation value of Ik, according to the estimated ECS PDF in the Sherwood et al. report [22].
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Figure 3.4: The lognormal approximation to the ECS PDF found in [22], split into blocks of width dECS′ =
1◦K/doubling CO2. The dotted, vertical lines correspond to the expected ECS within each block; the discrepancy
between this and the centre of the block is shaded red for emphasis. The probability of each block is written
above the PDF.

However, one problem with the method for aggregating indicators over different ECS values described
in eq. (3.7) is that the probability density is not evenly distributed within the blocks of width dECS′.
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Figure (3.4) demonstrates the differences between the expected ECS and block centre in each block.
While the discrepancy between the two appears negligible near the peak of the distribution, effects
become more significant further from the peak. Accordingly, the DSK is instead run with ECS values
corresponding to the intra-block ECS expectation values, so that the binned distribution is not too poor
an approximation of the full pdf. The probability-weighted sum over different ECSs should then be a
more accurate estimated expectation value.

As has been noted, this is a risk-neutral way of evaluating the effectiveness of different policymakers and
policies: a risk-averse form of aggregation would involve weighting the tail of the ECS distribution, and
using this modified distribution to weight the different simulations. Risk-averse methods of evaluating
policy are not used in this work, due to the arbitrary nature of the choice of weighting function needed to
give greater weight to higher ECSs. Nonetheless, it is important to acknowledge the fact that by weighting
policies in the risk-neutral way, strictly according to the estimated probability of each ECS, a certain
point of view will be implicit in the conclusions this report reaches. No matter how grave, the results of a
given policy under a very high ECS - for example 7.8◦K/doubling CO2, the highest ECS simulated - will
be given no more weight than the 0.00189% chance that the ECS lies between 7.5 and 8.5◦K/doubling
CO2. That this method will be applied, regardless of how socially and/or environmentally destabilising
the outcome of the policy under this ECS is, is a choice: while justifiable, the reader may not necessarily
agree.
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Chapter 4

Results

4.1 Baseline: No-Policy

Before considering the effects of different policies and attempting to judge their relative effectiveness, the
behaviour of the DSK model when no climate policy is enacted is first considered. This should enable
more effective judgement of what good and bad outcomes in the domain of unemployment are, within
the context of the model. All simulations presented in this chapter have been run for 50 Monte Carlo
realisations.

Panels (a) and (b) in fig. (4.1) show how the temperature change and unemployment rate, respectively,
evolve over the course of the model’s run from 2000 to 2120; recall that the climate module, and climate
policy when implemented, is only run from 2020 onwards. Figure (4.1) shows the results in the case that
ECS=2.99◦K/doubling CO2. In addition to temperature change and unemployment rate, fig. (4.1) also
shows the evolution of the share of electricity generated by green plants, the fraction of the capital goods
sector (sector 1) that has electrified, the GDP and the CO2 emissions themselves in panels (c), (d), (e)
and (f), respectively. The plots of the electricity mix, electification in sector 1 and GDP are shown to
help gauge the extent to which emissions abatement is due to a green transition in the model’s energy
system, as opposed to temporary economic contraction. Finally, the plot of CO2 is included as it directly
shows the impacts of the different policies and policy strategies on emissions abatement, without being
influenced by the effects of the different ECS and TCR values on the climate module.

Observing fig. (4.1 (c)), it is apparent that without any climate policy, the building and operating costs of
green plants never become cost competitive enough with brown plants for any electricity to be supplied
by green plants: without climate policy, there is no transition towards renewable energy in the DSK.
This is in accordance with previous studies that use the DSK model [27]. This may partly be a result
of the fact that the model is initialised with 100% of electricity being supplied by brown plants. An
additional factor could be the fact that there is no limit to the amount of fuel that can be burnt in the
DSK model. It is also apparent from panels (d), (e) and (f) that this lack of any shift from brown to green
electricity generation, in conjunction with the negligeable upwards trend in sector 1 electrification and
the near-exponential increase in production, ensure that CO2 emissions do not peak prior to 2120. The
consequence of this is that temperature rises at an ever increasing rate over the model run, surpassing 5◦C
of warming by 2100 in approximately 90% of realisations, with an expected warming of approximately
7◦C in 2120.

It is important to note that the unemployment rate rises over the course of the model run, with the mean
value increasing from an average of approximately 4% in the first decade of the model’s run to 7-8% in
the last 2 decades. When the unemployment will be used to judge the effectiveness of each policymaker
under all ECS conditions in sections (4.2.3), (4.3.2) and (??), the difference in unemployment, relative
to the baseline case, will be considered. This is partly to avoid penalising a policy for having non-zero
unemployment even in the case where the unemployment is lower than in the baseline case, and partly
to counter the effect of the increasing baseline unemployment rate.

4.2 P1: Carbon Tax Only

For the sake of brevity, particularly to allow us to consider the results of policy across the full range of
possible climate sensitivities simulated, the in-depth discussion of the time series under different policy-

16



(
a)

(
b)

(
c)

(
d)

(
e)

(
f)

Figure 4.1: Evolution of the climate and economy from 2000 to 2120, in the case of no climate policy, if
ECS=2.99◦K/doubling CO2. The model has been run for 50 realisations; the shaded region in each plot corre-
sponds to the values bounded by the 10th and 90th percentiles, while the dark line shows the mean time series.
Shown are (a) the global mean surface temperature change with respect to pre-industrial levels, modelled from
2020; (b) the unemployment rate; (c) the share of electricity produced by green plants; (d) the fraction of the
capital goods sector which has electrified; (e) the GDP, adjusted for inflation, and (f) annual CO2 emissions.
Note that panel (e) is plotted with a logarithmically-spaced y-axis, so the near-linear trend corresponds to an
approximate growth rate of 3% per year, as in [27].

makers will only be undertaken for P1.

4.2.1 Lower ECS case

Figure (4.2) shows the evolution of the carbon tax, in the DSK’s unit of ‘goods’, shorthand for the
consmer good sector’s generic good, for the four policymakers under an ECS of 2.99◦K/ doubling CO2.
As outlined in chapter 3, the two non-adaptive policymakers, referred to as ‘fixed’ in the fig. (4.2)’s
legend, have a constant carbon tax in real terms - corrected for inflation - after the first five years of
active policy, in which the tax is ramped up to the final value. The ECS of 2.99◦K/ doubling CO2 is
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only slightly under the expected value of the PDF in Sherwood et al.’s estimate [22]. This is why the
adaptive, risk-neutral policymaker’s carbon tax remains very close to that imposed by their non-adaptive
counterpart, reaching a final value in 2060 slightly below the fixed, risk-neutral tax.

Now considering the adaptive, risk-averse policymaker, the tax is initially high, only slightly under the
level imposed by the non-adaptive, risk-averse policymaker, before decreasing to join the value of the
taxes imposed by the risk-neutral policymakers. Recalling fig. (3.2), this is a result of the fact that as
the ECS PDF collapses around the expectation value, the 99th percentile ECS is brought closer to this,
until the two values are virtually the same - the difference between them being of the order of 0.01◦K/
doubling CO2 - by 2060, the year in which the learning is effectively complete.

Figure 4.2: Evolution of the carbon tax under different policymakers under an ECS of 2.99◦K/doubling CO2,
when the policy pursued is P1 (carbon tax only). The four types of policymaker investigated are shown, with
red colours corresponding to risk-neutral policymakers and blues corresponding to their risk-averse counterparts.
Lighter lines correspond to policymaking which adapts to new knowledge of the ECS, while darker lines correspond
to policymakers who do not change their approach as time passes (the fixed case). As in fig. (4.1), the model has
been run for each case for 50 realisations, with the shaded regions showing the values bounded by the 10th and
90th percentiles, and the solid lines showing the means.

(
a)

(
b)

Figure 4.3: Evolution of (a) the percentage of electricity supplied by green plants and (b) the fraction of the
capital good sector which has electrified, from 2020 to 2120 for different policymakers when P1 (carbon tax only)
is pursued, under an ECS of 2.99◦K/doubling CO2. The colour scheme for the 4 policymakers shown is the same
as in fig. (4.2).

Turning our attention to the results of the carbon taxes shown in fig. (4.2), fig. (4.3) shows the evolution
of the percentage of the electricity supply generated by green plants alongside the fraction of the capital
good sector which has electrified, in panels (a) and (b), respectively. Observing panel (a), it seems
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that, as a general rule, the policymakers with higher carbon taxes oversee a faster green transition in
energy generation. The fixed, risk-averse policymaker is the first to see a full transition, ahead of other
policymakers by approximately 10 years; the adaptive, risk-averse policymaker leads the risk-neutral
policymakers by a few years at almost every stage, even in 2060-2080, when they have the same carbon
tax. This is likely a result of the fact that an early, high carbon tax in the DSK model ensures that
green plants become cost competitive with brown plants early, leading to a substantial increase in green
plant building, which in turn leads to a more rapid decrease in the price of green plants from increased
innovation. Consequently, there are more green plants by 2060 than under risk-neutral policymakers;
furthermore, even when the carbon tax is decreased, green plants will have a lower relative cost when
compared with brown plants than they would have if the carbon tax had not previously been so high.

An important caveat to this point is that the initial uptick in green plant building seen under the
risk-averse policymakers is no earlier than under the risk-neutral policymakers. Observing fig. (4.3(a))
closely, all four policymakers see approximately the same green electricity share until 2030, depite their
respective carbon taxes having reached the full value in 2025. This is partly due to the fact that, when
initially imposed, the high carbon tax an effect on the energy sector’s finances, meaning that there is less
money to invest in building the green plants. Perhaps a more important dynamic, though is the effect
on production, and hence fuel electricity demand, of the high initial carbon taxes, as will be seen when
discussing the GDP.

Observing fig. (4.3(a)), the relationship between carbon tax and electrification is perhaps more straight-
forward. From the moment the climate module and policy routines in the DSK model start running, in the
model year 2020, policymakers with higher carbon taxes invariably have a higher rate of electrification.
This leads to a key difference among risk-averse policymakers, between the adaptive and non-adaptive
cases. While, as we have noted, an initially high carbon tax may be enough to ensure slightly greater
green plant adoption by the electricity firm even after it is reduced, the carbon tax must be maintained
at a high level to ensure faster electrification. This is seen in the way that the electrification fraction
of the adaptive, risk-averse policymaker joins that of the risk-neutral policymakers after 2060, when the
carbon taxes they impose are very similar. Clearly, the rate electrification is highly dependent on size of
the carbon tax, and it is not the case that a high initial carbon tax will give any degree of momentum
to the electrification process. Considering the way in which the carbon tax incentivises electrification,
this makes some sense: capital good firms’ method of generating electricity is slightly less efficient than
the electricity firm’s brown plants. Consequently, even when the electricity firm has not yet undergone
a full energy transition, a sufficiently high carbon tax will make electrification the cheaper option for
sector 1 firms - the extent to which it is cheaper, and hence the rate of electrification, is directly tied to
the severity of the carbon tax. It is only when 100% of electricity is generated by green plants that the
electrification rate might accelerate without an increase in carbon tax; however, even here some carbon
tax may be necessary to ensure that all firms electrify.

More generally, it should be noted that, with the current carbon tax calibration and when the carbon tax
is the only climate policy implemented, only the fixed, risk-averse policymaker attains full electrification
by 2120. Consequently, only this policymaker successfully decarbonises by the end of the model run.

Figure (4.4) shows the evolution of GDP under the four policymakers. The carbon taxes imposed by
both risk-averse policymakers cause recessions, which end shortly after the end of the 5-year ramp-up
period. The risk-neutral policymakers’ carbon taxes cause at most short-lived recessions; in fact, the
GDP resumes its growth before the ramp-up period is over. The recessions seen under the risk-averse
policymakers are severe enough that the GDP only recovers to its 2020 levels approximately 10 years
later. Notably, this coincides with the time that the green electricity share seen under the fixed, risk-
averse policymaker outgrows that of the other policymakers. From this, it might be deduced that the
four policymakers have similar green electricity shares during the 2020s because the recession depresses
demand for electricity. Consequently, electricity demand is already met with the existing brown plant
stock: despite the higher carbon taxes of the risk-averse policymakers, there is thus little rationale for a
particularly rapid expansion of the green plant stock during this period.

The evolution of the CO2 emissions under the four policymakers is shown in fig. (4.5). Confirming
what was already noted when discussing fig. (4.3), the fixed, risk-averse policymaker is the only one
consistently successful in reaching zero emissions by the end of the model run. The other policymakers
each reach zero emissions in approximately 10% of realisations in 2120, but still have significant emissions
in the the bulk of realisations. Also visible in fig. (4.5) is the effect that the recessions have on emissions.
CO2 emissions sharply decrease during the first few years of the carbon tax’s implementation - especially
strongly in the case of the risk-averse policymakers, whose larger and more protracted recessions are
related to stronger decreases in energy use and hence emissions. The emissions increase following this
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Figure 4.4: DSK model’s GDP from 2020 to 2120 for different policymakers pursuing P1, under an ECS of
2.99◦K/doubling CO2. The colour scheme for the 4 policymakers shown is the same as in figs. (4.2) and (4.3).

Figure 4.5: Modelled CO2 emissions from 2020 to 2120 for different policymakers pursuing P1, when
ECS=2.99◦K/doubling CO2. The colour scheme for the 4 policymakers shown is the same, as in figs. (4.2)-
(4.4).

initial dip under all policymakers; however they quickly peak under the fixed, risk-averse policymaker
due to the more advanced stage of green electricity generation and electrification transitions under that
policymaker, whereas emissions continue to increase for longer under the other policymakers. The strong
oscillations seen in fig. (4.5), most pronounced for the adaptive, risk-neutral policymaker, reflect the
changes in energy use which follow the model’s business cycles, which are just visible in fig. (4.4).

Figure (4.6) shows the evolution of both the temperature and unemployment under each policymaker,
from which the performance of the different policymaking stragies - when ECS=2.99◦K/doubling CO2

and following P1 (the pure carbon tax) - may be judged. Considering first the temperature, in panel (a),
we note that only the risk-averse, non-adaptive policymaker manages to stabilise the climate by the end
of the model run, keeping warming visibly under 2◦K in 90% of realisations. As expected, the difference
between the adaptive and non-adaptive, risk-neutral, policymakers is minimal, with the expected warming
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Figure 4.6: Evolution of (a) GMST change from pre-industrial levels and (b) unemployment rate from 2020 to
2120 for different policymakers implementing P1 when ECS=2.99◦K/doubling CO2.

of the two being virtually identical in 2100 and differing by approximately 0.1◦K by 2120. Both see a
fairly catastrophic temperature change with respect to pre-industrial of 3◦K at the the end of the model
run.

Among the risk-averse policymakers, there is a significant difference between the fixed and adaptive
policymakers. As noted, only the non-adaptive policymaker consistently stabilises the climate, indeed
meeting a key Paris Climate Accord goal, while the adaptive, policymaker sees approximately half a
degree more warming. As noted this is largely due to the large difference in electrification between the
two, due to the adaptive policymaker decreasing the carbon tax before the electricity generation transition
and electrification are complete, although the fact that the GDP increases at a faster rate under them
also plays a role.

It could be argued, upon observing the poor climate mitigation achieved by most modelled policymakers,
that the carbon tax simply is not high enough in most cases. However, considering the unemployment,
shown in panel (b), it becomes difficult to argue this point. Observing panel (b), it can immediately
be remarked that the unemployment rises to extremely high levels, particularly under the risk-averse
policymakers. On average, unemployment under these policymakers peaks at just under 30% of the
working-age population, and remains at rates above 20% for approximately half a century under the non-
adaptive policymaker. For reference, the US unemployment rate during the Great Depression peaked
at either 24.9% or 22.9%, depending on whether people with ‘work relief’ jobs are counted as being
unemployed [47]. Given the composition of the labour force across different sectors in the DSK model
as it currently stands - the agricultural sector, comprising 27% of Global employment in 2019 [48],
being absent from the model - it would be unwise to consider DSK unemployment rates as equivalent
to historical, real-world datasets. Moreover, contributors to the DSK model have noted that the DSK
model may be better suited to the qualitative comparison of different scenarios than to quantitative
predictions [27]. With these comments in mind, a note can be made of the nonetheless remarkably high
unemployment rates seen, before turning to a more detailed analysis of the behaviours seen.

The unemployment rate increases with the introduction of the carbon tax, for all policymakers, under
all ECSs. Whenever the carbon tax is a fixed value, in real terms, unemployment peaks when the tax
is first introduced. This results from the fact that this is the time at which the economy is most fossil-
fuel dependent, as evidenced by the electrification fraction and energy mix; consequently, the costs to
employers - the energy sector and the capital and consumer goods manufacturers - are greatest, leading
to a greatly depressed demand for labour. Once the green transition is underway, the unemployment
rate under non-adaptive policymakers gradually decreases; the slower the transition, however, the slower
the decrease in unemployment. It is for this reason that when the carbon tax is fixed at a higher value,
as opposed to remaining constant at a lower value, the unemployment rate decreases significantly more
rapidly. Additionally, there is a visible increase in the rate of decrease in unemployment in 2060 for the
fixed, risk-averse policymaker, and after 2100 for the risk-neutral policymakers. This is likely because
these dates correspond with the time that these policymakers achieve 100% green electricity generation
- consequently, consumption good firms and electrified capital good firms are no longer affected by the
carbon tax from this point on, accelerating the recovery in employment. Finally, an additional factor
contributing to the faster decrease in unemployment after the initial peak when higher, constant, carbon
taxes are imposed is that in the period during which the carbon tax affects firms the most, early in
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the transition, firms in both sectors will place a greater emphasis in investing in increasing the energy
efficiency of their operations than in their labour productivity. Consequently, when production begins to
recover from the initial economic shock, there will be a greater demand for labour for the same amount
of production than there would otherwise be than there is in the lower-tax scenarios.

Comparing the adaptive and non-adaptive, risk-averse policymakers, the differences in unemployment
are considerable. The unemployment rate under the adaptive policymaker initially follows that of their
non-adaptive counterpart, before more rapidly falling to rejoin the risk-neutral rates in the late 2070s.
This evolution, relative to the other policymakers, very closely follows the evolution of the carbon tax,
suggesting that in the DSK, employment can quickly recover from the economic shock incurred by high
carbon taxes. Nonetheless, there is a delay between the carbon taxes of the adaptive, risk-averse pol-
icymaker and the risk-neutral policymakers becoming virtually equal in 2060 and the unemployment
doing the same approximately 15 years later, even if the discrepency during this period is barely a 2%
difference. More generally, it can be noted that while an adaptive, risk-averse policymaker under an ECS
which is in line with our current expectations will allow warming to increase significantly, relative to
their non-adaptive counterpart, the gains in employment are also highly significant. For approximately
40 years of model run time, the difference in the expected unemployment rates of these two policymakers
is in the 10% range.

4.2.2 Higher ECS case

Figure (4.7) shows the evolution of the (a) the carbon tax and the resulting (b) green electricity share,
(c) electrification, (d) GDP, (e) CO2 emissions, (f) temperature change and (g) unemployment under all
four policymakers implementing P1 under a much higher ECS of 5.81◦K/doubling CO2.

Observing first panel (a), in this case the adaptive, risk-neutral policymaker’s carbon tax increases be-
tween 2020 and 2060 to match the tax imposed by the risk-averse policymakers; this is a result of the
fact that 5.81◦K/doubling CO2 is very close to the 99th percentile of the Sherwood et al. PDF [22].
Also of interest in panel (a) is the behaviour of the adaptive, risk-averse policymaker’s carbon tax, which
resembles the evolution of the 99th percentile value of the ECS PDF in figs. (3.2) and (3.3). When the
model’s climate and bayesian learning modules begin to run in 2020, the rate of warming is much higher
than expected; however there is not enough warming data at this point to shift the ECS estimate with
much accuracy, leading to an overshoot. Conversely, the research PDFs linearly approach the scenario’s
true value from the initial PDF, narrowing as they go - in this case, approaching the true ECS from be-
low. This is the reason why the carbon tax subsequently undershoots that imposed by the non-adaptive
policymaker in the 2030s: this follows the incorporation of the research module’s first simulated ECS
PDF into the policymaker’s understanding of the ECS, shifting the value downwards.
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Figure 4.7: Evolution of the climate and economy from 2000 to 2120 when P1 (carbon tax only) is pursued,
if ECS=5.81◦K/doubling CO2. The model has been run for 50 realisations; the shaded region in each plot
corresponds to the values bounded by the 10th and 90th percentiles, while the dark line shows the mean time
series. Shown are (a) the global mean surface temperature change with respect to pre-industrial levels, modelled
from 2020; (b) the unemployment rate; (c) the share of electricity produced by green plants; (d) the fraction of
the capital goods sector which has electrified; (e) the GDP, adjusted for inflation, and (f) annual CO2 emissions.
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Observing panel (b), the same behaviour noted when discussing the green electricity share in the context
of the lower ECS can be seen. Higher carbon taxes tend to lead to a faster transition to 100% green
electricity. However, the policymaker who imposes the highest initial carbon tax, due to the overshooting
in the learning process, has the third slowest increase in green electricity share until the year 2040.
Nonetheless, when the electrification is considered, the higher carbon taxes always seem to be associated
with greater rates of electrification. Notably, under this ECS, all but the risk-neutral, non-adaptive
policymaker 100% electrification prior to 2100. Panel (e) confirms that all but this policymaker reach
zero emissions prior to 2100 in most realisations as well. Notably, observing panel (d), the later increase
of the carbon tax once the energy transition is well underway in the mid century under the adaptive,
risk-neutral policymaker does not cause any recession, although the GDP increases less than it would if
the tax were kept lower.

Undrr this ECS, the adaptive and non-adaptive risk-averse policymakers hold the rise in temperature
between 2◦K and 2.5◦K in approximately 80% of the realisations, although it is unclear whether the
climate has stabilised at the end of the model run. This apparent failure to stabilise the climate by 2120
is evidently not the result of emissions, since both of these policymakers have emitted no CO2 in the 20
years preceding this, as already noted. Recalling section 2.2.2, the reason for this slower stabilisation
is the fact that, for higher ECSs, the TCR has been adjusted accordingly so it is much lower. The
temperature therefore takes much longer to respond to the increase in atmospheric CO2 concentrations.
The risk-neutral, non-adaptive policymaker fares most poorly in climate mitigation, as might be expected.
Under this policymaking strategy in the higher ECS case, temperature by 2120 reaches between 3◦K and
4◦K above pre-industrial values. By contrast, the adaptive, risk-neutral policymaker under the same ECS
keeps temperature rises under 3◦K in over 90% of cases, though the Paris Climate Accord goal of keeping
warming under 2◦K is far from site.

Considering panel (g), the evolution of the unemployment as a result of the carbon tax is similar to
that in the lower ECS case. The unemployment is significantly different between the adaptive and non-
adaptive, risk-averse policymakers in the first decade, when the carbon taxes imposed by each differ;
however, the unemployment quickly drops along with the carbon tax under the adaptive, risk-neutral
policymaker. Finally, the red line in panel (b) shows the case of an adaptive, risk-neutral policymaker
who must adapt to a much higher-than-expected ECS. As might be expected from the observations
made thus far, the unemployment rate rises as the carbon tax increases to match that of the risk-averse
policymakers. Notably, however, the unemployment under this policymaker is consistently higher that
that seen under the two risk-averse policymakers during the 2070s, despite the fact that the carbon tax is
virtually identical under these three policymakers from 2060 onwards. This may be attributed to the fact
that during this period, the energy transition and electrification rates under the adaptive, risk-neutral
policymaker lag behind that of the other two, making the same carbon tax more costly to firms than
under risk-averse policymakers.

4.2.3 Performance over all ECSs tested

Having analysed in detail the time evolution of the modelled global temperature and unemployment
rates under the different policymakers under two ECSs, the outcomes of different policymaking strategies
across every ECS tested are now considered. Figure (4.8(a)) shows the peak temperature change, relative
to the pre-industrial value, prior to 2100. The peak before 2100, rather than over the course of the whole
model run, is chosen as the focus partly because 2100 corresponds to the end of the IPCC’s ‘long term’
timescale [49]. An additional reason is that, as noted in chapter 2, the DSK model does not feature
negative emissions, which essentially assumes that no new negative emissions technologies will not be
developed or scaled up over the course of the model run, and that land use will not change to increase the
biosphere’s ability to sequester carbon. As model time increases, this assumption becomes increasingly
hard to justify; thus, 2100 is chosen as a cut-off date for judging the environmental outcomes of policies.

Observing fig. (4.8(a)), we see non-adaptive policymakers experiences greater warming for higher ECSs.
Adaptive policymakers are more successful than their non-adaptive counterparts under high ECSs, but
adopt less stringent mitigation strategies in lower-ECS cases, thereby seeing considerably higher warming
in these situations. Recalling our discussion of P1 under an ECS of 2.99◦K/doubling CO2, only the
non-adaptive, risk-averse policymaker is able to consistently reach zero emissions in this situation. This,
combined with the fact that the peak temperature takes longer to be reached under higher ECSs, due
to the adapted TCR, explains why the highest warming under the adaptive, risk-neutral policymaker is
seen for the lowest ECS. It is at this ECS that the electrification rate is lowest and production highest,
resulting in the highest emissions of any of the simulations. Overall, then, whereas there is a clear gradient
of peak temperature as a function of ECS for non-adaptive policymakers under P1, this is not the case
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with their adaptive counterparts.
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Figure 4.8: (a) Peak warming prior to 2100, relative to pre-industrial value, for all policymakers, over all ECS
values tested. The policy applied in this figure is P1 (carbon tax only). As 50 realisations of the model were run
for each ECS value, for each policymaker, the distribution of peak temperatures is shown for each case, in varying
shades of red. For each policymaker, labelled on the x-axis and demarcated in the figure by varying shades of
blue, the mean value (yellow dot), first and third quartiles (thick vertical black line) and distribution have been
shown. For each policymaker, the values are plotted from left to right, sorted by increasing ECS, with the darkest
shaded distribution, on the left, corresponding to the lowest tested ECS value. The ECS corresponding to each
shade of red is shown in the legend, in units of ◦K/doubling CO2. (b) Time-averaged unemployment difference
from 2020 to 2100, where the baseline unemployment is the mean unemployment in the case where no policy is
applied. The policy applied in is P1 (pure carbon tax). The values are stated in units of the fraction of the total
working-age population. The plot is organised by policymaker and ECS in the same way as in panel (a). (c)
Peak unemployment under P1. This is not plotted relative to the no-policy baseline due to the variability of the
unemployment in the baseline case.

Across all ECSs, the spread of the peak temperatures over different model realisations is narrower the
more stringent the climate policy applied. This is most visible from the difference between no policy, with
different realisations having peak temperatures spread over more than 3◦K, and the fixed, risk neutral
policymaker, with realisations diverging by 2◦K at most. This trend continues in the jump to the risk-
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averse policymakers, who tend to see less than a degree’s divergence between different realisations. This
is likely a result of the fact that variations in emissions time series between different realisations will have
a greater effect on the temperature if zero emissions is never reached.

Overall, the fixed, risk-averse policymaker has the greatest chance of keeping warming to 2◦K or less,
given that the other policymakers rarely achieve this. While even the fixed-risk averse policymaker’s
performance with respect to this goal may seem poor, it should be recalled from the ECS PDF shown in
fig. (3.4) that the first 3 ECSs represent approximately 90% of the probability of the PDF. Nonetheless,
considering the distribution of temperature in the different realisations, and the higher ECSs, there is
clearly an over 50% chance that this policymaker sees a peak temperature of over 2◦K.

Panel (b) of (4.8) presents the time-averaged difference in unemployment between each policy and the
expected no-policy result. By definition, non-adaptive policymakers do not change the carbon tax de-
pending on the ECS, so it is as expected that the unemployment rate has no dependence on ECS for
these policymakers. Nonetheless, observing the distribution of average unemployments for a given non-
adaptive policymaker in fig. (4.8(b)) does make it possible to see that even running 50 realisations per
scenario is not enough to capture all visible variation in the DSK’s economic model. As noted in section,
among non-adaptive policymakers, the risk averse policymaker causes significantly more unemployment
than the risk-neutral policymaker, increasing time-mean unemployment by an average of 8-9%, relative
to the baseline, rather than 2-4%.

For the adaptive policymakers, unemployment increases greatly with ECS, with expected values ranging
from 1% for the lowest ECS to nearly 10% for the highest in the case of the risk-neutral policymaker.
The spread of time-mean unemployment also increases with the ECS. This could be a result of greater
variations in the evolution of the policymaker’s knowledge of climate sensitivity, as it needs to increase
over a much larger range than that initially expected. The risk-averse policymaker does not see as
great an increase in time-mean unemployment, relative to their risk-neutral counterpart, than the non-
adaptive, risk-averse policymaker does. This is likely because the adaptive, risk-averse policymaker tends
to successfully reach zero emissions under higher ECSs. Consequently, the unemployment rate will recover
towards the end of the model run, as the carbon tax no longer contributes to firms’ costs.

Observing panel (c), the behaviour of the peak unemployment follows much of the same behaviour as
the time-averaged values. However, perhaps counter-intuitively, the peak unemployment rate is at times
higher for the adaptive, risk-neutral policymaker than the adaptive, risk-averse policymaker in the highest
ECS case. In fact, this is a result of the Bayesian learning process in the 8 years before the first research-
function-imposed narrowing of the PDF. The expected ECS of the risk-neutral policymaker under an
ECS of 7.8◦K/doubling CO2, having started near 3◦K/doubling CO2 increases extremely rapidly as a
results of the much higher than expected warming. This is so much the case that it is at times higher that
the 99th percentile ECS of the risk-averse policymaker, who started with an already high ECS, in the first
few years of learning. More generally, it can be noted that while the adaptive, risk-neutral policymaker
sees warming of over 3◦K under the highest ECS, they cause a peak in unemployment of over 40% in
some realisations. This is a testament to the inefficacy of P1 as a climate policy.

4.3 P2: Carbon Tax, 50% Directed towards Green Plant Build-
ing

4.3.1 Temperature change

The climate mitigation achieved with P2 is much greater than that with P1: among the risk-neutral
policymakers, the highest peak warming seen under P2 is one degree lower than under P2. In all but a
few realisations under every non-baseline policymaker, warming is kept to under 3◦K under every ECS.
The spread of the peak temperature seen under each policymaker, under each ECS, is narrower than it
was under P1. This likely indicates that zero emissions are consistently achieved by all policymakers.
Risk averse policymakers have an over 90% chance of keeping peak warming below 2◦K. Unlike under P1,
the gradient of peak temperature as a function of ECS seen under non-adaptive policymakers is also seen
under adaptive policymakers, although it is not as pronounced. The adaptive policymakers generally
see under lower warming under high ECSs and higher warming under low ECSs than their non-adaptive
counterparts. Nonetheless, peak warming under the adaptive, risk-averse policymaker is barely higher
than under their fixed counterpart.
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Figure 4.9: (a) Peak warming prior to 2100, relative to pre-industrial value, under P2 (carbon tax with state
green plant building). The plot is organised by policymaker and ECS in the same way as in fig. (4.8). (b)
Time-averaged unemployment difference from 2020 to 2100, relative to the mean unemployment in no policy case,
under P2 (carbon tax with state green plant building). (c) Peak unemployment under P2.

4.3.2 Unemployment

Observing panels (b) and (c) of fig. (4.9), it is immediately clear that P2 causes less unemployment than
P1; indeed, some realisations with the risk-neutral policymakers see less time-averaged unemployment
than the expected baseline value. The jump in unemployment from risk-neutral to risk-averse policy-
makers is much smaller than under P1. The increase in time-mean unemployment with ECS under the
adaptive policymakers is also much less steep than under P1. This suggests that, under P2, the time-mean
unemployment rises less decisively with higher carbon taxes than under P1. This is difference is also seen
in the peak unemployment, although to a lesser degree, which suggests that the gains in employment are
largely due to a faster recovery from the initial spike in unemployment than under P1.

The improved performance, as gauged by unemployment, of P2 compared with P1 - as well as the fact
that time-mean unemployment increases less with higher carbon taxes - can be understood as the result
of two main causes. First is the fact that, under this policy, the government directly creates jobs in green
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plant building and maintenance: crucially, the number of jobs created is directly tied to the revenue from
and hence value of the carbon tax. This is expected to slightly reduce the peak . Notably, in cases where
the carbon tax is extremely high, more green plant jobs might not necessarily be created than would be
by a lower carbon tax: beyond a certain level the higher carbon tax mostly causes a deeper recession,
with the depressed economic activity resulting in lower carbon tax revenue and hence fewer green plant
jobs than might otherwise be created with a slightly lower carbon tax.

The second, less direct, cause of the gains in employment is the faster green transition seen under this
policy. A high carbon tax - although not as high as in the extreme case discussed - results in a large green
plant building fund, and hence a very fast increase in the green share of electricity during the years when
little green plant building takes place under P1. The experience gained in green plant building leads to
a lowering of the costs of green plant building through innovation. Consequently, the rate of green plant
building can be maintained at a very high level, meaning that a full transition in electricity generation
can be achieved much more quickly than under P1. Consumption good firms, therefore, sooner benefit
from decreased costs from the carbon tax. The sooner date of the full transition in electricity generation
means that electrification becomes much more attractive to capital good firms much more quickly than
would be the case under P1. The result is that the industrial sector sooner finds carbon taxes less costly
than under P1, thereby sooner the sector’s capacity to (re)hire.

Considering the two lowest ECSs - accounting for 71.9% of the ECS PDF - it can be seen that, despite
the very minimal nature of the increased warming under the adaptive, risk-averse policymaker relative
to their non-adaptive counterpart, the gains in employment are tangible. Time-mean unemployment in
these cases decrease relative to the fixed policymaker by 1-2%, and the expected peak unemployment is
also several percentage points lower. This, combined with the slightly lower warming in the highest ECS
cases, points to a clear benefit to adaptive, risk-averse policymaking under P2.

4.4 Comparing All Policymakers

Figure (4.10) shows the effects on global warming and time-averaged unemployment of each policymaker
following each policy, aggregated over every ECS tested. The figure effectively presents a summary of the
main points discussed in the preceding section, but with a more formal method of considering the results
over different ECSs. Temperature change and unemployment values were aggregated over different ECSs
using a simple probability-weighted sum, thus yielding the expectation values for the two, following the
method described in chapter 3.

Risk-neutral policymaking leads to higher expected warming than risk-averse policymaking. This dif-
ference is significant for both policies, but more so for P1. Among risk-neutral policymakers, adaptive
policymaking leads to slightly higher warming, on average, than non-adaptive policymaking, a result of
the much higher probability of low ECSs. Expected unemployment is also very slightly slightly higher
under the adaptive policymaker when a risk-neutral approach is followed. Considering risk-averse policy-
makers, fixed policymaking leads to much lower expected peak temperatures than adaptive policymaking;
this comes at the cost of significantly higher unemployment. This contrast is particularly pronounced
under P1. Under P2, although the expected warming increases in the shift from non-adaptive to adaptive
policymaking, it is still has an approximately 90% chance of being under 2◦K.
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Figure 4.10: Peak temperature change, relative to pre-industrial value, and time-integrated unemployment
difference, relative to null policy case, for each policymaker and policy, aggregated over all ECS values. The peak
temperature change is plotted in green, and measured on the left-hand y-axis, while the unemployment is plotted
in orange, with its scale on the right-hand y-axis. The values for each case have been aggregated over all ECS
values tested through a weighted average, where the weighting is the probability of each ECS, according to the
PDF in [22]: the temperature and unemployment values may thus be treated as estimated expectation values,
according to recent estimates of the ECS. Shaded regions correspond to the values bounded by the 10th and 90th

percentiles of the realisations simulated, with the lines corresponding to the means. As shown in the legend,
solid lines correspond to policymakers pursuing P1 (carbon tax only), with dashed lines corresponding to the case
where P2 (carbon tax with state green plant building) is pursued. The null policy case has been omitted to show
the differences between the outcomes of the different policies and policymakers in greater detail.
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Chapter 5

Discussion

It seems worthwhile to preface the conclusions drawn in the next chapter with a discussion of the strengths
and weaknesses of this work’s approach and methods, the model used to undertake the research, and,
more generally, the difficulties in comparing outcomes of different policies.

It is worth noting that the results discussed in this report are very much dependent on the year in which
this research was undertaken. While there may be some benefits to adaptive policymaking - this will
be commented on in the final chapter - there would likely be more potential benefits to this approach
if it had been considered in the past, at a time when the window for effective climate action was more
open. Indeed, the UNEP’s emissions gap report 2022, already cited several times in this work, referred
to itself as a ‘testimony to inadequate action on the global climate crisis’ [6]. If current global trends in
enacted climate policy continue, it is likely only a matter of time until the required rate of mitigation is
so extreme that any questions of ECS-adaptive policymaking become largely irrelevant. Of course, it is
impossible to determine a priori when, if ever, our research questions will become truly irrelevant - this
might be, in itself, a question worthy of further study.

Focusing more concretely on the methods used in this work, a key criticism that can be made is the lack
of non-carbon tax policies investigated in answering the research questions. As has been noted in the
results, the differences between different policymakers are partly dependent on the policy being enacted:
it would therefore be greatly beneficial to consider policies that are not reliant on a carbon tax, as the
dynamics could be markedly different. This omission is largely due to time constraints, combined with
the more complicated nature of making such policies adaptive. Nonetheless, one example of a policy that
could be investigated would be an adaptive green plant building program, funded by time-constant, higher
corporation tax. Corporation tax is suggested rather than income tax mainly because workers in the DSK
model are modelled as a homogeneous mass, so the effects of differing personal income taxes would be
much harder to model. Another direction further investigation might take would be the incorporation of
regulation into the policies investigated. While it is hard to see how regulation could be made adaptive,
it may be that the interaction between regulations and other, adaptive, policies could lead to dynamics
that are not seen in this report.

Considering the climate modelling used in this work, there are also criticisms that can be made. Most
pressing is the treatment of the ECS and TCR: while the approach followed was to adapt the TCR to the
ECS so as to make the evolution of the GMST consistent with 2020 values, it may be that this misses a
key dynamic linking the two measures of climate sensitivity, calling into question how realistic the climate
modelling is. To some extent, this criticism can be mitigated by noting that the potential lack of realism
is largely a reflection of the limitations of working with relatively simple reduced-complexity climate
models, and that the purpose of this research is to analyse the outcomes under different policymaking
approaches comparatively, rather than to produce precise quantitative predictions.

A note has to be made at this point that the main priority before undertaking further research using the
models adapted in this work would be to correct the error in the implementation of the bayesian learning
routine.

5.1 The Model and Wider Environmental Context

The DSK model has been noted in the context of an increasingly large base of new climate-economic mod-
els which move away from neoclassical economic assumptions, particularly that of economic equilibrium
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[50]. There are benefits in using the DSK model, rather than simpler and/or more conventional IAMs.
A key advantage over the DICE model, for instance, is the fact that investing in mitigation involves
investment in an explicitly modelled stock of green plants, in the context of an electricity firm with its
own dynamics. This allows for more detailed conclusions than would a similar exercise conducted using
DICE. The fact that electrification, as well as a transformation of the energy mix, is necessary for full
decarbonisation is an additional benefit. Finally, the agent-based nature of the model’s industrial sector
means that a rise in unemployment following the introduction of a large carbon tax emerges from the
costs incurred on individual employers, rather than from a set of theoretical macroeconomic relations, to
some extent limiting the number of assumptions and simplifications the model has to make.

Naturally the DSK model is not without its own shortcomings; some of the more pressing ones for this
research can briefly be considered. In some ways the model is overly pessimistic, from a climate mitigation
perspective: there is no limit to the amount of fuel that can be burnt; this, combined with the perhaps
overly robust annual GDP growth rate of approximately 3%, may result in too much warming in the no-
policy baseline case. On the other hand, the model does not currently feature any negative environmental
or social consequences of ever increasing energy use. There is no limit to the number of green plants that
can be built; this may be problematic from the perspective of the ecological and health impacts of the
extraction of the materials used to build them. While it may be difficult to explicitly model these risks
in the DSK model, perhaps additional ecological indicators could be incorporated into the model as well.

5.2 Weighing up different policies

Contrary to the title of this work, no strict optimisation method is followed to find the preferred policy.
This is partly a result of the technical infeasibility of such an approach using the DSK model, due to
its computationally intensive nature. The result has been a more explicit discussion of the trade-offs
and synergies found between different policies and strategies. However, this has also led to a certain
difficulty in determining how to weigh up different social and environmental ills, especially considering
that the two are often interconnected. Indeed, considering the topic of social ills, unemployment is
used in this work as the sole indicator of negative social consequences. It should be noted, though,
that some climate economists see a society wide decrease in total working hours - in effect reducing
or eliminating unemployment through a wide decrease in the working week - as a potentially positive
outcome of thorough climate mitigation [51]. Whether or not this is the case, however, there is a more
general question of how to weight social and environmental ills - even if this weighting is more conceptual
than strictly mathematical. This project has attempted to leave the question as open as possible, and
leave the reader to come to their own conclusions, perhaps in the spirit of reaching such decisions through
discussion.
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Chapter 6

Conclusion

This work aimed to answer two primary research questions:

1. How aggressive should policymakers be in their approach to mitigation while the Equilibrium Cli-
mate Sensitivity (ECS) is still largely uncertain?

2. Should policymakers adapt their strategy as understanding of the ECS evolves?

To this end, an agent-based integrated assessment model, the DSK model, has been adapted to incorporate
policymakers who learn the climate sensitivity as the global mean surface temperature increases. The
outcomes, in global warming and unemployment, seen under these policymakers are compared with those
seen under policymakers who do not adapt their approach as new information on the ECS is made
available. Similarly, risk-neutral policymakers, who are concerned only with the expectation value of
the ECS are compared with risk-averse policymakers, who act according to the evolution of the 99th

percentile value of the ECS. The differences in outcomes under these four policymakers are discussed in
the context of two different policies, reflecting the fact that the best strategy may depend on the type of
policy pursued.

Our conclusions will rest on the observations made in section 4.4. In terms of coming close to meeting the
Paris Agreement goals, it is clear that, under both policies investigated, only risk-averse policymaking
is effective. However, within this category the conclusions become more nuanced. When the results are
aggregated across different ECSs according to current understanding of their approximate probability,
non-adaptive policymaking achieves the greatest climate mitigation. This also comes at the cost of
higher unemployment, even under the second policy, in which the policymaker uses the revenues of their
carbon tax to build green plants. To the author of this report, the outcomes of the adaptive, risk-averse
policymaker implementing the second policy seem the most attractive. What is clear, however, is that
whatever the relative merits of adaptive and non-adaptive policymaking, the choice of which policy to
pursue has considerably more impact, in terms of both unemployment and climate change. In conclusion,
then, risk-aversion regarding the ECS is likely to lead to better outcomes and there are benefits associated
with adaptive policymaking, but most important is the set of policies implemented, and at this time it is
thus crucial that more policies than ever are considered, modelled, and discussed in society at large.
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[4] C. A. Ogunbode, R. Doran, and G. Böhm, “Exposure to the IPCC special report on 1.5◦C global
warming is linked to perceived threat and increased concern about climate change,” Climatic Change,
vol. 158, no. 3, pp. 361–375, 2020.
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Appendix A

Evolution of the Research PDF

From eq. (3.5), it can be found that in order to produce a lognormal distribution with the a desired mean
µx and standard deviation σx, repsectively, the parameters should be chosen following

µ = ln

(
µ2
x√

µ2
x + σ2

x

)
,

σ =

√
ln

(
1 +

σ2
x

µ2
x

)
.

(A.1)

Finally, the peak of the distribution is defined as

M = eµ−σ
2

, (A.2)

as can be verified by maximising eq. (3.4).

As stated in section (3.1.2), the researched PDFs linearly approach the true ECS, such that the peak of
the distribution reaches the true value in the last PDF, while the standard deviation of the distribution
reaches a value of one step in ECS (dECS) in the final PDF. Consequently, the peak evolves according
to

M(t) = mM t+M0, (A.3)

where, from eq. (A.2), M0 = M(0) = exp(µ0−σ2
0), µ0 and σ0 being the parameters that define the initial

PDF. At the time of the last research, T (40 years, in the DSK), M = ECST , the true ECS:

ECST = mMT +M0, (A.4)

which yields an expression for mM , which can be substituted into eq. (A.3) and combined with eq. (A.2)
to give

eµ−σ
2
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0 ,

and so

µ(t) = σ(t)2 + ln

(
ECST − eµ0−σ2
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0

)
. (A.5)

Similarly, σx(T ) = dECS, and so

σx(t) =
dECS − σx0

T
t+ σx0

. (A.6)

Note that the standard deviation of the initial distribution, σx0 can be found from µ0 and σ0 by combining
eq. (A.1), and rearranging to get

σx0
= eµ0

√
e2σ

2
0 − eσ2

0 .

Now, by combining and rearranging eq. (A.1), we also find the expression

µx = eµ+σ
2/2,
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which, when combined with eq. (A.5) gives

µx = Me3σ2/2.

Substituting this into the definition for σ given by eq. (A.1) and rearranging, we have

σ2 = ln

(
e3σ

2

+
σ2
x

M2

)
− 3σ2.

Taking the exponential of both sides, it then becomes clear that σ can be found by solving

e4σ
2

− e3σ
2

=
(σx
M

)2
. (A.7)

This is achieved numerically, using a linear bisection method. Once σ has been found, µ is found from
eq. (A.5).

Due to the narrowness of the distribution once the final researched PDF has been incorporated, subsequent
Bayesian steps will have little effect on the PDF after this point. Figure (A.1) shows the evolution of the
ECS PDF when ECS=6◦K/doubling CO2.
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Figure A.1: Evolution of the researched ECS PDFs under a true ECS of 6◦K/doubling CO2. PDF 1 is the
initial ECS PDF, which is a lognomal fit of Sherwood et al.’s estimated PDF [22].
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