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1 Abstract

This thesis concerns the building of a Bayesian model for a geological temperature proxy
based on oxygen isotope fractionation in carbonates. The major improvement over original
regressions is a better quantification of uncertainty and the use of partial pooling. Multiple
models are compared for further improvements.

2 Introduction

Figure 1: An illustration of the foraminifera Cibicidoides pachyderma. Image source:
Brady, H.B. (1884) Pl. 94 - CC BY-NC-SA 4.0

With the ever increasing urgency of the problem of man-made global warming, it is
more important than ever that we have accurate forecasts of climate and temperature
in the future in order to guide our actions on climate change mitigation. Our current
models are based on our understanding of the temperature in the past. As such, it is also
very important to have an accurate understanding of the temperature of our geological
past. This improves our climate models for the future, however it also increases our
understanding of the geological past in general. Current models take the history of ocean
level and temperature into account in order to project into the future [1]. Past ocean
temperature is studies with a wide variety of methods. One such method is the oxygen
isotope temperature proxy.

This thesis is focused on the calibration of this temperature proxy by studying its ap-
plication to fossils of benthic foraminifera like the Cibicidoides pachyderma in figure 1. The
differences and similarities between species, composition and other variables is explored,
leading to an examination of the resulting uncertainty in the temperature estimation. The
intended improvement is to produce a method to quantify uncertainty around temperature
estimates which can be taken into account in future climate change models instead of using
point estimates from classical linear regression analysis.

The calibration of the oxygen isotopes proxy is performed through a linear regression,
with the temperature as a dependent variable, and the δ18O isotope ratio as independent
variables. This results in a coefficient describing the relationship between the two. By
combining many such estimates with dating methods, we can reconstruct the temperature
throughout various geological periods. This analysis was done in a paper by Westerhold
et al. [24], which produced a plot showing a temperature timeline based on δ18O and δ13C
measurements reproduced in figure 2 below.

The focus of this thesis will be on improving the calibration of this temperature proxy
through probabilistic programming. We will be using multiple different sources of mea-
surements of δ18Oc and δ18Ow, where the main focus is to break down the differences in
the temperature relationship for different sources of δ18Oc and quantifying the variability
in the measured relationship. Along the way we will encounter many sources of variability
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Figure 2: A temperature timeline by Westerhold et al. [24]. The blue and red lines are
smoothings over the binned data by 20 000 years and 1 million years respectively. The
erratic nature of the blue line (with less smoothing) gives some idea of the temperature
dispersion of the timeline, which we mean to explicitly provide.

and measurement difficulties in the δ18O proxy, which we will each in turn incorporate into
the model.

We will go over a brief overview of assumptions and measurement difficulties. As men-
tioned before, one of our assumptions is that the oxygen isotope originates predominately
from the environmental water. If this assumption does not hold, then our relationship falls
into the water. Just as important is that the carbonate is formed under equilibrium iso-
topic fractionation, as described above. While this is a completely reasonable assumption
for inorganically precipitated carbonate, it might not be completely correct in organically
formed foraminifera shells.

Figure 3: A photograph of the foraminifera Hoeglundina elegans. Image source: marine-
species.org, CC BY-NC-SA 4.0

Some further difficulties are that some organisms of foraminifera live in specific places
and most organisms have a preferred temperature range, so each species is hard to com-
pare. Different organism also form the shell’s carbonate into different polymorphs, different

4

https://www.marinespecies.org/aphia.php?p=taxdetails&id=590837#images
https://www.marinespecies.org/aphia.php?p=taxdetails&id=590837#images
https://creativecommons.org/licenses/by-nc-sa/4.0/


structures of the crystal making up the shell [12]. For example, some of the species we’re
analyzing are taxa that make calcitic shells, such as Cibicidoides pachyderma (shown in
figure 1), while other taxa make aragonitic shells, like Hoeglundina elegans (shown in fig-
ure 3). Furthermore each measurement is dependent on the specific procedure that is
performed and and any number of other laboratory differences that affect the validity of
calibrations. One such important difference which we will return to is which reference is
used, e.g. SMOW vs VSMOW, PDB vs VPDB, and the offsets associated with different
species.

To derive this relationship as accurately as possible, we will collect data from various
studies involving both inorganically precipitated carbonate as well as organically formed
foraminifera shells of various species. Some sources will be from lab grown foraminifera,
while most will be from drilling cores in the ocean under many different conditions, in the
tropics and in the arctic. The wish is to end up with a model that captures the full range
of possibilities where the oxygen isotope proxy may be used.

Figure 4: An aragonite crystal cluster from Spain. The shape of the crystal is different
from calcite as a result of a different crystal lattice. Over millions of years aragonite turns
to the more stable calcite. Attribution: Ivar Leidus - Own work, commons.wikimedia.org
CC BY-NC-SA 4.0,

The problem of learning optimally from data that is organized at many different levels
suggests as a solution a hierarchical model in Bayesian statistics, which is a very powerful
and suitable tool for such a task [7], as it allows the model to learn it’s own priors from
the data. (these types of models are also known as multilevel or partial pooled models.)
We will start by constructing a hierarchical linear model based on different organisms, lab
processes and mineral structures. This will allow us to see the impact of each of the sources
of variability, outlined above, on the resulting estimates.

The Bayesian hierarchical model is a very powerful method of analysis, which is a good
reason to choose it. There is however a more important reason. For this project, we want
to accurately propagate the calibration uncertainty throughout our entire analysis, so that
in the end we have a complete idea of how certain we are of the estimated relationship.
In Bayesian statistics we get this information "for free", as it is already an integral part
of specifying the model and getting a joint posterior distribution to capture the data
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generation process.
After a more in depth description of the temperature proxy in section 3.1 and the

statistics in section 3.2, we will turn to the proposed new model in section 4, and explore
more possible improvements. The findings will be discussed in section 5, finally ending in
a discussion including conclusions and ideas for future work in section 6.

3 Background

3.1 geological background

Let us first briefly introduce the oxygen temperature proxy. The proxy works by com-
paring the isotopic composition of carbonate, such as aragonite or calcite, and that of its
environment.

The oxygen atoms can have different atomic masses, corresponding to different iso-
topes, which can be measured by using a mass spectrometer. We are interested in the
ratio between the 18O isotope and the more common 16O isotope. The ratio is called δ18O,
expressed in the following formula:

δ18Ox =
([18O]/[16O])x

([18O]/[16O])reference
· 1000‰

When this ratio is measured in carbonate and standardized against a reference, we can
compare it to the same ratio, but measured in the environment, and check the difference
between the two. As we measure 18O in carbon and the surrounding water, we refer to
these as δ18Oc and δ18Ow respectively. The resulting quantity of interest is the difference
(δ18Oc − δ18Ow).

Figure 5: The relationship between temperature and isotope fractionation ratio for various
samples, by Urey [22].

The isotopic composition of the carbonate, δ18Oc, is dependent on the isotopic com-
position of the water, δ18Ow, and of the environmental temperature. This relationship can
be derived by regression, as shown in figure 5. Specifying this relationship as precise as
possible will lead to precise temperature estimates. The reason we can assume a precise
relationship between the difference (δ18Oc− δ18Ow) and the environmental temperature is
because we assume that the carbonate was formed in the water under equilibrium isotopic
fractionation.
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Isotopic fractionation is an isotopic exchange between two phases. In this case we are
describing the process of forming carbonate in exchange with water. The carbonate can
be either organic or inorganic, however in both cases we require it to have come about at
equilibrium fractionation. Equilibrium fractionation means the chemical process includes
an exchange of isotopes that approaches some balance in the ratio of heavier and lighter
isotopes between two phases, in this case the carbonate phase and the water phase. The
balance leads to a fractionation factor α; the ratio of the two isotopes in one phase divided
by the corresponding ratio for the other phase. This fractionation factor is dependent on
the temperature of the environment. In the case of foraminifera, the exchange process
between carbonate ion and water adheres to the following formula (only marking oxygen
isotopes):

Ca2+C 16O−3 + H2
18O 
 CaC 18O 16O2 + H2

16O

α =

3[C 18O2−
3 ]+2[C 16O 18O2−

2 ]+[C 16O2
18O2−]

3[C 18O2−
3 ]+2[C 16O2

18O2−]+[C 16O 18O2−
2 ]

[H2
18O]

[H2
16O]

The counterpart of equilibrium fractionation is kinetic fractionation, in which case the
process is incomplete and unidirectional, which means it does not obey a fractionation
factor. If the carbonate we are studying was formed under kinetic fractionation, we cant
depend on the isotope ratio to be a reliable thermometer. [21]

Figure 6: A calcite crystal from Irai, Brazil. Calcite is a stable polymorph of carbonate,
the crystal is often white. Attribution: Rob Lavinsky, iRocks.com – CC-BY-SA-3.0

Oxygen isotope fractionation has been a significant object of study since at least 1949,
when Urey published a seminal paper on isotope concentrations in calcium carbonate [22].
Urey and others have also quantified the temperature dependency of δ18O on non biological
sources of carbonate.

Urey adapted isotope fractionation study to oxygen isotopes and worked out a method
of researching the oxygen isotopes 18O and16O in fossils. They considered lead-208 based
isotope dating, an example of isotope fractionation research, based on which an upper limit
can be placed on the age of the earth. The same principle governing isotope dating might
be turned to temperature Isotope fractionation had been studied in lab conditions, and
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experimentation yielded the discovery that algae plants contain less13C than the solution
that the plants were grown in.

The research is based on equilibrium isotope fractionation of oxygen isotope compo-
sition in the sea water and in the shells formed in that seawater. As explained in the
introduction, the primary source of the oxygen atoms in the shell is the oceanic water,
therefore if the calcium carbonate in that shell was produced in equilibrium with the sur-
rounding water, the difference (δ18Oc − δ18Ow) allows us to derive the temperature. Urey
states that the differences in the δ18O ratio for 1 °C is only 0.0176%, so the measurement of
the two isotopes must be very precise. The preparation and mass spectrometer methods by
Urey were precise enough to measure at that scale. They procured a number of specimens
and created the first comparison graph of δ18O and temperature, shown in figure 5.

In 1953, Epstein et al. [6] improved the method of purifying the samples, and eliminated
a source of extraneous oxygen. They derived an improved temperature 18O regression[6],
leading to the formula:

t(◦C) = 16.5 − 4.3δ + 0.14δ2 ± 0.5°C

Where δ is the difference (δ18Oc − δ18Ow) of the sample to a reference gas.
McCrea calculated on theoretical grounds precisely what the influence of temperature

should be on the fractionation ratio based on the assumptions that the exchange of isotopes
happens at equilibrium, then studied the isotopic composition of foraminifera grown under
laboratory conditions.

McCrea derives a fractionation factor α which takes into account all possible con-
figurations of the two oxygen isotopes of interest both in the carbonate shell and in the
water.

Figure 7: table of fractionation factors by McCrea [16].

Figure 8: figure of McCrea of oxygen composition as a function of temperature with a linear
relation drawn through the points.
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α =

3[C 18O2−
3 ]+2[C 16O 18O2−

2 ]+[C 16O2
18O2−]

3[C 18O2−
3 ]+2[C 16O2

18O2−]+[C 16O 18O2−
2 ]

[H2
18O]

[H2
16O]

McCrea derives fractionation factors at various temperatures, where are here shown
as a table in figure 7 The isotopic composition resulting from the precipitated calcite of
McCrea follows a linear regression very well, as shown in figure 8. Nevertheless McCrea
used a quadratic term as well, which is quite common in these regressions [2].

The calcite was precipitated slowly, with an average half-time of 28 hours. The result-
ing temperature to δ18O relationship was given as

t = 16.0 − 5.17(δ18Oc − δ18Ow) + 0.092(δ18Oc − δ18Ow)2

This can be compared with the relationship of biological origin, given by Urey. Before
comparison this relationship must be corrected; the standard used by Urey was -0.95 ‰
different from that used by McCrea, leading to the equation

t = 18 − 5.44(δ18Oc − δ18Ow)

Both equations have resulting temperatures within one °C temperature difference and
are thus said to be in agreement according to McCrea.

In 2014, Marchitto et al. published a paper combining new core top measurements
with previously published data to rederive the relationship between δ18O and temperature.
Core-top measurements are measurements made at the top of a drilling core, which are
necessarily the most recent measurements.

Marchitto et al. underscore the uncertainty still surrounding the temperature to δ18O
relationship in benthic foraminifera, as well as the inconsistent use of the derived pale-
otemperature equations: various species are used interchangeably, species which may not
be at equilibrium are used as well as inorganically precipitated calcite at equilibrium. Fur-
thermore the temperature sensitivities may themselves be dependent on the temperature
as warm-water foraminiferal sensitivities are smaller than very cold waters. Marchitto et
al. study three groups: Cibicidoides and Planulina, Uvigerina, and Hoeglundina elegans.
These measurements were combined with measurements from earlier studies.

Marchitto et al. refer to the paleotemperature equations of Shackleton and of Lynch-
Stieglitz, Curry, and Slowey, preferring the latter as it is better constrained, based on
Cibicidoides and Planulina (between 4 °C and 26 °C). The difference in the two equations
is quite big: Shackleton has a slope of -0.25 ‰ per °C while Lynch-Stieglitz, Curry, and
Slowey is only -0.21 ‰ per °C. The difference comes to about 2 °C.

Duplessy, Labeyrie, and Waelbroeck [5] showed that regressions based on Cibicidoides
core top measurements, when adjusted using Shackleton’s +0.64 ‰ adjustment, visually
agree well with Shackleton’s regressions.
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Figure 9: Duplessy, Labeyrie, and Waelbroeck’s new measurements visually aligning with
Shackleton’s regression line.

Marchitto et al.’s new measurements are from five taxa:

• Cibicidoides pachyderma,

• Planulina ariminensis

• Planulina foveolata

• Uvigerina peregrina

• Hoeglundina elegans

The first four are calcitic, while the last is aragonitic.
These are core-top samples from 31 multicores in the Florida Straits at temperatures

of 5.8 - 19.0 °C. The seawater δ18O is well constrained.
A second source of data is of Cibicidoides wuellerstorfi in Arctic Ocean core tops,

at temperatures below 0 °C. This data is combined with previously unpublished Little
bahama Bank sediments used by Lynch-Stieglitz, Curry, and Slowey [14]

Figure 10: The temperature dependency in the Florida Straits benthic foraminifera, Mar-
chitto et al. [15]. The lines are RMA regression, grey points are excluded 3σ outlier.
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The regressions between δ18O difference in the Florida Straits are shown in figure 10.
Marchitto et al. colored the data points to species, showing the offset difference. In these
regressions, the slope visually appears almost identical, particularly between H. elegans
and C. pachyderma.

Marchitto et al. used Reduced Major Axis regression (RMA) as an alternative to the
traditional ordinary least squares regression (OLS). RMA, also known as total least squares
regression, is preferred over OLS by Marchitto et al. as the regression error is quantified
over both axis instead of only over the y axis.

The timeline shown in figure 2 comes from a 2020 paper by Westerhold et al., who
constructed a continuous temperature timeline going back 66 million years, based on ben-
thic foraminifera isotope fractionation records. Temperature timelines are important to
identity the Earth’s past climate, and therefore the current climate and climate change.
Their measurements are timed to an accuracy of ± 100 thousand years for the Paleocene
(66 mya - 56 mya) and Eocene, and to ± 10 thousand years for the late Miocene (23 Ma
- 5.3 Ma) to Pleistocene (2.5Ma-11kyr), which were collected from 14 ocean drilling cores,
mostly from the species Cibicidoides and Nuttallides.

The timeline was constructed by binning the measurements on average every 2 thou-
sand years and smoothing by a locally weighted function. The red line is smoothed over 1
million years, while the blue line is smoothed over 20 thousand years.

Figure 11: climate states of the Cenozoic as set out by Westerhold et al., who have deter-
mined through recurrence analysis that four distinct climate states emerge corresponding to
specific temperature bands.

The results were then analyzed using recurrence analysis (RA), which is a technique
from chaos theory to analyze dynamical systems. It allows creating visualizations of the
state of the system in terms of the transitions from one state to another, which is called a
phase space trajectory. Westerhold et al.’s resulting Recurrence plots, copied in figure 11,
wherein they identified four broad climate states which they names Hothouse, Warmhouse,
Coolhouse, and Icehouse according to mean temperatures. A recurrence plot should be
read by diagonal lines representing phase shifts to a different phase, and vertical lines
representing staying stationary in the same phase (the plots are symmetrical, so choosing
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vertical over horizontal lines is purely by convention).
When comparing δ18O to a reference, there is a choice of what reference to be used,

which impacts the measured difference. The reference of choice depends on what we’re
measuring. For oxygen from carbonate, the Pee Dee Belemnite (PDB) standard is used,
which was established based on Belemnite fossils found in South Carolina along the Pee
Dee river. The original supply has run out, so now a reference value of a hypothetical
Vienna Pee Dee Belemnite is used another standard from Vienna, VPDB, is used instead.
For oxygen isotope ratios in the water, the reference Vienna Standard Mean Ocean Water
(VSMOW) is used, which, like VPDB, was preceded by a standard from America, called
SMOW. It is unclear which reference exactly were used for the earliest studies like Urey
[22] and McCrea [16], while later studies usually referenced the latest referents of PDB or
SMOW or their Vienna equivalents.

3.2 statistical background

The relationship between δ18O and temperature has usually been determined with linear
regressions, sometimes with a quadratic term. In this case the temperature is the outcome
variable, and we’re interested in the impact of the δ18O predictor term, which is given by
its coefficient. The regression has usually been done using ordinary least squares (OLS)
regression, which is a technique for determining a linear relationship between predictor
variables and an outcome variable. It works by minimizing the quadratic of the residual
errors, which are the difference between the predicted point and the real point in the y
direction. As indicated in the section discussing Marchitto et al. [15], there are alternative
forms of regression which minimize different errors. The Bayesian framework is quite
different.

To compare Bayesian modeling to OLS, we will need to think of OLS in terms of
parameter estimation of a probability distribution. We can describe OLS in terms of
maximum likelihood estimation (MLE), which is a method to choose parameters that best
describe the outcome variable in terms of a probability distribution, in the case of OLS it
is the normal distribution. The idea is quite logical: since we know the data, we’re going to
figure out which distribution makes these data the most probable. In other words, choose
the parameters θ from the set of possible parameters Θ that maximize the likelihood L of
the set of data Y :

θ̂ = arg max
θ∈Θ

L̂n(θ;Y )

.
Our first Bayesian model will be a simple linear regression, like OLS. But unlike OLS,

the model will require prior distributions for all parameters. Prior probability distributions
allow us to inform our model which combination of values is plausible, and which are not.
This way, priors allow for statistical inference when there is not enough data for frequentist
methods, provided there is sufficient background knowledge to specify informative priors.
Usually priors should have enough information for the task of identifying reasonable values,
but in theory anything can be a prior. A possible prior is the flat prior, where each
possibility is assigned the same value. (in the case of continuous outcomes, this is not
a proper distribution, meaning it does not integrate to one. This also means it is not a
probability distribution. Nevertheless in principle it can be used as a prior.) Bayesian
methods result in a full posterior probability distribution instead of resulting in the most
likely parameter values. This comes with certain advantages, but for the purposes of
comparison we will focus on taking the mean of this distribution as our point value, and
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the standard deviation as our measure of variability, mirroring a typical regression with
a coefficient and associated error. If Bayesian regression is done with a flat prior, all the
information shaping the posterior distribution must come from the data, so we end up
getting a mean at the parameter values which make the data we’re seeing most probable:
this is equivalent to Maximum Likelihood Estimation.

Markov Chain Monte Carlo and Hamiltonian Monte Carlo

All Bayesian models conclude on a posterior distribution which fully described the model’s
information on all parameters. The trick is how to get that posterior distribution. Bayesian
statistics relies on Markov Chain Monte Carlo (MCMC) to get to the posterior distribution.

MCMC is essentially a way to explore such a posterior distribution by walking in the
parameter space. The first MCMC algorithm, the Metropolis-Hastings algorithm, was
discovered by Metropolis et al. [18] in 1953. To describe the metropolis algorithm by
analogy, envision a landscape with hills and a person, Mark, who will be walking along the
hills. Each time Mark is about to take a step in a random direction, they measure how
much higher or lower their foot will be than it currently is. If it’s higher, Mark wants to
make the step, but if it’s lower, they are not really sure what they want. In that case, Mark
chooses to make the step randomly according to how big the difference is. Mark will end
up on the tops of the hills more often than in the valleys, but they will still occasionally
end up in the valleys, according to how deep they are.

Figuring out the posterior distribution would be possible if we could draw random
draws from it. This would be like Mark teleporting randomly around the terrain, each
time noting how high they are. Teleporting is hard, so MCMC instead allows draws to
be correlated with each other, just like Mark makes steps from one place to another. The
metropolis algorithm has Mark walk along the hills defining the parameter probability for
a set number of steps, and records where Mark has been, and how often they have been
there. If Mark keeps going for a long time, eventually Mark will walk throughout all the
hills, and the algorithm knows the entire probability space. Usually MCMC models will
feature multiple chains: various Marks starting their walks at different points.

Stan uses an implementation of MCMC that is a variant of Hamiltonian Monte Carlo
(HMC) called the No U Turn sampler (NUTS) [11]. Hamiltonian Monte Carlo is a compli-
cated algorithm that improves greatly over more straightforward methods to fit Bayesian
models.

Hamiltonian Monte Carlo runs a physics simulation of a particle gliding, much like
Mark walked, across a landscape of hills. The particle speeds up when the hills are more
steep, and slows down when the hills are more level. The particle travels throughout
the entire space before it has been back where it’s started. HMC uses the particle to find
points to propose, analogous to where Mark places his next step. But because it follows the
particle, HMC’s samples are less correlated and explore the hills more efficiently. Because
of the physics simulation each step takes longer to compute, and all parameters must be
continuous: you could imagine Mark stepping up and down stairs, but the particle cannot
glide over bumpy stairs.

A regression’s equation

We will now turn to creating our first model of the temperature to δ18O relationship and
comparing it to previously established regression equations. There have been many studies
of this relationship, and consequently there are as many regressions. Bemis et al. [2] has
collected a table of commonly used temperature to δ18O relationships as of 1998, which
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can be viewed in figure 12. Bemis et al. conveniently made all equations conform to the
following formula:

T (°C) = a+ b(δ18Oc − δ18Ow) + c(δ18Oc − δ18Ow)2

Some of the regressions were recalculated using original data, some were approximated
as the original formula was of the form 103 ln α instead. The coefficients of most inter-
est are b and c, respectively for the linear and the quadratic dependence on the oxygen
fractionation ratio in the source.

Figure 12: table showing temperature relationships from different studies, including 5 new
relationships from Bemis et al. [2].

[b]

a ∼ Normal(16, 4) prior for the intercept
b ∼ Normal(−4, 2) prior for linear term coefficent
c ∼ Normal(0.1, 0.5) prior for quadratic term coefficient
σ ∼ Normal+(0, 4) prior for the standard deviation

µi = a+ b(δ18Oc − δ18Ow) + c(δ18Oc − δ18Ow)2 linear model
Ti ∼ Normal(µ, σ) likelihood

(1)
As described above, our outcome variable will be temperature, and we will have two

prediction variables; the difference (δ18Oc − δ18Ow), and its square, resembling Bemis et
al.’s equation in figure 12. This model is described in math block 1. Note the linear model
near the bottom: it specifies the same equation as Bemis et al. It is preceded by priors for
each parameter.

The likelihood shows that we’re assuming our error will be normally distributed around
some mean, which is not an uncommon assumption for linear regression. The priors are
weakly informative, as they have been set in the range we would expect given the prior
work shown in figure 12, but each has deliberately been given a wide standard deviation
to allow for the data to overwhem the priors. The prior for σ has a plus sign in subscript,
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which denotes that the distribution has to have positive values. A standard deviation
naturally can not be negative.

This model can be fitted in Stan, which is statistical modelling based on the Hamil-
tonian Monte Carlo algorithm. Stan uses the Stan language for model specification. The
Stan language is c-like, so in addition to specifying our priors, likelihood and linear model,
we need to tell Stan about the types to use for the variables. Stan uses various blocks to
define the program, with the most important one being the model block. The Stan code
for this model is shown in listing 1. Note especially the model block; it is virtually identical
to the specification as written in model block 1 above.

A linear regression model which was ran on a subset of the final dataset will be repro-
duced here. This does not represent actual results but is merely meant to illustrate the
process. At the time this model was fitted, the data processing had not yet finished. The
model was fitted to the data that is collected from Marchitto et al. [15], which yields the
results in listing 2. The parameters can be directly compared to those of Bemis et al.; this
will not be the case for the actual models after our data preprocessing steps as set out in
section 4.1. First we will look at R̂. R̂ is a ratio of variance in and between chains. As
the variance between chains goes down, R̂ approaches 1 from above. A rule of thumb is
that a R̂ above 1.01 indicates some kind of fitting problem which should be investigated.
The inverse is not necessarily true: a good R̂ value does not imply there are no problems.
Next we will look at the effective sample size. This metric is a calculation showing how
many random samples a chain effectively has. This is always lower than the number of
samples each chain has, as the actual samples are autocorrelated. ess_bulk and ess_tail
are respectively estimates of how many random samples there are in the sections of the
posterior with high probability and in the sections with low probability (the tails). The R̂
and ess_bulk look reasonable in this case, so we can cautiously conclude the mean can be
trusted.

The results are not terribly surprising: all parameters are well within the prior standard
deviations of the prior means. It is interesting that c is a negative term here, while the
table from Bemis et al. only has positive quadratic terms. The data that was used for
fitting this model came wholly from Marchitto et al. [15], which thus was not available for
Bemis et al. to add to their table, providing an independent source.

When modelling, there are a number of ways to check whether the model makes
sense.One way is to turn the model around and use it to generate data instead of ana-
lyzing data. This is a good way to read the model definition in math block 1: We follow
our assumptions to have random variables behave as defined by our priors, we add these
together in a linear model and we get a certain value as a result. We can have Stan generate
this result in a generated quantities block, shown in listing 5.

This block is used to generate variables from the model, and is run once after the model
has been fitted. In this case, it is generating two variables: Y_sim and log_lik. The latter
is primarily handy for model comparison, to which we will return in a later section. The
former is a variable holding fake data, which is generated according to our model. To see
how well our model is capturing the process forming the data, we can compare Y_sim to
the input data, for example simply by plotting both. When done after fitting, this is called
a posterior predictive check. When done before fitting the model, it is a prior predictive
check. Both are useful to evaluate the performance of our model: we can check whether
our priors are actually reasonable, and we can check whether the likelihood makes sense.

Figure 13 plots eight possible distributions of fake data, overlayed over the real data.
Our choices for priors do not match the data very well, some distributions are extremely
narrow, and some are misplaced. Figure 14 mirrors figure 13 but shows draws from the
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1 data {
2 int N;
3 vector[N] Y;
4 vector[N] b1;
5 vector[N] b2;
6 }
7

8 parameters {
9 real a;

10 real b;
11 real c;
12 real<lower = 0> sigma;
13 }
14

15 model {
16 vector[N] mu;
17

18 a ~ normal(16,4); // prior for the intercept
19 b ~ normal(-4,2); // prior for linear term coefficient
20 c ~ normal(0.1,0.5); // prior for quadratic term coefficient
21 sigma ~ normal(0,4); // prior for the standard deviation
22 mu = a + b * b1 + c * b2; // linear model
23 Y ~ normal(mu, sigma); // likelihood
24 }

Listing 1: initial Stan model.

1 variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
2 lp__ -206.59 -206.26 1.44 1.19 -209.41 -204.93 1.00 813 1104
3 a 16.38 16.38 0.28 0.28 15.94 16.84 1.00 1032 984
4 b -3.73 -3.74 0.34 0.33 -4.28 -3.16 1.00 539 770
5 c -0.21 -0.21 0.10 0.11 -0.38 -0.05 1.00 560 856
6 sigma 2.28 2.28 0.13 0.13 2.08 2.50 1.01 1241 1263

Listing 2: initial results.
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Figure 13: prior predictive check of the model. The eight lines correspond to fake data, while
the colored region shows the real data distribution. The fake data shows both distributions
that are very wide and distributions that are very narrow relative to the real dataset.

Figure 14: posterior predictive check of the model.

posterior of the model. As can be expected, once the model has seen the real data, the
resulting fake data distribution is visually much more like the real data distribution, though
it does not completely capture it.

Hierarchical models

The goal is to expand this simple model to incorporate multiple levels.
The original model is of a type called a fully pooled model. this means it incorporates

the assumption that all data points come from the same distribution. By using a hierar-
chical model, we can relax this assumption, while still allowing the model to use the whole
dataset to learn each parameter.

Firstly we want to add a level according to species, as it is expected from the literature

1 generated quantities {
2 vector[N] log_lik;
3 vector[N] Y_sim;
4 vector[N] mu;
5 for (i in 1:N){
6 mu = a + b * b1 + c * b2;
7 log_lik = normal_lpdf(Y[i] | mu,sigma);
8 Y_sim[i] = normal_rng(mu[i],sigma);
9 }

10 }

Listing 3: a block to generate fake data from the model.
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that each species has a slightly different temperature relationship. This makes the Stan
code slightly more complicated, as Stan now needs a lot more information: it needs to be
told how many groups there are and which group each observation is assigned. In the model
in math block 3 (from section main model: hierarchical linear model), the relationship is
pooled for all three parameters; the intercept, the linear relationship and the quadratic
relationship.

The choice of priors has been changed: we’re using the posterior values of the initial
model as priors for this model. Hierarchical models need a lot more informative priors,
as the geometry that Stan has to explore has become a lot more complicated and mul-
tidimensional. By utilizing the outcome of the previous model, we allow Stan to fit this
model adequately. As the parameters a, b and c are now pooled, the initial values of these
parameters are priors, making the normal distributions we’re using for them priors for
those priors. These are usually called hyperpriors.

The Stan code to fit this model is shown in listing 4. It is a more complicated model,
where a, b and c are now vectors with one value per group. In the linear model on line 28,
each parameter uses the value given by species[i]. species assigns each observation in
Y an index corresponding with its group, in this case the species that observation belongs
to.

Figure 15: Neal’s funnel in log probability density.

Note that the earlier model is a centered model, which we could reparameterize to
create a non-centered model. Centered models are more straightforward in that the pa-
rameters that are fitted are the parameters of interest, which is easier to interpret. Non-
centered models are models which do not model the parameters of interest directly but
model latent variables from which the parameters of interest can be retrieved. Having a
non-centered model is preferable as it captures the impact of each latent variable relative
to the population, instead of capturing the absolute impact as centered models do. This
eliminates one potential source of funnels, which are regions where log-probability changes
rapidly. Funnels make it harder for HMC to sample from the posterior probability. Figure
15 shows a funnel discussed in the Stan users guide [20]. To effectively sample the broad
area of relatively lower probability (called the body in the user guide), the sampler needs
a big step size, while in the very small area of high probability, the neck, requires a very
small step size. Transforming parameters, or reparameterization, is an effective way to
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eliminate some funnels. Usually fully pooled models, like the first model here, do not come
up against problems like Neal’s funnel. Partially pooled models frequently do however,
which means tricks like reparameterization are essential.

Bayesian workflow when developing a model

Figure 16: Gelman et al.’s diagram of iterative model improvement. Numbers indicate
chapters in Gelman et al. [8].

In developing the hierarchical model we have already gone through an iteration im-
proving the simple regression model. This demonstrates the type of iteration that will
be used throughout this thesis, based on Gelman et al. [8]. Figure 16 shows a diagram
from Gelman et al. of iterative model improvement which captures the workflow. Starting
at the upper left corner, we’ve created an initial model and fitted the model. Validating
computation and evaluation came in the form of fake data simulation and posterior predic-
tive check. We noted the convergence diagnostics of R̂ and ess_bulk, but in the posterior
predictive check we noted that visually, the fake distributions did not seem to capture the
true data exactly. We chose to expand the model into a multilevel model. This hierarchical
model is where we ended up now. Now we would like to compare these models. This can
be done by leave one out cross validation (LOO). In LOO, we estimate for each datapoint
what the posterior distribution would be like if we left that point out. Then we check how
well the model would predict that point. By performing this check for both models, we can
see which performs best. The R package loo conveniently performs this check, reporting
a score called elpd_diff. Without describing the meaning in detail yet, the important
takeaway from this comparison is whether there is a significant difference between the two
models given the standard error loo reports for each model. In this case the difference is
more than an order of magnitude the se, so we can conclude there is a significant difference
between the two models.
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1 data {
2 int N;
3 int K; // number of sources
4 vector[N] Y;
5 vector[N] b1;
6 vector[N] b2;
7 array[N] int<lower=1, upper=K> species; // source group assignments
8 int<lower=0, upper=1> prior_only;
9 }

10

11 parameters {
12 vector[K] a;
13 vector[K] b;
14 vector[K] c;
15 real<lower = 0> sigma;
16 }
17

18 model {
19 vector[N] mu;
20

21 a ~ normal(16,0.3); // hyperprior for the species intercept
22 b ~ normal(-3,0.3); // hyperprior for species slope
23 c ~ normal(-0.2,0.1); // hyperprior for species quadratic term slope
24 sigma ~ normal(2.2,0.1); // prior for the standard deviation
25

26 if (!prior_only) {
27 for (i in 1:N) {
28 mu = a[species[i]] + b[species[i]] * b1 + c[species[i]] * b2;
29 Y[i] ~ normal(mu, sigma);
30 }
31 }
32 }
33

34 generated quantities {
35 vector[N] log_lik;
36 vector[N] Y_sim;
37 vector[N] mu;
38

39 for (i in 1:N){
40 mu = a[species[i]] + b[species[i]] * b1 + c[species[i]] * b2;
41 log_lik[i] = normal_lpdf(Y[i] | mu,sigma);
42 Y_sim[i] = normal_rng(mu[i],sigma);
43 }
44 }

Listing 4: A hierarchical model based on the first model. Note that instead of using individ-
ual parameters a or b in the linear model, the model instead uses values from a vector (list)
of a and b, one value for each group. This allows the hierarchical model to learn about the
whole group the same way the initial model learns about the whole dataset.

20



1 elpd_diff se_diff
2 model2 0.0 0.0
3 model1 -10778.4 761.7

Listing 5: the result of using R package loo to compare the two models. The preferred
model is model2, the hierarchical models.

4 Methods

4.1 data processing

The dataset is a combination from four different source papers. It includes biological
data from Grossman and Ku [9], Herguera, Jansen, and Berger [10], and Marchitto et al.
[15]. These are the only papers that were under consideration for inclusion which included
δ18O data separately for the carbonate and the water, temperature measurements with
data specified per species. Originally a dataset from Bouvier-Soumagnac and Duplessy
[3] was going to be included as well, however it was ultimately excluded because the
data as represented in the paper’s tables differed from that in the appendix, which led to
uncertainty on the part of this thesis’ writer as to which was the correct data to include. In
order to compare the biological data to inorganically precipitated carbonate, a 2009 study
by Kim et al. was included, leading to in total four data sources.

Figure 17: The datapoints from foraminifera carbonate. Visually, the groupings already
have a clear suggestion of slope and dispersion.

For the Deming regression model we require uncertainty values for the δ18O mea-
surements. measurement errors for δ18Oc were available for Grossman and Ku, Herguera,
Jansen, and Berger, and Marchitto et al., but not for Kim et al. For δ18Ow, the uncertainty
values were only available for Marchitto et al. Where these values were unavailable we had
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to perform data imputation. Because this concerns uncertainty estimates, we chose to im-
pute by taking the maximum value in our dataset and double it. This lets our model knows
that we’re more uncertain about these values than about those in other papers because we
don’t know the measurement error.

The dataset includes 295 datapoints from foraminifera, 28 datapoints from other bi-
ological carbonate (Gastropods and Scaphopods, from Grossman and Ku [9] ) and 87
datapoints from abiological carbonate for a total of 410 datapoints. The datapoints are
visualized in figures 17 and 18.

Figure 18: All datapoints (note changed Y-axis). The abiological datapoints were pre-
cipitated at different rates for comparison, as such the groups are more Rather than less
spread out than the biological points. This visualization also includes biological datapoints
in different phylums (Gastropods and Scaphopods).

At this point the form of the input data must briefly be addressed. As can be seen in
the data table in the appendix, section 8, we have decided to have δ18Oc and δ18Ow both
expressed relative to the VSMOW standard, instead of VPDB and VSMOW respectively
for δ18Oc and δ18Ow, as is done in the regressions from Bemis et al. [2] . This is one
of the possible expressions of these values recommenced by IUPAC [4]. This is preferred
simply because we want the comparison our model is learning to be as simple as possible.
(hereafter, δ18Oc and δ18Ow values will always both be expressed relative to VSMOW
unless otherwise noted). To subsequently use the draws from the model, the input δ18Ox
values need to both be in VSMOW format. The preferred translation formula (which is
also used by our data preprocessing) is the one recommended by IUPAC [4]:

δ18Ox/VSMOW = 1.031 · δ18Ox/VPDB + 29.99
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4.2 complete pooling models

This thesis includes 8 models in total. The most important change when compared to the
original OLS models is using partial pooling across species. The models will be discussed
in turn, starting with a fully pooled linear regression.

fully pooling Bayesian linear regression

This simple Bayesian model fits to the same equation, with the exception of the quadratic
component. It therefore has only linear components, which makes it much easier to fit.

T (°C) = a+ b · (δ18Oc − δ18Ow)

This is a very simple model, as such the stan code is shown here in its entirety except
the generated quantities block. It being a complete pooling model, meaning there are
only population level parameters to fit, so it can only give us the most general idea of
our entire data set. It will necessarily have higher uncertainty than a model that fits on
specific subgroups, as the next category of models will do.

1 data {
2 int N;
3 vector[N] Y;
4 vector[N] x1;
5 int prior_only;
6 }
7

8 parameters {
9 real a;

10 real b;
11 real<lower = 0> sigma;
12 }
13

14 model {
15 vector[N] mu;
16 a ~ normal(120,50); // prior for the intercept
17 b ~ normal(-4,1); // prior for linear term coefficient
18 sigma ~ normal(0,2); // prior for the standard deviation
19

20 if (! prior_only) {
21 mu = a + b .* x1; // linear model
22 Y ~ normal(mu, sigma); // likelihood
23 }
24 }

Listing 6: The stan code for the linear regression.

This model was originally run with flat priors, those being the default option in stan
when no priors are given. As can be seen in the stan code in listing 6, there are weakly
informative priors now. Apriori we should expect this model to fit quite fast: it’s a simple
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regression model with only two parameters in the linear model. with enough data, the pos-
terior will overwhelm any sane prior. The results section will set out a posterior predictive
check for the priors shown here.

fully pooling Bayesian linear regression using a quadratic component

This Bayesian model will fit the original formula defined by Bemis et al.:

T (°C) = a+ b · (δ18Oc − δ18Ow) + c · (δ18Oc − δ18Ow)2

This model features priors for each regression component, a linear model, and a like-
lihood.

a ∼ ? prior for the intercept
b ∼ ? prior for linear term coefficent
c ∼ ? prior for quadratic term coefficient
σ ∼ Normal+(0, 2) prior for the standard deviation

µi = a+ b(δ18Oc − δ18Ow) + c(δ18Oc − δ18Ow)2 linear model
Ti ∼ Normal(µ, σ) likelihood

(2)
we call this a simple quadratic model: It is a linear regression with a linear and a

quadratic component. As discussed in the background section, we have doubts on whether
there is a theoretical interpretation for a quadratic component, and there are computational
reasons for leaving it out, so in later models we will run comparable regressions without
the quadratic component and compare the models.

Later models in this thesis will be iterative improvements on these early fully pooled
models. During development we have a rough idea what shape the posterior for newer
models will take: we have seen the output of previous, simpler models with a range of
priors, and there is enough data to overwhelm the prior. With both of those facts in hand,
defining priors for later models is more straightforward than it sounds at first glance.

To define a prior for this model we will have to discuss our current data. A reasonable
start, given the amount of research in the δ18O temperature reconstruction, is to use the
previously established values as inspiration. We could then construct normal distributions
around those that show our model which values we find acceptable (we want our prior to
encapsulate the knowledge that a value of -4.23 for our slope is pretty reasonable, while a
value of -42.3 is not so reasonable).

The one parameter we’ve already given a prior is the likelihood’s σ. This sigma denotes
the final dispersion around the linear model when fit to the temperature. This dispersion
should incorporate the uncertainty of the temperature measurement. The temperature
uncertainty varies over different temperature measurements. Our half-normal prior peaks
at 1.6, which overshoots all reported measurement uncertainty while not taking too much
probability mass away from the region below 1. This prior will feature more in later models
as well for similar reasons.

The shift in input data discussed in section 4.1 has an impact on the interpretation
and values of our parameters, as the intercept and slope are now expressed on a VSMOW-
VSMOW δ18O ratio instead of a VPDB-VSMOW ratio. assuming we would take in δ18Oc
values on the VPDB scale in order to facilitate comparison to the Bemis et al. [2] regres-
sions, the model would look like the following equation:
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T (°C) = a + b · ((δ18OcVPDB · 1.031 + 29.99) − δ18OwVSMOW)+

c · ((δ18OcVPDB · 1.031 + 29.99) − δ18OwVSMOW)2

So defining reasonable priors is now challenging. This is compounded by the choice of
including a quadratic component: fitting this model with too wide priors will result in a
very hard likelihood for stan to explore. Nevertheless, arithmetic shows the transformation
will have an effect on the a parameter but not on the b parameter. Ultimately, the priors
that were chosen correspond to the posterior of the first fully pooled model, which are the
ones shown in the stan code in listing 6 and in the model statement of the main model, in
section main model: hierarchical linear model.

4.3 partial pooling models, 2 level

main model: hierarchical linear model

This model is the natural extension of the fully pooled model by using partial pooling
across species. The slope and intercept are assumed to be independent from each other,
however the slopes and intercepts of the different species are assumed to be similar to
each other, and fit together using partial pooling. This model explores the similarities and
differences between species. The model definition is shown below. This model has a lot
more moving parts to it, however when viewed from a distance, it still concerns just two
parameters: a and b, leaving out the quadratic component c at least for the moment. The
main difference in the linear model is that these are now group specific.

This is where the hyperpriors come in. Each aspecies is drawn from a prior distribution
defined by the population level parameter a and σa. These form the link between the
species. Because stan will fit all parameters together, the common reliance on the global
parameter makes the group parameters tend together, even though they have individual
room to fit.

This model once again does away with the quadratic component, mirroring the sim-
pler fully pooled models. Having all four models allows making a number of interesting
comparisons concerning the quadratic component:

• does the quadratic parameter lead to better fits?

• does it still lead to better fits when species are partially pooled?

• what is the computational cost of using a quadratic component?

Apart from the quadratic component, this model is ideally suited for studying the
different values given to different species.

This model is the basis for further exploration in models, as such a full model descrip-
tion is given below.
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a ∼ Normal(120, 50) hyperprior for the intercept
b ∼ Normal(−4, 1) hyperprior for linear term coefficent

σa ∼ Normal+(0, 50) sigma hyperprior for the intercept
σb ∼ Normal+(0, 5) sigma hyperprior for linear term coefficent

σ ∼ Normal+(0, 2) prior for the standard deviation

aspecies ∼ Normal(a, σa) prior for the intercept
bspecies ∼ Normal(b, σb) prior for linear term coefficent

µi = aspecies + bspecies(δ
18Oc − δ18Ow) linear model

Ti ∼ Normal(µ, σ) likelihood
(3)

This model has a lot more priors. These priors are partially based on the posteriors of
the simpler complete pooling linear model. As such, we have a prior for the intercept just
above 100, with a sizable standard deviation of 50. Our linear slope parameter also follows
the previous model, and is much in line with the slope we see in the literature. Sigma’s
are all halfnormal distributions, which is recommended by McElreath.

hierarchical model using a quadratic component

This model is very similar to the main model, except it incorporates the quadratic com-
ponent again, allowing for the comparison between a linear model with and without a
quadratic component to be made on models with two levels as well as on the simpler fully
pooled models.

a ∼ Normal(120, 50) hyperprior for the intercept
b ∼ Normal(−4, 1) hyperprior for linear term coefficent
c ∼ Normal(0, 5) hyperprior for quadratic term coefficient

σa ∼ Normal+(0, 50) sigma hyperprior for the intercept
σb ∼ Normal+(0, 5) sigma hyperprior for linear term coefficent
σc ∼ Normal+(0, 5) sigma hyperprior for quadratic term coefficient

σ ∼ Normal+(0, 2) prior for the standard deviation

aspecies ∼ Normal(a, σa) prior for the intercept
bspecies ∼ Normal(b, σb) prior for linear term coefficent
cspecies ∼ Normal(c, σc) prior for quadratic term coefficient

µi = aspecies + bspecies(δ
18Oc − δ18Ow)+

cspecies(δ
18Oc − δ18Ow)2 linear model

Ti ∼ Normal(µ, σ) likelihood
(4)

The priors of this model are very similar to the ones presented for the previous model.
The quadratic parameter c is assumed to be close to 0, but the chosen prior is deliberately
quite wide to allow the model to explore alternate ways of fitting to the data.
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hierarchical model with separate δ18O parameters

This model pulls apart the (δ18Oc−δ18Ow) variable to separate δ18Oc and δ18Ow variables
with their own parameters. This allows us to see whether a regression will recover the
theoretically grounded (δ18Oc − δ18Ow) term, or whether it will see some other way to fit
the data.

a ∼ Normal(120, 50) hyperprior for the intercept
b1 ∼ Normal(0, 10) hyperprior for linear term coefficent
b2 ∼ Normal(0, 10) hyperprior for linear term coefficent

σa ∼ Normal+(0, 50) sigma hyperprior for the intercept
σb1 ∼ Normal+(0, 5) sigma hyperprior for linear term coefficent
σb2 ∼ Normal+(0, 5) sigma hyperprior for linear term coefficent

σ ∼ Normal+(0, 2) prior for the standard deviation

aspecies ∼ Normal(a, σa) prior for the intercept
bspecies ∼ Normal(b, σb) prior for linear term coefficent

µi = aspecies+
b1speciesδ

18Oc + b2speciesδ
18Ow linear model

Ti ∼ Normal(µ, σ) likelihood
(5)

The b1 and b2 priors are interesting. Because the model is intended to be let free to
interpret the data, we center a normal distribution on 0, with tails twice as wide as the
typical slope parameter value in the posterior of our main hierarchical model.

hierarchical model with deming regression

This model attempts to capture the uncertainty inherent in the measurement of the δ18Oc
and δ18Ow variables. Instead of fitting a linear model on the input variables directly, the
linear model is fed faux data which is created point by point by drawing from a normal
distribution centered around the δ18Ox as a mean, with a standard deviation given by
σδ18Ox
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a ∼ Normal(120, 50) hyperprior for the intercept
b ∼ Normal(−4, 1) hyperprior for linear term coefficent

σa ∼ Normal+(0, 50) sigma hyperprior for the intercept
σb ∼ Normal+(0, 5) sigma hyperprior for linear term coefficent

σ ∼ Normal+(0, 2) prior for the standard deviation

aspecies ∼ Normal(a, σa) prior for the intercept
bspecies ∼ Normal(b, σb) prior for linear term coefficent

ηδ18Oc
∼ Normal(δ18Oc, σδ18Oc

) draw of the carbonate ratio
ηδ18Ow

∼ Normal(δ18Ow, σδ18Ow
) draw of the water ratio

µi = aspecies + bspecies(ηδ18Oc
− ηδ18Ow

) linear model
Ti ∼ Normal(µ, σ) likelihood

(6)
The deming regression incorporates a form of deviation which we can give by data

input, thereby improving uncertainty estimation elsewhere in the model.
The priors of this model are the same as the main hierarchical model.

hierarchical model with a correlation matrix

Up to now, all models have had the assumption baked in to their structure that there is no
correlation between slope and intercept. By using a correlation matrix we can allow our
model to explore that assumption. Our model structure now looks very different. Instead
of defining a prior and a parameter per line, we are now defining parameters in terms of
each other. It is best to start once again with the likelihood and the linear model. These
have not changed. looking ahead to our priors, we see that the prior for our temperature
deviation also has not changed.

[
a
b

]
∼ MVNormal(

[
120,−4

]
,

[
50 1
1 5

]
) prior for population parameters

σaspecies ∼ Normal(0, 50) sigma prior for species intercept
σbspecies ∼ Normal(0, 5) sigma prior for species slope
R ∼ LKJcorr(1) prior for correlation matrix
aspecies ∼ Normal+(a, σaspecies) prior for the species intercept
bspecies ∼ Normal+(b, σbspecies) prior for the species slope

S =

(
σaspecies 0

0 σbspecies

)
R

(
σaspecies 0

0 σbspecies

)
construct covariance matrix

σ ∼ Normal+(0, 2) prior for the standard deviation

µi = aspecies + bspecies(δ
18Oc − δ18Ow) linear model

Ti ∼ Normal(µ, σ) likelihood
(7)
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Starting with the population parameters, a and b are defined in terms of a multivariate
normal distribution. . The sigma priors are similar to previous models. Then we come to
the LKJ prior, which defines a prior for the correlation matrix. The LKJ prior is defined
over a correlation matrix R and parameterized by a single argument η, which denotes the
degree to which every species and parameter is going to be correlated. High levels of η
means lower correlation.

partial pooling model with a third level of composition

Extending the model to a third level allows for the model to have partial pooling in multiple
levels. We chose to add a layer for composition, which means there are three layers of
parameters in this model:

1. population

2. composition

3. species

Each composition group is also based on the a and b population parameters, and each
species is based on the a and b parameters of it’s composition. Now the model knows that
species that have the same composition are more similar than species that don’t have the
same composition.

[
a
b

]
∼ MVNormal(

[
120,−4

]
,

[
50 1
1 5

]
) prior for population parameters

σaspecies ∼ Normal(0, 50) sigma prior for species intercept
σbspecies ∼ Normal(0, 5) sigma prior for species slope
R ∼ LKJcorr(1) prior for correlation matrix
aspecies ∼ Normal+(a, σaspecies) prior for the species intercept
bspecies ∼ Normal+(b, σbspecies) prior for the species slope
acomposition ∼ Normal+(a, σacomposition) prior for the composition intercept
bcomposition ∼ Normal+(b, σbcomposition) prior for the composition slope

S =

(
σaspecies 0

0 σbspecies

)
R

(
σaspecies 0

0 σbspecies

)
construct covariance matrix

σ ∼ Normal+(0, 2) prior for the standard deviation

µi = aspecies + bspecies(δ
18Oc − δ18Ow) linear model

Ti ∼ Normal(µ, σ) likelihood
(8)
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5 Results

Figure 19: A visualization of temperature distributions for various species in the main
model, given a δ18Oc of 33, a δ18Ow of 0.3 (note: both are in VSMOW), and a respec-
tive standard deviation of 0.08 and 0.7 for those measurements. This figure shows the
corresponding uncertainty for each species, as well as the means.

Each model was run at least once, however the main model and three level model have
been run more than once with expanded datasets, leading to 11 model fits to cover in the
results section. Each model has a corresponding section in the appendix with regression
visualizations per species and composition where applicable, posterior predictive check
figures, model summaries and loo values. Some sections will feature autocorrelation plots
and traceplots. The species in the model summaries will be numbered. To check which
species a number corresponds to, check the species name tables in section 8.1.

Unless otherwise noted, all models have good R̂ values ( R̂ ≤ 1.01), effective sample
sizes (> 1000 effective samples) and low Monte Carlo standard errors for all parameters
(all MCMC se are around two orders of magnitude lower than the estimated standard
deviation of the parameters), as well as good visual checks in trace plots, autoregression
plots, and posterior predictive checks.

Also unless otherwise noted, all model fits are run with 4 chains on 1000 warmup
samples and 1000 samples for 4000 post-warmup samples total. Almost all models benefited
from a higher maximum treedepth at 15, and all were run with an adapt_delta setting of
0.99, excepting the fully pooled models and the main model with foraminifera data, which
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had a setting of 0.95 due to lower complexity.
Due to the inclusion of 11 model fits, the total results are quite large. Instead of

including all long model summaries, visual checks and regression lines, the results section
will feature the most notable ones, with references at appropriate points to the appendix
which holds all visualizations, visual checks, model summaries, and visual checks.

5.1 fully pooled linear regression (foraminifera data)

This is the simplest model, which compares quite closely to the original regressions, ex-
cepting that it has no quadratic component. It fits extremely fast (2 seconds), and has
a reasonable fit to the data. The posterior predictive check shows it doesn’t capture the
shape of the data: rather it simply puts most of its probability density in the center of
the data mass. This model has an a parameter for population intercept, a b parameter for
population slope and a σ parameter for residual dispersion on the temperature.

The population linear regression shown in figure 25 has deceptively narrow bounds
when compared to population linear regressions with later partially pooled models. This
makes sense when looking at the model summaries: later summaries have comparatively
lower values for the residual standard deviation, as they capture the data structure much
better. As we have not included the residual standard deviation in the population regres-
sion, these figures significantly under report temperature uncertainty.

Figure 20: posterior predictive check for the fully pooled linear regression model. Showing
the data (colored blue) and a sample of simulated data based on the draws of the model
(lines).

The trace plots of this model (shown in picture 21, in this case of the sigma param-
eter) look healthy. There are 4 chains producing lines, which look like a healthy "fuzzy
caterpillar": there is good mixing, no chains spend more time in one part than in another
part.

Figure 21: trace plot of the sigma parameter of the fully pooled linear model.
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5.2 fully pooled linear regression using a quadratic component (foraminifera
data)

The fully pooled model with a quadratic component captures the formula which includes
a third component, the c parameter which relates to the square of the δ18O difference.
This model was run to compare its fit to the simplest model. The results are mostly
unsurprising: the fit to data as seen by the posterior predictive check in figure 22 is the
same as the previous model, and the model summary in section 8.4 in the appendix shows
these two first models to be virtually identical in parameter estimates.

This model was compared to the first fully pooled model by use of a leave-one-out
cross validation (loo) approximation known as PSIS [23], which gives an estimate of leave
one out log likelihood scores without fitting the model again for each datapoint. The
estimated log likelihood values for this model and the previous model are -730.2 and -730.6
respectively, with an estimated standard deviation of 7.0 for both. This means that from
the point of view of out of sample predictive performance, these models perform exactly
the same: the difference is an order of magnitude smaller than the standard deviation on
the log likelihood. However, there are some reasons we prefer the first model to this one.

Firstly, there does not seem to be a theoretical reason to presume temperature will de-
pend quadratically on the δ18O ratio, so the first model seems more theoretically grounded.
Secondly, this model fits much slower than the first, because there are much more ways to
produce a fit to the data with both a linear and a quadratic component rather than with
only a linear component. It’s effectively the first step on the polynomial ladder: we might
as well add a cubed or even a quartic polynomial component to increase our fit to data. In
the absence of a theoretical reason to include a quadratic component, we prefer to make
our models as simple as possible.

Figure 22: posterior predictive check of the fully pooled model with quadratic component.

5.3 main model: hierarchical linear model (foraminifera data)

This model allows for the use of partial pooling in order to improve on previous regressions.
It has a partial pooling level for species, as we know each species has idiosyncrasies which
will set it apart from other species and lead to different intercepts and slopes, while at the
same time no species of foraminifera is so distant that knowing it’s parameters imparts no
knowledge of the other species.

This model fits relatively fast, and it fits the data very well, as can be seen in the
posterior predictive check in figure 23. Note also the lower estimation for sigma, the
standard deviation of the residual. Because it captures population parameter uncertainty
separately in sigmaa and sigmab for intercept and slope respectively, it has a lower residual
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Figure 23: posterior predictive check for the main model. The shape of the predictive
distributions follows that of the data fairly directly.

error. Another possible reason the residual error is lower is because the structure of this
model mirrors the structure of the data much better than the fully pooled models: the
fully pooled models assume that all data points are described by one regression, while the
main model allows each species their own parameters.

There are psis-loo values for all models, which were run with models converted from
cmdstanr to rstan, however these values cannot be used, as psis-loo reports diagnostic K̂
values which are higher than 0.7. psis-loo therefore is uncertain of the value of the Monte
Carlo standard error of the log likelihood, which means the point estimate and standard
error it reports cannot be trusted.

In the case of this model, we have worked around this limitation by running the
model wholly in rstan instead of converting it afterwards, which leads to extremely similar
estimations from loo, except that high K̂ values could be worked around by utilizing
moment matching, resulting in very low Monte Carlo standard errors. The resulting log
likelihood value compares very favorably to those of the fully pooled models with a value
of -346.7 and a standard error of 24.4 (complete output of the loo package can be seen in
the appendix textblock 30. Also see a visualization of the K̂ values for the loo results over
this fit in figure 35).

Later models will not be compared on loo values as they could not be run in rstan due
to syntax differences between stan versions. A rewrite was not completed in time.
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5.4 main model: hierarchical linear model: (all biological data)

These results are from the same model, except we’re including biological data from Scaphopods
and Gastropods from the Grossman and Ku study. The focus of this study is foraminifera
data, so these results are only of secondary importance. We include data from these other
phylums for comparison of model fit. This model takes longer to fit due to the higher
number of parameters and the larger dataset. Nevertheless the results appear close: take
for example the intercept of the first species, Cibicides pachyderma, which has a mean at
146.96 (2.5%: 137.36, 97.5%: 156.80) in the main model and a mean at 144.66 (2.5%:
134.88, 95.5%: 154.55) in this model, both with a standard deviation higher than 5.

(note when reading the model summaries that the numbers correspond to species in
their respective species name list, which are 1 and 6 in respectively the earlier fit and this
fit for Cibicides pachyderma, see section 8.1 for species name tables).

5.5 hierarchical model using a quadratic component (foraminifera data)

This model fit is over the original dataset again, with a hierarchical model that includes a
quadratic component. Just like in the fully pooled case, including a quadratic component
increases required sampling time. When looking at the model summary and regression lines
it is clear that in most cases, the uncertainty is higher because the quadratic parameter
has an outsized impact. For one example see figure 66, showing the linear regression
for Cibicidoides wuellerstorfi, where the data is very tightly grouped. In most cases, the
c parameter is within one standard deviation from 0, meaning a type S error is quite
possible. This makes interpretation difficult. This is one more reason why we dislike using
a quadratic component.

5.6 hierarchical model with separate oxygen ratio parameters (foraminifera
data)

This model doesn’t have a theoretical basis: no temperature could be derived from only
the δ18Oc value, or from only the δ18Ow value, as it is the difference between the two that
is correlated with temperature. Nevertheless, the results show a good fit to data, and a
reasonable run time. Apriori we might have expected the model to retrieve the same fit as
the main model: effectively, the b1 and b2 parameters should cancel out given enough data.
Instead, the model fits well with an alternative fit with different estimations for intercept
and slope. Instead of validating our belief that our main model is the best representation
of reality, this evokes the question whether there are alternate ways to explain the data.
It is curious that this model finds a good fit to data with a completely different set of
parameters. While this is an interesting result, it is not easy to provide a theoretical
understanding of it as there is no theoretical basis underlying this model.

5.7 hierarchical model with deming regression (foraminifera data)

Deming regression allows the model to take in estimates on the measurement uncertainty
of the δ18Oc and δ18Ow values, which allows the model to more accurately describe the
residual uncertainty. This leads to a better estimate of uncertainties. Unfortunately this
structure leads to autocorrelation, which means to get the same effective number of param-
eters this model has to be run with twice the number of sampling iterations (and twice the
number of warmup iterations). See figure 76 for the autocorrelation plot, and the healthy
autocorrelation plot for the main model in figure 31 for a comparison. However with a high
number of samples we don’t see a problem getting good enough effective samples, and the
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traceplot nor the R̂ diagnostics show cause for concern. As expected, this model has lower
residual dispersion than the main model.

5.8 hierarchical model with a correlation matrix (foraminifera data)

All models up to this point assume there is zero correlation between slope and intercept.
We can relax this assumption to see whether this impacts our fit to data, in effect checking
whether the assumption holds. This was done in this model. the parameters in the model
summary in look slightly different. Each parameter is of the form ab_sp[ speciesnr ,
parameter ], leading to the two parameters per species, 1 being intercept, 2 being slope.
The posterior predictive check looks the same, and the parameters are once again all well
within one standard deviation of each other. This is evidence that the zero correlation
assumption doesn’t hamper the main model to find a good fit, as we can retrieve virtually
the same fit from this model, even though it is more general. The correlation matrix,
generated after the model was run, shows that there is actually a very high anticorrelation
of -0.96 between slope and intercept, meaning a higher intercept is associated with a lower
slope and vice versa.

5.9 partial pooling model with a third level of composition (foraminifera
data)

The main model is an improvement over the fully pooled model because the partial pooling
model structure informs the model better of the data generation process. This model
increases that model structure by also telling the model the differences in composition
between species, as calcitic foraminifera will be more alike than calcitic and aragonitic
foraminifera. We want to know if this leads to a better fit to data, and to better estimates
of δ18O uncertainty. Secondarily we want to include abiological data in the model, which
doesn’t have a species, but does have a composition. By including a level of composition
between species and population we can combine the biological data and the abiological
data at the appropriate level, namely that of the composition. While the abiological data
from the lab do not have a species to speak of, in the stan code it will have a species
corresponding to it’s composition. These "species" indicate that it is abiological data from
the lab.

Because the abiological data is from the laboratory, this model requires special care in
uncertainty estimation of the temperature residuals. As laboratory measurements have a
different measurement uncertainty, we’re using individual_sigmas as a vector of uncer-
tainties, which for each datapoint points either to the sigma_obs parameter if biological,
being fit as before, or if from the laboratory it is set to sigma_T_lab, a model input that
is set to the measurement uncertainty given by the lab.

Parameter estimates are remarkably similar to main model, again falling well within
1 standard deviation.

5.10 partial pooling model with a third level of composition (biological
data)

This model has a divergence that could not be mitigated as of yet. It is possible the
non-foraminiferal data is too dissimilar to the foraminiferal data to run within the same
partially pooled layer.
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5.11 partial pooling model with a third level of composition: (foraminifera
and lab data)

This model includes the foraminifera data and laboratory data. As discussed in section 5.9,
the parameter sigma_obs is now only used for the foraminifera data, while the laboratory
data has a set uncertainty. This results in a higher estimation for sigma_obs of 1.41 as
opposed to the typical value of 0.76 when compared to the main model or even the previous
three level models. There is an anomalously low standard deviation on the parameters
for the Vaterite samples: the intercept stands at 173.78 (sd: 1.35, 2.5%: 171.08, 95.5%:
176.41), and the slope at -5.12 (sd: 0.05, 2.5%: -5.21 , 95.5%: -5.02). The deviation of
especially the slope is much tighter than other species, while there are only 2 samples for
vaterite. The model must be drawing a lot of information from the priors here: there is
virtually no information in the likelihood from which to draw that information form. A
visual prior predictive check compared to a posterior predictive check could have confirmed
this but was not performed.

This three level model results in an interesting artifact in two figures in the appendix:
figure 137 shows the model’s fit at the higher level of composition for the Calcite-Vaterite
mixtures, while figure 138 shows the model’s fit at the species level for the same mixtures.
As discussed in section 5.9, due to the construction of the model the abiological laboratory
data has been included into the species level as well. Figure 138 shows a tighter fit: the
model is quite certain of the appropriate values. But at the higher level, there is effectively
but one datapoint: that single datapoint of the "species" of Calcite-Vaterite, which was
fit at the level of species, and is now input for the level of composition. Correspondingly,
the standard deviation is much larger, and the model is free to have an intercept which
visually doesn’t agree very well with the corresponding data as it is partially pooled with
the other compositons, which are pulling the parameter values closer to those for the other
groups in the composition level.

6 Discussion

6.1 quadratic fit

The base regression formula includes a quadratic component (which we call c ) which is
useful mainly to increase fit to data. In the case of the fully pooled models we note in
section 5.2 no significant change to the parameters a and b, while the quadratic parameter
c is estimated at 0.01 with a standard deviation of 0.02. This leads us to believe the
quadratic parameter is not adding anything to the model. Assuming for the moment that
the quadratic fully pooled model is a faithful model, the quadratic parameter of the real
world could very well fall a standard deviation away from the mean of our posterior, in
which case the results of our model as fit currently would have a postive c parameter while
it should have a negative parameter, a type S error. It is unclear what impact that would
have on our understanding of the temperature proxy, as the c parameter has no theoretical
basis.

Furthermore, the loo-psis comparison in the fully pooled case shows there is virtually
no difference in out of sample prediction accuracy when including the quadratic component,
resulting in an estimated log probability density of -730.2 for the case with a quadratic
component, and of -730.6 in the case without. The standard error is estimated to be 7.0,
completely swamping the difference in predictive accuracy. In the partial pooling case the
quadratic component fares no better as the standard deviation for each cspecies is still close
to the mean value, or in the case of Uvigerina peregrina is even an order of magnitude
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larger. The same questions as with the fully pooled model’s high standard deviation arise
again.

Another drawback of the quadratic term is that it increases the complexity of the
model. In the course of this thesis the priors were developed iteratively based on the
posterior of simpler models. For the first fully pooled model and the main model the data
overwhelm the priors: both can be fit to the same posterior summary statistics with a wide
variety of priors, including flat priors. This is not the case for the more complex quadratic
models. Furthermore, these models take much longer to fit: whereas the simpler model
takes 2 seconds, this model takes 42 seconds (see section 8.2) to fit. This model takes even
longer when the priors are less informative, as the quadratic parameter wildly impacts the
behavior of the posterior. In the case of the partially pooled models the quadratic model
still takes an order of magnitude longer to fit than the main model (722 seconds and 69
seconds respectively) For all these reasons we reject the use of a quadratic parameter and
recommend the main model with the formula

T ∼ Normal( a+ b(δ18Oc − δ18Ow) , σ)

6.2 peeling back residual dispersion

The structure of the hierarchical models allows for a better understanding of where the
uncertainty regarding our temperature estimates comes from. Firstly, the difference be-
tween the fully pooled models and the partially pooled models can not be overstated. the
residual dispersion of three models is compared in table 2. For the fully pooled model
the residual dispersion is estimated at 2.8. Such a large value makes inferences from the
model suspect, and draws into question whether it accurately captures the data generation
process. This is already known not to be the case: there is a material difference between
the species of the samples. By allowing the model to incorporate this knowledge, we arrive
at the main model, which has a residual dispersion of 0.79. This on its own implies that
the species have a significant impact on the distribution of the temperature.

One consequence that flows from fitting a partially pooled model is that we can infer
from the species that are fit already something about new species that have no regression fit
yet: we can use the population level as an estimate for temperature from those species which
have not been processed yet. This is advantageous, however as pointed out, a specimen’s
species has a significant impact on the distribution of the temperature, which has the
consequence that the population parameters have a much higher standard deviation. A
visualization including the population has been included in figure 24. Compare with the
earlier temperature distribution visualization in figure 19, where the differences between
the distributions for the species are easier to see. It is clear that for a proper estimation
the species of the specimen should be known.
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Figure 24: A visualization of temperature distributions similar to the earlier visualization,
with the same values. This visualization includes the population distribution.

In general, the residual dispersion incorporates many sources of uncertainty. Some
sources are readily quantifiable: the measurement error over both the dependent and the
independent variables can be quantified and put into the model, as is done in the Deming
model for the independent variables. This model has a residual dispersion that is much
lower than the main model because the structure incorporates uncertainty better: as it
includes the measurement error of the δ18Oc and δ18O, the residual less than half the value
of the main model.

model mean sd

fully pooled model 2.8 0.1
main model (fora data) 0.76 0.03
deming model 0.36 0.05

Table 2: comparison of the residual dispersion of three models.

As of yet there is no model that also incorporates known uncertainty over the dependent
variable, although this is a potential improvement to be discussed in section 6.3. Such an
enhancement would come at the cost of a much more complicated model with potential
identifiability issues. It also depends on knowledge of the measurement uncertainty. This
is largely unknown for the current dataset, as such it has not been attempted in this thesis.

The residual dispersion includes more sources of uncertainty which are not repre-
sented yet in the current models. this may include the impact of the environment on the
foraminifera, the seasonality of their migration and precise location. To peel back the
dispersion more of these variables could be studied and eventually included into models
such as these. This will improve the temperature estimation.

For a most conservative aim at our posterior distribution of a temperature for a given
value of δ18O difference, we should include the residual as well. But this includes the scatter
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Parameter Rhat n_eff mean sd se_mean 2.5% 97.5%

mu_a 1.00 1577 130.34 12.17 0.31 106.01 154.34
mu_b 1.00 1451 -3.79 0.36 0.01 -4.56 -3.07
sigma_a 1.00 1902 31.61 10.20 0.23 17.30 57.03
sigma_b 1.00 1572 0.97 0.35 0.01 0.51 1.88
sigma 1.00 4983 0.76 0.03 0.00 0.70 0.82
log-posterior 1.00 969 -70.13 4.20 0.14 -79.32 -62.86
a[Cibicides pachyderma] 1.00 4776 146.96 5.02 0.07 137.36 156.80
a[Cibicidoides wuellerstorfi] 1.00 3973 75.39 5.34 0.08 64.95 85.87
a[Hoeglundina elegans] 1.00 3920 142.80 1.64 0.03 139.51 146.00
a[Planulina ariminensis] 1.00 4238 129.01 15.86 0.24 97.70 160.01
a[Planulina foveolata] 1.00 4961 144.99 11.90 0.17 122.43 169.44
a[Uvigerina curticosta] 1.00 2913 148.69 20.40 0.38 109.84 190.99
a[Uvigerina flintii] 1.00 4585 115.95 13.59 0.20 87.91 142.36
a[Uvigerina peregrina] 1.00 4784 146.21 5.09 0.07 136.47 156.14
b[Cibicides pachyderma] 1.00 4793 -4.28 0.16 0.00 -4.59 -3.98
b[Cibicidoides wuellerstorfi] 1.00 3975 -2.20 0.16 0.00 -2.51 -1.89
b[Hoeglundina elegans] 1.00 3919 -4.01 0.05 0.00 -4.11 -3.91
b[Planulina ariminensis] 1.00 4242 -3.73 0.50 0.01 -4.70 -2.75
b[Planulina foveolata] 1.00 4970 -4.24 0.39 0.01 -5.03 -3.51
b[Uvigerina curticosta] 1.00 2904 -4.26 0.60 0.01 -5.51 -3.11
b[Uvigerina flintii] 1.00 4579 -3.24 0.44 0.01 -4.09 -2.33
b[Uvigerina peregrina] 1.00 4777 -4.20 0.16 0.00 -4.50 -3.90

Table 1: main hierarchical linear model summary. This version has species names filled
in.

of data in our input, and is necessarily an overestimate of the temperature dispersion. A
visualization of the posterior distribution of temperature for a number of species has been
included in figure 19. This visualization does not include the residual, but only the fitted
values of the parameters a, b, and sigma per species, for a given input of δ18O values.

Compare the visualization with the model summary block in table 1. The population
distribution is omitted as its standard deviation is far too large to maintain readability
for these distributions. This visualization shows how far apart the means are for different
species,and how the distributions differ. The species with more datapoints in the dataset
have a correspondingly tighter distribution, while those with less datapoints will have a
larger standard deviation. This figure is produced by taking the resulting draws from the
stan object and running the regression equation to a given input of δ18O values.

As noted in section 5.8, the models with correlation matrices allow us to explore the
impact of relaxing the assumption that slope and intercept are uncorrelated. Instead of
recovering precisely the same fit, these models show a high anticorrelation between slope
and intercept (in the case of the two level model with correlation matrix, a correlation value
of -0.96, and with a standard devation of 0.08, so -1 is well within one sd). Nevertheless
a posterior predictive check, see figure 88, shows this model performs adequately, and by
inspecting the model summary in the same section we can see that the mean parameters
are quite similar.
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6.3 Future work

One immediate improvement to these models would simply be to train them on a dataset
incorporating more data from the species that were included, and to include more species.
A new dataset could be constructed. To further the work of disambiguating the residual
dispersion, this dataset should include measurement errors for both the dependent and
independent variables; as could be seen in the Deming regression model, the residual
dispersion incorporates much uncertainty that can and should be categorized at the proper
parameters to aid more precise measurements of the posterior distribution of temperature
when using the oxygen temperature proxy.

This model could be used to perform a reassessment of the temperature timeline in
Westerhold et al. [24]. To perform this analysis, a dataset must be constructed naturally
including as much δ18O measurements as possible, including a categorization by species,
without any traditional offsets which are frequently used in this type of analysis: the
species differences are handled more effectively by our models internally because of the
partial pooling. Therefore the dataset from Westerhold that is generously made available
is not immediately sufficient: not only does it not include the measurement errors (which
would allow the use of the deming model), but it does not include species specification at
all. To perform this analysis with the same dataset, the species must be inferred.

By using these datapoints in combination with the resulting models from this thesis,
we can recover a timeline series comparable to the original timeline series presented by
Westerhold et al. [24] as shown in figure 2. Just like that study, the data would require
smoothing, for which we could use a Gaussian process. This would allow for capturing
signal in the noise, while the use of the Bayesian models trained in this thesis allows the
propagation of uncertainty all the way from the training dataset to the final temperature
timeline estimations and visualizations. It is very likely we will observe wider bands of
uncertainty than the current visualization suggests, as we can visualize much more of the
sources of uncertainty, rather than only the scatter of the data.

One more improvement barring the direct use of measurement error could be a more
sophisticated data imputation mechanism. Currently, unknown measurement errors are set
at a multiple of two times the highest measurement error, but a better imputation could
be to fit a parameter on this uncertainty. This does lead to a much more complicated
model that could have identifiability issues, which is the reason it was not attempted in
this thesis. While this is a possible improvement it is much preferred to obtain a more
complete dataset for reasons laid out above.

There are more variations on the models which can be attempted; firstly there are pos-
sibilities for a third level other than composition: firstly when including non foraminifera
data a third level could be a level specifying genus, which could make the model incorpo-
rate this data much better. Alternatively a level specifying the functional group could be
attempted with a dataset that included more planktic datapoints.

Finally the development of tooling around the use of these models, this code, and this
dataset could be very useful. One idea is to setup a web application where researchers can
upload δ18O measurements and get back a full posterior distribution of the estimation of
temperature for further use.

6.4 Conclusion

In conclusion, the use of probabilistic programming in this thesis has lead to an improved
understanding of the oxygen isotope temperature proxy in the following ways: It has
provided a species specific regression line complete with uncertainty estimation per species
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and for the entire population. The development of a partially pooled model, our main
model above, allows for a quantification of uncertainty which has as of yet not been achieved
for the oxygen isotope temperature proxy. The model is robust to a variety of priors
including flat priors and has good diagnostic values. Alternate model specifications recover
very similar parameter values, leading us to trust that this model is a good representation
of the data generation process that led to the data in our dataset. The main model is
proposed for use in estimating temperature values from paleoclimate records.
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8 Appendix

8.1 species names

number species name

1 Cibicides pachyderma
2 Cibicidoides wuellerstorfi
3 Hoeglundina elegans
4 Planulina ariminensis
5 Planulina foveolata
6 Uvigerina curticosta
7 Uvigerina flintii
8 Uvigerina peregrina

Table 3: species names in the foraminifera data.

number species name

1 Acteocina harpa
2 Alvania acuticostata
3 Benthonellania precipitata
4 Cadulus
5 Caecum crebricinctum
6 Cibicides pachyderma
7 Cibicidoides wuellerstorfi
8 Dentalium
9 Eratoidea hematita
10 Hoeglundina elegans
11 Melanella Bowdich
12 Melanella polita
13 Planulina ariminensis
14 Planulina foveolata
15 Seguenzia
16 Turbonilla
17 turridae
18 Uvigerina curticosta
19 Uvigerina flintii
20 Uvigerina peregrina

Table 4: species names in biological data.
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number species name

1 Calcite
2 Calcite-Vaterite Mixtures
3 Aragonite
4 Octavite
5 Vaterite
6 Witherite
7 unknown

Table 6: composition names in the data with combination of foraminifera data and non
biological data.

number species name

1 Hoeglundina elegans
2 Uvigerina flintii
3 Uvigerina peregrina
4 Uvigerina curticosta
5 Cibicidoides wuellerstorfi
6 Cibicides pachyderma
7 Planulina ariminensis
8 Planulina foveolata
9 Calcite
10 Witherite
11 Octavite
12 Calcite-Vaterite Mixtures
13 Vaterite

Table 5: species names in models run with a combination of foraminifera data and non
biological data.
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8.2 model run times

model model run time (s)

fully pooled linear regression (foraminifera data) 2.11
fully pooled linear regression with quadratic component (foraminifera data) 41.68
main model: hierarchical linear model (foraminifera data) 68.82
main model: hierarchical linear model: (all biological data) 112.26
hierarchical model using a quadratic component (foraminifera data) 722
hierarchical model with separate oxygen ratio parameters (foraminifera data) 326
hierarchical model with deming regression (foraminifera data) 816
hierarchical model with a correlation matrix (foraminifera data) 133
partial pooling model with a third level of composition (foraminifera data) 950
partial pooling model with a third level of composition (biological data) 463
partial pooling model with a third level of composition: (foraminifera and lab data) 262

Table 7: run times of all models in seconds. These times are from the last run of all the
models. They are representative, though no rigorous testing has been performed as it is not
the focus of this thesis. Run time may vary based on hardware.

8.3 fully pooled linear regression (foraminifera data)

Parameter Rhat n_eff mean sd se_mean 2.5% 97.5%

a 1.0 1054 145.0 4.1 0.1 136.7 153.3
b 1.0 1054 -4.2 0.1 0.0 -4.4 -3.9
sigma 1.0 1437 2.8 0.1 0.0 2.6 3.1
log-posterior 1.0 1117 -461.9 1.2 0.0 -465.0 -460.4

Table 8: fully pooled linear model’s summary statistics.

model run time: 2.11
Computed from 4000 by 295 log-likelihood matrix

Estimate SE
elpd_loo -730.6 7.0
p_loo 2.2 0.1
looic 1461.3 14.0
------
Monte Carlo SE of elpd_loo is 0.0.

All Pareto k estimates are good (k < 0.5).
See help('pareto-k-diagnostic') for details.
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Figure 25: linear regression of the population. Remember: the uncertainty is underreported
here.
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Figure 26: posterior predictive check of the fully pooled linear model.
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Figure 27: traceplot of the fully pooled linear model.

8.4 fully pooled linear regression with quadratic component (foraminifera
data)

Parameter Rhat n_eff mean sd se_mean 2.5% 97.5%

a 1.01 826 156.55 26.17 0.91 108.88 210.57
b 1.01 820 -4.89 1.61 0.06 -8.24 -1.95
c 1.01 820 0.01 0.02 0.00 -0.03 0.06
sigma 1.00 1366 2.84 0.11 0.00 2.63 3.07
log-posterior 1.00 983 -462.23 1.40 0.04 -465.74 -460.49

Table 9: fully pooled quad model.

model run time: 41.68

fully pooled linear regression using a quadratic component (foraminifera data):
Estimate SE

elpd_loo -730.2 7.0
p_loo 2.2 0.1
looic 1460.5 13.9

fully pooled linear regression (foraminifera data):
Estimate SE

elpd_loo -730.6 7.0
p_loo 2.2 0.1
looic 1461.3 14.0
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1 data {
2 int N_obs;
3 int K;
4 vector[N_obs] temperature;
5 matrix[N_obs, K] x;
6 int prior_only;
7 }
8

9 parameters {
10 real a;
11 real b;
12 real<lower = 0> sigma;
13 }
14

15 model {
16 vector[N_obs] mu;
17

18 a ~ normal(120,50); // prior for the intercept
19 b ~ normal(-4,1); // prior for linear term coefficient
20 sigma ~ normal(0,2); // prior for the standard deviation
21

22 if (! prior_only) {
23 mu = a + rep_vector(b, N_obs) .* (x[,1] - x[,2]); // linear model
24 temperature ~ normal(mu, sigma); // likelihood
25 }
26

27 }
28

29

30 generated quantities {
31

32 vector[N_obs] log_lik;
33 vector[N_obs] temperature_sim;
34 vector[N_obs] mu;
35

36 mu = a + rep_vector(b, N_obs) .* (x[,1] - x[,2]);
37 for (i in 1:N_obs){
38

39 log_lik[i] = normal_lpdf(temperature[i] | mu[i],sigma);
40 temperature_sim[i] = normal_rng(mu[i],sigma);
41 }
42 }

Listing 7: The stan code for the model fully pooled linear regression (foraminifera data) .
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Figure 28: linear regression of the population in the fully pooled quadratic model.

Figure 29: posterior predictive check of the fully pooled model with quadratic component.
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1 data {
2 int N_obs;
3 int K;
4 vector[N_obs] temperature;
5 matrix[N_obs, K] x;
6 int prior_only;
7 }
8

9 parameters {
10 real a;
11 real b;
12 real c;
13 real<lower = 0> sigma;
14 }
15

16 model {
17 vector[N_obs] mu;
18

19 a ~ normal(100,50); // prior for the intercept
20 b ~ normal(-4,2); // prior for linear term coefficient
21 c ~ normal(0.1,2); // prior for quadratic term coefficient
22 sigma ~ normal(0,1); // prior for the standard deviation
23 if (! prior_only) {
24 mu = a + rep_vector(b, N_obs) .* (x[,1] - x[,2]) + rep_vector(c, N_obs) .* (x[,1] - x[,2])^2; // linear model
25 temperature ~ normal(mu, sigma); // likelihood
26 }
27 }
28

29

30 generated quantities {
31 vector[N_obs] log_lik;
32 vector[N_obs] temperature_sim;
33 vector[N_obs] mu;
34

35 mu = a + rep_vector(b, N_obs) .* (x[,1] - x[,2]) + rep_vector(c, N_obs) .* (x[,1] - x[,2])^2;
36 for (i in 1:N_obs){
37 log_lik[i] = normal_lpdf(temperature[i] | mu[i],sigma);
38 temperature_sim[i] = normal_rng(mu[i],sigma);
39 }
40 }

Listing 8: The stan code for the model fully pooled linear regression with quadratic compo-
nent (foraminifera data).
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8.5 main model: hierarchical linear model (foraminifera data)

Parameter Rhat n_eff mean sd se_mean 2.5% 97.5%

mu_a 1.00 1577 130.34 12.17 0.31 106.01 154.34
mu_b 1.00 1451 -3.79 0.36 0.01 -4.56 -3.07
sigma_a 1.00 1902 31.61 10.20 0.23 17.30 57.03
sigma_b 1.00 1572 0.97 0.35 0.01 0.51 1.88
sigma 1.00 4983 0.76 0.03 0.00 0.70 0.82
log-posterior 1.00 969 -70.13 4.20 0.14 -79.32 -62.86
a[1] 1.00 4776 146.96 5.02 0.07 137.36 156.80
a[2] 1.00 3973 75.39 5.34 0.08 64.95 85.87
a[3] 1.00 3920 142.80 1.64 0.03 139.51 146.00
a[4] 1.00 4238 129.01 15.86 0.24 97.70 160.01
a[5] 1.00 4961 144.99 11.90 0.17 122.43 169.44
a[6] 1.00 2913 148.69 20.40 0.38 109.84 190.99
a[7] 1.00 4585 115.95 13.59 0.20 87.91 142.36
a[8] 1.00 4784 146.21 5.09 0.07 136.47 156.14
b[1] 1.00 4793 -4.28 0.16 0.00 -4.59 -3.98
b[2] 1.00 3975 -2.20 0.16 0.00 -2.51 -1.89
b[3] 1.00 3919 -4.01 0.05 0.00 -4.11 -3.91
b[4] 1.00 4242 -3.73 0.50 0.01 -4.70 -2.75
b[5] 1.00 4970 -4.24 0.39 0.01 -5.03 -3.51
b[6] 1.00 2904 -4.26 0.60 0.01 -5.51 -3.11
b[7] 1.00 4579 -3.24 0.44 0.01 -4.09 -2.33
b[8] 1.00 4777 -4.20 0.16 0.00 -4.50 -3.90

Table 10: base hierarchical linear model.

model run time: 68.82

Computed from 4000 by 295 log-likelihood matrix

Estimate SE
elpd_loo -346.7 24.4
p_loo 18.3 4.0
looic 693.4 48.8
------
Monte Carlo SE of elpd_loo is NA.

Pareto k diagnostic values:
Count Pct. Min. n_eff

(-Inf, 0.5] (good) 292 99.0% 807
(0.5, 0.7] (ok) 2 0.7% 126

(0.7, 1] (bad) 1 0.3% 196
(1, Inf) (very bad) 0 0.0% <NA>

See help('pareto-k-diagnostic') for details.
Warning message:
Some Pareto k diagnostic values are too high.
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See help('pareto-k-diagnostic') for details.

Figure 30: original loo estimate for model converted to rstan. Note the diagnostic values:
there is one data point with a pareto k̂ value above the cutoff of 0.7, which means we have
a theoretical reason to question the validity of our derived elpd estimate. The loo estimate
is almost identical in the model that was fit completely in rstan, but the Monte Carlo SE
is not defined here.

Computed from 4000 by 295 log-likelihood matrix

Estimate SE
elpd_loo -346.9 24.5
p_loo 18.6 4.1
looic 693.8 48.9
------
Monte Carlo SE of elpd_loo is 0.1.

Pareto k diagnostic values:
Count Pct. Min. n_eff

(-Inf, 0.5] (good) 292 99.0% 483
(0.5, 0.7] (ok) 3 1.0% 139

(0.7, 1] (bad) 0 0.0% <NA>
(1, Inf) (very bad) 0 0.0% <NA>

All Pareto k estimates are ok (k < 0.7).
See help('pareto-k-diagnostic') for details.
Warning message:
Some Pareto k diagnostic values are slightly high.
See help('pareto-k-diagnostic') for details.

Figure 31: autocorrelation plot of the main model.
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Figure 32: linear regression line of the main model: Cibicides pachyderma (sp).

55



Figure 33: linear regression for main model: Cibicidoides wuellerstorfi (sp).
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Figure 34: linear regression for main model: for Hoeglundina elegans (sp).
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Figure 35: pareto k values of the data for the main model, note the data point above the
0.7 line. These values are scaled down when ran from Rstan, leading to a loo value that is
identical but which has a proper sampling se, so we are sure we can trust it.
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Figure 36: linear regression for main model: for Planulina ariminensis (sp).
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Figure 37: linear regression for main model: for Planulina foveolata (sp).
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Figure 38: linear regression for main model: for population. Whereas in the fully pooled
model the standard deviation is artificially low because stan puts its uncertainty in the
residual sigma (which is very high compared to the hierarchical models).
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Figure 39: posterior predictive check for the main model.
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Figure 40: linear regression for main model: for Uvigerina curticosta (sp).
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Figure 41: linear regression for main model: for Uvigerina flintii (sp).
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Figure 42: linear regression for main model: for Uvigerina peregrina (sp).
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1 blah
2 data {
3 int N_obs; /* nr of observations */
4 int N_sp; /* nr of groups */
5 int K; /* nr of features */
6 vector[N_obs] temperature;
7 matrix[N_obs, K] x;
8

9 array[N_obs] int<lower=0,upper=1> is_lab;
10

11 array[N_obs] int<lower=1, upper=N_sp> species;
12

13 int<lower=0, upper=1> prior_only;
14

15 }
16

17 parameters {
18 real<lower = 0> sigma;
19

20 real mu_a;
21 real mu_b;
22

23 real<lower = 0> sigma_a;
24 real<lower = 0> sigma_b;
25

26 vector<offset = mu_a, multiplier = sigma_a>[N_sp] a;
27 vector<offset = mu_b, multiplier = sigma_b>[N_sp] b;
28 }
29

30 model {
31 vector[N_obs] mu;
32

33 mu_a ~ normal(120, 50);
34 mu_b ~ normal(-4, 1);
35

36 sigma_a ~ normal(0, 50);
37 sigma_b ~ normal(0, 5);
38

39 sigma ~ normal(0, 2);
40

41 a ~ normal(mu_a, sigma_a);
42 b ~ normal(mu_b, sigma_b);
43

44 if (!prior_only) {
45 mu = a[species] + b[species] .* (x[,1] - x[,2]);
46 temperature ~ normal(mu, sigma);
47 }
48 }
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49 generated quantities {
50 vector[N_obs] log_lik;
51 vector[N_obs] temperature_sim;
52 vector[N_obs] mu;
53 mu = a[species] + b[species] .* (x[,1] - x[,2]);
54 for (i in 1:N_obs){
55 log_lik[i] = normal_lpdf(temperature[i] | mu[i],sigma);
56 temperature_sim[i] = normal_rng(mu[i],sigma);
57 }
58 }

Listing 9: The stan code for the model main model: hierarchical linear model (foraminifera
data)

8.6 main model: hierarchical linear model: (all biological data)

Parameter Rhat n_eff mean sd se_mean 2.5% 97.5%

sigma 1.00 4221 0.82 0.03 0.00 0.76 0.88
mu_a 1.00 2207 133.46 5.89 0.13 121.71 144.90
mu_b 1.00 2598 -3.75 0.18 0.00 -4.10 -3.41
sigma_a 1.00 1294 17.09 4.01 0.11 10.60 26.32
sigma_b 1.00 1406 0.50 0.12 0.00 0.30 0.78
log-posterior 1.00 766 -113.38 6.96 0.25 -128.59 -101.22
a[1] 1.00 4057 133.90 12.83 0.20 107.61 159.40
a[2] 1.00 4682 133.59 12.13 0.18 110.09 158.20
a[3] 1.00 4505 134.24 12.16 0.18 108.59 158.23
a[4] 1.00 5329 139.15 9.23 0.13 120.91 158.17
a[5] 1.00 4782 136.11 12.60 0.18 110.86 160.81
a[6] 1.00 4468 144.66 5.06 0.08 134.88 154.55
a[7] 1.00 1635 84.02 6.76 0.17 71.33 98.01
a[8] 1.00 5228 133.59 13.30 0.18 107.31 159.27
a[9] 1.00 4788 136.31 12.72 0.18 111.66 161.57
a[10] 1.00 3994 142.62 1.77 0.03 139.18 146.06
a[11] 1.00 4671 134.20 12.82 0.19 108.52 159.96
a[12] 1.00 4947 134.93 12.47 0.18 110.16 160.05
a[13] 1.00 5524 130.61 11.15 0.15 109.74 152.73
a[14] 1.00 4551 138.89 9.62 0.14 121.14 158.02
a[15] 1.00 4947 135.55 12.73 0.18 110.23 161.23
a[16] 1.00 5005 138.43 11.15 0.16 116.78 160.96
a[17] 1.00 4487 134.08 12.87 0.19 109.06 160.45
a[18] 1.00 4016 138.19 12.70 0.20 115.06 164.90
a[19] 1.00 4977 125.00 10.69 0.15 102.97 145.42
a[20] 1.00 5025 144.26 5.20 0.07 133.94 154.59
b[1] 1.00 4065 -3.74 0.39 0.01 -4.51 -2.95
b[2] 1.00 4698 -3.71 0.38 0.01 -4.49 -2.96
b[3] 1.00 4526 -3.73 0.39 0.01 -4.50 -2.90
b[4] 1.00 5311 -3.89 0.28 0.00 -4.46 -3.33
b[5] 1.00 4780 -3.77 0.38 0.01 -4.51 -3.01
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b[6] 1.00 4470 -4.21 0.16 0.00 -4.52 -3.90
b[7] 1.00 1636 -2.46 0.20 0.00 -2.87 -2.08
b[8] 1.00 5205 -3.74 0.39 0.01 -4.49 -2.98
b[9] 1.00 4800 -3.68 0.40 0.01 -4.48 -2.89
b[10] 1.00 4004 -4.00 0.05 0.00 -4.11 -3.90
b[11] 1.00 4669 -3.72 0.38 0.01 -4.48 -2.96
b[12] 1.00 4991 -3.72 0.39 0.01 -4.49 -2.95
b[13] 1.00 5510 -3.78 0.35 0.00 -4.47 -3.13
b[14] 1.00 4558 -4.04 0.31 0.00 -4.66 -3.46
b[15] 1.00 4962 -3.69 0.41 0.01 -4.51 -2.89
b[16] 1.00 4967 -3.78 0.35 0.01 -4.49 -3.09
b[17] 1.00 4488 -3.72 0.39 0.01 -4.52 -2.96
b[18] 1.00 4006 -3.95 0.38 0.01 -4.73 -3.26
b[19] 1.00 4978 -3.53 0.35 0.00 -4.19 -2.82
b[20] 1.00 5038 -4.14 0.16 0.00 -4.45 -3.82

Table 11: hierarchical linear model with bio data

model run time: 112.26

Computed from 4000 by 323 log-likelihood matrix

Estimate SE
elpd_loo -413.2 27.0
p_loo 33.5 7.4
looic 826.4 53.9
------
Monte Carlo SE of elpd_loo is NA.

Pareto k diagnostic values:
Count Pct. Min. n_eff

(-Inf, 0.5] (good) 310 96.0% 418
(0.5, 0.7] (ok) 2 0.6% 911

(0.7, 1] (bad) 11 3.4% 25
(1, Inf) (very bad) 0 0.0% <NA>

See help('pareto-k-diagnostic') for details.
Warning message:
Some Pareto k diagnostic values are too high.
See help('pareto-k-diagnostic') for details.
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Figure 43: linear regression for main model run with all biological data: Acteocina harpa
(sp).
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Figure 44: linear regression for main model run with all biological data: Alvania acuti-
costata (sp).
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Figure 45: linear regression for main model run with all biological data: Benthonellania
precipitata (sp).
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Figure 46: linear regression for main model run with all biological data: Cadulus (sp).
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Figure 47: linear regression for main model run with all biological data: Caecum crebricinc-
tum (sp).
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Figure 48: linear regression for main model run with all biological data: Cibicides pachy-
derma (sp).
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Figure 49: linear regression for main model run with all biological data: Cibicidoides
wuellerstorfi (sp).
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Figure 50: linear regression for main model run with all biological data: Dentalium (sp).
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Figure 51: linear regression for main model run with all biological data: Eratoidea hematita
(sp).
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Figure 52: linear regression for main model run with all biological data: Hoeglundina ele-
gans (sp).
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Figure 53: linear regression for main model run with all biological data: Melanella Bowdich
(sp).
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Figure 54: linear regression for main model run with all biological data: Melanella polita
(sp).
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Figure 55: linear regression for main model run with all biological data: Planulina arimi-
nensis (sp).
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Figure 56: linear regression for main model run with all biological data: Planulina foveolata
(sp).
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Figure 57: linear regression for main model run with all biological data: population.
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Figure 58: linear regression for main model run with all biological data: ppc
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Figure 59: linear regression for main model run with all biological data: Seguenzia (sp).
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Figure 60: linear regression for main model run with all biological data: Turbonilla (sp).
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Figure 61: linear regression for main model run with all biological data: turridae (sp).
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Figure 62: linear regression for main model run with all biological data: Uvigerina cur-
ticosta (sp).
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Figure 63: linear regression for main model run with all biological data: Uvigerina flintii
(sp).
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Figure 64: linear regression for main model run with all biological data: Uvigerina peregrina
(sp).
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8.7 hierarchical model using a quadratic component (foraminifera data)

Parameter Rhat n_eff mean sd se_mean 2.5% 97.5%

sigma 1.00 6322 0.76 0.03 0.00 0.70 0.83
mu_a 1.00 2338 141.92 15.63 0.32 110.70 171.59
mu_b 1.00 2741 -4.43 0.87 0.02 -6.11 -2.71
mu_c 1.00 2247 0.01 0.02 0.00 -0.02 0.04
sigma_a 1.00 1663 18.67 7.83 0.19 8.18 38.18
sigma_b 1.01 1080 0.34 0.31 0.01 0.01 1.18
sigma_c 1.00 1462 0.02 0.01 0.00 0.01 0.04
log-posterior 1.01 814 -79.80 5.01 0.18 -90.24 -70.66
a[1] 1.00 2564 149.77 14.67 0.29 120.10 177.67
a[2] 1.00 1998 112.79 17.03 0.38 77.90 146.20
a[3] 1.00 2765 149.94 15.02 0.29 120.52 178.74
a[4] 1.00 3341 140.38 17.27 0.30 104.92 173.65
a[5] 1.00 3059 148.89 15.56 0.28 117.83 179.38
a[6] 1.00 3137 152.86 18.77 0.34 116.68 191.16
a[7] 1.00 3046 133.65 16.32 0.30 101.00 164.86
a[8] 1.00 2693 150.58 15.34 0.30 120.15 180.65
b[1] 1.00 2510 -4.45 0.92 0.02 -6.21 -2.64
b[2] 1.00 2025 -4.43 0.99 0.02 -6.37 -2.41
b[3] 1.00 2757 -4.45 0.92 0.02 -6.20 -2.63
b[4] 1.00 2773 -4.43 0.93 0.02 -6.24 -2.59
b[5] 1.00 2774 -4.46 0.92 0.02 -6.21 -2.66
b[6] 1.00 2759 -4.43 0.93 0.02 -6.24 -2.56
b[7] 1.00 2689 -4.40 0.94 0.02 -6.20 -2.53
b[8] 1.00 2673 -4.46 0.93 0.02 -6.28 -2.59
c[1] 1.00 2527 0.00 0.01 0.00 -0.03 0.03
c[2] 1.00 2092 0.03 0.01 0.00 0.00 0.06
c[3] 1.00 2755 0.01 0.01 0.00 -0.02 0.03
c[4] 1.00 3056 0.01 0.02 0.00 -0.02 0.04
c[5] 1.00 2916 0.00 0.02 0.00 -0.03 0.03
c[6] 1.00 2903 0.00 0.02 0.00 -0.03 0.03
c[7] 1.00 2778 0.02 0.02 0.00 -0.01 0.05
c[8] 1.00 2711 0.00 0.01 0.00 -0.03 0.03

Table 12: hierarchical model with quadratic component

model run time: 721.54

Computed from 4000 by 295 log-likelihood matrix

Estimate SE
elpd_loo -347.3 24.6
p_loo 19.5 4.3
looic 694.7 49.1
------
Monte Carlo SE of elpd_loo is NA.
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Pareto k diagnostic values:
Count Pct. Min. n_eff

(-Inf, 0.5] (good) 291 98.6% 661
(0.5, 0.7] (ok) 2 0.7% 359

(0.7, 1] (bad) 2 0.7% 86
(1, Inf) (very bad) 0 0.0% <NA>

See help('pareto-k-diagnostic') for details.
Warning message:
Some Pareto k diagnostic values are too high.
See help('pareto-k-diagnostic') for details.

Figure 65: linear regression: hierarchical quad for Cibicides pachyderma (sp).
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Figure 66: linear regression: hierarchical quad for Cibicidoides wuellerstorfi (sp).
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Figure 67: linear regression: hierarchical quad for Hoeglundina elegans (sp).
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Figure 68: linear regression: hierarchical quad for Planulina ariminensis (sp).
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Figure 69: linear regression: hierarchical quad for Planulina foveolata (sp).
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Figure 70: linear regression: hierarchical quad for population
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Figure 71: posterior predictive check for the hierarchical model with quadratic component
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Figure 72: linear regression: hierarchical quad for Uvigerina curticosta (sp).
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Figure 73: linear regression: hierarchical quad for Uvigerina flintii (sp).
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Figure 74: linear regression: hierarchical quad for Uvigerina peregrina (sp).
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1 data {
2 int N_obs; /* nr of observations */
3 int N_sp; /* nr of groups */
4 int K; /* nr of features */
5 vector[N_obs] temperature;
6 matrix[N_obs, K] x;
7

8 array[N_obs] int<lower=1, upper=N_sp> species;
9 int<lower=0, upper=1> prior_only;

10 }
11

12 parameters {
13 real<lower = 0> sigma;
14 real mu_a;
15 real mu_b;
16 real mu_c;
17 real<lower = 0> sigma_a;
18 real<lower = 0> sigma_b;
19 real<lower = 0> sigma_c;
20

21 vector<offset = mu_a, multiplier = sigma_a>[N_sp] a;
22 vector<offset = mu_b, multiplier = sigma_b>[N_sp] b;
23 vector<offset = mu_c, multiplier = sigma_c>[N_sp] c;
24 }
25

26 model {
27 vector[N_obs] mu;
28

29 mu_a ~ normal(120,50);
30 mu_b ~ normal(-4,1);
31 mu_c ~ normal(0,1);
32 sigma_a ~ normal(0,50);
33 sigma_b ~ normal(0,5);
34 sigma_c ~ normal(0,2);
35

36 a ~ normal(mu_a, sigma_a);
37 b ~ normal(mu_b, sigma_b);
38 c ~ normal(mu_c, sigma_c);
39

40 sigma ~ normal(0, 2);
41

42 if (!prior_only) {
43 for (i in 1:N_obs) {
44 mu[i] = a[species[i]] + b[species[i]] * (x[i,1] - x[i,2]) + c[species[i]] * (x[i,1] - x[i,2])^2;
45 }
46 temperature ~ normal(mu, sigma);
47 }
48 }
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49

50 generated quantities {
51 vector[N_obs] log_lik;
52 vector[N_obs] temperature_sim;
53 vector[N_obs] mu;
54

55 for (i in 1:N_obs){
56 mu[i] = a[species[i]] + b[species[i]] * (x[i,1] - x[i,2]) + c[species[i]] * (x[i,1] - x[i,2])^2;
57 log_lik[i] = normal_lpdf(temperature[i] | mu[i],sigma);
58 temperature_sim[i] = normal_rng(mu[i],sigma);
59 }
60 }

Listing 10: The stan code for the model main model: hierarchical linear model: (all biolog-
ical data)

8.8 hierarchical model with separate oxygen ratio parameters
(foraminifera data)

Parameter Rhat n_eff mean sd se_mean 2.5% 97.5%

sigma 1.00 4837 0.66 0.03 0.00 0.60 0.71
mu_a 1.00 1899 92.02 15.31 0.35 61.34 122.28
mu_b1 1.00 2087 -2.52 0.49 0.01 -3.51 -1.51
mu_b2 1.00 1798 6.62 1.53 0.04 3.14 9.47
sigma_a 1.00 1845 38.75 13.29 0.31 19.53 70.53
sigma_b1 1.00 1410 1.21 0.50 0.01 0.55 2.46
sigma_b2 1.00 1758 3.52 1.36 0.03 1.57 6.84
log-posterior 1.00 813 -30.56 5.71 0.20 -43.21 -20.43
a[1] 1.00 4320 84.27 16.83 0.26 50.19 116.36
a[2] 1.00 3802 74.23 6.07 0.10 62.01 85.81
a[3] 1.00 3324 137.11 3.81 0.07 129.69 144.39
a[4] 1.00 3063 84.98 25.22 0.46 32.65 133.16
a[5] 1.00 3255 57.29 19.81 0.35 16.91 94.24
a[6] 1.00 2455 138.45 25.81 0.52 92.70 193.12
a[7] 1.00 3752 76.76 18.33 0.30 39.31 111.09
a[8] 1.00 3944 64.83 14.32 0.23 36.95 92.84
b1[1] 1.00 4307 -2.40 0.51 0.01 -3.37 -1.38
b1[2] 1.00 3826 -2.17 0.19 0.00 -2.54 -1.78
b1[3] 1.00 3320 -3.85 0.11 0.00 -4.06 -3.63
b1[4] 1.00 3082 -2.42 0.76 0.01 -3.87 -0.83
b1[5] 1.00 3260 -1.61 0.61 0.01 -2.75 -0.37
b1[6] 1.00 2458 -3.95 0.76 0.02 -5.57 -2.60
b1[7] 1.00 3849 -2.12 0.55 0.01 -3.14 -0.99
b1[8] 1.00 3945 -1.80 0.42 0.01 -2.63 -0.98
b2[1] 1.00 4486 8.15 1.02 0.02 6.16 10.20
b2[2] 1.00 4145 3.31 2.60 0.04 -2.14 7.98
b2[3] 1.00 3376 4.41 0.25 0.00 3.91 4.92
b2[4] 1.00 3778 7.32 2.28 0.04 2.79 11.96
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b2[5] 1.00 3837 10.00 1.03 0.02 7.98 12.08
b2[6] 1.00 3040 4.20 3.42 0.06 -3.18 10.29
b2[7] 1.00 4839 6.82 1.87 0.03 3.18 10.59
b2[8] 1.00 4012 9.86 0.95 0.01 8.01 11.69

Table 13: hierarchical model with separate parameters

model run time: 326.12

Computed from 4000 by 295 log-likelihood matrix

Estimate SE
elpd_loo -306.3 23.1
p_loo 21.6 4.1
looic 612.6 46.3
------
Monte Carlo SE of elpd_loo is NA.

Pareto k diagnostic values:
Count Pct. Min. n_eff

(-Inf, 0.5] (good) 288 97.6% 1226
(0.5, 0.7] (ok) 5 1.7% 207

(0.7, 1] (bad) 2 0.7% 113
(1, Inf) (very bad) 0 0.0% <NA>

See help('pareto-k-diagnostic') for details.
Warning message:
Some Pareto k diagnostic values are too high.
See help('pareto-k-diagnostic') for details.

Figure 75: posterior predictive check for the hierarchical model with separate parameters
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1 data {
2 int N_obs; /* nr of observations */
3 int N_sp; /* nr of groups */
4 int K; /* nr of features */
5 vector[N_obs] temperature;
6 matrix[N_obs, K] x;
7

8 array[N_obs] int<lower=0, upper=1> is_lab;
9

10 array[N_obs] int<lower=1, upper=N_sp> species;
11 int<lower=0, upper=1> prior_only;
12

13 real<lower=0> sigma_T_lab;
14 }
15

16 parameters {
17 real<lower = 0> sigma;
18

19 real mu_a;
20 real mu_b1;
21 real mu_b2;
22

23 real<lower = 0> sigma_a;
24 real<lower = 0> sigma_b1;
25 real<lower = 0> sigma_b2;
26

27 vector<offset = mu_a, multiplier = sigma_a>[N_sp] a;
28 vector<offset = mu_b1, multiplier = sigma_b1>[N_sp] b1;
29 vector<offset = mu_b2, multiplier = sigma_b2>[N_sp] b2;
30 }
31

32 model {
33 vector[N_obs] mu;
34

35 mu_a ~ normal(120, 50);
36 mu_b1 ~ normal(0, 10);
37 mu_b2 ~ normal(0, 10);
38

39 sigma_a ~ normal(0, 50);
40 sigma_b1 ~ normal(0, 5);
41 sigma_b2 ~ normal(0, 5);
42

43 sigma ~ normal(0, 2);
44

45 a ~ normal(mu_a, sigma_a);
46 b1 ~ normal(mu_b1, sigma_b1);
47 b2 ~ normal(mu_b2, sigma_b2);
48
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49 if (!prior_only) {
50 mu = a[species] + b1[species] .* x[,1] + b2[species] .* x[,2];
51 temperature ~ normal(mu, sigma);
52 }
53 }
54

55 generated quantities {
56 vector[N_obs] log_lik;
57 vector[N_obs] temperature_sim;
58 vector[N_obs] mu;
59

60 for (i in 1:N_obs){
61 mu[i] = a[species[i]] + b1[species[i]] * x[i,1] + b2[species[i]] * x[i,2];
62 log_lik[i] = normal_lpdf(temperature[i] | mu[i],sigma);
63 temperature_sim[i] = normal_rng(mu[i],sigma);
64 }
65 }

Listing 11: The stan code for the model hierarchical model with separate oxygen ratios
parameters (foraminifera data)

8.9 hierarchical model with deming regression (foraminifera data)

Parameter Rhat n_eff mean sd se_mean 2.5% 97.5%

sigma 1.01 476 0.36 0.05 0.00 0.26 0.45
mu_a 1.00 3090 125.63 7.89 0.14 109.80 140.89
mu_b 1.00 1706 -3.89 0.38 0.01 -4.69 -3.14
sigma_a 1.00 2371 35.90 10.79 0.22 20.78 62.09
sigma_b 1.00 2554 1.10 0.35 0.01 0.62 1.92
log-posterior 1.01 414 -179.89 30.72 1.51 -234.12 -114.01
a[1] 1.00 6362 147.83 3.92 0.05 140.20 155.58
a[2] 1.00 3631 69.69 3.09 0.05 63.60 76.00
a[3] 1.00 4374 145.53 1.49 0.02 142.61 148.50
a[4] 1.00 5120 129.46 13.31 0.19 105.09 157.14
a[5] 1.00 2580 168.14 11.08 0.22 147.65 190.95
a[6] 1.00 4089 142.75 17.36 0.27 111.04 178.76
a[7] 1.00 4686 116.86 13.75 0.20 92.55 145.92
a[8] 1.00 3828 153.99 4.68 0.08 145.31 163.33
b[1] 1.00 6360 -4.31 0.12 0.00 -4.55 -4.07
b[2] 1.00 3647 -2.03 0.09 0.00 -2.22 -1.85
b[3] 1.00 4277 -4.09 0.05 0.00 -4.18 -4.01
b[4] 1.00 5114 -3.74 0.42 0.01 -4.61 -2.98
b[5] 1.00 2589 -4.99 0.36 0.01 -5.73 -4.33
b[6] 1.00 4082 -4.08 0.51 0.01 -5.15 -3.15
b[7] 1.00 4696 -3.27 0.45 0.01 -4.21 -2.48
b[8] 1.00 3823 -4.44 0.14 0.00 -4.73 -4.17

Table 14: hierarchical model with deming regression
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model run time: 815.63

Computed from 4000 by 295 log-likelihood matrix

Estimate SE
elpd_loo -6821.2 550.1
p_loo 6525.9 526.1
looic 13642.3 1100.3
------
Monte Carlo SE of elpd_loo is NA.

Pareto k diagnostic values:
Count Pct. Min. n_eff

(-Inf, 0.5] (good) 4 1.4% 1043
(0.5, 0.7] (ok) 13 4.4% 625

(0.7, 1] (bad) 20 6.8% 32
(1, Inf) (very bad) 258 87.5% 1

See help('pareto-k-diagnostic') for details.
Warning message:

Figure 76: autocorrelation plot for the hierarchical model with deming regression. Even
though this model gets mostly the same output, the increased set of parameters means the
model fits much more slowly and has a hard time getting rid of its autocorrelation
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Figure 77: linear regression: hierarchical deming for Cibicides pachyderma (sp).
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Figure 78: linear regression: hierarchical deming for Cibicidoides wuellerstorfi (sp).
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Figure 79: linear regression: hierarchical deming for Hoeglundina elegans (sp).
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Figure 80: linear regression: hierarchical deming for Planulina ariminensis (sp).
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Figure 81: linear regression: hierarchical deming for Planulina foveolata (sp).
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Figure 82: linear regression: hierarchical deming for population
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Figure 83: posterior predictive check for the hierarchical deming model

Figure 84: trace plot for the hierarchical deming model
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Figure 85: linear regression: hierarchical deming for Uvigerina curticosta (sp).
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Figure 86: linear regression: hierarchical deming for Uvigerina flintii (sp).
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Figure 87: linear regression: hierarchical deming for Uvigerina peregrina (sp).
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1 data {
2 int N_obs; /* nr of observations */
3 int N_sp; /* nr of groups */
4 int K; /* nr of features */
5 vector[N_obs] temperature;
6 matrix[N_obs, K] x;
7

8 array[N_obs] int<lower=1, upper=N_sp> species;
9 int<lower=0, upper=1> prior_only;

10 }
11

12 parameters {
13 real<lower = 0> sigma;
14

15 real mu_a;
16 real mu_b;
17

18 real<lower = 0> sigma_a;
19 real<lower = 0> sigma_b;
20

21 vector<offset = mu_a, multiplier = sigma_a>[N_sp] a;
22 vector<offset = mu_b, multiplier = sigma_b>[N_sp] b;
23

24 vector[N_obs] d18_O_c;
25 vector[N_obs] d18_O_w;
26 }
27 model {
28

29 vector[N_obs] mu;
30

31 mu_a ~ normal(120, 10);
32 mu_b ~ normal(-4, 1);
33

34 sigma_a ~ normal(0, 50);
35 sigma_b ~ normal(0, 2);
36

37 a ~ normal(mu_a, sigma_a);
38 b ~ normal(mu_b, sigma_b);
39

40 sigma ~ normal(0, 2);
41

42 if (!prior_only) {
43 d18_O_c ~ normal(x[,1], x[,3]);
44 d18_O_w ~ normal(x[,2], x[,4]);
45

46 mu = a[species] + b[species] .* (d18_O_c - d18_O_w);
47

48 temperature ~ normal(mu, sigma);
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49 }
50 }
51

52 generated quantities {
53 vector[N_obs] log_lik;
54 vector[N_obs] temperature_sim;
55 vector[N_obs] mu;
56

57 mu = a[species] + b[species] .* (d18_O_c - d18_O_w);
58 for (i in 1:N_obs){
59 log_lik[i] = normal_lpdf(temperature[i] | mu,sigma);
60 temperature_sim[i] = normal_rng(mu[i],sigma);
61 }
62 }

Listing 12: The stan code for the model hierarchical model with deming regression
(foraminifera data)

8.10 hierarchical model with a correlation matrix (foraminifera data)

Parameter Rhat n_eff mean sd se_mean 2.5% 97.5%

log-posterior 1.00 613 -77.49 4.95 0.20 -87.65 -68.25
ab_pop[1] 1.00 1384 144.25 6.25 0.17 132.05 157.14
ab_pop[2] 1.00 1094 -4.14 0.21 0.01 -4.55 -3.74
sigma_obs 1.00 4027 0.76 0.03 0.00 0.70 0.82
sd_sp[1] 1.00 987 28.51 7.99 0.25 16.86 47.18
sd_sp[2] 1.01 1026 0.83 0.24 0.01 0.48 1.39
ab_sp[1,1] 1.00 5817 147.50 4.98 0.07 137.88 157.35
ab_sp[2,1] 1.00 5809 -4.30 0.16 0.00 -4.61 -3.99
ab_sp[1,2] 1.00 3331 74.74 5.65 0.10 63.61 85.90
ab_sp[2,2] 1.00 3322 -2.18 0.17 0.00 -2.51 -1.85
ab_sp[1,3] 1.00 3885 142.85 1.64 0.03 139.66 146.05
ab_sp[2,3] 1.00 3908 -4.01 0.05 0.00 -4.11 -3.92
ab_sp[1,4] 1.00 3869 132.47 16.63 0.27 98.91 165.53
ab_sp[2,4] 1.00 3864 -3.84 0.52 0.01 -4.87 -2.79
ab_sp[1,5] 1.00 3765 146.98 11.63 0.19 124.29 170.27
ab_sp[2,5] 1.00 3752 -4.30 0.38 0.01 -5.06 -3.57
ab_sp[1,6] 1.00 2907 161.53 21.87 0.41 120.48 207.47
ab_sp[2,6] 1.00 2906 -4.64 0.65 0.01 -5.99 -3.42
ab_sp[1,7] 1.00 3528 120.11 14.18 0.24 91.56 146.83
ab_sp[2,7] 1.00 3522 -3.37 0.46 0.01 -4.24 -2.45
ab_sp[1,8] 1.00 6375 146.99 5.01 0.06 137.22 156.84
ab_sp[2,8] 1.00 6445 -4.22 0.15 0.00 -4.52 -3.92
Sigma[1,1] 1.00 0.00 1.00 1.00
Sigma[2,1] 1.01 596 -0.96 0.08 0.00 -1.00 -0.77
Sigma[1,2] 1.01 596 -0.96 0.08 0.00 -1.00 -0.77
Sigma[2,2] 1.00 0.00 1.00 1.00

Table 15: hierarchical model with correlated parameters
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model run time: 132.63

Computed from 4000 by 295 log-likelihood matrix

Estimate SE
elpd_loo -346.9 24.6
p_loo 19.0 4.3
looic 693.9 49.3
------
Monte Carlo SE of elpd_loo is NA.

Pareto k diagnostic values:
Count Pct. Min. n_eff

(-Inf, 0.5] (good) 293 99.3% 400
(0.5, 0.7] (ok) 1 0.3% 134

(0.7, 1] (bad) 1 0.3% 43
(1, Inf) (very bad) 0 0.0% <NA>

See help('pareto-k-diagnostic') for details.
Warning message:
Some Pareto k diagnostic values are too high.
See help('pareto-k-diagnostic') for details.

Figure 88: linear regression: corr matrix posterior predictive check
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Figure 89: linear regression: corr matrix for Cibicides pachyderma (sp).
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Figure 90: linear regression: corr matrix for Cibicidoides wuellerstorfi (sp).
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Figure 91: linear regression: corr matrix for Hoeglundina elegans (sp).
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Figure 92: linear regression: corr matrix for Planulina ariminensis (sp).
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Figure 93: linear regression: corr matrix for Planulina foveolata (sp).
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Figure 94: linear regression: corr matrix for population
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Figure 95: linear regression: corr matrix for Uvigerina curticosta (sp).
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Figure 96: linear regression: corr matrix for Uvigerina flintii (sp).
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Figure 97: linear regression: corr matrix for Uvigerina peregrina (sp).
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1 data {
2 int N_obs;
3 int N_sp;
4 array[N_obs] int<lower=1, upper=N_sp> species;
5 vector[N_obs] temperature;
6 int K;
7 matrix[N_obs, K] x;
8 int prior_only;
9 }

10 parameters {
11 vector[2] ab_pop;
12 matrix[2, N_sp] ab_sp_std;
13 cholesky_factor_corr[2] corr_sp;
14 vector<lower=0>[2] sd_sp;
15 real<lower=0> sigma_obs;
16 }
17 transformed parameters {
18 matrix[2, N_sp] ab_sp = diag_pre_multiply(sd_sp, corr_sp) * ab_sp_std;
19 for (i in 1: N_sp)
20 ab_sp[, i] += ab_pop;
21 }
22 model {
23 real a_pop = ab_pop[1];
24 real b_pop = ab_pop[2];
25 vector[N_sp] a_sp = transpose(ab_sp[1,]);
26 vector[N_sp] b_sp = transpose(ab_sp[2,]);
27 ab_pop ~ multi_normal([120, -4], [[50, 10],
28 [10, 5]]');
29

30

31 for (i in 1: N_sp)
32 for (j in 1:2)
33 ab_sp_std[j, i] ~ std_normal();
34 sd_sp[1] ~ normal(0, 50);
35 sd_sp[2] ~ normal(0, 5);
36 corr_sp ~ lkj_corr_cholesky(2);
37 sigma_obs ~ normal(0, 1);
38

39 if (! prior_only) {
40 temperature ~ normal(a_sp[species] + b_sp[species] .* (x[,1] - x[,2]), sigma_obs);
41 }
42 }
43

44 generated quantities {
45 vector[N_obs] log_lik;
46 vector[N_obs] temperature_sim;
47 vector[N_obs] mu;
48
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49 corr_matrix[2] Sigma;
50 Sigma = multiply_lower_tri_self_transpose(corr_sp);
51

52 for (i in 1:N_obs){
53 mu[i] = ab_sp[1, species[i]] + ab_sp[2, species[i]] * (x[,1] - x[,2])[i];
54

55 log_lik[i] = normal_lpdf(temperature[i] | mu[i],sigma_obs);
56 temperature_sim[i] = normal_rng(mu[i],sigma_obs);
57 }
58 }

Listing 13: The stan code for the model hierarchical model with a correlation matrix
(foraminifera data)

8.11 partial pooling model with a third level of composition
(foraminifera data)

Parameter Rhat n_eff mean sd se_mean 2.5% 97.5%

ab_pop[1] 1.00 4497 122.03 5.07 0.08 112.00 131.78
ab_pop[2] 1.00 1630 -3.64 0.44 0.01 -4.61 -2.80
sigma_obs 1.00 5476 0.76 0.03 0.00 0.70 0.83
log-posterior 1.00 794 -77.03 5.10 0.18 -87.81 -68.05
sd_sp[1] 1.00 1620 27.95 7.88 0.20 16.62 46.45
sd_sp[2] 1.00 1642 0.80 0.23 0.01 0.47 1.35
corr_co[1,1] 1.00 0.00 1.00 1.00
corr_co[2,1] 1.00 4644 -0.11 0.60 0.01 -0.98 0.96
corr_co[1,2] 0.00 0.00 0.00 0.00
corr_co[2,2] 1.00 1905 0.76 0.25 0.01 0.17 1.00
ab_sp[1,1] 1.00 4452 147.24 5.03 0.08 137.43 157.21
ab_sp[2,1] 1.00 4463 -4.29 0.16 0.00 -4.61 -3.98
ab_sp[1,2] 1.00 3833 74.07 5.43 0.09 63.63 84.40
ab_sp[2,2] 1.00 3837 -2.16 0.16 0.00 -2.47 -1.85
ab_sp[1,3] 1.00 3815 142.84 1.64 0.03 139.65 146.11
ab_sp[2,3] 1.00 3817 -4.01 0.05 0.00 -4.11 -3.91
ab_sp[1,4] 1.00 3704 124.29 15.33 0.25 93.63 155.61
ab_sp[2,4] 1.00 3701 -3.58 0.48 0.01 -4.56 -2.63
ab_sp[1,5] 1.00 3670 140.13 12.08 0.20 118.09 165.36
ab_sp[2,5] 1.00 3671 -4.08 0.39 0.01 -4.90 -3.36
ab_sp[1,6] 1.00 4299 150.46 21.30 0.32 112.13 194.89
ab_sp[2,6] 1.00 4296 -4.31 0.63 0.01 -5.63 -3.17
ab_sp[1,7] 1.00 3659 118.66 13.73 0.23 88.93 143.32
ab_sp[2,7] 1.00 3649 -3.33 0.44 0.01 -4.12 -2.37
ab_sp[1,8] 1.00 4685 146.07 5.09 0.07 135.94 155.96
ab_sp[2,8] 1.00 4656 -4.19 0.16 0.00 -4.49 -3.88
ab_co[1,1] 1.00 1422 126.13 8.52 0.23 110.60 144.90
ab_co[2,1] 1.00 1467 -3.61 0.25 0.01 -4.16 -3.15
ab_co[1,2] 1.00 1884 126.88 11.94 0.28 106.66 155.27
ab_co[2,2] 1.00 1963 -3.71 0.35 0.01 -4.55 -3.12
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Table 16: hierarchical model with correlated parameters

model run time: 950.48

Computed from 4000 by 295 log-likelihood matrix

Estimate SE
elpd_loo -347.2 24.3
p_loo 18.7 4.1
looic 694.4 48.6
------
Monte Carlo SE of elpd_loo is NA.

Pareto k diagnostic values:
Count Pct. Min. n_eff

(-Inf, 0.5] (good) 293 99.3% 412
(0.5, 0.7] (ok) 1 0.3% 167

(0.7, 1] (bad) 1 0.3% 134
(1, Inf) (very bad) 0 0.0% <NA>

See help('pareto-k-diagnostic') for details.
Warning message:
Some Pareto k diagnostic values are too high.
See help('pareto-k-diagnostic') for details.
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Figure 98: linear regression: three level model (data: fora) for Aragonite (co). (datapoints
excluded)
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Figure 99: linear regression: three level model (data: fora) for Calcite (co). (datapoints
excluded)
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Figure 100: linear regression: three level model (data: fora) for Cibicides pachyderma (sp).
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Figure 101: linear regression: three level model (data: fora) for Cibicidoides wuellerstorfi
(sp).
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Figure 102: linear regression: three level model (data: fora) for Hoeglundina elegans (sp).
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Figure 103: linear regression: three level model (data: fora) for Planulina ariminensis (sp).
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Figure 104: linear regression: three level model (data: fora) for Planulina foveolata (sp).

139



Figure 105: linear regression: three level model (data: fora) for population
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Figure 106: posterior predictive check for the three level model with foraminifera data
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Figure 107: linear regression: three level model (data: fora) for Uvigerina curticosta (sp).
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Figure 108: linear regression: three level model (data: fora) for Uvigerina flintii (sp).
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Figure 109: linear regression: three level model (data: fora) for Uvigerina peregrina (sp).
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1 data {
2 int N_obs;
3 int N_co;
4 int N_sp;
5 array[N_sp] int<lower=1, upper=N_co> comps;
6 array[N_obs] int<lower=1, upper=N_sp> species;
7 vector[N_obs] temperature;
8 int K;
9 matrix[N_obs, K] x;

10 int prior_only;
11 real<lower=0> sigma_T_lab;
12 }
13

14 parameters {
15 vector[2] ab_pop;
16 matrix[2, N_co] ab_co_std;
17 cholesky_factor_corr[2] corr_co;
18 vector<lower=0>[2] sd_co;
19 matrix[2, N_sp] ab_sp_std;
20 cholesky_factor_corr[2] corr_sp;
21 vector<lower=0>[2] sd_sp;
22 real<lower=0> sigma_obs;
23 }
24 transformed parameters {
25 matrix[2, N_co] ab_co = diag_pre_multiply(sd_co, corr_co) * ab_co_std;
26 matrix[2, N_sp] ab_sp = diag_pre_multiply(sd_sp, corr_sp) * ab_sp_std;
27 for (i in 1: N_co)
28 ab_co[, i] += ab_pop;
29 for (i in 1: N_sp)
30 ab_sp[, i] += ab_co[, comps[i]];
31

32 vector[N_obs] individual_sigmas;
33 for (i in 1:N_obs) {
34 if (species[i] == 13) {
35 individual_sigmas[i] = sigma_T_lab;
36 } else {
37 individual_sigmas[i] = sigma_obs;
38 }
39 }
40 }
41 model {
42 real a_pop = ab_pop[1];
43 real b_pop = ab_pop[2];
44 vector[N_co] a_co = transpose(ab_co[1,]);
45 vector[N_co] b_co = transpose(ab_co[2,]);
46 vector[N_sp] a_sp = transpose(ab_sp[1,]);
47 vector[N_sp] b_sp = transpose(ab_sp[2,]);
48
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49 for (i in 1: N_sp)
50 for (j in 1:2)
51 ab_sp_std[j, i] ~ std_normal();
52

53 ab_pop ~ multi_normal([120, -4], [[50, 10],
54 [10, 5]]');
55 for (i in 1: N_co)
56 for (j in 1:2)
57 ab_co_std[j, i] ~ std_normal();
58

59 sd_co[1] ~ normal(0, 50);
60 sd_co[2] ~ normal(0, 5);
61 corr_co ~ lkj_corr_cholesky(2);
62

63 sd_sp[1] ~ normal(0, 50);
64 sd_sp[2] ~ normal(0, 5);
65 corr_sp ~ lkj_corr_cholesky(2);
66 sigma_obs ~ normal(0, 1);
67

68 if (!prior_only) {
69 temperature ~ normal(a_sp[species] + b_sp[species] .* (x[,1] - x[,2]), individual_sigmas);
70 }
71 }
72

73 generated quantities {
74 vector[N_obs] log_lik;
75 vector[N_obs] temperature_sim;
76 vector[N_obs] mu;
77

78 corr_matrix[2] Sigma_sp;
79 Sigma_sp = multiply_lower_tri_self_transpose(corr_sp);
80

81 corr_matrix[2] Sigma_co;
82 Sigma_co = multiply_lower_tri_self_transpose(corr_co);
83

84 for (i in 1:N_obs){
85 mu[i] = ab_sp[1,species][i] + ab_sp[2,species][i] * (x[,1] - x[,2])[i];
86 log_lik[i] = normal_lpdf(temperature[i] | mu[i], individual_sigmas[i]);
87 temperature_sim[i] = normal_rng(mu[i], individual_sigmas[i]);
88 }
89 }

Listing 14: The stan code for the partial pooling model with a third level of composition
(foraminifera data)

8.12 partial pooling model with a third level of composition (biological
data)

Parameter Rhat n_eff mean sd se_mean 2.5% 97.5%
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ab_pop[1] 1.00 3487 124.81 5.19 0.09 114.56 134.91
ab_pop[2] 1.00 1588 -3.62 0.31 0.01 -4.35 -3.08
sigma_obs 1.00 5167 0.82 0.03 0.00 0.75 0.89
log-posterior 1.01 687 -119.64 6.81 0.26 -134.20 -107.31
corr_co[1,1] 1.00 0.00 1.00 1.00
corr_co[2,1] 1.00 4054 -0.25 0.60 0.01 -0.99 0.91
corr_co[1,2] 0.00 0.00 0.00 0.00
corr_co[2,2] 1.00 2318 0.71 0.26 0.01 0.12 1.00
sd_sp[1] 1.00 1422 25.21 6.29 0.17 15.57 39.91
sd_sp[2] 1.00 1423 0.73 0.19 0.01 0.44 1.18
ab_co[1,1] 1.00 1343 130.60 8.25 0.23 116.49 149.43
ab_co[2,1] 1.00 1326 -3.67 0.25 0.01 -4.25 -3.24
ab_co[1,2] 1.00 1209 131.79 9.14 0.26 117.04 153.17
ab_co[2,2] 1.00 1186 -3.70 0.28 0.01 -4.34 -3.24
ab_co[1,3] 1.00 1963 130.45 11.80 0.27 109.35 158.19
ab_co[2,3] 1.00 2002 -3.62 0.35 0.01 -4.44 -2.97
ab_sp[1,1] 1.00 3553 133.94 25.97 0.44 81.09 185.26
ab_sp[2,1] 1.00 3546 -3.74 0.78 0.01 -5.28 -2.16
ab_sp[1,2] 1.00 2505 135.15 20.24 0.40 93.67 172.79
ab_sp[2,2] 1.00 2503 -3.76 0.64 0.01 -4.94 -2.45
ab_sp[1,3] 1.00 3062 137.36 20.41 0.37 95.26 177.09
ab_sp[2,3] 1.00 3065 -3.84 0.66 0.01 -5.11 -2.49
ab_sp[1,4] 1.00 6048 142.83 11.45 0.15 120.58 165.17
ab_sp[2,4] 1.00 6051 -4.00 0.35 0.00 -4.69 -3.32
ab_sp[1,5] 1.00 4765 138.42 26.24 0.38 88.46 192.59
ab_sp[2,5] 1.00 4759 -3.84 0.78 0.01 -5.45 -2.35
ab_sp[1,6] 1.00 4432 145.70 5.38 0.08 135.25 156.40
ab_sp[2,6] 1.00 4427 -4.24 0.17 0.00 -4.58 -3.91
ab_sp[1,7] 1.00 3527 74.78 5.89 0.10 63.36 86.33
ab_sp[2,7] 1.00 3531 -2.18 0.17 0.00 -2.52 -1.84
ab_sp[1,8] 1.00 4298 133.54 25.41 0.39 82.97 182.89
ab_sp[2,8] 1.00 4309 -3.74 0.74 0.01 -5.17 -2.27
ab_sp[1,9] 1.00 2265 149.27 24.31 0.51 101.05 198.75
ab_sp[2,9] 1.00 2252 -4.10 0.77 0.02 -5.66 -2.57
ab_sp[1,10] 1.00 3986 142.81 1.80 0.03 139.33 146.36
ab_sp[2,10] 1.00 3978 -4.01 0.05 0.00 -4.12 -3.91
ab_sp[1,11] 1.00 3355 134.29 26.98 0.47 81.16 187.65
ab_sp[2,11] 1.00 3354 -3.72 0.80 0.01 -5.31 -2.13
ab_sp[1,12] 1.00 2849 140.64 24.12 0.45 96.46 189.88
ab_sp[2,12] 1.00 2843 -3.90 0.75 0.01 -5.42 -2.51
ab_sp[1,13] 1.00 4582 121.84 17.44 0.26 87.90 157.07
ab_sp[2,13] 1.00 4574 -3.50 0.54 0.01 -4.61 -2.45
ab_sp[1,14] 1.00 3912 137.51 12.10 0.19 114.65 161.89
ab_sp[2,14] 1.00 3894 -4.00 0.39 0.01 -4.79 -3.26
ab_sp[1,15] 1.00 2369 146.81 22.45 0.46 100.11 187.88
ab_sp[2,15] 1.00 2364 -4.06 0.72 0.01 -5.35 -2.57
ab_sp[1,16] 1.00 3353 149.48 17.08 0.30 114.68 181.70
ab_sp[2,16] 1.00 3329 -4.13 0.54 0.01 -5.15 -3.03
ab_sp[1,17] 1.00 3625 136.69 25.01 0.42 86.47 186.92
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ab_sp[2,17] 1.00 3626 -3.81 0.76 0.01 -5.33 -2.26
ab_sp[1,18] 1.00 3985 147.25 21.46 0.34 107.00 192.02
ab_sp[2,18] 1.00 3989 -4.21 0.63 0.01 -5.53 -3.02
ab_sp[1,19] 1.00 5316 115.88 13.71 0.19 87.85 141.44
ab_sp[2,19] 1.00 5311 -3.24 0.44 0.01 -4.06 -2.32
ab_sp[1,20] 1.00 4795 145.78 5.45 0.08 134.93 156.75
ab_sp[2,20] 1.00 4800 -4.18 0.17 0.00 -4.52 -3.85

Table 17: hierarchical model with correlated parameters

model run time: 463.18

Computed from 4000 by 323 log-likelihood matrix

Estimate SE
elpd_loo -413.6 27.6
p_loo 35.7 8.5
looic 827.1 55.3
------
Monte Carlo SE of elpd_loo is NA.

Pareto k diagnostic values:
Count Pct. Min. n_eff

(-Inf, 0.5] (good) 308 95.4% 709
(0.5, 0.7] (ok) 6 1.9% 181

(0.7, 1] (bad) 7 2.2% 25
(1, Inf) (very bad) 2 0.6% 12

See help('pareto-k-diagnostic') for details.
Warning message:
Some Pareto k diagnostic values are too high.
See help('pareto-k-diagnostic') for details.
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Figure 110: linear regression: three level model (data: bio) for Acteocina harpa (sp).
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Figure 111: linear regression: three level model (data: bio) for Alvania acuticostata (sp).
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Figure 112: linear regression: three level model (data: bio) for Aragonite (co). (datapoints
excluded)
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Figure 113: linear regression: three level model (data: bio) for Benthonellania precipitata
(sp).
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Figure 114: linear regression: three level model (data: bio) for Cadulus (sp).
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Figure 115: linear regression: three level model (data: bio) for Caecum crebricinctum (sp).
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Figure 116: linear regression: three level model (data: bio) for Calcite (co).
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Figure 117: linear regression: three level model (data: bio) for Cibicides pachyderma (sp).
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Figure 118: linear regression: three level model (data: bio) for Cibicidoides wuellerstorfi
(sp).
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Figure 119: linear regression: three level model (data: bio) for Dentalium (sp).
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Figure 120: linear regression: three level model (data: bio) for Eratoidea hematita (sp).
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Figure 121: linear regression: three level model (data: bio) for Hoeglundina elegans (sp).
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Figure 122: linear regression: three level model (data: bio) for Melanella Bowdich (sp).
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Figure 123: linear regression: three level model (data: bio) for Melanella polita (sp).
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Figure 124: linear regression: three level model (data: bio) for Planulina ariminensis (sp).
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Figure 125: linear regression: three level model (data: bio) for Planulina foveolata (sp).
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Figure 126: linear regression: three level model (data: bio) for population
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Figure 127: posterior predictive check for the three level model ran on biological data
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Figure 128: linear regression: three level model (data: bio) for Seguenzia (sp).
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Figure 129: linear regression: three level model (data: bio) for Turbonilla (sp).
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Figure 130: linear regression: three level model (data: bio) for turridae (sp).
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Figure 131: linear regression: three level model (data: bio) for Uvigerina curticosta (sp).
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Figure 132: linear regression: three level model (data: bio) for Uvigerina flintii (sp)
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Figure 133: linear regression: three level model (data: bio) for Uvigerina peregrina (sp)
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8.13 partial pooling model with a third level of composition:
(foraminifera and lab data)

Parameter Rhat n_eff mean sd se_mean 2.5% 97.5%

ab_pop[1] 1.00 2837 125.78 4.82 0.09 116.12 134.99
ab_pop[2] 1.00 2185 -3.74 0.18 0.00 -4.11 -3.38
sigma_obs 1.00 5521 1.41 0.05 0.00 1.31 1.52
log-posterior 1.00 961 -337.93 6.25 0.20 -351.14 -326.47
corr_co[1,1] 1.00 0.00 1.00 1.00
corr_co[2,1] 1.00 1620 -0.31 0.59 0.01 -0.99 0.90
corr_co[1,2] 0.00 0.00 0.00 0.00
corr_co[2,2] 1.00 1393 0.70 0.27 0.01 0.13 1.00
sd_sp[1] 1.00 1204 28.06 6.83 0.20 16.16 43.46
sd_sp[2] 1.00 1201 0.82 0.20 0.01 0.46 1.27
ab_co[1,1] 1.00 1658 128.56 6.70 0.16 115.46 142.32
ab_co[2,1] 1.00 1742 -3.69 0.20 0.00 -4.11 -3.29
ab_co[1,2] 1.01 846 129.77 11.07 0.38 113.78 160.08
ab_co[2,2] 1.00 881 -3.84 0.33 0.01 -4.78 -3.36
ab_co[1,3] 1.00 1571 129.99 8.97 0.23 114.39 149.82
ab_co[2,3] 1.00 1678 -3.69 0.27 0.01 -4.26 -3.17
ab_co[1,4] 1.00 793 127.32 9.75 0.35 111.33 151.20
ab_co[2,4] 1.00 777 -3.88 0.29 0.01 -4.62 -3.41
ab_co[1,5] 1.00 793 130.07 10.72 0.38 114.89 160.43
ab_co[2,5] 1.00 781 -3.85 0.32 0.01 -4.73 -3.38
ab_co[1,6] 1.00 1529 125.70 9.09 0.23 109.00 145.69
ab_co[2,6] 1.00 1369 -3.85 0.27 0.01 -4.45 -3.36
ab_co[1,7] 1.00 3899 125.54 11.57 0.19 99.68 148.08
ab_co[2,7] 1.00 3225 -3.74 0.36 0.01 -4.46 -2.98
ab_sp[1,1] 1.00 3906 142.78 3.09 0.05 136.87 148.88
ab_sp[2,1] 1.00 3923 -4.01 0.09 0.00 -4.19 -3.83
ab_sp[1,2] 1.00 3891 127.01 16.88 0.27 91.62 159.12
ab_sp[2,2] 1.00 3883 -3.60 0.55 0.01 -4.63 -2.46
ab_sp[1,3] 1.00 5398 144.98 8.94 0.12 127.85 162.84
ab_sp[2,3] 1.00 5430 -4.16 0.28 0.00 -4.71 -3.63
ab_sp[1,4] 1.00 4780 139.46 25.80 0.37 90.07 194.89
ab_sp[2,4] 1.00 4781 -3.98 0.76 0.01 -5.62 -2.52
ab_sp[1,5] 1.00 3231 79.39 10.16 0.18 59.57 99.23
ab_sp[2,5] 1.00 3233 -2.32 0.30 0.01 -2.91 -1.73
ab_sp[1,6] 1.00 5143 143.74 8.90 0.12 126.30 160.96
ab_sp[2,6] 1.00 5129 -4.18 0.28 0.00 -4.73 -3.63
ab_sp[1,7] 1.00 5268 126.02 20.48 0.28 87.02 167.23
ab_sp[2,7] 1.00 5259 -3.63 0.64 0.01 -4.93 -2.42
ab_sp[1,8] 1.00 4829 135.12 16.05 0.23 105.73 168.62
ab_sp[2,8] 1.00 4830 -3.92 0.52 0.01 -5.01 -2.97
ab_sp[1,9] 1.00 4198 137.50 2.25 0.03 133.01 142.03
ab_sp[2,9] 1.00 4228 -3.84 0.08 0.00 -3.99 -3.68
ab_sp[1,10] 1.00 4376 137.66 3.50 0.05 130.74 144.37
ab_sp[2,10] 1.00 4365 -4.24 0.13 0.00 -4.48 -3.99
ab_sp[1,11] 1.00 4410 153.40 3.64 0.05 146.26 160.66
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ab_sp[2,11] 1.00 4430 -4.67 0.13 0.00 -4.93 -4.41
ab_sp[1,12] 1.00 5613 169.52 10.45 0.14 149.26 190.63
ab_sp[2,12] 1.00 5648 -5.00 0.37 0.00 -5.74 -4.28
ab_sp[1,13] 1.00 3539 173.78 1.35 0.02 171.08 176.41
ab_sp[2,13] 1.00 3578 -5.12 0.05 0.00 -5.21 -5.02

Table 18: hierarchical model with correlated parameters

model run time: 262.00

Computed from 4000 by 382 log-likelihood matrix

Estimate SE
elpd_loo -682.6 27.2
p_loo 28.1 4.0
looic 1365.1 54.4
------
Monte Carlo SE of elpd_loo is NA.

Pareto k diagnostic values:
Count Pct. Min. n_eff

(-Inf, 0.5] (good) 374 97.9% 582
(0.5, 0.7] (ok) 6 1.6% 532

(0.7, 1] (bad) 2 0.5% 48
(1, Inf) (very bad) 0 0.0% <NA>

See help('pareto-k-diagnostic') for details.
Warning message:
Some Pareto k diagnostic values are too high.
See help('pareto-k-diagnostic') for details.
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Figure 134: linear regression: three level model (foraminifera and lab data) for Aragonite
(co) (datapoints excluded)
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Figure 135: linear regression: three level model (foraminifera and lab data) for Calcite (co)
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Figure 136: linear regression: three level model (foraminifera and lab data) for Calcite (sp)
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Figure 137: linear regression: three level model (foraminifera and lab data) for Calcite-
Vaterite Mixtures (co).
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Figure 138: linear regression: three level model (foraminifera and lab data) for Calcite-
Vaterite Mixtures (sp)
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Figure 139: linear regression: three level model (foraminifera and lab data) for Cibicides
pachyderma (sp)
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Figure 140: linear regression: three level model (foraminifera and lab data) for Cibicidoides
wuellerstorfi (sp)
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Figure 141: linear regression: three level model (foraminifera and lab data) for Hoeglundina
elegans (sp)
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Figure 142: linear regression: three level model (foraminifera and lab data) for Octavite
(co) (datapoints excluded)
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Figure 143: linear regression: three level model (foraminifera and lab data) for Octavite
(sp)
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Figure 144: linear regression: three level model (foraminifera and lab data) for Planulina
ariminensis (sp)
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Figure 145: linear regression: three level model (foraminifera and lab data) for Planulina
foveolata (sp)
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Figure 146: linear regression: three level model (foraminifera and lab data) for population
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Figure 147: posterior predictive check for the three level model ran over foraminifera and
lab data
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Figure 148: linear regression: three level model (foraminifera and lab data) for unknown
(co) (datapoints excluded)
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Figure 149: linear regression: three level model (foraminifera and lab data) for Uvigerina
curticosta (sp)
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Figure 150: linear regression: three level model (foraminifera and lab data) for Uvigerina
flintii (sp)
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Figure 151: linear regression: three level model (foraminifera and lab data) for Uvigerina
peregrina (sp)
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Figure 152: linear regression: three level model (foraminifera and lab data) for Vaterite
(co) (datapoints excluded
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Figure 153: linear regression: three level model (foraminifera and lab data) for Vaterite
(sp)
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Figure 154: linear regression: three level model (foraminifera and lab data) for Witherite
(co)
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Figure 155: linear regression: three level model (foraminifera and lab data) for Witherite
(sp)
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