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Abstract 
It is important to monitor the water quality of rivers, as people are dependent on this source of fresh 

water, and all other services rivers provide. Chlorophyll-a (chl-a) concentration is an important 

indicator for a proper quality of water and eutrophication. Hyperspectral satellite imagery can be used 

to estimate chl-a concentration in surface water, but methods for this have mostly been applied to 

large water bodies, like lakes, estuaries, and oceans. The aim of this research was to investigate how 

medium spatial resolution, hyperspectral PRISMA imagery can be used for estimating and monitoring 

water quality of rivers and at what accuracy. For this, two existing chl-a concentration algorithms, a 

band-ratio algorithm (Gurlin et al., 2011) and a normal difference chlorophyll index (NDCI) algorithm 

(Mishra & Mishra, 2012), both using PRISMA bands 34 (665nm) and 38 (709nm), were used. These 

algorithms were validated using a local chl-a concentration and reflectance dataset (n=11) of the 

Danube-Sava confluence. These algorithms were also recalibrated and validated using this same 

dataset to investigate if the results improve. The original Mishra and Mishra NDCI algorithm had the 

overall best performance, with a NMAE of 0.07 and a NRMSE of 0.09. It was possible to map spatial 

patterns of chl-a in rivers with qualitative concentration estimates and to refine that into quantitative 

estimates with a certain uncertainty range. The performance of both algorithms did not improve after 

recalibration. Large-scale sources of chl-a in rivers, like larger tributaries, could be deduced from the 

chl-a distribution maps, showing that the Danube has a higher chl-concentration than the Sava before 

the confluence. The (limited) mixing of water at the confluence and the distribution of chl-a after the 

confluence could be observed and interpreted. Small scale sources of chl-a, like wastewater outlets, 

could not be deduced in this research as the spatial resolution of the chl-a distribution maps was still 

too high compared the small and localized chl-a influx of these sources. With further validation of the 

Mishra and Mishra NDCI algorithm using a more extensive dataset, these methods could be developed 

into an automated monitoring system, as medium resolution hyperspectral imagery is suitable for 

estimating and monitoring the water quality of rivers.  

 

 

  



 
 

3 
 

Table of content 
Abstract ................................................................................................................................................... 2 

Abbreviations and symbols ..................................................................................................................... 5 

1. Introduction and background .............................................................................................................. 6 

1.1. The importance of river water quality ......................................................................................... 6 

1.2. Water quality monitoring ............................................................................................................. 7 

1.3. Water quality monitoring through remote sensing ..................................................................... 8 

1.4. Aim of the research .................................................................................................................... 10 

2. Methods and data ............................................................................................................................. 11 

2.1. Research area ............................................................................................................................. 11 

2.2. PRISMA imagery ......................................................................................................................... 13 

2.2.1. PRISMA ................................................................................................................................ 13 

2.2.2. Pre-processing of PRISMA imagery ..................................................................................... 14 

2.2.3. PRISMA imagery of research area ....................................................................................... 15 

2.3. In-situ measurements................................................................................................................. 16 

2.3.1. General ................................................................................................................................ 16 

2.3.2. Sampling locations ............................................................................................................... 16 

2.3.3. Sample properties and analysis ........................................................................................... 19 

2.4. Chlorophyll-a concentration algorithms .................................................................................... 20 

2.4.1. General ................................................................................................................................ 20 

2.4.2. Band-ratio algorithm ........................................................................................................... 21 

2.4.3. NDCI algorithm .................................................................................................................... 22 

2.5. Image analysis ............................................................................................................................ 23 

2.5.1. Image preparation ............................................................................................................... 23 

2.5.2. Sampling site localisation and reflectance extraction ......................................................... 24 

2.6. Calibration and validation .......................................................................................................... 29 

2.6.1. Calibration of algorithms ..................................................................................................... 29 

2.6.2. Validation of original algorithms ......................................................................................... 29 

2.6.3. Validation of calibrated algorithms ..................................................................................... 30 

2.7. Calculating chlorophyll-a concentration distribution ................................................................. 30 

3. Results ............................................................................................................................................... 32 

3.1. Algorithm calibration .................................................................................................................. 32 

3.1.1. Band-ratio algorithm ........................................................................................................... 32 

3.1.2. NDCI algorithm .................................................................................................................... 32 

3.2. Algorithm validation ................................................................................................................... 32 

3.2.1. Gurlin and calibrated band-ratio algorithm ........................................................................ 32 



 
 

4 
 

3.1.2. Mishra and Mishra and calibrated NDCI algorithm ............................................................. 34 

3.3. Chlorophyll-a distribution .......................................................................................................... 36 

3.3.1. Gurlin and calibrated band-ratio algorithm ........................................................................ 36 

3.3.2. Mishra and Mishra and calibrated NDCI algorithm ............................................................. 39 

4. Discussion .......................................................................................................................................... 42 

4.1. Review of the methods .............................................................................................................. 42 

4.1.1. In-situ sampling ................................................................................................................... 42 

4.1.2. Image preparation ............................................................................................................... 43 

4.1.3. Validation of the original algorithms ................................................................................... 45 

4.1.4. Calibration of the algorithms............................................................................................... 45 

4.1.5. Validation of the calibrated algorithms ............................................................................... 45 

4.2. Algorithm performance .............................................................................................................. 46 

4.2.1. Performance of the Gurlin and calibrated band-ratio algorithm ........................................ 46 

4.2.2. Performance of the Mishra and Mishra and calibrated NDCI algorithm ............................ 46 

4.3. Spatial distribution and sources of chlorophyll-a ....................................................................... 47 

4.3.1. Spatial distribution of chlorophyll-a .................................................................................... 47 

4.3.2. Deduction of sources of chlorophyll-a ................................................................................ 50 

4.4. Supporting research ................................................................................................................... 51 

4.5. Chlorophyll-a monitoring system ............................................................................................... 52 

4.6. Future research .......................................................................................................................... 54 

4.6.1. Using different hyperspectral sensors................................................................................. 54 

4.6.2. Different water quality parameters .................................................................................... 54 

4.6.3. Small-scale sources of pollution .......................................................................................... 55 

4.6.4. Application on other rivers .................................................................................................. 55 

5. Conclusion ......................................................................................................................................... 56 

References ............................................................................................................................................. 57 

Acknowledgement ................................................................................................................................. 60 

 

  



 
 

5 
 

Abbreviations and symbols 
ANN  Artificial neural networks 
ASI  Agenzia Spaziale Italiana 
Chl-a  Chlorophyll-a 
GCP  Ground control points 
λ  Wavelength 
MAE  Mean average error 
NDCI  Normalized difference chlorophyll index 
NDVI  Normalized difference vegetation index 
NIR  Near-infrared 
NMAE  Normalized mean absolute error 
NRMSE  Normalized root mean square error 
R  Reflectance 
R̄  Average reflectance 
R2  Coefficient of determination  
RMSE  Root mean square error 
SD  Standard deviation 
SWIR  Shortwave infrared 
TOA  Top of the atmosphere 
TSS  Total suspended solids 
VNIR  Visible and near-infrared 
WDF  Water directive frame 
∝  Is proportional to  
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1. Introduction and background 

1.1. The importance of river water quality 
Human population depends on fresh and clean water, and thus people tend to concentrate around 

fresh surface water. 87.5% of the world population lives in the vicinity of a river, ranging from a small 

stream to the largest rivers on Earth (Kummu et al., 2011). Rivers provide humans with provisioning, 

spiritual, and regulating and maintaining services (Gilvaer et al., 2016). The provisioning services of 

rivers are most familiar, as they directly sustain and benefit our society and give the river its economic 

value. River water is used for drinking water production, irrigation, and industrial processes. Flooding 

covers the banks of rivers with fertile sediments for agriculture. Rivers maintain an ecosystem from 

which food like fish and shellfish could be harvested. Rivers are a natural highway for transport of 

people and bulk goods, and even a sewer that allows waste(water) to be discharged and taken out of 

sight. The spiritual service gives the rivers a high intrinsic value, as well as an economic value. In many 

societies, rivers play an important religious role. Recreation also falls under spiritual services, and it is 

an important one. The river allows for the practice of water sports and provides beautiful scenery, but 

also its surrounding ecosystem allows for many options for recreation. While the use of these 

provisioning and spiritual services often depends on a good water quality, many of the rivers uses 

affect the water quality in a negative way by changing the natural current of rivers and decreasing the 

water quality. The decrease of river water quality is not only the result of the direct use of the rivers 

services, as pollutants originating from further away can also be introduced to the river through 

groundwater. Pollution of rivers affect people’s health. Globally, more people die of unsafe water than 

from any form of violence (including war) combined (UNDESA, 2014). A poor river water quality also 

affects the health and stability of the ecosystem.  

The regulating and maintaining services can be quickly overlooked and not always fully known to the 

public, but they play a vital role in the stability of both society and ecosystems. These important 

services include maintaining ecosystems, flood protection, and local climate control. The health and 

stability of an ecosystem surrounding a river depends on this river and its water quality. Rivers play an 

important role in flood protection, as rainwater is channelled off and regular small-scale flooding and 

sediment deposit elevates the land, preventing subsidence and larger floods. Evaporation of 

waterbodies such as rivers can cool surrounding temperature and increase humidity. A local river 

ecosystem is a finely balanced system, where small disruptions can have major consequences. These 

effects can be felt locally, but also further downstream. A decline of the river water quality can limit 

some of the river’s ecological services. 

The quality of river water is determined by various properties and constituents. Generally, water 

quality parameters can be divided into three broad categories, namely physical, chemical, and 

biological (Sutadian et al., 2016; Swamee & Tyagi, 2007). Common physical water quality parameters 

include temperature (°C), Total Suspended Matter (TSS) (mg/L), and turbidity (NTU). Examples of 

chemical water quality parameters include pH(-), dissolved oxygen (mg/L), and biological or chemical 

oxygen demand (mg/L). Finally, biological water quality parameters include chlorophyll-a (chl-a) 

concentration and (μg/L) Coloured Dissolved Organic Matter (CDOM) (mg/L). The focus of this research 

is chl-a, a photosynthetic pigment that can be found in leaves of plants, but also in aquatic algae. This 

parameter was chosen because not much research on estimating chl-a concentration in rivers through 

remote sensing has been performed. Also, the interaction of this pigment with light is a comprehensive 

process, making researching this more feasible. Chl-a absorbs light in the visible part of the spectrum, 

mostly blue and red wavelengths. Absorption occurs less in green light, and light in the NIR part of the 

spectrum is scattered. The energy gained from light absorption is used for oxygenic photosynthesis. 

Algae growth is often associated with stagnant water, but it also occurs in present in rivers. Chl-a was 
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also selected as it can have a big impact on local environment. A bloom of algae, or eutrophication, 

brings unpleasant odours to the surrounding area, decrease the light penetration in water, and, in 

some cases, can release toxins. The decomposition of the dead algae removes dissolved oxygen from 

the water. When this occurs, too much oxygen is removed from the water, making the water 

inhabitable for aquatic life (Bhateria & Jain, 2016). Such algae bloom is parked by an overabundance 

of nutrients. In flowing water, primarily phosphorus and nitrogen are nutrients that induce an 

autotrophic state (Dodds, 2006). These nutrients occur in the water naturally, but an overabundance 

is often human induced, for example with the use of fertilizers which seep through the groundwater 

to the river.  

Water quality of rivers must be approached differently than that of lakes, estuaries, and coastal 

regions. Rivers have freshwater that moves in one direction along its banks, and the depth of rivers is 

generally rather limited compared to larger bodies of water. Along the course of the river, water quality 

can change due to inflow of tributaries, or discharge or leaching of pollutants. This makes that the 

water quality at one point of the river could be very different than the quality further downstream. 

The (limited) mixing of input of tributaries can cause a horizontal or vertical stratification, causing 

changes in water quality along the cross-section of a river. Lakes are stagnant bodies of mostly fresh 

water. Lakes itself differ from each other and can be classified based on their chemistry, salinity, and 

nutrient content (Bhateria & Jain, 2016). The last one determines the productivity of a lake. Eutrophic 

lakes have excessive nutrients, which enables them to support an abundance of either aquatic plants 

or algae, but also put them at risk of eutrophication. Within a lake, water properties and quality can 

highly differ spatially. Normally 4 distinct zones can be identified that provide different ecological 

niches (Bhateria & Jain, 2016); the littoral zone, the shallow, nutrient-rich water near the shore; the 

limnetic zone, the layer of open-water with sufficient sunlight; the profundal zone of deep, cooler 

water not penetrated by sunlight and with limited dissolved oxygen; and  finally, the benthic zone, the 

deepest zone located at the bottom of the lake. Water quality in rivers can highly differ between such 

zones. Estuaries and coastal regions can have various levels of salinity due to the influx of fresh water 

from rivers. Where the movement of water is almost absent in lakes and in one direction as in rivers, 

movement in estuaries and coastal areas is versatile, caused by waves, tides, bathymetry, river influx, 

and currents. This makes that water quality can vary at each location and depth, also enabling the 

support of different ecosystems. 

1.2. Water quality monitoring 
Monitoring river water quality is necessary to ensure the safe usage of water and to protect the 

environment. The gathering of local water quality data and building of a dataset enables a long-term 

analysis where seasonal patterns can be detected as well as individual anomalies. The more frequent 

this monitoring is performed, the more accurate an analysis can be. Most countries have a legal 

framework for water management that includes the legal limits of water quality parameters for all 

types of surface water bodies, and the responsible parties for and methods of water quality 

monitoring. The "Directive 2000/60/EC of the European Parliament and of the Council establishing a 

framework for the Community action in the field of water policy" (European Parliament, 2000), or 

Water Framework Directive (WFD), has set the standards for water quality and monitoring for all 

members of the European Union. The WFD and the later amendments to the directive identify the 

types of water bodies, define the “healthy” biological and chemical conditions of such water bodies, 

and outlines the water quality monitoring. This WFD serves as a blueprint for the water quality 

monitoring and management of all European member states, such as the Netherlands.  

Dutch water legislation is based on the frameworks set out in the WFD and supplementary EU 

frameworks on water management, ground water quality, and water pollution. In the Netherlands, 
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these responsibilities are divided over several governmental bodies (Rijksoverheid, n.d.). The national 

government is responsible for water quality monitoring of the larger lakes, rivers, and channels. The 

water boards are responsible for covering regional bodies of waters. Lastly, the provinces oversee 

ground water monitoring. On behalf of the national government, Rijkswaterstaat, the Directorate-

General for Public Works and Water Management of the Dutch Ministry of Infrastructure and Water 

Management, conducts this monitoring. The locations, parameters, sampling methods, frequency, and 

analysis methods are described in the “protocol monitoring en toestandsbeoordeling 

oppervlaktewaterlichamen KRW”, or the “protocol for monitoring and condition assessment surface 

waterbodies WFD” (Rijkswaterstaat, 2020). The Netherlands is the basin of the Ems, Rhine, Meuse, 

and Scheldt rivers. According to the protocol (Rijkswaterstaat, 2020), the main streams of these rivers 

are not subjected to chl-a concentration measurements until they reach the coast. Lakes, channels, 

estuaries, deltas, and coastal waters are subjected to chl-a monitoring at least once a year. Chl-a 

concentration is measured through the analysis of water samples. Samples are taken, depending on 

the water depth, with a rosette system, extended sampling tubes, or bottles. Sampling at estuaries, 

deltas, salt lakes, and coastal waters require multiple samples at multiple sites on a line, with enough 

samples to form a depth profile at each site. In channels, and brackish and fresh lakes, sampling at 

least one site is required, comprising of the average value of at least two samples at various depths. 

These methods of chl-a concentration monitoring are labour intensive and require a lot of resources. 

Samples have to be gathered manually, and boats or ships are needed for sampling at estuaries, deltas, 

salt lakes, and coastal waters. Part of this work could be relieved if the chl-a monitoring was be 

performed remotely, namely through satellite remote sensing. With satellite remote sensing, chl-a 

monitoring could also be extended to areas where up until now, the monitoring was not deemed 

feasible or beneficial. Rijkswaterstaat has experience with pilots mapping algae growth in the North 

Sea using satellite imagery. Earth observation does not yet replace the in-situ sampling with ships, but 

a pilot is now being conducted where in-situ and remote sensing monitoring is done simultaneously 

for 3 years to assess the suitability of remote sensing for monitoring algae growth in the North Sea 

(Rijkswaterstaat, 2021). 

Another example of national water legislation can be found in Serbia. The monitoring of surface water 

quality in Serbia is determined by national law in the ‘Decree on determination of the annual 

monitoring program water status for 2018’ (Uredbu o utvrđivanju godišnjeg programa monitoringa 

statusa voda za 2018). This decree determines the parameters, location, frequency, and methods of 

water quality analysis for all freshwater bodies in Serbia, which in turn is executed by the 

Environmental Protection Agency of the Serbian Ministery of Environmental Protection (Agencija za 

zaštitu životne sredine, Ministarstvo zaštite životne sredine). The Environmental Protection Agency has 

three water quality monitoring stations at the Danube-Sava confluence (Environmental Protection 

Agency, 2020), which is the area of interest for this research. One station is upstream of the Danube, 

located just before the confluence. The second station is located upstream of the Sava. The third 

station is located downstream of the confluence of the Danube and the Sava. One measuring station 

near Smederevo, further downstream of the Danube and outside of the research area, also belongs to 

this network. Sampling is performed at a single point in the river, 50cm below the water surface 

(Environmental Protection Agency, 2020). Every 1 to 2 weeks, a water quality report is published, 

including a variety of physical, chemical, biochemical, and organic parameters. Unfortunately for this 

research, these reports do not include chlorophyll-a concentrations. 

1.3. Water quality monitoring through remote sensing 
Satellite remotes sensing has a wide range of applications, one of which is studying properties of 

surface water. Most of this research has been performed on large bodies of open water, like oceans, 

seas, estuaries, lakes, and reservoirs, as this allows the use of most common satellites that have a 
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larger spatial resolution (A. G. Dekker, 1993; Gholizadeh et al., 2016; Neil et al., 2019). Surface water 

and its constituents can be studied through remote sensing by looking at the inherent optical 

properties of water constituents, namely the scattering, absorption, and optical volume scattering (A. 

G. Dekker, 1993). What inherent optical properties at what wavelengths should be studied depend on 

the parameters or constituents of interest. (A. G. Dekker, 1993) showed that chl-a absorbs light most 

dominantly in the red region of the spectrum (676nm), with scattering, or reflecting, of green light 

(550nm). Most prominent is the scattering in the NIR region (700nm) (Gitelson, 1992).  

There is an inherent relation between the concentration of a constituent like chl-a and its absorption 

and scattering (A. G. Dekker, 1993; Gitelson, 1992; Gurlin et al., 2011; Menken et al., 2006; Mishra & 

Mishra, 2012). This relation is the foundation of estimating the concentration of chl-a in water. A 

prominent absorption at a wavelength indicates a higher concentration of a set constituent. The 

reflectance at a wavelength of high scattering by a constituent should not variate much with higher or 

lower concentrations of set constituent. Vital for establishing such a relationship is that no other 

constituents affect the absorption or reflectance at the wavelengths researched. CDOM has the most 

prominent absorption in the blue and green part of the spectrum, but also absorbs light in the red and 

NIR regions (Mishra & Mishra, 2012), which in theory could affect the relationship of the reflectance 

at these wavelengths with chl-a concentration. When researching chl-a concentration using its 

absorption and reflectance peak, Mishra & Mishra (2012) assumed that the absorption at of CDOM at 

these wavelengths would be of similar magnitude, not affecting the relationship with chl-a. 

Where there has been extensive research to applying these techniques on large water bodies, only 

little research exists on applying this to rivers. This concept has been applied using hyperspectral 

airborne sensors (Olmanson et al., 2013; Shafique et al., 2003), and using satellite systems is the next 

step logical step. A start has been made, for example by Kuhn et al. (2019), using Landsat-8 and 

Sentinel-2 products to estimate chl-a concentration and turbidity on large Amazon, Columbia, and 

Mississippi rivers. Also Prasad et al. (2020) made progress in estimating chl-a of the Upper Ganga River, 

using different band-ratios using Landsat-8 bands. Applying such methods of satellite remote sensing 

to rivers could offer a wide range of solutions to problems concerning water quality estimations. 

Various water quality parameters of river water, among which chl-a concentration, could be estimated 

using hyperspectral, medium-high resolution satellite imagery. PRISMA (Agenzia Spaziale Italiana, 

2020), a satellite launched in 2018 by Agenzia Spaziale Italiana (Italian Space Agency), or ASI, offers the 

opportunity to estimate these parameters in smaller water bodies, like rivers, with its 30m spatial 

resolution and its 238 spectral bands. Such estimations could be performed remotely and 

automatically. The product of such estimation would be a distribution map of a set water quality 

parameter, covering more area of the river in a single moment than any in-situ analyses could perform. 

It would enable entities to perform the required water quality monitoring using only little resources. 

It could also offer national and international governmental bodies the opportunity to verify water 

quality data if monitoring is performed insufficiently or completely lacking. Possible sources of river 

water constituents or pollution could be deduced from these estimations as well. This would improve 

strategies for water management, enable a better enforcement of water legislation, and prevent 

pollution. 

There are drawbacks as well to using satellite remote sensing for water quality monitoring that are 

taken into consideration in this research. Where in-situ sampling offers the opportunity to measure 

water quality parameters at various depths, remote sensing allows to estimate only an average 

concentration of the top column of a water body. It must be considered that other constituents could 

significantly affect the reflectance of the wavelengths of interest. Implementing satellite remote 

sensing water quality monitoring would have practical limitations, the data continuity is easily 
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compromised. Satellite image acquisition is highly dependent on good weather. Any malfunctions of a 

satellite system are sometimes not easily solved, and comparable, replacing satellite systems are 

scares (Schaeffer et al., 2013). It is a labour-intensive process to acquire sufficient data to perform a 

satisfactory calibration and validation before a method can be widely applied to river water quality 

estimations under various circumstances. Such factors could cause policy makers and managers 

hesitant in implementing a remote sensing water quality monitoring system (Schaeffer et al., 2013). 

1.4. Aim of the research 
All in all, there is still much to learn on applying remote sensing water quality monitoring on rivers. The 

improvement of spatial and spectral resolution of satellite systems offers the opportunity to explore 

this. It is clear there is a need for it, as public health, effects of climate change, and a sustainable use 

of natural resources are topics that become more important by the day. The aim of this research is to 

investigate how suitable medium spatial resolution hyperspectral PRISMA imagery can be used for 

estimating and monitoring water quality of rivers and at what accuracy. This aim can be divided into 4 

research questions: 

1. How accurate can existing chl-a concentration algorithms be used to estimate the 

concentration of the Danube/Sava confluence from hyperspectral imagery? 

2. How do the results improve when these algorithms are calibrated with local training data? 

3. To what extend can sources or chlorophyll-a be deduced from spatial patterns? 

4. To what extend would the methods used in this research be suitable for establishing a long-

term water quality monitoring system? 

  



 
 

11 
 

2. Methods and data 
This chapter describes necessary background information, the methods used, and the data needed for 

this research. This chapter follows the steps largely in the order that were taken in this research. The 

choice of research area, the Danube-Sava confluence, is substantiated and further details on the area 

is provided. The operational history of the PRISMA system is provided, as well as the technical details 

of the system and the available imagery of the research area. After this, the location, methods, and 

data of the in-situ water quality measurements are discussed. Next, two models used for the chl-a 

concentration estimation are explained. Image analysis is the next stap in the methods, as this 

describes the preparation of the PRISMA images used and the extraction of the reflectance data 

needed for the calibration and validation step. In this step the methods are discussed for the validation 

of the original models and the recalibration and validation using the local dataset. This chapter ends 

with the explanation on how the chl-a distribution maps were produced with resulting algorithms.  

2.1. Research area 
The area chosen for this research is the confluence of the Danube and Sava rivers in Belgrade, Serbia 

(Figure 1, 2 and 3). The research area is limited by the size of the PRISMA images, as these images 

cover an area of 30x30km. The Danube is one of the longest rivers in Europe and with one of the 

highest discharge volumes. To enable the analysis of PRISMA images with its 30m spatial resolution 

and offer the opportunity to detect spatial patterns of chl-a, rivers must have a sufficient width. The 

average width of the Danube in Belgrade is 550m (Drazic et al., 2014), which is more than sufficient for 

this research. There are multiple smaller and larger river islands in the Danube, the two most notable 

within the research are located in the bend in the east of the research area. Forkontumac and Čakljanac 

that split the Danube up in 3 streams. An approximate 45km stretch of the Danube is included in the 

research area, starting, just downstream of the village Novi Banovci, in the west. Downstream, the 

Danube leaves the research area near the village of Ritopek. Both before and after the confluence, 

several bridges cross the Danube. The Sava is one of the tributaries of the Danube, with an average 

width of 200-300m before the confluence (Drazic et al., 2014). This makes the Sava suitable for analysis 

with PRISMA imagery, but it limits the opportunity to detect spatial patterns. It enters the research 

area at the bottom of the image, near the village Ostružnica, following its course northward. After 

17km the Sava joins the Danube, where the confluence of the two rivers is marked by another large 

river island, Great War Island. Both the Danube and Sava are used for inland shipping. Both rivers are 

used to discharge wastewater from the city, both treated and untreated. These are sources of pollution 

that have an extra focus in this research. 
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Figure 1 RGB PRISMA image of the research area (26-9-2021). 

 

Figure 2 Panchromatic RPISMA image of the research area (26-9-2021). 



 
 

13 
 

The Danube-Sava confluence was chosen for this research for several reasons. Firstly, the confluence 
was chosen because the Danube and Sava are wide rivers. PRISMA has a spatial resolution of 5m for 
the panchromatic band and a 30m resolution for the VNIR and SWIR bands.  Mixed pixels at the banks 
of the rivers are unusable for analysis, resulting in less water surface area to analyse. A wider river 
would offer the opportunity to distinguish spatial patterns in chlorophyll-a concentration and possibly 
deduce sources of direct discharges of chl-a or other forms of water pollution. This is the case for the 
Danube, with an average width of 550m. Analysis of the Sava, with its 200-300m width, would benefit 
of an even higher spatial resolution than 30x30m. Still, including the Sava enables to assess this method 
on a narrower river than the Danube. The confluence of the rivers lays the ground for the second 
reason this area was chosen. A confluence brings together two rivers with two expected different 
water qualities. It is expected that this would form spatial patterns and a different average chlorophyll-
a concentration before and after the confluence. Lastly, and most importantly, this area was chosen 
because there was the possibility to have water quality measurements taken on the same moment as 
a PRISMA image acquisition. 

2.2. PRISMA imagery 

2.2.1. PRISMA 
In 2019, PRISMA was launched by the Agenzia Spaziale Italiana (Italian Space Agency), or ASI, a satellite 

with medium-resolution hyperspectral sensor (Agenzia Spaziale Italiana, 2019). This satellite has been 

fully operational since October 2019. PRISMA images are acquired only on the request of users. After 

registering as a user with ASI, it is possible to request new images, and access any previously acquired 

images from other users. PRISMA imagery has a 30m spatial resolution for its VNIR and SWIR bands, 

and a 5m spatial resolution for its pan-chromatic band (Table 1). The resulting images cover an area of 

30x30km. A distinct feature of PRISMA are the abundance of spectral bands and the narrow band with. 

There are 66 bands in the VNIR channel and 171 bands in the SWIR channel, all themselves with a band 

Figure 3 Map of research area (Google Maps, n.d). 
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width of ≤ 12nm. PRISMA has a sun synchronous orbit with a return cycle of 29 days (ITC, n.d.), but 

with adjustments of the sensor, it is possible to acquire images of locations with a 7-to-10-day interval.  

Parameter VNIR  SWIR  Panchromatic 

Spectral range 400-1010nm 920-2505nm 400-700nm 

Band width ≤12nm ≤12nm - 

Number of spectral 
bands 

66 171 1 

Swath width 30km 

Spatial resolution 30m 5m 

Table 1 Properties of PRISMA (Agenzia Spaziale Italiana, 2020). 

Compared to other systems, like Landsat 7 (USGS, 2019a) and 8 (USGS, 2019b), Sentinel-2 (European 

Space Agency, 2015), and MERIS (European Space Agency, 2006), PRISMA was best suited for this 

research. PRISMA is unique in its medium spatial resolution, narrow band widths and its high number 

of bands. The spatial resolution of PRISMA of 30m for the VNIR and SWIR channels is comparable to 

Landsat 7 and 8, both having 30m resolution. Sentinel-2 exceeds in spatial resolution, with a 10m 

resolution. MERIS has a 300m resolution, which is too high for the analysis for rivers. A high spatial 

resolution, as discussed, is required to be able to do research on narrow water bodies like rivers. What 

distinguishes PRISMA from the other systems, and what is vital for this research, is the abundance of 

spectral bands and the high spectral resolution. For the VNIR channel, which is extremely important 

for water quality mapping (A. G. Dekker, 1993), Landsat 7, 8, Sentinel-2 and MERIS have 4, 5, 8 and 15 

bands respectively, while PRISMA offers 66 bands. A spectral resolution of ≤12nm also outclasses 

Landsat 7 (60nm to 130nm), 8 (2nm to 60nm), Sentinel-2 (15nm to 106nm), but not all bands of MERIS 

(2.5nm to 20nm). This high number of spectral bands and high spectral resolution are necessary to 

detect the reflectance and absorption peaks of chl-a. The fact that new PRISMA images are acquired 

only on request, limits the abundance and sites of already available archived images. This decreases 

the chance to have existing images matching with historic in-situ water quality data on date and 

location. Other systems have an advantage, as they are longer operational and have a larger database 

of available images. 

2.2.2. Pre-processing of PRISMA imagery 
PRISMA images are provided pre-processed. ASI (Agenzia Speciale Italiana, 2021) provides 5 levels of 

processing images: Level 0, Level 1, and Level 2 (b/c/d). Level 0 (L0) images consist of unprocessed 

data. Level 1 (L1) images underwent spectral and radiometric corrections for both the panchromatic 

and hyperspectral channels. These images depict the Top of the Atmosphere (TOA) spectral radiance. 

In addition, these images are provided with auxiliary and thematic maps like a cloud mask, sun-glint 

mask, and a surface classification map. Level 2 (L2) images are the outcome of further processing of L1 

images and are divided in: spectral radiance at the surface (L2b), at-surface reflectance (L2c), and 

geocoded at-surface reflectance (L2d). The images are georeferenced, but without ground control 

points (GCPs) this accuracy is up to 200m. No GCPs were available for the research area. 

For this research, the L2d images have been used. The atmospheric correction and georeferencing 

performed by ASI were assumed suitable to work with and the use reflectance spectra makes 

comparison with other literature studies easier. Performing these corrections within this research was 

not within the scope and would increase the workload and result in a similar or lower quality outcome. 

The use of the at-surface reflectance enabled the use of reflectance band ratios and indexes, as was 

done in previous research of (Gurlin et al., 2011; Mishra & Mishra, 2012), whose methods were used 
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in this research. It was not possible to have in-situ irradiance or reflectance measurements 

accompanying the in-situ water quality measurements. 

2.2.3. PRISMA imagery of research area 
Several images of the research area were available at the start of this research. These only covered the 

confluence and the downstream part of the Danube, excluding the upstream parts of the Danube and 

the Sava (Figure 4). For this research, new images were requested that did cover the upstream parts 

of the rivers, and multiple images were provided. In total there were 12 PRISMA images covering (part 

of) the Danube/Sava confluence that were of sufficient quality (Table 2). The cloud coverage of these 

images range between 0% and 20.7%. More images of the research area were available, but the cloud 

coverage in these images were deemed too high to perform proper analysis. The usable images have 

been captured between 4 April 2020 and 26 September 2021, providing time-series of almost 18 

months. This time series miss the period between October 2020 and January 2021. This time series 

allows for the analysis of differences in spatial patterns of chl-a over time. All images were acquired 

between 11:30 and 11:50 local time.  

 

  

Figure 4 Example of image covering part of research area (RGB, 23-2-2021). 



 
 

16 
 

Date 
Local 
time 

Cloud 
coverage (%) 

Image coverage 

4-4-2020 11:37 7.0 Part of research area 

25-6-2020 11:50 <1 Part of research area 

24-7-2020 11:49 4.6 Part of research area 

14-9-2020 11:45 <1 Part of research area 

23-2-2021 11:37 <1 Part of research area 

10-4-2021 11:30 <1 Part of research area 

25-6-2021 11:40 <1 Entire research area 

12-7-2021 11:33 0 Part of research area 

4-8-2021 11:30 20.7 Entire research area 

16-8-2021 11:37 0 Part of research area 

3-9-2021 11:47 <1 Entire research area 

26-9-2021 11:44 <1 Entire research area 

Table 2 Overview of usable PRISMA images. 

The image captured on 26 September 2021 (Figure 1 and 2) is accompanied by in-situ water quality 

measurements (dr. S. Kolarević, personal communication, September 28, 2021). This image has a low 

cloud coverage of only 0.05%, which makes it highly suitable for image analysis. This is the image that 

was used for applying and evaluating  the original algorithms from (Gurlin et al., 2011; Mishra & Mishra, 

2012), to calibrate these algorithms for this research area and to validate these calibrated algorithms. 

The image of 14-9-2020 was acquired approximately one year before the main image of 26-9-2021 and 

can be used to depict the water quality in a similar period one year prior. This image covers only part 

of the research, as it excludes the upstream part of the Danube and Sava. The image of 23-2-2021 

covers the same research area as the image of 14-9-2021. This image was acquired approximately 7 

months prior to the main image, offering the opportunity to analyse the chl-a distribution at the end 

of winter. 

2.3. In-situ measurements 

2.3.1. General 
At the moment of image acquisition on 26 September 2021, a team led by Dr. Stoimir Kolarević of the 

Department of Hydroecology and Water Protection of the University of Belgrade Institute for Biological 

Research “Siniša Stanković” took a set of samples for in-situ water quality analyses. A total of 11 sites 

were sampled between 11:30 and 11:50 local time, where the image itself was acquisitioned at 11:44.  

2.3.2. Sampling locations 
The locations of the sample sites are depicted in Figure 5 and Table 3. An enhanced view of the 

individual sites is provided in Figure 6. Sites 1-3 and 5-7 are located on the east-side bank of the Sava. 

Site 10 is located on the southside bank of the Danube, at the confluence. Sites 11, 13 and 14 are 

located further downstream of the Danube on its southside banks as well. Site 12 is located at a small 

bay, a dead river arm. Sites 4, 8 and 9 are missing from the dataset, as no sampling was performed as 

these sites. These sites are thus not included in this research, but the numbering of the remaining sites 

is not adjusted to these missing sites. Sites 1, 2, 5, 6, 12, and 13 are located in the vicinity of outlets 

continuously discharging minimal treated to untreated wastewater. Following is a description of every 

sampling site, supported by the images in Figure 6. 
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Sampling 
site 

Site coördinates 
Sampling 
time 

1 44.798864, 20.437182 11:30 

2 44.799783, 20.439051 11:30 

3 44.800070, 20.439537 11:30 

5 44.811445, 20.449373 11:50 

6 44.812916, 20.449618 11:50 

7 44.814667, 20.449640 11:50 

10 44.830937, 20.456364 11:20 

11 44.823844, 20.514130 11:40 

12 44.820935, 20.527129 11:40 

13 44.831880, 20.547474 11:40 

14 44.839669, 20.557968 11:40 

Table 3 Sampling locations and times. 

Site 1 is located next to the New Railway Bridge (Novi železnički Most) on the upstream side. This 

bridge is a fully suspended bridge without pillars in the river. A sample was taken from the east-

side bank of the Sava at 11:30. Several ships and floating barges are docked on the bank at the 

moment of sampling. An outlet of wastewater is located on downstream of the bridge. A plume 

with a distinctly different colour is visible originating from the outlet. The sample for this site 

should be representative for water quality before this outlet, taking in consideration that more 

outlets are located further upstream that have affected the water quality. 

Site 2 is located downstream of the New Railway Bridge, downstream of the wastewater outlet. 

This sample was taken from the eastside bank at 11:30. The sample taken here should be a 

representation for water quality downstream of the wastewater outlet. Besides two floating 

 

Figure 5 Overview of locations of sampling sites (Pan, 26-9-2021) 
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structures next to the bridge downstream, there are no ships or floating barges in the direct vicinity 

of this site.  

Site 3 is approximately 50 meters downstream of site 2. A sample was taken at 11:30 as well. No 

floating structures are in the vicinity of this site either. 

Site 5 is located on the eastside bank of the Sava downstream of the Old Sava Bridge (Stari Savski 

Most), a bridge that does stand with its pillars in the river. This sample was taken at 11:50 upstream 

of another outlet for wastewater, also visibly causing a discoloured plume. There are no boats or 

floating structures docked on this part of the bank. 

Site 6 is located approximately 1.5km downstream of site 5, with a sample taken on 11:50 as well. 

This site is directly downstream of the outlet. 

Site 7 is located approximately 2km downstream of site 6, also with a sample taken on 11.50. This 

sample is taken next to the upstream side of the Branko’s Bridge (Brankov Most).  

Site 10 is, located on the southside bank of the Danube, right after the confluence of the Danube 

and the Sava. The sample was taken 11:20 from the bank. There were no ships or floating 

structures docked in the vicinity of the site. 

Site 11 is located downstream on the southside bank of the Danube. This sample was taken from 

the bank at 11:40. Here are no ships or floating structures docked either. 

Site 12 is different from other sites as it is in a land-inward bay, a dead river arm with stagnant 

water. A wastewater outlet at the most inland part of the bay, visible from the small plume. The 

sample itself was taken from the end of a jetty extending into the bay at 11:40. Surrounding the 

sites are more jetties with smaller boats docked. 

Site 13 is located downstream of the bay of site 12. This sample was taken on the southside bank 

of the Danube at 11:40. Upstream of this site is a smaller river island. In the stream between the 

mainland and the island, another outlet of wastewater is located. Besides some small docks and 

boats, no ships or floating structures were docked around this site. 

Site 14 is located approximately 1km downstream of site 13. A sample was taken at 11:40 from 

the bank. Here there were no ships or floating structures docked either.  
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Figure 6 Locations of sampling sites 1-14 (Google Earth, n.d.). 

2.3.3. Sample properties and analysis 
All samples were provided with the coordinates of the sampling sites and the time of sampling. 

Multiple water quality parameters were analysed for each sample, included in Table 4. Chl-a 
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concentrations at the sites, the focus of this research, were measured using a YSI 6600 V2-2 sonde. 

These results are included in Table 5. With the exception of site 12, the concentrations appear to be 

homogenous, ranging from 2.1μg/L to 7.0μg/L. Site 12 has a chl-a concentration of 120.4μg/L and 

appears to be an outlier compared to the other sites. A high chl-a concentration is expected at this site 

though, as it is located in a bay of stagnant water with a wastewater outlet, facilitating algae growth.  

Parameter Unit 

Temperature °C 

Conductivity μS/m 

pH - 

Total suspended solids 
(TSS) 

mg/L 

Turbidity FAY 

Chlorophyll-a concentration μg/L 

NH4-N concentration mg/L 

NO3-N concentration mg/L 

NO2-N concentration mg/L 

PO4 concentration mg/L 

Total coliform 
concentration 

MPN/100 
mL 

E. coli concentration 
MPN/100 
mL 

Table 4 Water quality parameters included in sample analysis (dr. S. Kolarević, personal communication, September 28, 
2021). 

 

 

 

 

 

 

 

 

 

 

2.4. Chlorophyll-a concentration algorithms 

2.4.1. General 
For this research, two algorithms for the estimation of chl-a concentrations in waterbodies were used, 

both in their original parameterized form and after calibration with a local dataset. The first algorithm 

is from Gurlin et al. (2011) and consists of a band-ratio equation using reflectance of MERIS band 7 

(665nm) and 9 (709nm). The second algorithm is the Normalized Difference Chlorophyll Index (NDCI) 

from Mishra and Mishra (2012), which consists of an index for chl-a similar to an NDVI, using 

reflectance of MERIS band 7 (665nm) and 9 (709nm) as well. In their development, these algorithms 

were calibrated using datasets from lakes and coastal areas, with the intention to be further developed 

Sampling 
site 

Chl-a 
(μg/L) 

1 2.3 

2 5.5 

3 4.2 

5 2.5 

6 2.8 

7 2.2 

10 2.1 

11 3.6 

12 120.4 

13 7 

14 4.5 

Table 5 Chl-a concentrations at sampling sites (dr. S. Kolarević, personal communication, September 28, 2021). 
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into generally applicable models. These two algorithms were selected based on the high performance 

of the calibration and validation of the algorithms within these researches. 

The algorithms were applied in this research in two ways, 1) in their original format, and 2) the 

algorithms were calibrated using the local dataset from the Danube-Sava confluence. Hence, a total of 

four algorithms were applied that shall be referred to as the Gurlin band-ratio algorithm, the Mishra 

and Mishra NDVI algorithm, or original algorithms, and the calibrated band-ratio algorithm and the 

calibrated NDVI algorithm, or calibrated algorithms. 

2.4.2. Band-ratio algorithm 
Gurlin et al. (2011) investigated the performance of a 2- and 3-band NIR-red models for the estimation 

of chl-a concentrations in turbid productive waters. An extensive 2008-2009 dataset from the Fremont 

Lakes State Recreation Area in Nebraska, USA was available for this research. This dataset contained 

several water quality parameters and in-situ hyperspectral reflectance measurements of 152 sites, as 

well as MERIS and MODIS satellite imagery. The model that proved most accurate after calibration was 

a two band MERIS reflection model for MERIS band 7 (665nm) and band 9 (709nm) and was deemed 

most promising to be developed in a general-purpose chl-a concentration calculating model for turbid, 

productive coastal and inland water bodies. 

The widely applied reflectance ratio explained by Gitelson et al. (1985), Gitelson (1992), and 

Mittenzwey et al. (1991) stands at the base of the two-band model: 

𝐶ℎ𝑙 − 𝑎 ∝
𝑅(𝜆1)

𝑅(𝜆1)
                                                                                                                                                (1)  

where Chl-a is the chlorophyll-a concentration, R(λ1) is the reflectance at the reflectance peak of chl-a 

and R(λ2) is the reflectance at its absorption peak. It was shown that these wavelengths are inherently 

linked to the chl-a concentration. This model makes use of wavelengths in the red part of the spectrum, 

where Figure 7 shows there is a strong absorption of chl-a, and the NIR part of the spectrum, where 

there is almost no absorption. Other water constituents, like CDOM, have a strong influence on the 

reflectance in the blue and green part of the spectrum, making it impossible to correlate wavelengths 

on this part of the spectrum to chl-a concentration (Dekker et al., 1991; Gitelson et al., 1985; Gitelson, 

1992). Absorption by CDOM in the red and NIR part of the spectrum is minimal and of similar 

magnitude, minimally affecting the relationship between λ1 and λ2. The optimal wavelengths for λ1 and 

λ2 to be used in the models were determined using the Fremont Lakes 2008 dataset. A linear regression 

was performed between the observed concentration and the estimated concentrations calculated 

using various wavelengths of the in-situ hyperspectral reflectance measurements (Dall’Olmo & 

Giterson, 2005; Gurlin et al., 2011). This showed that, for the two-band model, wavelengths λ1=713nm 

and λ2=666nm had the minimal values of the standard error of the estimate (STE) and were most suited 

to be applied in calibrating the model to the MERIS and MODIS data. 
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Figure 7 Representative spectra of the absorption coefficients of total particulates (a), non-algal particles (b), phytoplankton 
(c), and CDOM (d) for 21 water monitoring stations with chl-a concentrations from 2.3μg/L to 132.4μg/L as determined by 
Gurlin et al. (2011). 

Using again the data of the Fremont Lakes 2008 dataset containing 89 sites and corresponding MERIS 

and MODIS imager, the two-band model was calibrated using a quadratic regression. The calibrated 

two-band model using MERIS data (Equation 2) showed to have the best results, with a MAE of 

2.3mg/m3 for chl-a concentrations from 0 to 100mg/m3 and 1.2mg/m3 for concentrations from 0 to 25 

mg/m3 (Gurlin et al., 2011).  

𝐶ℎ𝑙 − 𝑎 = 25.28 ∗ (
𝑅(709)

𝑅(665)
)

2

+ 14.85 ∗ (
𝑅(709)

𝑅(665)
) − 15.18                                                                 (2)  

where Chl-a is the chlorophyll-a concentration (μg/L or mg/m3), and R(709) and R(665) the reflectance 

(-) at MERIS band 9 (709nm) and band 7 (665nm). This band-ratio algorithm was also further validated 

Neil et al. (2019) using a dataset comprising of 2807 samples of 185 different inland and coastal water 

bodies, which resulted in a MAE of below 0.4μg/L and RMSE of below 1.0μg/L. Gurlin et al. (2011) 

showed that the MERIS two-band model has a high potential to be developed in in a simple universally 

applicable.  

2.4.3. NDCI algorithm 
Mishra and Mishra (2012) proposed a normal difference chlorophyll index (NDCI) for the estimation of 

chl-a concentrations in estuarine and coastal turbid productive waters. Their NDCI model performed 

best of the four models they evaluated. With the absence of ground truth data, this model can be used 

to make qualitative chl-a concentration estimations in coastal waters. 

MERIS band 7 (665nm) and band 9 (709nm) were selected to formulate the NDCI: 

𝑁𝐷𝐶𝐼 =
𝑅(709)−𝑅(665)

𝑅(709)+𝑅(665)
                                                                                                                                             (3) 
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where the R(709) and R(665) are the reflectance (-) at MERIS band 9 (709nm) and band 7 (665nm). 

These two bands again represent the absorption maximum (band 7) and reflectance maximum (band 

9) of chl-a. Using these bands avoided influence of CDOM and TSS on the reflectance. It was assumed 

that the absorption of these constituents is low and the difference in absorption between the bands 

neglectable. Four dataset, one modelled dataset and three and three field datasets from the MERIS 

satellite system, were available for this research. A modelled dataset with chl-a concentration and 

reflectance would offer the opportunity to review the model performance and sensitivity to a wide 

range of optical parameters in the water. The field datasets originated from Chesapeake Bay, Delaware 

Bay, the Mississippi Delta region, and the Mobile Bay, all in the US, and contained chl-a concentration 

observations, reflectance, solar zenith angle, and solar azimuth angle.  

The simulated dataset underwent a one-fold calibration and validation. The remaining datasets 

underwent a three-fold calibration and validation based on three varying parameters: solar zenith 

angle, solar azimuth angle, and geographic region. Validation included the RMSE and the coefficient of 

determination (R2) between observed and predicted chl-a. In the calibration and validation of the 

modelled dataset, the NDCI performed best compared to other models evaluated. The calibration 

resulted in the best performance parameters, with a R2 of 0.95 and a STE of 3.62. The validation 

showed a RMSE of 4.83μg/L and a R2 of 0.93. After the solar zenith angle calibration, the validation 

showed that the NDCI model performed well with the lowest RMSE of 1.87μg/L and an R2 of 0.80. In 

the second calibration and validation for solar azimuth angle, the NDCI had a RMSE of 2.04μg/L and a 

R2 of 0.48, which was second best of the six models reviewed. In the third calibration and validation, 

for geographical regions, the validation showed that the NDCI could predict chl-a concentration with 

the highest accuracy. The validation resulted in a RMSE of 1.43μg/L and a R2 of 0.94. These results 

show the potential of NDCI to quantify chl-a concentration when used with remote sensing reflectance 

data from the MERIS satellite system. 

The algorithm resulting from the calibration of the modelled dataset was selected to apply to the 

Danube-Sava confluence: 

𝐶ℎ𝑙 − 𝑎 = 314.97 ∗ (
𝑅(709) − 𝑅(665)

𝑅(709) + 𝑅(665)
)

2

+ 236.5 ∗ (
𝑅(709) − 𝑅(665)

𝑅(709) + 𝑅(665)
) + 42.197                     (4)  

where Chl-a is the chlorophyll-a concentration (μg/L or mg/m3), and R(709) and R(665) the reflectance 

(-) at MERIS band 9 (709nm) and band 7 (665nm). This algorithm was selected because it had the best 

calibration performance measures of all four calibrations, and after validation the best validation 

performance measures of all six other models evaluated using the modelled dataset. As this algorithm 

made use of a modelled dataset, it has the highest chance it is not area-specific and has more 

opportunity to be universally applied. This NDCI algorithm was also further validated by Neil et al. 

(2019) which resulted in a MAE of below 0.3μg/L and RMSE of below 0.8μg/L. 

2.5. Image analysis 

2.5.1. Image preparation 
Image analysis and interpretation was carried out in ENVI 5.6. This version of ENVI contained all tools 

necessary to analyse the image and is the only software program that has the build-in capability to 

read the hdf5-format PRISMA images. The L2d PRISMA images depict the at-surface reflectance and 

are georeferenced with an accuracy up to 200m (i.e. approximately 7 pixels). The VNIR images were 

used to depict a normal colour image using band 32 (651nm) for red, band 21 (555nm) for green, and 

band 7 (449nm) for blue. The panchromatic images were depicted in a grayscale and were used for 
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their higher spatial resolution. To extract reflectance of wavelengths at the sampling sites and prepare 

the image for chl-a estimations, the images had to be prepared.  

The first step in image preparation was creating a mask for allowing the analyses of just pixels covering 

water. Pixels overlapping both areas of water and land, or covering bridges, large barges, or ships, 

either sailing or docked, could not be included in this mask. These pixels would have mixed reflectance 

originating from both water and the land or object, which made them unsuitable to estimate 

chlorophyll-a concentrations. A NDVI map was created of the image using the ENVI 5.6 NDVI-tool, in 

which water had a value between -1 and -0.05. A Region of Interest (ROI) was created using the tool 

that creates ROIs from band thresholds, containing all pixels with an NDVI between these values to 

cover water area. A ROI with an NDVI outside of these values was created as well to represent land 

and objects covering water. The ROI for water still contained pixels at the edges that partly covered 

the riverbanks. Hence, a buffer was created using the buffer zone for ROIs tool between the ROIs for 

water and land. This resulted a single line of pixels around all borders of the ROI for water could be 

removed. This ensured almost all mixed pixels were removed from the ROI for water. Later it did turn 

out this system was not able to remove all sailing ships. The final ROI for water is depicted in Figure 8 

and was used to create a mask that allowed for the analysis of the area within this ROI. 

2.5.2. Sampling site localisation and reflectance extraction 
To validate the Gurlin band-ratio algorithm and Mishra and Mishra NDVI algorithm, and to calibrate 

and validate these algorithms with the local dataset, the reflectance of band 34 (669nm) and 38 

(709nm) had to be extracted at the in-situ sampling sites. The coordinates of the in-situ sampling sites 

cannot be used to place these sights in the PRISMA image, as the geocoding of this image has an error 

of up to 200m. The sampling sites were thus located visually using the PRISMA panchromatic image 

and high-resolution Google Earth imagery (Figure 6) that did show the accurate coordinates. It was not 

possible to verify the accuracy with which the sampling sites were located in the PRISMA imagery. 

Figure 8 ROI of water (RGB, 26-9-2021). 
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Based on the 5m resolution of the panchromatic images and 30m resolution of the RGB images, it is 

estimated that the sites were in the imagery with an accuracy of one 30m pixel. 

Only the areas of water within the ROI for water can be analysed, but most of the in-situ samples were 

taken from the banks of the river and fall outside of this ROI. To compensate for this, every sampling 

site was assigned a ROI of the 5 (8 for site 12) closest pixels that were within the ROI for water, the 

average reflectance of which would be most representable for this sampling site. What follows is an 

overview of every sampling site with a description of how that site’s ROI was selected. These 

descriptions are supported by a RGB image including the ROI for water and the ROIs of the sampling 

sites to show the distance of the ROI for water to the actual sampling sites. Panchromatic images show 

the location of the ROIs of the sampling sites in higher resolution. 

Site 1 was located on the bank of the Sava, between a floating structure and a bridge. Five 

pixels on the upstream side of the bridge that were closest to the site were selected for the 

ROI. This site is upstream of an outlet of wastewater; hence no pixels were selected 

downstream of the bridge. 

Site 2 was also located on the bank of the Sava directly downstream of a wastewater outlet. In 

total, five pixels closest by were selected for the ROI. As this site is only 50m upstream of site 

3, and to avoid the ROI extending too far out to the middle of the Sava, one pixel overlaps with 

the ROI for site 3. 

Site 3 is 50m downstream of site 2. Five pixels were selected for the ROI, of which one overlaps 

with the ROI of site 2. After analysis, it turned out one of the pixels of this ROI overlaps with a 

bridge that was not removed from analysis during image preparation. 

Site 5 is located on the bank of the Sava too, just upstream of another wastewater discharge. 

Five pixels were selected for this ROI, avoiding overlap with area around the discharge site. 

Site 6 is located downstream of site 5. Five pixels were selected to make up this site’s ROI. This 

site is located just downstream of a wastewater outlet. 

Figure 9 ROI of water and ROIs of sampling sites 
1-3 (RBG, 26-9-2021). 

Figure 10 ROIs of sampling sites 1-3 (PAN, 26-9-
2021). 
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Site 7 is located at the foot of a bridge over the Sava, which results in unusable pixels in its 

direct vicinity. Five pixels were chosen both upstream and downstream of the bridge to make 

up the ROI. 

Site 10 is located on the southside bank of the Danube, right after the confluence of the 

Danube and the Sava. Five pixels were selected closest to the site. 

Site 11 is also located on the banks of the Danube. The five closest pixels were selected for the 

ROI. 

Figure 11 ROI of water and ROIs of sampling sites 
7-9 (RBG, 26-9-2021). 

Figure 12 ROIs of sampling sites 7-9 (PAN, 26-9-
2021). 

Figure 14 ROI of sampling site 10 (PAN, 26-9-2021). Figure 13 ROI of water and ROI of sampling 10 
(RBG, 26-9-2021). 
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Site 12 is different from the other sites. The sample is taken from a jetty in a small bay of the 

Danube. This bay is mostly surrounded by land, and after removing mixed pixels from the 

analysis, only a few pixels remained. The in-situ sample showed that the chlorophyll-a 

concentration of 120.4 μg/L was higher than in the Danube itself. The water in the bay is slow-

moving to stagnant, and  wastewater is discharged in the bay west of the sample location. 

Next, there is a yacht/boat harbour close to this observation point which may cause an 

additional influx of contaminants. There were no five adjacent pixels at or close to the site, so 

the eight closest pixels were chosen to make up this ROI. One pixel was located besides the 

sampling site but had a small overlap with one of the jetties. Other pixels were 100m to 200m 

away. 

 

Figure 15 ROI of water and ROI of sampling 11 
(RBG, 26-9-2021). 

Figure 16 ROI of sampling site 11 (PAN, 26-9-
2021). 

Figure 17 ROI of water and ROI of sampling 12 
(RBG, 26-9-2021). 

Figure 18 ROI of sampling site 12 (PAN, 26-9-2021). 
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Site 13 is located on the bank of the Danube downstream part of the bay. Five pixels were 

selected for the ROI. 

Site 14 is also located on the bank of the Danube, just before large bend in the river. Five pixels 

selected for the ROI. 

The average reflectance (R̄) of all the site’s ROIs, all five or eight pixels, for band 38 (709nm) and band 

34 (669nm) were extracted and are listed in Table 6 with the Standard Deviation (SD). This data is 

discussed in this chapter, the Methods and data section, rather than the Result section, as it is 

considered and handled as initial data enabling further analysis. The SD for most average reflectance 

were low enough compared to the R̄ to assume that the ROI covered a homogenous area. For some 

sites S3 and S12, the SD of both bands is over 10% the value of R̄, indicating the ROI covering a more 

heterogeneous area. This can be caused by local differences in chl-a concentration, but also by features 

like floating objects that are included in within pixel a pixel of the ROI objects that affect the 

reflectance. 

  

Figure 19 ROI of water and ROI of sampling 13 
(RBG, 26-9-2021). 

Figure 20 ROI of sampling site 13 (PAN, 26-9-
2021). 

Figure 21 ROI of water and ROI of sampling 14 
(RBG, 26-9-2021). 

Figure 22 ROI of sampling site 14 (PAN, 26-9-
2021). 
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Site Band R̄ SD 

S1 
38 (709nm) 0.01204 0.0006 

34 (670nm) 0.02008 0.00112 

S2 
38 (709nm) 0.01268 0.00064 

34 (670nm) 0.01982 0.00055 

S3 
38 (709nm) 0.01467 0.00412 

34 (670nm) 0.02068 0.00232 

S5 
38 (709nm) 0.01254 0.00107 

34 (670nm) 0.02062 0.00113 

S6 
38 (709nm) 0.01178 0.00079 

34 (670nm) 0.02022 0.00109 

S7 
38 (709nm) 0.01261 0.00055 

34 (670nm) 0.0202 0.00074 

S10 
38 (709nm) 0.01203 0.00073 

34 (670nm) 0.02183 0.00089 

S11 
38 (709nm) 0.02271 0.00155 

34 (670nm) 0.03588 0.00179 

S12 
38 (709nm) 0.06596 0.00815 

34 (670nm) 0.03378 0.00397 

S13 
38 (709nm) 0.02175 0.00063 

34 (670nm) 0.03291 0.00086 

S14 
38 (709nm) 0.02104 0.00046 

34 (670nm) 0.03314 0.00071 
Table 4 Average reflectance and standard deviation of site ROIs at bands 34 and 38. 

2.6. Calibration and validation 

2.6.1. Calibration of algorithms 
The band-ratio of the two-band model of Gurlin et al. (2011) (Equation 5), and the NDCI from Mishra 

and Mishra (2012) (Equation 6), were calculated for each sampling sites’ reflectance. To calibrate the 

algorithms the band-ratio and NDCI results were paired with the in-situ chl-a concentrations and 

separately underwent a quadratic regression. A quadratic regression was chosen as the relation 

between chl-a and reflectance did not prove to be linear in Gurlin et al. (2011) and Mishra and Mishra 

(2012), and both used a quadratic regression for calibration. Using the same type of regression enables 

a better comparison between the universal algorithms and the algorithms calibrated in this research. 

The resulting calibrated band-ratio and NDCI algorithm are presented and discussed in detail in the 

Results section.  

𝐵𝑎𝑛𝑑 − 𝑟𝑎𝑡𝑖𝑜 =
𝑅(709)

𝑅(669)
                                                                                                                                     (5) 

𝑁𝐷𝐶𝐼 =
𝑅(709) − 𝑅(669)

𝑅(709) + 𝑅(669)
                                                                                                                                 (6) 

2.6.2. Validation of original algorithms 
The Gurlin band-ratio algorithm and Mishra and Mishra NDCI algorithm were both calibrated and 

validated during their development. This was done using data from large turbid, productive 

waterbodies, like coastal waters and lakes (Gurlin et al., 2011; Mishra & Mishra, 2012). To assess the 

original algorithms’ applicability to rivers, they were validated using the Danube-Sava dataset. The 

results of the validation are included in the Results section. Chl-a concentrations for each site were 
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calculated from this dataset using the Gurlin band-ratio algorithm and Mishra and Mishra NDCI 

algorithm and were combined with the 11 observed concentrations. The original algorithms were 

plotted together with the observed concentration to visualise the working of the algorithms. For a 

better depiction of the algorithm in low chlorophyll-a concentrations, the algorithms were plotted with 

the exclusion of site 12 (120.4μg/L) as well. For validation of the algorithms, several performance 

measures were used set forth by (Janssen & Heuberger, 1995). The Mean Absolute Error (MAE) 

provides a view on the absolute misestimation of the model but is sensitive to outliers. The 

standardised version of the MAE is the Normalized Mean Absolute Error (NMAE), where the MAE is 

divided by the mean predictions of the model. The Root Mean Square Error (RMSE) was calculated, as 

well as the Normalized Root Mean Square Error (NRMSE). It was found that the NMAE would be the 

most suitable measure of all four to judge the performance of the algorithms. The NMAE depicts the 

absolute error relative to the observations. A larger error for an area with a high observed chlorophyll-

a concentration will affect the measure less as it would for measures based on absolute values.  

2.6.3. Validation of calibrated algorithms 
Only 11 in-situ measurements were available for both the calibration and validation of the model of 

the model. The choice was made to use all this data for calibration, leaving none available for 

validation. Still, two methods of validation could be applied to give an indication for the performance 

of the calibrated band-ratio and NDCI algorithms.  

To directly compare the performance of the original and calibrated algorithms, the performance was 

calculated using all 11 in-situ measurements as validation data. Again, the MAE, NMAE, RMSE, and 

NRMSE were applied (Janssen & Heuberger, 1995). As the data for this validation is the same as was 

used for calibration, these measures are not a proper depiction of the performance of the model and 

should only serve as an impression.  

Another method was applied to provide an unbiased method of validation. Both the band-ratio and 

NDCI algorithms were calibrated again using a quadratic regression with data of only 8 in-situ 

measurements, leaving 3 samples for validation purposes. Samples 3, 7 and 13 were selected to serve 

as validation data. These 3 samples represent an average of varying sites in the dataset, with exception 

of site 12. The 3 sites were measured in both the Sava (sites 3 and 7) and Danube (site 13) and 

represent an average of the chl-a concentration range observed. Using these 3 samples, the MAE, 

NMAE, RMSE, and NRMSE were calculated for these so-called recalibrated algorithms. These 

performance measures should also be a representation of the performance of the algorithms 

calibrated with the full dataset. The performance measures of both the calibrated and recalibrated 

algorithms are included in the Results section. 

2.7. Calculating chlorophyll-a concentration distribution 
Using the four algorithms, the Gurlin band-ratio algorithm and the Mishra and Mishra NDCI algorithm, 

and the calibrated band-ratio and NDCI algorithm, the chlorophyll-a distribution of the entire image 

was calculated. The recalibrated algorithms only served for validation purposes and were not used to 

calculate chl-a distributions. The calculation was done using the band math tool of ENVI in combination 

with the mask of the river area which excluding pixels covering land and mixed pixels. The chl-a 

distribution is depicted in a white-green scale, with white being no to low concentration and green 

high concentrations. All areas unsuitable or available for analysis, like land, ships, bridges, and other 

forms of mixed pixels are depicted as white too. A different concentration scale was used for each 

algorithm, as the algorithms did not give similar results. The maximum values of the concentration 

scales were based on the average of the highest observed concentrations in the rivers and local spikes 

in observed concentration, all in all showing the most complete distribution with a clear contrast. The 
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concentration distributions include both the full views of the research area and zoomed in views 

specific areas of interest.  

The chl-a distribution maps from the algorithm that showed the best performance was used to analyse 

the distribution and sources of chl-a. It was also used to analyse the shortcomings of these methods. 

The chl-a distribution of two other images of this area were calculated as well using this algorithm in 

support of the spatial distribution analysis. The image of 14-9-2020 was acquired approximately one 

year before the main image of 26-9-2021 used for calibration and validation and can be used to depict 

the water quality in a similar period one year prior. This image covers only part of the research, as it 

excludes the upstream part of the Danube, before the confluence. The image of 23-2-2021 covers the 

same research area as the image of 14-9-2021. This image was acquired approximately 7 months prior 

to the main image, offering the opportunity to analyse the chl-a distribution at the end of winter  
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3. Results 
This section describes the results of this study and is structured as follows. The results of the calibration 

of the band-ratio and NDCI algorithms using local training data are depicted first. These consist of the 

formulas with the parameters resulting from the calibration. These are discussed first in order to 

review the validation of these calibrated algorithms simultaneously with the validation of the original 

algorithms. The validations include a plot of the algorithm together with the in-situ measurements, 

and the performance measures. The validations of the Gurlin band-ratio algorithm and calibrated 

band-ratio algorithm are shown together first and the validations of the Mishra and Mishra NDCI 

algorithm and calibrated NDCI algorithm second. Lastly, the resulting chl-a concentration distribution 

maps of these four algorithms are shown in the same order. 

3.1. Algorithm calibration 

3.1.1. Band-ratio algorithm  
Performing the calibration of the band-ratio algorithm using the local dataset resulted in the following 

algorithm:  

𝐶ℎ𝑙 − 𝑎 = 48.308 ∗ (
𝑅(709)

𝑅(670)
)

2

− 36.526 ∗ (
𝑅(709)

𝑅(670)
) + 7.563                                                            (7)  

where Chl-a is the chlorophyll-a concentration (μg/L or mg/m3), and R(709) and R(670) the reflectance 

(-) for PRISMA band 38 (709nm) and PRISMA band 34 (670nm). The coefficients and constant of this 

algorithm are significantly different than the original Gurlin band-ratio algorithm (Formula 2).  

3.1.2. NDCI algorithm  
Performing the calibration of the NDCI algorithm using the Belgrade dataset resulted in the following 

algorithm: 

𝐶ℎ𝑙 − 𝑎 = 321.958 ∗ (
𝑅(709)

𝑅(670)
)

2

+ 181.818 ∗ (
𝑅(709)

𝑅(670)
) + 28.216                                                     (8)  

where Chl-a is the chlorophyll-a concentration (μg/L or mg/m3), and R(709) and R(670) the reflectance 

(-) for PRISMA band 38 (670nm) and PRISMA band 34 (670nm). The coefficients and constant of this 

algorithm are also significantly different than the original counterpart in Formula 4. 

3.2. Algorithm validation 

3.2.1. Gurlin and calibrated band-ratio algorithm 
Figure 23 depicts the Gurlin and calibrated band-ratio algorithms, as well as the observed chl-a 

concentrations. It covers the full chl-a concentration range of the in-situ observations, from 0 to 

140μg/L. On this scale, both band-ratio algorithms seem to have a good fit with lower concentration 

sites, where the standard algorithm shows a slightly lower result for site 12. Figure 24 displays a smaller 

scale than Figure 23, only covering the chl-a concentration from 0 to 14μg/L and show an indication of 

the algorithms’ performances in a low-concentration environment. The variance in observations does 

not allow a perfect fit of an algorithms. Both algorithms show a general fit with the small number of 

samples. Mind that all observations have been used as training data for the calibration of the 

algorithm. 

Overall, the Gurlin band-ratio algorithm shows a moderate performance algorithm (Table 7). A MAE of 

2.02μg/L appears high in a low chl-a concentration environment, but the NMAE of 0.15 puts this into 

perspective. A NMAE of 0.15 means that the Mean Absolute Error is 15% of the observed 

concentrations. The RMSE was 3.43, with a NRMSE of 0.24.  
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From the performance measures of the calibrated band-ratio algorithm, it appears that it has a good 

performance. Nevertheless, the validation of the recalibrated algorithm shows that a poorer 

performance. The MAE of 0.87μg/L for the calibrated algorithm increases to 2.13μg/L in the 

recalibrated algorithm, which is comparable in magnitude to the MAE of 2.02μg/L of the Gurlin band-

ratio algorithm. The NMAE of 0.06 increases to 0.40, and even though the MAE of the Gurlin and 

recalibrated algorithm were similar, the NMAE shows that the relative performance is worse. The 

RMSE of both the calibrated and recalibrated algorithm, 1.17 and 2.19 respectively, are lower than the 

Gurlin algorithm. Again, when normalized, the NRMSE of 0.49 of the recalibrated algorithms turns out 

higher than that of the Gurlin algorithm. 

 

Figure 23 Gurlin and calibrated band-ratio algorithms plotted with in-situ chl-a concentrations. 
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Figure 24 Gurlin and calibrated band-ratio algorithms plotted with in-situ chl-a concentrations, excluding site 12. 

 Gurlin Calibrated Re-calibrated 

MAE 2.02 0.87 2.13 

NMAE 0.15 0.06 0.40 

RMSE 3.43 1.17 2.19 

NRMSE 0.24 0.08 0.49 

Table 5 Performance measures for the Gurlin, calibrated, and re-calibrated band-ratio algorithms. 

3.1.2. Mishra and Mishra and calibrated NDCI algorithm 
Figure 25 shows the full available chl-a concentration range, and again both NDCI algorithms seem to 

form a general fit. For the high 120.4μg/L observation at site 12, the Mishra and Mishra algorithm 

makes an overestimation, while the calibrated variant does fit the observation. In Figure 26, which 

excludes site 12, the Mishra and Mishra algorithm shows a steeper incline in relation to the in-situ 

concentrations. The calibrated algorithm shows a better fit in this for the low results, again taking into 

consideration the use of these samples for calibration of this algorithm. 

Overall, the performance measures of the Mishra and Mishra NDCI algorithm show a better result than 

the calibrated and re-calibrated NDCI algorithms (Table 8). The MAE of the general algorithm is 

0.94μg/L, with a NMAE of 0.07. This NMAE is also lower than that of the Gurlin band-ratio algorithm 
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and only 0.01 higher than the calibrated band-ratio algorithm. The RMSE of 1.28 is low as well 

compared to the other algorithms, and when normalized is 0.09. This NRMSE is lower than the Gurlin 

band-ratio algorithm and only slightly higher than that of the calibrated band-ratio algorithm. Overall, 

the Mishra and Mishra NDCI algorithm showed the best performance measures of all four algorithms. 

The calibrated algorithm, even with the same training and validation data, algorithm showed the 

poorest performance measures. When the model was recalibrated, these performance measures 

actually improved and were comparable with those of the recalibrated band-ratio algorithm. The MAE 

was 4.20μg/L and decreased to 2.29μg/L after recalibration. The NMAE was 0.23 and increased to 0.41, 

which is only 0.01 lower than its band-ratio counterpart. The calibrated NDCI algorithm had a high 

RMSE of 9.60, which decreased to 2.48 after recalibration. When normalized, the NRMSE were 0.67 

and 0.55 respectively. 

 

Figure 25 Mishra and Mishra and calibrated NDCI algorithms plotted with in-situ chl-a concentrations. 
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Figure 26 Mishra and Mishra and calibrated NDCI algorithms plotted with in-situ chl-a concentrations, excluding site 12. 

 Original Calibrated Re-calibrated 

MAE 0.94 4.20 2.29 

NMAE 0.07 0.23 0.41 

RMSE 1.28 9.60 2.48 

NRMSE 0.09 0.67 0.55 

Table 6 Performance measures for Mishra and Mishra, calibrated, and re-calibrated NDCI algorithms. 

3.3. Chlorophyll-a distribution 

3.3.1. Gurlin and calibrated band-ratio algorithm  
Applying the Gurlin band-ratio algorithm on the whole image resulted in a chl-a distribution map as 

shown in Figure 27. The green colour distribution ranges from 0μg/L to ≥16μg/L, as this distribution 

showed the clearest distribution with most contrast. Several distribution patterns emerge from this 

distribution map. The chl-a concentrations were estimated highest in the Danube, upstream of the 

confluence. The concentration in the Sava were estimated lower, with slightly higher concentrations 

further upstream. At the confluence (Figure 28) there is a clear distinction between the water of the 

Sava and the Danube, with low chl-a concentration water of the Sava entering the Danube. Notable is 

that after the first bridge after the confluence, concentrations appear higher. After the confluence, a 
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cross-river pattern is visible with slightly higher concentrations on the northside, with a gradual 

decrease towards the other bank. Concentrations prominently exceed the 16μg/L at two locations; at 

the bay of site 12, calculated at around 110μg/L, and at the lake north of the confluence, ranging from 

160μg/L to 200μg/L.  

 

Figure 27 Chl-a distribution of full research area using Gurlin band-ratio algorithm (26-9-2021). 

 

Figure 28 Zoom-in on sampling sites of chl-a distribution using Gurlin band-ratio algorithm (26-9-2021). 
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Figure 29 is depicted with the chl-a distribution estimated by the calibrated band-ratio algorithm, 

ranging from 0μg/L to ≥12μg/L. The overall concentrations estimated by this algorithm were lower 

than those estimated with the Gurlin algorithm. The concentration distribution appears more 

homogenous, it shows the least spatial patterns of all chl-a concentration distribution maps. The 

spatial patters at the confluence depicted by the Gurlin algoritm in Figure 28 do not appear as 

prominently in Figure 30. It only shows a slight decrease in chl-a concentration caused by the Sava 

joining the Danube. 

 

Figure 29 Chl-a concentration of full research area using calibrated band-ratio algorithm (26-9-2021).

 

Figure 30 Zoom-in on sampling sites of chl-a distribution using calibrated band-ratio algorithm (26-9-2021). 
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3.3.2. Mishra and Mishra and calibrated NDCI algorithm 
The Mishra and Mishra NDCI algorithm provided the chl-a distribution map shown in Figure 31 and 32. 

The colour distribution ranges from 0μg/L to ≥26μg/L. The spatial distribution that showed in chl-a 

distribution of the Gurlin algorithm in Figure 27 and 28 also appear clearly in this distribution map. 

Concentrations appear higher upstream of the Danube, with a slight gradual decrease from the north 

bank to the southern bank. Concentrations were estimated lower for the Sava, and slightly higher 

upstream. Also at the confluence, a clear decrease in overall concentration is visible, but these instantly 

increase downstream of the bridge. At the prominent bend of the Danube in the east, the northern 

branch has slightly higher concentrations than the southern branch. 

Figure 31 Chl-a distribution of full research area using Mishra and Mishra NDCI algorithm (26-9-2021). 

Figure 32 Zoom-in on sampling sites of chl-a distribution using Mishra and Mishra NDCI algorithm (26-9-2021). 
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The results from the calibrated NDCI algorithm are depicted in Figure 33 and 34. Where the calibrated 

band-ratio algorithm showed little spatial variation in chl-a concentration, this algorithm with similarly 

poor performance measures, did show the expected spatial patterns. The chl-a concentrations were 

predicted highest in the Danube, upstream of the confluence. The concentration in the Sava were 

predicted lower, with slightly higher concentrations further upstream. At the confluence there is a 

distinction between the water of the Sava and the Danube, as a prominent lower concentration is 

shown at the confluence. After the first bridge after the confluence, concentrations appear higher. 

After the confluence, a cross-river pattern is visible with slightly higher concentrations on the 

northside, with a gradual decrease towards the other bank.  

 

Figure 33 Chl-a distribution of full research area using calibrated NDCI algorithm (26-9-2021). 
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Figure 34 Chl-a distribution at sampling sites using calibrated NDCI algorithm (26-9-2021). 
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4. Discussion 
This study aimed at evaluating how accurate ASI PRISMA hyperspectral images can be used for 

mapping chl-a patterns in rivers. This Discussion section reviews the methods and results of this 

research, draws conclusions from the results, and proposes topics of future research on this topic. 

Before the results are discussed, all steps of the methodology are first thoroughly reviewed, covering 

the sampling process, image preparation, and the calibration and validation methods. After this, the 

performance of the algorithms is discussed, and the best performing algorithm is selected. This part 

covers the answering of the first and second research questions of this research on the performance 

of existing chl- algorithms and the possible improvement after calibration with a local dataset. The 

results from this algorithm are used to analyse the spatial distribution of chl-a at the Danube-Sava 

confluence and sources of chl-a are detected, covering the third research question. Research that has 

covered the methodology and/or topics from this research is discussed next to support the discussion. 

Next, the analysis is made if the findings in this research would support the development of a chl-a 

monitoring system, aiming to answer the fourth research question. Finally, propositions are made for 

future research, as there is still a lot of ground to cover on this topic. 

4.1. Review of the methods 

4.1.1. In-situ sampling 
It proved a difficult process to obtain a timely combination of a hyperspectral satellite image of a river 

area and multiple in-situ water quality samples taken within a half hour timespan around the satellite 

image acquisition. Still, it was made possible by thorough planning and a continuous readiness of 

multiple colleague researchers in Belgrade to take in-situ samples at short notice. The timeframe of a 

possible image acquisition of PRISMA was known only 9 days in advance, with a confirmation of the 

actual acquisition 1 to 2 days in advance. Multiple planned image acquisitions failed due to poor 

weather conditions and high cloud coverage in the study area. All available capacity, both in manpower 

and equipment, was utilized and the results were very helpful in answering the research questions.  

Nevertheless, there are ways to improve in-situ sample acquisition for future research. Firstly, more 

in-situ samples would enable a more accurate validation of an existing algorithm. Also, the calibration 

and subsequent validation of a new algorithm would improve in quality with a larger dataset, as this 

would enable larger separate datasets for calibration and validation. Secondly, a wider spatial variety 

of the sampling locations would also improve a dataset. This could not take place, again because of 

the limited capacity to take samples. Samples were taken from the western bank of the Sava, southern 

bank of the Danube, and in a small bay in the Danube. The Sava has overall lower chl-a concentrations, 

the concentrations in the Danube downstream of the confluence are lower than upstream, and results 

from multiple algorithms show that concentrations on the southern bank of the Danube are lower than 

on the northern bank. With exemption from site 12, the chl-a concentration range of the in-situ 

samples are homogenous. If samples are taken from the Danube upstream of the confluence and on 

the other banks, it is likely a more heterogenous dataset is created with higher chl-a concentrations. 

Finally, a more accurate dataset could be built if samples are taken from locations which would also 

have pixels usable for analysis in the image. All samples were taken from the bank, with exemption of 

site 12, which was taken from a jetty. All pixels that were overlapping with the riverbanks had to be 

removed, and reflectance from multiple usable pixels in proximity was taken instead. If a sample falls 

within a pixel usable for analysis, reflectance can be extracted from only this pixel instead of a group 

of pixels. This is also the case for sampling sites that are located in close proximity to bridges, floating 

barges, ships, or harbour facilities, as was the case for sampling sites 1, 3, 7 and 12. Taking samples 

from a boat at least 45m, the diagonal of a VNIR PRIMSA pixel, away from the bank or other objects 

would avoid mixed pixels. 
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4.1.2. Image preparation 
The PRISMA images are made available with a standard georeferencing with an accuracy up to 200m. 

The exact location of the in-situ samples could not be located using the GPS-grid of the image. They 

had to be located manually and visually using the 5m spatial resolution panchromatic images and aerial 

images from Google Earth that did show the correct location of sites. Based on the 30m resolution of 

the RGB images, it is estimated that the sites were in the imagery with an accuracy of one 30m pixel. 

It is possible to receive PRISMA images with an accurate georeferencing if Ground Control Points (GCP) 

are available for the area (Agenzia Spaziale Italiana, 2020). Using such imagery increases the accuracy 

of the reflectance retrieved from pixels located over sampling sites. For images of the Danube-Sava 

confluence, no GCPs were available.  

In the process of avoiding and removing pixels with mixed values from the analysis, some features 

were overlooked. In the application of the original band-ratio and NDCI algorithm, as well as the 

calibrated algorithm, local elevated chl-a concentrations were predicted that were concentrated to 1 

to 4 pixels, As can be seen in Figure 35-38, these elevations were located where large ships, barges or 

bridges were present. Removing and masking out these features from the image was not achieved 

during pre-processing. The reflectance that these features added to the pixels’ average were such that 

the algorithms falsely registered these as a relatively high chl-a concentration. This phenomenon can 

also be caused by a large number of smaller objects. As depicted in figure 39 and 40, a large number 

of small, recreational vessels are anchored evenly distributed over the southern, left arm in the 

confluence. These vessels cause a change in reflectance values and hence, an apparent increase in chl-

a concentration as well. As these phenomena occurred at only a few locations and as these locations 

were known, it did not affect the interpretation of the chl-a distribution patterns. The decision was 

made to not redo the image preparation and remove the mixed pixels in order to estimate the chl-a 

concentrations without these mixed pixels. 
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Figure 35 Elevated chl-a concentrations at locations of 
a ship and bridge in Sava (chl-a distribution Mishra and 
Mishra NDCI algorithm, 26-9-2021). 

Figure 36 Locations of a ship and bridge in Sava (pan, 
26-9-2021). 

Figure 37 Elevated chl-a concentrations at locations of 
ships in Danube (chl-a distribution Mishra and Mishra 
NDCI algorithm, 26-9-2021). 

Figure 38 Locations of ships in Danube (pan, 26-9-
2021). 

 

Figure 39 Chl-a distibution at confluence (chl-a 
distribution Mishra and Mishra NDCI algorithm, 26-9-
2021). 

Figure 40 Confluence of Danube and Sava (pan, 26-9-
2021). 



 
 

45 
 

4.1.3. Validation of the original algorithms 
A small but well in time with satellite overpass matching dataset comprising of 11 in-situ samples was 

used to validate the original band-ratio and NDCI algorithms for application on the research area. This 

dataset is smaller than those used in the USA when developing the models. Gurlin et al. (2011) used 

two separate datasets for the calibration and validation of their band-ratio model. 89 measurements 

gathered at the Fremont Lakes Stage Recreation Area in Nebraska, USA in 2008 were used for the 

calibration of their model. The validation took place with a dataset comprising of 63 measurements 

from that same area, taken in 2009. The Mishra and Mishra NDCI algorithm was calibrated and 

validated using both a simulated dataset and a field dataset (Mishra & Mishra, 2012). For the 

calibration and validation using the field dataset, of the 49 samples, 29 were used for calibration and 

20 for validation. The dataset for validation for this research is smaller than those of others, but with 

11 samples a validation can still be performed of which the results should be a good initial indication 

of applicability of chl-a concentration algorithms on rivers. 

As discussed, the dataset used in this research is, apart from site 12, homogenous for an area where 

the chl-a concentrations vary more. Results of several algorithms do show that the chl-a concentration 

is higher in the Danube upstream of the confluence than at most of the sample locations. The results 

of the Mishra and Mishra NDCI algorithm show the chl-a concentration ranges from 16μg/L to 20μg/L. 

Even though the concentrations measured range from 2.1μg/L to 7.0μg/L and do not cover the full 

range of concentrations present in the research area, it was assumed they would have enough variance 

for an indicative validation to be performed with. 

4.1.4. Calibration of the algorithms 
The calibration was performed using a quadratic regression. Another form of regression, like a linear 

regression, was not chosen because the original algorithms from Gurlin et al. (2011) and Mishra and 

Mishra (2012)  used a quadratic regression in their most successful calibrations. Performing the same 

regression would offer the best comparison between the original and calibrated algorithms. The band-

ratio model was calibrated using a linear regression in Gurlin et al. (2011) as well, but this algorithm 

had a lower performance. 

In Gurlin et al. (2011) and Mishra and Mishra (2012), calibration took place with a dataset comprising 

of respectively 89 and 29 samples. The full dataset for this research contained only 11 samples and 

there were no options to extend this dataset for this research. To still work with this limited dataset, 

the question arose if this dataset was enough for an accurate calibration. 11 samples were not enough 

to calibrate a model to depict accurate absolute values for chl-a concentrations. It was assumed that 

11 would be enough to calibrate a model with the purpose of making estimations of chl-a 

concentrations. The choice was made to use all data for the calibration of the algorithm, leaving none 

for a separate validation. With only 11 samples, it was assumed that every sample was needed for the 

most accurate calibration. Reserving samples for a separate validation would decrease the already 

limited accuracy.  

4.1.5. Validation of the calibrated algorithms 
Gurlin et al. (2011) used two datasets for calibration and validation, while Mishra and Mishra (2012) 

reserved part of one dataset for validation. The choice was made not to do either in this research and 

the algorithms were calibrated using the full dataset without reserving data for validation. To make a 

more reliable validation, the algorithms were recalibrated with only 8 samples, reserving 3 for 

validation. Validating the calibrated algorithms using the same data used for training yielded bias 

results that did not show an accurate performance of the algorithms. The performance of the 

calibrated band-ratio algorithm was presented as outstanding after validation, while the recalibration 
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showed a much poorer performance. Also, the resulting chl-a distribution map of the calibrated band-

ratio algorithm did not show the spatial distributions that were expected and visible in the results from 

the other 3 algorithms. 

The recalibration and validation of the algorithms did put the performance in perspective. The resulting 

performance measures is not the performance of the calibrated algorithms using the full dataset, as 

samples are missing from the dataset. It does however serve as an indication, and even a minimum 

value of the performance, as it can be assumed that accuracy and performance of the algorithm 

increases with a more extensive dataset. 

4.2. Algorithm performance 

4.2.1. Performance of the Gurlin and calibrated band-ratio algorithm 
Overall, the Gurlin band-ratio algorithm performed moderately, with a NMAE of 0.15 and a NRMSE of 

0.24 (Table 7). The deviations would still be too high to assume that resulting absolute values for chl-

a concentration are highly accurate. The algorithm would serve as a good qualitative indication of chl-

a concentration, or as a quantitative estimation where such margin of error is acceptable. This is also 

supported by the resulting chl-a concentration distribution maps (Figure 27 and 26). These maps show 

a proportional spatial variation of chl-a concentration in spatial patterns that is expected from this 

area. There is a clear difference in concentration between the upstream part of the Danube, which has 

a higher concentration, and the Sava with a lower concentration. After the confluence, the Danube 

shows an overall concentration that is higher than that of the Sava, but lower than upstream of the 

confluence. At the confluence, there are clear patterns of the convulsion visible of the two bodies of 

water. In the eutrophic bay of site 12, concentrations were calculated at around 110μg/L, the correct 

order of magnitude compared with the in-situ observation. Overall, the Gurlin band-ratio algorithm 

would be suitable for making qualitative estimations for chl-a distribution, or quantitative estimations 

with a substantial margin of error. 

The calibrated band-ratio algorithm performed poorly and the calibration was not an improvement on 

the original band-ratio algorithm. The performance measures of the recalibrated algorithm are not 

high, with a NMAE of 0.40 and a NRMSE of 0.49 (Table 7). These measures partly make that the 

performance of this algorithm is classified as poor. The resulting chl-a concentration distribution map 

(Figure 29 and 30) was decisive, as this showed a low spatial variation in chl-a concentrations and did 

not depict spatial patterns that were expected and observed in the results from other algorithms. The 

Gurlin band-ratio algorithm was calibrated for the use on large surface water bodies with a dataset 

containing 89 samples. It is expected that the performance of the calibrated algorithm would improve 

with a larger dataset, but it is unknown if it would allow the use of a calibrated band-ratio algorithm 

for the calculation of accurate, quantitative chl-a estimations in rivers. 

4.2.2. Performance of the Mishra and Mishra and calibrated NDCI algorithm 
The Mishra and Mishra NDCI algorithm performed best of all 4 algorithms, both in performance 

measures as in the resulting chl-a distribution map. This algorithm showed the best performance 

measures, with an NMAE of 0.07 and a NRMSE of 0.09 (Table 8). The NMAE implies that the calculated 

concentration would, on average, deviate 7% of the observed values. The resulting chlorophyll-a 

concentration distribution maps (Figure 31 and 32) show the spatial distribution that is expected from 

this area as well. The results from the validation, though be it from a limited dataset, imply that the 

Mishra and Mishra NDCI algorithm would serve as a good tool for quantitative chl-a concentration 

estimations in this area with a certain margin of error. Only further research can determine this margin 

of error. 
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The calibrated NDCI algorithm showed similar performance measures as the calibrated band-ratio 

algorithm. The NMAE of the recalibrated algorithm was 0.41 and the NRMSE was 0.55 (Table 8). Where 

the chl-a concentration distribution map (of the calibrated band-ratio algorithm was inadequate, the 

map of the calibrated NDCI algorithm (Figure 33 and 34) did show promising results, as it showed all 

the spatial patterns that were observed in the maps of the Gurlin band-ratio and Mishra and Mishra 

NDCI algorithms. What is notable is that there is less contrast and overall concentrations are lower 

compared to the Mishra and Mishra NDCI algorithm. This could indicate that the estimated 

concentrations are not yet in proportion to one another. The calibration of the Mishra and Mishra 

NDCI algorithm turned out not to be an improvement. Still, the results from this algorithm did show 

the expected spatial distribution patterns, indicating that there is a bigger chance of improving the 

NDCI algorithm through calibration with a larger training dataset than there is of improving the band-

ratio algorithm.  

4.3. Spatial distribution and sources of chlorophyll-a 

4.3.1. Spatial distribution of chlorophyll-a 
The results show that it is possible to estimate chl-a concentration in the river water, depict the spatial 

distribution of chl-a, and discover spatial patterns of chl-a using the Gurlin band-ratio algorithm and 

the Mishra and Mishra NDCI algorithms. Spatial distribution of chl-a can also be depicted with the 

calibrated NDCI algorithm. It must be considered that the chl-a concentration estimated is the average 

concentration of chl-a of the water column up to the depth where light cannot penetrate. It was not 

possible in this study to estimate what this depth was. The spatial distribution patterns that are visible 

in the results occur in this water column and any vertical chl-a distribution patterns are not directly 

visible. In addition to the chl-a distribution map of 26-9-2021 (Figure 41), chl-a distribution maps were 

made for the images of 14-9-2020 (Figure 43) and 23-2-2021(Figure 45), all using the Mishra and 

Mishra NDCI algorithm. These maps are shown with a panchromatic image of the same date (Figure 

42, 44 and 46). 

Figure 41 Chl-a distribution at confluence (chl-a distribution Mishra and Mishra NDCI algorithm, 26-9-2021). 
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Figure 43 Chl-a distribution at confluence (chl-a distribution Mishra and Mishra NDCI algorithm, 14-9-2020). 

Figure 44 Confluence of Danube and Sava (pan, 14-9-2020). 

Figure 42 Confluence of Danube and Sava (pan, 26-9-2021). 
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 The origins of most large-scale spatial patterns that emerged from these algorithms can be deduced 

from the chl-a distribution, in-situ data, and knowledge of the area. The mixing of water at and after 

the confluence is the cause of a prominent spatial patterns. In the panchromatic images, a clear colour 

difference is visible between the Danube and the Sava (Figure 42 and 44), the water of the Sava being 

darker. A clear plume enters the Danube, which can also be seen. The chl-a distribution maps (Figure 

41 and 43) show clear decrease in concentration where the Sava joins the Danube. This lower 

concentration instantly increases right passing the Pančevo Bridge. A possible explanation for this 

phenomenon could be due to a difference in water temperature and density in the Danube and the 

Sava. Table 9 shows the temperature at the sampling sites, with sites 1 to 7 located in the Sava, site 10 

at the confluence, and sites 11, 13 and 14 in the Danube. The water temperature of the Sava is overall 

higher than the temperature of the Danube after the confluence. The largest difference in water 

temperature measured, the difference between site 1 and site 14, is 2.0°C. It is also assumed the 

difference in water temperature of the Danube before the confluence and the Sava is larger than that 

of the Danube after the confluence and the Sava. The water of the Danube assumably warms after the 

influx of warmer Sava water. This difference of water temperatures suggests a difference in water 

Figure 45 Chl-a distribution at confluence (chl-a distribution Mishra and Mishra NDCI algorithm, 23-2-2021). 

 

Figure 10 Confluence of Danube and Sava (pan, 23-2-2021) 
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densities between the two rivers. A difference in water densities could cause a vertical stratification at 

the confluence, where the warmer water of the Sava remains more at the surface and the colder water 

is forced downward and towards the left bank. The pillars and any underground structures of the 

bridge could break this stratification and force mixing between the two water columns. This process 

would explain the sudden decrease change in concentration after the bridge and seems most likely, as 

it is supported by the measurements of the water temperature at the sampling sites. 

Sampling 
site 

Temperature 
(°C) 

1 21.2 

2 21.1 

3 19.8 

5 20.7 

6 21 

7 21.7 

10 20 

11 19.2 

12 21.9 

13 19.5 

14 19.2 

Table 7 Water temperature at sampling sites. 

This phenomenon is not visible in the imagery of 23-2-2021. The panchromatic image (Figure 46) does 

show a cross river colour difference, with water on the northern bank, originating from the Danube, is 

lighter. The chl-a distribution map (Figure 45) shows a chl-a concentration difference between the 

Danube and Sava. Mixing appears limited and a cross-section difference in chl-a concentration 

remains. The instant mixing of water after passing the Pančevo Bridge did not occur. This might be due 

to a less prominent difference in water temperature. This image was acquired in winter, while both 

other images were acquired at the start of autumn.  

After the Pančevo Bridge, there remain a cross-river gradient in chl-a concentration (Figure 31), with 

higher concentrations on the northside bank and lower concentrations towards the southside bank. 

This could be due to the waters of the two rivers not being fully mixed, with higher concentration water 

of the Danube remaining on the northside of the river, and water of the Sava remaining on the 

southside. 

The bay in site 12 has a very high chl-a concentration compared to the rest of the research area (Figure 

41). This bay has stagnant water, and a wastewater outlet resides at the inland end of the bay (Figure 

6). This makes for a local eutrophic environment that was detected by the algorithms. Figures 43 and 

45 do not show values for this bay. The image preparation process was not able to distinct the full area 

of this bay, causing remaining pixels to be left out after creating a buffer zone to remove mixed pixels. 

4.3.2. Deduction of sources of chlorophyll-a 
The large-scale sources of chl-a, like the influx from tributaries, can be deduced from the chl- 

concentration maps. The initial chl-a concentration in the Danube before the confluence is higher than 

the concentration in the Sava, as can be deducted from the chl-a distribution map of the full area 

(Figure 31). The overall chl-a concentration in the Danube decreases after the confluence, which can 

be attributed to the confluence with the lower concentration water of the Sava entering the Danube.  
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Where large scale sources and changes of chl-a can be deduced, small scale sources of chl-a were more 

difficult to observed. The magnitude of changes in local chl-a concentration caused by such sources 

appeared to be similar to the overall spatial variation in chl-a concentration. Several outlets of 

untreated wastewater are located within the research area. In-situ measurements performed 

upstream and downstream such outlets showed a clear change in water quality. Sites 1 and 2, and 5 

and 6 are positions upstream and downstream of two outlets. Figure 6 shows a clear colour difference 

in the water at the outlets. At the outlet between sites 1 and 2, sampling showed an increase in chl-a, 

from 2.3 μg/L at site 1 to 5.5μg/L at site 2 (Table 5). Besides the chl-a, also the TSS and turbidity both 

increased tremendously, by 750% and 610% respectively. Sampling at the second outlet between sites 

5 and 6 only showed a small increase in chl-a, from 2.5μg/L at site 5 to 2.8μg/L at site 6. The TSS and 

turbidity increased by 110% and 122% respectively. Figure 35 shows the chl-a concentration at site 1 

to 3. Between site 1 and 2, one pixel shows a slightly elevated chl-a concentration. Such elevations do 

not stand out, as they are limited to one pixel and the concentration increase is only slight. At site 5 

and 6, the chl-a distribution map (Figure 47) does not show an increase in chl-a concentration that 

could be attributed to a wastewater outlet either. It can be concluded that it was not possible to 

distinguish small sources of chl-a using these methods. 

4.4. Supporting research 
As mentioned before, only little research has been performed on estimating water quality parameters 

of river water using hyperspectral satellite remote sensing. Research that covers river water quality 

analysis through remote sensing is discussed in this chapter. Prasad et al. (2020) developed 

mathematical regression and artificial neural network (ANN) models to estimate chl-a concentration 

in the Upper Ganga river. His research is discussed first. Other research studied chl-a in the estuaries 

of rivers, one of which is Liu et al. (2010), who estimated chl-a concentration sin the Pearl River Estuary 

from MODIS land bands.  

Prasad et al. (2020) used Landsat-8 surface reflectance imagery along in-situ data from a two-year 

period to develop and validate their models. Reflectance and band-ratios of Landsat-8 bands 2 (450-

520nm), 3 (530-590nm), and 4 (640-670nm) were used as input in the form of the band2, band2:band3, 

band2:band4, band3:band4, band4:band2, and band4:band3. Calibration of each input was done with 

a linear, exponential, power, and logarithmic function. With 44 samples available for calibration and 

Figure 47 Chl-a distribution at sites 5-7 (chl-a distribution 
Mishra and Mishra NDCI algorithm, 26-9-2021). 

Figure 48 Sites 5-7 (pan, 26-9-2021). 
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18 samples for validation, the composition of these samples was randomly varied to repeat each 

calibration 20 times, resulting in a total of 480 models. Notable of this approach is the use of band-

ratios in the visible part of the spectrum, excluding the NIR part of the spectrum. CDOM has the most 

prominent absorption in the blue and green part of the spectrum, but also absorbs light in the red and 

NIR regions (Mishra & Mishra, 2012). Of all these models, the power model of the band4:band2 

proofed most successful, with a R2 of 0.68 and a RMSE of 9.86μg/L after calibration. The validation 

resulted in a RMSE o 9.5μg/L and a MAE of 7.98μg/L. The results from Prasad et al. (2020) showed that 

their band-ratio algorithms were comparable to previous research (Duan et al., 2008). The calibration 

using a logarithmic function yielded the lowest results after validation with a MAE of 53.8μg/L and a 

RMSE of 54.42μg/L. The fact that a band-ratio of red and NIR reflectance, and a different regression 

method were used makes it difficult to compare the results of these studies. Prasad et al. (2020) did 

also construct an ANN model that combines the results from all six reflectance and band-ratio inputs. 

This ANN can evaluate complicated interactions between variables and present a flexible tool for 

defining the relationship between remotely sensed images and auxiliary information as input, and 

biophysical factors as output (Mas & Flores, 2008). It can model a large number of nonlinear 

relationships without a prior knowledge of the nature of non-linearity (Palani et al., 2008). Prasad et 

al. (2020) created an ANN model with 20 nodes that produced the best results: a MAE of 1.26 and 

RMSE of 1.52. This ANN model improved the results produced by the band ratio algorithm. Again, the 

results of the ANN model cannot be compared with the results of this research as very different 

methods were utilized.  

Liu et al. (2010) aimed to estimate chl-a concentration in the Pearl River Estuary using a band-ratio 

(band2:band1) of MODIS land bands 2 (842-876nm) and 1 (620-670nmnm). A dataset comprising of 18 

in-situ chl-a measurements was created that covered the full extent of the estuary from river mouth 

to ocean. This dataset is limited in size and comparable to that used in this research. A non-linear 

relationship between the measured chl-a concentration and the value of the band-ratio. A calibration 

provided a standard error of 5μg/L and a R2 of 0.85 for a chl-a range of 5 to 60μg/L. Validation resulted 

in an average relative error of about 35% and showed that the derived chl-a values fit well with the in-

situ measurement in most of the area. This is comparable with the NMAE of the calibrated band-ratio 

algorithm (0.40) and calibrated NDVI algorithm (0.41). The MODIS bands have a large bandwidth. Band 

1 covers the ascend of the absorption peak of chl-a in the red part of the spectrum but does not 

concentrate on this absorption peak. Liu et al. (2010) concluded that a spectral band more 

concentrated on this peak would be necessary to predict chl-a concentration more accurately with 

minimal influence of CDOM. Following this suggestion, PRISMA band 34 at 665nm with a bandwidth 

below 12nm was used for this research. Liu et al. (2010) concludes that their initial results are very 

encouraging for the further exploration of chl-a estimation in turbid productive waters using MODIS 

bands. The model that was applied must undergo further development as the calibration was 

performed with a seasonally limited in-situ dataset. This model was developed using data from turbid, 

productive estuarine waters. It would not be applicable to rivers, as the estimated chl-a concentrations 

turned out high due to the higher concentration of suspended matter in areas close to the river mouth.  

4.5. Chlorophyll-a monitoring system 
The results of this research show that this methodology could be applied to development of an 

automated monitoring system that predicts the qualitative chl-a distribution, or values for the absolute 

chl-a concentration with a certain margin of error. This system could be applied to Danube-Sava 

confluence and areas similar. With further development, these methods could be developed into a 

monitoring system predicting accurate, quantitative values with a low margin of error for chl-a 

concentrations for this area and other rivers. Such a system could be used to observe in temporal 

changes in chl-a concentration and its distribution patterns, and detect large scale sources of chl-a. It 
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could also be used to verify results of existing in-situ monitoring systems, replace in-situ monitoring 

systems, and monitor rivers that beforehand could not be monitored due to lack of accessibility or 

resources. The rivers it can be applied to are limited to the spatial resolution of the satellite system 

and the extend that these rivers correspond to the types of rivers including in the calibration dataset. 

A river water quality monitoring system must meet certain requirements. The first requirement 

concerns the dimensions of the river. A river should be deep enough for the bottom not to be visible 

from above, as this would interfere with the reflectance. The river should also be wide enough for 

multiple pixels of a satellite system to cover the water surface without overlaying the riverbanks. A 

wider river would offer the opportunity to better detect spatial patterns and sources of chl-a. The 

satellite system used must meet certain requirements as well. A high spatial resolution of the sensor 

used would improve the resolution of the chl-a concentration predictions, better enabling the 

depiction of spatial patterns. The satellite system must have the spectral bands used in the chl-a 

algorithm, for this study at 665nm and 709nm, with the appropriate band width, which was ≤12nm for 

PRISMA. Depending on the requirements of the monitoring system, images of a research area must be 

acquired with a certain frequency. The satellite system must have an adequate revisit time or the 

ability to adapt the sensor direction to increase the frequency of image acquiring. Image acquisition is 

easily affected local weather conditions, which can render images useless for analysis. PRISMA has a 

revisit time of 29 days, but has the ability to adjust its sensor, enabling image acquisition with a 7-to-

10-day interval of the Danube-Sava confluence. Still, it occurred that bad local weather conditions 

made image acquisition impossible for a 4-week period during the image acquisition for this research. 

The third important factor is the development of an accurate chl-a concentration algorithm. This 

development should first entail research to more chl-a concentration algorithms in order to select the 

most accurate methodology of transforming reflectance values to chl-a concentrations. Algorithms 

should be calibrated and validated using a more extensive dataset. The dataset should contain data 

from multiple days, as the water level in rivers and river water constituents vary throughout the year. 

This dataset should contain data from more sampling sites than it did in this research, as only 11 sites 

was too few to perform an accurate validation of existing algorithms or calibration and validation of 

models. If a monitoring system is to be suited for other parts of the Danube or Sava, or other rivers, 

this dataset should contain data from other areas.  

An automated monitoring system should follow the same steps as were followed in this research, with 

some additions. Firstly, the image acquisition should be automated. This depends on the satellite 

system that is used, but for PRISMA, this would be possible. When PRISMA imagery is acquired, it is 

sent over email, so the image would have to be introduced to the system by hand. The system should 

analyse if the image is usable for analysis, mainly if the cloud coverage is not too high. Through an 

NDVI, only the area with water can be selected by setting NDVI thresholds that represent pixels with 

water. An automated land-classification system could also be used. The edges of this selected river 

area musts be removed to avoid mixed pixels at the banks of the river. Pixels that are mixed due to 

ships, barges, or small recreational vessels can be removed by better selecting the NDVI threshold, by 

an automated land-classification system, or by an automated object-based image analysis. After the 

area to be analysed is identified, the selected algorithm can predict chl-a concentrations for this area. 

These results can be further analysed by displaying the chl-a distribution mapss, average value of chl-

a concentration, and other parameters for the whole research area, or parts of the research area, like 

certain tributaries or parts of the river. 
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4.6. Future research 

4.6.1. Using different hyperspectral sensors 
The research to monitoring water quality through remote sensing has so far concentrated and 

reported in the literature on large waterbodies, like oceans, lakes, reservoirs, and estuaries. The 

selection of the research area is limited by the spatial resolution of the satellite system. With the 

improvement of spatial resolution of hyperspectral satellites, the options for monitoring water quality 

of rivers can be explored. PRISMA was used for this research, but other satellite or airborne systems 

could be used if they meet certain requirements: a high spatial resolution, and suitable spectral bands 

and band widths. Rivers are features that are limited in size compared to lakes or seas. The average 

width of the Danube near Belgrade is 550m, and of the Sava 300m.  A high spatial resolution enables 

one to remove mixed pixels from large spatial features, like riverbanks and bridges, but keep as much 

water surface available for analysis and maximizing the data availability. Mixed reflectance of pixels 

did occur in this research with features that were smaller than the PRISMA 30m spectral resolution, 

like ships, boats, jetties, and barges, that affected the estimated chl-a concentration. This can also 

occur with small islands, shallow waters, and even turbulent currents causing scattering. A high spatial 

resolution, even higher than that of PRISMA, would enable one to identify and remove these features 

more easily from analysis and avoid mixed pixels. The correct bands and bandwidth are required to 

retrieve the reflectance of the reflectance peak and absorption peak of chl-a. Lasty, the sensor must 

have a short return period or the ability to adjust its sensor. Hyperspectral sensor systems meeting 

these parameters can be used to estimate chl-a concentrations following the same steps as those in 

this research.  

Sentinel-2 suitable for river water quality assessment. This sensor’s red band (4) is located at 665nm 

with a bandwidth of 30nm and a spatial resolution of 10m (European Space Agency, 2015). This is 

comparable to PRISMA’s band 34, with a narrower bandwidth of 10nm, but a higher spatial resolution 

of 30m. The Sentinel-2 band 5 is located at 705nm with a bandwidth of 15nm and spatial resolution of 

20m, comparable to PRISMA band 38 at 709nm. Landsat-8 Optical Land Manager could also be 

potentially suitable for river water quality assessment. The NIR band covers 850-880nm , which is a 

higher wavelength than the 709nm band used from the PRISMA sensor (USGS, 2019b). The bandwidth 

of these Landsat-8 bands is 30nm, wider than the 10nm bandwidth of the PRISMA sensor. Both these 

factors could possibly affect the results, as other constituents, like CDOM, could start to affect the total 

reflectance at these bands. MERIS was used by both (Gurlin et al., 2011; Mishra & Mishra, 2012) for 

water quality assessment, but this sensor is not suitable to research river water. The bands at 665nm 

(band 7) and 709nm (band 9) with a bandwidth of 10nm (European Space Agency, 2006) are suitable 

for researching chl-a concentrations. The spatial resolution of 300m  renders it not applicable to 

narrow bodies of water, like rivers.  

4.6.2. Different water quality parameters 
Not only chl-a could be detected and estimated through remote sensing. Gholizadeh et al. (2016) 

gathered methods for estimating various water quality parameters of large surface water bodies 

through remote sensing. These parameters include chl-a, CDOM, Secchi disk depth, turbidity, TSS, 

water temperature, total phosphorus, dissolved oxygen, biochemical oxygen demand, and chemical 

oxygen demand. These methods have been developed using a variety of satellite and airborne sensors. 

These methods were developed for their use on large surface water bodies, not rivers. In this research, 

two methods for the estimation chl-a concentration were shown to be applicable on river. This does 

not guarantee that the methods for estimating other water quality parameters can be applied on rivers 

as the methodology for estimating the other water quality parameters differs from those for chl-a. The 

shape of a river and other constituents of river water that did not affect the chl-a concentration 
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estimation can interfere with the estimation of other parameters. Nevertheless, this research showed 

the possibility for chl-a analysis and should serve as an incentive to investigate the estimation of other 

water quality in rivers through remote sensing. 

4.6.3. Small-scale sources of pollution 
Small-scale sources of chl-a, like wastewater outlets could not be localised in this research. Chl-a is a 

constituent that is not often directly discharged through wastewater. Blooms of algae containing chl-

a is not an instant phenomenon, as it is a process that can follow an excessive influx of  nutrients 

(Dodds, 2006). An instant growth of algae shall not occur near an outlet if the water is moved 

downstream. Other water quality parameters are expected to change more prominently in the vicinity 

of an outlet. (Polluting) constituents can be directly discharged at a discharge sites. CDOM, TSS and 

dissolved oxygen could be discharged directly from a discharge site and an increase in concentration 

is expected near the discharge site. Discharged water can also physiology of local water instantly in 

other ways. Turbidity and temperature can change locally because of the different turbidity or 

temperature of the discharged water. 

4.6.4. Application on other rivers 
The estimation of chl-a concentration as performed in this research can be applied on other rivers as 

well if the rivers meet certain specifications. A river must be wide enough for the pixels of the satellite 

system to overlay the body of water; a wider river accommodates more overlaying pixels. To 

distinguish spatial patterns is then still not guaranteed. With the PRISMA spatial resolution of 30m, it 

was already hard to distinguish spatial patterns in the Sava, which already has a modest width 

compared to other European rivers. Rivers should also be deep enough if these methods are to be 

applied. All methods used in this research assumed rivers were deep enough that the bottom was not 

visible and did not contribute to the overall reflectance. Lastly, a dataset should be available with in-

situ water quality parameters gathered around the moment of capture of the image, that can be used 

for validation of the existing algorithm used, or for calibrating and validating a new algorithm.  
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5. Conclusion 
Medium resolution hyperspectral imagery is suitable for estimating and monitoring the water quality 

of rivers. This study shows it is possible to map spatial patterns of chl-a in rivers with qualitative 

concentration estimates and to refine that into quantitative estimates with a certain uncertainty range. 

Absolute chl-a concentration mapping remains challenging. Mapping chl-a in surface water is 

important as it is an important water quality measure and indicative for eutrophication. The Gurlin 

band-ratio algorithm performed moderately, with performance a NMAE of 0.15 and a NRMSE of 0.24. 

The resulting chl-a concentration distribution map shows clear patterns as expected from the area. 

The validation with the limited dataset indicates that the algorithm is suitable for qualitative 

estimations of chl-a concentrations in the Danube-Sava confluence, or quantitative with a larger 

margin for error. The Mishra and Mishra NDCI algorithm had the overall best performance, with a 

NMAE of 0.07 and a NRMSE of 0.09. The chl-a concentration distribution map showed spatial 

distribution patterns as were hypothesised. Out of all 4 algorithms, this algorithm is best suitable for 

quantitative estimations of chl-a concentrations in the Danube-Sava confluence with a certain margin 

of error.   

The algorithms did not improve when calibrated with a local training data, probably due to the limited 

dataset. The calibrated band-ratio algorithm showed the lowest performance and is not usable for 

qualitative of quantitative estimations. The NMAE of the re-calibrated band-ratio algorithm was 0.40 

and NRMSE was 0.49. The chl-a concentration distribution map showed little to none of the spatial 

distribution patterns that were hypothesised and that were visible in the results of the other 3 

algorithms. The performance measures of the calibrated NDCI algorithm were comparable to the 

calibrated band-ratio algorithm, with an NMAE of 0.41 and a NRMSE of 0.55. The chl-concentration 

distribution map of this algorithm did show spatial patterns that showed in the original algorithms, 

including concentration differences between the Danube and Sava before the confluence and (limited) 

mixing at the confluence. This algorithm should not be applied for qualitative estimations of chl-a 

distribution, but its original counterpart shows a better performance. Of the two algorithms, the NDCI 

algorithm has the most potential to improve after calibration with a more extensive local dataset. 

The original band-ratio and NDCI algorithms, and the calibrated NDCI algorithm showed clear spatial 

patterns in chl-a distribution. Large sources of chl-a in rivers, like large tributaries, could be deduced 

from these distribution maps. These showed that the Danube has the highest chl-a concentration, 

which decreased after the confluence with the Sava. Small scale sources of chl-a could not be deduced 

in this research, as the concentration differences at wastewater outlets were not high enough, and the 

spatial resolution of PRISMA was still too low. If these methods were to be applied on other water 

quality parameters, possibly with higher resolution sensors, it is likely that small-scale sources of other 

constituents can be located through remote sensing. 

It would be possible to establish a qualitative and quantitative, remote river water quality monitoring 

system. The Mishra and Mishra NDCI algorithm would be most suitable to be used for this purpose, 

but it would need to be further validated for its use on the Danube-Sava confluence, or other rivers 

that this monitoring system would be used for. For the monitoring of chl-a, all steps taken in this 

research should be automated. Other water quality parameters of larger water bodies, like seas and 

lakes, can be estimated through remote sensing, and with further research their application of rivers 

can be made possible as well.  
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