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Abstract

There has been increasing use of dimensionality reduction (DR) techniques to deal with high
dimensional data in order to minimize the number of dimensions, referred to as the number of
variables or degrees of freedom. These techniques are applied to the data prior to modeling and
give insight into the data, help reduce storage space required, and improve the computational
cost of the models, due to reducing the number of variables. In extreme cases, some solutions
of the partial differential equation (PDE) may be characterized by a finite number of degrees of
freedom (or variables). In this thesis, four DR techniques, namely empirical orthogonal function,
diffusion maps, extended dynamic mode decomposition and approximated Lax pairs, will be used
for data sets formed from the approximating solution sequence of the two different PDEs. The
idea of using the spectral theory for dimensionality reduction will be deployed to form the basis set
presented as the set of the coordinates for the DR methods. The main motivation is to analyze and
compare the four DR techniques. Consequently, it will be presented which DR method indicates
the best approximation of the original data set for both types of data under the mean squared
error criterion, in contrast to other methods.
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Chapter 1

Introduction to dimensionality
reduction

The number of degrees of freedom or quantities describing each state in a given time series is
known as its dimensionality. High dimensionality continues to be a challenge in computational
modeling, for instance, large-scale partial differential equation (PDE) models in climate science
and engineering. Also, the high dimensionality of the data obviously makes the visualization of
objects complex. Some of these variables are partially redundant, adding noise to the data, and
are independent of each other. Therefore, these redundant variables can be eliminated from the
data. The process used to reduce these variables or columns is called dimensionality reduction
(DR). In other words, this is a process to transform data from high-dimensional space (original
space) to low-dimensional space while preserving the relationships between the objects in the orig-
inal space. Dimensionality reduction [24] leads the useful properties for database and machine
learning systems such as data compression, better data visualization, and efficient data retrieval.
Furthermore, a reduced number of dimensions in the data set provides less computational time
and resources. It is often desirable to construct low-dimensional representations to optimize in a
low-dimensional space, classify low-dimensional behavior and identify ”reaction coordinates” that
provide a simplified observable state of the system.

In order to define the dimensionality reduction, we will consider a high dimensional time-series
data set X = (X1, X2, . . . , XM ) ∈ RN×M , consisting of M data vectors Xi ∈ RN , i = 1, . . . ,M .
The main objective of dimensionality reduction is to transform the higher dimensional data set
X into the lower dimensional representation X̃ = (X̃1, X̃2, . . . , X̃M ) ∈ Rk×M , consisting M data
vectors X̃i ∈ Rk, i = 1, . . . ,M , such that k ≪ N , retaining the meaningful properties of the
original data set.

The concept of the geometry of a set X̃ of objects means the set of rules which describe the
relationship between the elements of X̃. To describe this, we assume that X̃ is a subset of the
set X. The geometry of the set X̃ is referred to as intrinsic geometry [14] if the rules are defined
without using a reference to X and possible geometric structures already existing on it. On the
other hand, If X has its own geometry and this geometry is induced on X̃, then this geometry
is called extrinsic geometry of X̃. Also, we assume that X is with intrinsic dimensionality [25],
which means that the points in X lie on or near a manifold with dimensionality k embedded in
the N -dimensional space. There is no assumption on the structure or geometry of the manifold
and also intrinsic dimensionality k of the data set X is not known. For this reason, dimensional-
ity reduction is an ill-posed problem solved by considering certain properties, such that intrinsic
dimensionality, of the data.

1



CHAPTER 1. INTRODUCTION TO DIMENSIONALITY REDUCTION 2

Dimensionality reduction techniques can be separated into linear or non-linear techniques. In
linear dimensionality reduction methods [6], a linear transformation matrix A is defined such
that, for any i, X̃i = ATXi, where Xi is an element of high-dimensional space and X̃i is in low-
dimensional space. The non-linear DR method is based on the non-linear data model. In the
linear dimensionality reduction method, like empirical orthogonal function (EOF), we maximize
the variance preservation or minimize the reconstruction error. However, in the nonlinear case
[15], distance preservation has become the first standard used to get dimensionality reduction.
The main principle behind distance preservation is that we need to describe any space or manifold
fully by pairwise distances. If a low dimensional representation can be achieved by reproducing
the initial distances and preserving its geometrical structure (information on the manifold), then
the dimensionality reduction is successful. This means that if close data points remain close and if
far data points remain far, then the original manifold and its low dimensional representation have
a similar shape. To deal with non-linear data, the basic idea is to use the kernel function which
maps the original high dimensional data into the larger dimensional space. The kernel function
separates the different distributions of the data by forming a matrix of pairwise distances. Then
the resultant matrix can be processed by using a spectral decomposition as in the diffusion map
(DM) process. Non-linear techniques are more powerful and complex than linear ones because the
connection between the variables or features might be richer than a simple matrix linear transfor-
mation. Furthermore, there are two important categories of dimensionality reduction techniques
[24], such as Feature selection techniques and Feature projection methodologies. The feature selec-
tion techniques retain the most important dimensions and discard the redundant ones. Whereas
the feature projection methodologies project the existing features or dimensions onto the new dif-
ferent dimensions retaining the significant properties of the data set structure and its variance as
closely as possible. One of the Feature projection techniques is the Empirical Orthogonal function
(EOF) which will be used later.

As is known, some solutions of the partial differential equation (PDE) can be characterized by a
finite number of variables. For instance, a motion of a single soliton as the solution of a nonlinear
wave equation might be reduced to just a single dynamical variable describing, say, the location
of the soliton at time t. In this thesis, the time-series data X is given by a sequence of solution
vectors {un}Mn=1, with M number of time steps, of the partial differential equation (PDE) such as
the 1D advection equation and non-linear Korteweg-de Vries (KdV) equation. We will use four DR
techniques to find the new representation X̃ with a reduced number of coordinates compared to
the original data X. As is known, the study of eigenvalues provides a way to use the eigenfunctions
for dimensionality reduction. The main idea is to form a set of eigenfunctions as a basis in all four
DR techniques and the basis set is taken as the set of coordinates. Then our goal is to estimate
the smallest order basis as the intrinsic reduced dimensionality for the new representation of the
original data. In the EOF, DM, and extended dynamic mode decomposition (EDMD) methods,
we consider the entire time series as a data set to create a static orthonormal basis whose dominant
modes serve as reduced coordinates to approximate the original data. However, in the case of the
ALP algorithm, we will take the initial condition of PDE and also create the basis as the function
of time at each time step. Then we will project the initial condition onto a time-dependent basis
at each time step and form a data set of new representations of the original data. Ultimately,
we will compare and contrast the different kinds of methods in terms of the root-mean-squared
approximation error for a given reduced dimensionality as well as temporal error growth.

In the next chapter, we will give an overview of four DR techniques, namely empirical orthogo-
nal function (EOF), diffusion maps (DM), extended dynamic mode decomposition (EDMD), and
approximated Lax pairs (ALP). In Chapter 3, we find the optimal approximations for both data
sets respectively by implementing these methods in Matlab. Furthermore, we compare the results
obtained by the four different algorithms. Finally, Chapter 4 provides the conclusion.



Chapter 2

Dimensionality reduction methods
based on data and dynamics

In this chapter, we will review four methods for dimensionality reduction, namely Empirical orthog-
onal functions (EOFs), Diffusion maps (DM), Extended dynamic mode decomposition (EDMD),
and Approximated Lax-pairs (ALP) analysis. The first three of these are data-driven, requiring
no explicit knowledge of the underlying process to produce a static basis for reduction. The forth
method, ALP, constructs a reduced model in an evolving basis, requiring explicit knowledge of
the full model.

2.1 Empirical Orthogonal Function (EOF) analysis

EOF analysis is commonly used for dimensionality reduction, e.g. in atmospheric science. They
provide a way to shape the data in space-time relationships. Empirical orthogonal functions
(EOFs) are efficient to project the original data on an orthogonal basis obtained by finding the
eigenvectors of the covariance matrix of the data set. The corresponding eigenvalues describe a
measure of the percentage of the variance contributed by each EOF mode. Thus, the truncated
EOF expansion is optimal if in the sense that the maximum variance is captured in reduced
dimensional approximations. In fact, EOFs of a space-time process is an orthogonal linear trans-
formation into new lower dimensional space such that the greatest data variance on the first EOF,
the second largest variance on the second EOF, and so on are contributed by any projection of
the data.
EOFs suffer a geometric drawback [12] owing to the orthogonality of the EOF patterns in space
and time and decorrelation of the associated time series components (EOF coefficients, explained
in the method). For example, neuroscience data are in rarely orthogonal patterns which cannot
be well reflected by EOF.

2.1.1 Formulation of EOFs

The construction of empirical orthogonal functions is largely adapted from [22, 18, 13] for a data
set. We consider spatio-temporal processes generated by numerical discretization of PDEs. The
numerical time series is given by a data set X = (X1, X2, . . . , XM ), where Xi ∈ RN represents the
solution, e.g. on a grid of resolution N at (uniformly spaced) time ti. The time series generates
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an N ×M matrix as follows,

X =


x11 x12 . . . x1M
x21 x22 . . . x2M

...
...

...
...

xN1 xN2 . . . xNM

 (2.1)

The mean of the state at time i Xi = (x1i, x2i, . . . , xNi)
T , i = 1, . . . ,M , is given as:

⟨Xi⟩ =
1

N

N∑
k=1

xki (2.2)

For convenience, we will also use the notation X̄i for mean. The data matrix can also be trans-
formed to have a zero mean columns. The nonzero mean is subtracted out from each corresponding
column of X and mean centered data is given as:

X = X − 1N X̄ (2.3)

where 1N is the column vector of all ones of length N and X̄ = (X̄1, X̄2, . . . , X̄M ) is the vector
of sample means (column-wise means) of length M . The real symmetric covariance matrix [20] of
new data matrix X, given in 2.3, is defined by:

C(X,X) = XXT (2.4)

where C(X,X) ∈ RN×N . We will denote it by C for simplicity. For any vector a and random
vector Y , aTC(Y, Y )a = C(aTY, aTY ) = Var(aTY ) ≥ 0 as covariance is a generalization of
variance such that C(Y, Y ) = Var(Y ) and aTY is a scalar random variable. This implies that the
covariance matrix is positive and semi-definite. The eigen structure for covariance matrix C:

CE = EΛ (2.5)

where C is N ×N square matrix, Λ is the N ×N diagonal matrix which have eigen values of C on
the diagonal and E is N ×N square matrix with each column of E containing the corresponding
eigenvector of C.
For symmetric C, the eigenvectors may be chosen orthonormal. Since positive semi-definite matrix
C has all non-negative eigenvalues. We assume the eigenvalues of C are ordered and decreasing
such that λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0. Hence the eigenvectors ei, i = 1, . . . , N of C form an
orthonormal basis in RN , and empirical orthogonal functions (EOFs) can be defined by these
orthogonal eigenvectors of C.
Also the eigenvector matrix E, defined in (2.5), gives an orthonormal matrix such that E−1 = ET

and C = EΛET or ETCE = Λ. Now any z ∈ RN can be written in the form of a linear
combination of the eigenvectors ei,

z =

N∑
n=1

cnen = EC1, (2.6)

where C1 is the matrix of constants ci. we pre-multiply (2.6) by ET and obtain

ET z = ETEC1 = C1

or it can be written as
cn = z · en

where expansion coefficients cn are projections of z on en.
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Let Y ∈ RN , where Y is any column vector of X, with mean 0. We show in what sense EOF
projection of X is optimal. In particular, choose an eigenvector (or one pattern) e1 ∈ RN which

satisfies the condition ∥e1∥22 =
∑N

i=1 |e1i|2 = 1 such that error ϵ1 = ⟨∥Y − (Y.e1)e1∥22⟩ is minimized
in a mean-square sense. Here, ϵ1 is the difference between Y and the projection of Y on e1. To
make it minimal, we will first consider:

∥Y − (Y · e1)e1∥22 = (Y − (Y · e1)e1, Y − (Y · e1)e1)

= ∥Y ∥22 − (Y · e1)2

This implies

⟨∥Y − (Y · e1)e1∥22⟩ = ⟨∥Y ∥22⟩ − ⟨(Y · e1)2⟩ (2.7)

⇒ ϵ1 =

N∑
i=1

⟨|Yi|2⟩ − ⟨(Y · e1)2⟩ (2.8)

By using the property of the variance and mean such that Var(Y ) = ⟨Y 2⟩ − (⟨Y ⟩)2 and VarY =∑N
i=1 Var(Yi), equation (2.8) becomes

ϵ1 = VarY − ⟨(Y · e1)2⟩ (2.9)

Also,

(Y · e1)2 =

N∑
i=1

N∑
j=1

YiYje1ie1j = eT1 Y Y
T e1 (2.10)

Since ϵ1 is a function of e1 = (e11, e12, . . . , e1N ). We suppose the following function G by using
the Lagrange multiplier method,

G(e1) = ϵ1 + λ(

N∑
i=1

e21i − 1)

where λ is the Lagrange multiplier. Now equations (2.9) and (2.10) imply that

G(e1) = VarY −
N∑
i=1

N∑
j=1

YiYje1ie1j + λ(

N∑
i=1

e21i − 1)

Also, we assume that partial derivative of G are zero, i.e. ∂G
∂e1i

= 0, i = 1, . . . , N , then

∂G

∂e1i
= −2

N∑
j=1

YiYje1j + 2λe1i = 0, i = 1, . . . , N.

In matrix form, above identity implies that

C(Y, Y )e1 = λe1

where C(Y, Y ) = (YiYj)i,j=1,...,N is the covariance matrix of Y , then Since e1 is an eigenvector of
C corresponding to the eigenvalue λ1 and by the definition of covariance matrix given in (2.4),
(2.9) implies:

ϵ1 = VarY − λ1

N∑
i=1

e21i

= VarY − λ1 (2.11)



CHAPTER 2. DIMENSIONALITY REDUCTION METHODS BASED ON DATA
AND DYNAMICS 6

Thus ϵ1 = VarY − λ1 is minimal as λ1 is the largest eigenvalue and e1 is called the first EOF. To
continue the procedure, we take second eigenvector e2 ∈ RN with the conditions ∥e2∥22 = 1 and
e2 is orthogonal to e1 such that the misfit

ϵ2 = ⟨∥Y − (Y · e1)e1 − (Y · e2)e2∥22⟩ (2.12)

is minimized. By using the (2.7) and (2.11), (2.12) implies,

ϵ2 = ⟨∥Y − (Y · e1)e1∥22⟩ − ⟨(Y · e2)2⟩
= VarY − λ1 − ⟨(Y · e2)2⟩

Similar arguments done previously will be used for ⟨(Y · e2)2⟩ and since e2 is the eigenvector
corresponding to the second largest eigenvalue λ2 of C, above equation becomes,

ϵ2 = VarY − λ1 − λ2 (2.13)

Thus ϵ2 = VarY −
∑2

k=1 λk is minimal and e2 is the second EOF. Proceeding this procedure, we
conclude that the orthonormal eigenvectors e1, e2, . . . , eN of covariance matrix C corresponding
to the eigenvalues λ1, λ2, . . . , λN such that λ1 ≥ λ2 ≥ · · · ≥ λN form EOFs of X.
More precisely, Xn, for some time level n, can be expressed as a linear combination of the or-
thonormal eigenvectors ek, k = 1, . . . , N :

Xn =

N∑
i=1

αiei, (2.14)

where the coefficients αi are chosen in a way such that they are the coefficients of projection of Xn

onto the empirical orthonormal basis ei. Then αi = ei ·Xn. Thus (2.14) for the entire time series
X implies that α = ETX as E = (e1, e2, . . . , eN ) are orthogonal. This means that each solution
has the eigenmodes in a particular form of columns of the coefficient matrix α. To summarize
the above construction of EOFs, we will describe the following preposition [27] for N -dimensional
variable X.

Proposition 2.1.1. Let eigenvectors e1, . . . , eN be EOFs of X with mean zero, corresponding to
the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm of covariance matrix C, then the first k EOFs e1, . . . , ek,

where k = 1, . . . , N , minimize the error ϵk =
〈
∥X −

∑k
i=1(X · ei)ei∥22

〉
and the minimum mean

squared error ϵk = VarX −
∑k

i=1 λi for the corresponding first k eigenvalues of C.

Definition 2.1.2. Suppose that {e1, . . . , eN} are EOFs of X. Then αi = (X · ei), i = 1, . . . , N
are called EOF coefficients. Sometimes, the EOF coefficients are also called principal components
[27].

Next preposition [27] concludes that the variance contribution of any ith component to the variance
is just λi in the analysis of empirical orthogonal functions.

Proposition 2.1.3. If α1, . . . , αN , where αi, i = 1, . . . , N, is one-dimensional variables with mean
zero, are EOF coefficients of X. Then V ar αi = λi, i = 1, . . . , N , where λi is the ith eigenvalue
corresponding to the ith EOF, and covariance of the distinct EOF coefficients is zero.

Remark 2.1.4. If EOFs {e1, . . . , eN} are orthonormal basis of RN , then ∥X−
∑N

i=1(X ·ei)ei∥22 =

0 and preposition (2.1.1) implies that total variance Var X =
∑N

i=1 Var(Xi) =
∑N

i=1 λi. Thus the
following fraction of variance [20] gives the percentage distribution of nth EOF mode:

Var(Xn)

VarX
=

λn∑N
j=1 λj

. (2.15)

Moreover, for K < N , consider the truncated EOF expansion X̃ =
∑K

i=1 αiei which is the optimal

K−dimensional approximation to N−dimensional X if mean squared error between X and X̃
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is minimal. In this case, the fraction of variance, given in (2.15), which is accounted for by
K−dimensional approximation becomes ∑K

k=1 λk∑N
j=1 λj

.
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2.2 Diffusion maps

A diffusion map (DM) is a non-linear dimensionality reduction method. It is based on describing
a Markov random walk on the graph of the data [5, 25], for the analysis of the geometry of the
data. As is known, in the random walk, each jump has a probability (weight) associated with it.
Then a connection between two data points is described by the probability of jumping from one
point to another point in one step. To perform the random walk on our data set for a number of
time steps, we need a measure for the closeness or nearness of the data points. Thus we define
diffusion distance, see Section 2.2.3, by using this measure.
In general, diffusion maps framework is used to change the representation of data sets that involve
a large number of variables in the original space into a lower dimensional data structure with
a small number of parameters based on the underlying geometric structure of the specific data
set. The nonlinearity of the map means that there is no explicit relationship between the higher-
dimensional space (original space) and the reduced dimensional space (diffusion space). Also,
this is a distance-preserving map which means that a diffusion map transforms data from the
original space to diffusion space, such that Euclidean distance between data points in diffusion
space approximates the diffusion distance between points in the original space. In other words, if
the points are close in lower-dimensional space, then they are also close in the original space and
vice versa. Now we will study the diffusion map process [5, 7, 17] in the following steps:

2.2.1 Diffusion Kernel function on a data set

We first define a data set X that contains the data points, i.e. the columns of the matrix X ∈
RN×M . In order to determine the connection between the data points of the data set, we define
a kernel, i.e. a real valued and non-negative symmetric function. We consider, for instance, the
Gaussian kernel map K : RN ×RN → R on the columns of original data set X ∈ RN×M , defined
by

K(x, y) = e−(
||x−y||2

ϵ ), (2.16)

for some parameter ϵ, where ϵ > 0 and ∥.∥ is a L2 norm. The choice of ϵ is not trivial and it can
be chosen by different ways [2].
From (2.16), we notice that K(x, y) ≫ 0 if data points x and y are close from each other (useful
information of their distance) and it becomes negligible if points are far apart (irrelevant infor-
mation of their distance). So, it provides the relationship between pairs of points in the data
set X. In fact, a neighborhood is defined at each point of the set X. For instance, a neighbor-
hood of a point x is the set of all points y which are connected to x and x and y are connected
if K(x, y) > τ for some cutoff parameter τ > 0. Thus the kernel function K forms a positive
semi-definite distance matrix K ∈ RM×M such that Kij = K(xi, xj), whose each row of which is
obtained by measuring distance of one data point with all other points. Thus, the number of rows
of the matrix depends on the number of data points. This implies that there exist real-valued
eigenvectors and non-negative eigenvalues for the matrix K.

2.2.2 Diffusion matrix and diffusion process

Next, we can normalize the rows of such a given matrix K by just dividing the degree of each node.
To obtain the degree, we form a vector by taking the sum of each row of the distance matrix K and
form the diagonal matrix D of this vector. So, we set P = D−1K ∈ RM×M , with Pij = p(xi, xj),
which is normalized diffusion matrix. Also, the diffusion matrix P can be expressed as Markov
transition matrix [21] such that

p(x, y) =
K(x, y)

α(x)
(2.17)

where α is the normalization constant and given by

α(x) =
∑
y∈X

K(x, y)
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Thus, (2.17) shows that the transition probability p(x, y) between the points x and y is proportional
to K(x, y). If the data points are not sampled uniformaly [23] on the manifold, then normalized

kernel K(x,y)
α(x)α(y) can be used instead of K(x, y).

Thus, P forms a new kernel which preserves the positivity, but it is not symmetric. Lemma 1 [7]
depicts that a symmetric matrix P′ can be derived from P as

P′ = D1/2PD−1/2

P and P′ have the same eigenvalues and,

ψk = φkD
1/2, ϕk = φkD

−1/2

where ψk and ϕk are left and right eigenvectors of P respectively and φk are the eigenvectors of
P′. This matrix P gives the probabilities for one time step in a random walk from point i to point
j and also contains the information about the geometry of the data set.

2.2.3 Diffusion Distance

The diffusion distance metric is related to the diffusion matrix and is given by:

Dt(x, y)2 =
∑
u∈X

|pt(x, u) − pt(y, u)|2

=
∑
k

|Pt
ik −Pt

kj |2
(2.18)

where pt(x, .) and pt(y, .) describe the probability vectors defined by the transistion matrix P and
Pt

ik is the (i, k)-element of Pt, t denotes the (integer) power of the matrix P.
The paths along the geometric structure are the main contributors to the diffusion distance. The
quantity, Dt(x, y) sums over all possible paths of length t connecting x and y. However, the term
pt(x, y) has large values for paths due to the sums of the probabilities of all possible paths of
length t between x and y. To remain the diffusion distance small, the quantity |pt(x, u)− pt(y, u)|
must approach zero. This implies that probabilities between x and u, and y and u are almost
equal if x and y are well connected through u. As linear or non-linear data structures follow
some geometric structure and diffusion metrics can approximate distances along this geometric
structure. So, in new diffusion space, the diffusion distance in data space becomes Euclidean
distance for convenience, and mapping of the data points into a Euclidean space becomes easy.
Moreover, from [14], diffusion mapping shows robustness to noise perturbation of the data set and
it allows geometric analysis at different time scales due to diffusion distance. Because diffusion
distance sums over all paths joining two points and gives a smoothing effect on perturbations if
there are small perturbations of the data set.

2.2.4 Diffusion map from the high dimensional space to the lower di-
mensional space

Lastly, we will talk about the diffusion map which maps coordinates between the original data
space and diffusion space. Therefore, we compute the eigenvalues and corresponding eigenvectors
of P for defining the diffusion map. Since the eigenvalue, λ0 = 1 of P by the lemma 2 [14]
and all eigenvalues are positive and non-increasing by the positivity of the distance matrix K.
Hence the eigenspectrum of P is contained in [0, 1]. Now P has a discrete sequence of eigenvalues
and corresponding eigenfunctions (λ0, ψ0), (λ1, ψ1) . . . and we sort them in a way such that
1 = λ0 > |λ1| ≥ |λ2| ≥ · · · ≥ |λn| ≥ 0 and Pψi = λiψi, i = 0, 1, 2, . . . . Moreover these eigenvectors
form an orthonormal basis in L2 space. In fact, diffusion distances can be interpreted in terms of
dominant eigenvectors and their corresponding eigenvalues of P because eigenvectors associated
with the largest eigenvalues decay slowly in the sense of diffusion and they represent the dynamic
of the data set on a long-time scale. Then diffusion map Ψt : RN → Rs, in t steps, which embeds
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the data set X ⊆ RN into a Euclidean space R of s dimension, s < N , and is given by scaled
eigenvectors such that

Ψt(Xi) =


λt1ψ1(Xi)
λt2ψ2(Xi)

...
λtsψs(Xi)

 (2.19)

where Xi ∈ RN , i = 1, . . . ,M and λ1, λ2, . . . , λs are the eigenvalues of matrix P corresponding to
the eigenvectors ψ1, ψ2, . . . , ψs. Since λ0 = 1, so its corresponding trivial eigenvector ψ0 = 1 does
not provide information about the data. Therefore, it was not added in the representation given
in (2.19). So, the diffusion map is used to find the fewer coordinates to represent data points in
the diffusion space. Thus, the Euclidean distance between any two data points, for instance, Xi

and Xj , in the new space is defined as

∥Ψt(Xi) −Ψt(Xj)∥2 =

s∑
k=1

λ2ts (ψk(Xi) − ψk(Xj))
2 (2.20)

By using the definition of diffusion distance in (2.18) and from the proposition 2.2.1, we obtain,

∥Ψt(Xi) −Ψt(Xj)∥2 =
s∑

k=1

λ2ts (ψk(Xi) − ψk(Xj))
2

= ∥pt(Xi, u) − pt(Xj , u)∥2

= Dt(Xi, Xj)
2

(2.21)

Hence the diffusion map encapsulates the data according to diffusion metric in reduce dimensional
space and the Euclidean distance between two mapped points in reduced dimensional space is
equal to the diffusion L2 distance between data points in the original space.
The aim is to find fewer coordinates for the new representation of data points in the diffusion
space. Since the eigenvalues, λ1, λ2, . . . of P approach zero, and their modulus is strictly less than
1. Therefore, the sum in the definition of diffusion distance defined in (2.21) can be computed for
the desired accuracy level δ > 0 with a finite number of terms such that

s(δ, t) = max{ℓ : |λℓ|t > δ|λ1|t}

Thus, the diffusion distance in (2.20) becomes

∥Ψt(Xi) −Ψt(Xj)∥2 =

s(δ,t)∑
k=1

λ2ts (ψk(Xi) − ψk(Xj))
2 (2.22)

and new s(δ, t)-dimensional diffusion mapping Ψt : RN → Rs(δ,t) is defined as

Ψt(Xi) =


λt1ψ1(Xi)
λt2ψ2(Xi)

...
λts(δ,t)ψs(δ,t)(Xi)

 (2.23)

where Xi ∈ RN , i = 1, . . . ,M , t is the number of steps and λ1, λ2, . . . , λs(δ,t) are the eigenvalues
of matrix P corresponding to the eigenvectors ψ1, ψ2, . . . , ψs(δ,t).

The two main benefits of diffusion mapping make it convincing over other algorithms. Since
it is nonlinear and preserves the local structure [2]. Because the input data is not linear normally
and lies on nonlinear manifolds. In most cases, preserving the distance of the close points is more
significant than preserving the distances of the points that are far apart.

Proposition 2.2.1. If the diffusion map Ψt transforms the data into the Euclidean space Rs,
then the Euclidean distance in the diffusion space is equal to the diffusion distance between the
points in the data set X .
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2.2.5 The Diffusion Mapping Algorithm

1. Consider a data set X in high dimensional space as the input.

2. Define a kernel K(x, y) to determine the distance between data points x and y. And we
establish a symmetric distance matrix Kij = K(xi, xj).

3. We create the normalized diffusion matrix P by the normalization of the rows of the distance
matrix.

4. Compute the eigenvectors of the diffusion matrix P.

5. Lastly, map the data from high dimensional data set X to lower dimensional data set by
using the dominant eigenvectors of P in the definition, given in (2.23), of the diffusion map
at time t.
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2.3 Extended dynamic mode decomposition (EDMD)

We can associate every dynamical system with a Koopman operator which encodes the significant
properties of the system. The Koopman operator describes the evolution of the observables which
are the functions of the state of the given system. Also, the Koopman operator framework on
the dynamical systems is useful in some ways because the Koopman dynamics are linear and
infinite dimensional even when the dynamical system is nonlinear. EDMD algorithm is a popular
numerical method that is used to approximate the spectral properties of an infinite dimensional
Koopman operator. Here we will focus on the connection between the Koopman operator and
EDMD model [16, 26, 4].

2.3.1 The Koopman operator

We first consider discrete-time nonlinear dynamical system (M, n,F), where the state space M ⊂
RN , discrete-time n ∈ Z and F : M → M is the evolution operator.
Since the Koopman operator [16] acts on the evolution of observables represented by functions of
state space M in the function space F . Here we consider F = L2(M, ρ) the Hilbert space, such
that

L2(M, ρ) = {g : M → C : ∥g∥ L2
(M,ρ)

<∞}

where

∥g∥ L2
(M,ρ)

=

∫
M

|g(x)|2 ρ(dx).

where ρ is a positive, single-valued analytic function defined on M. Here we assume that g is full
state observable such that g(x) = x.
The linear Koopman operator [19] K : F → F associated with the map F : M → M is defined as:

Kg = g ◦ F (2.24)

Thus, the Koopman operator defines a new linear dynamical system (F , n,K) which governs the
evolution of each observable value. In other words, the new linear dynamical system is defined by
the evolution of observables.
Notably, a nonlinear dynamical system in finite dimensional space is representable by an equivalent
linear dynamical system in infinite dimensional space. We obtain a linear approximation of a
nonlinear system and also trade linearity for the dimensionality as the Koopman operator K is
infinite-dimensional. It is also noticeable in (2.24), for a given state x, (Kg)(x) is computed by
applying K to the observable g and then evaluate Kg at x or we can apply F to x and then
evaluate g at this updated position. In fact, F and K act on different spaces, but they show the
same fundamental dynamics.
Moreover, ρ and M are chosen in a way such that K is bounded operator. Now we can study the
spectral analysis of a bounded linear operator K. Additionally, the Koopman operator has only
a discrete spectrum [3] and its eigenfunctions {Φ}∞i=1 span the space of observables. Although
each i-th component gi of the vector-valued observable g is a scalar valued observable. And we
assume that this scalar valued observable gi is in the span of the set of K eigenfunctions which
do not form a basis for F . So, we will describe the Koopman mode decomposition for a given
vector-valued observable g,

x = g(x) =

K∑
k=1

νkϕk(x) (2.25)

where K is infinite, Φk is the k-th Koopman eigenfunction corresponding to the eigenvalue µk and
the vectors νk are the Koopman modes associated with the observable g and the k-th eigenfunction.
By applying K on both sides of (2.25) and the linearity of K and (2.24) give the following identity,

F(x) = Kg(x) =

K∑
k=1

µkνkϕk(x) (2.26)
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The above expression indicates that the dynamics associated with each of the eigenfunctions are
described by its corresponding eigenvalue.
Theoretically, the linear Koopman dynamics is easy to do analysis, but it might be challenging to
compute its spectral properties owing to its infinite dimensionality. Then we will briefly describe
the EDMD method to compute the Koopman mode decomposition.

2.3.2 The EDMD algorithm

In this case, the EDMD algorithm [16] is used to approximate the finite-dimensional representation
of the Koopman operator K in the form of a linear finite-dimensional map K. Thus, the spectral
properties of the Koopman operator K will be approximated by the spectral properties of K. The
EDMD algorithm [26] requires, firstly, a pair of data sets at different time steps

X = [x1, x2, . . . , xM ]

and
Y = [y1, y2, . . . , yM ]

where xi, yi ∈ M are the snapshots of the system state with yi = F(xi). Also, yi = F(xi) is
the snapshot at the next time step for a given snapshot xi, and secondly, we pick a dictionary of
observables

Ψ = {Ψ1,Ψ2, . . . ,ΨK}

where each Ψi ∈ F , i = 1, . . . ,K. Now, we assume the span U of Ψ such that U = {aT Ψ : a ∈ RK}
which is a linear subspace of F . The optimal choice of the set of dictionary remains an open
question. In this case, we assume that the dictionary of observables is rich enough to approximate
a few of the leading Koopman eigenfunctions accurately.
The main idea is to form a finite-dimensional approximation K ∈ CK×K of the Koopman operator
K. For any Φ ∈ U such that Φ =

∑K
k=1 akΨk = aT Ψ, we can have this,

KΦ = aTKΨ = aT Ψ ◦ F

If U is invariant subspace under the action of the Koopman operator, then KΦ = bT Ψ, for some
b ∈ RK . Then, a finite-dimensional representation of Koopman operator K is defined as the matrix
K ∈ CK×K with bT = aTK. Thus, for all a, we obtain KΨ = Ψ ◦ F. In order to find the matrix
K [16], we will use the snapshots of the two data sets at different time steps defined previously
with the condition yi = F (xi) and solve the minimization problem,

K =
argmin

K̃ ∈ Ck×K J(K̃) =

M∑
m=1

∥Ψ(ym) − K̃Ψ(xm)∥2

If U is invariant under K, then residual J(K) is zero. Otherwise, for J(K) > 0, the previous
procedure seeks to find the K which minimizes the residual. The unique solution to the above
identity is,

K = G+A (2.27)

with

G =
1

M

M∑
m=1

Ψ(xm)∗Ψ(xm)

A =
1

M

M∑
m=1

Ψ(xm)∗Ψ(ym)

where + denotes the pseudoinverse and K,G,A ∈ CK×K . Consequently, the eigenvalues of K
are the EDMD approximations of the eigenvalues of the Koopman operator. If ξj is the j-th
right eigenvector of K corresponding to the eigenvalue µj , then the EDMD approximation of the
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Koopman eigenfunction is Φj = ξTj Ψ with the same eigenvalue µj . And for any observable vector
g = BΨ, the j-th Koopman mode associated with observable is defined as νj = Bαj , where αj is
the left eigenvector of K.
A drawback of the EDMD algorithm is making a priori choice of the dictionary which becomes
a challenge for the general applicability of the EDMD algorithm. The selection of a dictionary
impacts the approximation of the spectral properties of the dynamical system. To overcome
this issue, this paper [16] provides the development of an iterative approximation algorithm that
couples the EDMD with a trainable dictionary that is defined by an artificial neural network.
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2.4 Reduced-Order Modeling analysis based on Approxi-
mated Lax pairs (ALP)

In order to study the ALP method [9, 10], we first take a general form of an evolution PDE in a
bounded domain Ω of Rd, d ≥ 1, given as

∂tu = F (u), (2.28)

with an initial condition u(x, 0) = u0(x), x ∈ Ω. Here F (u) is a function of u and its derivatives
with respect to x1, x2, . . . , xd. We look for the solution

u(x, t) =

N∑
j=1

βj(t)ϕj(x, t)

where ϕj(x, t) is the time-dependent basis. The next task is to compute this reduced order time-
dependent basis. For this, we will introduce approximated Lax pairs (ALP). The term Lax pairs
refer to a pair of two linear operators L(u) and M(u) depending on the solution u(x, t), where
x ∈ Ω is the spatial variable of PDE at time t. The main idea for this method is to use the
eigenfunctions Φ1,Φ2, . . . of the operator L(u). These eigenfunctions form a time-dependent basis
Φm(x, t), where m > 0, which is used to approximate the solutions of PDE. In fact, they form a
complete Hilbert basis of Hilbert space  L2(Ω) with the inner product ⟨Φ,Ψ⟩. Moreover, we assume
that the operator L is self-adjoint such that ⟨LΦ,Ψ⟩ = ⟨Φ,LΨ⟩ for all Φ, Ψ ∈ L2(Ω).
Next, we consider spectral equation for L,

LΦm = λmΦm (2.29)

where λm = λm(t), m > 0, are the eigenvalues, such that λm(t) → +∞ as m→ ∞, corresponding
to the eigenfunctions Φm(x, t). To propagate the eigenmodes in time, we assume an orthogonal
evolution operator Q(t), such that QTQ = QQT = I, which satisfies the following condition,

Φ(t) = Q(t)Φ(0), ∀Φ (2.30)

By differentiating the above equation with respect to t and use Φ(0) = QT (t)ϕ(t), we have

Φt = QtΦ(0)

= QtQ
T Φ (2.31)

We define the other linear operator M(t) = Qt(t)Q
T (t), then (2.31) becomes,

Φt(t) = M(t)ϕ(t) (2.32)

M(t) is skew-symmetric as MT = QQT
t = −QtQ

T = −M. We differentiate (2.29) with respect
to t, use the equation (2.32) and obtain,

LtΦm + L(Φm)t = (λm)tΦm + λm(Φm)t (2.33)

⇒ LtΦm + LMΦm = (λm)tΦm + λmMΦm

= (λm)tΦm + M(λmΦm)

= (λm)tΦm + MLΦm

⇒ (Lt + LM−ML)Φm = (λm)tΦm (2.34)

To solve the equation (2.34) for non-trivial eigenfunctions Φm(x, t), we have Lt +LM−ML = 0.
We define the commutator [L,M] = LM−ML of two operators L and M, then we obtain the
following Lax equation:

Lt + [L,M] = 0 (2.35)
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Now we take the equation (2.33) and use the Lax equation for Lt to obtain

(λm)tΦm = (L − λm)(Φm)t + (ML−LM)Φm

= (L − λm)((Φm)t −MΦm) (2.36)

We take the inner product of Φm on both sides of the above equation and use the fact that L−λm
is self-adjoint,

⟨Φm, (λm)tΦm⟩ = ⟨(L − λm)Φm, (Φm)t −MΦm⟩.

Since λm is an eigenvalue corresponding to the eigenfunction Φm of L, then above equation implies

⟨Φm,Φm⟩(λm)t = ⟨0, (Φm)t −MΦm⟩

⇒ ⟨Φm,Φm⟩(λm)t = 0

For non-trivial eigenfunctions, the above identity implies that we have isospectral evolution for
any m,

(λm)t = 0 (2.37)

This means that eigenvalues λm, m > 0, are independent of time and they are constant. It is
concluded that if an integrable evolution PDE can be expressed as the Lax equation with (2.32)
and (2.37), then eigenfunctions of operator L can be used to reconstruct the solution u of PDE
at every time step. Next, we consider the linear Schrödinger operator Lχ associated with a real
number χ > 0,

Lχ(u)Φ = −∆Φ − χuΦ (2.38)

where u(x) is the solution of PDE and is called a real potential function and the Laplacian ∆ in
d dimensions.
First, we will study the ALP algorithm from [10]. The approximation of the solution u of PDE in
the reduced basis,

u ≈ ũ =

NM∑
m=1

βmΦm, F (u) ≈ F̃ (u) =

NM∑
m=1

γmΦm

Then the given PDE ∂tu = F (u),

⇒
NM∑
m=1

β̇mΦm + βm∂tΦm =

NM∑
m=1

γmΦm

.
⇒ β̇ +Mβ = γ

The proposition 2.4.1 explains that approximation M of M(u) can be computed in the space
defined by the eigenfunctions of Lχ(u) and the evolution equation of the eigenvalues of Lχ(u)

can be driven. We define Θij = ⟨F̃ (u)Φj ,Φi⟩. Then the reduced order approximation of the Lax
equation, (2.41) and (2.43) is given by

dΛ

dt
+ χΘ = ΛM −MΛ,

λ̇m = −χΘmm,

and
Mmp(u) =

χ

λp − λm
Θmp, for λm ̸= λp

respectively. Now representation of the multiplication by F̃ (u) is defined as

Θij = ⟨F̃ (u)Φj ,Φi⟩ =

NM∑
k=1

γkTijk
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where Tijk = ⟨ΦkΦj ,Φi⟩ is the third order tensor. We compute the time derivative of third order
tensor Tijk and given as

Ṫijk = ⟨∂tϕkϕj , ϕi⟩ + ⟨ϕk∂tϕj , ϕi⟩ + ⟨ϕkϕj , ∂tϕi⟩

Then
Ṫijk = {M,T}(3)ijk

where {M,T}(3)ijk =
∑NM

l=1 (MliTljk+MljTilk+MlkTijl). In order to summarize the above procedure,
we have a system of equations which demonstrates the dynamics in the reduced order space:

• Reduced order equation β̇ +Mβ = γ

• Representation of F (u), Θij =
∑NM

k=1 γkTijk

• Evolution of the eigenvalues, λ̇i = −χΘii

• Approximation of Lax operator, M, Mij(u) = χ
λj−λi

Θij , for λi ̸= λj

• Evolution of the tensor, Ṫijk = {M,T}(3)ijk

• Relation between β and γ, γi = γi(β)

where i, j, k = 1, . . . , NM . One of the limitations of the above ALP algorithm is disappointing
speed-up. Because we need to propagate the third order tensor which is quite expensive.

Next, We will study the Lax method by using the inverse scattering method [9]. Figure 2.1
describes the scattering transform, which is used to solve the nonlinear PDE, for instance, KdV
equation.

Scattering
ũ(0)

Time
evolution

ũ(t)u(x, t)

Inverse Scattering

u(x, 0)

PDE

Figure 2.1: It describes the inverse scattering transform for the PDE. Source: [8]

From (2.38), the bounded solution of the equation ∆Φ +χuΦ = 0 implies that if u(x) > 0, x ∈ R,
then there is a finite number of negative (discrete) eigenvalues. Now, we find the eigenfunctions
of the operator Lχ(u0), where u0 is the initial condition of the given PDE. In this case, there are
two types of eigenfunctions corresponding to the discrete spectrum of negative eigenvalues and
the continuous spectrum of positive eigenvalues. We first define κm =

√
−λm, m = 1, 2, . . . for

the negative eigenvalues λm and order them in this way κ1 > κ2 > . . . .
To characterize the behaviour of the bounded solution for x → +∞, eigenfunctions Φm,m =
1, 2, . . . can be written as,

Φm = cme
−κmx (2.39)

where fixed real constant cm is obtained by normalizing the mth eigenfunction in L2(Ω) such that∫
Ω

Φ2
mdx = 1. Thus (2.39) means that eigenfunctions decay exponentially rapidly for negative

eigenvalues as x → +∞. This implies that there exists a finite number of negative eigenvalues.
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Thus, the finite-dimensional subspace Vm of L2(Ω) spanned by eigenfunctions Φ2
m,h,m = 1, . . . , N−

corresponding to the negative eigenvalues of L(u). Here N− denotes the number of negative
eigenvalues. Now approximation ũ0 ∈ Vm of the solution u can be projected on the eigenmodes
Φ2

m,h corresponding to the negative eigenvalues λm,h, m = 1, 2, . . . , N− by using Deift-Trubowitz
formula from [9]

ũ0(x) =
1

χ

N−∑
m=1

κm,hΦ2
m,h (2.40)

where κm,h =
√
−λm,h, m = 1, 2, . . . , N−. For large values of χ > 0, the more negative eigenvalues

exist, the approximation is more accurate. Thus χ is chosen in such a way that the error between
the exact solution u and approximating solution ũ is minimal in L2-norm.
The next proposition from [9] gives an approximation of M(u) in the space L2(Ω) spanned by
the eigenfunctions of L(u) and describes how to derive an evolution equation satisfied by the
eigenvalues for any arbitrary PDE for which the construction of both operators L and M satisfies
(2.29) and (2.32) even if M is not defined explicitly. Also, the eigenfunctions, used to approximate
the solution u(t), of L(u(t)) are denoted by (Φm(t))m=1...N− and the eigenfunctions, which are
used to approximate the operator M(u(t)) or the evolution equation of the eigenvalues, of L(u(t))
are denoted by (Ψm(t))m=1...NM

.

Proposition 2.4.1. Let u be a solution of PDE given in (2.28) and let Lχ(u) defined in (2.38)
for a real number χ > 0. Also suppose NM ∈ N and for m ∈ {1, . . . , NM}, λm(t) is an eigenvalue
of Lχ(u(x, t)) corresponding to the eigenfunction Ψm(x, t) normalized in L2(Ω). Suppose that the
operator M(u) defined by ∂tΨm = M(u)Ψm.
Then the evolution of λm is given by

∂tλm = −χ⟨F (u)Ψm,Ψm⟩, (2.41)

and the evolution of eigenfunction Ψm satisfies for p ∈ {1, . . . , NM}, where NM denotes the number
of modes associated with negative eigenvalues and some positive eigenvalues if it is required,

⟨∂tΨm,Ψp⟩ = Mmp(u) (2.42)

where

M(u) =

{
Mmp(u) = χ

λp−λm
⟨F (u)Ψm,Ψp⟩, if p ̸= m and λp ̸= λm,

Mmp(u) = 0, if p = m or λp = λm,
(2.43)

and M(u) ∈ RNM×NM is the skew-symmetric matrix.

Next, we find approximating solution ũn+1
h ∈ Vh for different time steps, n = 0, 1, . . . , of u.

Also the previous proposition provides an approximate way to propagate the eigenfunctions and
eigenvalues at time t which are linked to Lax pairs. We will write ũn+1 by using the form illustrated
in (2.40) for known eigenvalues λm and eigenmodes Φm of Lχ(u) for m = 1, 2, . . . , N−,

ũn+1
h =

N−∑
m=1

αn+1
m (Φn+1

m,h )2 (2.44)

By inserting the above expression in ⟨Lχ(ũn+1
h )Φm, Φp⟩ = λm⟨Φm,Φp⟩ and using the orthonor-

mality of the eigenfunctions, we get the following system of linear equations for αn+1
m at each time

step,
N−∑
m=1

αn+1
m ⟨(Φn+1

m,h )2, (Φn+1
p,h )2⟩ = − 1

χ

(
λn+1
m + ⟨∆Φn+1

p,h ,Φn+1
p,h ⟩

)
(2.45)

Now we need to get the approximated propagation of eigenvalues λn+1
m,h and eigenmodes Φn+1

m,h at
each time step as they are time-dependent and evolve as t changes. As the evolution equation of
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the eigenvalues is already defined in (2.41) in proposition 2.4.1. So, we apply numerical explicit
Euler scheme for evolution equation (2.41), then we obtain,

λn+1
m,h = λnm,h − δt(χ⟨F (unh)Ψn

m,h,Ψ
n
m,h⟩) (2.46)

where λn and Ψn
m,h, m = 1, . . . , NM are known at time step n. The expression for eigenfunctions,

taken from [9], is used to compute the eigenfunctions for the next time steps,

Ψn+1
m,h =

NM∑
p=1

(
I + δtM(unh) +

δt2

2
M(unh)2

)
mp

Ψn
p,h (2.47)

where m, p = 1, . . . , NM and the matrix M(unh) approximates the operator M(u(tn)) with the
definition in (2.43).



Chapter 3

Numerical comparison of
dimensionality reduction methods

So far, we have demonstrated EOF, DM, EDMD, and ALP in the previous chapter. Now, we will
study the numerical results obtained by using these methods for two data sets, formed from the
approximating solution sequence of the advection equation and the KdV equation. In general, we
will use the notation X for the original data set. We will visualize how the methods behave in
order to reduce the dimensionality.

3.1 Numerical setup and data

3.1.1 Problem formulation and numerical discretization of the advec-
tion equation

Here, we first consider the 1D advection equation (or wave equation) with periodic boundary
conditions:

ut + cux = 0 (3.1)

where u = u(x, t), x ∈ [0, L], t ∈ [0, T ], and c ̸= 0 a constant velocity. The analytical solution
u = u0(x − ct) is determined by the initial condition u0(x) = ( 1+cosx

2 )100 and represents a wave
that moves to the positive x-direction if velocity c > 0. As we know that PDE can be discretized
in terms of ordinary differential equation (ODE) with infinite number of variables. The solution
to the PDE is used as the source of data for dimension reduction methods and obtained by
using the finite-difference methods to discretize the PDE with respect to N = 100 grid points
along the spatial variable x at M = 2N time steps. Here we discretize the advection equation by
applying the fourier transform for the Matlab code. The numerical method generates the sequence
(u1, u2, . . . , uM ) of approximating solutions at M different time steps. The wave solution is just a
vector of length N at each time step and the solution is translated at each time step and returns
to its initial state due to periodic boundary conditions. Its snapshot is illustrated in Figure 3.1.
Each solution approximation is a vector of length N . So, we have M number of data points with
N -dimensional coordinates. Hence the original data set X ∈ RN×M . Thus X has M vectors
{X1, X2, . . . , XM}, as the numerical solutions of the advection equation at M steps, of length N .

20
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3.1.2 Problem formulation and numerical discretization of KdV equa-
tion

In this section, we will first mention the well-known nonlinear KdV equation, with periodic bound-
ary conditions:

ut + uux − uxxx = 0 (3.2)

with u = u(x, t), x ∈ [0, L], t ∈ [0, T ] and the given initial condition u(x, 0) = 6 sech2(x − L
2 ).

Its exact solution u(x, t) = c
2 sech2(

√
c
2 (x− ct)) is known as a soliton which moves at the constant

speed c. We discretize KdV-equation by using the scheme based on a classical semi-discretization
in space, taken from section 3 of [1], for N = 200 interval points with respect to spatial variable
x and for M = 6000 time steps. We get a sequence (u1, u2, . . . , uM ) of approximating solutions
at M different time steps. The snapshot of the numerical solution is displayed in Figure 3.2.
Thus, the sequence of approximating solutions of KdV-equation at M time steps form the data
X ∈ RN×M . Finally, X = {X1, X2, . . . , XM} contains M vectors of length N . These vectors are
the approximating solutions of KdV equation at M steps.
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3.2 Numerical results with EOFs

First, we will implement EOF and thus we find the covariance matrix C of both data sets, the ad-
vection equation data and KdV equation data, respectively and find eigenvectors ei, i = 1, . . . , N ,
of C ∈ RN×N corresponding to the eigenvalues which are sorted in descending order. Also, in the
matrix form, X can be expressed as a linear combination of the EOFs,

X = Eα (3.3)

where basis E = (e1, . . . , eN ), each ei, i = 1, . . . , N is of length N and the coefficients α =
(α1, . . . , αM ), each αj , j = 1, . . . ,M has length N , are chosen in a way such that they are the

coefficients of approximation X̃ of X. Thus, for entire time series X, (3.4) implies that α = ETX
as E = (e1, . . . , eN ) are orthogonal. For some k ≪ N , the approximation of X is

X̃ = Ẽα̃ (3.4)

where Ẽ = (e1, . . . , ek), each ei, i = 1, . . . , k has length N and α̃ = (α1, . . . , αM ), each αj , j =
1, . . . ,M has length k.
Hence the basis set E works as the coordinates. The truncated EOF expansion becomes better if
maximum variance is obtained in approximation. As is already mentioned in a proposition 2.1.3,
the variance contribution can be obtained by each eigenvalue. If we include more terms in the
linear combination, then it results in a closer approximation to the original data set. Also, the
eigenvalues are sorted from largest to smallest. The largest eigenvalue means that the associated
eigenvector contributes more heavily to the reconstruction of the original data. Therefore, each
subsequent term used in the linear combination contributes less and less to the reconstruction of
the original data. We have the freedom to choose the lower number of basis. Moreover, there is
no clear cutoff point in Figure 3.3 to make a specific selection for the number of basis. Here, we
take, for instance k = 15, to get the approximation X̃ of X. Figure 3.3 shows that 15 modes give
us more or less 10 percent projection error. First 15 EOF modes are implemented for advection
equation data in Figure 3.4. To check the quality of the solution, the mean squared error between
the original data and approximate data is illustrated in Figure 3.5.
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Figure 3.4: Left: the numerical solution u(x, t) for the advection equation data X with N = 100.
Right: the new representation of X by using the first 15 EOFs.
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Figure 3.5: Temporal error growth for the approximation obtained from EOFs for the advection
equation data X.

Our aim is to compare the dimensionality reduction methods. For comparison, we will take 15
modes for all methods. we also choose 15 EOF modes for the KdV equation data and they are
implemented in Figure 3.6 with the minimized mean squared error illustrated in 3.7.
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Figure 3.6: Left: the original data set X, taken from the KdV equation data, is shown with 200
eigenvectors. Right: the approximation of X by using the first 15 EOF modes.
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Figure 3.7: This plot shows the temporal error growth achieved by using 15 EOF modes for the
approximation of X from the KdV equation data.
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3.3 Numerical results with Diffusion maps (DM)

The construction of the diffusion map (DM) process is now implemented for the advection equa-
tion data and KdV equation data respectively. Thus, the original set X ∈ RN×M of data points
is shown in Figure 3.8 on the left. In this plot, three lines show that the wave travels the first
half, then covers the full path, and again travels half respectively. Firstly, we compute kernel
matrix K for ϵ = 0.7 for the advection data. We know that kernel measures the distance of each
vector Xi, i = 1, . . . ,M from all M vectors. Each row of the kernel matrix contains the distance
of one vector from all other vectors. Thus K ∈ RM×M . Next, we find Markov transition matrix
P = diag(d)−1K, where d is the column vector containing the sum of each row of kernel matrix
K. Then we find eigenvalues and eigenvectors of P and sort the eigenvalues in descending order.
Lastly, we compute two components of the diffusion map for t = 1. Diffusion map embeds data
points from RN into 2-dimensional reduced space by taking two eigenvectors ψ1 and ψ2 of P . Here
Ψ1 = λ1ψ1 and Ψ2 = λ2ψ2 by using the definition of diffusion map in (2.23). As is already known
that the wave solution is just a vector of length N at each time step and the solution is translated
at each time step and returns to its initial state due to periodic boundary conditions. Therefore,
wave solution at different time steps moves around a closed curve, then the data points are mapped
into the circle in the right plot of Figure 3.8 and diffusion map preserves the underlying topology,
for instance, periodicity, of the data points.
Next, we compute kernel matrix K for ϵ = 2 and N+1 eigenvalues of P . Then we find their corre-
sponding eigenvectors used in (2.23) to compute the diffusion map (DM) modes (Ψ1,Ψ2, . . . ,ΨN )
with each Ψi of length N . For DM modes, we also use the similar matrix form representation,
presented in (3.3) and (3.4), for X and X̃ respectively. In this case, Figure 3.9 depicts around 10
percent projection error for almost 60 modes. And Figure 3.10 provides the comparison between
the data X and its projection onto 60 DM modes.
For comparison between the DR methods, we choose the same k = 15 to get the new representa-
tion of X in the case of a diffusion map. In Figure 3.11, the original data set X ∈ RN×M is with
eigenvectors (Ψ1, . . . ,ΨN ) and its reconstruction X̃ ∈ RN×M is projected onto scaled eigenvectors
(Ψ1, . . . ,Ψk) of diffusion map. Also, the quality of the reconstructed solution is measured by
computing and plotting the mean squared error, which is the function of time, in Figure 3.12.
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Figure 3.8: Space-time representation of data points taken from the advection equation data are
shown in the left plot, and the right plot shows that data points are mapped into a perfect circle
in diffusion coordinates.
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Figure 3.10: Comparison of the advection equation data X with 100 eigenvectors (left) with the
approximation X̃ using first 60 scaled DM eigenvectors (right) in the extended space.
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Figure 3.11: Comparison of the advection equation data X with 100 eigenvectors (left) with the
low dimensional approximation X̃ with first 15 scaled DM eigenvectors (right) in the extended
space.
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Figure 3.12: Temporal error between the original data set and the reconstructed solution for the
advection equation data.
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Next, the diffusion map process will be used for KdV equation data X ∈ RN×M . In a similar
way, the distance matrix K is computed by choosing ϵ = 165. Figure (3.13) provides the around
50 percent projection error for almost 60 DM modes and Figure (3.14) provides the comparison
between X and its approximation using 60 DM modes. The comparison of original data X and
its reconstruction X̃ with k = 15 is illustrated in Figure 3.16 with the minimum error shown in
3.17.
Notably, Figure 3.15 indicates that the numerical rank of Pt decays by increasing the values of
t. As explained in [5], the rows of the Markov transition matrix Pt provides the probability of
transition in t steps which are based on the connectivities on the data set X. This means that
eigenvectors associated with the largest eigenvalues are smooth and have the slowest decay and
they provide the long-term behavior of the solution.
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Figure 3.14: Comparison of KdV data X and its projection using 60 DM modes.
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Figure 3.15: The decay of the eigenvalues for higher powers of transition matrix P.
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Figure 3.16: The KdV advection data (original data set) X is plotted by using 200 eigenvectors
(left). While its approximation X̃ is projected onto the first 15 scaled diffusion map (DM) eigen-
vectors (right).
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Figure 3.17: Above plot indicates the bounded temporal error between X and X̃.
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3.4 Numerical results with Koopman basis

First, we will use the EDMD algorithm for the advection equation data and then for the KdV
equation data. We know that the Extended Dynamic Mode Decomposition (EDMD) algorithm
approximates Koopman eigenvalues and Koopman eigenfunctions. For EDMD, we form a pair
of data sets from the original data set X ∈ RN×M , such that X = [X1, X2, . . . , XM ] and Y =
[Y1, Y2, . . . , YM−1], with Yi = Xi+1. The matrix K is the finite-dimensional approximation of
infinite-dimensional Koopman operator K and given as:

K = G+A,

where + denotes the pseudoinverse,

G =
1

M

M∑
i=1

XiX
T
i ,

and

A =
1

M

M−1∑
i=1

XiY
T
i

with K,G,A ∈ CN×N . Here, we use the right eigenvectors of the matrix K. The results are
illustrated in Figures 3.18, 3.20, and 3.21 for the new representation X̃. For the Koopman operator,
the eigenvalues are in ascending order. This case is quite interesting as compared to EOF and
DM because Figure 3.19 illustrates that projection error does not change much after more or less
30 Koopman eigenfunctions.
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Figure 3.19: In contrast to EOF and DM methods, the projection error remains almost stable and
does not increase after around 30 Koopman eigenfunctions for advection data.
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Figure 3.20: Left: the advection equation data X for N = 100. Right: the approximation of X by
using the first 15 Koopman eigenfunctions.
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Figure 3.21: Error for the approximation obtained from Koopman basis for the advection equation
data.

Now we will use the EDMD algorithm for the KdV equation data in a similar way as we mentioned
for the advection data previously. However, in this case, we use left eigenvectors, known as
Koopman modes, of the approximating matrix K because they give much better results than the
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right eigenvectors of K. We choose k = 15 for the new representation to comapare the results.
Also, the results are illustrated in Figures 3.22, 3.23, and 3.24.
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Figure 3.22: The projection error becomes almost constant after around 70 Koopman modes for
KdV data, compared to EOD and DM modes

Figure 3.23: Left: the KdV equation data X for N = 200. Right: the new representation of X by
using the first 15 Koopman modes.
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Figure 3.24: Time error for the approximation obtained from Koopman modes for the KdV data.
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3.5 Numerical results with ALP

Now we will apply ALP algorithm [10] on the advection equation, described in (3.1). It is an
integrable equation because the advection equation is exactly solvable. Also an exact Lax pair
is defined by the Schrödinger operator Lχ, χ > 0, given in (2.38) and the operator M = −cux
defined in (2.32). Thus from [11], Lχ and M satisfy the Lax equation (2.35) and advection equation
is the compatibility condition for Lχ and M. Here we choose χ = 150, N=100, Number of time
steps (M) = 200 and Tmax = 1, and we have ∆t = Tmax

M .

We take initial condition u0(x) = e−250(x−0.25)2 , which is a periodic function on the domain [0, 1],
as the data and find the eigenfunctions of Schrödinger operator Lχ(u0)Φ = −∆Φ − χu0Φ. These
eigenfunctions create the initial condition for the time-dependent basis called ALP modes. We
project u on the orthonormal eigenfunction ϕi of Schrödinger operator L as an expansion of the
form u ≈

∑N
i=1 βi(t)ϕi(x, t). Then we get:

N∑
j=1

β̇jϕj + βj∂tϕj + c

N∑
j=1

βj∂xϕj = 0

⇒

β̇i +

N∑
j=1

Mijβj + c

N∑
j=1

Dijβj = 0,

where Mij = ⟨∂tϕj , ϕi⟩ and Dij = ⟨∂xϕj , ϕi⟩. Thus, the ALP reduced-order method gives the
following systems of ODEs:

β̇i +

N∑
l=1

Milβl − γi = 0

λ̇i + χ

N∑
l=1

Tiilγl = 0

Ṫijk =

N∑
l=1

(MliTljk +MljTilk +MlkTijl)

Ḋ =
N∑
l=1

(−DilMil +MilDil)

(3.5)

where,

γi = −c
N∑
l=1

Dilβl and Mij =
χ

λj − λi

N∑
l=1

Tijlγl

for i, j, k = 1, . . . , N. For advection velocity c = 0.5, the Matlab code is implemented for the
above ALP algorithm. In Figure 3.25, we compare exact solution of the advection equation and
its projection ũ achieved by projecting the solution u onto 15 ALP modes at M time steps.
Next, we form the advection data X ∈ RN×M by computing the exact solution u(x, t) with respect
to N = 100 intervals along the spatial variable x at M = 200 time steps. In order to get a new
representation X̃ of X, we use the projection ũ =

∑N
i=1 βi(t)ϕi(x, t), where ϕi(x, t) is changing

in time, of u onto the 15 ALP modes at M time steps. In Figure, 3.26, X and X̃ are compared
and it is shown that wave travels with given 200 time steps. Their mean squared error is shown
in Figure 3.27.
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Figure 3.25: Above figure shows the exact solution u(x, t) and its approximation with 15 ALP
modes.
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Figure 3.26: Comparison of the advection data X and its new representation X̃ are presented.
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Figure 3.27: Time increasing error for the approximation obtained from ALP time-dependent basis
for the advection equation data.
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We will next apply ALP algorithm [9] on KdV equation data. KdV is also an integrable system.
As is known that an exact Lax pair is defined by the Schrödinger operator Lχ, χ > 0, given in
(2.38) and the operator M = −6u∂xu − ∂3xu defined in (2.32). Thus Lχ and M satisfy the Lax
equation (2.35), and KdV equation is compatibility condition [11] for Lχ and M. In this case, we
choose χ = 1, N=200, number of time steps (M) = 2000 and Tmax = 5.
To form the data, we take initial condition u0(x) = 2sech2(x − 15) on the domain [0, 40] and
find the eigenfunctions of Schrödinger operator Lχ(u0)Φ = −∆Φ − χu0Φ. These eigenfunctions
form the initial condition for the time-dependent basis. We compute the exact solution u(x, t) =
2sech2(x−4t) of the KdV equation and its projection ũ achieved by projecting the solution u onto
15 ALP time-dependent modes at M time steps.
Next, we form original data set X ∈ RN×M by computing the exact solution u(x, t) with respect
to N = 200 intervals along the spatial variable x at M = 600 time steps. In order to get a new
representation X̃ of X, we project the initial condition onto the 15 ALP dynamic modes at M
time steps. In Figure 3.28, X and X̃ are compared and it is shown that wave travels with a given
600-time steps. Their mean squared error is shown in Figure 3.29. Figure 3.30 presents the better
projection of X onto the 20 ALP modes and their lower error is shown in Figure 3.31.
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Figure 3.28: Comparison of KdV data X and its new representation X̃ are presented.
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Figure 3.29: Time increasing smooth error for the approximation obtained from ALP time-
dependent basis for the KdV equation data.
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Figure 3.30: Comparison of KdV data X and its approximation X̃ are presented with 20 ALP
modes.
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Figure 3.31: Time increasing error for the approximation obtained from ALP time-dependent basis
for the KdV equation data.
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3.6 Analysis for the numerical results

For advection equation data, in Figure 3.32, EDMD provides lower error than EOF and DM al-
gorithms with fewer oscillations. Error due to ALP is the lowest, but this is not smoother and
increases in time due to the time-dependent basis.

In Figure 3.33, in the case of KdV data, the error by the EOF method is more uniform and
lower than the error due to DM modes. But the smoothness of error by DM modes might depend
on the chosen value of ϵ = 165. Also, the choice of ϵ is not trivial and is data-independent. This
means that the smoothness of the error can be controlled by selecting different values of ϵ. EDMD
error is surely better and more uniform than EOF. The ALP algorithm provides the least error,
but ALP temporal error increases because of the dynamic nature of the approximation. Overall,
the ALP algorithm works the best in both examples.
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Figure 3.32: Comparison of errors achieved by the ALP, EDMD (or Koopman eigenfunctions),
EOF, and DM modes for the advection equation data respectively. ALP shows the least error,
but the error increases in time due to the dynamic nature of the approximation.
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Figure 3.33: Comparison of errors achieved by the ALP, EDMD (or Koopman modes), EOF, and
DM modes respectively by using the data from the KdV solution sequence.



Chapter 4

Conclusion

In order to summarize the key points, the main motivation of the thesis is to analyze and com-
pare four dimension reduction (DR) methods, EOF, EDMD, DM, and ALP. For this, we have
constructed data sets, taken from the sequence of the approximating solution set of two PDEs,
namely the Advection equation and KdV equation, and used these two data sets for DR methods.
Our results from DR methods indicate the importance of dimensionality reduction which plays a
vital role in the analysis and understanding of the numerical data. In fact, dimensionality reduc-
tion helps to extract some useless information from data. As is already seen in the results, the
error is not much affected by including more dimensions after the intrinsic dimensionality. Thus,
we have the freedom to select a lower number of the basis for making the data size small and
enhance the readability of data. Especially, there is no more change in the projection error by
increasing the dimensions in the case of Koopman eigenfunctions. The projection error becomes
almost constant after a particular number of Koopman modes.

It is noticeable in the results; four DR methods were applied for the advection equation data and
the KdV equation data respectively. It is presented that the basis (modes) from EOF, EDMD,
and DM are independent of time, whereas the basis set from the ALP algorithm evolves in time.
And the basis from ALP changes as a function of time at each time step. Consequently, the ALP
algorithm provides a better basis with more work, in contrast to other methods, but we cannot
store ALP basis efficiently as it changes as a function of time. In the case of the advection data,
the results indicate that the ALP algorithm works the best and gives the least mean squared error
in contrast to EOF, EDMD, and DM methods. Although, the EOF shows better results than
DM for both examples. For both data sets, the Koopman eigenfunctions and modes provide lower
errors than EOF and DM errors. While an error due to DM algorithm depends on the positive
constant. Concerning freedom in the choice of the parameter that does not depend on the data in
the DM algorithm, DM can be more convincing than the EOF technique. Owing to the dynamic
nature of the approximation, the ALP error increases over time. Overall the ALP algorithm gives
the least error in both examples.

There has been a growing use of DR techniques to handle the high dimensionality of the data.
As can be seen, several companies and organizations deal with high dimensional data sets which
are deployed to solve complex and real-world problems, for instance, in analyzing MIR brain
imaging scans and minimizing the cancer patient waiting time, etc. To remove poor-quality data
or misleading columns or variables from the high dimensional data, DR techniques are very useful
and beneficial. No doubt, DR techniques help improve the accuracy of the model of data sets
due to less redundant data, speed up the model training time due to fewer dimensions and make
the model simpler for data professionals and researchers. Additionally, Artificial intelligence (AI)
developers work with massive data. To produce an AI model, it is required to take the three stages,
such as understanding the complex data, cleaning the data of unnecessary information, and using
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the model. Thus, the DR techniques are very significant and used at the stage of cleaning in the
process.
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