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Abstract

GHC – the Haskell compiler – uses a bespoke intermediate language upon
which a number of separate optimisation transformations take place. From
the compositional style of programming, that makes languages like Haskell
so attractive, follows that optimisation is essential as to not produce un-
reasonably slow binaries. While generally successful, it is needed at times
to inspect this intermediate representation throughout the transformations
to understand why performance is unexpectedly disappointing or has
regressed. This has historically been a task reserved for the more hardened
and experienced Haskell developer, and is often done in a primitive manner.

Recent research has explored the ability to include assertions about
optimisation that are expected to take place in traditional test suites.
After all we generally want our programs to not only be correct, but also
terminate in a reasonable amount of time. This is an exciting idea, but it
does not address the need to inspect the intermediate representation itself
and the skill required to do so.

We believe that Core inspection can be streamlined with an interactive tool
that allows users to explore and comprehend such intermediate programs
more pleasantly and efficiently. We describe what such a tool may look
and how we implemented it. Then we empirically evaluate our tool by
reproducing a real world performance regression in the popular text

library and show how our tool could have been of assistance in that
situation. Furthermore, we discuss how we used our tool to discover a
performance bug in the fusion system of contemporary GHC itself.
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Chapter 1

Introduction

1.1 GHC, an optimising compiler

Haskell is a high level language designed to write highly composable functions. This naturally encourages
programmers to write code that is not particularly fast to evaluate. An extremely common example is
the composition of list operations. Consider the function halves which divides each element in a list of
Ints in halve, discarding those that are not a multiple of 2.

1 halves :: [Int] -> [Int]

2 halves = map (`div` 2) . filter even

Both map and filter are defined as a loop over an input list, producing a new list as output. If code was
generated for halves in its current form, it would produce two loops as well as allocate an intermediate
list. This is unnecessary extra work and incurs more allocation costs because it would be possible to
rewrite the function to circumvent this issue:

1 halves_fast :: [Int] -> [Int]

2 halves_fast [] = []

3 halves_fast (x:xs) =

4 let

5 tl = halves_fast xs

6 in if even x

7 then (x `div` 2):tl

8 else tl

However, requiring the programmer to do such rewrites manually tragically undermines the benefits of
this compositional style of programming. Code simply would be harder to read, write and maintain and
likely to be less correct as a result.

Luckily, GHC does address this issue - and many others - with an extensive set of optimisation trans-
formations. This particular program will benefit greatly from the fusion system which specifically deals
with removing the intermediate lists. This is a well-established optimisation that is also referred to as
deforestation [25]. As a result, compiling with these optimisations enabled will result in a syntactically
equivalent definition for halves and halves_fast!

But this poses a question of trust; No compiler is every perfect, so how can we be sure that our code is
correctly optimised and will continue to be in the future? Furthermore, if optimisations are missed, how
can we diagnose the root of the problem and explain what went wrong?

It should be noted that this problem is not unique to Haskell or even functional languages. Among
C and C++ programmers, it is common to refer to services like Godbolt [15] to inspect the generated
assembly code for a given function. This is useful both when discussing performance implications of
operations happening in the hot path of a program, and to confirm whether certain zero-cost abstractions
are actually zero-cost.
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1.2 The cascade effect

Optimisation transformations are applied in a certain order, giving rise to the cascade effect [21]. This
effect refers to the dramatic consequences that the order of transformations can have. We will study an
example that showcases a problematic tug-of-war between two optimisations: (1) inlining and (2) rewrite
rules.

1.2.1 The inlining transformation

Inlining is arguably the most important optimisation for any functional language. Coincidentally, it is
also one of the simplest transformations to implement and comprehend. To reveal why it is such a staple,
we must consider it in conjunction with β-reduction. These transformations are fairly simply defined
as:

1 -- inlining, knowing that x = a from some binding site

2 e -inline-> e[x := a]

3

4 -- beta reduction:

5 (\x -> e) a -ß-> e[x := a]

We can apply this in a Haskell context to get a more familiar perspective. Consider the boolean negation
function not and a basic usage thereof:

1 not :: Bool -> Bool

2 not = \x -> if x then False else True

3

4 t = True

5 f = not t

In the case of f function we can elect to inline both not and t in its body. This gives us

f = (\x -> if x then False else True) True

We can now perform β-reduction by taking the body of the lambda function and substituting x by
True:

f = if True then False else True

Finally, we eliminate the if statement by evaluation. Knowing that it always takes the first branch, we
get the final result of:

f = True

Thanks to this transformation duo, we have reduced an expression to a mere literal, eliminating any
runtime cost. Because the inlining transformation so commonly goes hand in hand with β-reduction we
will – for brevity’s sake – from now on presume that β-reduction, wherever relevant, is also applied when
we say that an inlining transformation has taken place.

In a sense we were lucky here that the body of the not function reduced so completely. But in reality it
can be the case that function definitions are quite large. Inlining will then still eliminate the need for a
function call, but it does come at the cost of larger code sizes through code duplication. GHC uses quite
a few crude heuristics to help with weighing this trade-off [21]. Interestingly, these heuristics have not
undergone much reconsideration until quite recently [13]. Suffice to say that it is not trivial to predict
whether a function will be inlined and the performance implications thereof.
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Laziness and thunks

Being a lazy language, Haskell can profit from inlining in a secondary way as well. A well-established
language feature is the let expression, a syntactically nice way to bind extra definitions. Consider a
function that decrypts the password of a user but only if it is the admin.

1 getAdminPassword :: User -> Maybe String

2 getAdminPassword user =

3 let decrypted :: String

4 decrypted = decryptSHA1 (password user)

5

6 in case (username user) of

7 "admin" -> Just decrypted

8 _ -> Nothing

Obviously the decryptSHA1 is going to be an extremely costly function that under no circumstances
we wish to be evaluated unless absolutely necessary. Luckily, because Haskell is a lazy language the
let assignment does not actually evaluate anything; it only allocates a so-called thunk. Such a thunk
represents an expression that is yet to be evaluated. Evaluation is in fact deferred to the point where the
thunk is actually needed (which is never if the username is not "admin"). So, because of this property
getAdminPassword is actually quite effective at avoiding unnecessary work.

Yet it can still be improved upon. While the let expression might not do any extra work it does require
this thunk allocation, which is not free. But because our let bound variable decrypted is used exactly
once, we can inline it at the only call-site without running the risk of duplicating the expensive operation.
This yields the ever so slightly more performant definition:

1 getAdminPassword :: User -> Maybe String

2 getAdminPassword user = case (username user) of

3 "admin" -> Just (decryptSHA1 (password user))

4 _ -> Nothing

1.2.2 Rewrite rules

We’ve seen how generic program transformation may improve performance. However, GHC can only use
relatively shallow reasoning as to not jeopardize the correctness of transformations or explode compile
times. The programmer on the other hand, may have much more in-depth knowledge about the domain
of the program and its intended behavior. [22]. Programmers can leverage this knowledge by defining
so-called rewrite rules. They inform the compiler of substitutions that are not obvious or strictly speaking
even correct.

Consider the binary tree datatype Tree along with a the higher order mapTree functions that facilities
transforming the values contained in the Leafs. We then use mapTree to compose two traversals with
an addition in the function addFive. Obviously that function is rather contrived as an example of
something that someone would write, but the pattern may very well show up during the transformation
pipeline.

1 data Tree a = Leaf a | Node (Tree a) (Tree a) deriving Show

2

3 mapTree :: (a -> b) -> Tree a -> Tree b

4 mapTree f (Leaf x) = Leaf (f x)

5 mapTree f (Node lhs rhs) = Node (mapTree f lhs) (mapTree f rhs)

6

7 addFive :: Tree Int -> Tree Int

8 addFive = mapTree (+1) . mapTree (+4)

By now it should be clear why addFive is non-optimal; it has a superfluous traversal and allocates
an intermediate structure. mapTree (+5) is the far superior equivalent. However, for GHC to infer
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this fact it has to perform a too complicated and generic analysis. But we can add the rewrite rule
mapTree/mapTree to convince GHC that consecutive applications of mapTree are allowed to fuse:

1 {-# Rules

2 "mapTree/mapTree" forall f g. mapTree f . mapTree g = mapTree (f. g) ;

3 #-}

But as it turns out, mapTree/mapTree never fired for a reason that is not immediately obvious.

A note on common abstraction

A clever reader might have noticed that mapTree is a perfect candidate for an implementation of fmap as
part of the Functor typeclass:

1 instance Functor Tree where

2 fmap = mapTree

Applying this same reasoning to the rewrite rule, one might feel enticed to write:

1 {-# Rules

2 "fmap/fmap" forall f g. fmap f . fmap g = fmap (f. g) ;

3 #-}

This is not entirely controversial as the soundness of this rule is verifiable under the Functor laws. However,
GHC has decided against enforcing these laws nor performing transformations that require these laws to
hold. This means that defining custom rules per datatype is required to yield maximum performance.
Similar situations arise with the Applicative and Monad typeclasses.

1.2.3 Tug-of-war

A common manifestation of the cascade effect is the tug-of-war between inlining and the application
of rewrite rules. Continuing with the Tree example from the previous section, we find that losing this
tug-of-war is the exact reason that the mapTree/mapTree rule never fired. Because the inlining operation
was performed first, the left-hand-side of mapTree/mapTree no longer occurs in the program and the
rule is rendered non-active. The final optimised function has regrettably converged to the following
form:

1 addFive :: Tree Int -> Tree Int

2 addFive = \tree -> mapTree (+1) (mapTree (+4) tree)

The important point is here is not that rewrite rules are inherently flawed (after all, we could easily drum
up a secondary rule that does fire here), but that one optimisation may open or close the door to many
other optimisations down the road. From this cascade effect follows that the interaction of a Haskell
program with the optimiser may be quite unstable and consequently sensitive to small changes. Changes
not only in the source but also in the build environment (a minor release of the compiler comes to mind).
Thus, we cannot trust that our successfully optimised program will remain optimised in the future. We
observe that each program we write may require specific, manual, effort to be made more efficient.

1.2.4 Non-functional requirements: inspection-testing

So if we want our programs to not only be correct but also terminate in reasonable amount of time while
not consuming an overly large chunk of resources, we have to identify an extra set of contraints. These
constraints do not deal with the functionality of the program but rather its compiled form. This collection
of additional constraints are examples of Non-functional requirements.

To illustrate with a real world example, the very popular text library makes the following promise: ‘Most
of the functions in this module are subject to fusion, meaning that a pipeline of such functions will usually
allocate at most one Text value.’ [3]. Like with addFive in Section 1.2.3, such promises cannot be
checked with traditional tests as they do not concern the functionality of the code.

And as identified by Breitner [3], the aforementioned promise by the text library had in fact been broken
in version 1.2.3.2, shown by the following counter example:
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1 import qualified Data.Text as T

2 import qualified Data.Text.Encoding as TE

3 import Data.ByteString

4

5 countChars :: ByteString -> Int

6 countChars = T.length . T.toUpper . TE.decodeUtf8

Although countChars uses a value of type Text during the computations, it does not need to be actually
constructed in the final composite definition. As we learn from the definition:

data Text = Text ByteString Int Int

Text text is merely a view into a ByteString by virtue of an offset and length parameter. This means
that length reducing operations can cleverly avoid the costly task of modifying the underlying ByteString
and instead just change the offset and length parameters. Now because UTF-16 contains surrogate pairs,
the character length of a Text value cannot directly be determined from the byte-length its ByteString
and still requires O(n) time. However, this does not justify constructing a concrete Text value as opposed
to just using the ByteString and the offset and length parameters as separate bindings.

An analogous situation would be a factory with production line workers that pack and unpack their inter-
mediate results between every exchange in the assembly line. While they may conveniently communicate
about receiving a ‘car door, a bolt, and a nut’ unified as their ‘input’, they never actually mean to suggest
that they wish to receive them packaged together. So too with our Text values, it is mighty handy to
communicate about a package of a ByteString and two Ints, but we never intend to actually package
them at every turn.

But as mentioned, despite the extensive set of rewrite rules that the text library has, the ideal compilation
result was not achieved. In itself this example formed the main motivation to develop a method to
tests these non-functional requirements. The result is the inspection-testing package [3]. It provides
the machinery necessary to add the following statement directly to the source file, preventing the same
regression from occurring in the future.

inspect $ 'countChars `hasNoType` ''T.Text

Despite preemptively saving us from future regressions, inspection-testing does not help to identity
and path underlying cause. Consider when the test fails at some point, and you are tasked with finding
the root of the problem. In this very example the final optimised definition of countChar will have
undergone many expanding transformations producing over 100 lines to painfully sift through without
little more ergonomics than a string search.

It would be possible to get the output at various intermediate moments to gauge where the offending
Text should have been erased, resulting in an extra compilation artifact per transformation. Usually this
means you have to analyze around 20 different versions of the code. This is a tedious and error-prone
process, not to mention requires relatively highly skilled programmers with an in-depth understanding of
the GHC and its optimiser.

Moreover, we risk having to repeat this work in the future when any small number of changes could,
through the cascade effect, trigger this test as failing again.

1.3 Introducing hs-sleuth

We intend to address the tediousness and skill required for exploring interactions of specific pieces of
Haskell source code with GHC’s optimisation pipeline.

We believe that there is an opportunity to improve the way that Haskell programmers reason about
the performance characteristics of their code while simultaneously appealing to a larger audience of less
experienced programmers.

This belief stems first from the results of the yearly Haskell survey where in 2021 only 16% of respondents
either agreed or strongly agreed with the statement ‘I can easily reason about the performance of my
Haskell programs’ [7]. We are not the only one seeing this statistic as a call to action. As recently as the
current year, Young. J. announced work on a complete Haskell optimisation handbook [27]. A preliminary
version of the book already shows that a section on analysing optimisation transformations is planned.
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Although, it is our opinion that a guiding resource – while certainly extremely helpful – is not a substitute
for better tooling.

Secondly, through conversations with Haskell programmers at Well-Typed – who are also major contrib-
utors and maintainers of GHC itself – we learned that it was common practice to create personal tools
that assisted them in analysing intermediate results of the optimisation transformations during the fairly
frequent task of trying to make performance critical sections of programs more efficient. This proves that
there is a demand for such tools and that a unified solution does not yet exist.

1.4 Research Questions

Main Question How can GHC’s core2core passes be captured and presented in such a way that users
productively gain insight into how their code is transformed?

Sub-Question 1 How does one efficiently identify where small changes occur in two or more cap-
tures?

Sub-Question 2 How to make viewing core more manageable using various display options?

Sub-Question 3 How could performance regressions that have occurred in the past in popular Haskell
projects, have been resolved faster?
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Chapter 2

Background

2.1 A Core Language

GHC recognises three distinct stages of the compilation process [21].

1. Frontend, parsing and type checking, enables to give clear errors that reference the unaltered
source code.

2. Middle, a number of optimisation transformations.

3. Backend, generates and compiles to machine code, either via C-- or LLVM.

The middle section is tasked with doing all the optimisation work it can, leaving only those optimisations
to the backend it can not otherwise perform. Within the middle section, the work is further split into
substages, where each transformation is a separate, composable pass. An obvious benefit to this approach
is that each pass can be tested independently. Moreover, because the types are preserved throughout the
middle section, it can be verified that each transformation preserves type correctness; Providing some
evidence towards the correctness of the transformation.

Regardless, the Haskell source language itself is not a good target for optimisation. The source has to be
rich and expressive, requiring an AST datatype with of over 100 constructors. Any transformation over
such a datatype has far too many cases to be considered practical to implement; Not to mention the
myriad of bug-inducing edge cases. To overcome this issue, the middle section first performs a desugaring
pass, translating the source language into a far simpler – but expressively equivalent – intermediate
language called Core.

Core – which is how we will refer to GHC intermediate representation going forward – is designed to be
as simple as possible without being impractical. A testament to that property is the fact that we can fit
the entire definition on one page:
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data Expr

| Var Id

| Lit Literal

| App Expr Expr

| Lam Bndr Expr

| Let Bind Expr

| Case Expr Bndr Type [Alt]

| Cast Expr CoercionR -- safe coercions are required for GADTs

| Tick Tickish Expr -- annotation that can contain some meta data

| Type Type

| Coercion Coercion

data Alt = Alt AltCon [Bndr] Expr

data Bind

= NonRec Bndr Expr

= Rec [(Bndr, Expr)]

-- the Var type contains information about

-- a variable, like it's name, a unique identifier

-- and analysis results. Binders, Variables, Ids are

-- all the same thing in different contexts

type Bndr = Id

type Id = Var

type Program = [Bind]

Code Snippet 2.1: An ever so slightly simplified version of the Core Language

Writing an optimisation transformation essentially of type Program -> Program does not now seem as
daunting, given the drastically reduced number of cases to consider. Likewise, maintaining and debugging
transformations is much less of a strenuous task.

2.2 The core2core transformations

Over its numerous decades of development, the core2core pipeline has been fitted with a myriad of
transformations. It would be impractical to discuss all of them here. However, we will discuss in depth
the role of the multiple simplifier passes, as well as the worker/wrapper transformation. The first because
it gives context to the rewrite rules and the latter because it is a natural bridge to unboxed types; both
concepts which will become relevant in discussing the results of this thesis. Lastly, we zoom in on the
analysis results stored in the Var type.

2.2.1 The simplifier: its parts

The simplifier is quite literally an indispensable part of the transformation pipeline. Although the parts of
the pipeline are meant to be separable entities, they heavily rely on the simplifier to deal with the shape
the cleanup some of the mess beforehand as well as after. As such, it has earned itself the reputation of
being the workhorse of the pipeline [1].

If you were looking for an atom, you have not found it. The simplifier is in itself again a collection
of smaller transformations, albeit applied repeatedly and interleaved such that they cannot be easily
untangled. Each simplifier subpart is a local transformation, that is, it only looks at the immediate
surroundings of the expression. We give a near comprehensive list of each subpart along with an example:
[1]

Constant Folding

Evaluate expressions that can be evaluated in compile time. This is a very logical transformation that
does not require any further considerations.
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-- before

3 + 4

-- after

7

Inlining

Inlining, replacing calls to functions with the body of that function, is a well known performance enhancing
operation in most languages, but especially so in functional ones. The difference is staggering with a
around 10-15% performance increase for conventional languages, as opposed to 30-40% for functional
languages [21].

Unlike constant folding, it is not an ad-hoc no-brainer. An obvious good case would be to inline a function
that is used exactly once. All that this does is remove the veil that hides the function body for further
optimisations:

-- before

f x = x + 1

f 3

-- after

3 + 1

However, if the function is used in multiple locations with different arguments, you risk increasing the
size of the program because the function body will be duplicated at each call-site. This is a trade-off that
– although often worth it – must be considered on a case to case basis. GHC has a number of heuristics to
determine whether inlining should occurs or not [20]. Obviously, this cannot be a perfect solution and
one can imagine how a small change in the code can suddenly cause the inliner to reverse its decision; a
testament to the non-continuous nature of the compiler with respect to the input program.

Besides inlining function calls, Haskell’s let-bindings also form an opportunity for inlining. After all, let
bindings are often described as syntax sugar for lambda abstractions, but there is an important difference
to be considered. Because let bindings in Haskell are lazily evaluated, it may lead to explosion of work if
the let bound variable is used in a lambda expression. For example:

-- before, the function 'expensive' is called at most once

let v = expensive 42

l = \x -> ... v ...

in map l xs

-- after, 'expensive' is called for each element of 'xs'

let l = \x -> ... expensive 42 ...

in map l xs

In this case, inlining would be disastrous for performance and GHC will take great care to avoid it.

Case of known constructor

The case destruction is only the way to get to the Weak-Head-Normal-Form (WHNF) of an expression.
This means that inside of a case expression we have learned information about the variable under scrutiny
and can use it to infer the result of outer case expressions. Consider the following scenario:

safe_tail :: [a] -> [a]

safe_tail ls = case ls of

[] -> []

x:xs -> tail ls

Which inlining will transform into:

9



safe_tail :: [a] -> [a]

safe_tail ls = case ls of

[] -> []

x:xs -> case ls of

[] -> error "tail of empty list"

(x:xs) -> xs

Since we scrutinize ls again in the inner case, we actually already know ls is not the empty list, so we
can safely replace the inner case with the body of the case expression:

safe_tail :: [a] -> [a]

safe_tail ls = case ls of

[] -> []

x:xs -> xs

The removal of the call error during this process is a testament to this function being deserving of the
safe prefix.

Case of case

There are cases (no pun intended) where the case-of-known-constructor cannot quite do its job, although
it is obvious that benefits are yet to be gained. Consider for example what happens when instead of
scrutinizing the same variable, the outer case scrutinizes the result of the innner case:

-- before (possibly desugared from 'if (not x) then E1 else E2'

-- after also inlining 'not')

case (case x of {True -> False; False -> True}) of

True -> E1

False -> E2

We might hope to gain something from the information that the inner case has produced by moving the
outer case expression to each branch of the inner one:

case x of

True -> case False of {True -> E1; False -> E2}

False -> case True of {True -> E1; False -> E2}

Now we can rely on constant folding to simplify all the way down to:

case x of

True -> E2

False -> E1

Note that we do risk duplicating E1 and E2, which could have been problematic if the expression which
contained them did not reduce so completely. A solution to this problem are join points [16], which we
will not go into here for the sake of brevity.

Rewrite rules

We already discussed in Section 1.2.2 how rewrite rules are a way to express domain specific knowledge to
the compiler that it otherwise can not practically infer. Applying given rewrite rules is a task also reserved
for the simplifier. It should now be clear that this process can get a little messy since the simplifier is
under no obligation to apply the rules, nor its other tasks, in any particular order. We will get into this
issue more in the next section where we discuss the simplifier at large.

It should be noted that the use of rewrite rules are very common during the compilation of most any
Haskell program. This is because the internal fusion system on list operations are implemented as built
in rewrite rules. We discuss this system more in depth in Section 2.3.
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2.2.2 The simplifier: its sum

An attentive reader may have noticed that when explaining one part of the simplifier, we often relied on
another to do its job. This begs the question: how does the simplifier determine in which order to run its
subparts? The answer to that is that it does not. The analogy here is that a compiler is a gun and a
program is a target. Every program is very different, and we cannot know in advance how to best hit it.
Therefore, we must ensure that the compiler – or this case the simplifier stage – has a lot of bullets in its
gun to ensure being able to effectively hit a lot of targets [21]. Running the simplifier once is therefore
not satisfactory, and we must run it until it reaches a sort of fixed point ; At least up until some arbitrary
limit since there is no guarantee such a fixed point exists and even if it does that we find it and not get
stuck in a loop.

Aforementioned looping behavior can actually occur quite easily due to certain rewrite rules. It is not
always the case that the RHS of a rewrite rules objectively better than the right. It might be that the
rewrite is benificial because it may enable other optimisation to take place afterwards. However, if for
some reason that did not turn out to be possible, we may want to apply the reverse rewrite rule later.
This is obviously problematic as we can be ping-pong between rewrite rules forever. To overcome that
issue one can enable/disable rewrites rules in certain phases of simplifier. To understand this we must
first understand when the simplifier is run.

In order, the simplifier is – rather unintuitively – interspersed between other transformations as fol-
lows:

1. Gentle (disables case-of-case transformations)

2. Phase 2

3. Phase 1

4. Phase 0

5. Final (is run multiple times throughout the transformations after phase 0)

By default, rewrite rules as well as inlinings can occur in each of these phases, but the programmer does
have the ability to specify deviations from this behavior. For example, in the text library, we find in the
Data.Text module the following snippet:

-- This function gives the same answer as comparing against the result

-- of 'length', but can short circuit if the count of characters is

-- greater than the number, and hence be more efficient.

compareLength :: Text -> Int -> Ordering

compareLength t c = S.compareLengthI (stream t) c

{-# INLINE [1] compareLength #-}

{-# RULES

"TEXT compareN/length -> compareLength" [~1] forall t n.

compare (length t) n = compareLength t n

#-}

Here phase control is used to indicate that compareLength should only be inlined from phase 1 onward
and conversely that the rewrite rule compareN/length may be applied except in phase 1. What this
ensures is that the inliner will not operate on the result of the rewrite rule directly in the same phase.
This is supposedly because we expect compareLength to occur in the LHS of a different rewrite rule
which is to be desired over inlining at first.

2.2.3 The worker/wrapper transformation

The worker/wrapper transformation is able to change the type of a computation (typically a loop) into a
worker function along with a wrapper that can convert back to the original type. The example listed on
the GHC wiki is that of the reverse function on lists [2]. One might concisely define reverse with direct
recursion and the ++ operator:
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1 reverse :: [a] -> [a]

2 reverse [] = []

3 reverse (x:xs) = reverse xs ++ [x]

Of course this is not very efficient as the ++ operator itself is already linear, making the reverse function
quadratic; If we create an auxiliary worker function reverse' that takes an extra accumulator argument,
we can create a linear version:

1 reverse :: [a] -> [a]

2 reverse = reverse' []

3 where reverse' acc [] = acc

4 reverse' acc (x:xs) = reverse' (x:acc) xs

Here the wrapper is simply applying the empty list as a starting argument to the function. Thus, by
introducing some state that exists only during the lifetime of the computation, the function has become
asymptotically more efficient.

Impressively, the transformation may also greatly improve the constant factor of the runtime by leveraging
unboxed types. Unlike strict languages, the Int type in Haskell – despite always evaluating to a 64 bit
integer – is itself not statically sized. After all, any value is lazy and may therefore still be an unevaluated
thunk whose size is unknown at compile time. As a result, Ints are always stored on the heap and thus
require no runtime allocation. However, Int has a strict counterpart Int# (unboxed integer) in which it
is defined: data Int = I# Int#. Computations on Int#s can be evaluated much more cheaply since
such values can be stored on the stack.

Knowing this, we can opt to create a worker that does add state to the computation, but changes the
types to their unboxed counterparts. Naturally the wrapper operation is then simply the constructor
of the lazy type I#. Let us consider the example of the recursive triangular function which given a
number n returns the sum of all numbers from 1 to n:

1 triangular :: Int -> Int

2 triangular 0 = 0

3 triangular n = n + triangular (n-1)

Although an all-knowing compiler could have determined that the result of triangular can simply be

calculated numerically in constant time as n2+n
2 , we can still trust GHC to infer an important property

about the function using strictness analysis. Namely: triangular does not produce any intermediate
results that can be used without evaluating the whole of triangular. That is: if you are willing to spent
any amount of time on triangular, you might as well calculate the whole thing. Thus, GHC decides to
rewrite the function using a strict worker, removing the need for many dubious allocations:

1 wtriangular :: Int# -> Int#

2 wtriangular 0 = 0

3 wtriangular n = GHC.Prim.+# n (wtriangular (GHC.Prim.-# n 1))

4

5 triangular :: Int -> Int

6 triangular (I# w) = I# (wtriangular w)

To get a feeling for the difference in performance, we can compare the runtime of the original function
with the worker/wrapper version:

Snippet (compiled with -O0) Result of time with input 10000000

original 0,10s user 0,03s system 99% cpu 0,132 total
transformed 0,01s user 0,01s system 98% cpu 0,023 total

Table 2.1: The runtime of both version of triangular. We can see that the worker/wrapper
tranformation has increased runtime performance by a factor of 0.132/0.023 = 5.7.
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It might not be immediately intuitive why the performance differs so drastically and where exactly these
seemingly evil allocation occur. The ridiculousness of the original function becomes apparent when we
consider a C implementation with the same allocation behavior. Although lacking in laziness, we can
consider an Int to map to a long* (pointing to heap allocated memory) and an Int# to map to a plain
long.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 // utility function for heap allocating a 64 bit integer

5 long* alloc_long() { return (long*)malloc(sizeof(long)); }

6

7 long* triangular(const long* n_ptr) {

8 // allocate the return value

9 long* ret = alloc_long();

10 // derefence the pointer into a value

11 long n = *n_ptr;

12 if (n==0) { *ret = 0; } else {

13 // allocate a new pointer with which to call the function recursively

14 long* inp_ptr = alloc_long();

15 *inp_ptr = n-1 ;

16 *ret = n + *triangular(inp_ptr);

17 }

18 return ret;

19 }

Rest assured that any C programmer suggesting this implementation would get some very weird
looks.

2.2.4 Analysis transformations

Consider again the Core ADT given in Section 2.1, it was mentioned that the Var type is used to represent
variables and their various properties. We look into the one field of Var that is dynamic during the
core2core pipeline: IdInfo.

This data type follows the concept of weakening of information, i.e. the information is never incorrect
but may be less precise or even missing. Furthermore, the IdInfo may differ for different Var instances
that refer to the same variable.

It is as of ghc-9.4.2 defined as:
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1 data IdInfo

2 = IdInfo {

3 ruleInfo :: RuleInfo,

4 -- ^ Specialisations of the 'Id's function which exist.

5 -- See Note [Specialisations and RULES in IdInfo]

6 realUnfoldingInfo :: Unfolding,

7 -- ^ The 'Id's unfolding

8 inlinePragInfo :: InlinePragma,

9 -- ^ Any inline pragma attached to the 'Id'

10 occInfo :: OccInfo,

11 -- ^ How the 'Id' occurs in the program

12 dmdSigInfo :: DmdSig,

13 -- ^ A strictness signature. Digests how a function uses its arguments

14 -- if applied to at least 'arityInfo' arguments.

15 cprSigInfo :: CprSig,

16 -- ^ Information on whether the function will ultimately return a

17 -- freshly allocated constructor.

18 demandInfo :: Demand,

19 -- ^ ID demand information

20 bitfield :: {-# UNPACK #-} !BitField,

21 -- ^ Bitfield packs CafInfo, OneShotInfo, arity info, LevityInfo, and

22 -- call arity info in one 64-bit word. Packing these fields reduces size

23 -- of `IdInfo` from 12 words to 7 words and reduces residency by almost

24 -- 4% in some programs. See #17497 and associated MR.

25 --

26 -- See documentation of the getters for what these packed fields mean.

27 lfInfo :: !(Maybe LambdaFormInfo),

28

29 -- See documentation of the getters for what these packed fields mean.

30 tagSig :: !(Maybe TagSig)

31 }

Through non-structure-altering transformations like Demamd Analysis and Strictness Analysis the IdInfo
record is updated accordingly. This information may then be used by future transformations that can only
optimise safely or productively under certain circumstances (remember the disastrous work duplication in
Section 2.2.1?).

The information contained in IdInfo is a major source of complexity when it comes to comprehending
Core. Consider for example this ‘pretty’-printed IdInfo instance:

1 [GblId,

2 Arity=4,

3 Str=<L,U(U(U(U(C(C1(U)),A,C(C1(U)),C(U),A,A,C(U)),A,A),1*U(A,C(C1(U)),A,A),A,A,A,A,A),U(A,A,C(U),...etc.

4 Unf=Unf{Src=<vanilla>, TopLvl=True, Value=True, ConLike=True,

5 WorkFree=True, Expandable=True, Guidance=IF_ARGS [50 0 0 0] 632 0}]

We can quickly learn of few things about the variable it describes. First, it is apparently a function
that has an arity of 4 (i.e. it takes 4 arguments). Secondly, we obtain some of the magic heuristic
values involved with inlining (also known unfolding hence Unf). However, if we want to diagnose why for
example this variable was evaluated lazily even though it is always used exactly once, we would have to
decode the strictness signature under Str. Currently, the best resource for decoding this would be to
read the comments in the GHC source code itself.

2.3 The fusion system

Fusion – the process of combining multiple operations over a structure into a single operation – is in GHC
implemented using the build/foldr idiom, coined as short-cut fusion. This system was developed as an
improvement on deforestation (Wadler [25]) which has shortcomings when it comes to recursive functions
[12].

We borrow an example from Seo [28] to illustrate how the build/foldr system works. Consider the example
– coincidentally very similar to triangular (Section 2.2.3) – of summing a list of numbers:

1 foldr (+1) 0 [1..10]
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Very concise indeed but its execution would be much slower than say, an imperative for loop, because we
first create a list and then consume it right away. If we look inside the definition of [1..10] we find the
function from:

1 from :: (Ord a, Num a) => a -> a -> [a]

2 from a b = if a > b

3 then []

4 else a : from (a + 1) b

Which is itself a specialisation for lists. We can write a more generic catamorphism that takes any duo of
constructors of type a -> b -> b and b respectively (previously : and []):

1 from' :: (Ord a, Num a) => a -> a -> (a -> b -> b) -> b -> b

2 from' a b = \c n -> if a > b

3 then n

4 else c a (from' (a + 1) b c n)

The glue between from and from' is the build function, which requires the Rank2Types language extension
and re-specialises these generic functions back to lists.

1 build :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]

2 build g = g (:) []

3

4 from a b = build (from' a b )

Thus far it seems we have only introduced more complexity without any apparent benefit. However,
this is the point that we run into the key idea: build is the antithesis of foldr such that the following
holds:

1 foldr k z (build g) = g k z

And this also gives us the main reductive rewrite rule to make this system work. So to summarize, we
have shown that generalizing lists to list producing functions to catamorphisms over list like arguments,
produces a common interface exposing the elimination of code. More concretely, because we keep g as
a generic function, we can choose to give it the arguments of the consequent foldr directly and thus
eliminate the intermediate list. This is again a situation like the assembly line workers analogy from
Section 1.2.4; It is very productive to communicate about functions taking and producing lists, but
actually doing so in a chained context is like wrapping and unwrapping boxes at every step.

Analogies aside, observe how our original expression can now completely be reduced to a single integer
value by rewriting from with this common interface.

1 foldr (+) 0 (from 1 10)

2 -- { inline from }

3 foldr (+) 0 (build (from' 1 10))

4 -- { apply rewrite rule }

5 from' 1 10 (+) 0

6 -- { inline from' }

7 \c n -> (if 1 > 10

8 then n

9 else c 1 (from' 2 10 c n)) (+) 0

10 -- { beta reduce }

11 if 1 > 10

12 then 0

13 else 1 + (from' 2 10 (+) 0)

14 -- { repeat until base case }

15 1 + 2 + ... + 9 + 10 + 0

16 -- { constant fold }

17 55

15



But what if there is no foldr in the expression? What if we use simpler functions like map or filter?
Well, as most introductory Haskell courses are likely to tell you, most list functions can be defined in
terms of foldr. Thus, we can similarly use rewrite rules to map all these common list functions to a
combination build and foldr. This idea also relieves us from the burden of having to define rewrite
rules for all the million possible combination of lists operations:

1 map f xs = build (\ c n -> foldr (\ a b -> c (f a) b) n xs)

2 filter f xs = build (\ c n -> foldr (\ a b -> if f a then c a b else b) n xs)

3 xs ++ ys = build (\ c n -> foldr c (foldr c n ys) xs)

4 concat xs = build (\ c n -> foldr (\ x y -> foldr c y x) n xs)

5 repeat x = build (\ c n -> let r = c x r in r)

6 zip xs ys = build (\ c n ->

7 let zip' (x:xs) (y:ys) = c (x,y) (zip' xs ys)

8 zip' _ _ = n

9 in zip' xs ys)

10 [] = build (\ c n -> n)

11 x:xs = build (\ c n -> c x (foldr c n xs))

We can see some these functions at work when looking at the definition of unlines and its subsequent
reductions through the build/foldr system:

1 unlines :: [String] -> String

2 unlines ls = concat (map (\l -> l ++ ['\n']) ls)

3 -- { rewrite concat and map }

4 unlines ls = build

5 (\c0 n0 -> foldr (\xs b -> foldr c0 b xs) n0 ( build

6 (\c1 n1 -> foldr (\l t -> c1 (build

7 (\c2 n2 -> foldr c2 ( foldr c2 n2 ( build

8 (\c3 n3 -> c3 '\n' n3))) l )) t) n1 ls )))

9 -- { apply rewrite rule foldr/build }

10 unlines ls = build

11 (\c0 n0 ->

12 (\c1 n1 -> foldr (\l t -> c1 (build

13 (\c2 n2 -> foldr c2 (

14 (\c3 n3 -> c3 '\n' n3) c2 n2 ) l)) t) n1 ls)

15 (\xs b -> foldr c0 b xs) n0)

16 -- { beta reduce }

17 unlines ls = build

18 (\ c0 n0 -> foldr (\l t -> foldr c0 t( build

19 (\c2 n2 -> foldr c2 (c2 '\n' n2) l))) n0 ls)

20 -- { apply rewrite rule foldr/build }

21 unlines ls = build

22 (\c0 n0 -> foldr (\l b -> foldr c0 (c0 '\n' b) l) n ls)

23 -- { inline build }

24 unlines ls = foldr (\l b -> foldr (:) ('\n' : b) l) [ ] ls

25 -- { inline foldr }

26 unlines ls = h ls

27 where h [] = []

28 h (l:ls) = g l

29 where g [] = '\n' : h ls

30 g (x:xs) = x : g xs

What we end up with is the most efficient implementation of unlines that we could possibly write by
hand [12]. Because the list ls is the input of the function we cannot remove it all together, but keep in
mind that when inlining call to this function at the use site, foldr/build fusion may apply again.
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2.4 Contemporary Haskell comprehension

2.4.1 Communicating in Core

We are not pioneers discovering the land of Core inspection. Since its inception, Core has been used
to communicate about programs and compiler interactions. Sifting through open issues on the GHC
compiler itself, one quickly comes across discussions elaborated by Core snippets. Consider issue #22207
titled ‘bytestring Builder performance regressions after 9.2.3 ’ for example.

While testing the performance characteristics of a bytestring patch meant to mitigate withForeignPtr-related
performance regressions, it was noticed that several of our Builder-related benchmarks have also regressed
seriously for unrelated reasons. The worst offender is byteStringHex, which on my machine runs about
10 times slower and allocates 21 times as much when using ghc-9.2.4 or ghc-9.4.2 as it did when using
ghc-9.2.3. Here’s a small program that can demonstrate this slowdown:

The author then provides two snippets containing the final Core representation of byteStringHex as
produced by the two different GHC version. Each of these documents contain around 400 lines of
unhighlighted code annotated with all available information. And while having all available information
sounds like a good thing (and it is in a way) it poses a serious practicality issue. Namely: it is exceedingly
difficult for a human to read and comprehend a certain aspect of the AST while having to filter out
another. Not to mention, it solidifies reading Core as an activity reserved for only the most expert Haskell
developers by scaring others away with a steep barrier to entry.

2.4.2 Current tooling

GHC itself

Core snippets of your program can easily be coerced out of GHC. The most information you can get
is the Core AST at each pass of the optimisation pipeline by using -ddump-core2core. To reduce the
signal-to-noise ratio of Core snippets, one can use any number of suppression options. It is common
to suppress type arguments and type applications for example. These are commonly uninteresting to
explicitly display because they are easily inferred by arguments to applications. Although types do
sometimes influence the optimisation transformations – making them interesting for display – they
generate such a degree of syntactical noise that suppression is often desirable.

As can be read in the GHC documentation, the following suppression flags are available to help to tame
the beast.

GHC flag Effect on Core printing

-dsuppress-all In dumps, suppress everything (except for uniques) that is suppress-
ible.

-dsuppress-coercions Suppress the printing of coercions in Core dumps to make them
shorter

-dsuppress-core-sizes Suppress the printing of core size stats per binding (since 9.4)
-dsuppress-idinfo Suppress extended information about identifiers where they are bound
-dsuppress-module-prefixes Suppress the printing of module qualification prefixes
-dsuppress-ticks Suppress ”ticks” in the pretty-printer output.
-dsuppress-timestamps Suppress timestamps in dumps
-dsuppress-type-applications Suppress type applications
-dsuppress-type-signatures Suppress type signatures
-dsuppress-unfoldings Suppress the printing of the stable unfolding of a variable at its

binding site
-dsuppress-uniques Suppress the printing of uniques in debug output (easier to use diff)
-dsuppress-var-kinds Suppress the printing of variable kinds

We can show how these suppression options greatly improve the readability of Core snippets by comparing
the desugared (unoptimized) Core of quicksort with and without the -dsuppress-all flags.
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First the source:

1 quicksort :: Ord a => [a] -> [a]

2 quicksort [] = []

3 quicksort (x:xs) = quicksort (filter (< x) xs) ++ [x] ++ quicksort (filter (>= x) xs)

The desugared Core without suppression:
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1 -- RHS size: {terms: 55, types: 47, coercions: 0, joins: 0/10}

2 quicksort :: forall a. Ord a => [a] -> [a]

3 [LclIdX]

4 quicksort

5 = \ (@ a_a1pH) ($dOrd_a1pJ :: Ord a_a1pH) ->

6 let {

7 $dOrd_a1w8 :: Ord a_a1pH

8 [LclId]

9 $dOrd_a1w8 = $dOrd_a1pJ } in

10 let {

11 $dOrd_a1w5 :: Ord a_a1pH

12 [LclId]

13 $dOrd_a1w5 = $dOrd_a1pJ } in

14 \ (ds_d1wq :: [a_a1pH]) ->

15 case ds_d1wq of wild_00 {

16 [] -> ghc-prim-0.6.1:GHC.Types.[] @ a_a1pH;

17 : x_a1hP xs_a1hQ ->

18 letrec {

19 greater_a1hS :: [a_a1pH]

20 [LclId]

21 greater_a1hS

22 = let {

23 $dOrd_a1pQ :: Ord a_a1pH

24 [LclId]

25 $dOrd_a1pQ = $dOrd_a1pJ } in

26 letrec {

27 greater_a1pT :: [a_a1pH]

28 [LclId]

29 greater_a1pT

30 = filter

31 @ a_a1pH

32 (let {

33 ds_d1wF :: a_a1pH

34 [LclId]

35 ds_d1wF = x_a1hP } in

36 \ (ds_d1wE :: a_a1pH) -> > @ a_a1pH $dOrd_a1pQ ds_d1wE ds_d1wF)

37 xs_a1hQ; } in

38 greater_a1pT; } in

39 letrec {

40 lesser_a1hR :: [a_a1pH]

41 [LclId]

42 lesser_a1hR

43 = let {

44 $dOrd_a1vV :: Ord a_a1pH

45 [LclId]

46 $dOrd_a1vV = $dOrd_a1pJ } in

47 letrec {

48 lesser_a1vY :: [a_a1pH]

49 [LclId]

50 lesser_a1vY

51 = filter

52 @ a_a1pH

53 (let {

54 ds_d1wD :: a_a1pH

55 [LclId]

56 ds_d1wD = x_a1hP } in

57 \ (ds_d1wC :: a_a1pH) -> < @ a_a1pH $dOrd_a1vV ds_d1wC ds_d1wD)

58 xs_a1hQ; } in

59 lesser_a1vY; } in

60 ++

61 @ a_a1pH

62 (quicksort @ a_a1pH $dOrd_a1w5 lesser_a1hR)

63 (++

64 @ a_a1pH

65 (GHC.Base.build

66 @ a_a1pH

67 (\ (@ a_d1wx)

68 (c_d1wy :: a_a1pH -> a_d1wx -> a_d1wx)

69 (n_d1wz :: a_d1wx) ->

70 c_d1wy x_a1hP n_d1wz))

71 (quicksort @ a_a1pH $dOrd_a1w8 greater_a1hS))

72 }
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The same desugared Core representation with the -dsuppress-all flag:

1 -- RHS size: {terms: 55, types: 47, coercions: 0, joins: 0/10}

2 quicksort

3 = \ @ a_a1pH $dOrd_a1pJ ->

4 let { $dOrd_a1w8 = $dOrd_a1pJ } in

5 let { $dOrd_a1w5 = $dOrd_a1pJ } in

6 \ ds_d1wq ->

7 case ds_d1wq of wild_00 {

8 [] -> [];

9 : x_a1hP xs_a1hQ ->

10 letrec {

11 greater_a1hS

12 = let { $dOrd_a1pQ = $dOrd_a1pJ } in

13 letrec {

14 greater_a1pT

15 = filter

16 (let { ds_d1wF = x_a1hP } in

17 \ ds_d1wE -> > $dOrd_a1pQ ds_d1wE ds_d1wF)

18 xs_a1hQ; } in

19 greater_a1pT; } in

20 letrec {

21 lesser_a1hR

22 = let { $dOrd_a1vV = $dOrd_a1pJ } in

23 letrec {

24 lesser_a1vY

25 = filter

26 (let { ds_d1wD = x_a1hP } in

27 \ ds_d1wC -> < $dOrd_a1vV ds_d1wC ds_d1wD)

28 xs_a1hQ; } in

29 lesser_a1vY; } in

30 ++

31 (quicksort $dOrd_a1w5 lesser_a1hR)

32 (++

33 (build (\ @ a_d1wx c_d1wy n_d1wz -> c_d1wy x_a1hP n_d1wz))

34 (quicksort $dOrd_a1w8 greater_a1hS))

35 }

36

A drastic improvement for sure, but there are still some things to be left desired. A simpler language like
Core generally needs more code to express the same thing, we can thus expect to generate more data
than the original Haskell code. Moreover, should you be interested the state off the program at each of
the intermediate steps, you can expect to see about 20x more data still. Unless you know exactly what to
search for, this begs for a more ergonomic, filtered view of the data.

GHC Plugins

GHC – by nature a playground for academics and enthusiasts alike – is extremely flexible when it comes
to altering its functionality. Using the now well established plugin interface, one is able to hook into
almost any operation of the front- and midsection of the compiler. One such place is managing the
core2core passes that will be run on the current module. This point of entry can be used to intersperse
each core2core pass with an identity transformation that smuggles away a copy of the AST in its full
form as a side effect.

One such existing plugin is ghc-dump [10]. Besides extracting intermediate ASTs, it defines an auxiliary
Core definition to which it provides a GHC version agnostic conversion. This has the increased benefit of
being able to directly compare snapshots from different GHC versions; A not uncommon task as discussed
in Section 2.4.1. And while certainly being an improvement over plain text representation, we believe
exploring and comparing such dumps requires a more rich interface.

20



Chapter 3

Methods

We describe how we made hs-sleuth, the tool proposed in this thesis. We start with a general
overview of the architecture and then zoom in on all the technical design decisions made during the
implementation.

3.1 Requirements

The following prime requirements are identified to guide the implementation process.

• GHC ≥ 8.4 cross compatible, Important to facilitate inspecting the effects of changes in the
compiler on the same source.

• Simple and non invase steps to create dumps, Large and established code bases should be
able to use hs-sleuth.

• Cross-platform ability to explore dumps, hs-sleuth should be able to run on all major
platforms, preferably without any additional dependencies.

• Extendable, Not everything needs to be supported (think unfoldings) but should be extendable in
the future.

3.2 Architecture

We envisioned a high degree of interactability with the snapshots of the intermediate ASTs. To realise
this in a cross-platform, dependency-free fashion, we decided to use a browser based frontend application.
Because the concept of mutually recursive algebraic datatypes are very pervasive in the Core AST, we
felt it would be extremely helpful if the frontend language had first class support for this. This quite
naturally led to us to Elm, a functional language that compiles to Javascript [6].

Figure 3.1: Dataflow diagram of hs-sleuth

3.3 Creating the GHC plugin

The least invasive option would be to parse the output of GHC given a number of -ddump flags. However,
for the sake of convenience and robustness, we instead decided to create a plugin that hooks directly into
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the core2core pipeline and captures the ASTs completely. By interspersing each transformation with a
snapshot action, we extract as much information from GHC as we could reasonably hope for.

3.3.1 Capturing the information

If we wish to support multiple recent versions of GHC we need to deal with the fact that the Core ADT
has undergone a few minor changes and additions. We believe that the solution is to create some auxiliary
definition to which we can map various versions of the Core ADT. This was done very efficiently by
building upon the existing ghc-dump package, which already implemented such a representation as well
as a version agnostic conversion module with the help of min_version_GHC macro statements [10].

What ghc-dump also intelligently addresses, is the issue of possible infinite recursion. This problem arises
through the unfolding inside the IdInfo struct attached to each variable. This effectively makes any
Core expression closed as the binding information is stored in the variable itself, to great utility of the
inliner. However, when a variable represents a recursive – or even mutually recursive – value, the inlining
will contain itself. This fact implies that we can never serialise the AST to a finite value. Therefore,
ghc-dump demotes each usage site of a variable to an identifier referencing its binding site. This allows
us to obtaining a finite representation that we can later reconstruct by traversing the AST with an
environment.

3.3.2 Globally unique variables

It is not strictly necessary for variable names in a Core program to be unique. A variable name always
references the nearest binding site. However, is not very convenient when we want to analyze a certain
variable in isolation. After all, we cannot know if two separate free variables with the same name are
actually the same variable or live in a different scope. Consider the definition of tail:

1 tail xs = case xs of

2 x:xs -> xs

3 _ -> error "tail of empty list"

We cannot simply refer to the variable xs as that name has two different binding sites. We solve this by
running a uniquefication pass as part of each snapshot that freshens all duplicate names in the entire
module after each core2core transformation. After this operations every variable is globally unique. This
gives us the ability to refer to a binding site and its usages unambiguously using simply an identifying
integer. The big idea here is that any viewing logic is completely decoupled from binding semantics:

1 tail xs_0 = case xs_0 of

2 x_1:xs_2 -> xs_2

3 _ -> error "tail of empty list"

It is possible to omit the numbered suffixes when displaying the AST, but internally it is very useful to
be able to make this distinction without any further effort.

3.3.3 Detecting changes

If a module is of a slightly larger size, it becomes difficult to spot the changes made by a certain
transformation, if there even are any. To address this, we decided to develop a feature that allows for
the filtering of code that remains unchanged. Let us define what unchanged means in this context. It is
important to make the subtle distinction between syntactic equivalence and α-equivalence. The difference
is that the latter is agnostic to the names of variables, as long as they refer to the same binding site.

We can quickly solve the decision problem of syntactic equality by calculating a hash of an expression
beforehand and simply checking for equality of this hash value. We considered using recent improvements
of full sub expression matching [17], but decided against it as it was not clear how to effectively present
the results nor did it rarely prove useful to isolate changes in the AST as they were rarely local to begin
with. Instead, we opted for a far simpler approach where we only hash the top-level definitions, and
provide a more crude option to hide any top-level definitions that have not changed at all.
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All in all, we still recommend that issues are attempted to be reproduced in small modules as the amount
of noise can quickly become overwhelming despite change detection.

3.4 Creating the frontend application

We begin with a brief introduction to the Elm language and its concepts. Elm is very much a domain
specific language; It is similar enough to Haskell to be familiar yet sufficiently simplified to be a frontend
only language. It constrains the architecture to a trinity of concepts:

• Model - The state of the application.

• Message - Typically abbreviated to Msg, this describes all the events that can occur and are
processed by the update : Msg -> Model -> Model function.

• View - The way the state is rendered: view: Model -> Html Msg. The Html type is parameterized
over the Msg such that it event emitters like onClick can only produce Msgs that are handled by
update.

The big idea is to have exclusively pure and complete functions to handle viewing and updates. These
updates are triggered by emitted Msgs that are the result of user interaction like hovering, clicking,
etc. The increment/decrement example is a testament to the simplicity focused design of the language
[6]:

1 import Browser

2 import Html exposing (Html, button, div, text)

3 import Html.Events exposing (onClick)

4

5 main = Browser.sandbox { init = 0, update = update, view = view }

6

7 type Model = Int

8 type Msg = Increment | Decrement

9

10 update : Msg -> Model -> Model

11 update msg model =

12 case msg of

13 Increment -> model + 1

14 Decrement -> model - 1

15

16 view : Model -> Html Msg

17 view model =

18 div []

19 [ button [ onClick Decrement ] [ text "-" ]

20 , div [] [ text (String.fromInt model) ]

21 , button [ onClick Increment ] [ text "+" ]

22 ]

Unlike Haskell, there is no explicit IO in user code. All side effects are encapsulated by the framework,
typically in the form of a function that takes a Msg constructor and populates it with a Result x a

value for failure handling. Given this situation it feels justified to disallow any form of errors and by
extent incomplete functions. This powerful property gives us great confidence in the robustness of our
application.

3.4.1 Reproducing the AST

It would have been extremely tedious to have to constantly maintain a Core ADT in Elm along with a
JSON parser that is compatible with the JSON output of the Haskell plugin. Luckily, we were able to
use the haskell-to-elm [9] package to automatically generate all the required boilerplate code.

For example the Alt datatype – representing an arm of a case expression – is defined as follows in our
AST:
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1 data Alt = Alt

2 { altCon :: AltCon -- The constructor being matched on

3 , altBinders :: [Binder] -- The variables being bound during the deconstruction

4 , altRHS :: Expr -- The right-hand side of the case arm

5 }

6 deriving (Generic)

7

8 deriving instance SOP.Generic Alt

9 deriving instance SOP.HasDatatypeInfo Alt

10 type AltElm = ElmType "Generated.Types.Alt" Alt

11 deriving via AltElm instance Aeson.ToJSON Alt

12 deriving via AltElm instance HasElmType Alt

13 deriving via AltElm instance HasElmDecoder Aeson.Value Alt

Note how we derive the Aeson.ToJSON instance via the ElmType machinery. This control allows us to
generate a compatible and robust JSON parser for Elm. The auto-generated Elm datatype and parser
(Decoder in Elm speak) look like this:

1 type alias Alt =

2 { altCon : AltCon

3 , altBinders : List Binder

4 , altRHS : Expr

5 }

6

7 altDecoder : Json.Decode.Decoder Alt

8 altDecoder =

9 Json.Decode.succeed Alt |>

10 Json.Decode.Pipeline.required "altCon" altConDecoder |>

11 Json.Decode.Pipeline.required "altBinders" (Json.Decode.list binderDecoder) |>

12 Json.Decode.Pipeline.required "altRHS" exprDecoder

Conveniently, it would be very easy in the future to extend the Haskell ADT with additional information
because it is the single source of truth; The Elm type and JSON machinery can then be regenerated with
a single command.

Additionally, we use this pipeline embellish the AST to allow for reconstruction of the demoted call sites
(see Section 3.3.1). Specifically, we add a field to each BinderId of the type:

1 type BinderThunk = Found Binder | NotFound | Untouched

Initially this field is set to the Untouched variant. Once the finitely encoded AST is decoded into the
Elm universe, a reconstruction traversal takes place that, with the help of an environment, strengthens
the BinderThunk with a reference to its binder. The NotFound variant exits purely for verification
purposes and should never occur with sound inputs. At this time, the unfoldings of binders are not yet
considered, breaking the infinite recursion problem. This important because unlike Haskell Elm is strict,
the reconstruction would thus never terminate on an infinite datatype. In the future, it is conceivable to
run an on demand reconstruction as Elm. Furthermore, the reconstruction pass does not significantly
increase memory usage as Elm’s single static assignment semantics dictate that the fields contained in a
BinderThunk are references not copies.

After this initial reconstruction we again no longer need to keep binding semantics in mind, and we
can isolate subexpressions without losing information about the binding site of now seemingly free
variables.

3.4.2 Pretty printing

It certainly should be considered useful to display the Core in exactly the same way that GHC does. After
all, this is what programmers are currently already used to and its design has been given a lot of thought.
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However, we felt a need to first create a separate representation that is tailored to those who have not
seen Core before. We discuss the pros and cons of this decision more extensively in Section 5.3.

Haskell programmers that care enough to inspect the interaction with the compiler are likely to be avid
readers of at least basic Haskell syntax. We believe that such a representation is a suitable way to
minimize the shock reactions in newcomers, as well as provide a more comfortable viewing experience for
those who are primarily interested in the structure of their program throughout optimisation. Therefore,
we decided to create a pretty printer that attempts to be as similar to Haskell source as possible. Just
like GHC, we used the pretty printing method developed by Wadler [26], implemented in Elm using
elm-pretty-printer [23].

To compare, consider again the Core representation presented in Section 2.4.2 with the quicksort
representation produced by our pretty printer:

1 quicksort :: forall a. Ord a -> [a] -> [a]

2 quicksort a $dOrd ds = case ds of

3 { : x xs -> GHC.Base.++ @a

4 (quicksort @a $dOrd

5 (GHC.List.filter @a

6 (\ds -> GHC.Classes.< @a $dOrd ds x) xs))

7 (GHC.Base.++ @a

8 (GHC.Base.build @a

9 (\a c n -> c x n))

10 (quicksort @a $dOrd

11 (GHC.List.filter @a

12 (\ds -> GHC.Classes.> @a $dOrd ds x) xs)))

13 [] -> GHC.Types.[] @a

14 }

Notice that although this might look like normal Haskell, it contains explicit type variables like a, hinting
at the SystemFC nature of Core. Furthermore, operators application are written in Polish notation, that
is the operator comes before its arguments. We decided this to be more sensical because the type values
muddy the waters when it comes to the clarity of infix notation, note this alternative form:

1 -- Polish notation

2 \ds -> GHC.Classes.> @a $dOrd ds x

3

4 -- Infix notation

5 \ds -> ds (GHC.Classes.> @a $dOrd) x

To facilitate syntax highlighting, the pretty printer adds the appropriate token identifiers such that
pygments [11] can be used to colorize the output.

3.4.3 Including the source

It goes without saying that the source code of a module is an essential part of any analysis. Therefore,
the plugin copies the source code and runs it through the pygmentize [11] tool to obtain an HTML
representation of the source code that is highlighted exactly the same way as the pretty printed Core.
This HTML source code is embedded in the output of the dump.

The artifacts produced by a single module now look like this:
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1 Quicksort_0.json

2 Quicksort_10.json

3 Quicksort_11.json

4 Quicksort_12.json

5 Quicksort_13.json

6 Quicksort_14.json

7 Quicksort_15.json

8 Quicksort_16.json

9 Quicksort_17.json

10 Quicksort_18.json

11 Quicksort_1.json

12 Quicksort_2.json

13 Quicksort_3.json

14 Quicksort_4.json

15 Quicksort_5.json

16 Quicksort_6.json

17 Quicksort_7.json

18 Quicksort_8.json

19 Quicksort_9.json

20 Quicksort.html

21 Quicksort_meta.json

All these files will be compressed in a zip archive to keep the size of the output smaller. It also makes for
a convenient atomic entity to load up in the frontend application where it is unzipped on the fly.

3.4.4 Unfoldings and capture sizes

As mentioned in Section 3.3.1, the entire body of a variable is sometimes saved as part of its IdInfo
which is exported to interface files such that inlining can take place across modules. This part of the
IdInfo struct is called the unfolding of a variable. By nature, this can be a very large expression. At
this time, we have no need for the exact unfolding in the frontend application, other than knowing it
exists. Therefore, we decided to replace any unfolding with a string literal to indicate that the unfolding
was removed:

1 removeUnfolding :: Unfolding -> Unfolding

2 removeUnfolding u@CoreUnfolding {..} =

3 u { unfTemplate = ELit (MachStr (T.pack "unfolding removed by plugin")) }

4 removeUnfolding x = x

This reduces the size of captures in some cases by a factor of 2.

3.4.5 Interactions

Aside from a more human-readable representation and syntax highlighting, the user is further supported
by a number of interactive features. These include:

• Highlighting binding and call sites of a variable on hover

• Renaming variables

• Toggling various Core display options such as hiding typelevel terms and type applications, desugaring
leading lambda abstractions, etc.

• Multiple approaches to hiding toplevel bindings such as hiding all but the selected binding, which
can conveniently be followed up by un-hiding its referenced bindings transitively.

• A variable detail popup that shows all the available information of a variable.

• Querying variables and their types on Hoogle.
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3.4.6 Improving performance with cache semantics

The way that Elm operates – like many other interactive browser based applications – is by rendering
the HTML on every update and then diffing the result with the current state of the DOM to create a
minimal change list. This is generally a very good strategy because mutating the DOM is by far the most
dominant cost contributor. However, when it comes to pretty printing a large Core expression, the view
function starts to incur a significant cost. This is wasteful because many updates do not actually affect
the output of the pretty printer (events like onHover and onClick for example). Initially this led to some
serious usability issues where the application would stutter and freeze.

We were able to overcome this problem using the Html.Lazy module. which takes some HTML producing
closure and its arguments separately. If on some update the arguments have not changed compared to the
last update, the closure is not evaluated and a cached result is returned. Regardless, the aforementioned
diffing still takes place, reducing the cost of the update to something negligible. Of course, we cannot
get around the fact that any updates that do affect the output of the pretty printer might still cause
some stutters, but the frequency of such updates is generally far lower. A dataflow diagram is shown in
Fig. 3.2.

Figure 3.2: A graph showing the logic behind the caching mechanism.

Elegantly, because f is guaranteed to be pure, the cache is guaranteed to always return the same value as
the evaluation would have.

3.4.7 Note on deployment

By virtue of being compiled to solely a stateless Html/JS application, the frontend can easily and cheaply
be deployed to any static file hosting service. Because the dump files are never send to the server, we can
discard any privacy concerns while still providing a no effort method to analyze the dumps. Anyone is still
free of course, to build and host their own build of the frontend which is similarly open sourced.

Currently some CSS files are served from a CDN but it would be trivial to bundle them with the
application, making even an internet connection no longer a requirement.
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Chapter 4

Results

We evaluate our tool by applying it to a number of real world cases. Firstly we reproduce the issue
underlying the work of inspection-testing [3], which also serves as a comprehensive, didactic example
of how to use our tool. The second case study is about stream fusion and focuses on the way that the
theory differs from the true implementation. In doing so, it covers a large spectrum of GHC’s optimisation
pipeline. Thirdly, we present how we were able to use our tool to find a performance bug in GHC itself and
how we were furthermore able to use it to verify a possible solution. Finally, we compare our experience
with hs-sleuth with that of using the existing output that can be obtained from GHC today.

4.1 Diagnosing a failing inspection test in Text

Hearkening back to inspection-testing discussed in Section 1.2.4, we put ourselves in the shoes of a
programmer who gets surprised by a failing inspection while using text-1.2.3.2 test and reason how
hs-sleuth may be employed to diagnose the problem.

To summarize, we expected that the function countChars – which counts the number of characters in a
ByteString by composing three functions in the Text library – will in its final form not actually construct
a Text value.

1. Isolate the problem Modules typically contain more than 1 function and during the core2core
transformations many more auxiliary functions are added. Furthermore, many functions are inlined to
produce ever more code. Despite hs-sleuth being designed with features to comprehend medium-sized
modules, it is still most helpful to temporarily isolate the failing test case into a separate module:

1 {-# LANGUAGE TemplateHaskell #-}

2

3 module InspectionTests where

4

5 import Test.Inspection

6 import qualified Data.Text as T

7 import qualified Data.Text.Encoding as TE

8 import Data.ByteString

9

10 countChars :: ByteString -> Int

11 countChars = T.length . T.toUpper . TE.decodeUtf8

12

13 -- the failing test case

14 inspect $ 'countChars `hasNoType` ''T.Text

The following error is produced by the build:
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app/InspectionTests.hs:21:1: countChars `hasNoType` Data.Text.Internal.Text failed:

# ...

# 700 lines of Core as seen at the end of the core2core pipeline

# ...

700 lines of textual data is generated by inspection-testing from just this one function! It is also
incomplete in the sense that it does not show the process that produced this final artifact.

2. Creating a capture Because we only want to create a capture of this module, we can use an
exported TemplateHaskell primitive that registers the plugin for the current module only by simply
adding the dumpThisModule slice anywhere at the top level:

{-# LANGUAGE TemplateHaskell #-}

import HsSleuth.Plugin (dumpThisModule)

...

dumpThisModule

Following a successful build, we can bundle the generated artifacts to a zip archive by running:

$ cabal run hs-sleuth-zip

Attempting to archive dump files in ./dist-newstyle/coredump-Default

Archiving 23 files

Created /home/hugo/repos/hs-sleuth/test-project/dist-newstyle/Default.zip

3. Finding the root cause We navigate to core.hugopeters.me and upload the zip archive we just
produced.
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We then click the green arrow to reference the capture in the staging area. Here we could elect to stage
more than one capture if we want to compare them. In this case we are only interested in the current
situation, and so we just open a single panel tab with this single capture.

On the left, we are immediately presented with a number of viewing options. To the right we can see
the rendered Core, under influence of the view options. Above it, there is a slider indicating that we are
looking at the Core in the desugared stage (so without any transformations yet applied). Scrolling this
slider will reveal the intermediate Core ASTs that were produced by the compiler. Whenever rewrite
rules are fired, they are included as comments at the top of the module.

As you can see, the desugaring process has produced another top-level definition, namely $trModule.
Since we do not care for anything but our countChars function at this time, we can elect to filter out all
other definitions, including those that will be generated in the future:

If we then scroll all the way to the end, we get the same final Core AST as we saw in the error message.
Granted, we now have syntax highlighting and a slightly more readable representation, but it is still
unwieldy. Using a basic string search we can find the needle in the haystack:
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But we don’t really care about finding the needle, but more so how it got it there. Using the scroll bar,
we can go back in time to a moment before everything was inlined. Specifically, we can go back to the
first moment where no Text constructor existed yet:

We find a far more manageable definition of countChars that has partially been transformed to operate
on streams (Stream Char). This is a concept to facilitate fusion based on the work of D. Couts et al. [5],
we will discuss its theory more in depth in the next section. For now, it is only important to realise that
instead of embedding the incoming ByteString in a Text value, we are converting to a Stream Char

first before unstream converts to an actual Text. This final conversion is not necessary, because using
length function for type Stream Char directly would suffice.

So we can conclude that the text’s fusion machinery did not produce the optimal result because it is
conceivable to find the length of a stream directly using some alternative length :: Stream Char -> Int

function.

4. Back to the future Luckily, we were reliving someone else’s experience, and we have the luxury of
seeing how the situation unfolded. So, what we can do is make another capture with the slightly more
recent 1.2.4.0 version of the library. inspection-testing already told us that this newer version does
not produce a Text constructor. We can compare the two captures to explore when they diverge.
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Because we now have more than 1 capture open at the same time we can use the Hide common definitions
feature to find the first moment where the two captures diverge. This happens to be at phase 1 of the
simplifier pass:

For clarity, let us extract the text from both panels and compare them:

1 {-

2 Text-Bugged.zip

3 RULES FIRED:

4 STREAM stream/decodeUtf8 fusion (Data.Text.Encoding)

5 -}

6

7 countChars :: ByteString -> Int

8 countChars x = Data.Text.length

9 (Data.Text.Internal.Fusion.unstream

10 (Data.Text.Internal.Fusion.Common.toUpper

11 (Data.Text.Internal.Encoding.Fusion.streamUtf8 Data.Text.Encoding.Error.strictDecode x)))

12

13 ------------------------------------------------------------------

14 {-

15 Text-Patched.zip

16 RULES FIRED:

17 STREAM stream/decodeUtf8 fusion (Data.Text.Encoding)

18 STREAM stream/unstream fusion (Data.Text.Internal.Fusion)

19 -}

20

21 countChars :: ByteString -> Int

22 countChars x = Data.Text.Internal.Fusion.length

23 (Data.Text.Internal.Fusion.Common.toUpper

24 (Data.Text.Internal.Encoding.Fusion.streamUtf8 Data.Text.Encoding.Error.strictDecode x))

The most notable difference is the extra rewrite rule that was fired in the patched version (line 18).
Unfortunately, we have yet to discover a way retrieve definition of fired rewrite rules from GHC. As such,
they are not available in hs-sleuth itself. But given that we know its name and originating module, we
can find it in the source of text without too much effort:
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{-# RULES "STREAM stream/unstream fusion" forall s. stream (unstream s) = s #-}

From this we learn that at some point there was a stream/unstream pair to remove. Another difference
is the module from which the length function is imported (Data.Text.Internal.Fusion.length over
Data.Text.length). Like we predicted earlier, the patched version uses a variant that operates directly
on streams:

Given that in the previous pass the captures were identical, and since no rewrite rule fired regarding
length, we can speculate that the difference is caused by inlining length. If we collect the definition of
length from both versions of the text library we get:

-- Text-Bugged.zip

length :: Text -> Int

length t = S.length (stream t)

{-# INLINE [0] length #-}

-------------------------------------------

-- Text-Patched.zip

length :: Text -> Int

length t = S.length (stream t)

{-# INLINE [1] length #-}

The only difference is the phase annotation of the INLINE pragma. The maintainers somehow decided that
it was better to inline length one simplifier phase earlier (remember, phase 1 comes before phase 0). And
they turned out to be right, because inlining earlier uncovered the opportunity for the stream/unstream
rule to fire and remove the need to allocate an intermediate Text value; Another exemplary manifestation
of the Cascade Effect.

5. Epilogue: Brittleness of implicit fusion At or around the same time as Breitner identified the
failed fusion case [3], Andrew Lelechenko had discovered a problem involving the tail function [14] under
fusion. tail just needs to drop the first character. Despite needing to check whether to skip 1 or 2 bytes
because of the UTF-16 encoding, this can be done in O(1) time and memory. Obviously this property
should still hold when applying tail twice in row. As it turns out, it does not. The following steps
occur:

tail . tail

-- { inline to fusion variant }

unstream . S.tail . stream . unstream . S.tail . stream

-- { apply 'stream . unstream = id' }

unstream . S.tail . S.tail . stream

By constructing a stream we have become committed to traversing the entire structure (in unstream)
where it was not needed at first, yielding an O(n) time and memory version after “optimisation”. This is
different from the situation in countChars, where UTF-16 already dictated O(n) runtime.

The ending to this story is quite simply that implicit fusion was disabled entirely [14] for similar functions.
Frequent text contributor, Oleg Grenrus, remarked the following on the proposal to remove them:

“I think this is the right thing to do. Implicit fusion is unpredictable, and you explain, doesn’t even work in
simple cases.”

33



Instead, users can now opt in by using the stream variant of such functions explicitly. This is a tragic
example of how optimisation can be unpredictable, and by extent, how people would favour predictability
over automatic performance transformations that risk making the program slower in some cases.

4.2 Lists vs Streams

Besides short-cut fusion [12], there has been research into other fusion frameworks. One such framework
is stream fusion [5]. Amusingly, the GHC wiki page about optimisation still mentions that stream fusion
will be the default in the future [8]. It is our understanding that this is no longer the intention, as join
points reveal fusion opportunities that are not possible with the stream fusion framework [16].

Regardless, stream fusion makes for an interesting case study to explore its effects throughout the
transformation pipeline. The original implementation accompanied by the paper is still available as an
archive on Hackage ([24]) and can reasonably easy be made to compile under modern GHC versions. Our
goal here is not to give a detailed explanation of the framework based on the paper itself, but rather
show how we can use hs-sleuth to gain an intuition about how code that we did not create ourselves
interacts with the compiler and explain why.

The big idea underlying stream fusion is actually not that different from the build/foldr building blocks.
Instead of creating an existentially typed build functions, an existentially typed datatype is used. Inside
this datatype is a continuation function that produces the next element of the stream. This next element
can also be Skip to indicate that the element was dropped, or Done to indicate that the stream is
finished:

data Stream a =

forall s. Stream (s -> Step a s) s

data Step s a

= Yield a s

| Skip s

| Done

To gain a better intuition about how this type operates, it helps to consider the stream and unstream

functions which facilitate back and forth conversion to canonical lists:

1 stream :: [a] -> Stream a

2 stream xs = Stream next xs

3 -- the stream keeps track of the remaining list and peels of the

4 -- head at each step

5 where next [] = Done

6 next (x:xs) = Yield x xs

7

8 unstream :: Stream a -> [a]

9 unstream (Stream next s) = go s

10 -- effectively 'go' chains 'next' unto itself until a 'Done' is reached

11 where go s = case next s of

12 Done -> []

13 Skip s -> go s

14 Yield x s -> x : go s

One could describe a stream as a stateful generator function. The type of this state is hidden behind the
existentially quantified type s. [5] This is actually quite similar to the concept of an iterator in imperative
languages.

Why would we want to introduce this rather complex type? The answer is that it allows us to write
functions over streams that are non-recursive and therefore be fused by already existing optimisations
like inlining and the worker/wrapper transformation. But before we get to that point, let us first redefine
some common functions like map and filter in terms of streams:
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1 -- In both these functions the state is itself a stream

2 map_s :: (a -> b) -> Stream a -> Stream b

3 map_s f = Stream next

4 -- replaces the 'next' function with one that applies 'f' to any 'Yield' and propagates itself

5 where next (Stream next s) = case next s of

6 Done -> Done

7 Skip s -> Skip (Stream next s)

8 Yield x s -> Yield (f x) (Stream next s)

9

10 filter_s :: (a -> Bool) -> Stream a -> Stream a

11 filter_s p = Stream next'

12 -- replaces the 'next' function witih one that maps 'Yield' to 'Skip' if 'p' holds and propagates itself

13 where next' (Stream next s) = case next s of

14 Done -> Done

15 Skip s -> Skip (Stream next s)

16 Yield x s -> if p x then Yield x (Stream next s) else Skip (Stream next s)

These variants can be used to create drop-in replacements for the canonical built-in functions.

1 map :: (a -> b) -> [a] -> [b]

2 map f = unstream . map_s f . stream

3

4 filter :: (a -> Bool) -> [a] -> [a]

5 filter p = unstream . filter_s p . stream

It is important to realise that these definitions are not subject to existing rewrite rules for the eponymous
functions from Data.List. With our framework in place, we can now involve a recurring example,
halves:

1 halves :: [Int] -> [Int]

2 halves = map (*2) . filter even

We already know how GHC’s short-cut fusion will treat this function, so let us assume we are now using
the stream fusion variants instead and that we have convinced GHC to inline these definitions:

1 halves :: [Int] -> [Int]

2 halves = unstream . map_s (`div` 2) . stream . unstream . filter_s even . stream

Thus far, this doesn’t appear to be a good idea at all: we are wasting a lot of work converting between
streams and lists. However, there is a rather obvious avenue for elimination given the equivalence
stream . unstream = id:

1 {-# RULES "stream/unstream" forall s. stream (unstream s) = s #-}

2

3 --after firing

4 halves :: [Int] -> [Int]

5 halves = unstream . map_s (`div` 2) . filter_s even . stream

Of course this only solved a problem we introduced ourselves in the first place, but this is the moment the
big idea kicks in: because map_s and filter_s are not defined recursively, they are subject to inlining.
Using our tool we can observe what happens in practice during the transformation of halves without
any further assumptions. From the very start:
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1 --[0] Desugared

2 halves :: [Int] -> [Int]

3 halves xs = Data.List.Stream.map

4 (

5 let div_int = GHC.Real.div GHC.Real.$fIntegralInt

6 in

7 let two = GHC.Types.I# 2

8 in \v -> div_int v two)

9 (Data.List.Stream.filter

10 (GHC.Real.even GHC.Real.$fIntegralInt) xs)

We have renamed the let bound variables within hs-sleuth to something descriptive, making the code
more readible for the passes to come. We continue this practice for the upcoming changes where warranted.
Then the InitialPhase of the simplifier is invoked:

1 --[1] Simplifier [InitialPhase]

2 {-

3 RULES FIRED:

4 Class op div (BUILTIN)

5 filter -> fusible (Data.List.Stream)

6 map -> fusible (Data.List.Stream)

7 STREAM stream/unstream fusion (Data.Stream)

8 -}

9

10 halves :: [Int] -> [Int]

11 halves xs = Data.Stream.unstream

12 (Data.Stream.map

13 (

14 let two = GHC.Types.I# 2

15 in \v -> GHC.Real.$fIntegralInt_$cdiv v two)

16 (Data.Stream.filter

17 (GHC.Real.even GHC.Real.$fIntegralInt)

18 (Data.Stream.stream xs)))

19

map and filter have now been rewritten to their stream variants (by the two fusible rules) and right
after that the complementing stream/unstream pair has been removed by the stream/unstream rule.
The version we have now is effectively the same as our original hypothesis before we started exploring the
real world situation. Moving on:

1 --[2] Specialise

2 $dReal :: Real Int

3 $dReal = GHC.Real.$p1Integral GHC.Real.$fIntegralInt

4

5 $dEq :: Ord Int

6 $dEq = GHC.Real.$p2Real $dReal

7

8 $dEq1 :: Eq Int

9 $dEq1 = GHC.Classes.$p1Ord $dEq

10

11 $dNum :: Num Int

12 $dNum = GHC.Real.$p1Real $dReal

13

14 $seven :: Int -> Bool

15 $seven n = GHC.Classes.== $dEq1

16 (GHC.Real.rem GHC.Real.$fIntegralInt n

17 (GHC.Num.fromInteger $dNum 2))

18 (GHC.Num.fromInteger $dNum 0)

19

20 halves :: [Int] -> [Int]

21 halves xs = Data.Stream.unstream

22 (Data.Stream.map

23 (

24 let two = GHC.Types.I# 2

25 in \v -> GHC.Real.$fIntegralInt_$cdiv v two)

26 (Data.Stream.filter

27 (GHC.Real.even GHC.Real.$fIntegralInt)

28 (Data.Stream.stream xs)))
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The specialise phase has generated a couple – currently unused – auxiliary functions like seven (‘s’ as
in ‘specialised even’). This definition will become relevant later as the resolver of finding a specific
Num instance. We can expect to see this functions being used in the near future. Coming up is the
transformation that floats definitions up.

1 -- [3] Float out

2

3 -- ... (omitted)

4

5 two :: Int

6 two = GHC.Types.I# 2

7

8 div2 :: Int -> Int

9 div2 v = GHC.Real.$fIntegralInt_$cdiv v two

10

11 even :: Int -> Bool

12 even = GHC.Real.even GHC.Real.$fIntegralInt

13

14 halves :: [Int] -> [Int]

15 halves xs = Data.Stream.unstream

16 (Data.Stream.map div2

17 (Data.Stream.filter even

18 (Data.Stream.stream xs)))

The float out phase has, unsurprisingly, floated out some expressions to fresh top-level binds. In itself
this has not achieved much, but it is generally a curveball to the simplifier:

1 -- [4] Simplifier [Phase=2]

2 {-

3 RULES FIRED:

4 Class op £p1Integral (BUILTIN)

5 Class op £p2Real (BUILTIN)

6 Class op £p1Ord (BUILTIN)

7 Class op £p1Real (BUILTIN)

8 Class op fromInteger (BUILTIN)

9 Integer -> Int# (wrap) (BUILTIN)

10 Class op fromInteger (BUILTIN)

11 Integer -> Int# (wrap) (BUILTIN)

12 Class op == (BUILTIN)

13 Class op rem (BUILTIN)

14 divInt# (BUILTIN)

15 SPEC/Streaming even @Int (Streaming)

16 -}

17

18 zero :: Int

19 zero = GHC.Types.I# 0

20

21 $seven :: Int -> Bool

22 $seven n = case n of

23 { I# ipv -> GHC.Classes.eqInt

24 (GHC.Types.I#

25 (GHC.Prim.remInt# ipv 2)) zero

26 }

27

28 div2 :: Int -> Int

29 div2 v = case v of

30 { I# ww1 -> GHC.Types.I#

31 (GHC.Prim.uncheckedIShiftRA# ww1 1)

32 }

33

34 halves :: [Int] -> [Int]

35 halves xs = Data.Stream.unstream

36 (Data.Stream.map div2

37 (Data.Stream.filter $seven

38 (Data.Stream.stream xs)))

Simplified indeed, the specialised functions have been adopted and sometimes inlined. However, any signs
of fusion can not be found yet however. Let us wind the clock forward another simplifier invocation.
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1 --[5] Simplifier [Phase=1]

2 {-

3 RULES FIRED:

4 ==# (BUILTIN)

5 tagToEnum# (BUILTIN)

6 tagToEnum# (BUILTIN)

7 -}

8

9 $seven :: Int -> Bool

10 $seven n = case n of

11 { I# ipv -> case GHC.Prim.remInt# ipv 2 of

12 { 0 -> GHC.Types.True

13 _ -> GHC.Types.False

14 }

15 }

16

17 div2 :: Int -> Int

18 div2 v = case v of

19 { I# ww1 -> GHC.Types.I#

20 (GHC.Prim.uncheckedIShiftRA# ww1 1)

21 }

22

23 halves :: [Int] -> [Int]

24 halves xs = Data.Stream.unstream

25 (Data.Stream.map div2

26 (Data.Stream.filter $seven

27 (Data.Stream.stream xs)))

Again still nothing exciting, only the zero constant has been inlined. Upcoming is the last configurable
phase of the simplifier:

1 --[6] Simplifier [Phase=0]

2 {-

3 RULES FIRED:

4 Class op expose (BUILTIN)

5 Class op expose (BUILTIN)

6 -}

7

8 $seven :: Int -> Bool

9 $seven n = case n of

10 { I# ipv -> case GHC.Prim.remInt# ipv 2 of

11 { 0 -> GHC.Types.True

12 _ -> GHC.Types.False

13 }

14 }

15

16 halves :: [Int] -> [Int]

17 halves xs =

18 let unfold_unstream s1 = case s1 of

19 { L ipv -> case ipv of

20 { : x xs -> case x of

21 { I# ipv -> case GHC.Prim.remInt# ipv 2 of

22 { 0 -> GHC.Types.:

23 (GHC.Types.I#

24 (GHC.Prim.uncheckedIShiftRA# ipv 1))

25 (unfold_unstream

26 (Data.Stream.L xs))

27 _ -> unfold_unstream

28 (Data.Stream.L xs)

29 }

30 }

31 [] -> GHC.Types.[]

32 }

33 }

34 in unfold_unstream

35 (Data.Stream.L xs)

Now something quite drastic has changed, and it is not clear what exactly has happened. Let us first
investigate what the rewrite rule that just fired twice contributed to these changes. Class op {f} implies
that the function f as part of some class constraint was specialised. If we scour the source we find the
following typeclass:
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1 class Unlifted a where

2

3 -- | This expose function needs to be called in folds/loops that consume

4 -- streams to expose the structure of the stream state to the simplifier

5 -- In particular, to SpecConstr.

6 --

7 expose :: a -> b -> b

8 expose = seq

9

10 -- | This makes GHC's optimiser happier; it sometimes produces really bad

11 -- code for single-method dictionaries

12 --

13 unlifted_dummy :: a

14 unlifted_dummy = error "unlifted_dummy"

Supposedly this class is implemented for Stream a, as those are terms that are affected, and indeed we
find:

1 instance Unlifted (Stream a) where

2 expose (Stream next s0) s = seq next (seq s0 s)

3 {-# INLINE expose #-}

From this we can speculate that this typeclass exists to ensure that expressions are evaluated to WHNF
(by definition of seq), which is a requirement to ensure that other optimisations fire.

But we have not seen any call-site for expose in the code, so apparently it appeared somehow and was
specialised during this transformation. The most logical explanation for new function calls appearing is
that they were the result of an inlining. Our likely perpetrator is one of the four stream functions:

• stream

• map

• filter

• unstream

By inspecting each definition it turns out that of those suspects only unstream contains calls to
expose:

1 unstream :: Stream a -> [a]

2 unstream (Stream next s0) = unfold_unstream s0

3 where

4 unfold_unstream !s = case next s of

5 Done -> []

6 Skip s' -> expose s' $ unfold_unstream s'

7 Yield x s' -> expose s' $ x : unfold_unstream s'

8 {-# INLINE [0] unstream #-}

Our expectations are further confirmed by the inline pragma which says to inline only at phase 0, which
is exactly what we think happened. The same inline pragma is present on all of our other suspects as well,
so we are looking a quadruple inlining event. The calls to seq that we observed previously are desugared
as case expressions, as they are the primitive operation in Core that evaluates to WHNF.

Not all questions are answered however, as we don’t know what the L constructor does. Again, looking
that up gives the following source:

1 -- | Boxes for user's state. This is the gateway for user's types into unlifted

2 -- stream states. The L is always safe since it's lifted/lazy, exposing/seqing

3 -- it does nothing.

4 -- S is unlifted and so is only suitable for users states that we know we can

5 -- be strict in. This requires attention and auditing.

6 --

7 data L a = L a -- lazy / lifted

8 newtype S a = S a -- strict / unlifted

It seems that L is just a box around a type that provides a barrier for WHNF evaluation. We can find it
being used in the definition of stream:
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1 stream :: [a] -> Stream a

2 stream xs0 = Stream next (L xs0)

3 where

4 {-# INLINE next #-}

5 next (L []) = Done

6 next (L (x:xs)) = Yield x (L xs)

7 {-# INLINE [0] stream #-}

In essence, it just cancels the effect of seq. But if we are careful then in some situation we might improve
performance by using the strict version S instead.

So that aside, have we achieved fusion? It takes some effort to realise that, (1) through the use of expose
in the definition of unstream, and (2) by the direct use of the incoming next function in the definition
of the following next function, our resulting list has a head element that is defined as the composition
of next function of map and filter. This is a very contrived way to say that we have indeed achieved
fusion. Another way to look at is that the (:) constructor is called once per element.

But we are still left with some noise, notably the wrapping/unwrapping of values in now redundant L
constructors. That description should invoke a sense of familiarity, as the reader should know by know
that an upcoming transformation is that of the worker/wrapper ! If we follow the rest of the pipeline in
chronological order:

1 -- [7] Float inwards

2 -- no changes

3

4 -- [8] Called arity analysis

5 -- no structural changes (IdInfos might be updated)

6

7 -- [9] Simplifier [Phase = Final]

8 -- no changes

9

10 -- [10] Demand analysis

11 -- no structural changes (IdInfos might be updated)

12

13 -- [11] Constructed Product Result analysis

14 -- no structural changes (IdInfos might be updated)

15

16 -- [12] Worker/wrapper binds

17 halves :: [Int] -> [Int]

18 halves xs =

19 let $wunfold_unstream ww =

20 let w = Data.Stream.L ww

21 in

22 let s1 = w

23 in case s1 of

24 { L ipv -> case ipv of

25 { : x xs -> case x of

26 { I# ipv -> case GHC.Prim.remInt# ipv 2 of

27 { 0 -> GHC.Types.:

28 (GHC.Types.I#

29 (GHC.Prim.uncheckedIShiftRA# ipv 1))

30 (unfold_unstream

31 (Data.Stream.L xs))

32 _ -> unfold_unstream

33 (Data.Stream.L xs)

34 }

35 }

36 [] -> GHC.Types.[]

37 }

38 }

39 unfold_unstream w = case w of

40 { L ww -> $wunfold_unstream ww

41 }

42 in unfold_unstream

43 (Data.Stream.L xs)

From the w prefix in the name of wunfold_unstream we can derive that this function was generated by
the worker/wrapper transformation. This specific piece of knowledge is not strictly necessary however
since our tool can tell you for any function in which pass it was generated regardless of name.
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If you look through the let bindings, it becomes apparent that we wrap an element ww in an L constructor,
and then always evaluate it to WHNF in the case expression. This is a classic wasteful pattern that the
simplifier is able to deal with:

1 -- [13] Simplifier [Phase = Final]

2 halves :: [Int] -> [Int]

3 halves xs =

4 let $wunfold_unstream ww = case ww of

5 { : x xs -> case x of

6 { I# ipv -> case GHC.Prim.remInt# ipv 2 of

7 { 0 -> GHC.Types.:

8 (GHC.Types.I#

9 (GHC.Prim.uncheckedIShiftRA# ipv 1))

10 ($wunfold_unstream xs)

11 _ -> $wunfold_unstream xs

12 }

13 }

14 [] -> GHC.Types.[]

15 }

16 in $wunfold_unstream xs

With that final elision we have obtained a fully fused version of our map/filter composition with any
auxiliary machinery like stream and unstream being simplified away.

So what we have shown is that it is perfectly feasible to create and retrofit an alternative fusion system in
vanilla Haskell. However, it is also clear that the process of implementating it goes beyond translating the
theory verbatim. Namely, we have seen how Unlifted class was necessary to ensure that GHC correctly
handles lazy and strict situation, including the need to put an extra unused function in the typeclass
to avoid some unexpected GHC behavior. All this tells us that the developers of the library have most
certainly spent a large chunk of their time looking at Core printouts to identify these issues before there
were able to fix it like they did.

Furthermore, it was with the help of our tool that we were able to explain – without direct consultation
and within a reasonable timeframe – how stream fusion truly operates in a real world scenario. This
means that our tool may support those trying to reproduce and verify existing research involving Haskell
and the GHC compiler.

4.3 Erroneous program structure recovery in GHC fusion

As part of our initial experiments to validate hs-sleuth, we decided to attempt to reproduce the shot-cut
fusion of unlines as presented in its introductory the paper [12]. This serendipitously led to the discovery
of an important performance bug in GHC.

4.3.1 The problem described

Consider the implementation of unlines given in the paper:

1 unlines :: [String] -> String

2 unlines ls = concat (map (\l -> l ++ ['\n']) ls)

Using hs-sleuth, we can observe the following Core at the end of the entire optimisation pipeline:
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1 cr_chr :: Char

2 cr_chr = C# '\n'

3

4 cr :: [Char]

5 cr = : cr_chr []

6

7 go1 :: [[Char]] -> [Char]

8 go1 ds = case ds of

9 { : y ys -> ++

10 (++ y cr)

11 (go1 ys)

12 [] -> []

13 }

14

15 unlines :: [String] -> String

16 unlines ls = go1 ls

This definition is problematic because every line is traversed once to append a newline character and then
again to append it to the rest of the line, while we already know that a single traversal is possible from
the original paper. [5] To rule out any other factors we ran a benchmark on both this version of unlines
and Prelude.unlines with the first 73 lines of lorem ipsum. This confirmed our suspicions:

benchmarking our_unlines

time 127.9 µs (125.0 µs .. 130.7 µs)
0.997 R² (0.996 R² .. 0.998 R²)

mean 126.6 µs (124.6 µs .. 128.4 µs)
std dev 6.532 µs (5.742 µs .. 7.504 µs)
variance introduced by outliers: 53% (severely inflated)

benchmarking prelude_unlines

time 80.23 µs (79.87 µs .. 80.53 µs)
1.000 R² (0.999 R² .. 1.000 R²)

mean 79.70 µs (79.05 µs .. 80.13 µs)
std dev 1.858 µs (1.088 µs .. 2.962 µs)
variance introduced by outliers: 20% (moderately inflated)

So it is clear that Prelude has defined unlines in a more efficient manner, but that does not take away
the fact that any such expression as our version of unlines should reasonably be expected to fuse to
something with a single input traversal (it was the example given the original paper after all [12]).

4.3.2 Investigating the problem

Our approach to investigating this issue is to scroll all the way back to the desugared stage and see if we
can find a distinct reason why the program was not transformed to something more optimal. Given that
the culprit is a secondary list traversal, it is safe to assume that it is indeed the fusion system, or at least
an iteraction with it, that is at the root of this problem. Therefore, we decided to analyze the problem by
seeking meaningful differences between the results of the transformation and the steps given in the paper.
The tool reports that the following Core is desugared from the source:

1 unlines :: [String] -> String

2 unlines ls = concat $fFoldable[]

3 (map

4 (\l -> ++ l

5 (build

6 (\c n -> c

7 (C# '\n') n))) ls)

Here we can observe that the list literal ['\n'] is already represented as a list producer function, paving

42



the way for future short-cut fusion rules applications. After all we can hypothesize that in the near
future map and ++ will be rewritten to their respective build/foldr representation, making the fusion rule
applicable. After the first transformation, which is the also first pass of the simplifier (Gentle), we get
the following:

1 {-

2 RULES FIRED:

3 Class op foldr (BUILTIN)

4 ++ (GHC.Base)

5 augment/build (GHC.Base)

6 map (GHC.Base)

7 fold/build (GHC.Base)

8 -}

9

10 unlines :: [String] -> String

11 unlines ls = build

12 (\c n -> foldr

13 (mapFB

14 (\x y -> foldr c y x)

15 (\l -> build

16 (\c n -> foldr c

17 (c

18 (C# '\n') n) l))) n ls)

We can see how concat has been specialized and also rewritten, as well as ++. The result of map however,
is a bit more peculiar; contrary to what the paper suggested at the time, we instead observe a call to
some function mapFB. We keep this observation in mind and continue on. The first pass that makes
any significant change is the float out pass, which floats expressions up to the highest level to expose
potential optimisations like common subexpression elimination. Again we employ hs-sleuth to give
these binidings meaningful names:

1 cr_chr :: Char

2 cr_chr = C# '\n'

3

4 append_cr :: [Char] -> [Char]

5 append_cr l = build

6 (\c n -> foldr c

7 (c cr_chr n) l)

8

9 unlines :: [String] -> String

10 unlines ls = build

11 (\c n -> foldr

12 (mapFB

13 (\x y -> foldr c y x) append_cr) n ls)

In essence, nothing has significantly changed, let us continue. Simplifier phase 2 comes and goes without
modifying the code. Simplifier phase 1 reduces to:
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1 {-

2 RULES FIRED:

3 foldr/app (GHC.Base)

4 foldr/app (GHC.Base)

5 -}

6

7 cr_chr :: Char

8 cr_chr = C# '\n'

9

10 append_cr :: [Char] -> [Char]

11 append_cr l = ++ l

12 (: cr_chr [])

13

14 unlines :: [String] -> String

15 unlines ls = foldr

16 (mapFB ++ append_cr) [] ls

The only way to again find fusible pairs now is if by inlining mapFB. We can easily find its definition by
right-clicking the term and selecting the Query on Hoogle option. From there we can quickly get the
source code:

1 -- Note eta expanded

2 mapFB :: (elt -> lst -> lst) -> (a -> elt) -> a -> lst -> lst

3 {-# INLINE [0] mapFB #-} -- See Note [Inline FB functions] in GHC.List

4 mapFB c f = \x ys -> c (f x) ys

It seems that we may yet have a chance, simplifier phase 0 is the next pass and the annotation on mapFB

specifically requests that we only inline the function in phase 0. However, we find the following after
phase 0:

1 cr_chr :: Char

2 cr_chr = GHC.Types.C# '\n'

3

4 unlines :: [String] -> String

5 unlines ls =

6 let go1 ds = case ds of

7 { : y ys -> GHC.Base.++

8 (GHC.Base.++ y

9 (GHC.Types.: cr_chr GHC.Types.[]))

10 (go1 ys)

11 [] -> GHC.Types.[]

12 }

13 in go1 ls

The version is nearly identical to the final Core produced by the entire pipeline, minus the inconsequential
top-level binding introduced for constructing the newline singleton string. So have discovered what went
wrong? Well, not directly, but we have seen something that differs from the paper, namely the mapFB

function. We might have already seen its definition, but it is not entirely clear what it does. Luckily,
GHC has well documented source code, and so we return to Hoogle to find the following note near the
definition of mapFB:
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1 {- Note [The rules for map]

2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~

3 The rules for map work like this.

4

5 * Up to (but not including) phase 1, we use the "map" rule to

6 rewrite all saturated applications of map with its build/fold

7 form, hoping for fusion to happen.

8

9 In phase 1 and 0, we switch off that rule, inline build, and

10 switch on the "mapList" rule, which rewrites the foldr/mapFB

11 thing back into plain map.

12

13 It's important that these two rules aren't both active at once

14 (along with build's unfolding) else we'd get an infinite loop

15 in the rules. Hence the activation control below.

16

17 * This same pattern is followed by many other functions:

18 e.g. append, filter, iterate, repeat, etc. in GHC.List

19

20 See also Note [Inline FB functions] in GHC.List

21

22 * The "mapFB" rule optimises compositions of map

23

24 * The "mapFB/id" rule gets rid of 'map id' calls.

25 You might think that (mapFB c id) will turn into c simply

26 when mapFB is inlined; but before that happens the "mapList"

27 rule turns

28 (foldr (mapFB (:) id) [] a

29 back into

30 map id

31 Which is not very clever.

32

33 * Any similarity to the Functor laws for [] is expected.

34 -}

35

36 {-# RULES

37 "map" [~1] forall f xs. map f xs = build (\c n -> foldr (mapFB c f) n xs)

38 "mapList" [1] forall f. foldr (mapFB (:) f) [] = map f

39 "mapFB" forall c f g. mapFB (mapFB c f) g = mapFB c (f.g)

40 "mapFB/id" forall c. mapFB c (\x -> x) = c

41 #-}

This documentation does not give us any insight yet into the role of the mapFB function. Perhaps the
note [Inline FB functions] can provide some more insight:

45



1 Note [Inline FB functions]

2 ~~~~~~~~~~~~~~~~~~~~~~~~~~

3

4 After fusion rules successfully fire, we are usually left with one or more calls

5 to list-producing functions abstracted over cons and nil. Here we call them

6 FB functions because their names usually end with 'FB'. It's a good idea to

7 inline FB functions because:

8

9 * They are higher-order functions and therefore benefits from inlining.

10

11 * When the final consumer is a left fold, inlining the FB functions is the only

12 way to make arity expansion to happen. See Note [Left fold via right fold].

13

14 For this reason we mark all FB functions INLINE [0]. The [0] phase-specifier

15 ensures that calls to FB functions can be written back to the original form

16 when no fusion happens.

17

18 Without these inline pragmas, the loop in perf/should_run/T13001 won't be

19 allocation-free. Also see Trac #13001.

Here we find a plausible answer to why mapFB exists: “calls to FB functions can be written back to the
original form when no fusion happens”. It is desirable to retain the structure of the original map if it is
not fused away (we will go more in depth as to why in Section 4.3.4). mapFB enables just that, it exposes
an initial opportunity to fuse but is reversible using the mapList rule if no fusion happens. This rule also
gives us a lot of intuition how mapFB operates. Namely, given the cons function and an empty generator is
equivalent to canonical map. Similarly, the rule map gives us information about how map is more generally
related to mapFB. At this point we should also compare how this foldr based implementation differs
from the one given in the paper:

1 -- The definition from the short-cut fusion paper

2 map f xs = build (\ c n -> foldr (\a b -> c (f a) b) n xs)

3

4 -- The definition from GHC.Base

5 map f xs = build (\c n -> foldr (mapFB c f) n xs)

It does not take much convincing to see that the two definitions are syntactically equivalent after inlining
mapFB. Remember however the pragma instructing the compiler to inline mapFB only from phase 0
onwards. This turns out to be too late and it is in the previous iteration of the simplifier (phase 1) where
we overlooked something. Namely, the foldr/app rule fired twice. A grep in the GHC code base reveals
its definition:

1 "foldr/app" [1] forall ys. foldr (:) ys = \xs -> xs ++ ys

2 -- Only activate this from phase 1, because that's

3 -- when we disable the rule that expands (++) into foldr

This rule appears to reverse the expansion of ++. This is corroborated by the reasoning behind activiting
it in phase 1, otherwise it would form a circular rule with the expansion the and the simplifier would
exhaust its iterations without finding a fixed point. However, because the reconstruction fired before the
inlining of mapFB, we missed out on an important fusion opportunity.

4.3.3 Fixing the problem

To confirm our theory about mapFB clouding the fusion process, we can patch GHC in the following crude
manner:

• Redefine map directly as build (\ c n -> foldr (\a b -> c (f a) b) n xs) and mark it al-
ways as inlinable.

• Remove the map rule, to prevent it firing instead of inlining.
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• Remove the rule mapList, mapFB, and mapFB/id, they should never be applicable anymore and
there functionality now handled by the short-cut fusion rule.

For completeness:

1 {-# INLINE map #-}

2 -- GHC.Base

3

4 -- previously:

5 map :: (a -> b) -> [a] -> [b]

6 map [] = []

7 map (x:xs) = f x : map f xs

8

9 -- now:

10 {-# INLINE map #-}

11 map :: (a -> b) -> [a] -> [b]

12 map f xs = build (\c n -> foldr (\x r -> c (f x) r) n xs)

Note that because previously map was defined recursively it would never have been inlined. In the new
situation we inform GHC that we are actually very keen to inline this function. If we feed the same
source code to this patched version of the base library again we observe the following steps:

1 ==================== Simplifier [Gentle] ====================

2 unlines

3 = \ls ->

4 build

5 (\ c n ->

6 foldr

7 (\x r -> foldr c (c (C# '\n'#) r) x)

8 n

9 ls)

GHC took our wishes to heart and inlined map right away.

1 ==================== Simplifier [Phase = 1] ====================

2 cr_char = C# '\n'#

3

4 unlines

5 = \ls ->

6 foldr (\x r -> ++ x (cr_char : r)) [] ls

Already we seem to be in a better place because we see only one call to ++. But things become clearer
when foldr is inlined in the next simplifier phase:

1 ==================== Simplifier [Phase = 0] ====================

2 cr_char = C# '\n'

3

4 unlines

5 = \ls ->

6 let go ds =

7 case ds of

8 [] -> []

9 y:ys -> ++ y (cr_char : (go ys))

10 in

11 go ls

Although we still have a call to ++ its left-hand side does not grow at each recursive iteration anymore.
Furthermore, the other call to ++ is now correctly replaced by a much cheaper prepend action to the
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recursive call instead. If run the same benchmark we observe that indeed our program is assembled to
something significantly more efficient:

benchmarking my_unlines

time 64.80 µs (62.43 µs .. 66.47 µs)
0.996 R² (0.995 R² .. 0.997 R²)

mean 62.43 µs (61.68 µs .. 63.40 µs)
std dev 2.779 µs (2.062 µs .. 3.346 µs)
variance introduced by outliers: 48% (moderately inflated)

benchmarking prelude_unlines

time 75.36 µs (74.74 µs .. 75.80 µs)
1.000 R² (1.000 R² .. 1.000 R²)

mean 73.98 µs (73.69 µs .. 74.35 µs)
std dev 1.102 µs (886.1 ns .. 1.300 µs)

In fact, it seems we have managed to beat the performance of the prelude implementation by a small but
real margin.

4.3.4 It’s more complicated

Seemingly we have solved the problem by returning to the original theory of the paper. But obviously
the GHC developers did not simply incorrectly implement the material. Functions like mapFB do have a
place. We already saw a hint of this in note from the source code:

...ensures that calls to FB functions can be written

back to the original form when no fusion happens.

mapFB provides us a tag that there used to be a call to map here. If in the end we did not manage to fuse,
or if a mapFB is left over after the mapFB rules has combined consecutive instances, we can reconstruct
the original call to map. This has two important befinits: First of all, it allows a more recognizable form
of compiled Core that more closely resembles the original source code. Secondly and arguably more
importantly, we save on code size by reusing the map function by not rewriting each list operation to a
local, recursive go function.

Let us find a concrete example by comparing our patched version of the base library with the original one
when compiling the very simple function:

1 addTwo :: [Int] -> [Int]

2 addTwo = map (+1) . map (+1)

The Core produced looks this:

1 -- Core from canonical GHC (total of 11 terms)

2 addTwo1 :: Int -> Int

3 addTwo1 x -> x+2

4

5 addTwo :: [Int] -> [Int]

6 addTwo xs -> map addTwo1 xs

7

8 -- Core from our patch (total of 23 terms)

9 addTwo :: [Int] -> [Int]

10 addTwo ds = case ds of

11 [] -> []

12 y : ys -> let xs = addTwo ys

13 x = y+2

14 in x:xs
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This increased number of terms is a significant regression in compiled code size. However, we should not
expect performance characteristics of the assembled code to differ much at all, as they essentially describe
the same computation. We verify this by running a benchmark for addTwo [0..10000]:

benchmarking addTwo_baseline

time 79.70 µs (79.61 µs .. 79.80 µs)
1.000 R² (1.000 R² .. 1.000 R²)

mean 79.71 µs (79.67 µs .. 79.78 µs)
std dev 181.6 ns (100.2 ns .. 336.0 ns)

benchmarking addTwo_patched

time 79.17 µs (78.80 µs .. 79.52 µs)
1.000 R² (1.000 R² .. 1.000 R²)

mean 79.74 µs (79.40 µs .. 80.10 µs)
std dev 1.181 µs (981.2 ns .. 1.436 µs)

Despite the regression in compiled code size, the argument could be made this trade off is worth it if in
fact we can optimize more programs. It should also be mentioned that our patch is very crude and does
not take into account the subtle interations with other existing rewrite rules; It is merelyl a confirmation
of the problem. It might be possible to find a more nuanced solution that still uses mapFB but ensures it
inlines in time when it can be fused, but is still rewritten to map otherwise. Finding the ideal solution is
not entirely trivial and an excellent topic for future work.

We have opened issue #22361 on the GHC bug tracker – as well as a merge request with the proposed
changes therein – to spark a public conversation and collect feedback on the impact of the change. It
should be noted that comments by both Sebastian Graf and Simon Peyton Jones were instrumental in
helping us fully understand the problem and the potential solution.

4.4 Comparisons with existing approaches

As we will discuss in detail in Section 5.1, we were unable to use hs-sleuth when working with unreleased
versions of GHC, something we had to do repeatedly during Section 4.3. As a silver lining, this presented
an excellent opportunity to compare hs-sleuth with the canonical existing approach: GHC flags.

An important milestone for us was that when using -dsuppress-all, the readability of the Core
expressions is still not on par with our tool. For clarity, we have manually edited the output of GHC
to remove any irrelevant information. The original compiled Core definition of unlines looked like
this:
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1 -- RHS size: {terms: 2, types: 0, coercions: 0, joins: 0/0}

2 lvl_rVO :: GHC.Types.Char

3 [GblId, Unf=OtherCon []]

4 lvl_rVO = GHC.Types.C# '\n'#

5

6 -- RHS size: {terms: 3, types: 2, coercions: 0, joins: 0/0}

7 lvl1_rYZ :: [GHC.Types.Char]

8 [GblId, Unf=OtherCon []]

9 lvl1_rYZ

10 = GHC.Types.:

11 @GHC.Types.Char lvl_rVO (GHC.Types.[] @GHC.Types.Char)

12

13 Rec {

14 -- RHS size: {terms: 17, types: 18, coercions: 0, joins: 0/1}

15 Unlines.unlines_go1 [Occ=LoopBreaker]

16 :: [[GHC.Types.Char]] -> [GHC.Types.Char]

17 [GblId, Arity=1, Str=<1L>, Unf=OtherCon []]

18 Unlines.unlines_go1

19 = \ (ds_s11T [Occ=Once1!] :: [[GHC.Types.Char]]) ->

20 case ds_s11T of {

21 [] -> GHC.Types.[] @GHC.Types.Char;

22 : y_s11V [Occ=Once1] ys_s11W [Occ=Once1] ->

23 let {

24 sat_s11Y [Occ=Once1, Dmd=ML] :: [GHC.Types.Char]

25 [LclId]

26 sat_s11Y = Unlines.unlines_go1 ys_s11W } in

27 case GHC.Base.++ @GHC.Types.Char y_s11V lvl1_rYZ

28 of sat_s11X [Occ=Once1]

29 { __DEFAULT ->

30 GHC.Base.++ @GHC.Types.Char sat_s11X sat_s11Y

31 }

32 }

33 end Rec }

34

35 -- RHS size: {terms: 3, types: 2, coercions: 0, joins: 0/0}

36 Unlines.unlines :: [GHC.Base.String] -> GHC.Base.String

37 [GblId, Arity=1, Str=<1L>, Unf=OtherCon []]

38 Unlines.unlines

39 = \ (ls_s11Z [Occ=Once1] :: [GHC.Base.String]) ->

40 Unlines.unlines_go1 ls_s11Z

As opposed to what hs-sleuth produces without any further manual effort such as renaming vari-
ables:

1 lvl :: Char

2 lvl = C# '\n'

3

4 lvl :: [Char]

5 lvl = : lvl []

6

7 go1 :: [[Char]] -> [Char]

8 go1 ds = case ds of

9 { : y ys -> ++

10 (++ y lvl)

11 (go1 ys)

12 [] -> []

13 }

14

15 unlines :: [String] -> String

16 unlines ls = go1 ls

We believe it goes without saying that our representation is faster to read and comprehend. Of course
this is not entirely fair because the GHC output contains for information that just happens to be
uninteresting during many of our experiments. That said, this information is still available upon request
by double-clicking on any term to reveal all the embedded information:
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Figure 4.1: The popup that appears when double-clicking on a variable. It displays all
available information embedded in the Core AST for that term.

This means that our tool is does not necessarily compromise on available information, but merely utilizes
an interactive environment to present the information less crudely. Clearly we were able to retrieve all
the information needed from GHC without our tool, but the experience was somewhat painful.

We found the best way to analyse GHC’s output was by writing it directly to a file so we could use
features of most text editors like a string search to scroll through the output of each pass and quickly
find points of interest. However, because of auxiliary definitions in the Core, the name of the current pass
was usually not visible on screen without having to scroll up. This minor annoyance compounds to major
cumbersomeness when having to repeatedly scroll back and forth in time to see how the structure changes.
Similarly, it is tough to attribute fired rewrite rules to a specific pass without having to double-check
regularly. In short, interpreting the textual output was more laborious and error-prone that our newly
developed alternative.

In short, we find that working with our tool is a much more pleasurable and productive experience over
using GHC’s compiler output, but this is of course merely a subjective account. We hope that through
our vision more people will agree that an improvement is possible and further debate ensues about how
our existing solutions can be improved upon or inspire something better altogether.
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Chapter 5

Discussion & Future work

5.1 Review of the tech stack

Through extensive deriving and code generation, we have bridged the gap between Elm and Haskell in
our tech-stack rather seamlessly. Unfortunately, overcoming this issue has led us to merrily go down that
path before realizing some important drawbacks.

Because we always envisioned a high degree of interactibility for exploring captures – as that is the lion’s
share of the value proposition – it made sense to extract the capture and make interpretable by a separate
frontend solution. Furthermore, in order to work on the newest version of GHC, the plugin needs to
have a minimal dependency footprint. Initially we thought that serialising to JSON would a natural
fit, however with the added requirement of needing to match the generated decoder at the Elm site,
the JSON deriving strategy was dependent on more than just aeson, namely haskell-to-elm. For all
intents and purposes this is a great library but through no fault of its author it is not widely adopted
and therefore not actively maintained. Concretely, this means when working on the latest commit of
GHC the odds are very high that the plugin won’t work because the underlying dependencies are not
yet compatible. We ran into this issue when trying to patch unlines in Section 4.3 and were forced to
analyze the effect of our patches the old-fashioned way by sifting through the textual output of GHC like
described in Section 2.4.2.

Furthermore, the need to serialise the infinite Core AST datatype at all turns out to be problematic.
As described in Section 3.3.1, to make the representation finite we need to address the issue of self-
referential unfoldings by replacing call sites with only references to binding sites. This is fundamentally
flawed because late in our research we stumbled upon an inconvenient truth in the documentation of
IdInfo:

Two 'Id's may have different info even though they have the same

'Unique' (and are hence the same 'Id'); for example, one might lack

the properties attached to the other.

More research is needed whether this phenomenon actually occurs in real life and what shortcomings this
brings, but needless to say it is a concerning flaw in the basis of our approach.

It is not immediately obvious what alternatives there are. Ideally there would be no need to serialise at
all by running the frontend from the plugin directly via for example a terminal application itself written
in Haskell (at the cost of some interactive features that the web offers). But is not at all obvious how
to plug in this into the compiler pipeline directly. Besides, comparing two different compiler runs is
completely of the table in this approach as the information only exists transiently during the compiler run.
A separate terminal application could still relax some dependency pressure by using a far more stable and
adopted serialisation method that is less likely to break with unreleased GHC versions. An important
mention here is that ghcjs already provides a way to compile Haskell code to the browser. Even more
promising is the rapid work that is currently being undertaken to add web assemply a compilation target
to GHC.

52



Considering that human inspection of code aligns more with the responsibilities of the ‘Haskell Language
Server’ (hls) [18] than the compiler itself, the argument could be made that hls is the right place to
implement inspection tools. Regardless, integrating compilation inspection capabilities that are compatible
with the standardized LSP protocol is an interesting avenue to explore in further research.

The tragic reality is that for this tool to work on bleeding edge GHC versions, it has itself to be part of the
GHC build system, which is not realistic at this stage. In summary, we would recommend re-evaluating
the tech stack and possible starting the development from scratch, inheriting mostly the lessons learned
from our approach.

5.2 GHC knows more than it tells

A fundamental problem with the current snapshot approach are the multiple changes – even multiple
kinds – that are applied in between each snapshot. It is largely impractical to programmatically try to
recover the full story that connects one snapshot to the next. This leads one to wonder the possibilities
that would be unlocked if GHC embedded information about the changes it has made directly in the
AST. Consider for example a constructor that indicates that its contained expression was the result of an
inlining:

data Expr b =

...

| Inlined Expr InlineDetails

...

Obviously these added nodes could be omitted during normal compilation to not affect memory and
performance. Less obvious however is how these extra nodes would interfere with the transformations
themselves that often rely on deep matching. Take for example detecting an opportunity for beta-
reduction:

betaReduce :: Expr b -> Expr b

betaReduce (App (Lam b e) arg) = substExpr b arg e

betaReduce e = e

The following invocation to betaReduce would not work as expected:

-- unchanged

betaReduce (App (Inlined (Lam b e) details) arg) = App (Inlined (Lam b e) details) arg

A good robust solution to this is not obvious. Furthermore, we need to respect correctness invariant of
these extra nodes. If we do for example make an extra case for betaReduce:

betaReduce (App (Inlined (Lam b e) details) arg) = Inlined (substExpr b arg e) details

Then one should wonder if the Inlined tag is still entirely accurate. It might be more reasonable to
have tags live for only 1 transformation step and be erased before the next one starts. This still allows
for transient information to be captured and used for analysis without affecting the pipeline all that
much. Relevant research into extendable ASTs that has already been integrated into the frontend Haskell
language provide might provide a way to annotate nodes with extra information without affecting the
pipeline at all [19].

Alternatively, the information could be written to a separate log that precisely describes events such as
Inlined [var] at location [loc]. This solution has the added benefit of being able to peacefully
coexist with the current Core AST. However, work is still necessary to explore how to best encode this
information – especially precisely pointing to locations of events – as well as specifying the exact semantics
necessary to replay the log in a third party application.
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5.3 Printing Core like GHC

We have shown how an alternative Core printer is highly beneficial for both the inexperienced and those
interested in the syntactical structure of a program. It does not take away from the reality that GHC’s
Core printer has its place. After all, reading Core as if it was Haskell is not entirely ingenuous. Take the
complete ignorance towards showing which let bindings are join points for example, information that can
be crucial to the transformation that a program undergoes.

Simply summarized, it cannot be a complete tool without allowing to display the Core in a way that
is as close to the original GHC output as possible, but of course still with benefits of an interactive
exploration frontend. A skeleton of this alternative pretty printer has been implemented, using GHC
itself as a reference, but there still are some discrepancies not accounted for.

5.4 Incomplete transformation pipeline coverage

During our research we have mainly discovered and discussed Core debugging scenarios that involved the
general syntactical structure of the code. For example, which functions are being called after rewrite rules
and inlinings. Although program structure analysis might in fact be the main constituent of most Core
debugging sessions, we have barely scratched the surface of other problems that need to be debugged in
Core, and by extent the suitability of our tool to do so. Examples here would be inadequately strong
analysis results, preventing what would have been a sound and desirable transformation. One such
underdiscussed topic is the role that correctly identifying join points play. More research is needed into
the full spectrum of Core related problems and the information required to deal with them.

5.5 Post Core factors

Despite the idealistic design principle of the 3 stage compiler (Section 2.1), where the Core transformation
middle-section is responsible for all optimisations, reality throws a spanner in the works. A number of
critical optimisations are only possible on a level closer to the hardware. Because of this, performance
regressions cannot always be attributed to the Core pipeline. A real world exemplary encounter with
this fact is a performance regression of alfred-margaret [4], a Haskell implement of the Aho-Corasick
string search algorithm. After updating from GHC 8.8.4 to GHC 8.10.7 a 10% performance regression
was observed, which is rather significant. After ruling out significant changes in the dependencies, it was
noted that the used LLVM backend version 12 was not yet well-supported by the new GHC version. That
is, LLVM 9 incidentally yielded better performance.

There is simply no way to account for this in the Core pipeline. However, our tool could be extended to
capture more extensive build information that could then be diffed during inspection. Therefore, if a user
establishes that the Core is not the culprit, he or she can still request to get a report of all differences in
the build processes. This would include the LLVM version, the used C compiler, the linker, the assembler,
etc. This way hs-sleuth can still provide some leads during performance regression analysis.

Lastly, information could be retrieved information from GHC’s Spineless, Tagless, G-machine (STG),
which converts the functional code to imperative form. This process similarly takes care of some
optimisations that were otherwise not possible in the Core pipeline. Whether, and if so how, this
telemetry can play a useful role in hs-sleuth is an avenue for future research.

5.6 Fusion by rewrite rules

As part of collecting Core related performance issues from the past, we made the observation that rewrite
rules were the usual suspects, and often rightly so. Especially rewrite rule based fusion, either within
GHC itself or as part of custom library, come with many brittle interactions that cause failures on
specific cases are after small changes. This naturally begs the question if rewrite rules are a suitable
method for implementing fusion. We believe research is needed to evaluate the feasibility of fusion specific
transformations that rely on, and interfere less, with the simplifier.
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Chapter 6

Conclusion

We have shown how GHC can have unpredictable results when it comes to its Core optimisation pipeline.
We motivated why existing techniques to analyze the output of the core2core pipeline are unsatisfactory.
We then proposed our custom tool hs-sleuth to aid in this discovery process. During the development
of hs-sleuth, we set out to answer a number of questions (Section 1.4) which have since been answered.
We answer them here explicitly for completeness’s sake.

Main Question How can GHC’s core2core passes be captured and presented in such a way that users
productively gain insight into how their code is transformed?

A snapshot of the current state of the program can be captured by embellishing the core2core pipeline with
snapshot passes via GHC’s plugin interface. The captured ASTs can be pretty printed in a web application
to provide interactive features such a hovering, clicking, dragging, and highlighting. By providing various
suppression options, the Core snapshots can be presented such that they nearly resemble canonical Haskell
source code. Finally, by allowing users to scroll through time, they can quickly observe if and when their
expectations are not met.

Sub-Question 1 How does one efficiently identify where small changes occur in two or more cap-
tures?

While a novel tree diff approach might prove more usefull, matching toplevel definitions by a hash of their
body is a productive approach to highlight deviations among captures.

Sub-Question 2 How to make viewing core more manageable using various display options?

Allowing programmers to hide as much irrelevant information as is sensible for the goal at hand is a
key part to ensure manageability. Moreover, making information such as variable names manually more
precise significantly reduces the mental strain of reading the Core.

Sub-Question 3 How could performance regressions that have occurred in the past in popular Haskell
projects, have been resolved faster?

As hs-sleuth lowers the bar to entry for analysing Core, we think that it will similarly become a more
approachable task for developers to confirm their optimisation approaches and subsequently guard against
regressions using non-functional tests.
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