
Master thesis on Mathematical Sciences
Utrecht University

Stock Price Simulation under
Jump-Diffusion Dynamics: A

WGAN-Based Framework with Anomaly
Detection

Renren Gan

Supervisor: Prof. dr. ir. C.W. Oosterlee

Dr. ir. L.A. Grzelak

N.T. Mücke

January 2023

Acknowledgement

I would like to express my sincere gratitude to my supervisors for their support and
helps throughout the research project. First, I thank Prof. C.W. Oosterlee for his weekly
instruction, pointing out the right direction of the research. Next, I thank N.T. Mücke
for his practical help. I also thank Dr. L.A. Grzelak for his reviews.

I would also like to thank my family and my cat for their support and accompany.

Abstract

Jump-diffusion path simulation is a popular topic in the finance area. In numerical
path simulation, it is usually split into a diffusion part and a jump part. We propose
a GAN-based framework that gives a general pattern for the jump-diffusion path sim-
ulation. The framework consists of two parts: 1) the diffusion learning part for the
simulation of the diffusion part; 2) the jump detection part related to the jump simu-
lation. The diffusion simulation is achieved by a conditional Wasserstein GAN with
gradient penalty (called SDE-WGAN). The SDE-WGAN is an adapted model from a
GAN-based SDEs simulation methodology, showing its advantages in stable training.
The jump detection model is designed to detect the jump instances in a jump-diffusion
path and estimate the jump parameters. The jump instances are detected by introduc-
ing a GAN-based anomaly detection method, as the jumps can be viewed as anomalies
that are inconsistent with the non-jump data and rare to occur in the real market. The
SDE-WGAN is well-combined since it can only generate non-jump states. The jumps
are then recognized when the SDE-WGAN generated pattern significantly differs from
the actual state. The maximum likelihood estimation is then applied to approximate
the jump parameters based on the detected jump instances. We perform the proposed
framework for simulating the Merton’s model and obtain promising results. However,
the framework may fail when the jump magnitude is small.

Contents

1 Introduction 1

1.1 Research Question . 4

1.2 Thesis Outline . 5

2 Preliminaries 6

2.1 Stochastic Processes in Finance . 6

2.1.1 Geometric Brownian Motion . 8

2.1.2 Is GBM Realistic Enough: Towards to Jump Processes 11

2.1.3 Jump-Diffusion Process . 12

2.2 Monte Carlo Path Simulation . 14

2.2.1 Path Simulation of the GBM Model . 16

2.2.2 Path Simulation of the Jump-Diffusion Process 17

2.3 Artificial Neural Networks . 22

2.4 Anomaly Detection . 27

3 Generative Adversarial Networks 30

3.1 Introduction . 30

3.2 Vanilla GAN . 31

3.2.1 Theoretical Results . 32

3.3 Conditional GAN . 34

3.4 GANs Training in Practice . 35

3.5 GANs Applications . 36

3.5.1 SDE-GAN: Path Simulation of SDEs Using GANs 37

3.5.2 AnoGAN: Anomaly Detection Using GANs 42

3.6 GANs Problems and Improvements . 43

3.6.1 GANs Problems . 43

3.6.2 GANs Improvements . 46

4 Wasserstein GAN 47

4.1 Wasserstein Distance . 47

4.1.1 1-Wasserstein Distance . 48

4.1.2 Dual Problem . 49

4.2 WGAN Architecture . 49

4.3 Theoretical Results . 49

4.4 Training Algorithm . 51

4.5 WGAN Improvement: WGAN-GP . 52

5 Proposed Framework 55

5.1 3D Dataset Construction . 56

5.2 Conditional Wasserstein GAN with Gradient Penalty 56

5.2.1 cWGAN-GP Architecture . 57

5.2.2 cWGAN-GP in Practice . 57

5.3 Monte Carlo Simulation Using SDE-WGAN 57

5.3.1 SDE-WGAN . 58

5.3.2 GBM Path Simulation . 59

5.3.3 Jump-Diffusion Path Simulation . 59

5.4 Jump Detection Model . 60

5.4.1 Jump Instances Detection . 60

5.4.2 Jump Parameters Estimation . 61

6 Experiment Results 69

6.1 Experimental Setup . 69

6.1.1 Data Setup . 69

6.1.2 SDE-WGAN Setup . 70

6.2 Evaluation Metrics . 70

6.2.1 Empirical Probability Distribution . 71

6.2.2 KS Test and 1-Wasserstein Distance . 71

6.2.3 Classification Performance . 72

6.3 Results . 72

6.3.1 SDE-WGAN Performance . 72

6.3.2 Jump-Diffusion Path Simulation . 74

6.3.3 Jump Detection . 75

6.4 Robustness . 77

7 Discussion and Conclusions 80

7.1 Discussion . 80

7.1.1 The 3D Dataset . 80

7.1.2 Jump Detection: BiGAN . 80

7.1.3 Anomaly Score Threshold . 80

7.1.4 SDE-GAN and SDE-WGAN . 80

7.2 Conclusions . 81

List of Figures 82

List of Tables 86

Bibliography 87

A Stochastic Preliminary 93

A.1 Random Variables . 93

A.2 Stochastic processes: Markov Property and Itô’s Lemma 94

B SDE-WGAN 97

B.1 SDE-WGAN Architecture . 97

B.2 Hyperparameter Tuning . 97

Chapter 1

Introduction

Financial market participants, such as investors, are interested in asset price simula-
tion, which is a popular topic in the financial area. Simulation in this context, usually
related to forecasting or prediction, refers to generating asset price paths in the future
to show the possibility or the trend of future markets. In this thesis, we stand from the
perspective of investors and focus on the basic asset class, i.e., stocks.

Return, risk and liquidity are three basic concepts in portfolio theory [1], illustrating
the so-called magic triangle of investment. Investors would like the highest possible
return with acceptable risk, while the risk is usually proportional to the return and
inversely proportional to the asset liquidity. Regarding stocks, those listed on major
exchanges are generally good at liquidity. However, the entire market may collapse
during a crisis, for example, when the black swan events occur. Therefore, the simula-
tion is helpful for investors to make crucial decisions.

In the financial area, stock prices are typically modeled as stochastic processes, in par-
ticular, Markov stochastic processes: The future stock price is a random variable in-
dexed by time; Moreover, financial researchers assume that for the future stock price,
the current price is only relevant, while not related to the past prices, following a so-
called Markov property. The dynamics or the behavior of the stock prices are usually
characterized by stochastic differential equations (SDEs), where a Wiener process or a
standard Brownian motion is involved. One of the most common stochastic models
for the behavior of stock prices is the geometric Brownian motion (GBM) process.

The GBM model forms the basis of the classic Black-Scholes pricing model [2] pro-
posed in 1973. However, it is still popular for researchers nowadays and is still used
for real-market simulation [3; 4]. Even though the GBM model is basic and widely
used, it is not realistic enough. In empirical studies, the log-returns of the historical
stock prices display a distribution which has a high peak and asymmetric heavy tails
[5], while the GBM model is not able to present this feature. Regarding the so-called
leptokurtic feature, many alternative models have been proposed. Among them, the
jump-diffusion model is appealing since it provides a good explanation, by definition,
for the jump patterns exhibited by stocks [6].

The jump-diffusion model is derived from the GBM model. It has an additional term

1

2 Chapter 1. Introduction

driven by a compound Poisson process aiming to model the stock price’s discontinu-
ous behavior (i.e., the jump). The mathematical formula for the corresponding dynam-
ics is also called an SDE with jumps [7]. The jump-diffusion model is a simple extension
of the GBM model, which is not only computationally friendly but also shows better
performance to stocks than the GBM model [8]. Except that, empirical tests show that
the jump-diffusion processes can reproduce the leptokurtic feature of the stock returns
and the volatility smile in option prices [9; 10].

In practice, the above stochastic models are often simulated via the Monte Carlo ap-
proach. The Monte Carlo simulation is an essential tool in finance, especially in option
pricing and risk management [11]. It is a random sampling method based on probabil-
ity theory: By repeatedly sampling the random variables in the system, we can obtain
a range or a distribution of the outputs; Based on the law of large numbers, the expec-
tation of the outputs converges to the actual mean, and from the central limit theorem,
the error information is provided [12].

When simulating the price paths following the stochastic models, solutions of the
corresponding SDEs are approximated, as most SDEs do not have closed-form so-
lutions. Investors often resort to numerical approximations and time-discretization
methods are usually used to approximate the continuous-time dynamics. The Euler
discretization scheme [13] perhaps is the simplest approximation, and other discrete-
time schemes, such as the Milstein scheme, are proposed to improve the accuracy of
the approximation [14]. The Monte-Carlo simulation then plays a role because of the
involved random increments.

To improve the estimation accuracy for the stochastic integrals, [15] proposes a new
direction for the approximation instead of applying higher-order Taylor expansions or
other discretization methods. The authors of [15] use a neural network, especially a
generative adversarial network (GAN), to learn the relation between the two adjacent
prices. Such methodology is tested successfully on the GBM model. Compared to
non-machine learning methods, the neural network approach gives a general pattern
for the stochastic model simulation and it can theoretically be applied to simulate all
kinds of stochastic processes with the same precision. Moreover, the machine learning-
based method shows its advantages, especially when dealing with high-dimensional
problems and facing the curse of dimensionality [16].

This thesis will use the jump-diffusion model to simulate stock paths. With the invest-
ment background, we focus on the log-price dynamics under P-measure, that is, the
real-world measure. Usually, the simulation can be divided into two aspects: 1) pa-
rameter estimation and 2) path simulation (see Figure 1.1). Since the jump-diffusion
process is an addition of a diffusion component (i.e., the part derived from the GBM
model) and a jump component (i.e., the part driven by the compound Poisson pro-
cess), we simulate the paths by generating the two components, respectively. When
the model parameters are estimated from the empirical market, we generate the diffu-
sion component following a usual log-GBM model. As for the jump component, the
time instances for jumps and the jump magnitudes are sampled respectively [17; 18].

Considering the benefits of the neural network approach, we propose a GAN-based
Monte Carlo simulation framework (see Figure 1.2). The details of each component are

3

Figure 1.1: The simple framework for jump-diffusion model simulation.

demonstrated as follows:

• Path simulation:

Following the general approach above, we separate the path simulation into dif-
fusion and jump parts.

– The diffusion part:

An improved GAN architecture called SDE-WGAN will be used to simulate
the diffusion component. It is essentially a condition GAN using the Wasser-
stein loss with an addition constrain so-called gradient penalty on the critic1

loss. Contrary to the conditional GAN architecture in [15], SDE-WGAN is
significantly stable.

– The jump part:

Instead of using Poisson random variables to sample the jump instances in
the time horizon [17; 11], we generate independent Bernoulli random vari-
ables at each timestamp to determine the jump occurrences [18]. The jump
magnitudes or the jump sizes are governed by some distribution, such as a
normal distribution in Merton’s model [19] and a double exponential distri-
bution in Kou’s model [9]. The jump magnitudes will influence the prices
when the Bernoulli variable is equal to 1.

• Parameter estimation:

Many statistic parameter estimation methods can be applied for estimating pa-
rameters of the jump-diffusion model. For example, [20; 8] use the maximum
likelihood estimation (MLE) method, as the corresponding density function can
be derived. Since the proposed SDE-WGAN can directly simulate the diffusion

1In Wasserstein GAN, the discriminator is often called a critic.

4 Chapter 1. Introduction

Figure 1.2: The proposed GAN-based framework for jump-diffusion model simulation.

part based on the adjacent prices, in this thesis, we only need to focus on the es-
timation for the jump parameters, that is, the jump intensity and the jump mag-
nitude. Moreover, we introduce an anomaly detection technology when dealing
with the jump part.

As crashes and large valleys are rare to happen [21] in the real market, jumps can
therefore be viewed as anomalies. The prices not influenced by the jump part
are the normal data. We can then apply anomaly detection methods to detect the
jumps in the price path. With the benefit of the well-trained GAN in the diffusion
simulation, the normal pattern is already learned. It is then natural to introduce a
GAN-based anomaly detection method [22], where the GAN is actually the same.
Based on the detected jump instances, we can then estimate the parameters of the
jumps.

Research on jump-diffusion model simulation always retains its appeal, and our main
contribution is proposing a general simulation framework. The GAN-based frame-
work can work on the jump-diffusion process and easily adapt to other complex stochas-
tic models. Moreover, the introduced anomaly detection method gives a new view on
jump detection, which may be extended to the Hawkes jumps [23]. On the other hand,
it is also another example of applying machine learning-based methods in finance.

1.1 Research Question
This thesis aims to examine the possibility of using GANs to simulate jump-diffusion
processes, and a GAN-based framework is proposed: First, we improve the condi-
tional GAN in [15] to simulate the diffusion part; Next, we introduce a GAN-based
anomaly detection to recognize the jumps, the jump part is then simulated based on
jump parameters estimated from the detected jumps.

1.2. Thesis Outline 5

In brief, the main research question of this work is "Can we use GANs and anomaly
detection technology to simulate a jump-diffusion process?"

The detailed sub-questions are listed as follows:

• Given the necessary model parameters, can we use a GAN to simulate jump-
diffusion paths?

• Given a path following the jump-diffusion dynamics, can we use the well-trained
GAN to detect the jumps?

• How can we estimate the jump parameters as accurate as possible from the de-
tected jumps?

• The Robustness and sensitivity of the proposed framework. For example, when
the model parameters change, is the GAN still able to simulate jump-diffusion
paths? What jump size can be detected?

1.2 Thesis Outline
The thesis is structured as follows: In Chapter 2, we describe some related back-
grounds or preliminaries, including the stochastic processes to simulate, the numer-
ical Monte Carlo simulation methods, the artificial neural networks and the anomaly
detection methods. In Chapter 3, the generative adversarial networks are illustrated
thoroughly. We present two GAN applications that are associated with the proposed
framework. Chapter 3 ends with the GAN training problems. In Chapter 4, we dis-
cuss the improved GAN model-Wasserstein GAN and Wasserstein GAN with gradi-
ent penalty, which can effectively prevent the GANs failure modes because of the in-
troduced Wasserstein loss. Chapter 5 explains the implementation of the proposed
framework part by part, where the Merton’s model is taken as an example. Experi-
ments of the proposed framework on the artificial dataset are illustrated in Chapter 6,
and we also examine the robustness of the framework. Chapter 7 discusses our choices
and outlooks regarding the proposed framework. Finally, we make a brief conclusion.

Chapter 2

Preliminaries

This chapter presents the basic knowledge required in our proposed simulation frame-
work (Figure 1.2). The contents are structured as follows. First, we discuss stochastic
processes, which are the goal of the simulation. Next, the Monte Carlo path simulation
is described. It is a simulation method we introduce to generate stochastic paths. After
that, artificial neural networks are illustrated, which are the essential techniques in the
framework. In the final part, anomaly detection is briefly explained, relating to our
proposed creative idea.

2.1 Stochastic Processes in Finance
Stock prices are often modelled as a stochastic process, and their dynamics are usually
described as stochastic differential equations (SDEs). A stochastic process is a collec-
tion of random variables {S(t), t ∈ T} depending on time t, defined on a probability
space (Ω,F , P), where Ω is a sample space, F is a σ-field and P is a probability mea-
sure. It can also be viewed as a function of two variables S(t) = S(t, ω), with t ∈ T and
ω ∈ Ω: For a fixed t ∈ T, the function S(t, ·) is measurable with respect to F (t); For
some fixed ω ∈ Ω, the function S(·, ω) : T 7→ R is called a trajectory or a path of the
process [24]. {S(t), t ∈ T} is said to be adapted to the filtration F (t), if σ(S(t)) ⊆ F (t).

In this section, which is heavily inspired by [25], two basic stochastic models are de-
scribed in detail, related to two fundamental stochastic processes called Wiener process
and Poisson process.

Definition 2.1.1 (Wiener process). A Wiener process, W(t), which is also called a standard
Brownian motion, is a continuous-time stochastic process characterized by the following prop-
erties:

• W(0) = 0,

• W(t) is almost surely continuous,

• W(t) has independent Gaussian increments, i.e. ∀ 0 < t1 ≤ t2 ≤ t3 ≤ t4, W(t2)−
W(t1) ⊥⊥W(t4)−W(t3), with distribution W(t)−W(s) ∼ N (0, t− s)1 for 0 ≤ s <
t.

1N (µ, σ2) denotes a normal distribution with expectation µ and variance σ2.

6

2.1. Stochastic Processes in Finance 7

Definition 2.1.2 (Poisson process). A stochastic process {XP (t), t ≥ t0 = 0}, with param-
eter λp > 0 is called a Poisson process, if:

• XP (0) = 0;

• ∀t0 = 0 < t1 < · · · < tn, the increments XP (t1)− XP (t0), . . . , XP (tn)− XP (tn−1)
are independent random variables;

• For s ≥ 0, t > 0 and integers k ≥ 0, the increments are integer-valued and have the
Poisson distribution

P[XP (s + t)− XP (s) = k] =
(λpt)ke−λpt

k!
. (2.1.1)

Proposition 2.1.3 (Poisson process). The Poisson process in Definition 2.1.2 has the follow-
ing properties:

1) {XP (t), t ≥ 0} is right-continuous and nondecreasing;

2) E[XP (t)] = λpt, Var[XP (t)] = λpt.

Proof. 1) is obvious from the definition. We then give the proof of 2).

For a time interval dt > 0, the increment dXP (t) = XP (s + dt)− XP (s) is a Poisson
random variable with parameter λpdt. The probability generating function of dXP (t)
is

G(z) = E[zk] =
∞

∑
k=0

zkP[dXP (t)]

=
∞

∑
k=0

zk (λpdt)ke−λpdt

k!
= e−λp(1−z)dt.

Therefore,
E[dXP (t)] = G

′
(1−) = λpdt,

Var[dXP (t)] = G
′′
(1−) + G

′
(1−)− (G

′
(1−))2 = λpdt.

With XP (0) = 0, E[XP (t)] = Var[XP (t)] = λpt.

Example 2.1.4 (Paths of a Wiener process and a Poisson process). We present some dis-
crete paths that are generated by a Wiener process and a Poisson process respectively (see Fig-
ure 2.1).

One reason for the two stochastic processes being appealing could be the Markov prop-
erty, which is extremely important in modelling asset price movements. The Markov
property states that the future behaviour of the process is independent of its past when
the present state is given [26], that is, the process has no "memory".

Definition 2.1.5 (Markov property (simple version)). A stochastic process {S(t), t ∈ T}
possesses the Markov property, if for any s > 0, the conditional distribution S(t + s) given
F (t) := Ft is the same as the conditional distribution of S(t + s) given S(t), that is, ∀y ∈ R,

P(S(t + s) ≤ y|Ft) = P(S(t + s) ≤ y|S(t)), a.s. (2.1.2)

8 Chapter 2. Preliminaries

Figure 2.1: Discrete paths for a Wiener process (left) and a Poisson process (right), with
∆t = 0.05 and λp = 1.

Theorem 2.1.6. We state the Markov property of Wiener and Poisson processes:

1. Wiener process W(t) has Markov property.

2. Poisson process Xp(t) has Markov property.

Proof. See Appendix A.2

2.1.1 Geometric Brownian Motion
The geometric Brownian motion (GBM) is perhaps the most common model for simu-
lating stock movements in finance, and Figure 2.2 shows a realization of a GBM pro-
cess. A geometric Brownian motion S(t) is a continuous-time stochastic process which
has the form:

dS(t) = µS(t)dt + σS(t)dW(t), (2.1.3)

where µ, σ are constants, and W(t) is a Wiener process adapted to the filtration F (t).

Figure 2.2: A realization of a GBM process, with S0 = 100, µ = 0.05, σ = 0.2, ∆t = 0.02
.

The stock prices {S(t), t ≥ 0} are said to follow a geometric Brownian motion (GBM)

2.1. Stochastic Processes in Finance 9

process, if the following dynamics are satisfied:

dS(t) = µS(t)dt + σS(t)dWP(t), with S(0) = S0, (2.1.4)

where the adapted Wiener process WP(t) is under the real-world measure P.

The corresponding integral formula is given by:

S(t) = S0 +
∫ t

0
µS(u)du +

∫ t

0
σS(u)dWP(u) (2.1.5)

Note that the equations (2.1.4) and (2.1.5) are of Itô’s form and the integration here
is handled by Itô’s calculus. Itô’s lemma is a cornerstone in stochastic processes that
enables people dealing with the nowhere-differentiable Wiener process [25]. To present
Itô’s Lemma, we first give a relevant definition so-called Itô process.

Definition 2.1.7 (Itô process). An Itô process X(t) is defined to be an adapted stochastic
process, whose corresponding SDE is given by:

dX(t) = µ̄(t, X(t))dt + σ̄(t, X(t))dW(t), with X(0) = X0, (2.1.6)

where W(t) is a Wiener process, and two general functions µ̄(t, x) and σ̄(t, x) satisfy the
following Lipschitz conditions:

|µ̄(t, x)− µ̄(t, y)|2 + |σ̄(t, x)− σ̄(t, y)|2 ≤ K1|x− y|2,

|µ̄(t, x)|2 + |σ̄(t, x)|2 ≤ K2(1 + |x|2),

for some constants K1, K2 ∈ R+ and x, y ∈ R.

Lemma 2.1.8 (Itô’s Lemma). Suppose X(t) is an Itô process defined by (2.1.6). Let g(t, X)

be a function of X = X(t) and time t, with continuous partial derivatives, ∂g
∂X , ∂2g

∂X2 , ∂g
∂t . A

stochastic variable Y(t) := g(t, X) then also follows an Itô process that is governed by the
same Wiener process W(t), i.e.

dY(t) = (
∂g
∂t

+ µ̄(t, X(t))
∂g
∂X

+
1
2

σ̄2(t, X(t))
∂2g
∂X2)dt + σ̄(t, X(t))

∂g
∂X

dW(t). (2.1.7)

Proof. An intuitive proof is derived by applying the 2D Taylor series expansion, see
Appendix A.2.

By applying Itô’s Lemma and using log-transformation, we can show the distribution
of S(t) in (2.1.4), which is stated as follows.

Remark 2.1.9 (Itô multiplication table). The product rule of the terms dt and dW forms a
so-called Itô multiplication table, shown in Table 2.1.

With Itô’s lemma, excellent results can be derived. In the following part, we show the
distributions of S(t) and log S(t) by Itô’s lemma.

10 Chapter 2. Preliminaries

Table 2.1: Itô multiplication table for Wiener process.
dt dW(t)

dt 0 0
dW(t) 0 dt

Proposition 2.1.10 (Lognormal distribution). The random variable S := S(t) in (2.1.4) is
from a lognomal distribution, i.e. log S is normally distributed 2.

Proof. Let X(t) = g(t, S) = log S, then ∂g
∂S = 1

S , ∂2g
∂S2 = − 1

S2 and ∂g
∂t = 0. By Itô’s Lemma,

we have
dX(t) = (µ��S

1
��S
− 1

2
σ2

��S2 1

��S2
)dt + σ��S

1
��S

dWP(t)

= (µ− 1
2

σ2)dt + σdWP(t), with X0 = log S0.
(2.1.8)

From Definition 2.1.1, the Wiener increment dWP(t) is normally distributed, that is,
dWP(t) ∼ N (0, dt). Therefore, dX(t) is normally distributed, with expectation (µ−
1
2 σ2)dt and variance σ2dt.

Figure 2.3: Density of S(t) and log S(t) in (2.1.4) for varying σ, with µ = 0.05.

Figure 2.3 illustrates the distributions of S(t) and log S(t), showing Proposition 2.1.10
intuitively.

On the other hand, the integral formulation of (2.1.8) from time 0 to t (t ∈ R+ ∪ {0}) is
given by: ∫ t

0
dX(u) =

∫ t

0
(µ− 1

2
σ2)du +

∫ t

0
σdWP(u), (2.1.9)

from which the solution is found to be:

X(t) = X0 + (µ− 1
2

σ2)t + σWP(t). (2.1.10)

2Here, log denotes the natural logarithm ln.

2.1. Stochastic Processes in Finance 11

We can therefore obtain the solution for S(t) in (2.1.4), as

S(t) = S0 exp((µ− 1
2

σ2)t + σWP(t)). (2.1.11)

2.1.2 Is GBM Realistic Enough: Towards to Jump Processes
The GBM model is simple, widely applicable and remains attractive to the recent re-
searchers [27; 3]. However, the model itself is not completely realistic, which makes
the simulation inconsistent with the market behaviour. For example, the stock prices
often show discontinuous behavior, while the GBM path is continuous. In order to
build a more realistic model, researchers make extensions based on the GBM model.
Among them, a so-called jump-diffusion process allows stock prices to jump by adding
an extra discrete-state component [28]. [8] performs empirical tests showing that the
jump-diffusion model fits stock data better than the GBM model.

There are several reasons for introducing jumps into stochastic processes. First of all,
stock prices do jump in real life, which are caused by unpredictable events (e.g. the so-
called black swan events). Second, the leptokurtic feature, i.e. a feature of a high peak
and two heavy tails compared to the normal distribution, is evidently observed when
illustrating the histogram of log returns R(t) = log S(t)

S(t−1) . [9] shows that with the
introduced jumps, the model is able to reproduce the leptokurtic feature. The rigorous
description of the leptokurtic feature is given as follows:

Definition 2.1.11 (Leptokurtic Distribution). Let X be a random variable, the kurtosis of X
is defined as K = E[(X−µ

σ)4], where µ is the mean and σ is the standard deviation. Leptokurtic
distributions are statistical distributions with K > 3.

Figure 2.4: The histograms of the normalized log returns of S&P 500 index compared
with the standard normal distribution N (0, 1) (Left: daily returns from Jan 2, 1980 to
Dec 31, 2005; Right: 5-mimute returns from Nov 1, 2022 to Nov 30, 2022).

Example 2.1.12 (The leptokurtic feature of S&P 500 index data). Figure 2.4 displays the
histograms of the normalized S&P 500 log returns for the long-term and intraday prices, with
the sample kurtoses about 42.20 and 121.65 respectively.

Jump-diffusion processes form a special class in the general Lévy processes, from
which only finite jumps can occur in any finite time period. Except applying Poisson

12 Chapter 2. Preliminaries

and Lévy processes to drive jumps, other jump processes such as Hawkes processes
are attractive nowadays to better replica to the market jumps. Figure 2.5 illustrates
two main families of jump processes: exponential Lévy process and Hawkes process.
The Exponential Lévy process deals with independent jumps, while the Hawkes pro-
cess can explain the clustering of jumps (or the contagious behaviour) [23; 29]. In this
thesis, we simply focus on the basic jump-diffusion processes, particularly the Merton
jump-diffusion model.

Jump Process

Exponential Lévy process

Hawkes Process

Jump-Diffusion Process

Merton’s Model

Kou’s Model

Self-exciting Point Process

Mutually-exciting Point Process

...

Figure 2.5: Family of jump processes.

2.1.3 Jump-Diffusion Process
Considering the reproduction of the stock price discontinuities, jump-diffusion pro-
cesses are the simplest extensions based on the GBM process, from which Poisson pro-
cesses are introduced for generating the jumps. In general, a jump diffusion process
consists of two components: a geometric Brownian motion term called a diffusion part,
and a compound Poisson process term called a jump part [30].

We first show the dynamics of jump-diffusion processes for the log-stock prices X(t) =
log S(t), t ≥ 0, which is given by:

dX(t) = µdt + σdWP(t) + JdXP (t), with X(0) = log S(0), (2.1.12)

where µ, σ are constants, meaning the drift and volatility respectively; WP(t) is a
Wiener process under P-measure; J follows a distribution FJ , giving the jump mag-
nitude; and XP (t) is a Poisson process with parameter λp > 0. Note that WP(t) and
XP (t) are usually considered independent.

The stochastic integral with respect to (2.1.12) is defined by:

X(t)− X(0) =
∫ t

0
µdu +

∫ t

0
σdWP(u) +

∫ t

0
JdXP (u)

:= µt + σWP(t) +
XP (t)

∑
k=1

Jk,
(2.1.13)

2.1. Stochastic Processes in Finance 13

where {Jk, k ≥ 1} is a sequence of independent and identically distributed random
variables with distribution FJ . Here, the part in (2.1.13) resulting in jumps is so-called

a compound Poisson process, given by

{
X̄(t) =

XP (t)
∑

k=1
Jk, t ≥ 0

}
.

Similar to the derivation of the dynamics of log-GBM process, the dynamics of the orig-
inal stock price S(t) = eX(t) can also be derived via Itô’s lemma. The Itô’s differential
formula for the discrete-state Poisson process is illustrated as follows.

Corollary 2.1.13 (Itô’s lemma for Poisson process). Consider a stochastic process X(t)
which is right-continuous and has left-limit everywhere, defined as

dX(t) = µ̄(t, X(t))dt + J̄(t, X(t))dXP (t), with X(0) ∈ R, (2.1.14)

where µ̄, J̄ : [0, ∞]×R → R are deterministic, continuous functions and XP (t) is a Poisson
process starting at t = 0.

The Itô differential of a differentiable function g : [0, ∞]×R→ R is given by

dg(t, X(t)) =
[

∂g
∂t

+ µ̄(t, X(t))
∂g
∂X

]
dt+[g(t, X(t_) + J̄(t, X(t_)))− g(t, X(t_))] dXP (t),

(2.1.15)
where X(t_) := lim

s→t,s<t
X(s) denotes the left limit, and lim

s→t,s<t
J̄(s, X(s)) = J̄(t, X(t_)) be-

cause of the continuity of J̄.

Proof. See Appendix A.2.

Furthermore, with the assumption of the independence of the Wiener process W(t)
and the Poisson process XP (t), the dynamics of (2.1.14) with an additional Wiener
term σ̄(t, X(t))dW(t) is given by

dg(t, X(t)) =
[

∂g
∂t

+ µ̄(t, X(t))
∂g
∂X

+
1
2

σ̄2 ∂2g
∂X2

]
dt

+ σ̄
∂g
∂X

dW(t) + [g(t, X(t_) + J̄(t, X(t_)))− g(t, X(t_))]dXP (t)
(2.1.16)

Applying Itô’s lemma to the function S(t) = eX(t), with X(t) in (2.1.12), we have

deX(t) =

[
µeX(t) +

1
2

σ2eX(t)
]

dt + σeX(t)dWP(t) +
[
eX(t)+J − eX(t)

]
dXP (t).

Therefore, the jump-diffusion dynamics of the stock price S(t) under P-measure is give
by:

dS(t)
S(t)

=

(
µ +

1
2

σ2
)

dt + σdWP(t) +
(

eJ − 1
)

dXP (t). (2.1.17)

14 Chapter 2. Preliminaries

The jump-diffusion processes given in (2.1.12) can be further subdivided into a num-
ber of models according to the distribution of the jump magnitude J. The Merton
jump-diffusion (MJD) model [19] and the Kou jump-diffusion (KJD) model [9] are two
popular choices. In the MJD model, J follows a normal distribution, while in the KJD
model, J has an asymmetric double exponential distribution. In empirical practice, [8]
points out the KJD model performs better than the MJD model for stocks.

Definition 2.1.14 (The Merton jump-diffusion model). In the classical Merton’s model, the
dynamics for the log-stock prices X(t) is given in (2.1.12), where the jump magnitude variable
J is normally distributed, that is, J ∼ N (µJ , σ2

J). Therefore, dFJ(x) = f J(x)dx, where

f J(x) =
1

σJ
√

2π
exp

(
−
(x− µJ)

2

2σ2
J

)
. (2.1.18)

Definition 2.1.15 (The Kou jump-diffusion model). In Kou’s model, the dynamics for the
log-stock prices X(t) is given in (2.1.12), where the jump magnitude variable J has an asym-
metric double exponential distribution with the density

f J(x) = p1α1e−α1x1{x≥0} + p2α2eα2x1{x≤0}, α1 > 1, α2 > 0, (2.1.19)

where p1, p2 ≥ 0 satisfying p1 + p2 = 1, denote the probabilities of upward and downward
jumps. α1 > 1 is required to ensure E

[
eJ] < ∞ and E[S(t)] < ∞.

Example 2.1.16 (Paths of jump-diffusion processes). Figure 2.6 illustrates 10 random
paths of processes X(t) in (2.1.12) and S(t) in (2.1.17) from the MJD model and the KJD
model respectively. Here, the parameters are set to S(0) = 100, T = 5, µ = 0.05, σ = 0.2„
λp = 1, µJ = 0, σJ = 0.5, p1 = p2 = 0.5, α1 = α2 = 2.

2.2 Monte Carlo Path Simulation
Monte Carlo simulation is a numerical sampling method that repeats the experiments
many times to obtain a distribution of outcomes for analysis. Monte Carlo techniques
are powerful and widely used in many areas, such as science, engineering, and fi-
nance [31]. In financial applications, Monte Carlo simulation is especially popularized
in pricing and risk management. For the fundamental problem of solving stochastic
differential equations, Monte Carlo methods also shows their advantages on path sim-
ulation.

The mathematics involved in Monte Carlo simulation are mainly the law of large num-
bers and the central limit theorem. The law of large numbers supports the key idea of
Monte Carlo simulation, that is, for an arbitrary function f : Ω 7→ F ⊆ R, its expec-
tation under a probability distribution p(x) for the input x ∈ Ω can be approximated
by

I = Ex∼p(x)[f (x)] =
∫

Ω
p(x) f (x)dx

≈ 1
N

N

∑
n=1

f (xn) := Î, xn
i.i.d∼ p(x).

(2.2.1)

2.2. Monte Carlo Path Simulation 15

(a) (b)

(c) (d)

Figure 2.6: (a) and (b) present the paths of X(t) and S(t) from the MJD model; (c) and
(d) present the paths of X(t) and S(t) from the KJD model.

The error of the estimator Î is then structured via the central limit theorem:
√

N(Î − I) d7→ N (0, σ2), 3 (2.2.2)

where Var[f (x)] = σ2 < ∞.

The Monte Carlo technique is also popular on numerical integration, which shows
its advantages regarding higher-dimensional integrals [32] and stochastic integration
problems. With respect to solving SDEs, the Monte Carlo method is introduced to
give numerical approximations of stochastic integrals, particularly in which a Wiener
process W(t) appears. The reader is referred to [25] for the details of Monte Carlo
integration for W(t)-involved integrals.

Since the explicit solutions are usually not available for SDEs, researchers are inter-
ested in solving SDEs numerically. The numerical procedure is generally described as
follows with an example. Consider a general one dimensional SDE whose Itô formula
is defined by

dS(t) = µ̄(t, S(t))dt + σ̄(t, S(t))dW(t), t ≥ 0, (2.2.3)

3 d7→ represents convergence in distribution.

16 Chapter 2. Preliminaries

with its solution in the time interval [0, T] given by

S(T) = S(0) +
∫ T

0
µ̄(t, S(t))dt +

∫ T

0
σ̄(t, S(t))dW(t). (2.2.4)

We first partition the time interval, that is, define an equidistant grid in the temporal
direction 0 = t0 < t1 < · · · < tm = T, which is also named as time discretization. For
each subinterval [ti, ti+1] ⊆ [0, T], we obtain

si+1 = si +
∫ ti+1

ti

µ̄(t, S(t))dt +
∫ ti+1

ti

σ̄(t, S(t))dW(t), (2.2.5)

where si = S(ti). The Monte Carlo method is then involved to numerically approxi-
mate the stochastic integrals in (2.2.5). At each time point ti, a large number of si+1 are
generated, and a realization {s0, s1, . . . , sm} is referred as a simulation path. The error
convergence of the Monte Carlo path simulation above is defined as follows:

Definition 2.2.1 (Convergence). Let sm be an approximation for S(T) and ∆t be the time
step size of the time discretization. sm converges in a strong sense to S(T), with order α > 0, if

ϵs := E [|sm − S(T)|] = O((∆t)α). (2.2.6)

sm converges in a weak sense to S(T), with respect to a sufficiently smooth function g(·), with
order β > 0, if

ϵw := |E [g(sm)]−E [g(S(T))]| = O((∆t)β). (2.2.7)

Remark 2.2.2. Note that the strong error ϵs explains the path-wise difference comparing to the
exact solution S(T), while the weak error ϵw describes the difference in the distributional sense.

In the following part, we focus on the Monte Carlo path simulation with respect to the
GBM and the jump-diffusion models and illustrate the simulation algorithm in detail.

2.2.1 Path Simulation of the GBM Model
The dynamics of a GBM process {S(t)}t≥0 are given in (2.1.4), with the solution in
(2.1.5). For the time discretization 0 = t0 < t1 < · · · < tm = T, m ≥ 1, with time step
size ∆t = T

m and ti = i∆t for ∀i = 0, 1, . . . , m, the dynamics at each time point ti is given
by

si+1 = si +
∫ ti+1

ti

µS(t)dt +
∫ ti+1

ti

σS(t)dW(t), (2.2.8)

where si = S(ti).

Based on the stochastic Taylor expansions, the so-called Euler scheme and Milstein
scheme are usually used for approximating the stochastic integrals. In the Euler scheme,
the integrands uses the values at the left-side boundary of the integration interval as
approximations; The Milstein scheme is based on the Euler scheme, with an additional
component intuitively derived from the second order Taylor expansion (we refer to
[14] for the detailed derivation).

2.2. Monte Carlo Path Simulation 17

Regarding (2.2.8), the Euler discretization scheme is given by:

si+1 ≈ si +
∫ ti+1

ti

µsidt +
∫ ti+1

ti

σsidW(t)

def
= si + µsi∆t + σsi∆t(W(tt+i)−W(ti))

def
= si + µsi∆t + σsi

√
∆tZ,

(2.2.9)

and the Milstein discretization scheme is defined as:

si+1 ≈ si + µsi∆t + σsi∆t(W(tt+i)−W(ti)) +
1
2

σ2si(W(tt+i)−W(ti))
2 − ∆t)

def
= si + µsi∆t + σsi

√
∆tZ +

1
2

σ2si(∆tZ2 − ∆t),
(2.2.10)

where Z ∼ N (0, 1) is a random variable since the Wiener increment W(tt+i)−W(ti) :=
∆W(ti+1) is normally distributed with mean 0 and variance ∆t.

Remark 2.2.3. (2.2.8) has the exact solution given by

S(ti+1) = S(ti) exp
(
(µ− 1

2
σ2)∆t + σ(W(ti+1)−W(ti)

)
. (2.2.11)

The path simulation algorithm for the GBM process is then formed in Algorithm 1.
With respect to the error convergence, the Euler scheme converges in a strong sense
with order 1

2 and in a weak sense with order 1; the Milstein scheme converges in both
strong and weak senses with order 1 [33]. An example of both discrete-schemes is
shown in the following part, together with the error convergence plots.

Example 2.2.4 (Path simulation of the GBM process). With parameters setting S(0) =
100, T = 1, µ = 0.1 and σ = 0.3, Monte Carlo paths are generated (see Figure 2.7 (a)
and (b)) by using the Euler scheme given in (2.2.9) and the Milstein scheme given in (2.2.10)
respectively. The error convergence of the path simulation is also measured (see Figure 2.7 (c)
and (d)), verifying the order of the strong and weak convergence regarding the two discrete-
schemes.

2.2.2 Path Simulation of the Jump-Diffusion Process
Our goal is to simulate a log-price jump-diffusion path {X(t0), X(t1), . . . , X(tm)}, with
equal time partition 0 = t0 < t1 < · · · < tm, time step length ∆t = T

m and the initial
X(t0) = log S(0). Comparing (2.1.8) and (2.1.12), the dynamics of a jump-diffusion
process can be divided into a diffusion part and a jump part

dX(t) = µdt + σdWP(t)︸ ︷︷ ︸
diffusion part

+ JdXP (t)︸ ︷︷ ︸
jump part

,

and so as the path simulation process. We therefore first focus on modeling the jump
part, namely the Poisson process.

The key point of simulating the jump part is to determine the jump instances, that is,

18 Chapter 2. Preliminaries

Algorithm 1: Path simulation of GBM process, where η = 0 for the Euler scheme
and η = 1 for the Milstein scheme.
Input : Initial price S(0), time interval [0, T], drift parameter µ, volatility

parameter σ, the number of paths n and the number of time steps m.
Output: n simulation paths

{
si,j
}

of the GBM process with m time steps, where
i = 0, 1, . . . , m and j = 0, 1, . . . , n.

∆t← T
m ; /* Partition the time interval [0, T] evenly:

0 = t0 < t1 < · · · < tm = T, where ti+1 − ti =
T
m := ∆t, ∀i = 0, 1, . . . , m− 1.

*/
for j = 1, . . . , n do

sj,0 ← S(0)
for i = 0, 1, . . . , m− 1 do

zj,i ← sample(N (0, 1)) ; /* zj,i is an i.i.d sample from the standard
normal distribution. */

sj,i+1 ← sj,i + µsj,i∆t + σsj,i
√

∆tzj,i + η
[

1
2 σ2sj,i(∆tz2

j,i − ∆t)
]

; /* η = 0 for

the Euler scheme and η = 1 for the Milstein scheme. */
end

end

(a) (b)

(c) (d)

Figure 2.7: (a) and (b) illustrate the paths generated by the Euler scheme and the Mil-
stein scheme respectively, compared with the exact solution given in (2.2.11); (c) and
(d) present strong and weak convergence of both approximation schemes.

2.2. Monte Carlo Path Simulation 19

the timestamps {ti} when jumps occur. There are mainly three ways to calculate jump
instances: 1) Since the Poisson increments follow Poisson distribution with parameter
λp∆t, we can use Poisson random variables to model the number of jumps that arrive
during every ∆t; 2) As a Poisson distribution can be approximated by Bernoulli exper-
iments (see Appendix A.1), at every time instance ti, we can then introduce Bernoulli
random variables to decide whether a jump occurs at ti or not [18]; 3) Based on the
result that the interarrival times of a Poisson process are exponentially distributed, we
can then use exponential random variables to model the arrival time of a jump [34].

Note that following the time discretization method, it is natural to assume that a jump
can only occur at some time ti, that is, no jump happens during the period of two
timestamps. Therefore, the third method that can return jump instances between two
timestamps is improper. In programming, using Bernoulli random variables is easier
to model the jump part than Poisson random variables, as at most one jump can occur
at ti. Figure 2.8 shows the error between two methods, and we can see that when
the time step ∆t is small, the two methods perform closely. On the other hand, the
probability of k jumps occurring during a time period of length dt is P[dXP (t) = k] =
(λpdt)ke−λpdt

k! .By Taylor series, the probability of exactly one jump occurring in a small dt
is

P[dXP (t) = 1] =
(λpdt)e−λpdt

1!
= λpdt + o(dt),

and

P[dXP (t) = k > 1] =
(λpdt)e−λpdt

k!
= o(dt),

which also give a theoretical support for using Bernoulli variables.

Figure 2.8: The strong error and weak error of simulating a 50-step Poisson process
with λp = 1 by using Bernoulli random variables, compared to using Poisson random
variables.

All in all, in this thesis, we use the second method, namely independent Bernoulli
random variables to determine jump instances. Next, we return to the procedure of
path simulation method for jump-diffusion models.

20 Chapter 2. Preliminaries

Similar to (2.2.9), the Euler scheme for a jump-diffusion process (2.1.13) is given by:4

xt+1 = xi +
∫ ti+1

ti

µdt +
∫ ti+1

ti

σdW(t) +
∫ ti+1

ti

JdXP (t)

= xi +
∫ ti+1

ti

µdt +
∫ ti+1

ti

σdW(t) +
XP (ti+1)−XP (ti)

∑
k=1

Jk

def
= xi + µ∆t + σ

√
∆tZ︸ ︷︷ ︸

diffusion part

+
XP (ti+1)−XP (ti)

∑
k=1

Jk︸ ︷︷ ︸
jump part

(2.2.12)

Regarding the compound Poisson process

{
XP (ti+1)−XP (ti)

∑
k=1

Jk

}
, we introduce a Bernoulli

random variable B(ti) to determine whether a jump occurs at ti+1 or not, given by:

P[B(ti) = 1] = λp∆t,
P[B(ti) = 0] = 1− λp∆t.

(2.2.13)

If B(ti) = 0, then XP (ti) = XP (ti+1), which means the log-price not jumping at
ti+1 and (2.2.12) reduces to the Euler discretization of the GBM process. Otherwise
XP (ti+1) = XP (ti) = 1, which indicates that the log-price at ti+1 increases additionally
by Jk. The jump size Jk is also an independent random variable governed by the model
setting.

Within the Monte Carlo simulation of the jump-diffusion process, the log-price xj,i for
the jth path at ith time step is then given by:

xj,i+1 = xj,i + µ∆t + σ
√

∆tZ + Jj,iB(tj,i). (2.2.14)

We summarize the whole simulation procedure by Algorithm 2.

Remark 2.2.5. The jump-diffusion process with dynamics for the log-prices X(t) = log S(t),
dX(t) = µdt + σdW(t) + JdXp, has as exact solution in the time interval [ti, ti+1],

S(ti+1) = S(ti) exp
(
µ∆t + σ(W(ti+1)−W(ti)) + JXp(ti+1 − Xp(ti))

)
Example 2.2.6 (Path simulation of the jump-diffusion process). Figure 2.9 shows ten
simulated paths of the jump diffusion following Algorithm 2. Here, the jump sizes are governed
under Merton’s model and Kou’s model respectively, and the parameters are set to X(0) =
log S(0) = log 100, T = 10, µ = 0.05, σ = 0.2, λp = 1, µJ = 0, σJ = 0.5, p1 = p2 = 0.5,
α1 = α2 = 2.

Furthermore, we briefly analyze the error convergence of the Monte Carlo simulation
regarding the jump-diffusion models, see Figure 2.10. [35] concludes that the weak
convergence has the same order as the scheme used. Generally, the weak convergence

4If XP (ti+1)− XP (ti) = 0, then the summation term is equal to 0.

2.2. Monte Carlo Path Simulation 21

Algorithm 2: Path simulation of jump-diffusion process.
Input : Initial log-price X(0) = log S(0), time interval [0, T], drift parameter µ,

volatility parameter σ, jump intensity λp, jump magnitude J ∼ PJ , the
number of paths n and the number of time steps m.

Output: n simulation paths
{

si,j
}

of jump-diffusion process with m time steps,
where i = 0, 1, . . . , m and j = 0, 1, . . . , n.

∆t← T
m ; /* Partition the time interval [0, T] evenly:

0 = t0 < t1 < · · · < tm = T, where ti+1 − ti =
T
m := ∆t, ∀i = 0, 1, . . . , m− 1.

*/
for j = 1, . . . , n do

xj,0 ← X(0)
sj,0 ← S(0)
for i = 0, 1, . . . , m− 1 do

zj,i ← sample(N (0, 1)) ; /* zj,i is an i.i.d sample from the standard
normal distribution. */

Bj,i ← sample(B(1, λp∆t)) ; /* Bj,i is an i.i.d sample from the
Bernoulli distribution with parameter λp∆t. */

Jj,i ← sample(PJ) ; /* Jj,i is an i.i.d sample from the jump
magnitude distribution PJ, for example PJ is normally
distributed in Merton’s model. */

xj,i+1 ← xj,i + µ∆t + σ
√

∆tzj,i + Jj,iBj,i
sj,i+1 ← exp

(
xj,i
)

end
end

(a) (b)

Figure 2.9: Ten simulated log-price paths of the jump-diffusion processes. Left: the
dynamics follow the MJD model. Right: the dynamics follow the KJD model.

illustrated in Figure 2.10 is consistent with the result. Regarding the strong conver-
gence, we find it almost uniform (compared to the slope of weak convergence) with
respect to the time step size.

22 Chapter 2. Preliminaries

(a) (b)

Figure 2.10: The weak and strong error convergence, compared to the exact solution
where the jump instances are determined by Poisson random variables. Left: the con-
vergence plot of the MJD model. Right: the convergence plot of the KJD model.

2.3 Artificial Neural Networks
The concept of artificial neural networks (ANNs) has been in the spotlight for decades
and still leads innovation today. From a high level view, an artificial neural network
is an input-output mapping: with provided training data, it learns the mapping from
input to output data by seeing pairs of input and output data.

In this section, we describe the basics of artificial neural networks, in particular, a
class of fully connected neural networks called multilayer Perceptron (MLP), which
is a keystone in our proposed framework. The section is structured as follows: First,
we illustrate the general architecture of a neural network; Then, the universal approx-
imation theorem is stated without proof, which is a mathematical guarantee of using
neural networks for approximation. After that, the so-called backpropagation is ex-
plained, which is the essence of neural network training. Various optimization meth-
ods are then introduced to descend the gradient calculated via backpropagation, such
as Stochastic Gradient Descent (SGD), Root Mean Squared Propagation (RMSProp)
and Adaptive Moment Estimation (Adam). Last but not least, we turn to activation
functions, which also play a primary role in neural networks by adding non-linearity.

Structure of ANNs
As the name implies, artificial neural networks are inspired by neurons in biological
brains, which receive input signals, and output reactions based on the inputs. In biol-
ogy, usually many neurons work together to accomplish one action, and they transmit
information via a structure called synapse. Neurons are then connected by synapses,
forming a network of neurons.

Artificial neural networks have similar components, and Figure 2.11 displays a typical
architecture of a fully connected feedforward ANN. Neurons in an artificial neural
network are called nodes or units, which can process inputs and produce outputs. The
connections are called edges, showing the direction of signal transmission. The ANN
is typically divided into layers, where the nodes in one layer have the same level of
connections. Usually, different layers execute different transformations of their inputs:
The first layer, called the input layer, receives the initial signals; The last layer, called

2.3. Artificial Neural Networks 23

Figure 2.11: A general structure of a fully connected feedforward artificial neural net-
work.

the output layer, produces the processed results; And the layers between the input and
output layers, called the hidden layers, transform signals multiple times.

From the mathematical point of view, an artificial neural network is a set of weights, bi-
ases and activation functions, which are also the parameters of signal transformations.
The mathematical formula of ANNs can be expressed as follows:

Suppose the input of an ANN layer is a real-valued vector x ∈ Rm and the layer con-
tains n nodes. Each edge between the input and a node conveys a linear transformation
f (·) with weight w ∈ Rn×m, formulated by

f (x, w) = wTx. (2.3.1)

The node then produces output y ∈ Rn by adding a bias b ∈ Rn and further transforms
the biased input via an activation function h(·), given by

y = h [f (x, w) + b] = h
(

wTx + b
)

. (2.3.2)

Hence, consider a fully connected feedforward ANN with m initial inputs x = {x1, . . . , xm},
n outputs y = {y1, . . . , yn} and L hidden layers with k nodes in each hidden layer, we
can describe the ANN as a mapping, given by:

y = Φ(x|Θ) = h(L+1) ◦ α(L+1)
(
·|θ(L+1)

)
◦ h(L) ◦ α(L)

(
·|θ(L)

)
◦ · · · ◦ h(1) ◦ α(1)

(
x|θ(1)

)
,

(2.3.3)
where Θ :=

(
θ(1), . . . , θ(L+1)

)
=
(

w(1), b(1), . . . , w(L+1), b(L+1)
)

is a collection concate-

nating all weights and biases, here w(1) ∈ Rm×k, b(1) ∈ Rk, w(L+1) ∈ Rk×n, b(L+1) ∈
Rn, and w(i) ∈ Rm×m, b(i) ∈ Rm for i = 2, . . . , L; h(i) represents an activation function;

24 Chapter 2. Preliminaries

Figure 2.12: A detailed structure of a fully connected feedforward artificial neural net-
work, where wl

ij is the weight of an edge, bl
i is the bias of a node and hl is the activation

function of a layer.

α(i) denotes the operator for the ith layer with expression

α(i)
(

z|θ(i)
)
=
(

w(i)
)T

z + b(i).

Figure 2.12 is illustrated for a vivid description of (2.3.3).

Activation Functions
The activation function is an important component in artificial neural network model-
ing, which makes non-linear approximations possible. However, the activation func-
tion is a hyperparameter in neural network setting, that is, there is no clear criterion
for choosing activation functions.

Not all functions in real space can be introduced as activation functions. Because of
backpropagation and gradient descent algorithms, activation functions are restricted
to not shift the gradient towards zero. Continuity and differentiability (at least in suf-
ficient ranges) are then necessary. In this section, we focus on four widely used activa-
tion functions: logistic or sigmoid function, hyperbolic tangent, ReLU and LeakyReLU.

The sigmoid function is given by

h1(x) =
1

1 + e−x . (2.3.4)

Since h1(x) ∈ (0, 1) and everywhere differentiable, it is usually chosen as an output
layer activation in binary classification models [36].

Hyperbolic tangent also presents ’S’-like shape as the sigmoid function, which has

2.3. Artificial Neural Networks 25

formula

h2(x) = tanh(x) =
ex − e−x

ex + e−x . (2.3.5)

Hyperbolic tangent function works similar to the sigmoid, but h2(x) ∈ (−1, 1) and is
centrosymmetric about zero.

Even though the sigmoid and hyperbolic tangent are commonly used in neural net-
work architecture, it may cause unsuccessful training. As the saturating region of both
functions are plain, vanishing gradients may occur which may lead to a neural network
getting stuck at the training time.

ReLU [37], short for rectified linear unit, is one of the popular choices nowadays, espe-
cially for convolutional neural networks. ReLU is defined by

h3(x) = max(x, 0). (2.3.6)

The range of ReLU is [0, ∞). ReLU is differentiable everywhere, except at x = 0, and
both the function itself and its derivative are monotonic. However, ReLU cannot ap-
propriately map negative values, by which all negative inputs turn to zero. Because of
this, nodes with negative inputs may learn nothing. LeakyReLU is then proposed in
[38] to improve such problem.

LeakyReLU has formula

h4(x) = max(x, 0) + ζ min(x, 0), (2.3.7)

where ζ ∈ R is a hyperparameter and is typically set to 0.01. Unlike ReLU, LeakyReLU
can still provide non-zero gradient in the region x < 0.

Universal Approximation Theorem
Although ANNs have achieved great success in practice, the development of theoreti-
cal results with vigorous proof is delayed. People are curious about the approximation
ability of an ANN, namely, which kind of maps can be learned by an ANN.

As a theoretical guarantee for neural networks, the universal approximation theorem,
similar to the classical Weierstrass approximation theorem [39], states that neural net-
works can approximate any continuous function defined on [0, 1].

Theorem 2.3.1 (Universal approximation theorem [40]). Suppose Φ(·) is a multilayer
feedforward neural network with one hidden layer, given by

Φ(x|Θ) = h(2) ◦ α(2)
(
·|θ(2)

)
◦ h(1) ◦ α(1)

(
x|θ(L)

)
, (2.3.8)

where h(1) is sigmoidal5 and h(2) is linear. Then ∀ f ∈ C[0, 1] and ∀ϵ > 0 there exists a neural
network formed by Φ(x|Θ∗) (2.3.8) such that

sup
x∈[0,1]

|Φ(x|Θ∗)− f (x)| < ϵ.

5An activation function h : R 7→ R is sigmoidal, if it is continuous and lim
x 7→−∞

h(x) = 0, lim
x 7→∞

h(x) = 1

26 Chapter 2. Preliminaries

In recent papers, the universal approximation theorem for neural networks has been
extended. For example, it holds for feedforward neural networks with arbitrary depth
but bounded width to approximate any Lebesgue integrable function [41].

Backpropagation and Gradient Descent
An artificial neural network provides a target output by weights and biases. The pro-
cess of finding the best weights and biases is called training. The feedforward ANN
is trained aiming to minimize the difference between the neural network output and
the target output, i.e., the loss function, using gradient descent algorithms. The back-
propagation is then applied to calculate the gradient of the loss function with respect
to the weights and biases. For the detailed expression of the backpropagation, we refer
to [42].

Gradient descent is a basic algorithm for finding the (local) minimization of the loss
function. Consider a feedforward ANN of form (2.3.3). Our goal is to find the global
optimal parameter set Θ∗ to minimize the loss function L. Since no closed-form expres-
sion for Θ∗ exists, Gradient Descent is then used to obtain a local optimal numerically.
In general, the parameter set Θ is updated iteratively in the direction of the negative
gradient. The ith iteration can be expressed by

Θ(i+1) := Θ(i) − λ∇Θ(i)L, (2.3.9)

here λ ∈ R is a constant called learning rate, which is a hyperparameter that deter-
mines the step size along the descent direction.

Optimization Methods
In practice, Gradient Descent is usually not used in training neural networks. All train-
ing samples are involved in computing the loss function, which requires large memory.
On the other hand, when the dataset is large, the algorithm is found hard to converge.
In this part, three variants, Stochastic Gradient Descent (SGD), Root Mean Squared
Propagation (RMSProp), and Adaptive Moment Estimation (Adam), are illustrated as
alternatives to Gradient Descent.

Stochastic Gradient Descent [43] alters the gradient computation by introducing ran-
domness. The training dataset X is randomly divided into several batches, and the
loss function is calculated based on the samples in each subset. The parameter set is
updated after every batch:

Θ(i+1) := Θ(i) − λ
1
|B|∇Θ(i) ∑

xB∈B
L
(

Φ
(

xB, Θ(i)
)

, Y
)

, (2.3.10)

where B represents a random batch with size |B| and Y denotes the desired output.
SGD algorithm usually requires less memory and converges faster on large datasets.
However, as the parameters are updated more frequently, the convergence path of SGD
is noisier than Gradient Descent.

Root Mean Squared Propagation (RMSProp) [44] is an extension to Gradient Descent
associated with another extension, the so-called Adagrad6 [46], where the learning rate

6In [44], RMSProp is an adaption of Rprop [45] for mini-batch learning.

2.4. Anomaly Detection 27

is adapted based on the gradient. The update iteration is formulated as follows:

E
[

g2
]

i
= βE

[
g2
]

i−1
+ (1− β)g2

i ,

Θ(i+1) := Θ(i) − λ√
E [g2]i + ϵ

gi,
(2.3.11)

where gi ≜ ∇Θ(i)L, E[g2]i is the moving average of squared gradients at iteration i, β
is a constant moving average parameter and ϵ is a sufficiently small positive constant.
RMSProp usually converges faster than Gradient Descent and SGD. It is especially
used in training Wasserstein GAN (see Chapter 4).

Adam, short for Adaptive Moment Estimation [47], is an extension of SGD by includ-
ing an adaptive moment. It is an efficient algorithm, which combines the advantages
of Adagrad and RMSProp, and is popular in training neural networks.

mi = β1mi−1 + (1− β1)gi,

vi = β2vi−1 + (1− β2)g2
i ,

Θ(i+1) := Θ(i) − λ
m̂i√

v̂i + ϵ

, (2.3.12)

where m̂i =
mi

1−βi
1
, v̂i =

vi
1−βi

2
are bias corrections, β1, β2 ∈ [0, 1) are constants, λ is the

learning rate and ϵ is a sufficiently small positive number. In brief, instead of updating
parameters based on the gradient itself, Adam algorithm also considers the first two
moments of the gradient.

Summary
The ANNs are the essentials in the machine learning methods. When establishing
an ANN, the choice of the neural network architecture, the activation functions and
the optimization algorithm are important, which can influence the model performance
significantly.

2.4 Anomaly Detection
Anomaly detection deals with the problem of identifying abnormal patterns in a given
dataset. Usually, the abnormal patterns are very few and behave differently than most
data. Such patterns refer to anomalies, rare events, outliers, or others, based on the
problem setting and the application area [48]. Even though anomalies are rare, they
can significantly influence a system, raising the interest and necessity to dig out the
dynamics behind them. The first and crucial step is to detect the anomalies precisely.
All kinds of anomaly detection methods are then proposed, and they have been ap-
plied in various fields, such as fraud detection [49], cyber-security [50] and medical
imaging [51].

In this section, we first briefly present the definition of anomalies. Then we conclude
that the general procedure of detecting anomalies can be summarized into two steps,
that is, learning the normal patterns and calculating the anomaly scores of all data. To
support the conclusion, we shortly describe different techniques and give an overview

28 Chapter 2. Preliminaries

of the related works.

What Are Anomalies
Anomalies are easier to identify through descriptions and diagrams, and there is no
strict mathematical definition of the concept. An anomaly, as the name implies, is a
pattern in the data inconsistent with most behavior (i.e., normal patterns), as is shown
in Figure 2.13. Usually, anomalies are of extremely low probability and are also called
rare events in time series [52].

(a) (b)

Figure 2.13: Two illustrations of anomalies. Left: A1, A2 are anomalies in a 2-
dimensional dataset, while N1 and N2 are the regions of normal data; Right: The plot
of S&P 500 returns between 1985 and 2005, where the red points are anomalies with
extreme returns.

Anomaly Detection Techniques
Anomaly detection aims to find out abnormal samples from the given dataset. In gen-
eral, the detection procedure consists of two components: 1) A mechanism is designed
to figure out the "puzzles" of normal patterns; 2) The so-called anomaly score is usually
constructed to measure how anomalous the samples in the dataset are.

According to the methods of learning normal data, anomaly detection techniques can
be grouped into several categories: classification based, distance based, clustering
based, reconstruction based, and so on [48; 53].

Classification based anomaly detection constructs a classifier to distinguish the normal
and abnormal data. Usually, the classifier is trained using the available labeled train-
ing data and returns the classification results on the test data. Various classification
algorithms, for example, classification neural networks and Support Vector Machines
can be introduced to be the classifier and have been applied with excellent results in
practice. The anomaly score is often built inside the classifier. For instance, the output
of the neural network can be viewed as an anomaly score, presenting the probability
of being abnormal.

In a distance based detection method, a similarity measure is introduced to quantify
the distance between points or neighbors. The distance is used as an anomaly score
and a threshold is set to separate the anomalies from normal data. The mechanism of
distance based techniques is to assume that normal samples appear in dense neighbor-
hoods, while anomalies are far away from their nearest neighbors [53].

2.4. Anomaly Detection 29

Clustering based anomaly detection uses clustering algorithms to group data, and the
samples that do not belong to any cluster are assumed anomalies. Similar to the dis-
tance based method, a similarity measure or distance is commonly involved in cluster-
ing data. Furthermore, the distance from a sample to its closest cluster represents the
anomaly score.

The last category of anomaly detection techniques we discuss is based on reconstruc-
tion, which leads to a new direction of anomaly detection by learning and reconstruct-
ing the data. Usually, a deep-learning method is applied to regenerate the dataset,
and the difference between the original sample and the reconstructed data is calcu-
lated as an anomaly score. A generative model, called generative adversarial net-
works (GANs), is popular in anomaly detection nowadays [54; 22; 55; 56]. The GANs-
involved technique is also applied in this thesis and we will illustrate a GAN-related
anomaly detection model called the AnoGAN in Section 3.5.2 as an application of
GANs.

Chapter 3

Generative Adversarial Networks

3.1 Introduction
Generative adversarial networks (GANs) are a special kind of artificial intelligence al-
gorithm proposed in the last decade [57], which has become a trend in various fields.
The GAN techniques are especially appealing in image processing, where the new im-
proved GAN techniques are usually tested on popular image datasets such as MNIST
and CIFAR-10 [58; 59; 60]. Furthermore, with the applications on time series, GANs
also give a new direction and developments in the financial industry, for example, [61]
demonstrates impressive results regarding S&P 500 index simulations.

A GAN architecture consists of two artificial neural networks playing a zero-sum or a
min-max game: one player called the generator G tries to learn the target data distri-
bution as best as possible by generating fake examples whose distribution PG approx-
imates the real data distribution Pdata; While the other player, the so-called a discrim-
inator D aims to distinguish the examples generated by G from the real data samples
[62]. D and G play against each other until convergence. Such technique is classified
as a semi-supervised generative algorithm.

Since GANs are able to generate an approximate distribution with respect to the real
data, they are well-suited for anomaly detection [54]. Consider a dataset that includes
some rare and abnormal samples. The GANs are well-trained to capture the distribu-
tion of most samples (or the normal data), and they are not able to reproduce abnormal
patterns. Therefore, there is an obvious difference between an abnormal sample and
its GAN-generated pattern.

GANs, like other artificial neural network methods, are useful for tackling higher-
dimensional problems and overcoming the curse of dimensionality [63]. [57] also
points out that GANs can approximate sharp, even degenerate distributions, making
them broadly applicable. However, GANs show a significant shortcoming of unstable
training, which results in failure to fit the real data. Regarding the GANs failure modes,
plenty of improved algorithms have been proposed in the recent years [64; 59; 60; 61]
and remain appealing.

In this chapter, we first describe the structure and training process of a so-called vanilla

30

3.2. Vanilla GAN 31

GAN in detail, and then show a straightforward extension called conditional GAN.
Next, two applications using GANs are illustrated: path simulation for SDEs and
anomaly detection. After that, We explain common problems of GANs during training
with examples, and in this thesis, we mainly resort to Wasserstein GANs with gradient
penalty (WGAN-GP) to resolve the failures (see Chapter 4).

3.2 Vanilla GAN
This section is inspired by [57], where the initial GAN model, which is usually called
a vanilla GAN, was first illustrated. Generally, the GAN technique can be classified as
a generative model from which the distribution of the training data is deduced based
on density estimation [62]. Compared with traditional generative approaches, such as
maximum likelihood estimation (MLE), GANs are implicit methods in the sense that
the density function of the training examples is not explicitly learned.

The goal of a GAN model is to generate synthetic samples that follow the same proba-
bility distribution as the given data. Essentially, a GAN is made of two artificial neural
networks: a generator G and a discriminator D. To achieve the goal, the generator G
and the discriminator D work as follows:

Suppose the probability distribution of the given samples (the training data) is Pdata
with density function pdata. The generator G outputs fake samples x̂ by mapping latent
variables z (with distribution Pz and density pz) to the training data space, and we
denote the distribution of the fake examples as PG with density pG. The discriminator
D then plays a role to ensure that Pdata is close to PG or even equal. D gets inputs
both from the real data xd and the fake samples x̂ generated by G. If the input x is
recognized as a real example by D, it is then labeled as real; otherwise, x is labeled as
fake if it is recognized as a generated sample.

D and G are designed to compete each other by playing a minimax game1. The payoffs
of both players can then be expressed via binary cross entropy functions [66], which are
also called loss functions in the GANs theory. D and G keep updating their strategies
based on the feedback (i.e. loss functions), until the game arrives at a Nash equilibrium
where two players obtain their best possible payoffs. Such procedure is referred to as
training in GANs techniques.

The mathematical mappings with respect to the discriminator D and the generator G
can be presented as follows:

Gη : Z ⊆ Rm → G(Z ; η) ⊆ X ⊆ Rn

z ∼ pz 7→ x̂ ∼ pG,
Dθ : X ⊆ Rn → D(X ; θ) ⊆ [0, 1]

x 7→ D(x; θ),

(3.2.1)

where G and D are essentially differentiable functions with parameters η and θ re-
spectively; the latent variable z, which is also called as noise, is usually normally dis-
tributed; x̂ = G(z; η) is a generated sample following distribution PG; x is a sample

1Recently, researchers point out that game-theory setting is incoherent with GANs because Nash
equilibrium may not exist. [65]. Here, we use the game theory setting as a vivid intuition.

32 Chapter 3. Generative Adversarial Networks

that is either from the real data or generated by G; D(x; θ) is a single scalar measuring
the possibility of x coming from Pdata rather than PG. Thoroughly, x is assigned by
value 1 if it is recognized as a real example, while assigned by value 0 if it is labeled as
a generated sample.

During the training, the strategy of D is given by max
Dθ

Dθ (xd) and max
Dθ

(1− Dθ (x̂)),

that is, maximize the probability of assigning the correct label to the inputs; While the
strategy of G can be written as min

Gη

(
1− Dθ

(
Gη (z)

))
, that is, minimize the probability

of D making correct decisions. By introducing the binary cross entropy function, the
loss functions of D and G are given by:

LDθ
= −Exd∼pdata [log Dθ (xd)]−Ez∼pz

[
log
(
1− Dθ

(
Gη (z)

))]
, (3.2.2)

LGη
= Ez∼pz

[
log
(
1− Dθ

(
Gη (z)

))]
; (3.2.3)

The objective function corresponding to the minimax problem is defined by:

min
Gη

max
Dθ

V
(
Gη, Dθ

)
= Exd∼pdata [log Dθ (xd)] + Ez∼pz

[
log
(
1− Dθ

(
Gη (z)

))]
. (3.2.4)

See Figure 3.1 for a high-level framework of the training process described above.

Figure 3.1: A high-level framework of GAN’s training, where G and D are generally
two independent artificial neural networks.

3.2.1 Theoretical Results
The existence and uniqueness of the optimal solution regarding the minimax problem
(3.2.4) are interesting, and in the following part, we would like to present some theo-
retical analysis of the vanilla GAN.

Proposition 3.2.1 (Optimal discriminator). When the generator G is fixed, the optimal dis-
criminator D∗θ is given by

D∗θ (x) =
pdata(x)

pdata(x) + pG(x)
. (3.2.5)

3.2. Vanilla GAN 33

Proof. With fixed generator G, the discriminator Dθ is trained to maximize

V (G, Dθ) =
∫

x
pdata(x) log [Dθ(x)]dx +

∫
z

pz(z) log [1− Dθ (G (z))]dz

=
∫

x
pdata(x) log [Dθ (x)]dx +

∫
x̂

pG(x̂) log [1− Dθ (x̂)]dx̂

=
∫

x
pdata(x) log [Dθ (x)] + pG(x) log [1− Dθ (x)]dx.

(3.2.6)

We now focus on the integrand. Consider a function f (y) = a log y + b log(1 − y)
with y ∈ [0, 1] and (a, b) ∈ R2\{0, 0}, arg max

y
f (y) = a

a+b . Since Dθ is not required

to be defined outside of Supp(pdata) ∪ Supp(pG), we have D∗θ = arg max
θ

V (G, Dθ) =

pdata
pdata+pG

, which concludes the proof.

Theorem 3.2.2 (Uniqueness). The optimal discriminator D∗θ is unique 2.

Proof. For the proof we refer to [67].

The minimax problem (3.2.4) with D∗θ is then reformulated by

min
Gη

C
(
Gη

)
= V

(
Gη, D∗θ

)
= Exd∼pdata [log D∗θ (xd)] + Ex̂∼pG [log (1− D∗θ (x̂)]

= Exd∼pdata

[
log

pdata (xd)

pdata (xd) + pG (xd)

]
+ Ex̂∼pG

[
log

pG (x̂)
pdata (x̂) + pG (x̂)

]
,

(3.2.7)
which is found having a tight relation with the the Kullback-Leibler (KL) divergence
[68] and the Jensen-Shannon (JS) divergence [69].

The definition of KL divergence and JS divergence between two probability distribu-
tions P and Q are formulated as follows:

KL(P∥Q) =
∫

p(x) log
p(x)
q(x)

dx, (3.2.8)

JS(P∥Q) =
1
2

KL
(

P∥P + Q
2

)
+

1
2

KL
(

Q∥P + Q
2

)
, (3.2.9)

where p(x) and q(x) are the densities of p and Q respectively.

Equation(3.2.7) can then be written with KL divergence terms or a JS divergence com-

2In this thesis, we assume that all possible Dθ are available and LDθ
< ∞ for all Dθ . Besides that,

pG(x) > 0 at almost everywhere.

34 Chapter 3. Generative Adversarial Networks

ponent, given by:

C(Gη) =
∫

pdata(x) log
pdata(x)

pdata(x) + pG(x)
dx +

∫
pG(x) log

pG(x)
pdata(x) + pG(x)

dx

= −2 log 2 +
∫

pdata(x) log
2pdata(x)

pdata(x) + pG(x)
dx +

∫
pG(x) log

2pG(x)
pdata(x) + pG(x)

dx

= −2 log 2 + KL
(

Pdata∥
Pdata + PG

2

)
+ KL

(
PG∥

Pdata + PG

2

)
= −2 log 2 + 2JS(Pdata∥PG).

(3.2.10)

Theorem 3.2.3 (Global optimality). C(Gη) in (3.2.7) is globally minimized if and only if
Pdata = PG, and the minimum value of C(Gη) is −2 log 2.

Proof. If Pdata = PG, then D∗θ ≡
1
2 . C

(
Gη

)
= Exd∼pdata

[
log 1

2

]
+ Ex̂∼pG

[
log 1

2

]
=

−2 log 2.

Since for any two probability distributions, their JS divergence has the lower bound
0 which is arrived only when the two distributions are equal, from (3.2.10), we have
C
(
Gη

)
≥ −2 log 2 and C

(
Gη

)
= −2 log 2 only if Pdata = PG.

Therefore, the global optimization regarding the minimax problem (3.2.4) is achieved
when G is a perfect replicator. However, the uniqueness of the optimal generator is
more restricted, and the reader is referred to [67] for details.

3.3 Conditional GAN
The conditional GAN is one of the popular and straightforward extensions of the ad-
versarial nets, which was proposed by [70]. As the name implies, the conditional GAN
receives extra information y during training. Figure 3.2 displays a high-level architec-
ture of the conditional GAN.

When defining the corresponding minimax problem, [70] treat y as conditions with
respect to the real distribution Pdata and the fake distribution PG respectively. However,
during the model training, y is processed as an additional input to both D and G. In
order to avoid misunderstanding the concept of conditional distribution in statistics,
we write the objective function as follows:

min
Gη

max
Dθ

V
(
Gη, Dθ; y

)
= Exd∼pdata [log Dθ (xd, y)] + Ez∼pz

[
log
(
1− Dθ

(
Gη (z, y)

))]
.

(3.3.1)
Here, G and D are formulated by:

Gη : Z ×Y ⊆ Rm ×Rl → G(Z ,Y ; η) ⊆ X ⊆ Rn

(z, y) ∼ pz 7→ (x̂, y) ∼ pG,y,

Dθ : X ×Y ⊆ Rn ×Rl → D(X ,Y ; θ) ⊆ [0, 1]
(x, y) 7→ D(x, y; θ).

(3.3.2)

3.4. GANs Training in Practice 35

Figure 3.2: A high-level architecture of conditional GAN.

The loss functions of D and G are then represented by:

L(D,y) = −Exd∼pdata [log Dθ (xd, y)]−Ezd∼pz

[
1− log Dθ

(
Gη(z, y))

)]
,

L(G,y) = Ezd∼pz

[
1− log Dθ

(
Gη(z, y))

)]
.

(3.3.3)

All in all, the conditional GAN is not very special, except the extra information, which
can be viewed as extended dimensions of the both latent variables and real samples.
Similar theoretical results can therefore be directly derived from the vanilla GAN and
we leave them to the reader.

3.4 GANs Training in Practice
In this section, the pseudocodes for training the vanilla GAN and the conditional GAN
are illustrated respectively (see Algorithm 3 and Algorithm 4). Here, we resort to mini-
batch gradient descent to update the parameters of D and G with Adam algorithm for
optimizing the stochastic loss functions.

Moreover, [57] shows an interesting result related to the reliability of the training algo-
rithm, stated as follows:

Proposition 3.4.1 (Convergence of Algorithm 3). If D and G have enough capacity, and at
each step of Algorithm 3, D is allowed to reach its optimum D∗θ given G, and PG is updated so
as to improve the criterion

Ex∼Pdata [log D∗θ (x)] + Ex̂∼PG [log D∗θ (x̂)] ,

then PG converges to Pdata.

For a proof of training convergence, we refer to [57]. Similarly, the convergence of
Algorithm 4 can be directly derived from Proposition 3.4.1.

36 Chapter 3. Generative Adversarial Networks

Algorithm 3: Training algorithm of vanilla GAN.
Input : Training epochs N, mini-batch size L, mini-batch number M, initial

discriminator parameters θ0, initial generator parameters η0.
Output: Discriminator parameters θ, generator parameters η.
for Training epoch n = 1, . . . , N do

for Mini-batch m = 1, . . . , M do
Generate L random latent variables

{
z(1), . . . , z(L)

}
from distribution Pz.

Choose L random samples
{

x(1), . . . , x(L)
}

from the training data.

/* Discriminator loss. */

Lm
D ←

1
L

L
∑

l=1
−
[
log Dθ

(
x(l)
)
+ log

(
1− Dθ

(
Gη

(
z(l)
)))]

Generate L random latent variables
{

z(1), . . . , z(L)
}

from distribution Pz.

/* Generator loss. */

Lm
G ←

1
L

L
∑

l=1
log
(

1− Dθ

(
Gη

(
z(l)
)))

/* Update parameters. */

θ ← Adam
(
∇θ

M
∑

m=1
Lm

D

)
η ← Adam

(
∇η

M
∑

m=1
Lm

G

)
end

end

However, GANs are well-known for their training instability in practice, and we will
discuss GANs failure modes extensively in Section 3.6. In the following part, we make
a brief summary of different methods to improve GANs’ stability by modifying the
above algorithms.

There are mainly two ways to improve GANs training in practice. First of all, the gener-
ator G is trained to maximize log Dθ

(
Gη(z)

)
instead of minimizing log

(
1− Dθ

(
Gη(z)

))
.

With such modification, D and G can provide stronger gradients early [57]. Besides
that, in each training epoch, D is set to update multiple times per G update, since the
ratio of Pdata and PG should be estimated correctly. However, it usually does not lead
to a clear improvement in practice [71]. The modified GAN training process is then
illustrated in Algorithm 5, where α = 0 means no extra information is provided, i.e.
the vanilla GAN, and α = 1 corresponds to the conditional GAN.

3.5 GANs Applications
GANs are powerful techniques and can be applied to various fields. Furthermore,
researchers are interested in introducing GANs framework to problems with non-deep
learning solutions. Advantages are usually gained by using GANs. In this section,
we display two examples regarding GANs applications: path simulation of SDEs and
anomaly detection, where the corresponding non-GAN methods are already described

3.5. GANs Applications 37

Algorithm 4: Training algorithm of conditional GAN.
Input : Extra information y, training epochs N, mini-batch size L, mini-batch

number M, initial discriminator parameters θ0, initial generator
parameters η0.

Output: Discriminator parameters θ, generator parameters η.
for Training epoch n = 1, . . . , N do

for Mini-batch m = 1, . . . , M do
Generate L random latent variables

{
z(1), . . . , z(L)

}
from distribution Pz.

Choose L random samples
{

x(1), . . . , x(L)
}

from the training data.

/* Discriminator loss. */

Lm
(D,y) ←

1
L

L
∑

l=1
−
[
log Dθ

(
x(l), y

)
+ log

(
1− Dθ

(
Gη

(
z(l), y

)))]
Generate L random latent variables

{
z(1), . . . , z(L)

}
from distribution Pz.

/* Generator loss. */

Lm
(G,y) ←

1
L

L
∑

l=1
log
(

1− Dθ

(
Gη

(
z(l), y

)))
/* Update parameters. */

θ ← Adam
(
∇θ

M
∑

m=1
Lm
(D,y)

)
η ← Adam

(
∇η

M
∑

m=1
Lm
(G,y)

)
end

end

in Section 2.2 and Section 2.4.

3.5.1 SDE-GAN: Path Simulation of SDEs Using GANs
Path simulation of SDEs is a methodology to solve the SDEs numerically. It uses a
time-discretization method to approximate the differential equations (or integrals) and
applies Monte Carlo simulation to introduce randomness. Euler and Milstein schemes
are popular path simulation methods, and many extensions have been proposed to
improve the accuracy. Instead of applying mathematics, in recent years, deep-learning
algorithms have been introduced to solve SDEs. In the following part, we focus on a
GAN-based methodology proposed in [15], which we will refer to as SDE-GAN3.

The SDE-GAN is applicable for path simulations of SDEs, which in principle can be
used for all kinds of SDEs. [15] presents excellent results with respect to the CIR model,
and we will describe the GBM simulation process in detail.

Suppose we want to simulate a path during time period [0, T], with time partition 0 =
t0 < t1 < · · · < tm = T and ∆t = T

m . The path is denoted by {S(t0), S(t1), . . . , S(tm)}.
From the Markov property, S(tk)|S(tk−1) is independent of F (tk−1) for k ∈ {1, . . . , m}.

3SDE-GAN is the unsupervised conditional GAN in [15]

38 Chapter 3. Generative Adversarial Networks

Algorithm 5: Modified training algorithm of vanilla and conditional GANs.
Input : Extra information y, training epochs N, mini-batch size L, mini-batch

number M, initial discriminator parameters θ0, initial generator
parameters η0, discriminator iteration number ND, GAN model index α.

Output: Discriminator parameters θ, generator parameters η.
for Training epoch n = 1, . . . , N do

for Mini-batch m = 1, . . . , M do
for Discriminator iteration nD = 1, . . . , ND do

Generate L random latent variables
{

z(1), . . . , z(L)
}

from distribution Pz.

Choose L random samples
{

x(1), . . . , x(L)
}

from the training data.

/* Discriminator loss. */

Lm
(D,αy) ←

1
L

L
∑

l=1
−
[
log Dθ

(
x(l), αy

)
+ log

(
1− Dθ

(
Gη

(
z(l), αy

)))]
/* Update discriminator parameters. */

θ ← Adam
(
∇θ

M
∑

m=1
Lm
(D,αy)

)
end

Generate L random latent variables
{

z(1), . . . , z(L)
}

from distribution Pz.

/* Generator loss. */

Lm
(G,αy) ←

1
L

L
∑

l=1
− log

(
Dθ

(
Gη

(
z(l), αy

)))
/* Update generator parameters. */

η ← Adam
(
∇η

M
∑

m=1
Lm
(G,αy)

)
end

end

Therefore, the relation between S(tk−1) and S(tk) can be learned as long as Stk−1 is
given. A path then can be generated by repetitively learning the maps from S(tk−1)
to S(tk) for k ∈ {1, . . . , m}. Because of the stochasticity, the relation between S(tk−1)
and S(tk) forms a conditional distribution PS(tk)|S(tk−1)

. Therefore, instead of generat-
ing one point, multiple samples are drawn from PS(tk)|S(tk−1)

. Plenty of paths are then
constructed by iteratively sampling from the distribution PS(tk)|S(tk−1)

, given the initial
S(t0) = S0. Figure 3.3 from [15] gives a sketch of simulated paths.

The machine learning method to approximate the conditional distribution PS(tk)|S(tk−1)
is a conditional GAN, i.e. the so-called SDE-GAN, and the learning process can be
formulated by:

Ŝ(t1)|S(t0) = Gη(Z, ∆t, S(t0)),

Ŝ(tk+1)|Ŝ(tk) = Gη(Z, ∆t, Ŝ(tk)), k = 1, . . . , m− 1.
(3.5.1)

3.5. GANs Applications 39

Figure 3.3: Illustration of path simulation [15].

where Z ∼ N (0, 1), S(t0) = S0 is the initial price, Ŝ(tk) is the approximation of the
exact S(tk) and Gη is the generator of SDE-GAN. In [15], SDE-GAN is trained on a
dataset of tuples ((S(tk+1)|S(tk), S(tk), ∆t) with varying ∆t and S(tk), and thus ∆t and
S(tk) are set as extra information to the conditional GAN.

Path Simulation of GBM Using SDE-GAN
The methodology proposed in [15] can be summarized into five components: 1) Train-
ing dataset construction; 2) Data pre-processing; 3) SDE-GAN training; 4) Approxima-
tion; 5) Data post-processing. The schematic diagram of the methodology is illustrated
in Figure 3.4.

The training dataset consists of N GBM paths with m time steps, denoted by
{

S(tk)
i},

where i = 1, . . . , N and k = 0, . . . , m. Each path starts at some fixed S0 ∈ R and for any
path i, S(tk)

i follows (2.2.11), that is,

S(tk)
i = S0 exp

((
µ− 1

2
σ2
)

tk + σW(tk)

)
. (3.5.2)

When training the conditional GAN, log-return transformation is applied to the dataset,
formulated by

X(tk)
i := log

[
S(tk)

i

S(tk−1)i

]
, (3.5.3)

where k = 1, . . . , m and X(t0)
i := 0.

Both generator G and discriminator D in the SDE-GAN are fully connected artificial
neural networks, especially MLPs in [15]. Because of the data-preprocessing in [15],
SDE-GAN is only conditioned on ∆t regarding the GBM model. When SDE-GAN is
well-trained following Algorithm 5, the log-price X(tk)

i is approximated by

X̂(tk)
i = G∗η(Z, ∆t), k = 1, . . . , m (3.5.4)

40 Chapter 3. Generative Adversarial Networks

Figure 3.4: An overview of the methodology proposed in [15].

where G∗η represents the well-trained generator and Z ∼ N (0, 1). The simulated price
is then give by

Ŝ(tk)
i = Ŝ(tk−1)

i exp
(

X̂(tk)
i
)
= Ŝ(tk−1)

i exp
(

G∗η(Z, ∆t)
)

. (3.5.5)

Results
The performance of SDE-GAN for the GBM model is evaluated via two criteria: 1) The
approximated conditional distribution PS(tk)|S(tk−1)

and 2) Comparison of simulated
GBM paths to the exact solutions. [15] also presents the Monte Carlo error conver-
gence compared with non-deep learning schemes. However, convergence issues of the
SDE-GAN occur often in practice and the performance of SDE-GAN depends on ∆t.
It is therefore difficult to give definite statements about the quality of the convergence
results.

Figure 3.5 illustrates the conditional distribution PS(tk)|S(tk−1)
learned by SDE-GAN,

3.5. GANs Applications 41

where S(tk−1) = S0 is fixed.

(a) (b)

Figure 3.5: The conditional distribution PS(tk)|S(tk−1)
learned by SDE-GAN, compared

with the exact solution. Left: the empirical probability density distribution func-
tion (EPDF) plot of PS(tk)|S(tk−1)

; Right: the empirical cumulative distribution function
(ECDF) plot. Here, we set S0 = 100, ∆t = 0.1, µ = 0.05 and σ = 0.2.

Figure 3.6: Four random paths generated by SDE-GAN, exact solution, Euler and Mil-
stein schemes respectively, where S(t0) = 0, ∆t = 0.1, T = 4, µ = 0.05 and σ = 0.2.

Figure 3.6 displays several GBM paths simulated by SDE-GAN, compared with the
exact paths and paths constructed by Euler and Milstein schemes. As is highlighted
in [15], SDE-GAN can only simulate weak solutions of the GBM model, that is, the
generated path is not path-wise equivalent to the exact one.

From the results, we conclude that SDE-GAN can capture the relation between two
adjacent GBM prices S(tk−1) and S(tk), and can also simulate GBM paths well. For the
SDE-GAN architecture and training details, we refer to Appendix A in [15].

The Pros and Cons
SDE-GAN displays a general methodology for path simulation of SDEs, which can be
widely applied and easily adapted to various dynamics. With the advantages of GANs
techniques, SDE-GAN can be extended to simulate higher-dimensional dynamics and
overcome the curse of dimensionality.

Regarding the path simulation for the GBM model, in general, the performance of
SDE-GAN is successful.

42 Chapter 3. Generative Adversarial Networks

However, in practice, we find it quite difficult to train a stable SDE-GAN for the GBM
model, which is also a common problem of GANs techniques. We will explain the
problem deeply in Section 3.6.

3.5.2 AnoGAN: Anomaly Detection Using GANs
Another popular application of GANs is associated with anomaly detection, and in
this section, we discuss a model called the AnoGAN [54; 56]. Since a GAN is trained to
learn the distribution of the given dataset, and the generator can provide the learning
result, i.e., an approximation of the real distribution, it is natural to introduce GANs to
reconstruction based anomaly detection methods.

Given a dataset including normal and abnormal data, the AnoGAN is only trained on
the normal data, and we denote the distribution of the normal data as PN. The gen-
erator G learns the push-forward map G : Z 7→ X , and the distribution of generated
samples PG should be close to PN. On the other hand, if there exists a pull-back map
G−1 : X 7→ Z , which acts as an encoder, then for each sample x in the dataset, we
can find the corresponding latent variable z̃ ∈ Z . The generated result G(z̃) is the
reconstruction of x.

Since the generator can only output the pattern of normal data, G(z̃) should be a sam-
ple from PN for any z̃. For an anomaly a, we find its corresponding latent variable
z̃a = G−1(a), the reconstruction G(z̃a) is non-anomalous. The anomalies can thus be
detected by measuring the difference between the reconstruction result and the sample
itself.

However, the difficulty is to find the pull-back map G−1 as we cannot directly compute
the inverse map of the generator. Given a sample x, [54] proposes an optimization
algorithm to find a point z in the latent space such that the generated sample G(z)
is visually most similar to x. The loss function of the optimization is defined as the
weighted sum of a residual loss and a discriminator loss:

LR(z) = ∥x− G(z)∥,
LD(z) = ∥f(x)− f(G(z))∥,
L(z) = (1− λ)LR(z) + λLD(z),

(3.5.6)

where the residual loss LR measures the difference between the given sample and the
generated sample; The discriminator loss LD represents the feedback from the dis-
criminator; f is the output before the output layer of the discriminator; λ ∈ (0, 1) is a
constant.

The best latent variable z̃ is found by minimizing the loss function L through back-
propagation steps with respect to z. And optimizers, such as the Adam, can be used to
descend the gradients.

The anomaly score of the sample x is formulated by value of the loss function at z̃:

A(x) = L(z̃). (3.5.7)

A threshold is decided based on the anomaly scores of all the samples, and if an

3.6. GANs Problems and Improvements 43

Figure 3.7: The methodology of AnoGAN, where f (·) is the output of an intermediate
layer of the discriminator.

anomaly score is larger than the threshold, then the corresponding sample is an anomaly.

Figure 3.7 presents the methodology of AnoGAN, where the generator G and the dis-
criminator D are well-trained on the normal data, and α is the threshold which is a
constant.

3.6 GANs Problems and Improvements
Model training is one of the important stages in neural network construction. How-
ever, it is more difficult in GANs, since two competitive neural networks are involved
and trained simultaneously. The equilibrium point is not easy to find or may not even
exist. Sometimes, GANs training leads to poor performance, which is called GANs
failure modes. Researchers would like to improve the GANs training stability.

In this section, we first identify GANs different failure modes by using SDE-GAN as
examples. Next, various improvements are summarized besides the modifications in
Algorithm 5.

3.6.1 GANs Problems
In general, GANs failure modes can be summarized into three aspects: 1) mode col-
lapse, 2) vanishing gradients and 3) non-convergence. We describe these problems
respectively in the following part, where parameters of SDE-GAN in examples are the
same as Section 3.5.1.

Mode collapse usually relates to a generator which can only produce a small set of

44 Chapter 3. Generative Adversarial Networks

outputs. It happens when the generator learns an especially plausible distribution
and only produce that output, then the best strategy for the discriminator is to reject.
Therefore, the discriminator is trapped in this local minimum, resulting the generator
oscillates in a small range. Figure 3.8 is an example of SDE-GAN mode collapse, where
during the training, the generator can only generate prices near S0.

(a) (b)

(c) (d)

Figure 3.8: The Training process of SDE-GAN when SDE-GAN mode collapse. (a)
The KDE plot of SDE-GAN generator output every five epochs; (b) The ECDF plot
of generator output every five epochs; (c) The JS divergence between the generator
output and the exact solution every network iteration; (d) The losses of generator and
discriminator during training.

On the other hand, vanishing gradients is usually caused by the discriminator: When a
discriminator performs too well, the generator then cannot receive useful information
to make progress. The name vanishing gradients is associated with JS divergence.
When the discriminator is close to optimal, it has the form of (3.2.5), and the minimax
problem is reduced to

min
Gη

C
(
Gη

)
= −2 log 2 + 2JS (Pdata∥PG) . (3.6.1)

When the generated distribution PG is dissimilar to Pdata, the slope of JS divergence
is close to zero, as is illustrated in Figure 3.9. The generator therefore gets stuck and
continuously produces bad outputs.

Diminishing gradients also appear when training SDE-GAN, see Figure 3.10. After
training around 35 epochs, the generator learns nothing and the JS divergence between

3.6. GANs Problems and Improvements 45

Figure 3.9: JS divergence between distributions Pn and Pdata (the solid red line), where
Pdata ∼ N (3, 0.52), Pn ∼ N (µ, 0.52) for µ ∈ [3, 150], in particular, P1 ∼ N (50, 0.52),
P2 ∼ N (80, 0.52) and P3 ∼ N (110, 0.52).

Pdata and PG increases significantly and rapidly, indicating the occurrence of vanishing
gradients.

(a) (b)

(c) (d)

Figure 3.10: The Training process of SDE-GAN when vanishing gradients occurs. (a)
The KDE plot of SDE-GAN generator output every five epochs; (b) The ECDF plot
of generator output every five epochs; (c) The JS divergence between the generator
output and the exact solution every network iteration; (d) The losses of generator and
discriminator during training.

46 Chapter 3. Generative Adversarial Networks

It is also common for GANs to fail to converge. In this situation, no equilibrium can
be found between the discriminator and generator. One signal to identify GANs non-
convergence failure is the discriminator loss decreasing to zero or close to zero. Be-
cause of that, the generator only provide low quality outputs which are easily be rec-
ognized as fake samples by the discriminator. For instance, in Figure 3.11, after training
about 15 epochs, the discriminator loss decreases to zero and the generator produces
samples near zero which is far from S0.

(a) (b)

Figure 3.11: The Training process of SDE-GAN when SDE-GAN fails to converge. Left:
The KDE plot of SDE-GAN generator output every five epochs; Right: The losses of
generator and discriminator during training.

3.6.2 GANs Improvements
A variety of approaches have been proposed to avoid GANs failure modes. On the
one hand, researchers adjust the training algorithm to enhance the stability of finding
the equilibrium. For example, learning rate scheduling is used in [72], leading to faster
convergence and higher accuracy. On the other hand, GANs architecture is modified,
particularly in constructing different loss functions.

Among all kinds of GANs modifications, the so-called Wasserstein GAN (WGAN) is
attractive, from which Wasserstein distance is introduced to replace JS divergence. The
benefits of using Wasserstein distance is explained in [59]. Researches have shown that
WGAN is a practical approach to remedy mode collapse and vanishing gradients.

Chapter 4

Wasserstein GAN

The Wasserstein GAN (WGAN) [59] is appealing as it offers a solution to remedy the
GANs failure in vanishing gradients, which is crucial regarding our proposed frame-
work. In this chapter, Wasserstein GAN is described thoroughly. First, we highlight the
key difference between the GAN and WGAN, namely, the Wasserstein distance. Next,
the architecture of the WGAN is described, explaining the details of how to involve the
Wasserstein distance. After that, we list some related theoretical results, showing the
usefulness of Wasserstein loss. In the next part, the training algorithm is illustrated,
which is similar to GANs training, but with different parameter update criteria and
additional constraints. However, as is mentioned in Section 3.6, the WGAN may still
fail to converge. We then display an improved model, the so-called Wasserstein GAN
with gradient penalty loss function (WGAN-GP).

4.1 Wasserstein Distance
Wasserstein distance has a close connection with optimal transport problems, which
were first formalized by Monge in 1781 and developed significantly by Kantorovich
in 1942. A natural motivation of the optimal transport problem is a source allocation
problem: How to transfer raw materials from various warehouses to factories with
different demands [73]. In mathematical terms, the so-called Kantorovich problem
under probabilistic interpretation is defined by

Lc(µ, ν) = inf
(X,Y)

{
E(X,Y)[c(X, Y)] : X ∼ µ, Y ∼ ν

}
, (4.1.1)

where c is a continuous function, (µ, ν) are probability measures defined on compact
spaces (X ,Y) and (X, Y) is a couple of random variables over the product space X ×
Y . Moreover, if X = Y and c(x, y) = d(x, y)p is a distance on X , then

Wp(µ, ν) ≜ Ldp(µ, ν)1/p (4.1.2)

defines the p-Wasserstein distance on X [73]. In short, the Wasserstein distance is a
distance metric defined between probability distributions on a given metric space X .

47

48 Chapter 4. Wasserstein GAN

4.1.1 1-Wasserstein Distance
We are interested in a special case of the p-Wasserstein metric, namely when p = 1 and
X ∈ Rn, whose formula is given by:

W(µ, ν) = inf
(X,Y)

{
E(X,Y)[∥X−Y∥] : X ∼ µ, Y ∼ ν

}
. (4.1.3)

The 1-Wasserstein distance is also called the earth’s mover distance [74], which can be
interpreted as the minimum energy cost of moving a pile of material from one form to
another form (see Figure 4.1).

Figure 4.1: An interpretation of earth’s mover distance or 1-Wasserstein distance.

In the discrete case, the 1-Wasserstein distance can be viewed as the minimum bin
movement of transforming one histogram into another histogram. We refer to an ex-
ample (see Figure 4.2) in [75] for details. Therefore, the 1-Wasserstein distance was
introduced in computer vision and machine learning to compare histograms [73], and
in this thesis, it is a choice to define the objective functions in GANs, leading to a more
robust model, namely WGAN.

Figure 4.2: An example of the 1-Wasserstein distance in [75]. Here, the figure shows a
step-by-step plan of matching two histograms P and Q, and the 1-Wasserstein distance
between P and Q is 5.

4.2. WGAN Architecture 49

4.1.2 Dual Problem
As the Kantorovich problem (4.1.1) is a constrained convex minimization problem, it
admits a dual form which is a constrained concave maximization problem [73].

The dual problem of the 1-Wasserstein distance in (4.1.3) is formulated by:

W(µ, ν) = sup
∥∇ f ∥∞≤1

Ex∼µ[f (x)]−Ex∼ν[f (x)], (4.1.4)

Here the 1-Lipschitz constraint ∥∇ f ∥∞ ≤ 1 indicates that the norm of the gradient of
f at any point x is upper bounded by 1. We refer to [73] for a thorough deduction. The
dual problem is also called the Kantorovich-Rubenstein duality.

4.2 WGAN Architecture
In practice, it is intractable to exhaust all the joint possibilities (X, Y) to calculate the
infimum in (4.1.3) [59]. Instead, the Kantorovich-Rubinstein duality (4.1.4) is used to
train a GAN.

The objective function of a WGAN is constructed as follows:

min
Gη

max
D∈D

Ex∼Pdata [D(x)]−Ez∼Pz [D(Gη(z))], (4.2.1)

where D is the set of 1-Lipschitz functions. Note that the discriminator output D(x)
here does not signify the probability of real samples, and its value is not bounded
by [0, 1]. The discriminator, or the neural network used to distinguish the generated
samples from the real samples, is called a critic in a Wasserstein GAN, and is denoted
by fw. The output of the critic is a scalar score, reflecting how real the input sample is.

To clearly show the difference between vanilla GANs and Wasserstein GANs, we rewrite
the objective function (4.2.1) as:

min
Gη

max
w∈W

Ex∼Pdata [fw(x)]−Ez∼Pz

[
fw(Gη(z))

]
, (4.2.2)

where { fw}w∈W is a parameterized family of 1-Lipschitz functions.

The loss functions of the critic fw and the generator G are then given as follows:

LC = −
(
Ex∼Pdata [fw(x)]−Ex̂∼PG [fw(x̂)]

)
, (4.2.3)

LG = −Ez∼Pz

[
fw(Gη(z))

]
, (4.2.4)

where x̂ := Gη(z) is the output of the generator G, following the generated distribution
PG.

Similar to Figure 3.1, we illustrate the architecture of a WGAN in Figure 4.3.

4.3 Theoretical Results
In this section that is heavily inspired by [59], we describe several mathematical re-
sults to show it is reasonable to use the 1-Wasserstein distance as compared to the JS

50 Chapter 4. Wasserstein GAN

Figure 4.3: A high-level overview of WGAN.

divergence in GANs modeling.

Perhaps the most important property of the Wasserstein distance is that it is a weak
distance [73]. Because of this, under some mild assumptions, we can state the conti-
nuity and differentiability of the 1-Wasserstein distance. The mathematical results are
illustrated as follows, and we refer to Appendix C in [59] for the detailed proofs.

Assumption 4.3.1 (Regularity assumption). Let Gη(z, η) : Z ×Rd 7→ X be a function
whose output value is denoted by Gη(z). We say that G satisfies a regularity assumption for
a certain probability distribution Pz over Z if there are local Lipschitz constants L(η, z) such
that Ez∼Pz [L(η, z)] < +∞.

Theorem 4.3.2. Let Pdata be a fixed distribution over X . Let z ∼ Pz be a random variable over
another space Z . Let Gη(z, η) : Z ×Rd 7→ X be a function whose value is denoted by Gη(z).
Let PG denote the distribution of Gη(Z). Then

1. If Gη is continuous in η, so is W(Pdata, PG), where W(Pdata, PG) follows (4.1.3).

2. If Gη is locally Lipschitz and satisfies the regularity assumption, then W(Pdata, PG) is
continuous everywhere, and differentiable almost everywhere.

3. Statements 1-2 are false for JS(Pdata∥PG).

Corollary 4.3.3. Let G be any feedforward neural network parameterized by η, and Pz a latent
distribution satisfying Ez∼Pz [∥z∥] < ∞. Then, W(Pdata, PG) is continuous everywhere and
differentiable almost everywhere.

From the results above, we can also conclude that the 1-Wasserstein distance seems
to make more sense than the JS divergence, which explains the practical use of the
WGAN. Additionally, we reuse Figure 3.9 to display the sensibility, see Figure 4.4. We
can see that in the region where the gradients based on the JS divergence vanish, the
1-Wasserstein distance still admits strong gradients.

Next, we would like to discuss the existence of WGANs’ global optimality. Again, we
refer to [59] for the proof details.

Theorem 4.3.4. Let Pdata be any distribution. Let PG be the distribution of Gη(z) with z a

4.4. Training Algorithm 51

Figure 4.4: Reuse Figure 3.9 by adding the 1-Wasserstein distance between Pn and Pdata
(the solid blue line).

random variable following distribution Pz and Gη the satisfying regularity assumption. Then,
there is a solution f : X 7→ R to the problem

max
∥∇ f ∥∞≤1

Ex∼Pdata [f (x)]−Ex∼PG [f (x)] (4.3.1)

and we have
∇ηW(Pdata, PG) = −Ez∼Pz

[
∇η f (Gη(z))

]
(4.3.2)

if both terms are well-defined.

Last but not least, we show some properties of the optimal critic in Theorem 4.3.4, and
we refer to [60] for the details of proofs.

Proposition 4.3.5. Let f ∗ be the solution of problem (4.3.1). Let π be the optimal coupling
between Pdata and PG, defined as the minimizer of

W(Pdata, PG) = inf
π∈Π(Pdata,PG)

E(x,y)∼π[∥x− y∥],

where Π(Pdata, PG) is the set of joint distributions π(x, y) whose marginals are Pdata and PG,
respectively. Then, if f ∗ is differentiable, π(x = y) = 0, and xt = tx + (1 − t)y with
0 ≤ t ≤ 1, we have

P(x,y)∼π

[
∇ f ∗(xt) =

y− xt

∥y− xt∥

]
= 1.

Corollary 4.3.6. f ∗ has gradient norm 1 almost everywhere under Pdata and PG.

4.4 Training Algorithm
Theorem 4.3.4 guarantees the existence of an optimal critic. Similar to GANs, we can
train neural networks to approximate the solution of the Wasserstein GAN. Since the 1-

52 Chapter 4. Wasserstein GAN

Wasserstein distance is continuous and differentiable almost everywhere, we can and
we should train the critic till the optimality. That is, for every training iteration, the
critic parameters are updated more frequently than the generator parameters.

The training structure of WGANs is similar to Algorithm 5. However, because of the
Lipschitz constraint, a weight clipping method is applied to enforce the condition. It
simply restricts the critic weights after each gradient update by setting a weight ceiling
and a weight floor. Furthermore, the RMSProp optimizer is used in WGAN, which
empirically performs better than the Adam optimizer. The detailed training algorithm
of WGANs is illustrated in Algorithm 6.

Algorithm 6: Training algorithm of Wasserstein GAN, proposed in [59].
Input : Training epochs N, mini-batch size L, mini-batch number M, initial critic

parameters w0, initial generator parameters η0, critic iteration number Nc,
weight clipping parameter c.

Output: Critic parameters w, generator parameters η.
for Training epoch n = 1, . . . , N do

for Mini-batch m = 1, . . . , M do
for Critic iteration nc = 1, . . . , NC do

Generate L random latent variables
{

z(1), . . . , z(L)
}

from distribution Pz.

Choose L random samples
{

x(1), . . . , x(L)
}

from the training data.

/* Critic loss. */

Lm
C ← −

[
1
L

L
∑

l=1
fw

(
x(l)
)
− 1

L

L
∑

l=1
fw

(
Gη

(
z(l)
))]

/* Update critic parameters. */

w← RMSProp
(
∇w

M
∑

m=1
Lm

C

)
/* Weight clipping */
w← clip (w,−c, c)

end

Generate L random latent variables
{

z(1), . . . , z(L)
}

from distribution Pz.

/* Generator loss. */

Lm
G ← −

1
L

L
∑

l=1
fw

(
Gη

(
z(l)
))

/* Update generator parameters. */

η ← RMSProp
(
∇η

M
∑

m=1
Lm

G

)
end

end

4.5 WGAN Improvement: WGAN-GP
The authors in [59] admit that weight clipping is not a satisfactory method to satisfy
the Lipschitz condition and when the clipping parameters are not carefully chosen, the

4.5. WGAN Improvement: WGAN-GP 53

WGAN easily fails to provide promising performance, resulting in vanishing gradients
when the clipping range is too small or slower convergence when the range is too big
[75].

An alternative method to enforce the Lipschitz constraint is proposed in [60]. The
authors of the so-called gradient penalty method propose to add an additional term to
the critic loss (4.2.3), which is formulated as follows:

LC = Ex̂∼PG [fw(x̂))]−Ex∼Pdata [fw(x)]︸ ︷︷ ︸
Original critic loss

+ λEx̃∼ Px̃ [(∥∇x̃ fw(x̃)∥2 − 1)2]︸ ︷︷ ︸
gradient penalty

, (4.5.1)

where Px̃ samples uniformly along the straight lines between pairs (x, y) with any
x ∼ Pdata and y ∼ PG; λ ∈ R is a hyperparameter which is a constant. The WGAN
with gradient penalty added to the critic loss is called WGAN-GP for short.

As reason to construct such penalty term is as follows: First, a differentiable function
is 1-Lipschtiz if and only if it has gradients with norm at most 1 everywhere; Second,
from Proposition 4.3.5, the optimal critic is with gradient norm 1 on the straight lines
between pairs of the points that are sampled from Pdata and PG. Therefore, the gradient
penalty term in (4.5.1) not only provides a flexible constraint associated with inputs,
but also results in highly satisfactory performance [60].

We illustrate the training process of a WGAN-GP in Algorithm 7. Note that Adam op-
timizer is applied in training the WGAN-GP. Actually, there is no theoretical criterion
for choosing the proper optimization algorithm, and which to use is based on empirical
results.

Experiments in [60] confirm that the WGAN-GP is more stable, which allows the con-
struction of more complicated neural networks. WGAN-GP is accepted as a state-of
the-art GAN variant in various fields for proposing a robust model. In this thesis, we
also replace the training structure of the SDE-GAN by a WGAN-GP (see Chapter 5),
and we find that no GANs failure mode occurs anymore during training.

54 Chapter 4. Wasserstein GAN

Algorithm 7: Training algorithm of WGAN-GP, proposed in [60].
Input : Training epochs N, mini-batch size L, mini-batch number M, initial critic

parameters w0, initial generator parameters η0, critic iteration number Nc,
gradient penalty coefficient λ.

Output: Critic parameters w, generator parameters η.
for Training epoch n = 1, . . . , N do

for Mini-batch m = 1, . . . , M do
for Critic iteration nc = 1, . . . , NC do

Generate L random latent variables
{

z(1), . . . , z(L)
}

from distribution Pz.

Choose L random samples
{

x(1), . . . , x(L)
}

from the training data.

/* Gradient penalty construction. */

Sample L random numbers
{

ϵ(1), . . . , ϵ(L)
}

from uniform distribution
U [0, 1].

x̂(l) ← Gη

(
z(l)
)

, for l = 1, . . . , L

x̃(l) ← ϵx(l) + (1− ϵ)x̂(l), for l = 1, . . . , L
/* Critic loss. */

Lm
C ← −

[
1
L

L
∑

l=1
fw

(
x(l)
)
− 1

L

L
∑

l=1
fw

(
x̂(l)
)]

+ λ
(
∥∇x̃ fw(x̃(l))∥ − 1

)2

/* Update critic parameters. */

w← Adam
(
∇w

M
∑

m=1
Lm

C

)
end

Generate L random latent variables
{

z(1), . . . , z(L)
}

from distribution Pz.

/* Generator loss. */

Lm
G ← −

1
L

L
∑

l=1
fw

(
Gη

(
z(l)
))

/* Update generator parameters. */

η ← Adam
(
∇η

M
∑

m=1
Lm

G

)
end

end

Chapter 5

Proposed Framework

In this thesis, the achievement is to propose a framework to simulate a jump-diffusion
process by using GAN techniques. As the paths simulation of the jump-diffusion pro-
cess consists of the diffusion part and the jump part, the framework can be divided
into two parts: 1) diffusion learning and 2) jump detection.

Regarding the diffusion learning part, we first suppose that the jump information (for
example, the jump size, the jump direction and the jump instances) is known. Our
goal is to simulate the diffusion part, and the jump-diffusion paths are then generated
by adding the jumps additionally. We propose an improved SDE-GAN to achieve the
simulation, called SDE-WGAN.

Concerning the jump detection part, we introduce the AnoGAN to recognize jumps:
Given a jump-diffusion path, we view the jumps as anomalies, while the non-jump
prices (i.e., from the diffusion part) are the normal data. The jumps are then detected
via a GAN-based anomaly detection method, namely, the AnoGAN. According to the
detected jump samples, we can use the maximum likelihood estimation method (MLE)
to approximate the parameters of the jumps.

By combining the learned diffusion part and the estimated jumps, a general framework
for generating a jump-diffusion process is illustrated in Figure 5.1. We highlight that
the generator and the critic are the well-trained neural networks from the diffusion
learning part; that is, we only run the training algorithm of the SDE-WGAN once.

In this chapter, we describe the proposed framework part by part. It starts with a
new idea about constructing the dataset, from which a so-called nested Monte Carlo
method is applied. Next, a general GAN model of the SDE-WGAN is illustrated in
detail. It is a conditional Wasserstein GAN with gradient penalty, which combines
the ideas of the conditional GAN and the WGAN-GP. We then present the process
for the diffusion learning part, that is, the Monte Carlo path simulation of the GBM
model using the SDE-WGAN. We further simulate the jump-diffusion model with the
assumed jump information. In the rest, we suppose the jump parameters are unknown
and design a jump detection model to approximate the parameters. The jump detection
part is further structured by detecting jumps and estimating jump information, where
the SDE-WGAN combined with the AnoGAN methodology is applied to recognize

55

56 Chapter 5. Proposed Framework

jumps, and the MLE method is used to estimate jump parameters.

5.1 3D Dataset Construction
When using the SDE-GAN to simulate the GBM paths, the training dataset consists of
n Monte Carlo simulation paths with m time steps, and the authors of [15] set n = 105.
Therefore, it is a 2-dimensional dataset (2D dataset) with 105 GBM paths. In this thesis,
we are interested in a new idea of constructing a 3-dimensional dataset (3D-dataset),
based on the nested Monte Carlo simulation [76; 77]. Figure 5.3 displays the structures
of a 2D dataset and a 3D dataset, respectively.

A sample S(ti)
j
k in the 3D dataset has three indexes: timestamp ti, path j, and depth

k. When using the nested Monte Carlo method to generate the GBM samples, two
layers of simulation are looped: The outer layer simulates independent paths, which is
the same as generating the 2D dataset; At each step of a path, the inner layer generates
independent samples based on the former step. The inner samples usually locate in the
neighborhood of the current state, formulating a distribution at the current timestamp.
To simulate a 3D-dataset S(ti)

j
k with m time steps, n paths and d depths, the outer layer

simulation is expressed by

S(ti)
j
1 = f (S(ti−1)

j
1), i = 1, . . . , m and j = 1, . . . , n, (5.1.1)

and the inner layer loop is given by

S(ti)
j
k = f (S(ti−1)

j
1), k = 1, . . . , d, (5.1.2)

where f represents a discretization scheme to approximate the GBM dynamics.

For example, under the Euler scheme,

f (si) := si−1 + µsi−1∆t + σsi−1∆tZ,

where µ, σ are constants, ∆t is the time step size and Z ∼ N (0, 1) is a random variable.

Example 5.1.1 (2D dataset and 3D dataset for the GBM samples). We present an example
of the 2D and 3D datasets for the GBM samples and discover the convergence of the 3D dataset
regarding the time step and the depth (see Figure 5.3).

From the error convergence plots in Example 5.1.1, we conclude that the 3D dataset
contains more accurate samples under the Euler scheme. On the other hand, increasing
the depth cannot significantly decrease the approximation error.

In training practice, we also enjoy a speedup using the 3D dataset: fewer paths are
required for sufficient training due to the storage of samples in the depth dimension.

5.2 Conditional Wasserstein GAN with Gradient Penalty
In this section, we describe the general GAN model of the SDE-WGAN, that is, a con-
ditional Wasserstein GAN with gradient penalty (cWGAN-GP). Like the conditional
GAN being an extension of the vanilla GAN, the cWGAN-GP is a Wasserstein GAN
with gradient penalty, whose generator and critic receive auxiliary information as ex-

5.3. Monte Carlo Simulation Using SDE-WGAN 57

tra inputs. The section is structured as follows: First, we present the architecture of the
cWGAN-GP, including the formula of loss functions; Next, we illustrate the training
algorithm in detail.

5.2.1 cWGAN-GP Architecture
Similar to the extension idea about the conditional GAN proposed in [70], the cWGAN-
GP is a naturally extended conditional model based on the WGAN-GP, where some
extra information y is added to both the generator and critic.

Extending (4.2.2), the objective function of the cWGAN-GP is given by:

min
Gη

max
w∈W

Ex∼Pdata [fw(x, y)]−Ez∼Pz

[
fw(Gη(z, y), y)

]
. (5.2.1)

The loss functions of the generator and the critic are then formulated by

L(G,y) = −Ez∼Pz [fw(Gη(z), y)], (5.2.2)

L(fw,y) = Ex̂∼PG [fw(x̂, y))]−Ex∼Pdata [fw(x, y)] + λEx̃∼Px̃ [(∥∇(x̃,y) fw(x̃, y)∥2 − 1)2]︸ ︷︷ ︸
gradient penalty

,

(5.2.3)
where x̂ := Gη(z, y) denotes the output of the generator with distribution P(G,y). Re-
garding the Lipschitz constraints of the conditional loss functions, there is no deep
mathematical justification, however, we refer to [78], a short note about the regularity
of the critic. Figure 5.4 presents a high-level architecture of the cWGAN-GP.

5.2.2 cWGAN-GP in Practice
When building the architecture of the cWGAN-GP, the conditions y = {y1, y2, . . . }
are concatenated to the input neurons of both the generator and critic, and Figure 5.5
displays a simple example about the training structure of the cWGAN-GP, where both
the generator and critic are MLPs. The detailed training process of the cWGAN-GP is
illustrated in Algorithm 8. Note that here we use the RMSProp method for the gradient
descent, which performs better than the Adam in practice.

5.3 Monte Carlo Simulation Using SDE-WGAN
As is discussed in Section 3.5.1, the SDE-GAN often fails to learn the GBM dynamics in
practice, and mainly because of the GAN mode collapse and vanishing gradients dur-
ing the training. To improve the training stability and the simulation’s robustness, we
propose a so-called SDE-WGAN, where a cWGAN-GP replaces the GAN architecture
in the SDE-GAN.

This section is associated with the diffusion learning part of the proposed framework.
First, we describe the structure of the SDE-WGAN thoroughly. Then, we use the
SDE-WGAN to simulate the log-GBM dynamics corresponding to the diffusion part
in (2.2.2), namely

dX(t) = µdt + σdWP(t). (5.3.1)

Furthermore, we use the provided jump information, for example the jump intensity

58 Chapter 5. Proposed Framework

Algorithm 8: Training algorithm of cWGAN-GP.
Input : Training epochs N, mini-batch size L, mini-batch number M, initial critic

parameters w0, initial generator parameters η0, critic iteration number Nc,
gradient penalty coefficient λ, extra information y.

Output: Critic parameters w, generator parameters η.
for Training epoch n = 1, . . . , N do

for Mini-batch m = 1, . . . , M do
for Critic iteration nc = 1, . . . , NC do

Generate L random latent variables
{

z(1), . . . , z(L)
}

from distribution Pz.

Choose L random samples
{

x(1), . . . , x(L)
}

from the training data.

/* Gradient penalty construction. */

Sample L random numbers
{

ϵ(1), . . . , ϵ(L)
}

from uniform distribution
U [0, 1].

x̂(l) ← Gη

(
z(l), y

)
, for l = 1, . . . , L

x̃(l) ← ϵx(l) + (1− ϵ)x̂(l), for l = 1, . . . , L
/* Critic loss. */
Lm

fw
←

−
[

1
L

L
∑

l=1
fw

(
x(l), y

)
− 1

L

L
∑

l=1
fw

(
x̂(l), y

)]
+ λ

(
∥∇(x̃,y) fw(x̃(l), y)∥ − 1

)2

/* Update critic parameters. */

w← RMSProp
(
∇w

M
∑

m=1
Lm

fw

)
end

Generate L random latent variables
{

z(1), . . . , z(L)
}

from distribution Pz.

/* Generator loss. */

Lm
G ← −

1
L

L
∑

l=1
fw

(
Gη

(
z(l), y

)
, y
)

/* Update generator parameters. */

η ← RMSProp
(
∇η

M
∑

m=1
Lm

G

)
end

end

and the distribution of the jump size, to generate the paths under the dynamics (2.2.2).

5.3.1 SDE-WGAN
The SDE-WGAN is adapted from the SDE-GAN, which aims to improve the model
stability and robustness during the training. Compared to the SDE-GAN, the modi-
fications of the SDE-WGAN are mainly related to three components: First and most
importantly, the cWGAN-GP is in place of the conditional GAN to learn the GBM dy-
namics; Second, two conditions, the time step ∆t and the precious state X(ti−1) are

5.3. Monte Carlo Simulation Using SDE-WGAN 59

added when simulating X(ti); Third, the pre-and post-processing is eliminated, and
the log-prices are directly input as the real samples.

As the SDE-WGAN is essentially a cWGAN-GP, it is trained by following Algorithm 8.
We construct a 3D dataset {X(ti)

j
k} for the sufficient training, where i = 0, 1, . . . , m,

j = 1, . . . , n and k = 1, . . . , d. During the training, both the generator and critic are
conditioned by the extra information y := (∆t, X(ti−1)1, . . . , X(ti−1)d). The generator
learns a map from a d-dimensional latent variable Z := (Z1, . . . , Zd) combining the
conditions y and outputs a d-dimensional approximation X̂(ti) =

(
X̂(ti)1, . . . , X̂(ti)d

)
.

The critic gives the feedback by judging the real sample X(ti) := (X(ti)1, . . . , X(ti)d)
and the fake sample X̂(ti). The detailed structure of the SDE-WGAN is illustrated in
Figure 5.6, where both the generator and critic are multilayer perceptrons.

5.3.2 GBM Path Simulation
Suppose to simulate a GBM log-price path {X(t0), X(t1), . . . , X(tm)}. The dynamics of
dX(t) are

dX(t) = µdt + σdWP(t), with X(0) = log S(0), (5.3.2)

and the time discretization formula under the Euler scheme is given by

X(ti) = X(ti−1) + µ∆t + σ
√

∆tZ, (5.3.3)

where Z ∼ N (0, 1), the time period is [0, T] and the time step ∆t := ti − ti−1 = T
m .

Similar to Section 3.5.1, the SDE-WGAN is trained to learn the relation between the
previous state X(ti−1) and the current conditional state X(ti). More precisely, the SDE-
WGAN approximates the conditional distribution PX(ti)|X(ti−1)

. Note that X(ti) :=
(X(ti)1, . . . , X((ti)d)), where d is the depth of the 3D training dataset. The GBM log-
price path is then generated by iteratively sampling points X(ti) ∈ Rd from the ap-
proximated conditional distributions.

The mathematical formulas regarding the path simulation are given by:

X̂(t1) = G∗η(Z, ∆t, X(t0)),

X̂(ti) = G∗η(Z, ∆t, X̂(ti−1)), k = 2, . . . , m,
(5.3.4)

where Z consists of d i.i.d random variables Zk sampled from the standard normal
distribution, X(t0) = (log(S0), . . . , log(S0)) is the fixed initial log-price vector, G∗η is
the well-trained generator and X̂(ti) is the approximation by the SDE-WGAN.

Therefore, the Monte Carlo paths generated by the SDE-WGAN are also "nested", that
is, the generated samples are also three-dimensional.

5.3.3 Jump-Diffusion Path Simulation
Recall in Section 2.2.2, the Monte Carlo jump-diffusion paths {XJ(ti)}m

i=0 are simulated
by adding extra jump components to the GBM log-price paths {X(ti)}m

i=0. Moreover,
regarding the jump instances, the Bernoulli random variables are introduced to simu-
late the jump occurrences.

60 Chapter 5. Proposed Framework

In the diffusion learning part, we still approach the same simulation method for the
jump component: First, at each timestamp ti, a Bernoulli random variable B(ti) with
the jump intensity parameter λp is generated to decide the occurrence of a jump; Sec-
ond, the jump size J is randomly sampled from the assumed distribution, for example,
J follows a normal distribution in Merton’s model; Next, the jump size J is added to
the diffusion part if B(ti) = 1.

Combining the diffusion component simulated by the SDE-WGAN, the jump-diffusion
path simulation is given by

X̂J(t1) = G∗η(Z, ∆t, XJ(t0))

X̂J(ti) = G∗η(Z, ∆t, X̂J(ti−1)) + JB(ti), i = 2, . . . , m,
(5.3.5)

where XJ(t0) is the initial state satisfying XJ(t0) = X(t0). Note that the jump com-
ponent is added to each component of the vector G∗η(Z, ∆t, X̂(ti−1)). We illustrate a
schematic diagram for a clear description of the simulation process, see Figure 5.7.

5.4 Jump Detection Model
In the diffusion learning part, we propose an SDE-WGAN, giving a general method-
ology for simulating the diffusion part: The parameters µ and σ, which are usually
implied by the market data, are not required. On the other hand, the jump information
is usually also unknown. In this section, we discuss the second part of the proposed
framework, from which a GAN-based anomaly detection model is introduced to figure
out the jump information.

In the following part, we assume that no jump occurs at the initial time t0, and our
goal is to recognize the jumps in a jump-diffusion path {X(t0), X(t1), . . . , X(tm)}. To
achieve the goal, we first introduce an AnoGAN-based method to find out the jump
instances. Next, based on the detected jumps, we apply the MLE method to estimate
the jump parameters. For example, in Merton’s model (J ∼ N (µJ , σ2

J)), our purpose is
to estimate the jump intensity λp, the mean jump size µJ and the jump size volatility
σJ .

5.4.1 Jump Instances Detection
The jumps can be viewed as anomalies. On the one hand, jumps, especially big jumps,
are rare to happen in the real markets. The jumps are usually recognized as sudden
price changes, reflecting unexpected market information. On the other hand, regard-
ing the jump-diffusion discretization formula, the jump-diffusion price reduces to a
GBM log-price when the Bernoulli variable is equal to 0. It is then natural to consider
the jumps as abnormal prices, while the diffusion part indicates normal market behav-
ior. Therefore, anomaly detection techniques can be applied to distinguish the jumps
from the diffusion prices. And the difference between a jump and the corresponding
diffusion price can be introduced to measure the anomalousness.

Moreover, when the SDE-WGAN can produce excellent diffusion prices, the AnoGAN
methodology can be applied for detecting jumps. Recall in Section 3.5.2, the GAN
model is only trained on the normal data, and the anomalies are also reconstructed
as normal samples. The anomalousness is then evaluated by comparing the recon-

5.4. Jump Detection Model 61

structed pattern to the original one. The idea of bringing in the AnoGAN is expressed
as follows:

Consider (5.3.5), the SDE-WGAN produces the diffusion part. When a jump occurs at
ti, that is, B(ti) = 1, the jump J is additionally added to the approximated diffusion
part. Therefore, when using the SDE-WGAN to reconstruct the jump price XJ(ti), it
cannot capture the jump J 1. The difference between the reconstructed price X̂(ti)and
XJ(ti) then indicates the jump. Similarly, we can construct an anomaly score to measure
the difference, which contains the residual loss and the critic loss.

In summary, the detection procedure of the jump instances is illustrated as follows:

Suppose the SDE-WGAN is well-trained, and the generator G∗η can produce the dif-
fusion part with satisfactory. Given a jump diffusion path during the time period
[0, T] with time step ∆t = T

m , which is denoted by
{

XJ(t0), XJ(t1), . . . , XJ(tm)
}

, we
first find the corresponding latent variable Z̃i ∈ Rd of each state XJ(ti) in the latent
space. Z̃i is obtained by an optimization algorithm (see Section 3.5.2) such that X̂(ti) :=
G∗η(Z̃i, ∆t, XJ(ti−1)) is visually most similar to XJ(ti))

2. Second, we use the generator
to reconstruct the jump price, which is formulated by X̂(ti) := G∗η

(
Z̃i, ∆t, X̂(ti−1)

)
. The

residual loss is then given by

LR(ti) = ∥XJ(ti)− X̂(ti)∥1. (5.4.1)

We also think of the critic error, and the critic loss is defined by

L f ∗w(ti) = ∥ f ∗w(XJ(ti))− f ∗w(X̂(ti))∥1. (5.4.2)

Here f ∗w(·) is the output of the critic. In the end, we calculate the anomaly score of each
state which is given by

A(ti) = (1− λ)LR(ti) + λL fw(ti), (5.4.3)

where λ ∈ (0, 1) is a constant. When the anomaly score A(ti) is larger than the thresh-
old α, then a jump happens at ti. In this thesis, α is decided visually based on the
anomaly score pattern.

We formulate the process above as a pseudocode, illustrated in Algorithm 9. Note that
the reconstructed pattern consists of d samples, and we use the mean sample price as
the reconstructed price. Because of this, less reconstruction error, which is associated
with the accuracy of SDE-WGAN, would be involved.

5.4.2 Jump Parameters Estimation
When the jump instances are detected, for example at ti, we can use the difference
between the reconstructed price and the input price to approximate the jump size,
namely

J := XJ(ti)− X̂(ti), (5.4.4)

1Here, the jump J includes the jump direction, that is, J < 0 if the price jumps down.
2XJ(ti) := (XJ(ti), . . . , XJ(ti)) is a vector of length d.

62 Chapter 5. Proposed Framework

Algorithm 9: Jump instances detection.
Input : A jump-diffusion path {XJ(t0), . . . , XJ(tm)}, where

0 = t0 < t1 < · · · < tm = T and ∆t := ti − ti−1 = T
m ; The welled-trained

SDE-WGAN with the generator G∗η and the critic f ∗w; Anomaly score
coefficient λ; Iteration number N.

Output: The jump instances tJ
1, . . . , tJ

K.
for i = 1, . . . , m do

Sample Z from the distribution Pz
for n = 1, . . . , N do

/* Map the jump price to the latent space. */
X̂← G∗η(Z, ∆t, XJ(ti−1))

lR ← ∥X̂− XJ(ti−1)∥1
l f ∗w ← ∥ f ∗w(X̂)− f ∗w(XJ(ti−1))∥1
l ← (1− λ)lR + λl f ∗w
Z← Adam(∇Zl)

end
/* Calculate the anomaly score. */
X̂(ti)← G∗η(Z, ∆t, XJ(ti−1))

LR ← ∥X̂(ti)− XJ(ti−1)∥1
L f ∗w ← ∥ f ∗w(X̂(ti))− f ∗w(XJ(ti−1))∥1
A(ti)← (1− λ)LR + λL f ∗w
/* Save the detected jump instance. */
if A(ti) > α then

tJ
k ← ti

end
end

where {XJ} denotes the jump-diffusion path for detection, X̂(ti) := G∗η
(
Z̃i, ∆t, X̂(ti−1)

)
is the price approximated by the well-trained SDE-WGAN, and X̂ represents the mean
value.

Since the jump instances and the jump sizes are decided, we can use the Maximum
Likelihood Estimation (MLE) method [79] to approximate the parameters of the jump

part, a compound Poisson process
XP (T)

∑
k=1

Jk.

With respect to the Poisson process {XP (t), t ≥ 0}, our goal is to estimate the rate or
the jump intensity λp. The detected jump instances which are denoted by

{
tJ
1, . . . , tJ

K

}
are then related. Based on the path simulation method of the jump-diffusion process,
only one event or jump occurs at each jump instance tJ

k, k = 1, . . . , K, and we have

5.4. Jump Detection Model 63

XP (T) = K. The corresponding likelihood function is then given by

L(λp) =
K

∏
k=1

(
λp (tk − tk−1)

)1 e−λp(tk−tk−1)

1!
, t0 = 0, (5.4.5)

and the log-likelihood function is

l(λp) =
K

∑
k=1

ln λp + ln(tk − tk−1)− λp(tk − tk−1). (5.4.6)

Setting dl(λp)
λp

= 0, we have K
λp
− tK = 0. Hence, the MLE estimator is

λ̂p =
K
tK

. (5.4.7)

Regarding the jumps {Jk, k ≥ 1}, the parameters to estimate and the corresponding
likelihood function are associated with the jump-diffusion model setting. Take the
Merton’s model as an instance, where Jk ∼ N (µJ , σ2

J). We need to estimate µJ and σJ .
The likelihood function is written as

L(µJ , σ2
J ; J1, . . . , JK) =

(
2πσ2

J

)−K/2
exp

(
− 1

2σ2
J

K

∑
k=1

(Jk − µJ)
2

)
, (5.4.8)

and the log-likelihood function is then given by

l(µJ , σ2
J ; J1, . . . , JK) = −

K
2

ln 2π − K
2

ln σ2
J −

1
2σ2

J

K

∑
k=1

(Jk − µJ)
2 . (5.4.9)

Calculating
∂l(µJ ,σ2

J ;J1,...,JK)

∂µJ
= 0 and

∂l(µJ ,σ2
J ;J1,...,JK)

∂σ2
J

= 0, respectively, we obtain the MLE

estimators

µ̂J =
1
K

K

∑
k=1

Jk,

σ̂2
J =

1
K

K

∑
k=1

(Jk − µ̂J)
2 .

(5.4.10)

64 Chapter 5. Proposed Framework

Figure 5.1: An overview of the proposed framework. In the diffusion learning part, the
SDE-WGAN is illustrated, and it is trained to reproduce the diffusion part of a jump-
diffusion path. In the jump detection part, the adapted AnoGAN is displayed, where
the details of finding the corresponding latent variables are eliminated.

5.4. Jump Detection Model 65

(a)

(b)

Figure 5.2: The dataset structure of a 2D-dataset (a) and a 3D dataset (b), where the
arrows show the sampling directions

66 Chapter 5. Proposed Framework

(a)

(b) (c)

Figure 5.3: An example of constructing the GBM datasets with 2D and 3D structure,
respectively. The parameters of the GBM model are the same as Example 2.2.4. (a) A
plot of a random path in both datasets. In the 2D dataset, there is only one sample at
each timestamp; In the 3D dataset with 10 depths, ten random states are sampled at
each timestamp based on the previous state in the 2D dataset. (b) The error conver-
gence plot of the 2D dataset and 3D dataset with 10 depths. (c) The weak and strong
errors of the 3D dataset with respect to various depths.

Figure 5.4: A high-level overview of the cWGAN-GP, where ∇L(G,y) and ∇L(fw,y)
means the gradient descent.

5.4. Jump Detection Model 67

Figure 5.5: A simple example of the cWGAN-GP structure in practice, where both the
generator and critic are MLPs.

68 Chapter 5. Proposed Framework

Figure 5.6: The detailed structure of the SDE-WGAN, where both the generator and
critic are MLPs. In empirical experiments, the time step condition ∆t is also expanded
to a d-dimensional vector (∆t, . . . , ∆t).

Figure 5.7: The detailed jump-diffusion path simulation process in the diffusion learn-
ing part, where the generator G is the well-trained generator in the SDE-WGAN.

Chapter 6

Experiment Results

In this chapter, we show the empirical experiment results of the proposed framework.
We describe the detailed setups of the experiments and introduce several metrics to
evaluate the performance. We also process a brief test regarding the robustness of the
proposed framework.

6.1 Experimental Setup
The experiments are performed using NVIDIA®Tesla®T4 GPU on the online platform
Google Colaboratory1. We use the PyTorch 2, a Python based library for machine learn-
ing, to implement the SDE-WGAN. We also use Numpy 3, Scipy.stats 4, and Seaborn 5

to generate, analyse and visualize statistic results.

6.1.1 Data Setup
SDE-WGAN Training Dataset
We construct a 3D dataset with 10000 paths, 500 steps and 10 depths to train the SDE-
WGAN, which is denoted by

{
X(ti)

j
k

}
. The dataset consists of the samples from the

GBM log-price dynamics, that is

X(ti)
j
k) = X(ti−1)

j
1) + µ∆t + σZ

√
∆t, i = 1, . . . , m, j = 1, . . . , n, and k = 1, . . . , d,

(6.1.1)
where µ = 0.05, σ = 0.2, ∆t = 0.1 and Z ∼ N (0, 1). In order to guarantee that{

X(ti)
j
k

}
contains sufficient samples of different states, we further divide the dataset

1https://research.google.com/colaboratory/faq.html
2https://pytorch.org/
3https://numpy.org/
4https://docs.scipy.org/doc/scipy/reference/stats.html
5https://seaborn.pydata.org/

69

https://research.google.com/colaboratory/faq.html
https://pytorch.org/
https://docs.scipy.org/doc/scipy/reference/stats.html

70 Chapter 6. Experiment Results

Figure 6.1: An example of the training dataset, where the samples have different initial
states.

into five parts, and each part has a different initial state. Precisely,

X(t0)
j
k =

0, j = 1, . . . , 2000
log 10, j = 2001, . . . , 4000
log 100, j = 4001, . . . , 6000
log 1000, j = 6001, . . . , 8000
log 10000, j = 8001, . . . , 10000

,

for k = 1, . . . , d. Figure 6.1 displays an example of the training dataset.

Jump-Diffusion Model
In this thesis, we implement the proposed framework on the Merton’s model, namely,
the jump J ∼ N (µJ , σ2

J). When simulating the jump-diffusion paths, we set the jump
intensity λp = 1, µJ = −0.2 and σJ = 0.5.

6.1.2 SDE-WGAN Setup
Both the generator and critic have similar structures to the neural networks in the SDE-
GAN. Precisely, both of them are multilayer perceptrons. The SDE-WGAN is trained
following Algorithm 8, and a learning rate scheduler is resorted to increasing the con-
vergence speed and learning accuracy. The implementation details are illustrated in
Appendix B.

6.2 Evaluation Metrics
In this section, we describe several metrics to evaluate the performance of the pro-
posed framework. In the diffusion learning part, we focus on the simulation per-
formance of the SDE-WGAN. We introduce nonparametric statistics to measure the
similarity between the approximated and the exact distributions, where the approxi-
mated distribution is learned by the SDE-WGAN. Inspired by [15], we apply the Kol-
mogorov–Smirnov test (KS test) [80] and the 1-Wasserstein distance to assess the sim-
ulation. In the jump detection part, we would like to evaluate the accuracy of the
detection. As each jump-diffusion state XJ(ti) is classified as a normal sample (nega-
tive sample) or an anomaly (positive sample), we can compute the confusion matrix to

6.2. Evaluation Metrics 71

evaluate the accuracy of the classification.

6.2.1 Empirical Probability Distribution
The SDE-WGAN does not output the formula of the conditional distribution directly,
however, we can calculate the empirical cumulative distribution function (ECDF) and
estimate the probability density [81] according to the generated samples.

Definition 6.2.1 (Empirical cumulative distribution function). Let (X1, . . . , Xn) be i.i.d
real random variables with the common cumulative distribution function F(x), then, the ECDF
is defined as

F̂n(x) =
1
n

n

∑
i=1

1Xi≤x(x), (6.2.1)

where 1 is the indicator function.

Remark 6.2.2. F̂n(x) is an unbiased estimator for F(x) [81].

The empirical probability density function (EPDF) can also be estimated by a nonpara-
metric method, called kernel density estimation (KDE). The kernel density estimate is
closely linked to the histogram, but can be smooth or continuous.

Definition 6.2.3. Let (X1, . . . , Xn) be i.i.d real random variables sampled from a univariate
distribution with an unknown density f at any given point x. The kernel density estimator is
defined as

f̂h(x) =
1

nh

n

∑
i=1

K
(

x− Xi

h

)
, (6.2.2)

where K is a non-negative function called the kernel and h > 0 is a smoothing parameter called
the bandwith.

In practice, both the ECDF and EPDF of the generated samples are easy to implement,
and we can visually compare the estimators with the exact functions.

6.2.2 KS Test and 1-Wasserstein Distance
Suppose the generator of the SDE-WGAN outputs N samples {Xi}N

i=1. When the ECDF
of the generator output is estimated which is denoted by F̂N, we can compare it to the
exact cumulative distribution function F. The formulas of two comparison method,
the KS test and the 1-Wasserstein distance, is given as follows:

The 2-sided 1-sample KS metric is written as

KS = max
i∈{1,...,N}

|FN(Xi)− F(Xi)|. (6.2.3)

The 1-Wasserstein distance is expressed by

W1 =
∫

R
|FN(x)− F(x)|dx. (6.2.4)

Both the metrics can be efficiently calculated by applying the Scipy.stats package. More-
over, we can obtain the p-value of the KS test, where the null hypothesis is that the two

72 Chapter 6. Experiment Results

distributions F̂N and F are identical.

6.2.3 Classification Performance
The jump detection results can be divided into four groups: true positive (TP), true
negative (TN), false positive (FP) and false negative (FN). The true positive presents
that the detected jumps are the actual jump in the jump-diffusion path; The true neg-
ative means the classified normal data is also a non-jump state in the detected path;
The false positive and the false negative indicate the wrong classification, that is, the
situation that a normal data is labeled as a jump or a jump is not detected respectively.
Counting the four kinds of results leads to a so-called confusion matrix, which is a table
layout that is specifically used in the statistic classification problem [82], see Table 6.1.

Table 6.1: The confusion matrix
Predicted results

Total (P+N) Negative (N) Positive (P)

Actual results Negative (N) True Negative (TN) False Positive (FP)
Positive (P) False Negative (FN) True Positive (TP)

Furthermore, several metrics are formulated to analysis the classification performance:

Accuracy =
TP + TN

P + N
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 score = 2× Precision × Recall
Precision + Recall

.

(6.2.5)

In an imbalanced test dataset, for example, the jump-diffusion path, the accuracy could
be misleading and insufficient to evaluate the performance. The precision and the
recall are then calculated as complements, where the precision indicates the reliability
of the jump detection model in identifying the jumps, and the recall reflects the model’s
ability to detect the jumps. The F1 score combines the precision and the recall, giving
a general assessment of the model performance.

6.3 Results
6.3.1 SDE-WGAN Performance
The SDE-WGAN is the key point of the proposed framework, and its performance will
directly influence the results of the framework. Unlike the SDE-GAN, the SDE-WGAN
is more easier to train and never traps in the failure modes in our experiments.

Figure 6.2 presents the training process of the SDE-WGAN on the constructed 3D train-
ing dataset, where we use the KS metric and the 1-Wasserstein distance to measure the
similarity between the generated samples and the exact GBM samples. We can say that
the SDE-WGAN’s training is sufficient.

The test dataset is constructed by re-sampling the training dataset, and we fix the initial

6.3. Results 73

(a) (b)

(c) (d)

Figure 6.2: The training process of the SDE-WGAN, where the training epochs = 100
and batch size = 100. Each mini-batch training is one iteration. (a) The generator
loss of each batch during the training; (b) The critic losses; (c) The KS metric between
the generator outputs and the real data; (d) The 1-Wasserstein distance between the
generator outputs and the real data.

states {X(t0)
j
k} being log 100. We use the well-trained SDE-WGAN to perform on the

test dataset: at each timestamp ti−1, the SDE-WGAN outputs the states X̂(ti) based on
the time step ∆t and the exact GBM samples X(ti−1), that is,

X̂(ti) = G∗η(Z, ∆t, X(ti−1)), i = 1, . . . , m (6.3.1)

where G∗η is the well-trained generator.

We visualize the performance of the SDE-WGAN by plotting the ECDF and the EPDF
of the approximated distribution PX̂(ti)|X(ti−1)

, compared to the exact results of PX(ti)|X(ti−1)
.

Figure 6.3 shows the empirical results of the conditional distribution PX̂(t1)|X(t0)
. Con-

trary to Figure 3.5, the SDE-WGAN seems cannot approximate the conditional dis-
tribution well. However, it presents excellent results regarding the conditional dis-
tribution PX̂(tm)|X(tm−1)

, see Figure 6.4. The KS metric and the 1-Wasserstein distance
regarding the first and the last timestamps are shown in Table 6.2.

We further explore the approximation of each timestamp t1, . . . , tm by calculating the
KS metric and the 1-Wasserstein distance (see Figure 6.5), we conclude that except the
first few timestamps, the SDE-WGAN can approximate the conditional distribution
PX(ti)|X(ti−1)

with satisfactory.

74 Chapter 6. Experiment Results

(a) (b)

Figure 6.3: The ECDF and the EPDF plots of the conditional distribution PX̂(t1)|X(t0)
,

where X(t0) = log 100 is fixed.

(a) (b)

Figure 6.4: The KS metric and the 1-Wasserstein distance between PX̂(ti)|X(ti−1)
and

PX(ti)|X(ti−1)
, for i = 1, . . . , m.

Table 6.2: The metrics of the comparison between the exact and the approximated
conditional distribution at the first and the last timestamps, respectively.

Timestamp KS metric p-value 1-Wasserstein
t1 0.091510 0.000000 0.021792
tm 0.003110 0.717617 0.006066

The results are reasonable because of the 3D dataset construction. In the training
dataset, only one-fifth of the paths start at log 100, while in the test dataset, all paths
have the initial state log 100. The insufficient training samples lead to a bias on approx-
imation. Such influence is reduced when the previous states are various.

All in all, the SDE-WGAN can learn the diffusion part with excellent performance.

6.3.2 Jump-Diffusion Path Simulation
When the diffusion part is simulated by the SDE-WGAN, we add the jump part un-
der Merton’s model to simulate jump-diffusion paths, following (5.3.5). We display a
random simulated jump-diffusion path in Figure 6.6. The simulation is not path-wise

6.3. Results 75

(a) (b)

Figure 6.5: The ECDF and the EPDF plots of the conditional distribution PX̂(tm)|X(tm−1)
,

that is, the conditional distribution at the last timestamp.

compared to the exact path, since the SDE-WGAN can only provide the weak solutions
of the SDEs [15], that is, the SDE-WGAN cannot provide the path-wise diffusion part.
We further calculate the weak error and the strong error based on a dataset consists
of 10000 jump-diffusion paths with 500 timestamps, and the results are 0.279908 and
0.823819 respectively.

Figure 6.6: A jump-diffusion path simulated by following (5.3.5).

The experiment shows a success in practicing the diffusion learning part of the pro-
posed framework. We can also conclude that the SDE-WGAN is able to simulate jump-
diffusion paths.

6.3.3 Jump Detection
In this part, we shows the performance in practicing the jump detection part of the
proposed framework. The jump-diffusion path {XJ(ti)} to be detected is a path with
505 timestamps, where the initial state XJ(t0) = log 100, and other parameters are
the same as the ones mentioned above. In case of the prices being extreme, we reset
XJ(ti) = log 100 after every 100 steps. Essentially, it consists of five paths with 100
time steps, see Figure 6.7. Since we assume that no jump occurs at the initial states, we
eliminate the initial states and detect the jump occurrence in the rest 500 timestamps.

Following Algorithm 9 with anomaly score coefficient λ = 0.4, the anomaly score of

76 Chapter 6. Experiment Results

Figure 6.7: The jump-diffusion paths to be detected.

each state is illustrated in Figure 6.8. We roughly set the threshold α = 0.2, and obtain
the confusion matrix of the detection results, see Table 6.3. With this threshold, there
are 33 actual jumps truly detected, and 13 actual jumps are recognized as the normal
data. In addition, Table 6.4 shows the evaluations with respect to the detection results.
Overall, we can say that the jump detection method performs well regarding this jump-
diffusion path.

Figure 6.8: The anomaly scores of the jump-diffusion path.

Table 6.3: The confusion matrix of the jump detection results
Normal data Jumps

Normal data 454 0
Jumps 13 33

Table 6.4: The evaluation metrics of the jump detection results.
Accuracy Recall Precision F1 score

97.40% 97.22% 100% 98.59

Based on the 33 detected jumps, we apply the MLE method to estimate the jump in-
tensity λp and the Merton parameters µJ and σJ . When estimate the jump intensity, we

6.4. Robustness 77

divide the jump-diffusion path into five parts, and each part has 100 timestamps. The
estimated jump intensity is the average of the estimations from the five parts. Table 6.5
displays the estimated results.

Table 6.5: The results of the estimated jump parameter.
λp µJ σJ

Estimated results 0.715834 -0.324300 0.638275
Exact results 1.0 -0.2 0.5

To visualize the performance of the estimation, we use the estimated parameters to
generate jump-diffusion samples, and Figure 6.9 shows a comparison regarding the
empirical distributions. In conclusion, the estimated distribution is almost fit the exact
one generally, and the proposed jump detection model is able to estimate the jump
parameters.

Figure 6.9: The histogram of the jump-diffusion samples generated by the estimated
parameters, comparing with the empirical distribution generated by the actual param-
eters.

6.4 Robustness
The experiments above show a successful application of the proposed framework.
However, we are interested in the robustness of the framework. In this section, we
focus on two problems: 1) When the parameters change, can the SDE-WGAN still
learn the conditional distribution? 2) When the jump parameters change, can the jump
detection model still recognize the occurrence of the jumps?

Regarding the robustness of the SDE-WGAN, we train the model on various ∆t, µ and
σ, and calculate the KS metric and the 1-Wasserstein distance between the generated
conditional distribution PX̂(tm)|X(tm−1)

and the exact distribution PX(tm)|X(tm−1)
. The re-

sults are illustrated in Table 6.6. We can summarize that the SDE-WGAN is robust and
can still approximate the conditional distribution when the parameters change.

Regarding the robustness of the jump detection model, we apply the jump detection
model to different jump-diffusion paths, and the results are summarized in Table 6.7.

78 Chapter 6. Experiment Results

Table 6.6: The KS test and the 1-Wasserstein distance between PX̂(tm)|X(tm−1)
and

PX(tm)|X(tm−1)
with respect to different diffusion parameters.

∆t µ σ KS KS p-value W1
1.0 0.05 0.2 0.002700 0.858293 0.014771
0.5 0.05 0.2 0.002310 0.951809 0.010555

0.01 0.05 0.2 0.005040 0.157102 0.004024
0.001 0.05 0.2 0.003090 0.725023 0.000633
0.1 0.1 0.2 0.003510 0.567733 0.004405
0.1 -1.0 0.2 0.003190 0.687738 0.005754
0.1 0.05 1.0 0.002830 0.816995 0.025889

Table 6.7: The jump detection results with respect to different jump parameters.
λp µJ σJ Confusion matrix F1 score

Exact 1 -1.0 0.5
(

447 3
3 47

)
99.44Estimated 1.099436 -0.979969 0.527999

Exact 1 0.0 0.5
(

444 0
21 35

)
97.69Estimated 0.824069 0.009215 0.651517

Exact 1 0.0 0.2
(

432 3
44 21

)
94.84Estimated 0.546952 -0.034642 0.328174

Exact 1 1.0 0.5
(

440 0
6 54

)
99.32Estimated 1.328758 1.192697 0.426563

Here, we fix ∆t = 0.1, µ = 0.2 and σ = 0.05, and repeat the method with respect to
different jump parameters.

When the jump magnitude is obvious, namely is easy to recognize visually, then the
jump detection model can detect the jumps splendidly. However, when the jump-
diffusion path increases to an extreme price, for example, the log price is larger than
10, then the accuracy of the MLE method is not enough, which means the estimation
error leads to an obvious bias in simulation, see Figure 6.10. On the other hand, when
the jump magnitude can be covered by the diffusion (see Figure 6.11), then the jump
detection model fails to recognize jumps.

6.4. Robustness 79

(a) (b)

Figure 6.10: The detected jump-diffusion paths (left) and the histogram (right) of the
jump-diffusion samples generated by the estimated parameters, where the exact pa-
rameters are µJ = 1.0 and σ = 0.5

Figure 6.11: The jump-diffusion paths to be detected, where µJ = 0 and σ = 0.2.

Chapter 7

Discussion and Conclusions

7.1 Discussion
7.1.1 The 3D Dataset
We enjoy the speedup because the 3D dataset: The SDE-WGAN trains about 10 min-
utes on the 3D dataset, but it takes around 30 minutes to train on the 2D dataset, where
the amount of the training samples are the same. however, it raises problems when
applying the proposed framework to the real market data. Since we cannot directly
obtain the 3D dataset, we can estimate the diffusion parameters µ and σ to construct
a 3D dataset artificially. However, this approach introduces error in simulation and
obeys the intention of using the SDE-WGAN. Maybe using the 2D dataset is an alter-
native way when applying the framework to the empirical market data.

7.1.2 Jump Detection: BiGAN
In the jump detection model, we follow the methodology of the AnoGAN to recon-
struct the jumps. Instead of using the optimization method to find the "inverse image"
of the jumps in the latent space, the methodology of the BiGAN [58] can be applied,
where the encoder is introduced to find the "inverse map" from the generated space to
the latent space. The AnoGAN algorithm could be replaced by the BiGAN to recon-
struct the jumps, as the BiGAN shows better results among the experiments in [58].

7.1.3 Anomaly Score Threshold
In the jump detection model, the anomaly score threshold is decided visually, which
is inaccurate and unreliable. [51] proposes an algorithm that automatically selects the
anomaly threshold. The algorithm has theoretical support from the Extreme Value
Theory, leading to a more reliable threshold.

7.1.4 SDE-GAN and SDE-WGAN
The authors in [15] mention that no GAN failure modes occur in the experiments. This
is against to our experiments. The reason may be the difference in implementing the
GAN model in practice, even though we follow the same methodology. Whatever, the
Wasserstein GAN is the forefront technique and it is better to have a stable model when
extending to other SDEs.

80

7.2. Conclusions 81

7.2 Conclusions
In this thesis, we proposed a general framework about the jump-diffusion path simu-
lation, where the diffusion part is simulated by an conditional Wasserstein GAN with
gradient penalty and the jump part involves an anomaly detection method. The frame-
work consists of two parts: the diffusion learning part and the jump detection part. The
diffusion learning part focuses on the simulation of the diffusion part by using a GAN
model, which is inspired the methodology proposed in [15] (we call it the SDE-GAN).
We adapt and improve the SDE-GAN by introducing the Wasserstein loss and the gra-
dient penalty constraint, and the so-called SDE-WGAN is stable and never raises fail-
ure modes. The jump detection part is designed to detect the jumps and estimate the
jump parameters, the jump part is then simulated based on the sufficient estimated
values. We view the jumps are the anomalies in the jump-diffusion paths while the
non-jump prices are the normal data. We then introduce a GAN-based anomaly de-
tection technique to recognize jumps, where the SDE-WGAN is well-combined. We
perform the proposed framework on the artificial data, and obtain promising results.
However, the framework may fail when the jump magnitude is small. In this work,
we only take the Merton’s model as an instance. However, the proposed framework
can be easily adapted to simulate various jump-diffusion models, as long as we can
estimate the jump parameters based on the detected jump instances.

List of Figures

1.1 The simple framework for jump-diffusion model simulation. 3
1.2 The proposed GAN-based framework for jump-diffusion model simula-

tion. 4

2.1 Discrete paths for a Wiener process (left) and a Poisson process (right),
with ∆t = 0.05 and λp = 1. 8

2.2 A realization of a GBM process, with S0 = 100, µ = 0.05, σ = 0.2, ∆t =
0.02 . 8

2.3 Density of S(t) and log S(t) in (2.1.4) for varying σ, with µ = 0.05. 10
2.4 The histograms of the normalized log returns of S&P 500 index com-

pared with the standard normal distributionN (0, 1) (Left: daily returns
from Jan 2, 1980 to Dec 31, 2005; Right: 5-mimute returns from Nov 1,
2022 to Nov 30, 2022). 11

2.5 Family of jump processes. 12
2.6 (a) and (b) present the paths of X(t) and S(t) from the MJD model; (c)

and (d) present the paths of X(t) and S(t) from the KJD model. 15
2.7 (a) and (b) illustrate the paths generated by the Euler scheme and the

Milstein scheme respectively, compared with the exact solution given in
(2.2.11); (c) and (d) present strong and weak convergence of both ap-
proximation schemes. 18

2.8 The strong error and weak error of simulating a 50-step Poisson process
with λp = 1 by using Bernoulli random variables, compared to using
Poisson random variables. 19

2.9 Ten simulated log-price paths of the jump-diffusion processes. Left: the
dynamics follow the MJD model. Right: the dynamics follow the KJD
model. 21

2.10 The weak and strong error convergence, compared to the exact solution
where the jump instances are determined by Poisson random variables.
Left: the convergence plot of the MJD model. Right: the convergence
plot of the KJD model. 22

2.11 A general structure of a fully connected feedforward artificial neural net-
work. 23

2.12 A detailed structure of a fully connected feedforward artificial neural
network, where wl

ij is the weight of an edge, bl
i is the bias of a node and

hl is the activation function of a layer. 24

82

LIST OF FIGURES 83

2.13 Two illustrations of anomalies. Left: A1, A2 are anomalies in a 2-dimensional
dataset, while N1 and N2 are the regions of normal data; Right: The plot
of S&P 500 returns between 1985 and 2005, where the red points are
anomalies with extreme returns. 28

3.1 A high-level framework of GAN’s training, where G and D are generally
two independent artificial neural networks. 32

3.2 A high-level architecture of conditional GAN. 35
3.3 Illustration of path simulation [15]. 39
3.4 An overview of the methodology proposed in [15]. 40
3.5 The conditional distribution PS(tk)|S(tk−1)

learned by SDE-GAN, compared
with the exact solution. Left: the empirical probability density distribu-
tion function (EPDF) plot of PS(tk)|S(tk−1)

; Right: the empirical cumula-
tive distribution function (ECDF) plot. Here, we set S0 = 100, ∆t = 0.1,
µ = 0.05 and σ = 0.2. 41

3.6 Four random paths generated by SDE-GAN, exact solution, Euler and
Milstein schemes respectively, where S(t0) = 0, ∆t = 0.1, T = 4, µ =
0.05 and σ = 0.2. 41

3.7 The methodology of AnoGAN, where f (·) is the output of an interme-
diate layer of the discriminator. 43

3.8 The Training process of SDE-GAN when SDE-GAN mode collapse. (a)
The KDE plot of SDE-GAN generator output every five epochs; (b) The
ECDF plot of generator output every five epochs; (c) The JS divergence
between the generator output and the exact solution every network it-
eration; (d) The losses of generator and discriminator during training.
. 44

3.9 JS divergence between distributions Pn and Pdata (the solid red line),
where Pdata ∼ N (3, 0.52), Pn ∼ N (µ, 0.52) for µ ∈ [3, 150], in particu-
lar, P1 ∼ N (50, 0.52), P2 ∼ N (80, 0.52) and P3 ∼ N (110, 0.52). 45

3.10 The Training process of SDE-GAN when vanishing gradients occurs. (a)
The KDE plot of SDE-GAN generator output every five epochs; (b) The
ECDF plot of generator output every five epochs; (c) The JS divergence
between the generator output and the exact solution every network it-
eration; (d) The losses of generator and discriminator during training.
. 45

3.11 The Training process of SDE-GAN when SDE-GAN fails to converge.
Left: The KDE plot of SDE-GAN generator output every five epochs;
Right: The losses of generator and discriminator during training. 46

4.1 An interpretation of earth’s mover distance or 1-Wasserstein distance. . . 48
4.2 An example of the 1-Wasserstein distance in [75]. Here, the figure shows

a step-by-step plan of matching two histograms P and Q, and the 1-
Wasserstein distance between P and Q is 5. 48

4.3 A high-level overview of WGAN. 50
4.4 Reuse Figure 3.9 by adding the 1-Wasserstein distance between Pn and

Pdata (the solid blue line). 51

84 LIST OF FIGURES

5.1 An overview of the proposed framework. In the diffusion learning part,
the SDE-WGAN is illustrated, and it is trained to reproduce the diffusion
part of a jump-diffusion path. In the jump detection part, the adapted
AnoGAN is displayed, where the details of finding the corresponding
latent variables are eliminated. 64

5.2 The dataset structure of a 2D-dataset (a) and a 3D dataset (b), where the
arrows show the sampling directions . 65

5.3 An example of constructing the GBM datasets with 2D and 3D structure,
respectively. The parameters of the GBM model are the same as Exam-
ple 2.2.4. (a) A plot of a random path in both datasets. In the 2D dataset,
there is only one sample at each timestamp; In the 3D dataset with 10
depths, ten random states are sampled at each timestamp based on the
previous state in the 2D dataset. (b) The error convergence plot of the 2D
dataset and 3D dataset with 10 depths. (c) The weak and strong errors
of the 3D dataset with respect to various depths. 66

5.4 A high-level overview of the cWGAN-GP, where ∇L(G,y) and ∇L(fw,y)
means the gradient descent. 66

5.5 A simple example of the cWGAN-GP structure in practice, where both
the generator and critic are MLPs. 67

5.6 The detailed structure of the SDE-WGAN, where both the generator and
critic are MLPs. In empirical experiments, the time step condition ∆t is
also expanded to a d-dimensional vector (∆t, . . . , ∆t). 68

5.7 The detailed jump-diffusion path simulation process in the diffusion
learning part, where the generator G is the well-trained generator in the
SDE-WGAN. 68

6.1 An example of the training dataset, where the samples have different
initial states. 70

6.2 The training process of the SDE-WGAN, where the training epochs =
100 and batch size = 100. Each mini-batch training is one iteration. (a)
The generator loss of each batch during the training; (b) The critic losses;
(c) The KS metric between the generator outputs and the real data; (d)
The 1-Wasserstein distance between the generator outputs and the real
data. 73

6.3 The ECDF and the EPDF plots of the conditional distribution PX̂(t1)|X(t0)
,

where X(t0) = log 100 is fixed. 74
6.4 The KS metric and the 1-Wasserstein distance between PX̂(ti)|X(ti−1)

and
PX(ti)|X(ti−1)

, for i = 1, . . . , m. 74
6.5 The ECDF and the EPDF plots of the conditional distribution PX̂(tm)|X(tm−1)

,
that is, the conditional distribution at the last timestamp. 75

6.6 A jump-diffusion path simulated by following (5.3.5). 75
6.7 The jump-diffusion paths to be detected. 76
6.8 The anomaly scores of the jump-diffusion path. 76
6.9 The histogram of the jump-diffusion samples generated by the estimated

parameters, comparing with the empirical distribution generated by the
actual parameters. 77

LIST OF FIGURES 85

6.10 The detected jump-diffusion paths (left) and the histogram (right) of the
jump-diffusion samples generated by the estimated parameters, where
the exact parameters are µJ = 1.0 and σ = 0.5 79

6.11 The jump-diffusion paths to be detected, where µJ = 0 and σ = 0.2. . . 79

B.1 The results of the hyperparameter tuning. 98

List of Tables

2.1 Itô multiplication table for Wiener process. 10

6.1 The confusion matrix . 72
6.2 The metrics of the comparison between the exact and the approximated

conditional distribution at the first and the last timestamps, respectively. 74
6.3 The confusion matrix of the jump detection results 76
6.4 The evaluation metrics of the jump detection results. 76
6.5 The results of the estimated jump parameter. 77
6.6 The KS test and the 1-Wasserstein distance between PX̂(tm)|X(tm−1)

and
PX(tm)|X(tm−1)

with respect to different diffusion parameters. 78
6.7 The jump detection results with respect to different jump parameters. . 78

A.1 Itô multiplication table for Poisson process. 96

B.1 Generator architecture . 97
B.2 Critic architecture . 97

86

Bibliography

[1] Elton, E., Gruber, M., Brown, S. & Goetzmann, W. Modern Portfolio Theory and
Investment Analysis (Wiley, 2014). URL https://books.google.nl/books?id=
181CEAAAQBAJ.

[2] Black, F. & Scholes, M. The pricing of options and corporate liabilities. Journal of
Political Economy 81, 637–654 (1973).

[3] Kumar, P., Mallieswari, R. et al. Predicting stock market price movement using
machine learning technique: Evidence from india. In 2022 Interdisciplinary Re-
search in Technology and Management (IRTM), 1–7 (IEEE, 2022).

[4] Reddy, K. & Clinton, V. Simulating stock prices using geometric brownian motion:
Evidence from australian companies. Australasian Accounting, Business and Finance
Journal 10, 23–47 (2016).

[5] Kou, S. G. Jump-diffusion models for asset pricing in financial engineering. Hand-
books in operations research and management science 15, 73–116 (2007).

[6] Sepp, A. & Skachkov, I. Option pricing with jumps. Wilmott magazine 50–58 (2003).

[7] Bass, R. F. Stochastic differential equations with jumps. Probability Surveys 1, 1 –
19 (2004). URL https://doi.org/10.1214/154957804100000015.

[8] Ramezani, C. A. & Zeng, Y. Maximum likelihood estimation of the double expo-
nential jump-diffusion process. Annals of Finance 3, 487–507 (2007).

[9] Kou, S. G. A jump-diffusion model for option pricing. Management science 48,
1086–1101 (2002).

[10] Tang, F. Merton jump-diffusion modeling of stock price data (2018).

[11] Brandimarte, P. Handbook in Monte Carlo simulation: applications in financial engi-
neering, risk management, and economics (John Wiley & Sons, 2014).

[12] Glasserman, P. Monte Carlo methods in financial engineering, vol. 53 (Springer, 2004).

[13] Bally, V. & Talay, D. The law of the euler scheme for stochastic differential equa-
tions. Probability theory and related fields 104, 43–60 (1996).

[14] Rouah, F. D. Euler and milstein discretization. Documento de trabajo, Sapient Global
Markets, Estados Unidos. Recuperado de www. frouah. com (2011).

87

https://books.google.nl/books?id=181CEAAAQBAJ
https://books.google.nl/books?id=181CEAAAQBAJ
https://doi.org/10.1214/154957804100000015

88 BIBLIOGRAPHY

[15] van Rhijn, J., Oosterlee, C. W., Grzelak, L. A. & Liu, S. Monte carlo simulation of
sdes using gans. arXiv preprint arXiv:2104.01437 (2021).

[16] Berner, J., Grohs, P. & Jentzen, A. Analysis of the generalization error: Empirical
risk minimization over deep artificial neural networks overcomes the curse of di-
mensionality in the numerical approximation of black–scholes partial differential
equations. SIAM Journal on Mathematics of Data Science 2, 631–657 (2020).

[17] Broadie, M. & Kaya, Ö. Exact simulation of stochastic volatility and other affine
jump diffusion processes. Operations research 54, 217–231 (2006).

[18] Seydel, R. & Seydel, R. Tools for computational finance, vol. 3 (Springer, 2006).

[19] Merton, R. C. Option pricing when underlying stock returns are discontinuous.
Journal of financial economics 3, 125–144 (1976).

[20] Ramezani, C. A. & Zeng, Y. Maximum likelihood estimation of asymmetric jump-
diffusion processes: Application to security prices. Available at SSRN 606361
(1998).

[21] Hanson, F. B., Westman, J. J. & Zhu, Z. Market parameters for stock jump-
diffusion models. In Mathematics of Finance: Proceedings of an AMS-IMS-SIAM
Joint Summer Research Conference on Mathematics of Finance, 155 (2004).

[22] Zenati, H., Romain, M., Foo, C.-S., Lecouat, B. & Chandrasekhar, V. Adversarially
learned anomaly detection. In 2018 IEEE International conference on data mining
(ICDM), 727–736 (IEEE, 2018).

[23] Bacry, E., Mastromatteo, I. & Muzy, J.-F. Hawkes processes in finance. Market
Microstructure and Liquidity 1, 1550005 (2015).

[24] Lamperti, J. Stochastic processes: a survey of the mathematical theory, vol. 23 (Springer
Science & Business Media, 2012).

[25] Oosterlee, C. W. & Grzelak, L. A. Mathematical modeling and computation in finance:
with exercises and Python and MATLAB computer codes (World Scientific, 2019).

[26] Klebaner, F. C. Introduction to stochastic calculus with applications (World Scientific
Publishing Company, 2012).

[27] Brătian, V., Acu, A.-M., Mihaiu, D. M. & S, erban, R.-A. Geometric brownian mo-
tion (gbm) of stock indexes and financial market uncertainty in the context of
non-crisis and financial crisis scenarios. Mathematics 10, 309 (2022).

[28] Matsuda, K. Introduction to merton jump diffusion model. Department of Eco-
nomics, The Graduate Center, The City University of New York, New York (2004).

[29] Hawkes, A. G. Hawkes jump-diffusions and finance: a brief history and review.
The European Journal of Finance 28, 627–641 (2022).

[30] Runggaldier, W. J. Jump-diffusion models. In Handbook of heavy tailed distributions
in finance, 169–209 (Elsevier, 2003).

BIBLIOGRAPHY 89

[31] Kroese, D. P., Brereton, T., Taimre, T. & Botev, Z. I. Why the monte carlo method
is so important today. Wiley Interdisciplinary Reviews: Computational Statistics 6,
386–392 (2014).

[32] Press, W. H. & Farrar, G. R. Recursive stratified sampling for multidimensional
monte carlo integration. Computers in Physics 4, 190–195 (1990).

[33] Kloeden, P. E., Platen, E. & Schurz, H. Numerical solution of SDE through computer
experiments (Springer Science & Business Media, 2012).

[34] McQuighan, P. Simulating the poisson process. Department of Mathematics-
University of Chicago 23 (2010).

[35] Glasserman, P. & Merener, N. Convergence of a discretization scheme for jump-
diffusion processes with state–dependent intensities. Proceedings of the Royal Soci-
ety of London. Series A: Mathematical, Physical and Engineering Sciences 460, 111–127
(2004).

[36] Bishop, C. M. & Nasrabadi, N. M. Pattern recognition and machine learning, vol. 4
(Springer, 2006).

[37] Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann ma-
chines. In Icml (2010).

[38] Maas, A. L., Hannun, A. Y., Ng, A. Y. et al. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, vol. 30, 3 (Atlanta, Georgia, USA, 2013).

[39] Stone, M. H. The generalized weierstrass approximation theorem. Mathematics
Magazine 21, 237–254 (1948).

[40] Csáji, B. C. et al. Approximation with artificial neural networks. Faculty of Sciences,
Etvs Lornd University, Hungary 24, 7 (2001).

[41] Lu, Z., Pu, H., Wang, F., Hu, Z. & Wang, L. The expressive power of neural
networks: A view from the width. Advances in neural information processing systems
30 (2017).

[42] Yu, X., Efe, M. O. & Kaynak, O. A general backpropagation algorithm for feedfor-
ward neural networks learning. IEEE transactions on neural networks 13, 251–254
(2002).

[43] Bottou, L. Large-scale machine learning with stochastic gradient descent. In Pro-
ceedings of COMPSTAT’2010, 177–186 (Springer, 2010).

[44] Hinton, G., Srivastava, N. & Swersky, K. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Cited on 14, 2 (2012).

[45] Igel, C. & Hüsken, M. Improving the rprop learning algorithm. In Proceedings of
the second international ICSC symposium on neural computation (NC 2000), vol. 2000,
115–121 (2000).

90 BIBLIOGRAPHY

[46] Duchi, J., Hazan, E. & Singer, Y. Adaptive subgradient methods for online learn-
ing and stochastic optimization. Journal of machine learning research 12 (2011).

[47] Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2014). 1412.
6980.

[48] Chandola, V., Banerjee, A. & Kumar, V. Anomaly detection: A survey. ACM
computing surveys (CSUR) 41, 1–58 (2009).

[49] Maes, S., Tuyls, K., Vanschoenwinkel, B. & Manderick, B. Credit card fraud de-
tection using bayesian and neural networks. In Proceedings of the 1st international
naiso congress on neuro fuzzy technologies, vol. 261, 270 (2002).

[50] Siddiqui, M. A. et al. Detecting cyber attacks using anomaly detection with expla-
nations and expert feedback. In ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2872–2876 (IEEE, 2019).

[51] Liu, S. et al. Time series anomaly detection with adversarial reconstruction net-
works. IEEE Transactions on Knowledge and Data Engineering (2022).

[52] Carreño, A., Inza, I. & Lozano, J. A. Analyzing rare event, anomaly, novelty and
outlier detection terms under the supervised classification framework. Artificial
Intelligence Review 53, 3575–3594 (2020).

[53] Mehrotra, K. G., Mohan, C. K. & Huang, H. Anomaly detection principles and algo-
rithms, vol. 1 (Springer, 2017).

[54] Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U. & Langs, G. Un-
supervised anomaly detection with generative adversarial networks to guide
marker discovery. In International conference on information processing in medical
imaging, 146–157 (Springer, 2017).

[55] Zenati, H., Foo, C. S., Lecouat, B., Manek, G. & Chandrasekhar, V. R. Efficient
gan-based anomaly detection. arXiv preprint arXiv:1802.06222 (2018).

[56] Di Mattia, F., Galeone, P., De Simoni, M. & Ghelfi, E. A survey on gans for anomaly
detection. arXiv preprint arXiv:1906.11632 (2019).

[57] Goodfellow Ian, J. et al. Generative adversarial nets. In Proceedings of the 27th
international conference on neural information processing systems, vol. 2, 2672–2680
(2014).

[58] Donahue, J., Krähenbühl, P. & Darrell, T. Adversarial feature learning. arXiv
preprint arXiv:1605.09782 (2016).

[59] Arjovsky, M., Chintala, S. & Bottou, L. Wasserstein generative adversarial net-
works. In International conference on machine learning, 214–223 (PMLR, 2017).

[60] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. C. Improved
training of wasserstein gans. Advances in neural information processing systems 30
(2017).

1412.6980
1412.6980

BIBLIOGRAPHY 91

[61] Eckerli, F. & Osterrieder, J. Generative adversarial networks in finance: an
overview. arXiv preprint arXiv:2106.06364 (2021).

[62] Goodfellow, I. et al. Generative adversarial networks. Communications of the ACM
63, 139–144 (2020).

[63] Grohs, P., Hornung, F., Jentzen, A. & Von Wurstemberger, P. A proof that ar-
tificial neural networks overcome the curse of dimensionality in the numeri-
cal approximation of black-scholes partial differential equations. arXiv preprint
arXiv:1809.02362 (2018).

[64] Metz, L., Poole, B., Pfau, D. & Sohl-Dickstein, J. Unrolled generative adversarial
networks. arXiv preprint arXiv:1611.02163 (2016).

[65] Farnia, F. & Ozdaglar, A. Do gans always have nash equilibria? In International
Conference on Machine Learning, 3029–3039 (PMLR, 2020).

[66] Mannor, S., Peleg, D. & Rubinstein, R. The cross entropy method for classifica-
tion. In Proceedings of the 22nd international conference on Machine learning, 561–568
(2005).

[67] Biau, G., Cadre, B., Sangnier, M. & Tanielian, U. Some theoretical properties of
gans. arXiv preprint arXiv:1803.07819 (2018).

[68] Kullback, S. & Leibler, R. A. On information and sufficiency. The annals of mathe-
matical statistics 22, 79–86 (1951).

[69] Lin, J. Divergence measures based on the shannon entropy. IEEE Transactions on
Information theory 37, 145–151 (1991).

[70] Mirza, M. & Osindero, S. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014).

[71] Goodfellow, I. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160 (2016).

[72] Senior, A., Heigold, G., Ranzato, M. & Yang, K. An empirical study of learning
rates in deep neural networks for speech recognition. In 2013 IEEE international
conference on acoustics, speech and signal processing, 6724–6728 (IEEE, 2013).

[73] Peyré, G., Cuturi, M. et al. Computational optimal transport. Center for Research in
Economics and Statistics Working Papers (2017).

[74] Levina, E. & Bickel, P. The earth mover’s distance is the mallows distance: Some
insights from statistics. In Proceedings Eighth IEEE International Conference on Com-
puter Vision. ICCV 2001, vol. 2, 251–256 (IEEE, 2001).

[75] Weng, L. From gan to wgan. arXiv preprint arXiv:1904.08994 (2019).

[76] Rainforth, T., Cornish, R., Yang, H., Warrington, A. & Wood, F. On nesting
monte carlo estimators. In International Conference on Machine Learning, 4267–4276
(PMLR, 2018).

92 BIBLIOGRAPHY

[77] Li, P. & Feng, R. Nested monte carlo simulation in financial reporting: a review
and a new hybrid approach. Scandinavian Actuarial Journal 2021, 744–778 (2021).

[78] Martin, J. About exchanging expectation and supremum for conditional wasser-
stein gans. arXiv preprint arXiv:2103.13906 (2021).

[79] Le Cam, L. Maximum likelihood: an introduction. International Statistical Re-
view/Revue Internationale de Statistique 153–171 (1990).

[80] Massey Jr, F. J. The kolmogorov-smirnov test for goodness of fit. Journal of the
American statistical Association 46, 68–78 (1951).

[81] Van der Vaart, A. W. Asymptotic statistics, vol. 3 (Cambridge university press,
2000).

[82] Stehman, S. V. Selecting and interpreting measures of thematic classification ac-
curacy. Remote sensing of Environment 62, 77–89 (1997).

Appendix A

Stochastic Preliminary

A.1 Random Variables
Definition A.1.1 (Bernoulli random variable). A Bernoulli random variable X can only
take on two values, 1 and 0. For a random experiment with two possible outcomes, success
with probability p and failure with probability 1− p, X takes on 1 if the experiment results
in success and 0 otherwise. Such random variable can be denoted by X ∼ Ber(p), and the
experiment is so-called a Bernoulli trail.

The probability mass function of a Bernoulli random variable X ∼ Ber(p) is

P(X = 1) = p, (A.1.1)
P(X = 0) = 1− p. (A.1.2)

Definition A.1.2 (Binomial random variable). For n independent Bernoulli trails, a bino-
mial random variable X represents the number of successes in those n trials, and is determined
by the values of n and p, denoted by B(n, p). Bernoulli random variable is a special case of the
binomial random variable with n = 1.

The probability mass function of a binomial random variable X ∼ B(n, p) is

P(X = k) =
(

n
k

)
pk(1− p)n−k, (A.1.3)

where k is the number of successful trails (k = 0, 1, 2, . . . , n).

The expected value of X ∼ B(n, p) is E[X] = λ = np. When n → ∞, we can find
that (A.1.3) converges to λk

k! e−λ, which is known as the probability mass function of a
Poisson random variable, with parameter λ > 0.

Remark A.1.3 (Approximation of binomial random variable). Let λ = np, when p is
small, (n

k)pk(1− p)n−k → λk

k! e−λ as n→ ∞, for any fixed k ∈ {0, 1, 2, . . . , n}.

93

94 Appendix A. Stochastic Preliminary

Proof. Since λ = np, we substitute p = λ
n into (n

k)pk(1− p)n−k:(
n
k

)
pk(1− p)n−k =

n(n− 1)(n− 2) . . . (n− k + 1)
k!

(
λ

n
)k(1− λ

n
)n−k

=
n
n

n− 1
n

. . .
n− k + 1

n
λk

k!
(1− λ

n
)n−k

=
n
n

n− 1
n

. . .
n− k + 1

n
λk

k!
(1− λ

n
)n(1− λ

n
)−k

n→∞
=

λk

k!
e−λ

(A.1.4)

Therefore, a Poisson random variable can be viewed as an approximation of the corre-
sponding binomial random variable. In the following, we give the formal definition of
a Poisson random variable.

Definition A.1.4 (Poisson random variable). A Poisson random variable X counts the num-
ber of occurrences of an event during a given time period, denoted by Pois(λ). Here, λ is equal
to the expected value of X, meaning the average number of occurrences of the event, and also to
its variance.

The probability mass function of a Poisson random variable X ∼ Pois(λ) is

P(X = k) =
λke−λ

k!
, (A.1.5)

where k is the number of occurrences (k = 0, 1, 2, . . .).

A.2 Stochastic processes: Markov Property and Itô’s Lemma
We give brief proofs with respect to the theoretical results in Section 2.1.

Poof of Theorem 2.1.6.
We only need to show that the moment generating function corresponding to the con-
ditional distribution of W(t + s)|Ft is the same as W(t + s)|W(t).

1. From the properties of Wiener increments, we have:

E[euW(t+s)|Ft] = euW(t)E[eu(W(t+s)−W(t))|Ft]

= euW(t)E[eu(W(t+s)−W(t))]

= euW(t)eu2s/2

= euW(t)E[eu(W(t+s)−W(t))|W(t)] = E[euW(t+s)|W(t)]

2. A similar strategy can be used for the Markov property of a Poisson process.

A.2. Stochastic processes: Markov Property and Itô’s Lemma 95

Proof of Itô’s Lemma.
Consider an arbitrary point (t0, X0), and let ∆t = t− t0, ∆X = X − X0, the 2D Taylor
series expansion around (t0, X0) is given by:

g(t, X) = g(t0, X0) +
∂g
∂t

(t0, X0)∆t +
∂g
∂X

(t0, X0)∆X

+
1
2

∂2g
∂t2 (t0, X0)∆t2 +

1
2

∂2g
∂X2 (t0, X0)∆X2 +

∂2g
∂t∂X

(t0, X0)∆t∆X

+ o(∆t3 + ∆X3)

For ∆t→ 0, ∆X → 0, and dt = lim
t→t0

t− t0, dX = lim
X→X0

X− X0, we have

dg(t, X) =
∂g
∂t

dt +
∂g
∂X

dX +
1
2

∂2g
∂t2 dt2 +

1
2

∂2g
∂X2 dX2 +

∂2g
∂t∂X

dtdX + o(dt3 + dX3).

For any n > 1, dtn goes to 0 faster than dt, we can therefore neglect the higher order
dt-terms.

Regarding dX2 = (µ̄(t, X(t))dt + σ̄(t, X(t))dW(t))2, we need to determine two terms:
dtdW and dW2. Since E[dtdW] = 0 and Var[dtdW] = (dt)

3
2 , dtdW goes to 0 rapidly

when dt→ 0, we can also neglect this term. With respect to dW2, we claim that (dW)2

is of order dt.

By the Gaussian property of Wiener increment, we have

E[dW2] = lim
∆t→0

E[(W(t + ∆t)−W(t))2] = lim
∆t→0

∆t = dt,

and

Var[dW2] = lim
∆t→0

E[(W(t + ∆t)−W(t))4]− (E[(W(t + ∆t)−W(t))2])2

= lim
∆t→0

3(∆t)2 − (∆t)2 = 2(dt)2

As the variance of dW2 converges to 0 faster than the expectation, we conclude that
(dW)2 is of order dt.

Combining all together, we have

dg(t, X) = (
∂g
∂t

+ µ̄(t, X(t))
∂g
∂X

+
1
2

σ̄2(t, X(t))
∂2g
∂X2)dt + σ̄(t, X(t))

∂g
∂X

dW(t).

Proof of Itô’s Lemma for Poisson processes.
We first claim the product rule of dt and dXP (t), as is shown in Table A.1. From the

96 Appendix A. Stochastic Preliminary

property of Poisson process, we have

dXP (t) =

{
1, with probability λpdt
0, with probability 1− λpdt

. (A.2.1)

Since the expectation of dtdXP (t) equals λp(dt)2 and the standard deviation equals√
λp(dt)

3
2 , dtdXP (t) goes to 0 rapidly when dt 7→ 0. Regarding the item (dXP (t))2,

we have

(dXP (t))2 =

{
(1)2, with probability λpdt
(0)2, with probability 1− λpdt

,

= dXP (t).

(A.2.2)

Table A.1: Itô multiplication table for Poisson process.
dt dXP (t)

dt 0 0
dXP (t) 0 dXP (t)

We now return to the proof of Equation (2.1.15). By using (A.2.1), we can write

dg(t, X(t)) = g(t + dt, X(t_) + dX)− g(t, X(t_))
= g(t + dt, X(t_) + µ̄dt + J̄dXP (t))− g(t, X(t_))
= g(t + dt, X(t_) + µ̄dt + J̄)dXP (t)
+ g(t + dt, X(t_) + µ̄dt)(1− dXP (t))− g(t, X(t_))

=

[
g(t, X(t_) + J̄) +

∂g(t, X(t_) + J̄)
∂X(t)

µ̄dt +
∂g(t, X(t_) + J̄)

∂t
dt
]

dXP (t)

+

[
g(t, X(t_)) +

∂g(t, X(t_))
∂X

µ̄dt +
∂g(t, X(t_))

∂t
dt
]
(1− dXP (t))− g(t, X(t_))

=

[
∂g
∂t

+ µ̄
∂g
∂X

]
dt + [g(t, X(t_) + J̄)− g(t, X(t_))]dXP (t)

,

here, µ̄ and J̄ represent µ̄(t, X(t)) and J̄(t, X(t_)) respectively.

Appendix B

SDE-WGAN

B.1 SDE-WGAN Architecture
Both the generator and critic are MLPs, and their architectures are formed in Table B.1
and Table B.2, where d is the depth of the 3D training dataset. During the training of
SDE-WGAN, a learning rate scheduler is applied, that is, the learning rate lr decays in
every p training epochs with rate γ, and minimum learning rate is min lr.

Table B.1: Generator architecture
Optimiser RMSProp

lr = 0.0003, β = 0.99
Layer Nodes Activation
Input layer 3d LeakyReLU, negative slope=0.1
Hidden 1 100 LeakyReLU, negative slope=0.1
Hidden 2 100 LeakyReLU, negative slope=0.1
Hidden 3 100 LeakyReLU, negative slope=0.1
Hidden 4 100 LeakyReLU, negative slope=0.1
Output layer d None

Table B.2: Critic architecture
Optimiser RMSProp

lr = 0.0003, β = 0.99
Layer Nodes Activation
Input layer 3d LeakyReLU, negative slope=0.1
Hidden 1 100 LeakyReLU, negative slope=0.1
Hidden 2 100 LeakyReLU, negative slope=0.1
Hidden 3 100 LeakyReLU, negative slope=0.1
Hidden 4 100 LeakyReLU, negative slope=0.1
Output layer 1 None

B.2 Hyperparameter Tuning
We process a hyperparameter tuning regarding the following hyperparameters: batch
size M, the iteration number of the critic Nc, the gradient penalty coefficient λ, the min-

97

98 Appendix B. SDE-WGAN

imum learning rate min lr, the learning rate scheduler parameters (m, γ). The tuning
results are shown in Figure B.1, where M = 100, Nc = 9, λ = 60, min lr = 10−8, and
(m, γ) = (20, 0.3).

Figure B.1: The results of the hyperparameter tuning.

	Introduction
	Research Question
	Thesis Outline
	Preliminaries
	Stochastic Processes in Finance
	Geometric Brownian Motion
	Is GBM Realistic Enough: Towards to Jump Processes
	Jump-Diffusion Process

	Monte Carlo Path Simulation
	Path Simulation of the GBM Model
	Path Simulation of the Jump-Diffusion Process

	Artificial Neural Networks
	Anomaly Detection
	Generative Adversarial Networks
	Introduction
	Vanilla GAN
	Theoretical Results

	Conditional GAN
	GANs Training in Practice
	GANs Applications
	SDE-GAN: Path Simulation of SDEs Using GANs
	AnoGAN: Anomaly Detection Using GANs

	GANs Problems and Improvements
	GANs Problems
	GANs Improvements

	Wasserstein GAN
	Wasserstein Distance
	1-Wasserstein Distance
	Dual Problem

	WGAN Architecture
	Theoretical Results
	Training Algorithm
	WGAN Improvement: WGAN-GP

	Proposed Framework
	3D Dataset Construction
	Conditional Wasserstein GAN with Gradient Penalty
	cWGAN-GP Architecture
	cWGAN-GP in Practice

	Monte Carlo Simulation Using SDE-WGAN
	SDE-WGAN
	GBM Path Simulation
	Jump-Diffusion Path Simulation

	Jump Detection Model
	Jump Instances Detection
	Jump Parameters Estimation

	Experiment Results
	Experimental Setup
	Data Setup
	SDE-WGAN Setup

	Evaluation Metrics
	Empirical Probability Distribution
	KS Test and 1-Wasserstein Distance
	Classification Performance

	Results
	SDE-WGAN Performance
	Jump-Diffusion Path Simulation
	Jump Detection

	Robustness

	Discussion and Conclusions
	Discussion
	The 3D Dataset
	Jump Detection: BiGAN
	Anomaly Score Threshold
	SDE-GAN and SDE-WGAN

	Conclusions

	List of Figures
	List of Tables
	Bibliography
	Stochastic Preliminary
	Random Variables
	Stochastic processes: Markov Property and Itô's Lemma
	SDE-WGAN
	SDE-WGAN Architecture
	Hyperparameter Tuning

