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Layman summary  

 

Water is an essential life resource and should be a human right (Boylan, 2019), and water quality must 

be preserved (UNESCO, 2020). There is an urge to assess chemicals in drinking water towards the goal of a toxic-

free environment forecasted by the EU Chemical Strategy for Sustainability and the EU Green Deal for 2030. 

Equivalent intentions constitute the sixth of Europe's 17 Sustainable Development Goals (SDGs) adopted in 2015. 

The EU Water Framework Directive (WFD) adopted in 2000 requires EU member states to achieve acceptable 

chemical status in surface water and groundwater by 2027 (WISE, 2022). However, in the water sources, 

contaminants are present, either microbial or chemical ones, which may be of natural or anthropogenic origin, 

meaning chemicals produced by humans and released into the environment. Therefore, over time, EU member 

states implemented specific drinking water treatment processes to purify water sources (EU Commission, 2022). 

These treatments, however, may lead to the transformation of contaminants into often unknown chemicals – 

called transformation products (TPs). Therefore, their formation and related health risks must be assessed. Indeed, 

we live in a world of chemical compounds interacting to create our reality. Some of them may constitute a risk to 

human health, other living organisms, and ecosystems. Environmental toxicology aims to predict which chemicals 

may threaten living organisms and natural resources. The preliminary step in evaluating the health risks is the 

hazard assessment, namely the consideration of the intrinsic capacity of the newly formed TPs to cause harm to 

living organisms. Finding a solution starts with understanding the interconnected relations between chemicals and 

biological systems. The human health risks also depend on human exposure over time, which was not considered 

in the current research project.  

Nowadays, the approach towards the toxicological assessment of chemicals is changing rapidly. This 

change is mainly guided by sustainable goals towards the replacement, reduction, and refinement of animal tests 

(in vivo), which have traditionally been used to assess the safety of chemicals (RIVM, 2022). The development of 

New Approach Methodologies (NAMs) for risk assessment – which includes microorganisms or cell tests (in vitro) 

and predictive toxicology (in silico) – is a necessary step for the transition towards animal-free testing. In silico 

tools can accelerate the risk assessment of chemicals and meet the goals of European policies (Kavlock et al., 

2018). Therefore, the current research focused on selecting and applying in silico tools for evaluating TPs formed 

during drinking water treatments. 

 

  

https://circabc.europa.eu/ui/group/8ee3c69a-bccb-4f22-89ca-277e35de7c63/library/dd074f3d-0cc9-4df2-b056-dabcacfc99b6/details?download=true
https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF
https://sdgs.un.org/goals
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2000:327:FULL&from=EN


 
 

4 
 

 

Abstract 

 

Environmental contaminants are present in water sources, so drinking water treatments are applied. 

However, these contaminants can be transformed into new chemicals – called transformation products (TPs) – 

often unknown and undetected by analytical techniques (Gogoi et al., 2018; Brunner et al., 2019; Zahn et al., 2019; 

Menger et al., 2021). Therefore, predicting TPs' formation during drinking water treatments must be addressed 

(Kiefer et al., 2019). At the same time, predictive toxicology can help identify TPs of great toxicological concern 

and steer further analysis. However, there is an urge to assemble available methods to design and implement the 

next-generation risk assessment (NGRA) in regulatory frameworks (Pallocca et al., 2022). Therefore, this research 

focused on developing a rational scheme for predicting TPs formation because of drinking water treatments, their 

physicochemical characteristics (PCC), and toxicological hazards. The effectiveness of freely available in silico tools 

in predicting, prioritizing, and evaluating TPs was discussed here. S-metolachlor TPs were used as proof of the 

applicability of the methodology. The reliability of the methods varies depending on the specific reaction pathway, 

PCC, or endpoint considered. The Chemical Transformation Simulator (CTS) and enviPath were demonstrated to 

be the best available combination for predicting TPs originating from drinking water treatments. EpiSuiteTM was 

recommended for the PCC evaluation, and VEGA QSAR for the hazard prioritization. Whether the predicted 

prioritized S-metolachlor TPs could represent a human health risk via drinking water or an environmental concern 

for their impact on ecosystems requires further research, as well as the development of an automation workflow 

for the use of the applied in silico tools, is required.  
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INTRODUCTION 

 

Natural or anthropogenic chemicals can contaminate water. Examples of these are pharmaceuticals, 

personal care compounds, and pesticides, typically found in water sources at low concentrations - thus, called 

micropollutants. Because of contaminants in the water, drinking water companies apply water treatments to 

eliminate chemical contamination and ensure the European water quality standard1 of 0.1 μg/L (WHO, 2022).  

Developing and implementing adequate drinking water treatments to respond to the increasing 

environmental pollution (Dos Santos et al., 2022) is crucial to ensure safe drinking water for consumers. Emerging 

contaminants (ECs) pose growing challenges to water purification (Tang et al., 2019); therefore, water companies 

constantly adapt and implement drinking water treatment processes according to contaminants' presence in the 

water sources. Indeed, the pollution level of water sources determines the specific demand for purification, and 

consequently, different sequences and conditions of drinking water treatment processes are applied by water 

companies. The most common water treatment processes include the use of ultraviolet (UV) radiation, chlorine, 

ozone, or other disinfectants, flocculation, filtration, and advanced oxidation (AOPs) (WHO, 2022).  

The abovementioned drinking water treatments are of “unquestionable importance in the supply of safe 

drinking water” (WHO, 2022, p. 5). However, increasing scientific evidence demonstrates the transformation of 

contaminants in the water into new and often unknown transformation products (TPs)2 (Brunner et al., 2019; Yang 

et al., 2022). A wide range of organic contaminants can undergo transformation reactions during drinking water 

treatments since drinking water treatment processes employ disinfectants or biological metabolism (WHO, 2022). 

The lack of information about TPs of environmental contaminants, as reviewed by Gogoi et al. (2018), reveals the 

concern they cause for water quality. The transformation processes contaminants encounter might indirectly 

increase their impact on drinking water quality, especially considering that they are often structurally and 

toxicologically unknown compounds (Brunner et al., 2019; Menger et al., 2021). Even when these have been 

identified in the water, they remain toxicological data-poor chemicals for which further research is necessary 

(Gogoi et al., 2018, Zahn et al., 2019).  

 

 

1 The World Health Organization (WHO) periodically updates the Guideline for Drinking Water Quality, making 

standard levels of contaminants available for human consumption (WHO, 2022).  

2 When the precursor of the newly formed substances is the natural organic matter in the water, the newly formed 

chemicals are referred to as disinfection by-products (DBPs). However, this research focused on anthropogenic 

precursors, which products are generally called TPs (Yang et al., 2022). 



 
 

8 
 

Among anthropogenic contaminants in the environment, critical are the active substances – the 

ingredients that interact with biological systems and therefore exert the desired pharmacological or toxicological 

effect (EU Commission, 2022). For their inherent biological activity, active substances appear as suitable 

micropollutants candidates for the formation of TPs (Bura et al., 2019). Between the various active substances 

found in the environment, pesticides are relevant because of their diffused application, which is expected to 

contaminate surface water and groundwater (Syafrudin et al., 2021). In Europe, 448 active substances are 

authorized as pesticides – which include plant protection products used in agriculture and biocides found in 

numerous applications – and 258 are approved in the Netherlands (EU Commission, 2022).  

The formation of TPs from pesticides can derive from reaction processes occurring in the environment 

(Pico' et al., 2015; Cormier et al., 2015) or during drinking water treatment processes (Petrie et al., 2015; Tang et 

al., 2019; Brunner et al., 2019). Therefore, there is the urge to prioritize research on pesticides TPs, as the quantity 

of pesticide products released into the environment has constantly been increasing over the years (Sharma et al., 

2019) and the reactions possibly involved in TPs formation are diverse (Kotthoff et al., 2019; Suman et al., 2022). 

The EU regulations that apply to pesticides in the European context are Regulation (EC) n° 1107/2009 of 

the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection 

products on the market and Regulation (EU) n° 528/2012 of the European Parliament and of the Council of 22 

May 2012 concerning the making available on the market and use of biocidal products, which state that active 

substances “shall have no immediate or delayed harmful effect [...] directly or through drinking water” (EC 

Regulation n° 1107/2009 article 4, 3b; EU n° 528/2012, article 19, 1b iii). Moreover, the EU Directive n° 2020/2184 

of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human 

consumption specifies that it must be considered whether “transformation products generate a health risk for 

consumers” (EU Directive n° 2020/2184, Annex I, part B, p.37). Therefore, active substance degradation and TPs 

should be investigated according to the EU regulatory framework for active substances of pesticides (Bura et al., 

2019) to evaluate the indirect health effects they could generate, because – as pointed out by Ji et al. (2020) – TPs 

could be the blind spot of pesticides risk assessment. 

 

Knowing the chemical structure of newly formed TPs aids their detection in the water by targeted 

screening, which uses reference standards to identify and quantify specific structures (Hinnenkamp et al., 2021). 

However, most newly formed TPs are unknown chemical structures, and unknown compounds are not revealed 

by targeted analysis. Therefore, the only possible alternative is non-targeted screening (NTS), which can detect 

known and unknown chemicals in water matrices. Innovative NTS approaches allow the identification of previously 

unknown TPs (Brunner et al., 2020; Lai et al., 2021). Lowering the detection limits of analytical methods allows the 

detection of an increasing number of micropollutants (Muter & Bartkevics, 2020). 

A technique to detect TPs in the water is liquid chromatography (LC) combined with high-resolution 

tandem mass spectrometry (HRMS/MS) (Schollée et al., 2017; Lai et al., 2021). The first applied chromatography 

technique is used to separate the compounds present in a sample, and the second, the mass spectrometry, 

analyses the mass of the separated compounds to identify them. These techniques can identify various pesticide 

TPs in water sources (Hollender et al., 2018; Kiefer et al., 2019) and water samples after drinking water treatment 

processes (Glassmeyer et al., 2017; Brunner et al., 2019; Tröger et al., 2021). Sometimes (Hladik et al., 2008; Kiefer 
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et al., 2019; Rousis et al., 2022), the reported levels were estimated to be higher than the EU drinking water 

standards of 0.1 µg/L (WHO, 2022). However, this analysis's time and costs are higher than the targeted analysis, 

due to the detection of multiple signals (Hinnenkamp et al., 2021). Therefore, TPs are not currently regularly 

detected in drinking water quality analysis unless added in a risk-based monitoring framework and, moreover, 

they are not included in the risk assessment framework for approval of active substances (European Commission, 

2022a). 

 

The toxicological activity of the TPs must be assessed, together with the exposure to humans, to calculate 

the derived human health risks. Even though an increasing number of papers are being published regarding TPs 

of pesticides in Europe – as reviewed by Anagnostopoulou et al. (2022) – TPs formation must be further analysed 

since the related human health risks still remain uncertain (Hayes et al., 2006; Petrie et al., 2015; Skanes et al., 

2021). On the one hand, the toxicological profile of an active substance put on the market is generally widely 

characterized following the EU legislation. On the other hand, limited information is available about their TPs 

(Worth et al., 2011; Bura et al., 2019). Therefore, TPs represent a global environmental and potential health 

concern to be addressed (Anagnostopoulou et al., 2022). 

The risk assessment requires the hazard identification, namely the intrinsic capacity of molecules to cause 

harm. Traditionally, the hazards have been evaluated by exposing animals to chemicals and observing the 

consequent effect, translating the results to humans using safety factors to consider the difference between 

species (animals and humans) and the personal susceptibility of individuals (higher, for example, for children and 

elderly). However, what happens in animals is defined as a 'black box' and the reliability of the extrapolation 

animal-human is uncertain (Paparella et al., 2020). Alternative testing methods to animal testing for the hazard 

assessment of chemicals include in silico tools – software able to predict the effect of chemicals on biological 

systems based on available experimental information – and in vitro tools – bioassays performed on biological 

systems (cells, tissues, or other biological components), possibly target of the chemical of interest. 

The latter New Approach Methodologies (NAMs) can clarify how toxicants act towards living organisms. 

For instance, for metolachlor, in vivo research demonstrated changes in the reproductive endocrinology of male 

rats without pointing out the mechanisms of action (MoA) involved (Mathias et al., 2012). However, an in vitro 

study revealed the activity of metolachlor towards the mRNA expression of human aromatase, the enzyme 

responsible for the biosynthesis of estrogen, clarifying a possible mechanism of action (Laville et al., 2006).  

Predictive toxicology is time and cost-effective, but is strictly linked to the availability, quality, and 

concordance between experimental data. The understanding of the mechanisms of action for specific toxicological 

endpoints influences the predictivity of the models. Nevertheless, it can help identify and prioritize compounds of 

toxicological concern, direct further analysis, and speed up the evaluation of contaminants in the environment. 

Indeed, in silico methods have been increasingly used under regulations EC n° 1107/2009 and EU n° 528/2012 

concerning plant protection and biocides (Berggren et al., 2017; Khan et al., 2020; Klutzny et al., 2022; 

Anagnostopoulou et al., 2022). However, in silico tools still need to be assembled in a rational scheme to guarantee 

their application in risk assessment frameworks (Pallocca et al., 2022). 
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In addition to the hazard assessment, the exposure to humans and other living organisms must be 

evaluated to characterize potential health risks. However, this research focused on the preliminary steps for the 

risk assessment of TPs: their prediction and hazard identification. Therefore, further research was warranted.  

The presented research proposes an efficient predictive framework for prioritizing TPs of active 

substances originating during drinking water treatments. The drinking water treatment processes involving bio 

metabolism or disinfectants - such as rapid sand filtration, UV treatments, ozonation, and chlorination - were 

considered. Literature data mining and in silico tools were combined to assess TPs formation because these 

treatments and predictive toxicology was also used to define their potential related hazards.  

The scheme was applied to S-metolachlor as a proof of principle for applying in silico methods to prioritize 

TPs research in drinking water. While the racemic mixture metolachlor is no longer authorized in Europe as an 

active substance, the use of S-metolachlor is still approved in agriculture (European Commission, 2022e), and S-

metolachlor has been widely used in Europe (O’Connell et al., 1998; Jursík & Holec, 2019). The approval was 

extended even though the S-enantiomer is the active portion of the racemic mixture (Shaner et al., 2006) and 

research suggested that metolachlor and S-metolachlor have similar toxicological profiles (EFSA, 2012). S-

metolachlor was first characterized to confirm that it was of high toxicological concern and likely to be found in 

water sources. S-metolachlor TPs were then predicted and prioritized based on the likelihood of being created, 

structural reasoning, and hazard structural alert identification. Ultimately, those were tentatively identified by 

non-target HPLC-HRMS screening. The present research demonstrated that the formation of TPs from S-

metolachlor during drinking water treatment might happen and be relevant from a toxicological point of view.  
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METHODS 

 

 

The present research proposed a rational scheme for predicting TPs and their related hazards due to the 

reaction of active substances of pesticides during drinking water treatment processes, based on a combination of 

literature research and in silico approaches (Figure 1). 

A preliminary characterization of the parent compound was done here to confirm that the selected active 

substance – S-metolachlor – was possibly present in water samples and represented relevant toxicological 

concerns (see paragraph 1.3). Firstly, S-metolachlor was characterized for water solubility and partitioning 

coefficients between environmental compartments, indicative of its presence in the water, and, secondly, for five 

toxicological endpoints. Both steps combined literature information and in silico tools (see chapter 1).  

Thirdly, the TPs possibly formed from S-metolachlor were collected using a systematic literature review and 

predictive tools. A comparison between the collected literature information (i.e., monitoring data, databases) and 

the predictions' results was also discussed (see chapter 2). 

The predicted TPs were then prioritized based on their previous identification in water samples and their 

toxicological characteristics. The reasons for prioritizing specific TPs over others were reported here (see chapter 

3). In silico tools were additionally used to assess the hazard of prioritized TPs (see chapter 4).  

Lastly, the prioritized TPs were tentatively identified using non-target HPLC-HRMS screening data made 

available by Brunner et al. (2019) (see chapter 5). The relevance, preference, and limitations of the applied scheme 

were reported in the Discussion section (see chapter 3). 
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Figure 1. Framework to evaluate transformation products (TPs) formation derived from active substances during 

drinking water treatments combining literature data and prediction tools. 
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1 Characterization of the parent compound 

 

This research used systematic literature reviews and data mining approaches to collect relevant 

monitoring and toxicological data. Systematic literature reviews were performed by adopting the standard process 

defined by Egger et al. (2022). It consists of an a priori definition of inclusion and exclusion criteria, the location of 

studies, the extraction of the data, and the assessment of their quality fixed on pre-defined schemes. The list of 

actions to perform a literature review is listed here: 

1. Formulate the review question. 

2. Define inclusion and exclusion criteria to ensure that biases are excluded, and comparable data are collected. 

3. Locate studies using research engines, specifically PubMed, Science Direct, and Scopus. 

4. Select studies based on the defined inclusion criteria; a reason is given for excluding studies. 

5. Extract data using a pre-defined form to make the information comparable. 

6. Analyze and present results using a pre-defined method to synthesize the information. 

 

Physicochemical characterization 

The environmental availability of S-metolachlor in water sources entering drinking water treatment plans 

depends on the physicochemical characteristics (PCC), such as hydrophobicity/phylicity, lipophilicity and water 

solubility. It is crucial to determine whether S-metolachlor is soluble in water to understand whether it is likely 

found in water sources. Hydrophobicity was characterized via water solubility, the octanol-water partition 

coefficient (Kow), and the organic carbon-water partition coefficient (Koc).  

Water solubility, generally expressed in mg/L or ppm, represents the likelihood of a chemical dissolving 

in water. A low solubility is associated with water solubility valued below 10 mg/L or 10 ppm, a high solubility is 

represented by water solubility values higher than 1000 mg/L or 1000 ppm, while values in between are 

considered a moderate solubility (NPIC, 2022). 

The octanol-water partition coefficient (Kow) is a parameter to define the lipophilicity and hydrophilicity 

of a chemical. If higher than 1, the chemical tends to stay more in the lipophilic phase, while for values lower than 

1, the affinity with the aquatic phase is higher (Speight, 2016). 

The organic carbon-water partition coefficient (Koc) defines the likelihood of finding a chemical in the 

organic phase rather than the water phase. For values higher than 1, the chemical is more likely to be adsorbed 

onto the organic phase (the soil or suspended in the water) instead of being found in the water. Therefore, the 

Kow can predict the migration of hydrophobic organic compounds dissolved in soil and groundwater (Speight, 

2016).  

 

 

 

https://pubmed.ncbi.nlm.nih.gov/
https://www.sciencedirect.com/
https://www.scopus.com/home.uri
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1.1 In silico tools for the prediction of physicochemical properties 

 

Three freely available in silico tools were selected to predict the PCC of S-metolachlor. These tools were 

used to assess the reliability of the predictive tools when available measured data in the literature. The reliability 

of the predicted tools is discussed in the Discussion section (see paragraph 2.1). 

Chemical Transformation Simulator (CTS)  

The Chemical Transformation Simulator version 1.2 is a web-based tool that predicts the transformation 

pathways of organic chemicals using reaction libraries. The PCC Module in CTS was used to predict water solubility 

as the main PCC influencing the persistence of a chemical in the water (Covaci, 2014). Further information is 

available in the supplementary documents (see Annex 2).  

 

US EPA EPI (Estimation Programs Interface) SuiteTM  

EpiSuite TM  is a Windows®-based tool that collects physical and chemical properties and estimations on 

the environmental fate of chemicals. The different models can be run simultaneously or be specifically selected. 

EpiSuite has models for partition coefficients in different environmental departments. The different models can 

be run simultaneously or precisely selected. Further information on the models and other models available in the 

software is reported in the supplementary documents (see Annex 2). 

The models adopted to predict the partition coefficients relevant to water solubility were: 

- KOWWIN™ (version 1.68) estimates the log octanol-water partitioning coefficient (Log Kow or Log pOW), 

which measures its lipophilicity/hydrophilicity. If the ratio is >1, the compound will likely stay in the 

lipophilic phase. If it is <1, the chemical prefers water.  

- KOCWIN™: the program estimates the organic carbon-normalized sorption coefficient for soil and 

sediment KOC = Kd*100 / % organic carbon. If the ratio is >1, the compound tends to be adsorbed to the 

solid phase. If it is <1, the chemical is more likely to be found in the water. 

- LEV3EPI™ was used to predict the partitioning of chemicals among air, soil, sediment, and water under 

steady-state conditions for a default environmental model. 

 

The models adopted to predict water solubility were: 

- WSKOWWIN™, which predicts water solubility applying corrections when needed. 

- WATERNT™ (version 1.1) estimates water solubility directly using a “fragment constant” method. 

The models used to predict degradation processes were: 

- BIOWIN™ which predicts the aerobic and anaerobic biodegradability of organic chemicals using seven 

different models. The model was evaluated to predict rapid sand filtration/biodegradation during water 

disinfection treatments.  

- STPWIN™, which predicts the removal of a chemical in an activated sludge-based sewage treatment 

plant.  

 

https://qed.epa.gov/cts/
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
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US EPA CompTox 

The CompTox Chemicals Dashboard (epa.gov) is a freely available tool to predict water solubility. 

Moreover, the tool was adopted for the hazard assessment of the parent compounds and their TPs (see paragraph 

1.3.2). Further information is available in the supplementary documents (see Annex 2). 

 

1.2 In silico hazard assessment 

This research is focused on developing a work frame for using in silico approaches to prioritize TPs of 

toxicological concern. When applying predictive toxicology, it is always preferable to use at least two models 

(ECHA, 2008; 2016; 2017). Marzo et al. (2016) suggested integrating multiple models to reduce the uncertainty of 

in silico predictions. The combination of different tools has been demonstrated to increase the reliability of the 

predictions (Rallo et al., 2005; Basant et al., 2016). Furthermore, it is recommended that at least an expert rule-

based and statistical-based model (QSAR) and a read-across approach are applied in parallel to enhance the 

reliability of the prediction. 

Various freely available in silico models were used to allow the validation of the results and make 

comparisons between different schemes. This research did not consider commercial tools to guarantee more 

extensive access to the proposed methodology. Moreover, the prediction must be justified by reasonings and 

mechanistic interpretations by expert judgment to increase the reliability of the results.  

The read-across and the Quantitative Structure-Activity Relationship (QSAR) are the main computer-

based methods used in predictive toxicology. Both were considered in this research to evaluate the hazard related 

to TPs. Further information on the in silico hazard assessment is available in the supplementary documents (see 

Annex 3). 

1.2.1 Considered endpoints 

A literature review was used to define relevant endpoints for drinking water quality assessment and 

identify existing in silico models capable of providing reliable predictions for the evaluated endpoints. The 

endpoints were selected based on the relevance of drinking water exposure. For instance, neurotoxicity was not 

included as the contaminants in the water – and therefore their TPs – are usually found at low-level 

concentrations. The blood-brain barrier is a highly selective membrane. The open-source availability of in silico 

tools for their assessment was considered a strength for selecting the endpoints analysis of this research. 

Five relevant endpoints for drinking water quality are discussed here, and further endpoint-specific 

information is available in the supplementary documents (see Annex 3). 

Genotoxicity 

Genotoxicity is the ability of a chemical to damage the genetic information in cells, which can lead to a 

series of health consequences, including tumor initiation (More et al., 2019). Therefore, genotoxicity is a crucial 

endpoint in water quality assessment, considering the severe effects that would be caused on human health after 

chronic exposure to low concentrations of genotoxic chemicals. The information on predictive toxicology for the 

https://comptox.epa.gov/dashboard/
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genotoxicity endpoint available in the literature is vast, and the reliability of QSARs models has already been 

proven in several studies (Benigni & Bossa, 2019). As the reliability of in silico approaches relies on the availability 

of literature data used to build the model, the more the related mechanisms of action are understood, the more 

solid the prediction for the specific endpoint. 

Direct genotoxicity involves mutagenic effects that result in a permanent transmissible variation in the 

structure of genetic material. As regards the mutagenicity endpoint, many models have been created to predict 

the results of the Ames Mutagenicity test. A vast amount of in vitro data was available to build the models. 

Moreover, the standardized testing methodologies applied for genotoxicity have provided a homogenous and 

reliable understanding of the chemicals' characteristics of genotoxicity, allowing the creation of reliable algorithms 

to predict the genotoxicity potential of chemicals (Benigni & Bossa, 2019) (see Discussion section, paragraph 2.2). 

A discussion on the reliability of QSAR models for genotoxicity is available in the supplementary documents (see 

Annex 4). 

Carcinogenicity 

The cancerogenic health effect is related to two mechanisms of action (MoA) direct genotoxicity, when 

the chemical interacts directly, linking the DNA and altering its structure. Indirect genotoxicity, also named non-

genotoxic carcinogenicity, comprehends mechanisms such as stimulating cell proliferation or inhibiting the 

physiological mechanism of apoptosis (EPA, 2005). Apart from the health relevance of this endpoint, it is crucial 

for the hazard assessment of TPs in drinking water because the latter involves chronic exposure, with which the 

processes mentioned above of carcinogenicity are related. Different software is available to predict the 

carcinogenetic effect of chemicals. Usually, endpoints are evaluated as binary output (active or non-active). 

However, for carcinogenicity, it is possible to assess the potency of the toxic activity, thus expressing it as a 

dose, using the well-known dataset built available from the Carcinogenic Potency Database (National Library 

of Medicine, 2022). However, the purpose of this work was qualitative and not quantitative. Therefore, 

only a binary output was investigated.  

Reproductive and developmental toxicology  

The endpoint of reproductive toxicology includes developmental toxicology, and these aspects are usually 

overall evaluated in developmental and reproductive toxicology (DART) studies aimed at assessing the 

reproductive performance of animals and the consequences on the development of the offspring after repeated 

or chronic exposure. However, they are different endpoints, but in this research were considered together. On 

one side, reproductive toxicology entails any adverse effect on the fertility of the exposed generation and the 

development of the progeny. On the other side, developmental toxicity, also referred to as teratogenicity, is a 

different endpoint than reproductive toxicology, even if one can lead to the other (Faqi et al., 2013).   

 While for genotoxicity, the mechanisms of action are well known (EPA, 2005), reproductive toxicology is 

more composite, as demonstrated by the number of endpoints considered in the multigeneration studies: more 

than 100 as regards varying life stages and generations are usually integrated (Martin et al., 2011). That makes 
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reproductivity toxicology a complex endpoint (Jensen et al., 2008) and developmental toxicology (Cassano et al., 

2010). Once again, computational toxicology is a helpful tool (Martin et al., 2011). The US EPA Toxicity Reference 

Database (ToxRefDB) is an available online database of high-quality mammal toxicity data that covers effects such 

as reproductive performances and measures, male and female reproductive tract effects, and sexual development 

landmarks, and it is a valuable resource for retrospective analysis for the development of predictive models. It 

includes data obtained by in vivo experiments on environmental chemicals, including pesticides, regarding acute, 

chronic, reproductive, and developmental toxicity (Martin & Judson, 2010). A discussion on predictive toxicology 

for the evaluation of reproductive toxicology is reported in the supplementary documents (see Annex 4). 

Endocrine disruption  

The endocrine system is a complex of glands, hormones, and receptors that influence a wide variety of 

essential mechanisms, such as the differentiation, growth, and function of reproductive organs, body 

development, energy production, and the levels of sugar in the circulatory system (Zou, 2020). Alterations of the 

endocrine system could lead to a series of effects on different physiological mechanisms in humans, including 

those involved in reproduction and development. Every chemical that interferes with the endocrine system is 

defined as an endocrine disruptor (ED). It is generally agreed that it is a relevant endpoint for the variety and 

complexity of the mechanisms (Zou, 2020). For predictive toxicology, the more the endpoint is defined, the more 

predictions could be reliable. Endocrine system alterations could modify the reproductive system and other health 

effects. Jensen et al. (2008) investigated the development of models to predict ED effects based on in vitro tests. 

Different QSAR tools have been developed to evaluate this endpoint, such as QSAR Toolbox, VEGA HUB, CAESAR 

project, or DeepTox. 

Skin sensitization/irritation 

Skin sensitization is the capacity of a molecule to exert an allergic reaction in susceptible individuals 

(European Commission, 2022b), while skin irritation is the reaction due to topical exposure to a chemical which 

can lead to skin corrosion, an irreversible health effect (European Commission, 2022c). Skin sensitization and 

irritation are endpoints widely assessed in silico because of the relevance of cosmetic products for which market 

trading was forbidden in Europe in 2011. Therefore, alternative methods become relevant and characterized 

(Kleinstreuer et al., 2018). 

1.2.2 In silico tools for the hazard assessment 

Freely available in silico tools for endpoints relevant to drinking water quality were used to perform the 

hazard assessment of S-metolachlor and its predicted TPs (Table 1). Only the freely available in silico tools were 

considered to guarantee extended application in academic research. All models accept the SMILES (simplified 

molecular-input line-entry system) as input. SMILES are unique and, therefore, the preferred input because 

chemicals can have multiple names and CAS numbers. However, the offered reliability of the models for the 

assessment was not equivalent for the different relevant endpoints considered, and the relative reliability was 

discussed in the Discussion section (see paragraph 2.2). 
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Table 1. Freely available in silico tools for the hazard assessment of genotoxicity, carcinogenicity, 

reproductive/developmental toxicology, endocrine disruption, and skin sensitization (see paragraph 1.2.1). 

Software GENOTOXICITY 
CHROMOSOMAL 

ABERRATION 
CARCINOGENICITY 

REPRODUCTIVE/ 

DEVELOPMENTAL 

TOXICOLOGY 

ENDOCRINE 

DISRUPTION 

SKIN 

SENSITIZATION 

       

VEGA 
CONSENSUS 

v1.0.3 
CORAL v1.0.0 CEASAR model CAESAR model 

NRMEA Thyroid 

Receptor Alpha effect 

v1.0.0 

CAESAR model 

v2.1.6 

 
CEASAR 

v2.1.13 

IRFMN In vitro 

micronucleus 

v1.0.0 

CEASAR v2.1.9 CEASAR v2.1.7 

NRMEA Thyroid 

Receptor Beta effect 

v1.0.0 

IRFMN/JRC v1.0.0 

 
SarPy/IRFMN 

v1.0.7 

IRFMN In vivo 

micronucleus 

v1.0.1 

ISS v1.0.2 
Developmental/Reproductive 

Tox library v.1.1.0 

IRFMN  Aromatase 

activity v1.0.0 
 

 ISS v1.0.2  
IRFMN/Antares 

v1.0.0 

IRFMN/CORAL Zebrafish 

embryo AC50 v1.0.0 

IRFMN Estrogen 

Receptor Relative 

Binding Affinity v1.0.1 

 

 
KNN/Read-

Across v1.0.0 
 

IRFMN/ISSCAN-

CGX v1.0.0 
 

IRFMN/CERAPP 

Estrogen Receptor 

v1.0.0 

 

   

IRFMN 

carcinogenicity 

oral v1.0.0 

 

IRFMN/COMPARA 

Androgen Receptor  

v1.0.0 

 

   

IRFMN 

carcinogenicity 

inhalation  v1.0.0 

   

ToxRead 
read-across 

assessment  
     

 
QSAR 

consensus  
     

       

ToxTree Ames alerts  Cramer rules    

 
Benigni/Bossa 

rulebase 
 

Benigni/Bossa 

rulebase 
   

       

CompTox 

Consensus 

Ames 

mutagenicity 

  Developmental toxicity 
Estrogen Receptor 

binding 
 

       

OSIRIS 

PROPERTY 

EXPLORER 

Mutagenic 

alerts 
 Tumorigenic alerts Reproductive effects alert  Irritant alerts 

       

QSARToolbox 
Mutagenicity 

profiling 

Chromosomal 

aberration 

profiling 

Carcinogenicity 

profiling 
Developmental tox profiling 

OECD estrogen binding 

profiling 

OECD protein 

binding profiling 
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VEGA HUB  

VEGA HUB is a project conducted by The Mario Negri Institute for Pharmacological Research, Italy, and 

offers a variety of models to predict the hazard of chemicals. The VEGA, ToxRead, ToxWeight, ToxDelta, and JANUS 

models are included in VEGA HUB. This research used VEGA QSAR and ToxRead to assess the endpoints of 

genotoxicity, carcinogenicity, developmental and reproductive toxicity, and endocrine disruptors.   

VEGA QSAR 

VEGA QSAR provides predictions on the activity for specific endpoints for a target molecule, relying on 

QSARs. Version 1.1.5 was initially used during the preliminary research, and the new version 1.2.0 was adopted in 

June 2022. For genotoxicity, eight models were available, based on different algorithms, and developed to assess 

different mechanisms of genotoxicity. Five models predict the mutagenicity in Salmonella Typhimurium (Ames 

test), but there are also models available for predicting chromosomal aberration mechanism and micronucleus 

test results. For skin sensitization, three models were available. Regarding complex endpoints, eight models were 

available for carcinogenicity based on different databases. In contrast, three models were used for reproductive 

and developmental toxicology, based either on the Developmental/Reproductive Tox library or the prediction of 

the AC50 in Zebrafish.3. Six models were selected on specific mechanisms of action to evaluate endocrine 

disruption. The VEGA models for endocrine disruption are based on hormone receptor bunding or aromatase 

activity. The aromatase, also called estrogen synthetase, is a key enzyme (P450)4 in the formation of estrogens 

from androgens through aromatization, and alteration in its activity can lead to hormone imbalances that may 

result in sexual and skeletal development (Zorn et al., 2020). As S-metolachlor showed in vitro activity towards the 

aromatase activity (Laville et al., 2006), the endpoint was relevant to this research. 

The prediction output is reported along with the reliability of the prediction, the reasoning relative to the 

six molecules selected in the training set, the structural alerts detected, and, eventually, critical aspects. An in-

built algorithm assesses the model's applicability for the chemical, and expert reasoning was used to determine 

the uncertainty level associated with the final prediction. The model provides the six chemicals more similar to the 

target chemicals included in the training set. The inclusion in the applicability domain depends on the recognition 

of structural features or molecular descriptors. The applicability Domain Index (ADI) has values from 0 (worst case) 

to 1 (best case) (Benfanti et al., 2013). A detailed explanation of the software model and the scores of reliabilities 

provided by an independent algorithm included in the model is available in the supplementary documents (see 

Annex 5). 

 
3 AC50 is a toxicological threshold representing the concentration at which 50% of the maximum activity towards 

a specific endpoint is observed. 

4 The enzymes of the P450 family are proteins responsible for the synthesis and metabolism of internal and 

external cell components  

https://www.vegahub.eu/
https://www.vegahub.eu/portfolio-item/vega-qsar/
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Here are reported Applicability Domains scores which are the internal statistical validation of the model. 

All range from 0 to 1 and analyze different aspects of the prediction: 

- Applicability Domains scores, which are the internal statistical validation of the model. All range from 0 

to 1 and analyze different aspects of the prediction. 

- Similarity index = how much the training set molecules resemble the chemical. 

- Accuracy index = how much the experimental values of the training set molecules agree with their 

predicted value by the model. 

- Concordance Index = how much the experimental values of the training set molecules agree with the 

predicted value for the molecule in analysis. 

- Atom Centered Fragment (ACF) = how many atom-centered fragments have been found in the 

molecules of the training set. 

- Global Applicability Domain Index (ADI), the overall score calculated from the other parameters. 

The prediction was considered positive if there were an indication of activity towards the selected 

endpoint and negative if inactivity was indicated. The results were considered inconsistent if suspected to be not 

included in the model's applicability domain (AD). In other words, if the most similar compound has not had 

enough overlapping characteristics compared to the target (similarity below 0.5) or the experimental values of the 

two most similar chemicals disagree with the predicted output value. If experimental values were identified, the 

ADI equals 1.  

During the proposed in silico hazard assessment, a consensus score higher than 0.5 was considered. For 

the single models, if the ADI was inferior to 0.75, the prediction was considered inconsistent as the compound 

analyzed fell outside the AD of the model, which means the prediction could not be reliable for that compound. 

The reliability of predictions was independently assessed for each model. In some cases, some parameters were 

considered more relevant to justify the prediction. For instance, the similarity index was considered more relevant 

than the ACF index because the atom-centered fragment can be found in molecules notably different from the 

target compound. In contrast, the similarity index better represents the target's overall similarity with the 

molecules selected in the training set. Similarly, the concordance index was seen to be more relevant than other 

parameters for the reliability assessment of the prediction because a high number of contrasting experimental 

data with the model's prediction invalidated the prediction.  

The applicability domain assessment can improve the interpretation and reliability of the predictions 

(Marzo et al., 2016; Benfanti et al., 2013). However, expert judgment reasoning was applied to justify the selected 

threshold of 0.75 and assess each model's reliability, followed by an overall evaluation collecting all the results on 

a specific endpoint.  
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ToxRead  

ToxRead 0.23 Beta is a Java application that allowed the execution of reproducible read-across 

evaluations for the mutagenicity endpoint. It revolves around structural alert detection in the target molecule and 

the location of those on structurally similar molecules present in its database, for which experimental data are 

available. It provides the most similar compounds and the grade of similarity detected for each structural alert. 

The tool provides both a read-across assessment and a QSAR consensus assessment based on CAESAR, ISS, SarPy, 

and KNN mutagenicity models. Further information is available in the supplementary documents (see Annex 5).  

ToxTree  

ToxTree version 3.1.0 is freely available and predicts the hazards of compounds using a decision tree 

approach, meaning applying a series of rules to associate it with the result. This research used software for Cramer 

class classification5, mainly to prioritize predicted TPs (see chapter 3). The tool includes 18 plugins, for which more 

information is available in the supplementary documents (see Annex 5). 

CompTox 

The CompTox tool was previously mentioned as a prediction tool for the PCC (see chapter 1.2.1). For 

toxicological endpoints, the model was adopted to evaluate developmental toxicity, Ames mutagenicity, and 

estrogen receptor binding (endocrine disruption).  

OSIRIS PROPERTY EXPLORER  

The Osiris Property Explorer tool is a JAVA app freely available software that evaluates mutagenicity, 

tumorigenicity, irritant, and reproductive effects. The results are not downloadable and therefore not sharable. 

OECD QSAR Toolbox  

The OECD QSARToolbox tool is a freely available application that supports reproducible hazard 

assessment for chemicals. It allows the profile of a target and obtains experimental data from its database 

concerning the target analogs, guaranteeing a read-across and trend analysis approach to fill data gaps. This 

research used the OECD QSAR Toolbox version 4.4 for the preliminary assessment of the tool, while later version 

4.5, released in March 2022, was used. The software was used to predict genotoxicity, carcinogenicity, and 

developmental toxicology. Only the profiling step was considered; in total, 21 models were selected for profiling 

the chemicals analyzed in this research. A detailed list is present in the supplementary documents (see Annex 5).  

 
5 The Cramer classification is used to estimate the TTC for a chemical based on its structure, which guarantees a 

qualitative assessment of the related hazard of chemicals. The Threshold of Toxicological Concern (TTC) values for 

Cramer Classes I, II and III are 30 μg/kg bw per day, 9 μg/kg bw per day and 1.5 μg/kg bw per day, respectively. For 

substances with exposures below the TTC values, the probability that they would cause adverse health effects is 

low (EFSA, 2019). 

https://www.vegahub.eu/download/toxread-download/
https://toxtree.sourceforge.net/
https://www.epa.gov/chemical-research/comptox-chemicals-dashboard
https://www.organic-chemistry.org/prog/peo/
https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm
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2 Prediction of transformation products 

Predicting which TPs can be formed during drinking water treatments is challenging because of the 

various reactions occurring during different treatment processes – and before, in the environment. However, 

literature research on detected compounds in drinking water could provide indications of TPs formed during water 

disinfection treatments. Furthermore, the simulation provided by computerized methods was considered in 

parallel to existing monitoring data to understand if there is any correspondence between predicted TPs and 

compounds found in the water.  

A list of suspect TPs possibly formed from the parent compound due to drinking water treatments were 

provided after comparing the different results. Moreover, three steps of prioritization were applied to select the 

TPs of more serious concern for prioritizing further research on the hazard assessment of predicted TPs. The 

combination of predictive toxicology and literature data was used to create a prioritized list of the possible TPs 

based on the likelihood of production and the documented detection in the water.  

2.1 Collection of detected transformation products 

Concerning the case study S-metolachlor, to answer the question ‘Which are the identified TPs of 

metolachlor, and which are the reactions involved?’ systematic literature research has been performed using the 

research engines PubMed, Science Direct, and Scopus. The research terms were: (transformation products) OR 

(DBP) AND (drinking water treatments) OR (water) AND (metolachlor). That means TPs formed during drinking 

water treatments and in the environment are possibly found. This information is collected to analyze the type of 

reactions involved and evaluate if the reported transformation reaction could be representative of processes 

occurring during water treatments. The research has been restricted to the last ten years (2012-2022), as most of 

the papers available have been published in this period, as recent analytical development has consent to identify 

TPs better. The availability of the full text was a prerequisite of the research.  

2.2 In silico prediction of transformation products 

The present research was focused on the identification of freely available in silico tools for predicting 

transformation products possibly formed from the active substance of pesticides during drinking water 

treatments. Different tools were considered as various drinking water treatment processes entail biotic and abiotic 

reactions (WHO, 2022).  

2.2.1 Considered reactions libraries 

Relevant reactions occurring during drinking water treatment are hydrolysis, photolysis, oxidation, 

reductive transformation, elimination, and substitution (Brunner et al., 2019). Hydrolysis and photolysis occur 

during advanced oxidation processes and UV treatments, while reduction occurs during advanced reduction 

processes. Abiotic hydrolysis can occur during (advanced) oxidation processes and ozonation and chlorination 

(Bletsou et al., 2015). Abiotic photolysis is a typical reaction occurring during UV treatments and other (advanced) 
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oxidation processes, ozonation, and chlorination. Conversely, the abiotic reduction is relevant for (advanced) 

reduction processes. Biodegradation can be representative of rapid sand filtration (RSF) (Di Marcantonio et al., 

2020) and wastewater treatments (WWT) (Nolte et al., 2020). 

Freely available in silico tools were found to predict abiotic hydrolysis, abiotic photolysis, abiotic 

reduction, and biodegradation. However, no tools were available for other reactions that might occur during 

drinking water treatment processes.  

2.2.2 In silico tools for predicting transformation products 

Free software provides models that predict reactions relevant to specific reactions of drinking water 

treatments (Table 2). On one side, abiotic reactions, such as hydrolysis or photolysis, can occur during water 

treatment processes such as advanced oxidation/reduction processes, UV treatments, ozonation, and 

chlorination. On the other side, biotic reactions can occur during – and are here used as a model for – RSF and 

WWT. The selected models, threfore, help assessing different reactions occurring during water treatment 

processes. However, some reactions were assessed by different models, which partially shared common 

databases; therefore, overlapping results were expected. A discussion of the compatibility of results offered by 

UM-PPS, enviPath, and BioTransformer, which are based on the same database (BBD-EAWAG), is presented in the 

Discussed section (see chapter 1).  

 

Table 2. In silico tools to model specific reactions occurring during drinking water treatments.  

 

 

 

 

  

Drinking water treatments → 

Software 

↓ 

Advanced oxidation 

processes 

Ozonation 

Chlorination 

UV treatments 

Advanced reduction 

processes 

Rapid sand filtration 

 

(biodegradation) 

US EPA CTS 
Abiotic hydrolysis library 

Photolysis library 
Abiotic reduction library  

UM-PPS   EAWAG-BBD 

enviPath   EAWAG-BBD 

BioTransformer   ENVIMICRO 
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Chemical Transformation Simulator (CTS)  

The US EPA Chemical Transformation Simulator tools also offer the Reaction Pathway Simulator (RPS) 

Module that predicts TPs. The tool calculates the TPs possibly formed due to specific reactions and given a parent 

compound. It works using a series of libraries built on experimental data, and it recognizes reactive functional 

groups that are susceptible to be processed through, for example, reduction and hydrolysis. Different pathways 

are included or excluded for the specific chemical based on the available experimental data. For the included 

reaction schemes, a relative reaction rate (rank) is assigned, leading to a prediction of the percentage production 

of each TP. Thus, the tool already evaluates the likelihood of being produced. Once the TPs are predicted, it is 

possible to see the calculated PCC of the parent compound and its TPs.  

The RPS allows for predicting different types of reactions possibly occurring during drinking water 

treatment processes. It allows the prediction of potential TPs based on specific reaction libraries that are pre-

defined by the user. The relevant libraries for the scope of this study were: 1) Abiotic hydrolysis; 2) Abiotic 

photolysis; 3) the combined libraries (which may provide different results than the libraries only (see Discussion 

chapter 1). The tool works for organic chemicals, while the program cannot process organometallics, non-

dissociating salts of organic chemicals, and polymers. Thus, this must be considered while analyzing an active 

substance included in these three chemical classes. Furthermore, this module allows predicting TPs and 

characterizing their PCC (see chapter 1.2.1).  

 

 

EAWAG-BBD UM Pathway Prediction System (UM-PPS) 

The EAWAG-BBD Pathway Prediction System (ethz.ch) includes rules derived from the 

Biocatalysis/Biodegradation Database (BBD), developed by the University of Minnesota and now maintained by 

the Swiss Federal Institute of Aquatic Science and Technology (EAWAG). It is a computational metabolic pathway 

predictor based on metabolic rules related to organic functional groups, which allow the prediction of the 

microbial metabolism for chemicals that have not been studied yet, based on biotransformation rules. The tool 

was used to evaluate the RSF and WWT, but it only provides a visual representation of the pathway and does not 

consent to download the results in .cvs format.  

 

enviPath  

The enviPath tool is a freely available database and prediction system that predicts the microbial 

transformation of organic chemicals, showing the experimental biotransformation pathways involved and the 

relative rule-based reasonings. Information about the enzyme-catalyzed reactions of environmental xenobiotics 

allows for predicting TP formation in the environment. It is adopted as a model to determine the formation of TPs 

and the biodegradation pathways occurring in rapid sand filtration. While the tool was adopted to assess biotic 

processes, it is not predictive of abiotic water treatments such as advanced oxidation/reduction processes, UV 

treatments, ozonation, and chlorination. Further information on the tool is available in the supplementary 

documents (see Annex 6). 

 

https://qed.epa.gov/cts/
http://eawag-bbd.ethz.ch/predict/
https://envipath.org/
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BioTransformer  

The BioTransformer tool is an open-access software tool for in silico metabolism prediction and 

metabolite identification. It was adopted as a model for biodegradation occurring in RSF and WWT. The BMPT tool 

was used in this research, and the library ‘Environmental Microbial Transformation’ is a model for 

biotransformation that can occur during rapid sand filtration (Brunner et al., 2019). It contains EAWAG rules, such 

as UM-PPS and enviPath. Further information on the tool is available in the supplementary documents (see Annex 

6).  

 

  

2.3 Identification of predicted transformation products 

 

The research engines PubChem PubChem (nih.gov), RMG: Molecule Search RMG: Molecule Search 

(mit.edu), and ChemSpider ChemSpider | Search and share chemistry were used to associate the SMILES strings 

output of the prediction tools to a name (chemical, IUPAC, or commercial name). They were collected if the 

compound was found in these tools, and different names were reported. The CAS name and the information 

available in these chemical research engines were also collected if found.  

  

https://biotransformer.ca/
https://pubchem.ncbi.nlm.nih.gov/
https://rmg.mit.edu/molecule_search
https://rmg.mit.edu/molecule_search
http://www.chemspider.com/Default.aspx
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3. Prioritization of predicted transformation products 

 

The predicted TPs were prioritized based on three steps of prioritization. The combination of predictive 

toxicology and literature data was used to create a prioritized list of the possible TPs based on the likelihood of 

being produced or being found in the water – confirmed by literature data mining (step 1), the structural relevance 

compared with other similar structures present in the list (step 2), and any association with relevant toxicological 

concern (step3).  

 

Step 1: the likelihood of being produced provided by the models 

It is assessed by the tools and considered higher if different tools confirm the prediction. The likelihood 

of being produced provided by the tools was reported while collecting the TPs and was already considered. The 

prediction by different tools was used to prioritize the TPs. In this step, only the TPs predicted by at least two 

models or found in the literature research previously conducted were selected, thus, combining literature 

information with the in silico predictions. 

 

Step 2: structural prioritization 

Similar chemical structures were collected, and the prioritization was done using ToxRead BETA 0.23 to 

recognize the structural alerts for mutagenicity. The latter is one of the endpoints better predicted in silico because 

of the understanding of the specific interactions occurring with the DNA and the availability of standardized in vivo 

and in vitro experimental data (like in the Ames test). Structurally similar S-metolachlor TPs prioritized in step 1 

were gathered. Using the predictions of ToxRead BETA 0.23, S-metolachlor TPs with the higher number of 

structural alerts and the higher Read-Across and QSAR assessment scores were prioritized over structurally similar 

ones. 

 

Step 3: toxicity prioritization  

The last step of prioritization was assessed using ToxTree v3.1.0 Cramer Class classification and 

QSARToolbox Cramer classification. Only the TPs predicted in the High concern Cramer class III by at least one 

model and found in the literature were prioritized. In practice, a priority point was assigned for each prediction of 

high toxicological concern (Cramer class III) and the detection of information in the literature. Only compounds 

associated with at least two priority points out of three were prioritized. 
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4. Characterization of prioritized transformation products 

 

Water solubility was collected from the literature as well as predicted using in silico tools to fill data gaps 

for the prioritized TPs. Only water solubility was considered for S-metolachlor TPs – conversely to a more extensive 

characterization performed for S-metolachlor (see chapter 1.2) – as it is one of the essential properties affecting 

chemical substances' bioavailability and environmental fate (Covaci, 2014). 

A systematic literature review was done to collect information on the prioritized predicted TPs as regards 

toxicological data or their detection in the water. A systematic literature review on S-metolachlor TPs was 

previously performed in this research (see paragraph 2.1), but this research was done specifically on the prioritized 

TPs to check for available toxicological information in the literature. The performance of a systematic literature 

review (defined by Egger et al., 2008) is based on an a priori definition of inclusion and exclusion criteria, the 

location of studies, the extraction of the data, and the assessment of their quality fixed on pre-defined schemes - 

see paragraph 2.1 for a detailed explanation. 

 The research engines used were PubMed, Science Direct, and Scopus. As research terms were used, the 

names (chemical name, IUPAC name, commercial name) were previously identified (see chapter 2.3) or the SMILES 

string if it was not identified any name.  

Moreover, the hazards of the prioritized transformation products were assessed using the same models 

used for the hazard assessment of the parent compound (see paragraph 1.3.2) were applied for the prioritized 

TPs to assess whether the transformation likely leads to detoxification (the transformation into less critical TPs) or 

toxification (increment of the activity of the TPs in comparison to the parent compound). 
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5. Detection of prioritized transformation products in water samples 

 

The prioritized TPs were tentatively identified using HPLC-HRMS data earlier collected by Brunner et al. 

(2019). The purpose of the data screening was to check whether the prioritized S-metolachlor TPs were identified 

in water samples, which were experimentally spiked with the racemic mixture metolachlor and treated with rapid 

sand filtration (RSF) and ozonation – as a model for biotic and abiotic drinking water treatments respectively - by 

Brunner et al. (2019). The researchers proposed an in-house suspect list based on literature mining for known TPs 

and metabolites, entered in NORMAN SusDat, STOFF-IDENT, and predicted using enviPath. A comparison with the 

suspect metolachlor TPs list documented by Brunner et al. (2019) was discussed here (see Results chapter 5). 

Brunner et al. (2019) used metolachlor as a parent compound, while the present research considered 

only the enantiomer S-metolachlor as a parent compound. However, the results are expected to be comparable 

because HPLC cannot discern between isomers. Moreover, S-metolachlor is the active portion of the racemic 

mixture (Shaner, 2006), thus was expected to exert similar effects. Within the scope of this research, only the RSF 

experiment data were considered a model for the biotic treatment processes of drinking water. The reason is that 

the predicted S-metolachlor TPs prioritized by the present research were all at least once predicted by 

biotransformation in silico model. Therefore, the chances of finding them in water samples were higher than in 

the ozonation experiments. RSF is a process extensively implemented in drinking water treatment plants to 

remove particles and facilitate the biodegradation of organic compounds.  

The treatment was experimentally simulated by Brunner et al. (2019) using sand disposed of by Waternet 

(NL). As Brunner et al. (2019) reported, water samples were spiked with metolachlor and treated with RSF, and 

both influent and effluent samples were taken 8h and 96h after the experiment. The water samplings before and 

after treatment were analyzed with a Tribrid Orbitrap Fusion mass spectrometer (ThermoFisher Scientific) coupled 

to a Vanquish HPLC system (ThermoFisher Scientific).  

During the reversed-phase LC, compounds with a high retention time (RT) (the time needed to exit the 

column and be seen in the chromatogram) are hydrophobic. Conversely, the compounds with a lower RT (which 

elute in fewer minutes) are less hydrophobic (more hydrophilic). It is crucial to exclude compounds eluted before 

the solvent as they are not diluted in the analyzed matrix (water, in this case).  

After that, high-resolution tandem mass spectrometry, known as HRMS/MS and involving two steps of 

ionization, was applied since it is a known approach to facilitate the identification of unknown compounds 

(Schollée et al., 2017). When the molecules enter the mass spectrometer, they are ionized using electrospray 

ionization (ESI) and therefore separated based on their mass-to-charge ratio (m/z) and detected. The resulting 

MS1 spectrum contains the masses of the ionized compounds, respectively protonated masses [M+H]+ when 

operated in positive mode or deprotonated masses [M-H]- when operated in the negative mode. Next, specific 

ions are selected and fragmented using higher energy collisional dissociation (HCD). These fragments are again 

separated on their mass-to-charge ratio (m/z), and the resulting MS2 spectrum contains the m/z values of the 

formed fragments.  

The spike-in of metolachlor during the RSF experiment by Brunner et al. (2019) was 10 µg/L, which is one 

order of magnitude higher than the average environmental concentrations of the compound in surface water. 
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High concentrations of the spiked-in parent compound were chosen to allow checking for minor TPs (produced at 

lower rates). Blank samples (without the parent compound) were spiked every 5-10 samples to check for possible 

contaminations.  

The ratio between the compounds detected in the samples before and after the application of RSF was 

considered: being a transformation reaction, the scope of this analysis, when the intensity of the peak of the 

parent compound is reduced, and other peaks are increased, transformation processes are pointed out. Therefore, 

a fold change filter of log 2-fold change (log2FC) > 2 between samples spiked with the parent compound and the 

blank samples was selected by Brunner et al. (2019). Moreover, a log2FC > 1 filter was applied between samples 

before and after treatment to exclude compounds whose presence in the water treatment did not intensify. The 

signals decreased during the treatment were likely to be the parent compound, while an increment of the signal 

after RSF likely represented TPs. 

 The software Compound Discoverer 2.1 (ThermoFisher Scientific) was used for data analysis by Brunner 

et al. (2019). The software can extract features from the dataset, perform suspect screening and calculate several 

statistical parameters. The results are given in a table with features, their bruto formula, expected molecular 

weight (subtracting or adding the hydrogen value), attempted identification, peak areas, and other information. 

The present research used the new versions of Compound Discoverer 3.1 for processing the data and the later 

version of Compound Discoverer 3.3 for collecting relevant results. The software analyzes the HPLC-HRMS data 

providing a table with peaks and potential candidates. The provided table already calculates the compounds' 

molecular weight by subtracting or adding the molecular mass of the hydrogen. Two filters were applied to exclude 

irrelevant information. First, the background signal was excluded, and second, peaks with RT inferior to 2.4 

minutes (equal to the RT of the solvent) were excluded. A screening based on the molecular mass was done to 

search for the prioritized S-metolachlor TPs.  

For the compounds matching the prioritized S-metolachlor TPs, the MS data were used to confirm the 

attempted identification of TPs. For the suspect TPs, which presented molecular weight compatible with the 

prioritized S-metolachlor TPs, a check of the other features present in the MS1 spectrum (m/z – expressed as +H 

or -H – peak and RT) was done. If the mass spectrum was likely of the same molecule seen in the chromatogram, 

the MS2 fragmentation data were used to identify the predicted prioritized S-metolachlor TPs. 

CFM-ID v4.0.0 (Wang et al., 2021) was used to predict the fragmentation spectrum of the suspect 

metolachlor TPs identified in the first screening. The CFM-ID is a freely available tool that predicts the ESI-MS/MS 

spectrum for a given molecular structure and metabolite identification from tandem mass spectra. Both the 

positive and negative ionization were evaluated. The input can be the SMILES string or the InChl, and the SMILES 

option was adopted. The fragmentation is given for three energies, leading to different spectra.  
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RESULTS 

 

 

1. Characterization of S-metolachlor 

Firstly, introduced in 1998, S-metolachlor (Figure 2) is a synthetic organic compound widely used in Europe 

as an active substance for herbicides, such as the commercial product Dual Gold®, mainly used in cereal cropping 

(such as corn, soybeans, potatoes, and sunflower – Global data, 2019). Its applications are extended to various 

formulations associated with other active substances, and it is among the ten most used herbicides in Europe 

(O’Connell et al., 1998; Jursík & Holec, 2019). S-metolachlor is a chloroacetanilide, thus derived from aniline. 

Aniline is a class of molecules moderately soluble in water; therefore, relevant for water, including drinking water. 

The available molecular information is collected in Table 3. 

 

Figure 2. S-metolachlor (PubChem, 2022) 

 

 

Table 3. Molecular information of S-metolachlor collected in PubChem (NIH, 2022). 

chemical name S-metolachlor 

IUPAC 
2-chloro-N-(2-ethyl-6-methylphenyl)-N-[(2S)-1-

methoxypropan-2-yl]acetamide 

Canonical SMILES CCC1=CC=CC(C)=C1N([C@@H](C)COC)C(=O)CCl 

Isomeric SMILES CCC1=CC=CC(=C1N([C@@H](C)COC)C(=O)CCl)C 

formula C15H22ClNO2 

mass 283.79 g/mol 

CAS number 87392-12-9 

EC number 257-060-8 

 

 



 
 

31 
 

1.1 Information available in the literature for S-metolachlor 

Traditionally, the most diffused formulation, including S-metolachlor as an active substance, was the 

racemic mixture 1:1 of S- and R- metolachlor. However, commercial formulations nowadays contain above 80% of 

the enantiomer S-metolachlor since it is the active compound inhibiting cell division and growth by interfering 

with protein synthesis. Therefore, racemic formulations were substituted with formulations at higher 

concentrations of S-metolachlor to achieve higher effectiveness with lower application rates (Shaner et al., 2006), 

and therefore could be associated with lower environmental and health risks (Liu et al., 2006; Cao et al., 2008). 

Moreover, the use of S-metolachlor combined with other pesticides (such as glyphosate) has increased the 

applicability of S-metolachlor and, therefore, enhanced its use in agriculture (Mesnage & Antoniou, 2021). 

Moreover, exposure to mixtures of pesticides containing S-metolachlor revealed enhanced toxicity compared to 

S-metolachlor exposure alone (Hayes et al., 2006; Liu et al., 2022). 

 

The active substance of the racemic mixture is S-metolachlor, while R-metolachlor is primarily inactive 

(Shaner et al., 2006). However, while Metolachlor is no more authorized in Europe as an active substance, S-

metolachlor is still widely used. Even though S-metolachlor is not approved anymore by EC Regulation 1107/2009, 

it is still approved for use under EC 1107/2009 in 27 EU Countries, including the Netherlands. Its approval was 

extended to July 2022, then modified to July 2023 (European Commission, 2022e), and might be renewed again 

as, in the UK, it was already approved until 2024 (University of Hertfordshire, 2022). According to the EU 

Commission, the extension is due to a temporal delay of S-metolachlor risk assessment for reasons “beyond the 

control of the applicants” (European Commission, 2022e, p.2).  

 

 

Monitoring data 

The drinking water standard for pesticides is 0,10 μg/l (EU Directive n° 2020/2184). However, the racemic 

mixture metolachlor was often identified at higher concentrations of water standards (Tröger et al., 2021). 

Metolachlor has been repeatedly identified in water sources for drinking water production (Glassmeyer et al., 

2017; Zambito Marsala et al., 2020; Halbach et al., 2021; Tröger et al., 2021; la Cecilia et al., 2021; Koroša et al., 

2022). A review (de Souza et al., 2020) identified metolachlor as the second most frequently detected herbicide 

in water sources. It is primarily found in surface water but also contaminates groundwater (WHO, 2022). 

Furthermore, metolachlor was found in untreated wastewater, with some derived TPs (Rousis et al., 2021), and in 

the treated wastewater used in agriculture (Murrell et al., 2021).  

A review over seven years (Rousis et al., 2021) investigated human exposure to metolachlor by analysis 

of untreated influent wastewater. Metolachlor was associated with a high mean concentration (4.8 µg/L), and its 

TP metolachlor morpholinone was also found at relatively high mean concentrations (2.0 µg/L). Even though the 

review refers to the racemic mixture metolachlor, the information is relevant to understand the fate of S-

metolachlor in water.  
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Zambito Marsala et al. (2020) reported a Groundwater Ubiquity Score (GUS)6 of 1.91, soil adsorption 

coefficient (Koc) of 226.1 mL/g, DT50 of 21 days, and water solubility of 480 mg/L. Based on the PCC, metolachlor 

seemed not persistent in the soil and unlikely to be found in groundwater. Nevertheless, the study detected 

metolachlor levels higher than Environmental Quality Standard (EQS) for groundwater, equal to 0.1 ng/L. However, 

metolachlor concentration decreased significantly over time: from 0.01 μg/L in November 2017 to 0.007 µg/L in 

July 2018 and 0.0008 µg/L in September 2018.  

Glassmeyer et al. (2017) detected metolachlor in water sources and drinking water samples at maximum 

concentrations of 130 and 100 µg/L, with a frequency of detection, of one sample out of three. Hladik et al. (2008) 

had already shown the detection of Metolachlor in 100% of drinking water samples produced with conventional 

treatment processes at levels that varied between 49 ng/L in the fall (2003) and 310 ng/L in the spring (2004). A 

recent review study (Tröger, 2021) analyzed the presence of Metolachlor in raw water and drinking water collected 

from drinking water plants in different countries of Europe and outside Europe. The highest level was found in 

Italy, equal to 245.92 ng/L, followed by China (12.53 ng/L) and Belgium (6.86 ng/L). Metolachlor was also found in 

seawater (Sicily, Italy) at low-levels of 0.11 ng/L (Brumovský et al., 2017). Nonetheless, de Souza et al. (2020) 

reported the complete removal of metolachlor using advanced oxidation processes (EAOPs) verified by Guelfi et 

al. (2018). 

Specifically, the enantiomer S-metolachlor was detected at levels three orders of magniture higher than 

the water stardards in surface water (Otto et al., 2016) and groundwater (Zambito Marsala et al., 2020). Also, 

Michel et al. (2021) confirmed the presence of S-metolachlor in groundwater. Indeed, S-metolachlor is known to 

disperse in surface water by agricultural runoff (Zemolin et al., 2014) and can contaminate groundwater after its 

application, especially when the soil has a low organic carbon (OC) content (Marín-Benito et al., 2021). 

Table 4 reports the selected research resulting from the systematic literature review, while details on the 

selection process is available in the supplementary documents (see Annex 7, Table 1). 

 

 

 

  

 
6 The Groundwater Ubiquity Score (GUS) is a value used to define the likelihood of pesticides migrating to 

groundwater. It is calculated to combine the pesticide’s half-life (t1/2), and the Koc obtained experimentally 

(Pfeiffer, 2010). Values above 2 are associated with pesticides having a moderate potential to move towards 

groundwater, while values higher than 3 with ones having a high potential (Muendo et al., 2021).  
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Table 4. Systematic literature review on metolachlor and S-metolachlor detection in water samples. The 

higher concentrations detected were collected here. In red are the values that exceeded the water standards for 

pesticides (0.1 µg/L, which equals 100 ng/L). 

reference 
 water 

samples 
location analysis 

concentration max 

(µg/L) 

Glassmeyer et 

al., 2017 

 water sources 

drinking 

water 

- - 0.049 

Brumovský et 

al., 2017 

 
seawater Italy  0.00011 

de Souza, 2020 

(review) 

Proia et al., 2013 

Glinski et al, 2018 

Peng et al., 2018 

Sun et al., 2018 

Battaglin et al., 

2018 

Xie et al., 2019 

Kapsi et al., 2019 

surface water 

Spain 

USA 

China 

China 

USA 

China 

Greece 

various 

1.30 

1.5 

0.316 

0.08 

0.0447 

0.0055 

0.077 

Tröger et al., 

2021 

 raw water & 

drinking 

water 

Europe 

Asia 
 0.246 (Italy) 

Rousis et al., 

2021 

 untreated 

influent 

wastewater 

(IWW) 

Greece LC- QToF MS7 4.48 

S-metolachlor 

Otto et al., 

2016 

 
surface water Italy - 99 

Zambito 

Marsala et al., 

2020 

 

groundwater Italy SPE8 + HPLC/MS9 1.2 

Suciu et al., 

2020 

 
groundwater Italy HPLC/MS 0.08 

Michel et al., 

2021 

 
groundwater - - 2 

 

7 LC- QToF MS: Liquid Chromatography–hybrid Quadrupole Time-of-Flight Mass Spectrometry  

8 SPE: Solid-Phase Extraction 

9 HPLC/MS: High Performance Liquid Chromatography-Mass Spectrometry 
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Toxicological data 

Toxicological information on S-metolachlor is available in a series of databases, such as the ToxRefDB 2.0 

Toxicity Reference Database10, the ToxCast database11, and NORMAN Substance Database12, registered in the S60 

SWISSPEST 19 watchlist. Moreover, in the Pesticide Properties DataBase (PPDB)13, S-metolachlor is associated with 

high alerts for human health regarding endocrine disruption and reproductive and developmental effects (Lewis 

et al., 2016). The racemic mixture metolachlor is associated with relevant evidence of toxicity, therefore, is 

included in class III - the second lowest of four categories for toxicological concern (EPA, 1995). 

By the Global Harmonized System (GHS) of Classification, Labelling, and Packaging (CLP) regulation, S-

metolachlor is associated the Hazard Statements H317, meaning it may cause an allergic skin reaction and H410, 

underlying the high toxicity towards aquatic life with acute and chronic effects. Moreover, since positive in vivo 

results demonstrated the sensitization effects, it is associated with Category 1 for Skin Sensitization14. The racemic 

mixture of metolachlor is non-genotoxic (EFSA, 2018; WHO, 2022). However, US EPA classified the racemic mixture 

metolachlor as a possible human carcinogen (EPA, 1995) and was related to reproductive and endocrine disruption 

effects. Metolachlor was indeed recognized to impact aromatase activity related to endocrine disruption (Laville 

et al., 2006).  

No data on genotoxicity nor carcinogenicity for the enantiomer S-metolachlor are available for S-

metolachlor. Nonetheless, available research on S-metolachlor confirmed the reproductive and developmental 

toxicity. For instance, in vivo testing in male rats treated in the prepubertal period with 5 or 50 mg/kg/day (Mathias 

et al., 2012). Moreover, human liver cell growth was already inhibited at doses of 50 ppb, and the reduction of cell 

division was induced at higher doses (Hartnett et al., 2013). Moreover, the following research proved that S-

metolachlor affects the swim bladder's morphology in zebrafish at concentrations of 0.5-5 uM in the water (Yang 

et al., 2021), revealing the ecotoxicity potential of the molecule.  

The toxicological profile of S-metolachlor was evaluated in the framework of Directive 91/414/EEC. The 

Acceptable Daily Intake (ADI) was established at 0.1 mg/kg bw/day based on studies performed on metolachlor 

 

10 The Toxicity Reference Database (ToxRefDB), developed by guidelines of the US Environmental Protection 

Agency and the National Toxicology Program, includes chemical structures from over 5000 in vivo toxicity studies 

(Watford et al., 2019). 

11 The ToxCast Chemical Database contains around 4400 unique chemicals lacking data that may have 

toxicological relevance for humans and ecosystems (ToxCast Chemicals, 2022). 

12 The NORMAN Substance Database is formed by various contributions of laboratories, research centers, and 

organizations to monitor emerging environmental substances (NORMAN, 2022).  

13 The Pesticide Properties DataBase was developed by the Agriculture & Environment Research Unit (AERU) at 

the University of Hertfordshire to support the risk assessment of chemicals used in agriculture 

14 Category I for skin sensitization indicates that a chemical has a sensitizer potential, either because there is 
evidence in humans of skin contact sensitization or positive results from in vivo testing. 

https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B8D1F4382-424A-492E-8D2E-ADC046140BBB%7D
https://www.epa.gov/chemical-research/toxcast-chemicals
https://www.norman-network.com/nds/susdat/
http://sitem.herts.ac.uk/aeru/ppdb/en/
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on oral exposure to dogs for one year (European Commission, 2004). A safety factor (SF) of 100 was applied. 

However, it was not specified by the European Commission the origin of the applied factor (European Commission, 

2004), even though it is presumable that factor 100 applied considered the translation of experimental data to 

humans and the interindividual variation between humans. EFSA reviewed the maximum residual level (MRL) in 

food products at 0.05 mg/kg for plant products and 0.01 mg/kg for meat products (EFSA, 2012).  

As regards drinking water, metolachlor has also been incorporated in the Guidelines for drinking-water 

quality GDWQ (last update March 2022). For drinking water, the guideline value for the racemic mixture 

metolachlor is 0.01 mg/L (10 µg/L) (WHO, 2022). The Tolerable Daily Intake (TDI) is reported as 3.5 µg/kg body 

weight, derived from the Non-Observed Adverse Effect Level (NOAEL) of 3.5 mg/kg calculated from the 

experimental exposure to high dose levels to dogs for 1 year, which showed a decrease in kidney weight. The 

translation to values for humans was done using an SF of 1000, accounting for both interspecies (factor 100) and 

intraspecies uncertainties (factor 10) (WHO, 2022).  

1.2 In silico physicochemical characterization of S-metolachlor 

Relevant PCC of S-metolachlor were collected to understand the chemical fate in the water and, 

therefore, justify, from a physicochemical point of view, its detection in drinking water. To be found in the water, 

it must be at least partially soluble in water, and it has not to be entirely absorbed by the soil (considering the 

herbicide is distributed in a field and slowly spreads around, arriving at water sources for drinking water 

production). S-metolachlor is moderately soluble in water and miscible in organic solvents such as acetone, ethyl 

acetate, toluene, and xylene (Wołejko et al., 2017). 

In silico tools for evaluating the environmental fate of chemicals (see Method section pargraph 1.1) were 

used to justify the affinity of S-metolachlor for the water phase and therefore validate the selection of the 

compound as a parent compound in this research study. The results are available in the supplementary documents 

(see Annex 8). 

S-metolachlor was predicted to be more lipophilic than hydrophilic, as the estimated log Know by EPI 

SuiteTM was 3.24. Accordingly, the experimental Kow is 3.13 (Martin, 1996). Indeed, the model LEV3EPI™ predicted 

soil as the primary environmental department for S-metolachlor, with water collecting almost 12% of the chemical 

in the environment. The experimentally reported water solubility at 20° was 480 mg/L, while the experimental 

value was almost ten-fold higher than the predicted water solubility by CTS (74.9 mg/L), while double the predicted 

value by the WATERNT ™ (v1.1) model (227.63 mg/L). However, all the values fall into moderate/ low water 

solubility. Therefore, S-metolachlor is expected to be partially dissolved in water but found in water samples at 

low concentrations. 

The applied preliminary models for degradation within EpiSuiteTM suggested that biodegradation 

processes, either in the environment or during water treatment processes such as RSF will not metabolize and 

transform S-metolachlor. Further information is available in the supplementary documents (see Annex 8). 
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The overall consideration of the different parameters suggests that S-metolachlor could be found in 

water sources when subjected to treatment processes. Indeed, the research studies described in paragraph 1.1 

demonstrated the presence of S-metolachlor in various water samples. In line with the studies abovementioned, 

S-metolachlor is partially soluble in water and not absorbed enough by the soil to exclude its presence in the water. 

Nevertheless, S-metolachlor can be adsorbed by suspended organic matter being transported in the water, which 

could also explain its detection in water sources.  

 

1.3 In silico hazard assessment of S-metolachlor 

The S-metolachlor in silico hazard assessment for relevant endpoints was summarized here for 

genotoxicity, carcinogenicity, developmental and reproductive toxicology, endocrine disruption, and skin 

sensitization. Other endpoints were not included here based on the availability of freely available in silico tools. 

The selection of the endpoints was discussed in the methods section (see Annex 4). The overall in silico results are 

summarized in Table 5. Details on the specific models' results are available in the supplementary documents (see 

Annex 9). 

Genotoxicity  

Various models have identified structural alerts in S-metolachlor and mechanistic pathways responsible 

for genotoxicity. S-metolachlor was predicted positive both to mutagenicity and chromosomal aberration 

endpoints. The different predictions offered by the considered software are here combined and summarized. 

Structural alerts for genotoxicity were identified regarding mutagenicity and chromosomal aberration, 

and reliable predictions were available to support the assessment. The structural alert non-tertiary aliphatic 

halogens were recognized (Figure 3), which is linked to possible mutagenic effects.  

 

Figure 3. Aliphatic halogens structural alert for mutagenicity (VEGA, 2022) 

 

ToxRead BETA 0.23 also confirmed the activity prediction towards the mutagenicity endpoint, recognizing 

the non-tertiary aliphatic halogens' structural alert. Additionally, the profiling performed in QSARToolbox 

recognized the aliphatic halogens' structural alert as indicating a possible mutagenic effect. Moreover, other 

structural alerts were identified by VEGA as responsible for mutagenicity (Figure 4). Also, OSIRIS recognized similar 

structural alerts defined as high-risk and medium-risk fragments for mutagenicity. 
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Figure 4. Structural alerts of S-metolachlor founded by the SarPy/IRFMN mutagenicity model by VEGA, 2022 

 

Also, one model in CompTox confirmed the positive prediction for mutagenicity, even though the overall 

Consensus Ames mutagenicity was negative for the endpoint.  

As regards chromosomal aberration, which is also a mechanism of genotoxicity, VEGA predicted S-

metolachlor to be active for this endpoint, with high reliability. QSAR Toolbox also profiled S-metolachlor as 

possible genotoxic through the chromosomal aberration MoA, based on the recognition of alpha-activated carbon 

due to the presence of the halogen. 

 

Carcinogenicity 

S-metolachlor was predicted as cancerogenic by four models in VEGA. The aliphatic halogens structural 

alert (Figure 3) already associated with mutagenicity was pointed out by the software VEGA and QSARToolbox. In 

addition, the software OSIRIS recognized two high-risk fragments and a medium-risk fragment, indicating 

tumorigenicity (Figure 5). 

 

Figure 5. Risks fragments identified by the OSIRIS carcinogenicity model for S-metolachlor (OSIRIS, 2022) 
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On the contrary, the IRFMN models for predicting the oral and inhalation classification of carcinogenicity 

reported experimental data on the S-metolachlor of inactivity. Moreover, the most similar molecule in the training 

set presenting the same structural alert was associated with a non-carcinogenic experimental value. Therefore, 

the overall results are insufficient to draw a conclusion on the complex endpoint carcinogenicity.  

 

Reproductive and developmental toxicology 

The applied models indicated structural alerts in S-metolachlor and similarities with compounds 

responsible for the activity towards the endpoint. The IRFMN/CORAL Zebrafish embryo AC50 (v.1.0.0) reported an 

experimental value of 9536.43 µg/L, while the model prediction was 5372.73 µg/L (good reliability defined by the 

model). The difference between the experimental value and the predicted one was relevant – with the first almost 

two-fold the second one. However, the values are of the same order of magnitude. Being AC50, the concentration 

at which 50% of the activity was shown, these values indicate that S-metolachlor was toxic at least one order of 

magnitude higher than the concentrations detected in water (see Result section pargraph 1.1). In CompTox 

software, the consensus result was positive for developmental toxicity, with all the models in agreement. 

Moreover, The model predicted reproductive effects due to recognizing a high-risk fragment and three medium-

risk fragments indicating reproductive effects (Figure 6). 

 

Figure 6. Risks fragments identified by OSIRIS reproductive toxicology model for S-metolachlor (OSIRIS, 2022) 

 

Therefore, concerns about its ability to interfere with reproduction and developmental processes are 

raised. However, some predictions conversely predicted S-metolachlor as non-active. QSAR Toolbox reported an 

experimental value for developmental toxicity/teratogenicity as Low Observed Adverse Effect Level (LOAEL) = 500 

mg/kg bw/day (Knudsen et al., 2009). The value indicates that relatively high amounts of S-metolachlor are needed 

to exert the toxicological effect, thus presumably not reached via drinking water exposure since S-metolachlor has 

been detected at lower levels (see Table 4). Moreover, various models did not provide reliable predictions for 

these complex endpoints. Therefore, further research is needed.  
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Endocrine disruption  

The reported results for the endocrine disruption endpoint suggested the activity of S-metolachlor 

towards the aromatase, the enzyme responsible for the conversion of androgens into estrogens. The VEGA IRFMN 

Aromatase activity model (v 1.0.0) reported experimental data for S-metolachlor of active antagonism. Notably, 

the activity of S-metolachlor towards the aromatase activity had already been demonstrated in vitro (Laville et al. 

2006) and confirmed by the prediction tools here. Therefore the disturbance of the aromatase activity could be 

the MoA of endocrine disruption of S-metolachlor.  

On the other hand, reliable prediction assessed S-metolachlor as inactive towards the estrogen and 

androgen receptors both in the VEGA and CompTox software. Moreover, no experimental data pointed out the 

activity towards the endpoint. The QSARToolbox profiling defined S-metolachlor as a non-binder of the estrogen 

receptor, as chemicals with molecular weight inferior to 500 and have a cyclic structure without a -OH or -NH2 

functional groups. 

Skin sensitization/irritation 

S-metolachlor appeared to be a possible irritant and sensitizer. Indeed, the software OSIRIS predicted 

irritant effects due to the recognition of six high-risk fragments indicating irritating effects (Figure 7).  

 

Figure 7. Risks fragments identified by OSIRIS irritating model for S-metolachlor (OSIRIS, 2022) 

 

QSARToolbox also identified two protein-binding alerts for skin sensitization. Protein binding was 

predicted to undergo a nucleophilic substitution (SN2) by the OASIS model, with a direct acylation involving a 

leaving group by the OECD model. According to the GHS database, S-metolachlor was categorized as 1B for skin 

sensitization. However, an exclusion rule for skin sensitization defined by BfR was found, particularly in the group 

CNHal with aqueous solubility < 0.1 g/L. Nevertheless, no inclusion rules were detected. Moreover, using the 

automatized workflow Skin sensitization from the GPMT assay and EC3 LLNA assay to fill data gaps, the S-

metolachlor was predicted to be a sensitizer. 
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Table 5. In silico hazard assessment of S-metolachlor for genotoxicity, carcinogenicity, developmental and 

reproductive toxicology, endocrine disruption, skin sensitization, and Cramer class evaluation. The prediction was     

= positive,     = intermediate,     = negative, or     =  inconclusive. The Applicability Domain Index (ADI) scores, thus 

the internal validation of the models, are reported (see Methods section paragraph 1.2.2). exp = the experimental 

value was the experimental value was reported by the model 

endpoint software model prediction & score 

ge
n

o
to

xi
ci

ty
 

m
u

ta
ge

n
ic

it
y 

VEGA 

CONSENSUS v1.0.3 0.525 

CEASAR v2.1.13 0.781 

SarPy/IRFMN v1.0.7 0.781 

ISS v1.0.2 0.916 

KNN/Read-Across v1.0.0 0 

ToxRead 

Read-across 0.8 

QSAR consensus 0.525 

CompTox Consensus Ames mutagenicity - 

OSIRIS Mutagenic - 

QSARToolbox Mutagenicity - 

ch
ro

m
o

so
m

al
 a

b
er

ra
ti

o
n

 

VEGA 

CORAL v1.0.0 0.936 

IRFMN In vitro micronucleus v1.0.0 0.754 

IRFMN In vivo micronucleus v1.0.1 0.658 

QSARToolbox Chromosomal aberration - 

ca
rc

in
o

ge
n

ic
it

y 

VEGA 

CEASAR v2.1.9 0.775 

ISS v1.0.2 0.916 

IRFMN/Antares v1.0.0 0.748 

IRFMN/ISSCAN-CGX v1.0.0 0.748 

IRFMN carcinogenicity oral v1.0.0 exp 

IRFMN carcinogenicity inhalation 

v1.0.0 

exp 

OSIRIS Tumorigenic - 

QSARToolbox Carcinogenicity - 
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d
ev
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o
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xi
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VEGA 

CEASAR v2.1.7 0.771 

Developmental/Reproductive Tox 

library v.1.1.0 

0 

IRFMN/CORAL Zebrafish embryo 

AC50 v1.0.0 

exp 

CompTox Developmental Toxicity - 

OSIRIS Reproductive effective - 

QSARToolbox DART scheme exp 

en
d

o
cr

in
e 

d
is

ru
p

ti
o

n
 

VEGA 

NRMEA Thyroid Receptor Alpha 

effect v1.0.0 

exp 

NRMEA Thyroid Receptor Beta 

effect v1.0.0 

exp 

IRFMN  Aromatase activity v1.0.0 exp 

IRFMN Estrogen Receptor Relative 

Binding Affinity v1.0.1 

0.965 

IRFMN/CERAPP Estrogen Receptor-

mediated effect v1.0.0 

exp 

IRFMN/COMPARA Androgen 

Receptor-mediated effect v1.0.0 

exp 

CompTox Estrogen Receptor Binding exp 

QSARToolbox OECD Estrogen Binding  

sk
in

 s
en

si
ti

za
ti

o
n

 VEGA 

CEASAR v2.1.6 0.75 

IRFMN/JRC v1.0.0 0 

OSIRIS Irritant - 

QSARToolbox OECD protein binding - 
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1.4 Conclusions on S-metolachlor characterization 

The qualitative hazard assessment of S-metolachlor pointed out structural alerts and read-across 

evaluations linked to genotoxicity - mutagenicity and chromosomal aberration - carcinogenicity, and skin 

sensitization. In contrast, the assessment of developmental and reproductive toxicology and endocrine disruption 

was inconclusive, even though the experimentally demonstrated activity towards the aromatase was pointed out 

(Laville et al., 2006). Indeed, different models have predicted S-metolachlor as a genotoxic, carcinogenic, and skin 

sensitizer. The higher reliability, however, was linked to genotoxicity and skin sensitization, as most of the models 

agreed. On the contrary, regarding reproductive and developmental toxicology, the model's reliability was 

insufficient to conclude on the endpoint. Even though the models suggested the inactivity of S-metolachlor for 

these endpoints, the information obtained was insufficient to validate the prediction (the output of the in silico 

hazard assessment is summarized in Table 5). Therefore, further research is still needed.  

Overall, S-metolachlor can be considered a predicted hazard, as it was identified as a possible toxicant 

for different relevant endpoints. The priority code assigned was 3/3 according to the following predefined 

assessments: 

- Is there any prediction positive for relevant toxicological endpoints? Yes. (1/3) 

- Is there more than one model agreeing with that prediction? Yes. (2/3) 

- Is there any model that predicts positivity with high reliability? Yes. (3/3) 

 Together with the associated toxicological concern, the presence of S-metolachlor in drinking water 

sources detected in the literature and confirmed by the physicochemical characterization of the compound 

justifies the selection as parent compounds of possibly formed TPs in drinking water. Indeed, since it is known to 

be present in water sources and related to toxicological concerns, evaluation is required to understand the 

possible indirect impact on drinking water quality.    
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2. Collection of S-metolachlor transformation products 

 

A systematic literature review was performed to collect S-metolachlor TPs known to be formed from S-

metolachlor in water. The research terms inserted in the research engines were: (transformation products) AND 

(drinking water treatments) OR (water) AND (Metolachlor). The review was extended to all the TPs possibly formed 

from S-metolachlor in the environment because environmental biotic processes could represent the microbial 

biotransformation processes that can occur during RSF (Brunner et al., 2019). Metolachlor was used instead of S-

metolachlor based on the assumption that Metolachlor can represent S-metolachlor. A suggestion to assess the 

change of toxicity between R and S-metolachlor is discussed in this report (see Discussion section paragraph 2.2). 

However, the activity of the racemic mixture with the S-metolachlor is predicted to be comparable, as S-

metolachlor is recognized to be the active portion of the enantiomer mixture.  

The main S-metolachlor TPs found in the literature were: metolachlor oxanilic acid (OA), metolachlor 

ethane sulfonic acid (ESA), metolachlor-OXA, metolachlor NOA 413173, metolachlor CGA357704, metolachlor 

CGA368208 (acetochlor sulfonic acid), metolachlor morpholinone, metolachlor mercapturate, 

metolachlor_TP250, metolachlor_TP266, TP SYN542490 (Table 6). Furthermore, metolachlor ethane sulfonic acid, 

metolachlor oxanilic acid, and O-Desmethylmetolachlor were found in the soil. The concentration at which they 

were detected is generally lower than 0.1 µg/L, but in some cases, exceeded 1 µg/L (metolachlor ESA, metolachlor 

OA, metolachlor NOA, metolachlor morpholinone). The details of the systematic literature review are available in 

the supplementary documents (Annex 7, Table 2). 
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Table 6. Systematic literature review on S-metolachlor transformation products (TPs) detection in water 

samples. The higher concentrations detected were collected here. In red are the values that exceeded the water 

standards for pesticides (0.1 µg/L, which equals 100 ng/L). 

reference water samples analysis 
identified S-metolachlor 

TPs 

concentration max 

(ng/L) 

Hladik et 

al., 2008 

Treated drinking 

water samples 

SPE 

GC/MS15 

HPLC-DAD 

Metolachlor-2-hydroxy 61 

Metolachlor deschloro 30 

Metolachlor morpholinone 37 

Metolachlor propanol 73 

Deschloroacetylmetolachlor 35 

Deschloroacetyl 

metolachlor propanol 
22 

Metolachlor OA 220 

Metolachlor ESA 1500 

Soulier & 

Togola, 

2016 

 

 

 

POCIS 

HPLC-HRMS 

Metolachlor deschloro 

2-hydroxymetholachlor 

Deschloroacetylmetolachlor 

Metolachlor morpholinone 

na 

Guelfi et 

al., 2018 
AOP treated water GC-MS Metolachlor deschloro na 

Hollender 

et al., 2018 
groundwater LC-HRMS/MS Metolachlor-ESA 0.007 

Farlin et 

al., 2018 
water springs LC-ESI-MS/MS 

Metolachlor ESA 

Metolachlor OXA 
na 

Kiefer et 

al., 2019 
groundwater LC-HRMS/MS Metolachlor-ESA 970 

Brunner et 

al., 2019 

drinking water 

after sand 

filtration and 

ozonation 

HRMS/MS Deschlormetolachlor na 

Gago-

Ferrero et 

al., 2020 

influent 

wastewater 

effluent 

watewater 

UPLC-Q-ToF-

HRMS/MS 
Metolachlor-ESA 

0.003 

0.005 

Rousis et 

al., 2021 

untreated influent 

wastewater (IWW) 
LC- QToF MS 

Metolachlor morpholinone 

Dimethachlor-ESA 

3.304 (2016) 

2500 

2000 Metolachlor mercarpturate 

 
15 GC-MS: Gas Chromatography–Mass Spectrometry  



 
 

45 
 

Kiefer et 

al., 2021 
groundwater LC-HRMS/MS 

Metolachlor TP SYN542490 

Metolachlor TP 

SYN547969/SYN542488 

Metolachlor TPSYN547977 

Metolachlor TP SYN542489 

Metolachlor TP SYN542607 

Metolachlor TP SYN542491 

estimated up to 100–

500 

 

100-500 

< 100 

<100 

<100 

<100 

Metolachlor TP CGA357704 < 100 

Halbach et 

al., 2021 
surface water LC-HRMS/MS 

metolachlor-ESA < 0.02 

Metolachlor OA < 0.02 

Metolachlor NOA 413173 up to 0.08 

Metolachlor CGA 368208 < 0.02 

Metolachlor CGA 357704 < 0.01 

Finckh et 

al., 2022 

wastewater 

treatment plants 
LC-HRMS/MS 

Metolachlor ESA 2500 

Metolachlor OA 1900 

Metolachlor-NOA 413173 2400 

Metolachlor CGA 357704 < 0.01 

Metolachlor CGA 368208 < 0.01 

Eysseric et 

al., 2022 

surface water and 

wastewater-

treated water 

 metolachlor-ESA na 

top-down NTS metolachlor-OA na 

UHPLC metolachlor morpholinone na 

+ MetFrag and 

Similar Partition 

Algorithm (SPS) 

metolachlor_TP250 na 

 metolachlor_TP266 na 
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2.1  In silico prediction of S-metolachlor transformation products 

Various software tools available were used to predict the formation of TPs from S-metolachlor during 

drinking water treatments. An explanation of the predictivity of different tools for reactions occurring during water 

treatments was discussed in the Methods chapter (see paragraph 2.2). All the tools accept the SMILES as input, 

which is a unique identifier of the chemical structure and, therefore, preferable (as discussed in the methods 

session). To discriminate S-metolachlor from its enantiomer R-metolachlor, the isomeric SMILES 

CCC1=CC=CC(=C1N([C@@H](C)COC)C(=O)CCl)C (NIH, 2022) was used. As an output, the CTS tool provided the 

IUPAC name of the predicted compounds, while the other tools only provided the SMILES and chemical formula. 

Therefore, identification in the literature was attempted. For every predicted TP, mining research was done to 

identify the compound's names. After checking for duplicates (S-metolachlor TPs predicted by different tools), the 

molecules were identified using PubChem, ChemSpider, and RMG: Molecule Identifier. 

In total, 115 S-metolachlor TPs were predicted, of which 29 were predicted by more than one tool; thus, 

83 unique structures were collected. Different in silico tools represent some reactions occurring during drinking 

water treatment processes (see Methods section paragraph 2.2.1). The number of predicted S-metolachlor TPs is 

reported in Table 7. Among these, 35 unique S-metolachlor TPs were identified, which may be formed due to 

drinking water treatments and the environment. Further information is available in the supplementary documents 

(see Annex 10). 

Table 7. Summary of S-metolachlor predicted TPs using freely available in silico tools. 

 

in silico tools reactions considered water treatment relevance 
S-metolachlor TPs 

predicted identified 

CTS 

abiotic hydrolysis 
advanced oxidation processes 

(AOPs), ozonation, chlorination 
3 3 

photolysis 
UV treatments, AOPs, ozonation, 

chlorination 
3 3 

combined hydrolysis/photolysis 
UV treatments, AOPs, ozonation, 

chlorination 
3 3 

abiotic reduction advanced reduction processes 1 1 

UM-PPS 

 
biotransformation 

rapid sand filtration, wastewater 

treatments 
34 25 

enviPath biotransformation 
rapid sand filtration, wastewater 

treatments 
60 23 

BioTransformer biotransformation 
rapid sand filtration, wastewater 

treatments 
11 9 

  
(Tot) 

Tot unique products 

(115) 

83 

(67) 

35 
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Chemical Transformation Simulator (CTS)  

Accessing the Reaction Pathway Simulator (RPS) Module, it was possible to run S-metolachlor using the 

SMILES string. Different libraries are available, and the abiotic hydrolysis, photolysis, and abiotic reduction libraries 

were considered relevant for drinking water treatments (see Methods paragraph 2.2.1). The combined hydrolysis 

and photolysis library was also used to predict S-metolachlor TPs to evaluate the correspondence with the single 

libraries adopted alone. Further information on the predicted TPs is available in the supplementary documents 

(see Annex 10, Table 3). 

The CTS abiotic hydrolysis library was used to predict some reactions occurring during (advanced) 

oxidation processes. The model predicted that it was unlikely that the S-metolachlor is not transformed. Three 

unique products were predicted: the main product of 1st generation (expected production of 96.08% and an 

accumulation of 92.16%) metolachlor-2-hydroxy, formed by nucleophilic substitution, and the minor products 

(production of 1.96%) metolachlor des(chloroacetyl) and 2-hydroxyacetic acid, formed by amide hydrolysis 

reaction. The amide hydrolysis reaction pathways were reported as one of the mechanisms possibly occurring in 

the biological WWT in the review conducted by Beretsou et al. (2016).  

The CTS direct photolysis library was adopted in this research as a model for reactions occurring during 

UV treatments and (advanced) oxidation products. The model predicted S-metolachlor as likely to react and 

forecasted three unique products in the 1st generation: the main product, metolachlor morpholinone, was 

predicted as a consequence of an acetanilide O-dialkyl dehalogenative photocyclization reaction. The closure of a 

second ring with the loss of a -Cl and -CH3 groups from S-metolachlor and the minor products 2-chloroacetic acid 

and 2-ethyl-N-(1-methoxypropan-2-yl)-6-methylaniline, the latter, already predicted by the CTS abiotic hydrolysis. 

The CTS combined abiotic hydrolysis and direct photolysis library was used to assess TPs formed during 

(advanced) oxidation processes, which can involve these reactions simultaneously. The software assessed that it 

was unlikely that the S-metolachlor was not transformed by one of the reactions included in the combined 

libraries. The six compounds predicted by the single libraries were found, but two different S-metolachlor TPs not 

previously predicted by the single libraries were predicted. However, only three unique compounds were 

evaluated from the software likely to be produced. The main product (69.72%) was 2-{2-[(2-ethyl-6-

methylphenyl)amino]propoxy}acetic acid, a chemical of the 3rd generation, was not predicted by the single libraries 

(even though in the single libraries, the highest number of generation was selected). However, it was predicted to 

be the central TP using the combined library. The minor products were metolachlor des(chloroacetyl) and hydroxy 

acetic (glycolic) acid, representing 14.84% of the predicted S-metolachlor TPs, respectively. Both were already 

predicted using single libraries, and the reaction pathways overlapped.  

The abiotic reduction library represented reactions occurring during (advanced) reduction processes. S-

metolachlor was predicted to be fully transformed by hydrogenolysis into metolachlor deschloro.  

Overall in CTS, seven unique S-metolachlor TPs were identified. The more likely S-metolachlor TPs 

predicted by CTS were four: metolachlor-2-hydroxy, metolachlor morpholinone, 2-{2-[(2-ethyl-6-

methylphenyl)amino]propoxy}acetic acid, and metolachlor deschloro (Table 8).  
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Metolachlor des(chloroacetyl) was repeatedly predicted, either for amide hydrolysis or amide 

photohydrolysis. However, the percentage of production and accumulation was relatively low compared to the 

other predicted S-metolachlor TPs. 

 

Table 8. Summary of the likely predicted S-metolachlor TPs from CTS using the libraries of abiotic hydrolysis 

(blue), photolysis (yellow), the two combined (green), and the reduction library (orange). 

model SMILES name reaction pathway 
production and 

accumulation (%) 

CTS_abiotic hydrolysis CCC1=CC=CC(C)=C1N(C(C)COC)C(=O)CO 

N-(2-ethyl-6-methylphenyl)-2-

hydroxy-N-(1-methoxypropan-2-

yl)acetamide OR metolachlor-2-

hydroxy 

Nucleophilic 

Substitution 
92.16 

CTS_abiotic hydrolysis CCC1=CC=CC(C)=C1NC(C)COC 

2-ethyl-N-(1-methoxypropan-2-yl)-

6-methylaniline OR metolachlor 

des(chloroacetyl) OR 

Deschloroacetylmetolachlor 

Amide Hydrolysis 1.96 

CTS_abiotic hydrolysis OCC(O)=O 
2-hydroxyacetic acid OR glycolic 

acid 
Amide Hydrolysis 1.96 

CTS_photolysis CCC1=CC=CC(C)=C1N1C(C)COCC1=O 

4-(2-ethyl-6-methylphenyl)-5-

methylmorpholin-3-one OR 

metolachlor morpholinone 

Acetanilide O-dialkyl 

Dehalogenative 

Photocyclization 

77.78 

CTS_photolysis OC(=O)CCl 2-chloroacetic acid 
N-aryl Amide 

Photohydrolysis 
11.11 

CTS_photolysis CCC1=CC=CC(C)=C1NC(C)COC 

2-ethyl-N-(1-methoxypropan-2-yl)-

6-methylaniline OR metolachlor 

des(chloroacetyl) OR 

Deschloroacetylmetolachlor 

N-aryl Amide 

Photohydrolysis 
11.11 

CTS_hydrolisis_photolysis CCC1=CC=CC(C)=C1NC(C)COCC(O)=O 

2-{2-[(2-ethyl-6-

methylphenyl)amino]propoxy}acetic 

acid 

Lactam Hydrolysis 69.72 

CTS_hydrolisis_photolysis CCC1=CC=CC(C)=C1NC(C)COC 

2-ethyl-N-(1-methoxypropan-2-yl)-

6-methylaniline OR metolachlor 

des(chloroacetyl) OR 

Deschloroacetylmetolachlor 

N-aryl Amide 

Photohydrolysis, 

after nucleophilic 

substitution 

14.84 

CTS_hydrolisis_photolysis OCC(O)=O 
2-hydroxyacetic acid OR glycolic 

acid 

Nucleophilic 

Substitution + N-aryl 

Amide 

Photohydrolysis 

14.84 

CTS_reduction CCC1=CC=CC(C)=C1N(C(C)COC)C(C)=O 

N-(2-ethyl-6-methylphenyl)-N-(1-

methoxypropan-2-yl)acetamide OR 

metolachlor deschloro 

Hydrogenolysis 100 
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EAWAG-BBD UM Pathway Prediction System (UM-PPS)  

S-metolachlor TPs were evaluated by selecting all the transformations and all possible levels of 

biotransformation (7), allowing the maximum number per level (20), and let showing all the products possible (all 

numbers of C). A total of 12 S-metolachlor TPs were predicted, among which nine were associated with a neutral 

likelihood of being produced and three probably unlikely to be produced. Amongst these, six compounds 

contained the halogen group of the parent compound. Three compounds had less than three carbon atoms. A 

detailed list is available in the supplementary documents (Annex 10, Table 4). 

Secondly, S-metolachlor TPs were investigated by selecting only aerobic biotransformations pathways 

and maintaining the other parameters such as the levels of biotransformation allowed (7), the maximum number 

per level (20), and the number of C allowed in the TPs prediction (all number of C). In total, 22 unique structures 

were predicted. The schematic representation is illustrated in Figure 8 and listed in the supplementary documents 

(see Annex 10). Surprisingly, by selecting aerobic transformations, more S-metolachlor TPs were predicted rather 

than selecting all types of transformations. This could be explained since other types of transformation prevent 

aerobic transformations, as modifying the conditions with oxygen could intervene in the reaction. However, the 

likelihood of production was different for the predicted S-metolachlor TPs, being in yellow the medium likely and 

in green, the most luckily to be produced (Figure 8). A detailed list is available in the supplementary documents 

(Annex 10, Table 5). 

 

Figure 8. Prediction pathway for S-metolachlor provided by UM-PPS aerobic biotransformation predictor (UM-

PPS, 2022). 

 

enviPath 

The tool predicts TPs formed due to biotranformation reactions, which can occur in the environment or during 

rapid sand filtration or wastewater treatments. The results were downloadable in a .cvs file. In total, 60 S-

metolachlor TPs were predicted, among which ten were already predicted by other applied tools. Only 23 chemical 

structures were identified using PubChem, ChemSpider, and RMG Molecule Identifier. The other 37 were not 

identified, among which some SMILES were not recognized by the RMG tool (invalid adjacent list in RMG). 

Therefore it was not possible to proceed with the identification research. A summary of the results is available in 

the supplementary documents (see Annex 10, Table 6). 
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BioTransformer 3.0 

The BioTransformer tool allows metabolism prediction, which is relevant for RSF and WWT since involving 

biodegradation. It was possible to select up to three generations of TPs. The tool predicted 11 S-metolachlor TPs, 

and six were already predicted from other tools. The results are available in the supplementary documents (see 

Annex 10, Table 7). 

2.2 Conclusions on S-metolachlor transformation products  

In total, 83 unique S-metolachlor TPs were predicted by different tools, among which the majority were 

products of biotransformation. Only 35 chemical structures were identified in the literature, therefore associated 

with the chemical or IUPAC name. The next step was to prioritize the more likely to be produced – and more 

potentially concerning from a toxicological point of view – S-metolachlor TPs.  
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3. Prioritization of S-metolachlor transformation products 

Due to the feasibility and aims of this research project, the 83 predicted S-metolachlor TPs were 

prioritized following three steps accounting for the probability of being produced, the structural similarity between 

different predicted S-metolachlor TPs (selecting one TP for each group of structurally similar compounds), and 

structural alerts for genotoxicity and Cramer class classification. This step was done to choose the predicted S-

metolachlor TPs of potentially more significant concern and direct further analysis. 

Likelihood of being produced 

S-metolachlor TPs were prioritized for the likelihood of being produced and the correspondence with the 

literature research (Table 9). Even though it was predicted by only one tool, metolachlor morpholinone was 

included in the list as it was the main product predicted for hydrolysis by CTS and was found in the literature (see 

Result section paragraph 2.1). In total, 12 S-metolachlor TPs were prioritized for the likelihood of being produced: 

if found in the literature research or predicted at least by two in silico tools. 

Table 9. S-metolachlor predicted TPs prioritized for the likelihood of being produced.  
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metolachlor-2-hydroxy 265.35 √    √ √ √ √ 

metolachlor des(chloroacetyl) 207.1623 √ √ √   √ √ √ 

metolachlor deschloro 249.17    √  √ √ √ 

2-{2-[(2-ethyl-6-

methylphenyl)amino]propoxy}acetic 

acid 

251.33   √  √ √   

2-chloro-N-(2-ethyl-6-methylphenyl)-

N-(1-hydroxypropan-2-yl)acetamide 
269.77     √ √ √ √ 

2-chloro-N-(2-ethyl-6-methylphenyl)-

N-(1-methoxypropan-2-yl)acetamide 
283.13     √ √ √ √ 

2-chloro-N-(2-ethyl-6-

methylphenyl)acetamide 
211.08     √  √ √ 

2-Oxopropanal 72.02     √ √   

1-methoxypropan-2-one 88.05     √ √   

1-hydroxypropan-2-one 74.04     √ √   

2-ethyl-6-methyl alanine 135.10     √ √   

metolachlor morpholinone 233.31  √      √ 
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Structural prioritization  

The chemical structure of the 12 prioritized S-metolachlor TPs in step 1 was considered to proceed with 

the second prioritization step. Structurally similar molecules were manually gathered based on the research 

judgment, and one S-metolachlor TP for each group was prioritized. Two groups of similar structures were 

recognized, and two compounds were prioritized over the other structurally similar. 

 

Group1. 2-chloro-N-(2-ethyl-6-methylphenyl)acetamide, 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(1-

hydroxypropan-2-yl)acetamide, and 2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-

yl)acetamide (Figure 9). 

 

Figure 9. S-metolachlor TPs presenting similar structures (group 1): A) 2-chloro-N-(2-ethyl-6-

methylphenyl)acetamide B) 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(1-hydroxypropan-2-yl)acetamide C) 2-chloro-

N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide 

 

Amongst the structures shown in Figure 9, the latter two were predicted by the majority of the models 

(three out of four), while 2-chloro-N-(2-ethyl-6-methylphenyl)acetamide was predicted by two models out of four 

(see Table 9). In order to prioritize the predicted S-metolachlor TPs, ToxRead BETA 0.23 was used to verify that 

the read-across and QSAR assessments for mutagenicity were comparable, thus, to justify that it was reasonable 

to perform the in silico hazard assessment only for one of them. Six molecules in the model training set were 

selected. The results of the ToxRead mutagenicity assessment for the three structurally similar S-metolachlor TPs 

are illustrated in Figure 10. 
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Figure 10. Read-across chart for mutagenicity provided by ToxRead BETA 0.23 for group 1: a) 2-chloro-N-(2-ethyl-

6-methylphenyl)acetamide, b) 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(1-hydroxypropan-2-yl)acetamide, c) 2-

chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide. Circles represent the molecules 

of the training set, with mutagenic (red) or non-mutagenic (green) experimental values, while triangles indicate 

the structural alerts for mutagenicity (red) or non-mutagenicity (green) recognized in the target molecule – 

(ToxRead, 2022). 

 

Using ToxTree v3.1.0, all the predicted S-metolachlor TPs discussed here were recognized as belonging 

to the Cramer Class III, associated with the lower Threshold of Toxicological Concern (TTC). The results obtained 

for genotoxicity and TTC were comparable for the three molecules considered; therefore, the analysis of only one 

was justified for this academic research. The genotoxicity alert identification provided by ToxRead was evaluated 

to prioritize one over the others. It recognized a higher number of structural alerts in the latter two S-metolachlor 

TPs than the smaller S-metolachlor TP 2-chloro-N-(2-ethyl-6-methylphenyl)acetamide. Between the latter two S-

metolachlor TPs, the highest mutagenicity score was associated with 2-chloro-N-[2-ethyl-6-

(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide (Read-across mutagenic score 0.92), which was 

thus prioritized amongst the predicted S-metolachlor TPs within the identified group of structurally similar 

molecules. When molecular size increases, toxicity decreases because bioavailability also decreases (Fishbein et 

al., 2016). However, as the changes were relatively small, in this research were prioritized the bigger molecules 

because they were associated with greater preliminary indagated structural alerts for toxicity. As the structure 

was similar between molecules B and C of group 1 since they differ only for a methyl group, 2-chloro-N-[2-ethyl-

6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide was prioritized, because the non-mutagenic score 

was inferior (therefore, the chances it is mutagenic were considered higher). However, assuming that the presence 

of the methyl group does not modify the toxicity of the molecule significantly was not supported by evidence.  
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Group 2. 1-hydroxypropan-2-one and 1-methoxypropan-2-one (Figure 11). 

 

 

 

Figure 11. S-metolachlor TPs presenting similar structures (group 2): A) 1-hydroxypropan-2-one and B) 1-

methoxypropan-2-one. 

 

ToxRead BETA 0.23 generated the same prediction for both chemical structures. To prioritize the S-

metolachlor TPs, the Cramer classes of both were predicted using ToxTree v3.1.0, and the results (Figure 12) 

showed that the 1-methoxypropan-2-one could be more critical (Cramer class III, associated with the lower TTC) 

then 1-hydroxypropan-2-one (Cramer class I). The difference in the prediction of the Cramer class depends on the 

presence of the -CH3 group in 1-methoxypropan-2-one. This characteristic makes the predicted S-metolachlor TP 

potentially more critical than the structurally similar S-metolachlor TP  1-hydroxypropan-2-one. Therefore, the 

bigger molecule was prioritized, in line with what was concluded for the prioritization of 2-chloro-N-[2-ethyl-6-

(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide. 

 

 

Figure 12. Read-across chart for mutagenicity provided by ToxRead BETA 0. 23 for the S-metolachlor TPs 1-

hydroxypropan-2-one (left) and 1-methoxypropan-2-one (right). Circles represent the molecules of the training 

set, with mutagenic (red) or non-mutagenic (green) experimental values; while triangles indicate the structural 

alerts for mutagenicity (red) or non-mutagenicity (green) recognized in the target molecule – (ToxRead, 2022) 
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Toxicity prioritization  

The relevance of the nine prioritized predicted S-metolachlor TPs was evaluated using ToxTree v3.1.0 

Cramer Class classification and QSARToolbox Cramer classification. Only the compounds predicted in the High 

concern Cramer class III by at least one model and found in the literature were prioritized. A priority point was 

assigned for each prediction of high toxicological concern (Cramer class III) and the detection of information in the 

literature. Only compounds associated with at least two points were prioritized. Three S-metolachlor TPs were 

therefore prioritized as predicted to belong to the Cramer class III by both the applied models: 2-chloro-N-[2-ethyl-

6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide, 1-methoxypropan-2-one, and metolachlor 

morpholinone. The results are summarized in Table 10. 

 

Table 10. S-metolachlor prioritized TPs Cramer classification provided by ToxTree (v3.1.0), showing 

whether they were found in the literature (√) or not (-). The prioritization points were used to select the S-

metolachlor TPs of more significant toxicological concern. In orange are underlined the selected S-metolachlor TPs 

in this prioritization step. 

 Cramer class 

Literature 
Prioritization 

points  ToxTree QSARToolbox 

2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-

methoxypropan-2-yl)acetamide 
III 
 

III √ 3 

1-methoxypropan-2-one III III - 2 

metolachlor morpholinone III III √ 3 

metolachlor-2-hydroxy I III √ 2 

metolachlor des(chloroacetyl) I III √ 2 

metolachlor deschloro I III √ 2 

2-{2-[(2-ethyl-6-methylphenyl)amino]propoxy}acetic 

acid 
I III - 1 

2-Oxopropanal I I - 0 

2-ethyl-6-methyl alanine I III - 1 

 

The methodology applied led to the exclusion of 2-oxopropanal, as both models predicted it as following 

in the Cramer class I associated with low toxicological concern. Furthermore, a second cross-research with the 

literature data was done, after which 2-ethyl-6-methyl alanine and 2-{2-[(2-ethyl-6-

methylphenyl)amino]propoxy}acetic acid were also excluded because there was no correspondence in the 

literature and only one model predicted them as chemicals belonging the Cramer class III. Even though a direct 
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correlation between 1-methoxypropan-2-one and S-metolachlor degradation was not found in the literature, it 

was included in the prioritized list because predicted by two in silico models as belonging to the Cramer Class III 

associated with the more toxicological severe concern. However, through a risk assessment for regulatory 

purposes, even compounds predicted of Cramer class III by only one model but not found in the literature should 

be considered. 

 

 

Conclusions prioritization S-metolachlor transformation products 

Conclusively, six S-metolachlor TPs were prioritized for the likelihood of being produced, or the 

toxicological predicted concern: metolachlor-2-hydroxy, metolachlor des(chloroacetyl), metolachlor deschloro, 2-

chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide, 1-methoxypropan-2-one, and 

metolachlor morpholinone, visible in Figure 13.  

 

Figure 13. Prioritized predicted S-metolachlor TPs: metolachlor-2-hydroxy (1), metolachlor deschloroacetyl (2), 

metolachlor deschloro (3), 2-chloro-N- (2-ethyl-6-(hydroxymethyl)phenyl)-N-(1-methoxypropan-2-yl)acetamide 

(4), 1-methoxypropan-2- one (5), and metolachlor morpholinone (6). 

 

Table 11 summarizes the prioritized predicted TPs, the associated SMILES string, the exact mass, and the 

collected CAS number. 
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Table 11. Prioritized S-metolachlor TPs. 

name SMILES formula 
exact 

mass 
CAS 

metolachlor-2-hydroxy CCC1=CC=CC(C)=C1N(C(C)COC)C(=O)CO C15H23NO3 265.1678 131068-72-9 

metolachlor 

des(chloroacetyl) 
CCC1=CC=CC(=C1NC(C)COC)C C13H21NO 207.1623 51219-00-2 

metolachlor deschloro CCC1=CC=CC(C)=C1N(C(C)COC)C(C)=O C15H23NO2 249.1729 126605-22-9 

2-chloro-N-[2-ethyl-6-

(hydroxymethyl)phenyl]-

N-(1-methoxypropan-2-

yl)acetamide 

CCC1=C(N(C(C)COC)C(=O)CCl)C(CO)=CC=C1 C15H22ClNO3 299.1288 96394-97-7 

1-methoxypropan-2-one COCC(C)=O C4H8O2 88.05244 107-98-2 

metolachlor 

morpholinone 
CCC1=CC=CC(C)=C1N1C(C)COCC1=O C14H19NO2 233.1416 120375-14-6 

 

 

  

https://www.chemsrc.com/en/baike/222734.html
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4 Characterization S-metolachlor prioritized transformation products 

Here are reported the in silico hazard assessment for the prioritized predicted S-metolachlor TPs. A 

summary of the most relevant prediction is here reported, while further information is reported in the 

supplementary documents (see Annex 11). In Table 18 (page 92) is available a summary of the in silico hazard 

assessment of S-metolachlor TPs. 

 

4.1 Metolachlor-2-hydroxy 

 

 

Molecular information metolachlor-2-hydroxy 

name Metolachlor-2-hydroxy 

IUPAC 
N-(2-ethyl-6-methylphenyl)-2-hydroxy-N-(1-methoxypropan-2-

yl)acetamide 

routes 

Halogenated Aliphatics: Nucleophilic Substitution (no adjacent X) 

(CTS_hydrolisis library) 

Biotransformation 

likelihood 

High* Predicted by all the TPs prediction tools 

Main product CTS_hydrolisis library 

(96.08%, accumulation 92.16%) 

SMILES CCC1=CC=CC(C)=C1N(C(C)COC)C(=O)CO 

canonical 

SMILES 
CCC1=CC=CC(=C1N([C@@H](C)COC)C(=O)CO)C 

formula C15H23NO3 

mass 265.353 

CAS 131068-72-9 

 

 All in silico tools predicted Metolachlor-2-hydroxy. Moreover, it was the main product predicted by the 

CTS hydrolysis library. It was the product of hydrogenolysis, therefore, relevant for advanced oxidation processes 
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(AOPs), ozonation, and chlorination. Moreover, it was also predicted by all the models of biotransformation 

considered, therefore relevant for rapid sand filtration and wastewater treatments. 

Metolachlor-2-hydroxy is reported with a GHS Hazard Statement H412: harmful to aquatic life with long-lasting 

effects, and the Precautionary statements to avoid environmental release (P273) (ECHA, 2022a). It was found in 

groundwater (Soulier et al., 2016).  

Two tools confirmed the predicted moderate water solubility. The prediction of CompTox and CTS were 

found to be of the same order of magnitude: for CompTox, it was 746.481 mg/L, while for CTS, it was 985 mg/L. 

These values are associated with moderate solubility in water. Therefore metolachlor-2-hydroxy can be expected 

to be found in the water after its formation. Moreover, metolachlor-2-hydroxy seemed to be more soluble than 

S-metolachlor. This is justified by substituting the halogen group -Cl with an -OH group that is more hydrophilic.  

 

In silico hazard assessment  

The mutagenicity endpoint assessment was inconclusive, but some indications of possible genotoxicity 

via chromosomal aberration were identified. Results on carcinogenicity were inconclusive as well. Overall, the 

results indicated negativity for the endocrine disruption endpoint, suggesting a reduction of toxicological potential 

compared to the parent compound. On the other hand, some models predicted metolachlor-2-hydroxy to be 

active for developmental and reproductive toxicology. Moreover, an overall strongly reliable prediction for the 

skin sensitization endpoint was also observed. The results of the specific in silico predictions were here discussed 

in detail. The selection of the endpoints is available in the Methods section (see paragraph 1.2.1), and the results 

are summarized in Table 12. 

Genotoxicity  

Metolachlor-2-hydroxy appeared to be non-genotoxic either through mutagenicity or chromosomal 

aberration. In particular, the ISS models for mutagenicity and CORAL for chromosomal aberration offered by VEGA 

have provided reliable predictions. However, the CONSENSUS model for mutagenicity (v 1.0.3) predicted 

metolachlor-2-hydroxy non-mutagenic; thus, the prediction was considered inconclusive. The SarPy structural 

alert for non-mutagenicity was found, which was already found in S-metolachlor (SM161, see Figure 4). However, 

the prediction presented some criticism since some molecules of the training set presented experimental values 

that disagreed with the prediction. The read-across assessment was non-mutagenic with (a non-mutagenic score 

of 0.77), to support the prediction of the inactivity of S-metolachlor towards the endpoint. The CompTox model 

for the Ames mutagenicity model also predicted negativity to the endpoint for metolachlor-2-hydroxy, as none of 

the models recognized positivity to the endpoint. In agreement, no alerts were found for in vitro mutagenicity 

(Ames test) in QSARToolbox.  

However, one alert indicated interaction with the DNA via non-covalent binding, an in vivo mutagenicity 

(micronucleus) alert defined by ISS. Also, OSIRIS recognized a medium-risk fragment indicating mutagenicity, 

already found in S-metolachlor. Nevertheless, were absent the high-risk and medium-risk fragments associated 
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with the halogen group in the parent compound; therefore, the in silico assessment was not sufficient to conclude 

on the mutagenicity endpoint. 

Carcinogenicity 

 The results did not sufficiently define the carcinogenic potential of metolachlor-2-hydroxy, as the 

predictions did not offer concordant results.  

Two out of six models in the VEGA software provided a reliable prediction for metolachlor-2-hydroxy, and 

they disagreed with the result. The CAESAR (v 2.1.9), ISS (v.1.0.0), IRFMN/Antares (v1.0.0), and IRFMN 

Carcinogenicity inhalation classification models were inconclusive for metolachlor-2-hydroxy (ADI < 0.75). On the 

other hand, the IRFMN/ISSCAN-CGX (v1.0.0) predicted metolachlor-2-hydroxy to be a carcinogen with high 

reliability (3/3) for the recognition of two structural alerts defined by the SMART: N(CCO)CCO and Nc1ccccc1 (the 

latter, already found in S-metolachlor). Nevertheless, the IRFMN carcinogenicity oral classification model (v 1.0.0) 

predicted metolachlor-2-hydroxy to be non-carcinogenicity, with high reliability (3/3). 

OSIRIS predicted tumorigenic effects due to the recognition of a medium-risk fragment indicating 

tumorigenicity, the same fragment recognized as an alert for mutagenicity for metolachlor-2-hydroxy and already 

found in S-metolachlor (see Figure 5). However, no structural alerts were found by the QSARToolbox profiling for 

carcinogenicity, both for a genotoxic and non-genotoxic MoA.  

 

Reproductive and developmental toxicology 

 Various models predicted metolachlor-2-hydroxy to be active for the endpoints. 

In VEGA, two models gave moderate reliable predictions, assessing metolachlor-2-hydroxy as possibly 

active for the selected endpoints. The CAESAR developmental Toxicity model (v 2.1.7) predicted metolachlor-2-

hydroxy to be active for the developmental toxicity endpoint, with moderate reliability (2/3). Nevertheless, the 

concordance index was 0.49; therefore, the prediction was considered inconclusive. The IRFMN/CORAL Zebrafish 

embryo AC50 (v.1.0.0) predicted metolachlor-2-hydroxy AC50 as 3712.45 µg/L, notably inferior to the 

experimental AC50 collected for S-metolachlor (9536.43 µg/L). However, the predicted AC50 for metolachlor-2-

hydroxy was closer to the one predicted for S-metolachlor. The predicted value AC50 represented an intermediate 

risk factor for reproductive and developmental toxicology. Accordingly, the CompTox consensus result was 

positive for developmental toxicity as all models have predicted positivity for the endpoint and recognized two 

medium-risk fragments for reproductive effects, already found in S-metolachlor (see Figure 6). However, as the 

halogen group was absent, no high-risk fragments were identified. 

Conclusively, QSARToolbox reported a precedent known reproductive and developmental toxic potential 

associated with toluene and alkyl toluene derivates (8a). 
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Endocrine disruption  

The reported experimental values by the models available for the endpoints suggested the inactivity of 

S-metolachlor for this endpoint.  

Most of the VEGA models agreed with the prediction of the inactivity of metolachlor-2-hydroxy towards 

endocrine disruption toxicological effects with high reliability. Only a model predicted the possible interaction of 

metolachlor-2-hydroxy with the androgen receptor, but with moderate reliability, as data in the training set 

disagreed with the positive prediction. Moreover, four models predicted metolachlor-2-hydroxy to be inactive 

towards the receptor, with high reliability (3/3). The IRFMN/COMPARA Androgen Receptor-mediated effect 

(v.1.0.0) predicted activity instead towards the androgen receptor with moderate reliability (2/3), as similar 

molecules found in the training set had experimental values that disagreed with the prediction. Also, QSARToolbox 

recognized metolachlor-2-hydroxy as a non-binder of the Estrogen Receptor, confirming the prediction provided 

by VEGA. Only CompTox predicted positivity for the Estrogen Receptor Binding for metolachlor-2-hydroxy.  

Skin sensitization/irritation 

Metolachlor-2-hydroxy appeared to be a possible irritant and sensitizer. 

In VEGA, one model predicted activity for skin sensitization, while the other did not provide a reliable 

prediction, leaving the assessment of the potential skin sensitization uncertain. The CAESAR Skin sensitization 

model (v 2.1.6) assessed metolachlor-2-hydroxy as a possible sensitizer, with moderate reliability (2/3). Even 

though the similarity and accuracy indexes were optimal, some atom-centered fragments are rarely found in the 

training set. Nevertheless, the prediction was validated because the molecules of the training had experimental 

values in agreement with the prediction. 

OSIRIS predicted irritant effects due to recognizing four high-risk fragments indicating irritating effects 

out of the six detected for S-metolachlor (see Figure 7). Accordingly, the profiling applied in QSARToolbox 

predicted protein binding (OECD rules) by direct acylation involving a leaving group. On the other hand, the OASIS 

rules for protein binding did not identify possible structural alerts. Protein binding could be responsible for skin 

protein binding and, therefore, for the sensitizing/irritating effect. However, no inclusion criteria for skin 

irritation/corrosion were found by the BfR rules, while exclusion rules were met: group -CN. 
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Table 12. In silico hazard assessment of metolachlor-2-hydroxy for genotoxicity, carcinogenicity, 

developmental and reproductive toxicology, endocrine disruption, skin sensitization, and Cramer class evaluation. 

The prediction was    = positive,     = intermediate,     = negative, or     =  inconclusive. The Applicability Domain Index 

(ADI) scores, thus the internal validation of the models, are reported (see Methods section paragraph 1.2.2). 

endpoint software model prediction & score 

ge
n

o
to

xi
ci

ty
 

m
u

ta
ge

n
ic

it
y 

VEGA 

CONSENSUS v1.0.3  

CEASAR v2.1.13 0.643 

SarPy/IRFMN v1.0.7 0.76 

ISS v1.0.2 0 

KNN/Read-Across v1.0.0 0 

ToxRead 

Read-across 0.77 

QSAR consensus 0.25 

CompTox Consensus Ames mutagenicity  

OSIRIS Mutagenic  

QSARToolbox Mutagenicity  

ch
ro

m
o

so
m

al
 a

b
er

ra
ti

o
n

 

VEGA 

CORAL v1.0.0 0 

IRFMN In vitro micronucleus v1.0.0 0.759 

IRFMN In vivo micronucleus v1.0.1 0.772 

QSARToolbox Chromosomal aberration  

ca
rc

in
o

ge
n

ic
it

y 

VEGA 

CEASAR v2.1.9 0 

ISS v1.0.2 0 

IRFMN/Antares v1.0.0 0.527 

IRFMN/ISSCAN-CGX v1.0.0 0.82 

IRFMN carcinogenicity oral classification 

v1.0.0 
0.967 

IRFMN carcinogenicity inhalation 

classification v1.0.0 
0 

OSIRIS Tumorigenic  

QSARToolbox Carcinogenicity  
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d
ev

el
o

p
m

en
ta

l/
re

p
ro

d
u

ct
iv

e 
to

xi
co

lo
gy

 
VEGA 

CEASAR v2.1.7 0.765 

Developmental/Reproductive Tox 

library v.1.1.0 
0 

IRFMN/CORAL Zebrafish embryo AC50 

v1.0.0 

3712.45 

µg/L 

CompTox Developmental toxicity  

OSIRIS Reproductive effective  

QSARToolbox DART scheme  

en
d

o
cr

in
e 

d
is

ru
p

ti
o

n
 

VEGA 

NRMEA Thyroid Receptor Alpha effect 

v1.0.0 
0.951 

NRMEA Thyroid Receptor Beta effect 

v1.0.0 
0.951 

IRFMN  Aromatase activity v1.0.0 0 

IRFMN Estrogen Receptor Relative 

Binding Affinity v1.0.1 
0.939 

IRFMN/CERAPP Estrogen Receptor-

mediated effect v1.0.0 
0.956 

IRFMN/COMPARA Androgen Receptor-

mediated effect v1.0.0 
0.795 

CompTox Estrogen Receptor Binding  

QSARToolbox OECD Estrogen binding  

sk
in

 s
en

si
ti

za
ti

o
n

 VEGA 

CEASAR v2.1.6 0.758 

IRFMN/JRC v1.0.0 0 

OSIRIS Irritant  

QSARToolbox OECD protein binding  
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4.2 Metolachlor deschloroacetyl 

 

name 
Metolachlor des(chloroacetyl) 

Deschloroacetylmetolachlor 

IUPAC 2-ethyl-N-(1-methoxypropan-2-yl)-6-methylaniline 

routes 

Amide hydrolysis (CTS_hydrolysis library) 

N-aryl Amide Photohydrolysis (CTS_direct photolysis library) 

Biotransformation 

likelihood 

High 

Predicted by more tools 

Minor product CTS_hydrolysis library (1.96%), CTS_direct photolysis 

library (11.11%), and CTS_combined library (14.84%) 

Canonical 

SMILES 
CCC1=CC=CC(C)=C1NC(C)COC 

Isomeric 

SMILES 
CCC1=CC=CC(=C1N[C@@H](C)COC)C 

formula C13H21NO 

mass 207.317 

CAS 51219-00-2 

 

Metolachlor deschloroacetyl was reported by most TPs models, and different reaction pathways were 

found. However, the percentage of production and accumulation assessed by the CTS tool was relatively low 

compared to the other predicted S-metolachlor TPs. It may be relevant for AOPs, UV treatments, ozonation, 

chlorination, RSF, and WWT.  

Metolachlor deschloroacetyl may cause skin, eye, and respiratory irritation, respectively, the Hazard (H) 

Statements H315, H319, and H335. It is also considered toxic (H411) and harmful (H412) to aquatic life, with long-

lasting effects (ECHA, 2022b). A Precautionary (P) Statement is also associated with the chemical, indicating to 

avoid breathing dust, fumes, gas, mist, vapors, and spray (P261). Toxicological data was absent in PubMed, Science 

Direct, and Scopus. It was detected by a monitoring study in drinking water at concentrations up to 35 ng/L (Hladik 

et al., 2008) and in groundwater (Soulier et al., 2016). Groundwater concentrations were similar to surface water 

in the spring but lower in the fall season (Hladik et al., 2008). The study of Hladik et al. (2008) suggested that it 
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was not efficiently removed with conventional water treatment practices such as coagulation (removal efficiencies 

10% defined by Hladik et al., 2008), flocculation, filtration, and chlorination. However, a previous study conducted 

by the same research group (Hladik et al., 2005) showed up to 100% of removal of metolachlor deschloroacetyl, 

as well as the chloroacetanilide herbicides transformation products that lack the acetanilide functional group, 

during ozonation at specific rates (respectively, chlorination with 6mg/L applied free chlorine and 3mg/L of ozone), 

and powdered activated carbons (PAC). Adsorption capacities over PAC were correlated to Kow values. 

Nevertheless, the study pointed out that the possible resulting products are unknown; thus, further research is 

needed to understand whether the elimination of metolachlor deschloroacetyl leads to the formation of other TPs 

of concern.  

Water solubility was predicted by CompTox as 252.039 mg/L, while by CTS as 3.35 mg/L, which was two orders 

of magnitude difference. The solubility in the water was predicted to decrease in comparison to S-metolachlor. 

This decrease was expected, as the hydroxy functional group (-OH) was present in S-metolachlor but not in 

metolachlor deschloroacetyl. 

 

In silico hazard assessment  

The overall assessment of metolachlor deschloroacetyl suggested inactivity towards the genotoxicity, even 

though a prediction of mutagenic potential with high reliability and optimal parameters of the molecules of the 

training set was available. Moreover, QSARToolbox profiled S-metolachlor as possible genotoxic through 

chromosomal aberration mode of action.  

The inactivity of metolachlor deschloroacety towards endocrine disruption was also predicted. However, 

the Aromatase model (which appeared to be the mechanism of action of the parent compound S-metolachlor) 

provided an inconclusive prediction. Moreover, regarding carcinogenicity, the predictions are inconclusive, 

possibly justifiable because no data on the carcinogenic potential of S-metolachlor was found in the literature. 

Therefore the negative predictions still present uncertainties that need to be clarified by further research. On the 

other side, the reproductive and development and skin sensitization/irritation in silico hazard assessment 

suggested possible activity towards the endpoints. The predicted effect on membrane integrity could explain the 

possible irritating effect. The in silico results are in the supplementary material (see Annex 11) and summarized in 

Table 13. 

Genotoxicity  

Metolachlor deschloroacetyl was predicted to be non-genotoxic by the majority of the models, even 

though one model for mutagenicity and one for chromosomal aberration gave a positive prediction for the 

genotoxicity endpoint. The VEGA CONSENSUS model for mutagenicity (v 1.0.3) predicted metolachlor 

deschloroacetyl non-mutagenic, with a consensus score of 0.25, even though the CAESAR mutagenicity model (v 

2.1.13) predicted the compound to be mutagenic with good reliability (3/3). On one side, a SarPy structural alert 

for non-mutagenicity was found, which was already identified in S-metolachlor. Nevertheless, the SarPy 

mutagenicity model did not provide a reliable prediction. Therefore, the VEGA CONSENSUS score could not be 
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considered reliable as the results of the different models were discordant. Regarding chromosomal aberration, 

the IRFMN/VERMEER in vitro micronucleus model (v1.0.0) found four structural alerts for activity in the 

micronucleus assay. In comparison, the VEGA IRFMN in vivo micronucleus model (v1.0.0) recognized two structural 

alerts for inactivity towards the assay. Also, the results were in contrast; therefore, the overall prediction was not 

considered reliable.  

ToxRead BETA 0.23 recognized two SarPy alerts for non-mutagenicity. The read-across assessment was 

non-mutagenic with a non-mutagenic score of 0.77, and the QSAR consensus assessment was non-mutagenic with 

a mutagenic score of 0.25. The most similar molecule in the training set (similarity index = 0.922) was associated 

with an experimental value of non-mutagenic. 

 CompTox predicted negativity to the mutagenicity endpoint, and all the models agreed. Moreover, no 

alerts were found for mutagenicity for metolachlor deschloroacetyl by OSIRIS. Accordingly, no alerts were found 

for in vitro mutagenicity (Ames test). One alert was found for interaction with the DNA via non-covalent binding, 

an in vivo mutagenicity (micronucleus) alert defined by ISS. 

 

Carcinogenicity 

None of the adopted models of VEGA provided a reliable prediction of the carcinogenicity potential of 

metolachlor deschloroacetyl. Moreover, no structural alerts were found by OSIRIS and QSARToolbox. However, 

the collected information was insufficient to exclude S-metolachlor's carcinogenic potential. 

Reproductive and developmental toxicology 

The VEGA CAESAR developmental Toxicity model (v 2.1.7) predicted metolachlor deschloroacetyl to be 

active for the developmental toxicity endpoint. Nevertheless, the concordance index was 0.49, which could mean 

the prediction was inconclusive. High reliability was associated with the prediction offered by the  IRFMN/CORAL 

Zebrafish embryo AC50 (v1.0.0), which predicted metolachlor deschloroacetyl to be active for the endpoint in the 

50% of the population of Zebrafish at 1642.65 µg/L. The prediction was of an activity increment when S-

metolachlor was transformed into metolachlor deschloroacetyl. On the other hand, the 

developmental/reproductive Toxicity library (PG) v1.1.0 gave a negative prediction for the endpoint. In that case, 

the concordance index was low (0.511); therefore, the prediction was considered inconsistent. 

CompTox predicted positivity to the developmental toxicity endpoint. The hierarchic clustering and the 

single model agree with the prediction, while the nearest neighbor model showed similar compounds disagreeing 

with the prediction. Therefore, the prediction was considered inconsistent. However, in OSIRIS, no alerts were 

found for the reproductive effects of metolachlor deschloroacetyl. While in QSARToolbox, it was recognized the 

reproductive and developmental toxic potential associated with toluene and alkyl toluene derivates.  

Endocrine disruption 

All the models selected in VEGA except one provided a prediction of inactivity towards specific endocrine 

receptors; however, the endpoint needs to be further evaluated as the mechanisms here evaluated are limited 
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for the complexity of the mechanisms involved. Also, in this case, the aromatase model did not provide a reliable 

prediction, even though it is a relevant endpoint considering that the parent compound was proved to impact the 

aromatase activity in vivo.  

The IRFMN Estrogen Receptor Relative Binding Affinity model (v 1.0.1), the IRFMN/CERAPP Estrogen 

Receptor-mediated effect (v 1.0.0), and the IRFMN/COMPARA Androgen Receptor-mediated effect (v.1.0.0) 

predicted metolachlor deschloroacetyl to be inactive towards the receptors with high (3/3) to moderate (2/3) 

reliability. Also, CompTox predicted negativity for the estrogen receptor binding, even though the nearest 

neighbor disagreed with the prediction. Since the read-across provided evidence that the most similar compound 

was active for the endpoint, the negative prediction was considered inconsistent. In line with it, the QSARToolbox 

profiled metolachlor deschloroacetyl as a non-binder of the estrogen receptor. 

Skin sensitization/irritation  

Structural alerts were found for metolachlor deschloroacetyl, but no QSAR models confirmed the 

sensitizer/irritating effects. Even though two high-risk fragments for irritating effects were recognized (and already 

present in S-metolachlor, see Figure 7), none of the models in VEGA provided a reliable prediction for metolachlor 

deschloroacetyl as regards skin sensitization/irritation. Moreover, no inclusion rules were found for skin 

irritation/corrosion in QSARToolbox. 
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Table 13. In silico hazard assessment of metolachlor des(chloroacetyl) for genotoxicity, carcinogenicity, 

developmental and reproductive toxicology, endocrine disruption, skin sensitization, and Cramer class evaluation. 

The prediction was     = positive,     = intermediate,     = negative, or     =  inconclusive. The Applicability Domain 

Index (ADI) scores, thus the internal validation of the models, are reported (see Methods section paragraph 1.2.2). 

endpoint software model prediction & score 

ge
n

o
to

xi
ci

ty
 

m
u

ta
ge

n
ic

it
y 

VEGA 

CONSENSUS v1.0.3  

CEASAR v2.1.13 0.93 

SarPy/IRFMN v1.0.7 0 

ISS v1.0.2 0.897 

KNN/Read-Across v1.0.0 0 

ToxRead 

Read-across 0.77 

QSAR consensus 0.25 

CompTox Consensus Ames mutagenicity  

OSIRIS Mutagenic  

QSARToolbox Mutagenicity  

ch
ro

m
o

so
m

al
 a

b
er

ra
ti

o
n

 

VEGA 

CORAL v1.0.0 0.762 

IRFMN In vitro micronucleus v1.0.0 0.756 

IRFMN In vivo micronucleus v1.0.1 0.924 

QSARToolbox Chromosomal aberration  

ca
rc

in
o

ge
n

ic
it

y 

VEGA 

CEASAR v2.1.9 0.455 

ISS v1.0.2 0.654 

IRFMN/Antares v1.0.0 0 

IRFMN/ISSCAN-CGX v1.0.0 0.617 

IRFMN carcinogenicity oral classification 

v1.0.0 
0.655 

IRFMN carcinogenicity inhalation 

classification v1.0.0 
0 

OSIRIS Tumorigenic  

QSARToolbox Carcinogenicity  



 
 

70 
 

d
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o
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u
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VEGA 

CEASAR v2.1.7 0.764 

Developmental/Reproductive Tox library 

v.1.1.0 
0.76 

IRFMN/CORAL Zebrafish embryo AC50 

v1.0.0 

1642.65 

µg/L 

CompTox Developmental toxicity  

OSIRIS Reproductive effective  

QSARToolbox DART scheme  

en
d

o
cr

in
e 

d
is

ru
p

ti
o

n
 

VEGA 

NRMEA Thyroid Receptor Alpha effect 

v1.0.0 0.951 

NRMEA Thyroid Receptor Beta effect v1.0.0 0.951 

IRFMN  Aromatase activity v1.0.0 0 

IRFMN Estrogen Receptor Relative Binding 

Affinity v1.0.1 
0.916 

IRFMN/CERAPP Estrogen Receptor-

mediated effect v1.0.0 
0.925 

IRFMN/COMPARA Androgen Receptor-

mediated effect v1.0.0 
0.784 

CompTox Estrogen Receptor Binding  

QSARToolbox OECD Estrogen binding  

sk
in

 s
en

si
ti

za
ti

o
n

 VEGA 

CEASAR v2.1.6 0.646 

IRFMN/JRC v1.0.0 0 

OSIRIS Irritant  

QSARToolbox OECD protein binding  
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4.3 Metolachlor deschloro 

 

name Metolachlor deschloro 

IUPAC 
N-(2-ethyl-6-methylphenyl)-N-(1-methoxypropan-2-

yl)acetamide 

route 
Hydrogenolysis 

Biotransformation 

likelihood 

High 

Main product CTS_abiotic reduction library 

(production and accumulation 100%) 

SMILES CCC1=CC=CC(C)=C1N(C(C)COC)C(C)=O 

Canonical 

SMILES 
CCC1=CC=CC(=C1N([C@@H](C)COC)C(=O)C)C 

formula C15H23NO2 

mass 249.354 

CAS 126605-22-9 

 

Metolachlor deschloro, a dehalogenated predicted S-metolachlor TP, was indicated by most TP prediction 

tools and was the main product predicted by the CTS_abiotic reduction library. It was predicted to be formed due 

to hydrogenolysis or biotransformation; therefore, it may be relevant for advanced reduction processes, RFS and 

WWT. 

CTS predicted water solubility for metolachlor deschloro was 301 mg/L; therefore, it was considered 

moderately soluble in water and can be found in drinking water (as the study of Hladik et al., 2008, confirmed). 

Accordingly, metolachlor deschloro was found in drinking water at concentrations up to 30 ng/L (Hladik et al., 

2008), but it was suggested high removal (up to 100%) by chlorination, ozonation, and powdered activated carbons 

(PAC). Nevertheless, the study pointed out that the possible resulting products are unknown; thus, further 

research is needed to understand whether the elimination of metolachlor deschloro could lead to the formation 

of other TPs of concern. Guelfi et al. (2018) detected metolachlor deschloro after advanced oxidation processes 

(AOPs), in particular EO-H2O2, EF, and PEF, contiguously with the reduction of S-metolachlor. Also, metolachlor 

deschloro was identified in groundwater (Soulier et al., 2016). 
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In silico hazard assessment  

Metolachlor deschloro was predicted to be possibly genotoxic only through a mutagenicity mode of 

action, while the carcinogenic assessment was inconclusive. Three in silico tools predicted 

developmental/reproductive potential while excluding the endocrine disruption activity. Metolachlor deschloro 

was recognized as a possible irritant. The in silico results are summarized in the supplementary documentary 

(Annex 11) and Table 14. 

 

Genotoxicity  

The VEGA CONSENSUS model for mutagenicity (v 1.0.3) predicted metolachlor deschloro to be 

mutagenic, with a consensus score of 0.15, as only the CAESAR model (v2.1.13) gave a moderate reliable (2/3) 

prediction. On the other hand, as regards chromosomal aberration, the IRFMN In vivo Micronucleus activity (v 

1.0.0) gave a negative prediction to the endpoint with moderate reliability (2/3). However, the CONSENSUS 

assessment was considered inconsistent as justified by only one model. 

In ToxRead BETA 0.23, the consensus mutagenic and non-mutagenic scores were equivalent, while the 

QSAR consensus assessment was mutagenic. However, the most similar molecule in the training set (similarity 

index = 0.9210) was associated with an experimental value of mutagenicity; therefore, the prediction was 

considered relevant. Also, in CompTox, the results were contradictory. Indeed, the software predicted metolachlor 

deschloro to be inactive for the Ames mutagenicity endpoint. However, the hierarchical clustering model 

contradicted the consensus prediction. In contrast, OSIRIS recognized a medium-risk fragment in metolachlor 

deschloro, indicating mutagenicity, already found in metolachlor-2-hydroxy and S-metolachlor. Moreover, 

QSARToolbox recognized an alert for in vivo mutagenicity (Ames test) for metolachlor deschloro. 

Carcinogenicity 

The overall assessment provided by VEGA was not satisfactory, as only the IRFMN/ISSCAN-CGX 

carcinogenicity model (v1.0.0) provided a highly reliable (3/3) prediction of carcinogenicity for the endpoint for 

metolachlor deschloro. In contrast, the other models did not provide a reliable prediction. In most models, the 

output was associated with an ADI of 0 or inferior to the defined threshold of 0.75. In agreement with the positive 

prediction, OSIRIS recognized a medium-risk fragment in metolachlor deschloro, indicating carcinogenicity, 

already found in metolachlor-2-hydroxy and S-metolachlor (see Figure 5). Conversely, the profiling in QSARToolbox 

did not recognize any alert for carcinogenicity. 

Reproductive and developmental toxicology 

The overall VEGA prediction was non-active for reproductive and developmental toxicology. However, 

the parameters did not justify the predictions, therefore, were considered inconsistent. The IRFMN/CORAL 

Zebrafish embryo AC50 (v.1.0.0) predicted a value of 3000.06 µg/L. with high reliability (3/3), which represents an 

indication of an intermediate concern. However, CompTox predicted positivity for the developmental toxicity 

endpoint with high reliability, as all the models agreed with the prediction. Also, in OSIRIS, two medium-risk 

fragments in metolachlor deschloro indicated reproductive effects (already found in metolachlor-2-hydroxy and 
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S-metolachlor, see Figure 6) were recognized. Moreover, the profiling in QSARToolbox recognized the 

reproductive and developmental toxic potential associated with toluene and alkyl toluene derivates.  

Endocrine disruption  

Metolachlor deschloro was predicted as non-active for the endocrine disruption endpoint. Only the VEGA 

IRFMN/COMPARA Androgen Receptor-mediated effect (v1.0.0) predicted positivity to the endpoint. However, the 

concordance index was below 0.5, meaning that a consistent number of molecules in the training set was 

associated with experimental values that disagreed with the prediction. Moreover, in this case, the IRFMN 

Aromatase activity v1.0.0 model did not provide a reliable prediction. In line with the inactivity predicted by VEGA, 

CompTox predicted negativity for the Estrogen Receptor Binding for metolachlor deschloro and, accordingly, 

QSARToolbox recognized metolachlor deschloro as a non-binder of the estrogen receptor. The results are available 

in the supplementary documents. 

Skin sensitization/irritation 

The VEGA results for metolachlor deschloro as regards skin sensitization were inconclusive, as none of 

the models could provide a reliable prediction. The model CEASAR v2.1.6 predicted the compound as active; 

however, some molecules of the training set were structurally dissimilar from metolachlor deschloro (similarity 

index was below 0.8), and not all the atom-centered fragments present in the compound were identified in the 

molecules of the training set. Therefore, the accuracy and concordance indexes were optimal (equal 1). However, 

the most similar molecule (similarity index 0.809) was associated with an experimental value of sensitizer; 

therefore, the prediction was considered. The fact that the similarity index was relatively low (0.798) explained 

why not all the atom-centered fragments were found in the training set molecules, justifying the prediction's 

acceptance even though the ACF was not optimal.   

On the contrary, the VEGA model IRFMN/JRC v1.0.0 predicted metolachlor deschloro as inactive towards 

the endpoint, but the prediction was considered inconsistent. Also, in this case, the prediction presented critical 

aspects. Indeed, most molecules in the training set were associated with an experimental value different from the 

provided prediction. Note that the accuracy and concordance indexes were assessed as of higher relevance for 

the prediction reliability rather than the ACF index. Accordingly, with the active prediction of the CAESAR v2.1.6 

model, OSIRIS, the model recognized four high-risk fragments indicating irritating effects (Figure 14). The 

QSARToolbox profiling did not identify metolachlor as a sensitizer, but structural alerts for OECD protein binding 

were shown.  

 

Figure 14. Risks fragments identified by OSIRIS irritating for metolachlor deschloro (OSIRIS, 2022) 
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Table 14. In silico hazard assessment of metolachlor deschloro for genotoxicity, carcinogenicity, 

developmental and reproductive toxicology, endocrine disruption, skin sensitization, and Cramer class evaluation. 

The prediction was     = positive,     = intermediate,     = negative, or     =  inconclusive. The Applicability Domain 

Index (ADI) scores, thus the internal validation of the models, are reported (see Methods section paragraph 1.2.2). 

endpoint software model prediction & score 

ge
n

o
to

xi
ci

ty
 

m
u

ta
ge

n
ic

it
y 

VEGA 

CONSENSUS v1.0.3 0.15 

CEASAR v2.1.13 0.768 

SarPy/IRFMN v1.0.7 0.647 

ISS v1.0.2 0 

KNN/Read-Across v1.0.0 0 

ToxRead 

Read-across 0.69 

QSAR consensus 0.25 

CompTox Consensus Ames mutagenicity - 

OSIRIS Mutagenic - 

QSARToolbox Mutagenicity - 

ch
ro

m
o

so
m

al
 a

b
er

ra
ti

o
n

 

VEGA 

CORAL v1.0.0 0 

IRFMN In vitro micronucleus v1.0.0 0.638 

IRFMN In vivo micronucleus v1.0.1 0.768 

QSARToolbox Chromosomal aberration - 

ca
rc

in
o

ge
n

ic
it

y 

VEGA 

CEASAR v2.1.9 0 

ISS v1.0.2 0 

IRFMN/Antares v1.0.0 0.618 

IRFMN/ISSCAN-CGX v1.0.0 0.9 

IRFMN carcinogenicity oral classification 

v1.0.0 
0 

IRFMN carcinogenicity inhalation 

classification v1.0.0 
0 

OSIRIS Tumorigenic - 

QSARToolbox Carcinogenicity - 
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VEGA 

CEASAR v2.1.7 0.779 

Developmental/Reproductive Tox library 

v.1.1.0 
0.76 

IRFMN/CORAL Zebrafish embryo AC50 

v1.0.0 
3000.06 µg/L 

CompTox Developmental toxicity  

OSIRIS Reproductive effective  

QSARToolbox DART scheme  

en
d

o
cr

in
e 

d
is

ru
p

ti
o

n
 

VEGA 

NRMEA Thyroid Receptor Alpha effect 

v1.0.0 0.952 

NRMEA Thyroid Receptor Beta effect v1.0.0 0.952 

IRFMN  Aromatase activity v1.0.0 0.672 

IRFMN Estrogen Receptor Relative Binding 

Affinity v1.0.1 0.946 

IRFMN/CERAPP Estrogen Receptor-

mediated effect v1.0.0 
0.958 

IRFMN/COMPARA Androgen Receptor-

mediated effect v1.0.0 
0.801 

CompTox Estrogen Receptor Binding  

QSARToolbox OECD Estrogen binding  

sk
in

 s
en

si
ti

za
ti

o
n

 VEGA 

CEASAR v2.1.6 0.759 

IRFMN/JRC v1.0.0 0.751 

OSIRIS Irritant  

QSARToolbox OECD protein binding  
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4.4 2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide  

name DTXSID50914542 

IUPAC 
2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-

methoxypropan-2-yl)acetamide 

route Biotransformation 

likelihood High* predicted by three prediction TPs tool 

Canonical 

SMILES 
CCC1=CC=CC(=C1NC(=O)CCl)C 

Isomeric 

SMILES 
CCC1=CC=CC(=C1N([C@@H](C)COC)C(=O)CCl)CO 

formula C15H22ClNO3 

mass 299.13 

CAS 96394-97-7 

 

Predicted by all the considered models for biotransformation, it is relevant for RSF and WWT. It was the 

only chlorinated S-metolachlor TP prioritized in this research. As a product of biotransformation,  

No toxicological literature information was found in PubMed, Science Direct, or Scopus; therefore, an in 

silico prediction of the likelihood of finding 2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-

2-yl)acetamide in the water was performed.  

The water solubility predicted by CompTox for 2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-

methoxypropan-2-yl)acetamide was 401.241 mg/L. The predicted solubility by CTS was 2.03 mg/L., thus lower 

solubility than the parent compound S-metolachlor. Moreover, Kow predicted by CTS (geometric mean based on 

four different models) was 1.35, and the measured data was available, equal to 2.48. A Kow higher than one shows 

higher lipophilicity than the hydrophilicity of the chemical. Therefore, the S-metolachlor TPs are shown to be more 

unlikely to be found in the water rather than in the parent compound.  

In silico hazard assessment  

2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide was associated with 

potential genotoxicity activity, both with mutagenic and chromosomal aberration modes of action. Also, in silico, 
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pieces of evidence that may exert carcinogenic, developmental/ reproductive, and irritant effects were collected. 

On the contrary, predictions of inactivity towards the endocrine disruption endpoint were shown. The in silico 

results are available in the supplementary material (see Annex 11) and summarized in Table 15. 

Genotoxicity  

2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide was associated with 

possible activity for the genotoxicity endpoint.  

The S-metolachlor TP was predicted active for genotoxicity by most models (5 out of 7) present in VEGA. On 

one side, as regards mutagenicity, three out of four models predicted activity for the endpoint. Among the applied 

models, the ISS v1.0.2 offered the prediction associated with higher reliability. However, the KNN/Read-Across 

v1.0.0 was not considered reliable as the accuracy index; thus, the agreement of the prediction with the 

experimental values for the molecules in the training set was not satisfying, leading to an ADI of 0. As a 

consequence, the CONSENSUS model for mutagenicity (v 1.0.3) predicted 2-chloro-N-[2-ethyl-6-

(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide to be mutagenic, with a consensus score of 0.525. 

The structural alert SA8 (CAESAR and ISS model), SM45, SM73, SM106, and SM161 (SarPy model), already 

recognized in S-metolachlor, were found. For chromosomal aberration, two out of three models predicted 

positivity for the endpoint. On the other side, for chromosomal aberration, two out of three models assessed 2-

chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide to be active. Only the model 

IRFMN In vivo micronucleus v1.0.1 deviated from the other predictions. However, the parameters were not ideal; 

therefore, the compound could be outside the model's applicability domain.  

The read-across assessment provided by ToxRead BETA 0.23 was mutagenic with a mutagenic score of 

0.82, and the QSAR consensus assessment was mutagenic with a mutagenic score of 0.525. Four SarPy alerts for 

mutagenicity were identified (n'45, 106, 73). Furthermore, the structural alert SA8 aliphatic halogens were 

reported. One alert for non-mutagenicity was found, which was maintained from S-metolachlor. The overall 

judgment offered by the software was mutagenic. 

Aligned with ToxRead, QSARToolbox identified the structural alert for in vitro and in vivo mutagenicity of 

'Aliphatic halogens'. Furthermore, a possible protein binding relevant to chromosomal aberration was found: SN2 

for Alpha-Activated Haloalkanes. Also, OSIRIS detected in the chemical structure of 2-chloro-N-[2-ethyl-6-

(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide structural alerts related to mutagenicity: one high-

risk fragment and two medium-risk fragments indicating mutagenicity, already found in S-metolachlor. 

On the contrary, the consensus model for Ames mutagenicity provided by CompTox was negative, as 

none of the models predicted positivity to the endpoint.  

Carcinogenicity 

2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide was predicted 

active towards the carcinogenicity toxicological endpoint. In VEGA, four models provided reliable predictions 

positive for the carcinogenicity endpoint. The statistical assessment provided by the models was optimal for two 
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out of six applied models. The CAESAR model v.2.1.9 and the ISS model v.1.0.2 for carcinogenicity were associated 

with an ADI of 0.913. Indeed, since all the training set molecules agreed with the prediction and were noticeably 

similar to the target compound. Furthermore, the OSIRIS software recognized two high-risk fragments indicating 

tumorigenicity already found in S-metolachlor (see Figure 5). Moreover, the structural alert for genotoxic 

carcinogenicity represented by ‘Aliphatic Halogens’ was identified.  

Reproductive and developmental toxicology 

The results obtained in VEGA are inconsistent as regards reproductive and developmental toxicology. 

Indeed, only one model predicted the activity of 2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-

methoxypropan-2-yl)acetamide towards the endpoint. On the other hand, IRFMN/CORAL Zebrafish embryo AC50 

v1.0.0 predicted a higher value (5026.02 µg/L) than the parent compound, indicating a decrease in potency due 

to the transformation processes.  

On the other side, in CompTox, the estrogen receptor binding model predicted positivity to the endpoint 

for 2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide, as the hierarchical 

clustering was positive, even though a single model revealed negativity to the endpoint. Furthermore, the profiling 

applied in QSARTool recognized one high-risk fragment and three medium-risk fragments into 2-chloro-N-[2-ethyl-

6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide, indicating reproductive effects. The same risk 

fragments were already found in S-metolachlor (see Figure 6), therefore maintained over the transformation 

processes. Nevertheless, no alerts were found by the DART scheme for 2-chloro-N-[2-ethyl-6-

(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide. 

Even though structural alerts were present in the molecule, the collected data were insufficient to 

conclude the reproductive and developmental potential of the molecules. A structural alert without a read-across 

confirmation might not be sufficient to characterize the hazard related to a chemical structure, despite giving 

indications of the need for prioritization and further research. 

Endocrine disruption  

All the models in VEGA predicted negativity to the endpoint, with noticeable high reliability assessed by 

the model. Also, in QSARToolbox 2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-

yl)acetamide was predicted by the tool to be non-binder to the estrogen receptor. In contrast, the developmental 

toxicology endpoint prediction offered by OSIRIS suggested positivity to the endpoint, and all the models were in 

agreement. Notably, more than the evaluated endpoints will be needed to assess the endocrine disruption activity, 

as the mechanisms of action involved exceed the endpoints characterized here. 

Skin sensitization/irritation 

VEGA suggested activity towards the endpoint, but only one model supported the prediction. The 

IRFMN/JRC Skin sensitization model provided an optimistic endpoint prediction with high reliability assessed by 

the model (3/3). However, the similarity index was not ideal, as some molecules in the training set differed from 

the target compound. Moreover, the CAESAR model (v2.1.6) did not provide a reliable prediction as some relevant 
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Atom Centered Fragments present in 2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-

yl)acetamide were not found in the training set (Figure 15). 

 

Figure 15. Atom Centered Fragments present in 2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-

methoxypropan-2-yl)acetamide not found in the training set of the CAESAR skin sensitization model (VEGA, 

2022). 

To support the predicted activity of the model, OSIRIS recognized five high-risk fragments indicating 

irritating effects (Figure 16), and QSARToolbox identified a protein binding alert relevant for skin sensitization (SN2 

for alpha-activated haloalkanes) as well. However, no inclusion rules for skin irritation/corrosion were found in 

QSARToolbox. Lastly, VEGA did not provide conclusive results for skin sensitization.  

 

Figure 16. Risks fragments identified by OSIRIS irritating for 2-chloro-N-[2-ethyl-6-

(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide (OSIRIS, 2022) 
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Table 15. In silico hazard assessment of 2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-

methoxypropan-2-yl)acetamide for genotoxicity, carcinogenicity, developmental and reproductive toxicology, 

endocrine disruption, skin sensitization, and Cramer class evaluation. The prediction was     = positive,     = 

intermediate,     = negative, or     =  inconclusive. The Applicability Domain Index (ADI) scores, thus the internal 

validation of the models, are reported (see Methods section paragraph 1.2.2). 

endpoint software model prediction & score 

ge
n

o
to

xi
ci

ty
 

m
u

ta
ge

n
ic

it
y 

VEGA 

CONSENSUS v1.0.3 0.525 

CEASAR v2.1.13 0.765 

SarPy/IRFMN v1.0.7 0.765 

ISS v1.0.2 0.913 

KNN/Read-Across v1.0.0 0 

ToxRead 

Read-across 0.82 

QSAR consensus 0.525 

CompTox Consensus Ames mutagenicity  

OSIRIS Mutagenic  

QSARToolbox Mutagenicity  

ch
ro

m
o

so
m

al
 a

b
er

ra
ti

o
n

 

VEGA 

CORAL v1.0.0 0.926 

IRFMN In vitro micronucleus v1.0.0 0.881 

IRFMN In vivo micronucleus v1.0.1 0.769 

QSARToolbox Chromosomal aberration  

ca
rc

in
o

ge
n

ic
it

y 

VEGA 

CEASAR v2.1.9 0.913 

ISS v1.0.2 0.913 

IRFMN/Antares v1.0.0 0.764 

IRFMN/ISSCAN-CGX v1.0.0 0.824 

IRFMN carcinogenicity oral v1.0.0 0.691 

IRFMN carcinogenicity inhalation 

classification v1.0.0 
0 

OSIRIS Tumorigenic  

QSARToolbox Carcinogenicity  
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VEGA 

CEASAR v2.1.7 0.776 

Developmental/Reproductive Tox 

library v.1.1.0 
0 

IRFMN/CORAL Zebrafish embryo AC50 

v1.0.0 
5026.02 µg/L 

CompTox Developmental toxicity  

OSIRIS Reproductive effective  

QSARToolbox DART scheme  

en
d

o
cr

in
e 

d
is

ru
p

ti
o

n
 

VEGA 

NRMEA Thyroid Receptor Alpha effect 

v1.0.0 
0.937 

NRMEA Thyroid Receptor Beta effect 

v1.0.0 
0.37 

IRFMN  Aromatase activity v1.0.0 0.665 

IRFMN Estrogen Receptor Relative 

Binding Affinity v1.0.1 
0.944 

IRFMN/CERAPP Estrogen Receptor-

mediated effect v1.0.0 
0.954 

IRFMN/COMPARA Androgen Receptor-

mediated effect v1.0.0 
0.814 

CompTox Estrogen Receptor Binding  

QSARToolbox OECD Estrogen binding  

sk
in

 s
en

si
ti

za
ti

o
n

 VEGA 

CEASAR v2.1.6 0.614 

IRFMN/JRC v1.0.0 0.877 

OSIRIS Irritant  

QSARToolbox OECD Protein binding  
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4.5 1-methoxypropan-2-one 

 

 

chemical name Methoxyacetone 

IUPAC 1-methoxypropan-2-one 

route biotransformation 

likelihood Medium > predicted by more tools 

SMILES COCC(C)=O 

formula C4H8O2 

mass 88.11 

CAS 5878-19-3 

 

 

1-methoxypropan-2-one was predicted as a product of biotransformation, relevant for RSF and WWT. 

1-methoxypropan-2-one is a ketone, a class of chemicals highly soluble in water, which characteristic is 

the pungent smell; therefore, it could be relevant for the organoleptic characteristics of water. In line with it, 

CompTox predicted a noticeable high water solubility (119446.828 mg/L). Water solubility was predicted by CTS 

geometric mean as 250'000 mg/L. The high solubility was expected since it is a ketone. 

 

In silico hazard assessment  

1-methoxypropan-2-one was predicted as a skin sensitizer and irritant, acting towards membrane 

integrity. For the other endpoint considered here, it was inactive. The in silico results are available in the 

supplementary material (see Annex 11) and summarized in Table 16. 

Genotoxicity  

1-methoxypropan-2-one was predicted to be non-genotoxic both through mutagenicity and 

chromosomal aberration by the VEGA software. Indeed, the CONSENSUS model for mutagenicity (v 1.0.3) 

predicted 1-methoxypropan-2-one to be non-mutagenic, with a consensus score of 0.675. Also, for chromosomal 

aberration, the model predicted negativity for the endpoint with high reliability assessed by the model (3/3). 

Accordingly, in ToxRead BETA 0.23, SarPy alerts for non-mutagenicity were found. The read-across assessment 

was non-mutagenic with a non-mutagenic score of 0.9, and the QSAR consensus assessment was non-mutagenic 

with a score of 0.675. The most similar molecule in the training set (similarity index = 0.929) was associated with 

an experimental value of non-mutagenic. Only a molecule in the training set was linked to a mutagenicity value, 

but the similarity index was 0.894; thus, the influence on the read-across was less relevant. Furthermore, CompTox 
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agreed with the previous results, predicting negativity for the Ames mutagenicity endpoint for 1-methoxypropan-

2-one, as well as in OSIRIS, no alerts were found for mutagenicity. However, QSARToolbox recognized an alert for 

in vivo mutagenicity (Micronucleous) for 1-methoxypropan-2-one. These data alone were considered insufficient 

to assess the toxicological potential of 1-methoxypropan-2-one towards genotoxicity.  

Carcinogenicity 

In VEGA, only two out of six models provided a reliable prediction of the inactivity of 1-methoxypropan-

2-one towards the carcinogenic endpoint. The absence of alerts found for tumorigenic effects by OSIRIS and 

QSARToolbox confirmed the prediction of inactivity towards the endpoint. The results are available in the 

supplementary documents (Annex 11). 

Reproductive and developmental toxicology 

Also, for reproductive and developmental toxicology, the in silico results were inconclusive for 1-

methoxypropan-2-one. Only the CAESAR model (v2.1.7) in VEGA offered a prediction of inactivity towards the 

endpoint, but the prediction alone needed to be stronger to justify the inactivity of the molecules. Indeed, the 

prediction presented some critical aspects, with some molecules in the training set associated with experimental 

values in disagreement with the overall prediction (concordance index = 0.511), and the grade of similarity 

between the molecules included in the read-across was not ideal (similarity index = 0.725). Accordingly, no alerts 

were found for reproductive effects for 1-methoxypropan-2-one using the OSIRIS software or applying the 

profiling in QSARToolbox. In contrast, CompTox predicted positivity for the endpoint for 1-methoxypropan-2-one. 

The consensus result was positive (true), indicating activity towards the endpoint, even though the single model 

gave an inactivity (false) prediction. Therefore, the prediction was considered inconsistent.  

Endocrine disruption  

1-methoxypropan-2-one was predicted inactive towards the endpoint, with the agreement of all the 

models applied in VEGA. In OSIRIS, the estrogen receptor binding model predicted negativity for 1-

methoxypropan-2-one, confirming the results provided by VEGA. Another confirmation was offered by 

QSARToolbox profiling, which defined 1-methoxypropan-2-one as non-binder of the estrogen receptor binding. 

Skin sensitization/irritation 

The VEGA CAESAR skin sensitization model (v2.1.6) predicted 1-methoxypropan-2-one to be active. 

However, the concordance index was relatively low (0.514), which indicated that several molecules in the training 

set had experimental values that disagreed with the prediction. The IRFMN/JRC skin sensitization model did no 

provide a reliable prediction; thus, the predictive data offered by VEGA are scarce to consider 1-methoxypropan-

2-one a skin sensitizer. Nevertheless, in OSIRIS, one high-risk fragment was found for an irritating effect, already 

recognized in S-metolachlor (see Figure 7). Moreover, QSARToolbox identified an inclusion rule for skin 

irritation/corrosion, as included in the class of ketones. Therefore, there are enough structural alerts to consider 

1-methoxypropan-2-one a potential hazard for skin sensitization. 
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Table 16. In silico hazard assessment of 1-methoxypropan-2-one for genotoxicity, carcinogenicity, 

developmental and reproductive toxicology, endocrine disruption, skin sensitization, and Cramer class evaluation. 

The prediction was     = positive,     = intermediate,     = negative, or     =  inconclusive. The Applicability Domain 

Index (ADI) scores, thus the internal validation of the models, are reported (see Methods section paragraph 1.2.2). 

endpoint software model prediction & score 

ge
n

o
to

xi
ci

ty
 

m
u

ta
ge

n
ic

it
y 

VEGA 

CONSENSUS v1.0.3 0.675 

CEASAR v2.1.13 0.76 

SarPy/IRFMN v1.0.7 0.76 

ISS v1.0.2 0.911 

KNN/Read-Across v1.0.0 0.812 

ToxRead 

Read-across 0.9 

QSAR consensus 0.675 

CompTox Consensus Ames mutagenicity  

OSIRIS Mutagenic  

QSARToolbox Mutagenicity  

ch
ro

m
o

so
m

al
 a

b
er

ra
ti

o
n

 

VEGA 

CORAL v1.0.0 0.91 

IRFMN In vitro micronucleus v1.0.0 0 

IRFMN In vivo micronucleus v1.0.1 0.928 

QSARToolbox Chromosomal aberration  

ca
rc

in
o

ge
n

ic
it

y 

VEGA 

CEASAR v2.1.9 0.485 

ISS v1.0.2 0 

IRFMN/Antares v1.0.0 0.759 

IRFMN/ISSCAN-CGX v1.0.0 0 

IRFMN carcinogenicity oral 

classification v1.0.0 
0.93 

IRFMN carcinogenicity inhalation 

classification v1.0.0 
0.93 

OSIRIS Tumorigenic  

QSARToolbox Carcinogenicity  
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d
ev

el
o

p
m

en
ta

l/
re

p
ro

d
u

ct
iv

e 
to

xi
co

lo
gy

 
VEGA 

CEASAR v2.1.7 0.72 

Developmental/Reproductive Tox 

library v.1.1.0 
0.652 

IRFMN/CORAL Zebrafish embryo AC50 

v1.0.0 
0.621 

CompTox Developmental toxicity 0.54 

OSIRIS Reproductive effective  

QSARToolbox DART scheme  

en
d

o
cr

in
e 

d
is

ru
p

ti
o

n
 

VEGA 

NRMEA Thyroid Receptor Alpha effect 

v1.0.0 0.936 

NRMEA Thyroid Receptor Beta effect 

v1.0.0 0.936 

IRFMN  Aromatase activity v1.0.0 0.911 

IRFMN Estrogen Receptor Relative 

Binding Affinity v1.0.1 
0.85 

IRFMN/CERAPP Estrogen Receptor-

mediated effect v1.0.0 
0.92 

IRFMN/COMPARA Androgen Receptor-

mediated effect v1.0.0 
0.927 

CompTox Estrogen Receptor Binding  

QSARToolbox OECD Estrogen binding  

sk
in

 s
en

si
ti

za
ti

o
n

 VEGA 

CEASAR v2.1.6 0.754 

IRFMN/JRC v1.0.0 0 

OSIRIS Irritant  

QSARToolbox Skin irritation/corrosion  
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4.6 Metolachlor morpholinone 

 

name Metolachlor morpholinone 

IUPAC 4-(2-ethyl-6-methylphenyl)-5-methylmorpholin-3-one 

route Acetanilide O-dialkyl Dehalogenative Photocyclization  

likelihood Likely 77.78% (direct photolysis library) 

SMILES CCC1=CC=CC(C)=C1N1C(C)COCC1=O 

formula C14H19NO2 

mass 233.311 

CAS 120375-14-6 

 

 CTS predicted metolachlor morpholinone with high reliability. It may be relevant for UV treatments, AOPs, 

ozonation, and chlorination. Metolachlor morpholinone was predicted as the main S-metolachlor TP by CTS direct 

photolysis library, thus, could be formed during UV treatments also involved in (advanced) oxidation products.  

As already pointed out, metolachlor morpholinone was found in water sources, such as groundwater 

(Soulier et al., 2016). Moreover, it was detected in drinking water (Hladik, 2008) at mean concentrations of 8.8ng/L 

in the fall (2003) and 37 ng/L in the spring (2004). Conventional drinking water treatments appeared incapable of 

removing the S-metolachlor TP, while PAC achieved up to 100% of the removal. Ozonation appeared to be 

effective for removing chloroacetamide herbicide TPs, but the production of other derivated TPs was pointed out. 

Metolachlor morpholinone was detected in untreated influent wastewater (IWW) at the maximum 

concentration level of 3304 ng/L in 2016 (Rousis, 2021). The researchers pointed out that metolachlor 

morpholinone in IWW could be due to environmental degradation and human metabolism. The same study also 

revealed the presence of S-metolachlor, showing that the parent compound could remain unaltered after drinking 

water treatments. The mean concentration levels of metolachlor were 4.8 µg/L, while metolachlor morpholinone 

was detected at mean levels of 2.0 µg/L. 

 

In silico hazard assessment  

Some in silico models suggested a reliable activity for genotoxicity, mutagenicity, and chromosomal 

aberration. Regarding carcinogenicity and developmental and reproductive toxicology, the in silico results were 

insufficient to draw conclusions. Various models predicted the negativity to the endocrine disruption endpoint, 

while positivity to skin sensitization/irritation endpoints was shown. The in silico results are available in the 

supplementary material (see Annex 11) and summarized in Table 17. 
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Genotoxicity  

The results offered by VEGA for metolachlor morpholinone were scarce as regards genotoxicity. One 

model only predicted the activity of metolachlor morpholinone towards the genotoxicity endpoint with a 

chromosomal mechanism of action. The CONSENSUS model for mutagenicity (v 1.0.3) predicted metolachlor 

morpholinone to be non-mutagenic, even though none of the single models on which the consensus prediction 

was based have provided a reliable prediction. However, none of the models provided a reliable prediction, so the 

CONSENSUS prediction was considered inconclusive. On the other hand, as regards chromosomal aberration, the 

CORAL model (v1.0.0) predicted metolachlor morpholinone to be active for the endpoint. However, the other 

models did not provide reliable predictions or contradicted the activity prediction. 

The ToxRead BETA 0.23 read-across assessment was non-mutagenic (Figure 17) with a non-mutagenic 

score of 0.84, and the QSAR consensus assessment was non-mutagenic with a non-mutagenic score of 0.2. Two 

SarPy alerts for non-mutagenicity were found (n'63 and 161). However, the most similar molecule in the training 

set (similarity index = 0.919) was associated with an experimental value of mutagenicity; thus, the prediction 

presents possible inconstancy. 

 

Figure 17. Most similar molecules were extracted in the training set of ToxRead for metolachlor morpholinone 

and its experimental value (ToxRead, 2022). 

In CompTox, the consensus model for Ames mutagenicity was false, as none of the models predicted 

positivity to the endpoint. However, OSIRIS recognized one medium-risk fragment for mutagenicity, already found 

in S-metolachlor. Aligned with that, QSARToolbox recognized an alert for in vivo mutagenicity (Micronucleous) for 

metolachlor morpholinone. 

Carcinogenicity 

In VEGA, only two models provided reliable predictions for the carcinogenicity endpoint for metolachlor 

morpholinone, but the results are contradicting. The IRFMN/ISSCAN-CGX was the only model to provide a reliable 

positive prediction, assessing metolachlor morpholinone carcinogenic for the recognition of the carcinogenicity 

alert number 42 (SMARTS Nc1ccccc1). On the contrary, the IRFMN carcinogenicity oral classification was the only 

model to provide a reliable negative prediction. Therefore, the overall VEGA results did not allow for the 

assessment of the carcinogenetic endpoint for metolachlor morpholinone with good reliability.  
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To support the positive prediction towards the endpoint, OSIRIS recognized one medium-risk fragment 

indicating tumorigenicity for metolachlor morpholinone, the same structural alert identified for mutagenicity and 

already found in S-metolachlor. On the other side, QSARToolbox did not recognize an alert for carcinogenicity for  

1-methoxypropan-2-one. Conclusively, the results were inconclusive for the carcinogenicity endpoint for 

metolachlor morpholinone. 

Reproductive and developmental toxicology 

Also, the results obtained in VEGA included metolachlor morpholinone for reproductive and 

developmental toxicology. CompTox's overall prediction was of positivity to the endpoint for metolachlor 

morpholinone. However, the hierarchical clustering model predicted positivity, even though a single model 

revealed negativity to the endpoint. Moreover, OSIRIS recognized one medium-risk fragment indicating 

reproductive effects for metolachlor morpholinone, already found in S-metolachlor (see Figure 6). Accordingly, 

QSARToolbox recognized the alkyl toluene derivates' structural alert for reproductive and developmental 

toxicology. 

Endocrine disruption  

The evaluation of metolachlor morpholinone in VEGA was of negativity towards the endpoint, supported 

by four predictions of inactivity towards the endpoint associated with high reliability. On the contrary, the 

IRFMN/COMPARA Androgen Receptor-mediated effect v1.0.0 was the only model to predict positivity for 

metolachlor morpholinone. However, the prediction presented some critical aspects, as the concordance index 

was shallow (0.489), indicating that molecules in the training set presented experimental data that disagreed with 

the prediction. Aligned with the negative prediction, CompTox predicted negativity towards the estrogen receptor 

binding for metolachlor morpholinone. Moreover, QSARToolbox recognized 1-methoxypropan-2-one as a non-

binder. Therefore, the overall judgment was accepted as negative for metolachlor morpholinone. 

Skin sensitization/irritation 

The two models applied in the VEGA software for skin sensitization/irritation presented contradictory 

results for metolachlor deschloro. On one side, the CAESAR Skin sensitization model (v2.1.6) predicted positivity 

to the endpoint, but not all the atom-centered fragments present in metolachlor morpholinone have been found 

in the molecules of the training set; thus, the target could be outside the applicability domain of the model. In 

agreement with the CAESAR model in VEGA, OSIRIS recognized metolachlor morpholinone as three high-risk 

fragments indicating irritating effects, already detected in S-metolachlor (see Figure 7). Moreover, QSARToolbox 

recognized a possible protein binding (OECD rules) through acylation. However, no inclusion rules for skin 

irritation/corrosion were found. 

On the other side, the Skin sensitization model IRFMN/JRC v1.0.0 predicted inactivity towards the 

endpoint for metolachlor morpholinone, but the concordance index (0.492) revealed criticisms in the prediction. 

However, the potential sensitization activity of metolachlor morpholinone cannot be excluded, and further 

research was required. 
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Table 17. In silico hazard assessment of metolachlor morpholinone for genotoxicity, carcinogenicity, 

developmental and reproductive toxicology, endocrine disruption, skin sensitization, and Cramer class evaluation. 

The prediction was     = positive,     = intermediate,     = negative, or     =  inconclusive. The Applicability Domain 

Index (ADI) scores , thus the internal validation of the models, are reported (see Methods section paragraph 1.2.2). 

endpoint software model prediction & score 

ge
n

o
to

xi
ci

ty
 

m
u

ta
ge

n
ic

it
y 

VEGA 

CONSENSUS v1.0.3 0.2 

CEASAR v2.1.13 0.643 

SarPy/IRFMN v1.0.7 0.643 

ISS v1.0.2 0 

KNN/Read-Across v1.0.0 0 

ToxRead 

Read-across 0.915 

QSAR consensus 0.638 

CompTox Consensus Ames mutagenicity 0.765 

OSIRIS Mutagenic  

QSARToolbox Mutagenicity  

ch
ro

m
o

so
m

al
 a

b
er

ra
ti

o
n

 

VEGA 

CORAL v1.0.0 0.915 

IRFMN In vitro micronucleus v1.0.0 0.638 

IRFMN In vivo micronucleus v1.0.1 0.765 

QSARToolbox Chromosomal aberration  

ca
rc

in
o

ge
n

ic
it

y 

VEGA 

CEASAR v2.1.9  

ISS v1.0.2  

IRFMN/Antares v1.0.0  

IRFMN/ISSCAN-CGX v1.0.0  

IRFMN carcinogenicity oral 

classification v1.0.0 
 

IRFMN carcinogenicity inhalation 

classification v1.0.0 
 

OSIRIS Tumorigenic  

QSARToolbox Carcinogenicity  
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d
ev

el
o

p
m

en
ta

l/
re

p
ro

d
u

ct
iv

e 
to

xi
co

lo
gy

 

VEGA 

CEASAR v2.1.7 0 

Developmental/Reproductive Tox 

library v.1.1.0 
0.759 

IRFMN/CORAL Zebrafish embryo 

AC50 v1.0.0 
4499.53 µg/L 

CompTox Developmental toxicity  

OSIRIS Reproductive effective  

QSARToolbox DART scheme  

en
d

o
cr

in
e 

d
is

ru
p

ti
o

n
 

VEGA 

NRMEA Thyroid Receptor Alpha 

effect v1.0.0 
0.943 

NRMEA Thyroid Receptor Beta 

effect v1.0.0 
0.943 

IRFMN  Aromatase activity v1.0.0 0.665 

IRFMN Estrogen Receptor Relative 

Binding Affinity v1.0.1 
0.939 

IRFMN/CERAPP Estrogen 

Receptor-mediated effect v1.0.0 
0.948 

IRFMN/COMPARA Androgen 

Receptor-mediated effect v1.0.0 
0.795 

CompTox Estrogen Receptor Binding  

QSARToolbox OECD Estrogen binding  

sk
in

 s
en

si
ti

za
ti

o
n

 VEGA 

CEASAR v2.1.6 0.756 

IRFMN/JRC v1.0.0 0.747 

OSIRIS Irritant  

QSARToolbox OECD Protein binding  
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4.7 Conclusions characterization prioritized S-metolachlor transformation products 

For most predicted S-metolachlor TPs, a decrease in toxicity potential was predicted compared with the 

parent compound regarding genotoxicity. However, 2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-

methoxypropan-2-yl)acetamide was associated with more robust predictions of activity towards genotoxicity. The 

reason could be the presence of the halogen group, which was maintained only in this chemical structure among 

the prioritized S-metolachlor TPs. On the contrary, metolachlor-2-hydroxy, metolachlor deschloroacetyl, and 

metolachlor deschloro appeared to be less critical regarding genotoxicity and carcinogenicity endpoints in 

comparison with the parent compound. That could be related to the loss of the halogen functional group. 

However, a higher potency was predicted for metolachlor deschloroacetyl as regards the Zebrafish embryo AC50 

endpoint relevant for reproductive and developmental toxicity than the parent compound. Also, 1-

methoxypropan-2-one appeared less critical than the parent compound. Lastly, in silico predictions were 

insufficient for metolachlor morpholinone to conclude the related toxicological concern, as only a few models 

provided a reliable prediction. That could be because the models could not find structurally similar molecules in 

the software database to train the read-across assessment. However, it could interact with the androgen receptor 

exerting an endocrine disruption activity. However, skin sensitization alerts were found in all the prioritized S-

metolachlor TPs, which could be relevant for dermal exposure to water. The results are summarized in Table 18. 

The predictions suggested inactivity towards this endpoint for all the prioritized TPs regarding endocrine 

disruption. Still, the only considered model for the aromatase activity did not provide a reliable prediction for the 

S-metolachlor TPs, which appeared to be the mechanism of action of the parent compound (Laville, 2006). Even 

though the decrease in the predicted toxicity of TPs was observed, all the prioritized predicted S-metolachlor TPs 

were associated with a priority code of toxicological concern of 3/3 (see methods chapter…), as all the prioritized 

S-metolachlor TPs were predicted to be active for at least one endpoint and by at least two strongly reliable 

models. 

Therefore, the prioritized S-metolachlor TPs were attempted to be detected in treated water samples to 

verify whether the prediction and prioritization scheme applied could be reliable.  

 

 

Table 18. In silico hazard assessment of S-metolachlor (0), metolachlor-2-hydroxy (1), metolachlor 

deschloroacetyl (2), metolachlor deschloro (3), 2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-

methoxypropan-2-yl)acetamide (4), 1-methoxypropan-2-one (5), and metolachlor morpholinone (6).  

exp = the experimental value was reported by the model 
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endpoint software model 0 1 2 3 4 5 6 

TTC ToxTree Cramer class III I I I III III III 
ge

n
o

to
xi

ci
ty

 

m
u

ta
ge

n
ic

it
y 

VEGA 6 

CONSENSUS v1.0.3        

CEASAR v2.1.13        

Sarpy/IRFMN v1.0.7        

ISS v1.0.2        

KNN/Read-Across v1.0.0        

ToxRead 7 
Read-across        

QSAR consensus        

CompTox 8 Consensus mutagenicity        

OSIRIS 9 Mutagenic        

QSARToolbox 10 Mutagenicity        

ch
ro

m
o

so
m

al
 

ab
er

ra
ti

o
n

 

VEGA 

CORAL v1.0.0        

IRFMN In vitro micronucleus        

IRFMN In vivo micronucleus        

QSARToolbox Chromosomal aberration        

ca
rc

in
o

ge
n

ic
it

y 

VEGA 

CEASAR v2.1.9        

ISS v1.0.2        

IRFMN/Antares v1.0.0        

IRFMN/ISSCAN-CGX v1.0.0        

IRFMN carcinogenicity oral exp       

IRFMN carcinogenicity inhalation exp       

OSIRIS Tumorigenic        

QSARToolbox Carcinogenicity        

d
ev

el
o

p
m

en
ta

l/
re

p
ro

d
u

ct
iv

e 
to

xi
ci

ty
 

VEGA 

CEASAR v2.1.7        

Dev/ReproTox library v.1.1.0        

IRFMN/CORAL Zebrafish AC50 exp   

 

  

 

CompTox Developmental toxicity        

OSIRIS Reproductive effective        

QSARToolbox DART scheme exp       

en
d

o
cr

in
e 

d
is

ru
p

ti
o

n
 

VEGA 

NRMEA Thyroid Receptor α exp       

NRMEA Thyroid Receptor β exp       

IRFMN Aromatase activity exp       

IRFMN Estrogen Receptor        

CERAPP Estrogen Receptor exp       

COMPARA Androgen Receptor exp       

CompTox Estrogen Receptor Binding exp       

QSARToolbox OECD Estrogen binding        

sk
in

 

se
n

si
ti

za
ti

o
n

 

VEGA 
CEASAR v2.1.6        

IRFMN/JRC v1.0.0        

OSIRIS Irritant        

QSARToolbox OECD protein binding        
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5. Detection of S-metolachlor prioritized transformation products in treated water  

 

The prioritized predicted S-metolachlor were tentatively identified using a dataset available from Brunner 

et al. (2019) who analyzed water samples experimentally treated with rapid sand filtration and containg the 

racemic mixture metolachlor. Here are reported the main results and in the supplementary documents are 

available further information (Annex 12). 

In 2019, the pioneering research by Brunner et al. analyzed experimentally treated water samples with 

ozonation and RSF – respectively used as a model for abiotic and biotic drinking water treatments – and spiked 

with three known contaminants of drinking water sources. Among these contaminants, they selected metolachlor; 

therefore, the results data were used in this research, considering the approximation of having metolachlor and 

not S-metolachlor. The researchers created an in-house list of suspect metolachlor TPs, which was then used to 

interpret the results of the HPLC-HRMS analysis applied.  

 

Suspect list by Brunner et al. (2019) vs. the prioritized list of S-metolachlor TPs 

An initial comparison was made with the suspect list presented by Brunner et al. (2019) available in the 

supplementary material (Annex 12, Table 15). The list presented 26 suspect metolachlor TPs identified by 

literature data mining or found in the databases NORMAN SusDat and STOFF-IDENT or predicted using enviPath. 

Among these, 14 metolachlor TPs were also predicted as S-metolachlor TPs in the current research. 

Four out of six prioritized transformation products prioritized in this research were also present in the 

suspect list by Brunner et al. (2019). These were: metolachlor-2-hydroxy, metolachlor deschloro, 1-

methoxypropan-2-one, and metolachlor morpholinone. Three metolachlor TPs reported only with their SMILES in 

the research conducted by Brunner et al. (2019) were identified here, moving a step further in the research on 

metolachlor TPs in drinking water. 

The molecule associated with the SMILES CCC1=C(C(=CC=C1)C)NC(=O)CCl was identified as 2-chloro-N-

(2-ethyl-6-methylphenyl)acetamide, the one with the smiles CCC1=CC=CC(=C1N(C(C)COC)C(=O)CCl)CO was 

identified as 2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide, and the one 

with the SMILES CCC1=C(C(=CC=C1)C)N(C(C)CO)C(=O)CCl as N-(2-Methyl-6-ethylphenyl)-N-((1S)-1-methyl-2-

hydroxyethyl)-2-chloroacetamide. These three molecules were not prioritized based on the structural 

prioritization applied in this research. 2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-

yl)acetamide, predicted by UM-PPS and BioTransformer, was not present in the list by Brunne et al. (2018) 

Nevertheless, the structurally similar compound 2-chloro-N-(2-ethyl-6-methylphenyl)acetamide, which was 

prioritized over it, was present in both lists. At the same time, the other two S-metolachlor TPs present in the 

suspect list by Brunner et al. (2019) were predicted by enviPath and Biotransformer but were not found in the 

literature and therefore, not prioritized in the current research. 

Six other TPs were consistent in both suspect lists. The metabolite CGA 37735 was predicted by the UM-

PPS tool and found in NORMAN SusDat databases but not prioritized in this research (predicted by only one tool 

and not identified in the literature research - see chapter prioritization). Similarly, metolachlor OXA was predicted 
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by the enviPath tool only, as also reported by Brunner et al. (2019), but not prioritized. On the contrary, although 

it was predicted by only one tool, metolachlor morpholinone was also prioritized because it was found 

systematically in the literature review. The S-metolachlor TPs with SMILES 

CCC1=C(C(=CC=C1)C)N(C(C)C=O)C(=O)CCl was predicted by both experiments by enviPath - and Biotransformer 

confirmed the prediction - but not included in the suspect list by Brunner et al. (2019). Lastly, three smaller 

molecules were pointed out by both suspect TPs lists. 

 

 Data analysis and interpretation 

The samples pre and after-treatment were compared to look into the changes in the chemical 

composition caused by the treatments. 

The HPLC/MS data by Brunner et al. (2019) was analyzed using the software Compound Discoverer 3.1 

(ThermoFisher Scientific), while the new version Compound Discoverer 3.3 (ThermoFisher Scientific) was adopted 

to examine the provided data, namely the table containing features from the dataset and molecular information 

and the chromatograms and mass spectra obtained from the analysis. A filter exclusion of peaks with RT inferior 

to 2.4 minutes was selected to exclude the solvent peak. Furthermore, background features were removed. Two 

suspects TPs were tentatively identified in the positive ionization data: metolachlor morpholinone and metolachlor 

deschloro. The supplementary material (Annex III) shows the data underlying these results. A confirmation with a 

reference standard is needed to confirm the attempted identification of the compounds, as already pointed out 

by Kiefer et al. (2021). 

The predicted fragmentation spectra of the prioritized S-metolachlor TPs obtained by CFM-ID software 

(Wang et al., 2021) were compared with those explored in Compound Discoverer 3.3. The link to the CFM-ID 

predictions is available in the supplementary material (Annex IV) to validate the tentative identification of 

metolachlor morpholinone and metolachlor deschloro. 

 

The features expected to be metolachlor deschloro had a molecular weight of 249.17229 g/mol and RT 

17.188 minutes, as visible in Figure 18. The compound was already present in the Brunner et al. (2019) suspect 

list, found in NORMAN SusDat, StoffIDENT, and predicted by enviPath. As Brunner et al. (2019) noted, 

dehalogenation was a diffused reaction involved with TPs formation during biodegradation experiments 

(represented by RSF since it involves biodegradation). The peak intensity was seven times higher after RSF 

treatment than before treatments, as illustrated in Figure 1, therefore compatible with the hypothesis of being 

formed after treatment. It should be noted that the peak intensity was very low (i.e., approximately 60000 counts, 

which can almost be considered a noise), and the shape of the peak was not optimal. 
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Figure 18. Chromatogram of the features, which was tentatively identified as metolachlor deschloro. The orange 

line indicates the presence of the compound in the water before treatment. In contrast, the blue line is associated 

with the elution of metolachlor deschloro after rapid sand filtration (RSF) was applied (Compound Discoverer 3.3, 

2022) 

 

In the MS spectra, the peaks are visible as the mass-to-charge ratio (m/z). During the analysis, charged 

ions are created when an electron is taken from the molecule (negative ionization) or given to the molecule 

(positive ionization). For this reason, the m/z is reported, which often corresponds to the mass (because the charge 

is 1). The fragments with m/z 218.15256 and m/z 176.142 were visible in the CFM-ID fragmentation spectra and 

were the fragments at a higher intensity. A comparison of the two spectra is reported in Figure 19. 

 

Figure 19. Experimental mass fragmentation spectrum of the features expected to be metolachlor deschloro (up) 

(Compound Discoverer 3.3, 2022) compared with the predicted mass fragmentation spectrum of metolachlor 

deschloro by CFM-ID (down) (Wang et al., 2021). 
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Metolachlor morpholinone was expected to be found in the RSF samples as a product of 

biotransformation. Also, in this case, only in the positive ionization analysis. It was found in the sample with a 

molecular weight of 233.1412 g/mol and RT 14.317 minutes. In this case, as illustrated in Figure 20, the peaks 

before and after RSF treatment application were comparable, suggesting its presence in the water independently 

from RSF processes. Moreover, the intensity of the peak was low. A Log 2-fold change filter was applied to exclude 

peaks whose intensity was not notably increased after the applied RSF. This fact explains why Brunner et al. (2019) 

did not point out metolachlor morpholinone, even though present in the suspect screening list.  

Figure 20. Chromatogram of the features, which was tentatively identified as metolachlor morpholinone. The 

orange line indicates the presence of the compound in the water before treatment. In contrast, the blue line is 

associated with the elution of metolachlor morpholinone after rapid sand filtration (RSF) was applied (Compound 

Discoverer 3.3, 2022) 

 

For metolachlor morpholinone, as regards the fragmentation spectra, the fragmentation spectrum was 

not wholly overlapping, as shown in Figure 21. Therefore, the formation of metolachlor morpholinone was 

considered irrelevant to the experimental conditions applied. 
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Figure 21. Experimental mass fragmentation spectrum of the features expected to be metolachlor morpholinone 

(up) (Compound Discoverer 3.3, 2022) compared with the predicted mass fragmentation spectrum of metolachlor 

deschloro by CFM-ID (down) (Wang et al., 2021). 

 

Surprisingly, no significant decrease in metolachlor concentration was observed after RSF filtration - while 

it was observed by Brunner et al. (2019) after the ozonation treatment. The reduction of metolachlor after RSF 

was expected as it is known to be degraded in soil (DT50 of months). However, it was not observed. Brunner et al. 

(2019) suggested that the continuous spike-in of the compound could mask the expected reduction. Another 

explanation could be that the range of microorganisms present in RSF sand differed from the soil, resulting in 

lower transformation activity. 

 

  



 
 

98 
 

 

DISCUSSION 

 

A considerable number (83) of unique S-metolachlor TPs were predicted, among which only thirty-five 

were identified in chemical databases. Six were prioritized through literature data mining and structural alert 

identification. The hazard assessment suggests that S-metolachlor TPs might be less active regarding genotoxicity, 

expect for 2-chloro-N-[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide. At the same time, 

other S-metolachlor TPs have been predicted as having comparable or higher toxicity than the parent compound 

as regards reproductive/developmental toxicity and skin irritation/corrosion. Two selected S-metolachlor TPs were 

tentatively identified using the non-target HPLC-HRMS screening, but further confirmation is needed. The 

necessary implementation and refinement of the proposed methodology are discussed here. 

 

1. Prediction of transformation products 

The present research used four different predictive in silico tools for abiotic (Chemical Transformation 

Simulator CTS) and biotic reactions (UM-PPS, enviPath, BioTransformer) to predict the formation of TPs due to 

reactions occurring during specific drinking water treatments. The methods chapter has already discussed the 

relevance of these reactions in predicting the transformation of S-metolachlor during specific drinking water 

treatments (see paragraph 2.2).  

The selected in silico tools predicted 83 unique S-metolachlor TPs due to specific reactions relevant to drinking 

water treatments. Among these, 72 TPs were predicted by at least one model of biotransformation, while TPs 

formed by abiotic reaction were less often predicted. Multiple tools pointed out the same S-metolachlor TPs, 

predictive for different reaction pathways. The overlapping results were scrutinized to eliminate duplicates. 

Duplicates suggest a higher probability of their formation in the complexity of drinking water treatments. 

Biotransformation was used here to represent reactions during RSF and WWT. Among the freely available 

biotransformation tools, UM-PPS, enviPath, and BioTransformer all contained EEA EAWAG-BBD data; therefore, 

some predicted TPs overlapped between the results from different methods. However, enviPath was considered 

more comprehensive since it provided the highest number of predicted TPs among the selected biotransformation 

prediction tools. Therefore, it is suggested to always include enviPath in predicting biodegradation TPs. Moreover, 

the UM-PPS SMILES proposed was not recognized in PubChem; consequently, it required further identification of 

the compound names, drawing the molecules in RMG. Here is pointed out, but not further discussed, that a tool 

for the translation of isomeric smiles into chemical names is necessary to speed up the identification of TPs. 

Interestingly, UM-PPS indicated more S-metolachlor TPs when performing only aerobic transformations than 

all the transformation reactions. This observation means that the aerobic database is more extensive than the 

anaerobic database. Consequently, to assess biotransformation, it is recommended to choose the aerobic option, 

but this also depends on the specific drinking water treatment analysed. 
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Regarding abiotic reactions, CTS was the only freely available tool able to predict abiotic processes. Beyond 

assuring the evaluation of the abiotic transformation of contaminants, the CTS tool presented other advantages. 

Indeed, it provided the IUPAC name of the predicted compounds, already identifying the names of the predicted 

TPs. In contrast, an additional step of identification of the compound names was necessary with the other 

predictive in silico tools because they only provided the SMILES and chemical formula. Moreover, the CTS tool also 

allows inputting a batch of files to predict more chemicals' TPs simultaneously, assuring automatization. It is 

preferable to select the hydrolysis and photolysis independently if the aim is to assess TPs possibly originating 

from specific drinking water treatments alone or the combined library if the objective is a water treatment process 

involving both reactions. That is because the in silico predictions may differ due to the consideration of different 

reaction libraries (see 2-{2-[(2-ethyl-6-methylphenyl)amino]propoxy}acetic acid, in Results chapter paragraph 2.1). 

For instance, for evaluating the AOPs processes and UV treatments, it is recommended to use the combined 

libraries as both reactions may co-occur depending on the treatment applied.  

Conclusively, it is recommended to use the combination of CTS and enviPath to predict TPs, as the former is 

the only freely available tool able to predict abiotic reactions, and the latter was demonstrated to be the most 

complete for predicting biotic reactions.  

The overall in silico prediction succeeded in selecting TPs related to drinking water treatment processes and 

suggested transformation products confirmed by the literature. Nonetheless, the presented methodology 

presents some limitations. Hydrolysis and photolysis reactions were here used as a model for ozonation, 

chlorination, and AOPs. However, they may need to be more comprehensive to evaluate the impact of these 

drinking water treatments. For example, the selected in silico tools did not predict oxidation reactions.  

 The correspondence of in silico results with literature information on monitoring data was used to confirm 

the likelihood of production of a determinate TP, even though uncertainties about the origin of the TPs in the 

environment are present, because most of the literature was found about water sources. Moreover, the 

prioritization steps applied in this research project are limited because they entail approximations. Indeed, TPs 

might be relevant even though predicted by only one tool, and little structural changes might alter the toxicity of 

a compound. It may be interesting to investigate the other predicted S-metolachlor TPs (see Results section 

chapter 2) to avoid overlooking any possible consequence of transformation reactions. However, the purpose was 

here to apply the selected freely available in silico tools to a limited group of high-concern TPs. Therefore, it was 

chosen to select the most often predicted and strongly associated with a Cramer class III. 

 

2. Characterization of transformation products 

The current research used literature data mining combined with in silico methodologies to collect relevant 

physicochemical and toxicological information about S-metolachlor and its predicted TPs. Combining different 

methodologies is an efficient approach to characterizing data-poor chemicals, contributing to the weight-of-

evidence approach for the risk assessment (Hardy et al., 2017). On the one hand, experimental data can validate 

in silico predictions, indicating the model's reliability, while in silico prediction can fill data gaps found in the 
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literature. For the same reasons, other NAMs, such as bioassays, may compensate assessment deficiencies in 

available prediction tools. Moreover, experimental data guarantee the implementation of the models’ algorithms. 

On the other hand, in silico predictions can steer experimental analysis, helping to reduce and refine animal 

testing. A schematic representation of the mutual contribution between in silico, in vitro, and in vivo methods is 

illustrated in Figure 22. 

 

Figure 22. Mutual implementation between in silico, in vitro, and in vivo methodologies. 

 

Integrating the in silico results with bioassays can strengthen the presented results, adopting a weight of 

evidence (WoE) approach based on considering multiple sources of evidence to support the hazard assessment 

(Hardy et al., 2017). In REACH regulation, the WoE approach is defined as the correlation of several independent 

sources of information to assume that a compound has (or does not) a toxic property (Hardy et al., 2017). The 

current research project provided evidence of toxicological concern but was insufficient to assess the hazard of 

predicted TPs, other methodologies must be considered in the future, such as bioassays and, when strictly 

necessary, in vivo experiments to clarify specific endpoints.  

 

2.1 In silico prediction of physicochemical characterization 

Water solubility was considered the most relevant PCC for the presence of chemicals in the water and the 

only parameter ubiquitously considered for S-metolachlor TPs. 

Among the applied in silico tools for predicting water solubility, higher performance (confirmed with the 

comparison with literature data) was noted for the WATERNTTM model (v1.1) present in EPISuiteTM. Indeed, the 

predicted value by EPISuiteTM was half the experimental reported value for S-metolachlor. Using the other selected 

software (CTS and CompTox), the difference was almost ten-fold different than the experimental reported water 

solubility. Moreover, EPISuiteTM allows for predicting other parameters relevant to the characterization of the 

environmental fate of chemicals. In addition, CTS was here conveniently applied as already being used for 

predicting TPs. The tool allowed for the direct characterization of TPs after their prediction. Similarly, CompTox 

was also used to predict water solubility while performing the in silico hazard assessment.  

 



 
 

101 
 

2.2 In silico hazard assessment. 

The prediction results were compared with literature information and structural alerts, and possibly 

hazardous S-metolachlor TPs were prioritized. Structural alert relationships (SARs) and read-across were used to 

characterize the hazard for relevant endpoints for the prioritized S-metolachlor TPs. The qualitative in silico hazard 

assessment provided relevant insight into the predicted TPs' potential toxicity and validated the prioritization 

scheme applied because it selected S-metolachlor TPs of possible high toxicological concern. 

For five out of six prioritized S-metolachlor TPs, all considered in silico tools agreed upon a decreased 

genotoxicity. However, the predicted toxicity was equal to or more probable for developmental and reproductive 

toxicity and endocrine disruption endpoints (see Results chapter paragraph 4.7). 

Biometabolism usually creates more hydrophilic compounds that are less critical from a toxicological point of 

view (Garefalaki et al., 2021). Therefore, metabolism should lead to the formation of less toxic compounds. 

However, this was only sometimes true. The presence of the halogen group appeared to be critical for 

genotoxicity, as the only prioritized predicted S-metolachlor TP that maintained the functional group (2-chloro-N-

[2-ethyl-6-(hydroxymethyl)phenyl]-N-(1-methoxypropan-2-yl)acetamide) was predicted to preserve the genotoxic 

activity of the parent compound. 

The reliability of in silico tools for the identification and hazard assessment of TPs increases when the 

mechanism of action (MoA) is well understood. The models' reliability strongly depends on the experimental data 

available for the molecules selected in the training set: if poor or no data are available, the algorithm was seen to 

be poorly predictive. Indeed, the selected models offered more reliable predictions for genotoxicity, skin 

sensitization, or receptor binding rather than carcinogenicity and reproductive/developmental toxicology. For the 

former endpoints, the understanding of the MoA is more well understood (EPA, 2005) and, thus, predictable in 

silico. On the contrary, complex endpoints such as developmental toxicity and carcinogenicity were less reliably 

predicted by the applied models. Therefore, further software implementation for these endpoints is necessary.  

Some critical MoA, like ligands of hormone receptors, were investigated for the endocrine disruption 

endpoint. The only model available was VEGA, but it could not reliably predict the activity for the S-metolachlor 

prioritized TPs. The interaction with the aromatase, the experimentally proven MoA of S-metolachlor (Laville et 

al., 2006), was only evaluated by one VEGA model, and the predictions were considered inconclusive. The only 

compound for which it provided a reliable prediction was 1-methoxypropan-2-one. 

Within the VEGA software, different models were available to assess the mutagenicity endpoint, and overall 

reliable predictions were obtained. Moreover, VEGA offers multiple models for all the considered endpoints; 

therefore, it was considered the most helpful software to assess TPs structural alerts and to direct further analysis 

quickly. Also, the software is easy-to-use and provides an internal statistical assessment of the prediction 

reliability; therefore, it helps the expert to judge the prediction's validity. 

Expert judgment must always be applied, as a critical evaluation of the in silico results may reveal incorrect 

values assigned by the model. The comparison between different software and models for the same endpoint is 

always recommended (ECHA, 2016). For instance, when using the software VEGA to assess the mutagenicity 

endpoint, it is always recommended to consider the reliability of the single models rather than blindly accept the 

overall CONSENSUS model. In other words, the single model predictions need to be considered to justify the 
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CONSENSUS prediction. Indeed, the CONSENSUS prediction was active for metolachlor deschloroacetyl, while 

none of the model predicted positivity for mutagenicity with good reliability. Similarly, for metolachlor 

morpholinone, the CONSENSUS mutagenicity model gave an inactive prediction for the endpoint; however, none 

of the models provided a reliable prediction; therefore, the CONSENSUS result was considered inconsistent. 

Understanding the scores assigned by the model and critically assessing them is needed case by case. Still, 

applying thresholds to interpret in silico results is also convenient. The a priori selected threshold value of 0.75 

preselected for the Applicability Domain Index (ADI) provided by the models was a valuable tool to exclude 

unreliable predictions. Indeed, none of the predictions with an ADI < 0.75 were considered reliable, evaluating the 

molecules of the training set. Nonetheless, expert judgment is still needed to assess predictions associated with 

an ADI slightly above the threshold value of 0.75, as some parameters were assessed to have a higher impact on 

the prediction reliability than others. Therefore, it was noticed that even though the ADI is above 0.75, if other 

parameters did not confirm the prediction, this was considered inconsistent. Therefore, a corrected threshold 

value for acceptance of the prediction is proposed at 0.8. 

Moreover, the similarity and concordance indexes were assessed as of higher relevance for the prediction's 

reliability than the ACF index because they of higher impact on the reliability of the prediction (see Results chapter 

paragraph 4.3 about skin sensitization/irritation). The similarity between molecules of the training set and the 

target molecule and the concordance between the prediction and the experimental data reported for the 

molecule of the training set was therefore considered more important than the correspondence of atom-cantered 

fragments between the target and the training set. It would be interesting to investigate whether the defined 

reasoning may apply to other predictions. However, the reliability of parameters is expected to depend on the 

specific molecular structure considered; therefore, it is always recommendable to evaluate them specifically 

(ECHA, 2016). 

 

3. Detection of transformation products 

The detection of the prioritized S-metolachlor TPs was attempted as a proof of principle for the proposed 

framework for prioritizing TPs assessment in drinking water. The prioritized TPs were tentatively identified using 

the data of the HPLC-HRMS non-target screening by Brunner et al. (2019). The researchers applied a novel 

methodology for evaluating metolachlor TPs formation during drinking water treatment processes, using 

respectively ozonation and rapid sand filtration (RSF) as representative of biotic and abiotic treatment processes 

of drinking water. However, only the data regarding RSF were here analysed.  

Two predicted TPs were tentatively identified in the dataset made available by Brunner et al. (2019). 

Metolachlor deschloro was expected to be found in RSF as predicted by in silico tools of biodegradation. 

Indeed, it was predicted to be formed by hydrogenolysis and biotransformation. It was also present in the 

NORMAN SusDat and Stoffident databases and has already been detected in drinking water by previous research 

(Hladik et al., 2008; Guelfi et al., 2018).  

Conversely, metolachlor morpholinone was not expected to be found in the analysed water samples by 

Brunner et al. (2019) since it was not predicted to be formed by biodegradation. Indeed, it was a predicted 
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photolysis product relevant for UV treatments, AOPs, ozonation, and chlorination. Therefore, targeted screening 

of metolachlor morpholinone in drinking water samples which implied the use of other treatment processes rather 

than RSF could be a possible direction for research. However, Brunner et al. (2019) did not detect metolachlor 

morpholinone in the ozonation experiments. 

Even though here tentatively identified, the detected signal for S-metolachlor TPs was low (nearby the 

detection limit). Moreover, it is crucial to note that the concentration of the parent compound used in the 

experiment was relatively high (10 μg/L) – one to two orders of magnitude higher compared to the levels at which 

it was found in surface water and groundwater (see Results chapter, Table 6). Also, the signal was considered 

insignificant for metolachlor morpholinone; therefore, its formation was considered absent. Consequently, the 

formation of the prioritized S-metolachlor TPs during the RSF experiments performed by Brunner et al. (2019) 

seemed not critical at the applied experimental conditions. Nevertheless, identifying traces of predicted S-

metolachlor TPs supports the predictive workflow applied here. 

The results were a tentative identification of TPs, which should be validated with reference standards. The 

HPLC-HRMS requires an internal standard to confirm the suspect compound (Keifer et al., 2021). Also, the 

ionization pattern can vary depending on the instrument used and the type of ionization selected - electrospray 

ionization (ESI) or higher energy collisional dissociation (HCD) available in the instrument used for the analysis by 

Brunner et al. (2019) – thus, the energy involved (Ho et al., 2003). Therefore, the formation of the predicted S-

metolachlor TPs cannot be excluded. 

The specific applied experimental conditions could not have induced the formation of the predicted TPs, but 

they may have been formed under other conditions. Also, the applied experimental conditions could differ from 

those in drinking water treatment plans. As Brunner et al. (2019) noticed, the composition of the microorganisms 

involved could influence the types of emerging reactions. In conclusion, the formation of the predicted TPs that 

were not tentatively identified cannot be excluded from being formed during RSF. Therefore, more targeted 

research needs to clarify their presence in drinking water.  

The limited screening done here was applied as proof of the principle of the methodology, thus, might be 

extended. The detection of the predicted TPs in drinking water could further confirm the applicability of the 

proposed methodology for predicting high-concern TPs originating from drinking water treatments. 

 

4. Further research 

 

Prediction and prioritization of TPs  

Further research is needed to consider other reactions that were not included in the in silico tools applied 

here. Future research may include the QSARToolbox direct oxidation model to amplify its predictivity for AOPs. 

The prioritization steps were done manually, increasing the chances of biases. It would be interesting to check 

the reliability of the expert judgment here applied, comparing the presented results with experimental data. 

ToxTree comparison was used to justify the prioritization of only one of the TPs gathered for structure similarities. 

This prioritization method was considered sufficient for the scope of the present research. However, this 
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methodology would not be applicable for the risk assessment in a regulatory context because the grouping of 

molecules needs to be done following the EFSA and OECD guidelines (OECD, 2017; EFSA, 2021).  

 

Physicochemical characterization 

Considering different PCC besides water solubility might be necessary to understand both the environmental 

fate of the parent compound – therefore, its availability in drinking water sources – and the persistence of TPs 

after water treatments. Partitioning coefficients were investigated only for the parent compound to understand 

the likelihood of finding it in water sources. However, further research should be aimed at understanding the 

environmental fate of the predicted S-metolachlor TPs. In the present research, only water solubility was 

considered, as the TPs were assumed not to enter into contact with other environmental matrixes. In reality, the 

tap water enters the sewer, comes into contact with metal tubes, and is ultimately released into the environment.  

 

In silico hazard assessment 

The in silico hazard assessment methodology proposed here requires implementation, as some crucial 

endpoints (e.g., developmental/reproductive toxicology and carcinogenicity) still need to be reliably predictable 

in silico. The sharing of existing data is pivotal to allow the development of more inclusive algorithms. Data 

openness is primarily considered the basis of the scientific method (Elbe, 2018), and the reuse of information is 

necessary to optimize the resources (Jacobsen et al., 2020). In 2016, the FAIR Guiding Principles were defined to 

improve the Findability, Accessibility, Interoperability, and Reuse of digital assets (Wilkinson et al., 2016). 

The OECD QSARToolbox application was limited to the profiling of molecules in this research, while the read-

across assessment can enhance the reliability of the predictions. A structural alert without a read-across 

confirmation might not be sufficient to characterize the hazard related to a chemical structure but can give 

indications of the need for prioritization and further research. Therefore, a more extensive application of the 

software is suggested. 

Moreover, the evaluation of other endpoints not here evaluated should be investigated, such as the repeat 

dose toxicity, since the possible exposure to TPs could be repeated over time, or respiratory toxicity. Although 

ingestion is considered the main route of exposure, research has shown that the highest increase in the internal 

dose of DBPs was found after the shower, rendering inhalation and dermal exposure relevant route (Gordon et 

al., 2006). The findings might also be relevant for S-metolachlor TPs, but further research is required to consider 

respiratory toxicology. Also, other NAMs, such as bioassays, are suggested to investigate the activity of S-

metolachlor TPs against the aromatase. An example could be the granulosa cell aromatase bioassay (Liu et al., 

2021).  

 

Health risks considerations 

TPs in drinking water does not necessarily determine a direct risk to human health. Besides the related 

capacity to cause harmful effects (hazard), the exposure must be considered to evaluate potential risks (Costa & 

Teixeira, 2014). In other words, a hazardous chemical in drinking water alone is not a health risk, as exposure to 

humans must be assessed.  
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Intermittent exposure to TPs can be expected since pesticide exposure is inclined to temporal variation 

(Boonstra et al., 2022). The temporal variation should, thus, be considered for the risk assessment of TPs. Also, 

bioaccumulation is to be considered because, for repeated doses, TPs can be bioaccumulated in living organisms, 

as reviewed by Maculewicz et al. (2022) for pharmaceuticals. 

Moreover, TPs can be formed by different reactions (here predicted by different tools) and, therefore, even 

though formed at low concentrations, may be found at higher aggregates in the environment. In fact, in the 

groundwater, higher concentrations of TPs than the corresponding pesticides were found (Kiefer et al., 2019). 

However, an explanation of the increase in concentrations of TPs compared to the parent compounds was not 

discussed by the researchers, leaving space to further research. 

 

Detoxification 

Moreover, conjugation reactions typical of the biotransformation of pesticides in living organisms (Konuk et 

al., 2022) might detoxify the compounds in humans after their absorption. The conjugated TPs are the more 

favourable from a thermodynamic point of view as conjugation decrease the energy of the system and increases 

stability (Garefalaki et al., 2021). Therefore, conjugation reactions and detoxification still need to be evaluated to 

assess the health risk relevance of transformation processes. 

 

Detection of S-metolachlor TPs 

The applied methodology tentatively identified two predicted S-metolachlor TPs at low-intensity signals in 

drinking water treated with RSF; however, extensive research is needed to confirm their presence in drinking 

water. Firstly, confirmation of their presence with internal standards is needed to confirm the HPLC-HRMS analysis. 

Moreover, analysis of water treated with processes other than RSF or other microorganism compositions for RSF 

is still missing. The data for identifying S-metolachlor TPs resulted from an analysis of only RSF, and other evaluated 

reaction processes could occur during water treatments not represented by RSF. Hence further analysis needs to 

investigate whether the predicted S-metolachlor TPs may be formed during other treatment processes (such as 

chlorination or UV treatments). The same authors of the non-target screening suggested that the method could 

be applied to further research on TPs derived from other drinking water treatments (Brunner et al., 2019). Full-

scale research is suggested to consider the overall effect of multiple drinking water treatment processes, including 

biotic or abiotic processes.  

The same available non-target screening data collected by Brunner et al. (2019) could also be analysed to 

detect the other predicted S-metolachlor that were not prioritized in this research. Unidentified TPs' features 

exceeded the number of annotated compounds (Brunner et al., 2019), leaving space for future retrospective 

research, which can fasten the risk assessment of emerging contaminants (Creusot et al., 2020).  

 

S-metolachlor TPs elimination 

Moreover, further research is needed to understand if the TPs can persist in drinking water after their 

formation. The in silico tools for predicting PCC could also be adopted to evaluate the possible elimination of TPs 

due to the adsorption processes involved in drinking water treatment (i.e., sludge treatment or activated carbon 
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purification). The evaluation of the elimination of TPs done by treatment processes was outside the scope of this 

study, but further research is advised to better understand the possible exposure to humans via drinking water, 

thus the relevance for human health. Indeed, TPs could be removed after being formed by specific drinking water 

treatments; however, the efficiency and efficacy must be evaluated. Guide et al. (2021) identified over 200 newly 

formed TPs derived from known micropollutants when ozonation was applied as water treatment. Of these, only 

13% were removed by rapid sand filtration (RSF). Also, Kiefer et al. (2020) reported partial effectiveness of drinking 

water treatments in removing TPs. Matsushita et al. (2018) suggested that the effort required to remove pesticide 

TPs from the water via PAC and ozonation was higher than for the precursor pesticides. TPs' removal depends on 

the PCC of the TPs and the drinking water treatment processes involved. 

 

Environmental processes 

The focus of the presented research was evaluating the formation of TPs as a direct consequence of drinking 

water treatments, and the consideration of the environmental processes was outside the scope of this research. 

However, active substances in water sources can encounter transformation processes even before the treatment 

processes are applied, increasing the number of unpredicted parent compounds to assess. Therefore, 

understanding the environmental processes of transformation is critical for understanding TPs formation during 

drinking water treatments and direct mitigation planning. The biotic reactions included in the prediction tools used 

as models for drinking water treatments may also represent environmental processes, but further research is 

needed. 

 

Evaluation of mixtures 

Furthermore, although investigated separately in this research, TPs are found in water sources in mixtures. 

Exposure to mixtures tends to be more realistic and critical than pesticides alone (Hayes et al., 2006); therefore, 

the risk assessment of pesticides – and their TPs – should be cumulative (EFSA, 2020). Therefore, the toxicological 

effect of low-concentration mixtures of S-metolachlor TPs, such as other active substances, should be investigated. 

 

Evaluation of small structural changes 

Finally, the difference between S-metolachlor and the racemic mixture metolachlor was not considered 

relevant based on the collected literature data since S-metolachlor is the active portion of the racemic product 

(Shaner et al., 2006). Therefore, R-metolachlor was not expected to exert a toxicological effect. Further research 

still needs to confirm whether this assumption is acceptable or not. It would also be interesting to investigate how 

structural changes influence the toxicological properties of TPs, for example, by assessing the hazard of structurally 

similar compounds. This investigation can be used to validate whether the prioritization of 2-chloro-N-[2-ethyl-6-

(hydroxymethyl)phenyl]-N-(1-hydroxypropan-2-yl)acetamide over two structurally similar compounds was a good 

approach. 
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5. Conclusions 

 

Drinking water treatment processes must consider TPs formation. The final aim of this research was to 

evaluate how in silico tools can contribute to assess the possible impact of drinking water treatment processes on 

S-metolachlor and, therefore, the health risks related to contamination of water. The rational scheme applied 

successfully predicted possible S-metolachlor TPs, confirmed by the literature, and predicted possible hazards to 

direct further analysis for the risk assessments of these newly formed chemicals. 

The applied predictive tools can steer the identification of TPs, helping to prioritize follow-up research and 

targeted analysis to directly assess contaminants' impact on water quality and the implementation of water 

treatment processes. The effectiveness of freely available in silico tools in predicting, prioritizing, and evaluating 

TPs was discussed in the previous chapter. S-metolachlor TPs were used as proof of the applicability of the 

methodology, which was effective in prioritizing S-metolachlor TPs of high toxicological concern and likely to be 

produced during water treatments. The reliability of the methods varies depending on the specific reaction 

pathway, PCC, or endpoint considered. The combination of the Chemical Transformation Simulator (CTS) and 

enviPath were suggested for predicting TPs originating from drinking water treatments. EpiSuiteTM was 

recommended for the PCC evaluation, and VEGA QSAR for the hazard prioritization.  

Two prioritized S-metolachlor TPs were tentatively identified in the water samples after RSF treatment. 

However, the detected signal for the selected features was near the detection limit. Therefore, the formation of 

S-metolachlor TPs during RSF treatment applied by Brunner et al. (2019) was not critical at the observed 

transformation rates. Further research is needed to confirm the attempted identification of RSF-treated water 

samples with standards to assess the collected data precisely.  

Conclusively, the proposed methodology is a valuable starting point in evaluating the formation of TPs in 

drinking water, also considering the reduced costs and time required in comparison to experimental research. The 

proposed rational scheme could be applied to the assessment of active substances worldwide and represent a 

step forward to understanding the relevance of transformation reactions generated during drinking water 

treatments. 
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6.  Highlights 

 

1. The reliability of the methods varies depending on the specific reaction pathway or endpoint considered. 

2. It is suggested to always include CTS and enviPath in predicting TPs for considering abiotic and biotic reactions. 

3. For the prediction of physicochemical characteristics, EPISuiteTM offered the higher reliability. 

4. VEGA QSAR offers user-friendly and reliable models to prioritize TPs of high toxicological concern. Thresholds 

rules to accept predictions were proposed. 

5. There is a need for an automation workflow tool to collect the tools here applied.  
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Supplementary documents 

 

The supplementary documents are available here Supplementary documents.pdf 

 

 

During the research project at KWR Water Research Institute, the results were shared with the scientific 

community through three deliverables. 

 

1. Article for Water Matters, published in June 2022 in the English version available at the link Article H2O 

Water Matters.eng.pdf and the Dutch version available at the link Article Water Matters.dutch.pdf 

 

2. Poster for NVT Meetings 2022 available here: nvt 

 

 

3. Poster for International Congress of Toxicology ICT2022 available here: ICT2022_ e-poster_SOC-VI-10.pdf 
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