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Abstract

Meltwater feedbacks are a core component to the Greenland ice sheet surface mass balance

but the contributions are hard to quantify, which makes predictions very uncertain. Effort has

been taken to quantify the total volume of supraglacial meltwater with optical remote sensing.

However, the requirement for in-situ measurements and tuning for each hydrological feature

keeps the method from scaling to an automated ice-sheet wide solution. The ICESat-2 altime-

ter photon retrieval product provides high resolution (0.7m footprint) height estimates over

the Greenland ice sheet at regular intervals (90 day revisit time). The Advanced Topographic

Laser Altimeter System (ATLAS) onboard ICESat-2 returns both photons reflected from the

water surface and the lake bottom which allows for depth retrieval. In this thesis a method is

proposed to classify the ATL03 photon returns as surface and bottom photons leveraging an

iterative Density-Based Spatial Clustering of Applications with Noise (DBSCAN) approach.

The photon classifications yield estimates for the surface and lake bottom heights across the

complete ICESat-2 track and a lake classification based on the slope of the surface and the

estimated depth. Extrapolation of the along-track depths across the Greenland ice sheet,

using Sentinel-2 optical imagery, is investigated. For extrapolation a generalized form for an

empirical, physical and machine learning technique are considered. The lake classification,

as compared to Sentinel-2 lake detection has an accuracy of 97.8% and provides consistent

and smooth depth estimates over the complete ICESat-2 track. Extrapolation of the depth

estimates using a random forest regressor shows an out-of-sample R2 of 0.7 with an RMSE

of 1.54 across the complete validation set. The results suggest that DBSCAN clustering of

ICESat-2 altimeter data can yield consistent and accurate depth estimates that can be used

in a generalized method to estimate lake depths across the entire Greenland ice sheet with a

low error margin and small computational overhead.

Keywords: ICESat-2, supraglacial lake, Sentinel-2, DBSCAN, machine learning, Green-

land

ii



Introduction

The melt of land ice is the most important factor in global sea level rise for this decade after

thermal expansion [Mouginot et al. (2019), Pörtner et al. (2022)] and the uncertainty of the

future impact is high. The Greenland ice sheet (GrIS) is currently the largest contributor to

the total land ice budget [Bamber et al. (2018)] and is of immense importance for climate

tipping points [Pattyn et al. (2018), Pörtner et al. (2022)]. The uncertainty in current mass-

balance estimates is a limiting factor for the research of land ice impact[Edwards et al. (2021),

Stap et al. (2019)]. Meltwater plays an important role in the mass balance of ice sheets as

surface water directly decreases albedo and surface run-off further promotes mass loss [Smith

et al. (2015), Bell et al. (2018)]. Other indirect effects like water penetration into the sub-

glacial environment [Zwally et al. (2002), Bartholomew et al. (2012), van de Wal et al.

(2008)] and Antarctic ice-shelf collapse [Scambos et al. (2009)] also contribute significant

uncertainty to land ice contribution estimates for the future. Meltwater dynamics have

become more important to the Greenland ice sheet mass balance over time [Enderlin et al.

(2014) Mouginot et al. (2019)] which can be attributed to the non-linear increase of melt with

rising temperatures [Trusel et al. (2018)] that shows in the increasing meltwater production

on the ice sheet [Van den Broeke et al. (2016)]. Supraglacial lakes on the GrIS act as storage

for meltwater and play an important role in the positive meltwater feedback loop[Lüthje

et al. (2006)]. Lakes on the GrIS have also become more abundant[Sundal et al. (2009)]

thereby further increasing the uncertainty in the surface mass balance (SMB) estimates,

as drainage events are chaotic and hard to predict[Williamson, Willis, Arnold & Banwell

(2018)]. Quantifying meltwater impact on the surface mass balance is difficult as runoff is

hard to directly measure [Smith et al. (2017)] and even meltwater entering the subglacial

environment does not always directly relate to mass loss [Willis et al. (2015)]. The water

volume of supraglacial lakes can be used as a proxy to improve SMB models and thereby

quantify meltwater contributions [Yang & Smith (2012)].

Remote sensing has played an important role in the improvement of supraglacial lake

depth and volume retrieval as gathering in-situ data is complex for remote areas like the

GrIS. Box and Ski first leveraged optical images from the MODIS satellite to extrapolate

sparse in-situ data to supraglacial lake volumes using an empirical relation between the

MODIS reflectance and the lake depth [Box & Ski (2007)]. Optical imagery has also been

used in deriving lake depths via a physical method based on the attenuation of light through

the water column and the albedo of the lake substrate [Philpot (1989), Sneed & Hamilton

(2007), Pope et al. (2016)]. Both solutions have seen widespread usage in the retrieval of

lake depth, lake volumes and the mapping of surface hydrology on the ice sheet leveraging

various optical satellites[Legleiter et al. (2014), Pope et al. (2016), Moussavi et al. (2016),

Williamson, Banwell, Willis & Arnold (2018), Dell et al. (2020), Moussavi et al. (2020)]. How-

ever, the dependence of both methods on a homogeneous surface roughness, water column,

bottom slope and substrate albedo means extrapolation across larger areas is difficult [Sneed



& Hamilton (2007)]. Problems also arise for lakes of greater depths as reflection no longer

significantly changes [Box & Ski (2007)] with depth. On top of this, open source optical

satellite imagery has relatively high resolution (Sentinel-2 has a 10m resolution) but can only

be used to classify features that encompass multiple pixels ; as pixels over mixed terrain have

a mixed reflectance so cant be associated with any particular class.

With the launch of ICESat-2 in 2018 a data source of non-optical imagery came available

allowing for new physically based methods of lake depth retrieval which immediately saw

widespread usage for bathymetry mapping [Parrish et al. (2019), Li et al. (2019), Ma et al.

(2020), Hsu et al. (2021)]. The laser altimeter instrument returns photons reflected from both

the water surface and the lake bottom enabling lake depth retrievals. In Fair et al. (2020) a

method is proposed that uses elevation-based histograms to separate the lake surface from the

bottom in along-track windows that have confirmed lakes as indicated by Landsat imagery.

A more automated method that does not require optical imagery was proposed in Datta &

Wouters (2021) which additionally, provides different classes for the lake bottom dependent

on the strength of the bottom reflection and the surface slope. The estimates provided by the

ICESat-2 methods are deemed more accurate than the physical method applied to optical

imagery [Fricker et al. (2021)] and with additional automation and extrapolation estimates

of the total water on the ice sheet during the melt season can be estimated [Datta & Wouters

(2021)]. However, histogram-based methods are computationally expensive and reduce the

horizontal resolution of the depth estimates due to the along-track windows required. This

can be overcome using methods that classify individual photon returns as bottom, surface or

noise photons instead of retrieving a bottom line estimate from the aggregated dataset [Xie

et al. (2021)].

In this thesis I present a new automated method for supraglacial lake depth estimation

from individual ICESat-2 photon returns using the Density-Based Spatial Clustering of Ap-

plications with Noise (DBSCAN) algorithm [Ester et al. (1996)] which was earlier explored

for lake bathymetry in Ma et al. (2020). The depth estimates come from a physical ap-

proach eliminating the need for in-situ validation measurements and allowing extrapolation

to retrieve lake volumes for the entire GrIS. As a proof of concept the cross-lake general-

isability of the empirical and physical methods, to extrapolate depth retrievals beyond the

ICESat-2 tracks with optical imagery from Sentinel-2, is explored in comparison to a multi-

spectral machine learning approach. With the classification of individual photons the native

ICESat-2 resolution is retained and automated smoothing windows and DBSCAN parameter

selection eliminate track by track manual intervention. The proposed method is independent

of optical imagery and its resolution limitations, which allows for the classification of signif-

icantly smaller supraglacial hydrological features like water filled crevasses, sloped streams

and partially ice covered lakes.

The method is used to classify a track on the outer Western bounds of the GrIS which has

a high abundance of lakes and good Sentinel-2 data coverage. The abundance of hydrological

features allows for fair validation of the depth estimates and lake classification. The aim is

to show a new reliable method for supraglacial lake depth retrieval with lower computational

overhead, a native resolution and a method to scale this into 3d returns with optical imagery
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that does not need to be tuned for every single hydrological feature. The data sources, and

study area as well as the methods for depth retrieval, extrapolation and validation are laid

out in the methodology section followed by results for a subset of the classified lakes. The

discussion will go into depth on the effects of assumptions and choices made and provide

material for future research after which the conclusion will list the most important findings

of this thesis.
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Methodology

2.1 Study area

The area of interest for this case study is located in the ablation region of the GrIS between

63◦and 69◦latitude and 46◦and 50◦longitude. The area has a diverse surface hydrology which

is optimal for testing the proposed generalised and automated method. The same area

was covered in both Fair et al. (2020) and Datta & Wouters (2021) which makes qualitative

comparisons and future comparison research easier. The area was chosen due to the relevance

to climate research, good data coverage and complex supraglacial hydrological setting. Only

data in locations that coincide with the ICESat-2 tracks shown in figure 2.1 are processed.

Figure 2.1: The study area in Western Greenland overlaid by the reference ground track of the
studied ICESat-2 overpass

2.2 Data

2.2.1 ICESat-2

For the estimation of lake depths the method proposed in this thesis relies solely on the

ICESat-2 photon-counter data as provided in the Global Geolocated Photon Data (ATL03)

product version 005 [Neumann et al. (2021)]. The Advanced Topographic Laser Altimeter

System (ATLAS), the lidar instrument onboard of ICESAT-2 returns 6 beams of data in 3



pairs. Each pair is separated by ∼3.3 km and the left (weak) and right (strong) beam are sep-

arated by 90 meter. For this thesis only the strong left beams are used as a proof of concept.

The ATLAS instrument records the two-way travel time for photons at a wavelength of 532

nm send in pulses at a Pulse Repetition Frequency (PRF) of 10 khz [Neumann et al. (2021)].

The travel time translates into a height estimate for each signal photon with an estimated

geolocation accuracy of ∼3.5 m at a footprint of ∼10.9 m [Magruder et al. (2021)] which

is higher than mentioned in the mission requirements [Neumann et al. (2021)]. The ATL03

product also provides the along-track distance, a Digital Elevation Model (DEM) height for

each segment from the GIMP-DEM [Howat et al. (2014)] and the aforementioned geolocation

as Longitude and Latitude in WGS84. A list of all the used data products used from this

mission is given in 2.1.

Table 2.1: ICESat-2 data

RGT Sensing date # of photons Beams

1222 2019-06-17 73,232,889 GT1L, GT2L, GT3L
1108 2019-06-09 30,766,210 GT1L, GT2L, GT3L

2.2.2 Sentinel-2

The Sentinel-2 constellation consists of two passive optical satellites Sentinel-2A, and

Sentinel-2B. The mission supplies a Top of Atmosphere (TOA) reflectance product with the

Red, Green, Blue, (RGB), Near-InfraRed (NIR) and Short-Wave InfraRed (SWIR) bands at

a 10 or 20m spatial resolution. The Sentinel-2 products are downloaded via the Copernicus

API [Data availability: section 4.2.2] and used as level 1C radiance data, as TOA reflectance

is required for the empirical and physical methods. All images used for this case study are

from June 2019 taken ∼12 hours from the ICESat-2 passing so they can be best used for

validation and visual exploration. No cloud masking is implemented in the proposed method

so care is taken to choose dates with low cloud cover as estimated from the Sen2cor L2A

product [Main-Knorn et al. (2017)]. A list of all the data products used from this mission

can be found in table 6.4 in the appendix.

2.3 Processing chain

The photon classification process for retrieving the icesheet surface and potential lake

bottoms is a process taken in several steps. The full workflow can be inspected in figure 2.2.

The next subsections will cover steps taken for the retrieval of the photon classification, bot-

tom and surface line and lake classification. Section 2.3.4 will go into depth on the retrieval

of validation depths from the Sentinel-2 images.

2.3.1 DBSCAN photon classification

Clustering is a method widely used for classification problems in and outside of glaciology

[Zhang et al. (2014), Khan et al. (2014), Rizzoli et al. (2017), Gallagher et al. (2020)]. The

premise of clustering is that individual data points can be given a similarity score based on

5



Figure 2.2: Flow diagram indicating the data flow through all sections of the method with Darkgreen
boxes indicating the input data, light green boxes intermediate data returns, Yellow and red boxes
indicate processing steps and the blue box being the final product.

various factors. The simplest method to measure similarity is the standardized euclidean

distance across the feature set. However, one could use more complex metrics if needed.

DBSCAN is a variation of the standard k-means that aims to solve the clustering problem for

any arbitrary shaped cluster, something that standard distance based simlarity doesn’t, which

makes DBSCAN an optimal algorithm for non-spherical clusters like the surface/bottom lines

expected for the ICESat-2 retrievals. DBSCAN is also an optimal method for removing noise

as explained later on in this section.

DBSCAN operates with two parameters, Eps and MinPts so that the Eps-neighbourhood

can be defined as a circle around a point with radius Eps. In DBSCAN a point is considered a

core point if the number of points within it’s Eps-neighbourhood is larger or equal to MinPts.

Beyond core points there is a hierarchy implemented for the way points are connected to their

nearest neighbours: (I) Points are directly density-reachable (DDR) if they are in the Eps-

neighbourhood of the same core point, (II) a point is density-reachable (DR) if the point is

within Eps distance of another core point which is DDR from the current core point, (III)

Figure 2.3: Reachability in the DBSCAN algorithm, figure from Götz et al. (2019)
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a point is Density Connected (DC) if the point is within the Eps-neighbourhood from a

common DR core point. Lastly a point will be classified as noise if the point is neither DDR,

DR or DC and can therefore not be part of a cluster. A cluster can now be defined as a

collection of points which are either DDR, DR or DC to one of the other points in the cluster

like portrayed in figure 2.3.

Drawing inspiration from Ma et al. (2020) DBSCAN is used to cluster the ATL03 photon

returns in signal and noise photons as a first step. For this part of the processing the dataset

split into the 6 beams is grouped in batches of 25000 photons in order of the photon event

occurrence. The dataset has only two dimensions, along-track distance and photon height.

First the euclidean distance from each photon return to its MinPts neighbour is calculated.

Calculating this for every point gives an indication of the density distribution in the window

and will be used to give a best estimate for the Eps parameter. The data is compiled for all

25000 photons and plotted on a normalized graph as nearest neighbour distance vs photons

included. An example of such a graph is included in the result section figure 3.4. The distance

from the line to the origin is calculated for the entire graph and the closest point is considered

the optimal cost-benefit of increasing Eps versus including more photons. The non-normalised

y coordinate of this point on the line is taken as the Eps for this window with MinPts set to 6.

DBSCAN is ran on the two dimensional dataset with these parameters classifying individual

clusters in the dataset. The result is then reclassified as ”signal”, anything that was classified

in a cluster, or ”Noise”, anything which was not assigned a cluster, after which all noise data

is discarded.

The data classified as signal is now used to redo the Eps optimization step with MinPts =

3 so to again differentiate two classes within the signal photons, surface or bottom. An

additional parameter is used in this step dubbed Strict which influences the scaling of the

x-axis in the normalized plot. Increasing the Strict parameter (default = 1) will make the

automated Eps optimization choose lower values meaning less photons are classified as signal.

The resulting DBSCAN cluster classification is again reclassified into a binary system with

signal and noise. All photons classified as ”Noise” by DBSCAN in this second iteration will

be used for the bottom height retrieval laid out in section 2.3.2, all photons classified as

”signal” are considered surface returns for the surface height retrieval.

The classification result from the two DBSCAN for every loop consisting of photons clas-

sified as: Noise, bottom or surface is combined into a single dataset after the loop commences.

This dataset is used to extract the surface and bottom height at the initial ATL03 sampling

rate.

2.3.2 Generation of the continuous surface and bottom depths

The photon height of all photons classified as surface is used in a distance based rolling

median to generate a smooth line that follows the most consistent photon returns. The

window size is set to 20m sampled at every 5m. It is important to have a smooth and

consistent surface line as the slope directly impacts the lake classification and the depth

calculation. A 20m window size showed to still represent complex geometries, like crevasses,

while securing a consistent surface height estimate for regions with sparse photon returns.
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The sample rate has significant impact on the computation time, as every further halving

would double the computation time for this step. Setting the sample rate at 5m has the best

cost-benefit as it provides a smooth window without significantly slowing down the overall

computation. The window size and sample rate are set and are not necessarily influenced by

the photon statistics so should generalise well. To create a complete dataset the surface line

is linearly interpolated to the initial ATL03 photon sample rate.

After generating the surface height estimates the absolute slope is calculated as |rise/run|
in which rise is the height change over a 1 photon step size and run the along track distance

covered in that step. The slope is used to calculate the slope-adjusted depth between the

surface line and every single photon classified as a bottom return. The formula used, Dadj =

|D|/
√
1 +m2 with Dadj the slope adjusted depth, D the distance between the surface line

and the bottom photo and m the surface slope, assumes the slope and eventual bottom line

to be parallel. This slope adjusted depth calculation is used to correctly estimate the depth

for potential lakes and streams on slanted surfaces. Any photon classified as bottom but

within 0.2meter of the surface line is removed from the bottom photon class so to eliminate

wrongly classified surface photons. Removing photons further below the surface would make

the bottom classification to erratic and complicate its process in finding the correct lake

boundary.

The depth of all photons classified as a bottom are corrected for the refraction difference

between air and water, for light at 532nm, by dividing the depth by 1.33 [Parrish et al. (2019)].

This correction shifts all photons slightly upwards lowering the previous depth estimates. The

constant used has shown great accuracy for solving for the physical implications of light travel

time through both air and water in other research as well [Datta & Wouters (2021), Fricker

et al. (2021)]. The constant is created for specifically the wavelength used by the ATLAS

instrument aboard ICESat-2.

A distance based rolling median with a window size of 25m along-track distance and sam-

ple rate of 5m is calculated to extract a bottom line for the entire beam. The window size

is chosen slightly higher than the surface so to correct better for the noisy bottom returns.

To create a complete dataset the bottom line is linearly interpolated to the initial ATL03

photon sample rate.

2.3.3 Lake classification

Before the bottom line is interpreted as either a lake return or not, several statistics are

calculated in a 25000 photon window. The statistics help to dismiss ICESat-2 returns under

cloudy conditions, regions with insufficient signal in comparison to noise and regions with an

inconsistent surface return in comparison to the bottom. For each window the total amount

of surface, bottom and noise photons are counted. Two different ratios are calculated from

the photon counts: Surface to Noise (SNR) shows how robust the surface detection is and

Surface to Bottom (SBR) indicates whether or not enough bottom photons were detected

to make a judgement on the depth. All photons in a window where the SNR is above 0.5

and 2.5 < SBR > 10 are considered valid from a statistics standpoint. These parameters

where chosen based on visual exploration and would need to be automatically parameterized

8



Table 2.2: Classes for the lake classification and their requirements

Class D-adj slope statistics

lake > 1 < 0.003 X
sloped lake > 1 ≥ 0.003 X
flat surface ≤ 1 < 0.003 X

to better scale this method to more ICESat-2 tracks. Further classification is done based on

a combination of the surface slope and the slope adjusted depth measured as the difference

between the surface and bottom depth estimates. All sections with a slope < 0.003 and a

depth > 1 are considered lakes. Two extra classes exist for suspiciously flat areas and sloped

regions with high depth as displayed in table 2.2. The per-photon classification is then trans-

formed into a smooth classification with a distance based rolling mode at a window size of

10m and a sample rate of 10m. The 10m window is chosen so that all features larger than 5m

can be classified. The sampling rate is the same as the window size to limit the computation

time as the computational requirements for mode calculation are significantly larger than

those for the median or mean. To create a complete dataset the lake classification result is

propagated to the initial ATL03 photon sample rate.

2.3.4 Validation & extrapolation

To quantify the accuracy of the ICESat-2 depth estimates all results along the track

were compared with both a physical and empirical method for depth retrieval using optical

imagery [Box & Ski (2007), Sneed & Hamilton (2007)]. The empirical method can be used

for extrapolation of the ICESat-2 results as shown in Datta & Wouters (2021) while the

physical method is only used for validation. An extra effort was made to compare the physical

and empirical method, which are both reliant on a single channel and lake by lake based

parameterisations, to a multi-spectral machine learning approach.

For all 3 validation and extrapolation methods we use the Sentinel-2 data described in

section 2.2.2 from the 2019-6-16 : 2019-6-17 overpass by Sentinel-2A. The B11 and B12

bands used in the machine learning approach have been resampled to a 10m resolution using

a nearest neighbour algorithm. Additionally the enhanced Normalized Difference Water

Index (NDWI) is calculated for every Sentinel-2 scene at a 10 meter resolution with equation

2.1. The enhanced NDWI does not use the Near Infra Red (NIR) and Short Wave Infra-Red

(SWIR) band like the normal NDWI and has been used before to classify lakes in Greenland to

great success[Pope et al. (2016), Moussavi et al. (2016), Moussavi et al. (2020)]. A threshold of

0.21 is used for the NDWI to identify lakes. This values provided the best visual classification

results and is similar to the value used in the three aforementioned papers.

NDWIenhanced =
Blue−Red

Blue+Red
(2.1)

The Sentinel-2 data is then matched with the ICESat-2 dataset by extracting the Sentinel-

2 pixel value at the longitude/latitude combination of every 25th photon in the ATL03

9



dataset. The computation time for this method is significantly lower than extracting data

for every single photon and the resolution is not impacted as we can expect 0.6-3.9 photons

per 0.7 m pulse Neumann et al. (2019) and Sentinel has a new pixel value for roughly every

10m of along-track distance. The gaps in the data set are then filled by forward filling the

latest value.

Only a subset of the data is valid to be used for validation. First off the same statistics

as leveraged in section 2.3.3 are used to eliminate parts of the track with insufficient or too

noisy data. An additional set of statistics is used to eliminate geographical complex regions

which can not be properly classified by the algorithm, this will be further dissected in the

discussion. The statistics are calculated over the same window as the DBSCAN classification,

which is 25000 photons. The first criteria is that the maximum height difference between any

photon in the window and the GIMP DEM is smaller than 400 m, this removes any clear data

inconsistencies due to clouds or geolocation errors. Second the range, the height difference

between the highest and lowest photon, needs to be lower than 400 m. Lastly the mean slope

in the region has to be lower than 0.1 eliminating very geographically intense regions like

crevasses. All threshold values were chosen after visual detection of anomalies and extensive

exploration of the statistics across the entire track. This statistical filtering decreases the

size of the validation dataset by ∼ 6%. Additionally the validation dataset consists only of

regions of the track for which Sentinel-2 data was available and lakes are present indicated

by both a NDWI > 0.21 and a classification following table 2.2 as ”lake”.

Confusion matrix

The fist method for validation is a confusion matrix. This sets out the truth, here con-

sidered to be the Sentinel-2 lake classification based on the NDWI threshold, against the

expected. The expected is the lake classification as described in section 2.3.3 with only class

”lake” as given in table 2.2 counting as a correct estimate. The only four options for a

classification are a True positive (TP), a True Negative (TN), a False Positive (FP) and a

False Negative (FN) which are all gathered on a per-photon basis. The confusion matrix is

accompanied by the accuracy, sensitivity and precision metrics which are calculated from the

photon counts per category. The accuracy is calculated as (TP+TN)/(TP+FP+TN+FN)

and gives an overall estimate for the classification success. To compensate for the skew in the

categories two more metrics are calculated. The precision shows the percentage of classified

lakes that are truly lakes, as seen by Sentinel-2, and is calculated as TP/(TP + FP ). The

sensitivity indicates the reliability of the test for ”no Lake” classifications and thereby gives

an insight into how many hydrological features are missed. The sensitivity is calculated as

TP/(TP + FN). The four classes in the confusion matrix will be expressed as percentages

of the total number of photons. The bottom depth generation in this thesis is a continuous

estimation and not a classification problem. However, the confusion matrix provides valuable

insight into, not only the classification of this bottom line, but also how it compares to the

use of Sentinel-2 imagery for lake classification.
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Empirical

The validation dataset is used to fit the empirical relation (Eq. 2.2) first described in Box

& Ski (2007). Here D is the depth (m), R the TOA reflectance (unitless) in either the green

or red spectrum and α0, α1, α2 are the parameters to be tuned. The function is optimized

for the Root Mean Square Error (RMSE) using the depth estimates and related reflectance

from the validation dataset as training data. The same formula and method is used for both

the green and red reflectance. The optimal parameters can be used to calculate lake depth

from reflectance and thereby extrapolate the depth estimates over the entire Sentinel-2 image

Datta & Wouters (2021). In this work no extrapolation beyond the ICESat track is done

but the empirical relation is used as a benchmark when comparing to the machine learning

approach in the results section. In contrast to common usage the method is not fitted on a

per-lake basis but over all lakes in the entire track. This method is chosen as to show the

generalisabillity of the method at scale.

D =
α0

(R+ α1)
+ α2 (2.2)

Physical

The single channel physical method (Eq. 2.3) as proposed in Philpot (1989) and later

adapted for supraglacial lakes in Sneed & Hamilton (2007) and Pope et al. (2016) can provide

results without in-situ measurements or the need for optimization. The method relies on the

attenuation of light through water so that the reflectance varies with depth. The relation is

non-linear and heavily dependent on multiple factors like the substrate albedo and pollution of

the lake water. This physical approach requires one to extract parameters for each individual

lake to scale and tune the method. In this thesis we aim to show that one can extrapolate lake

depths using a generalised method hence why a similar approach to the empirical method

is used (as described in section 2.3.4 to fit the physical method for the varying parameters

instead. In below equation D is the lake depth in m, Ad is the substrate albedo, Rw is the TOA

reflectance of the water and Rinf is the TOA reflectance for optically deep water (> 40m).

Values for g are taken from Williamson, Banwell, Willis & Arnold (2018) as ggreen = 0.1413

and gred = 0.8304 while the value for Rinf = 0.04 is taken from Moussavi et al. (2020).

These parameters were set to these referenced values as they were found as a general suitable

value for large datasets over the Greenland coast and should apply well to the study area of

this thesis. For Ad the value was estimated between 2 bounds from Moussavi et al. (2016)

and then found via RMSE optimization for the validation data. The search bounds for the

parameter are set as: Green 0.3 − 0.7 and red 0.15 − 0.6 so to make sure the optimal value

is within. Ad is computed this way to remove the need for tuning over individual lakes and

show the generalisability of the physical method as a benchmark. The physical method is not

intended to be generalised over different lakes but should still provide a constant comparison

for the ICESat-2 retrievals and the machine learning approach.

D =
ln(Ad −Rinf)− ln(Rw −Rinf)

g
(2.3)
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Multispectral machine learning

ICESat-2 depth estimates can be used to extrapolate lake depths to lake volumes using

optical imagery and the empirical method as shown by Datta & Wouters (2021). However,

this method requires tuning on a lake by lake basis making it unusable for smaller features or

widespread extrapolation. The empirical method relies on only one band of optical imagery

which removes the possibility for it to generalise for the lake parameters like substrate albedo,

surface roughness and water contents. By using machine learning and a multispectral dataset

(Red, Green, Blue, NIR, SWIR [-2 bands] and the NDWI) parameterisation for lake differ-

ences may be internalized and no longer needed to be tuned for. A random forest regression

algorithm is used with 250 estimators. The validation dataset is slightly altered so to only

include unique combinations of the reflectance over all bands. This is done by grouping the

data per unique reflectance combination and taking the median depth for this set. This is

done to prevent overfitting of the model as there are many photons geolocated to each single

sentinel-2 pixel. The Sentinel-2 bands B02, B03, B04, B08, B11, B12 and the NDWI at 10

meter resolution are used as training data for the model. To estimate the performance of the

model a cross-validation process is followed with 25 folds and a test dataset size of 15%. The

cross-validation is important to show the accuracy for out of sample results, how would the

model react to new data. The chosen fold size matches the requirements for this dataset. A

smaller fold size would have to much variance in the sample test datasets and a larger value

would exclude too much data so that the model cant train. The same out of sample test is

applied to the empirical method for which the results are given in figure 3.7a.
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Results

3.1 Photon classification

Figure 3.4 shows the output for the surface classification alongside the parameterisation

for the Eps parameter. The classification result does not discriminate lakes already but

highlights photons part of the surface (grey) and photons part of the bottom signal (blue).

The return is constant meaning every photon could be either noise, bottom or surface ;

no other restrictions are set. However, this does also mean that the bottom and surface

classifications are never truly noise free and there is a trade-off in eliminating noise and

retaining signal. In the top right of 3.4 it is visible that the first Eps parameterisation is

done in such a way that ∼ 85% of the photons have at least 6 other photons around them in

a circle with radius r = Eps. With an Eps of 1.838 m this step is eliminating all noise from

the dataset as can be seen in the top left image of figure 3.4.

The second classification step is taken more strictly so to extract just the surface photons

which exhibit a stronger density than the bottom photons. Roughly 80% of the photons

share enough neighbours to be a core point. The bottom classification shown in the bottom

left of figure 3.4 indicates 2 gaps between the surface photon cluster and the bottom photon

cluster. We might identify these features as lakes as they have a distinct shape and disconnect

with the surface; this is something the method further highlights in the next processing step.

Figure 6.11 in the Appendix shows an additional three lakes including their parameterisation.



Figure 3.4: Left – Classification of Surface photons (grey) and bottom photons (blue) by DBSCAN
for step 1 (top) and step 2 (bottom) plotted with the height on the y-axis and along track distance on
the x-axis; both in meters. Right – Graph showing the increase of core points for DBSCAN (x-axis)
as the Eps would increase (y-axis), the dot shows the automatically chosen value.

3.2 Surface and bottom extraction

The surface and bottom lines as extracted from the photon classification, using the method

displayed in section 3.1, are detailed in Figure 3.5 together with a scaled image of the lake

from Sentinel-2 imagery. The method classifies lakes on various scales from just a few meters

wide and deep (bottom right) to kilometer scale lakes deeper than 15 m (top right). The

method shows very consistent results in a native resolution and the classification visually

aligns with the classification by Sentinel-2. The method is not able to identify the water
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Figure 3.5: Figures showing the individual photon returns classified as surface (grey) or bottom
(blue), the surface line (grey) which shows purple when Sentinel-2 NDWI > 0.21 and the bottom line
which is purple for lake, violet for sloped lake and violet for flat surface. RGB images from sentinel-2
at the top of each image show the lakes at scale.
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depth under floating ice but does correctly identify floating ice as surface instead, which

can be seen in the middle two images in figure 3.5. The surface line is very detailed with

very small scale flat surfaces and geographical features showing while also being smooth over

the entire window with little erratic vertical movements. The bottom line is more erratic

and very dependent on the amount of bottom photons available for its calculation. The

bottom line clearly indicates the start and ending of lakes with minimal deviation from the

slope break points visible in the surface line. The bottom line perfectly follows the bottom

photon returns for dense returns (top right Figure 3.5) but for lakes with more inconsistent

bottom photon returns (top left Figure 3.5 the bottom line can act erratic at times. Apparent

multiple surface returns [Martino et al. (2020), Lu et al. (2021)] as shown in the middle left

image in figure 3.5 do not materially impact the bottom line return and bottom classification.

In general some photons at the surface being classified as bottom photons does not impact

the visual correctness of the bottom line return. However, an inconsistent surface line over

a lake, as can be seen in the bottom left image of figure 3.5, has an impact on the slope

and therefore impacts the bottom classification. Misclassification due to inconsistent slope

returns as ”sloped lake” is the most common classification error as will be discussed in section

3.3. The bottom line is a consistent return and has a minimum depth of 0.2 m due though the

line creation process as described in 2.3.2. On top of this the classification of lakes requires

a minimum depth of 1 m which makes it so the all classified lakes have a minimum depth of

1 m even for the smallest lakes as can be seen in the bottom right of Figure 3.5.

3.3 Lake classification

The lake classification is performed with an accuracy of 97.8 % when compared to the

Sentinel-2 NDWI threshold classification. The distribution of lakes is skewed towards no

lakes which is why the precision and sensitivity ar used as additional metrics. The ratio

between correctly identified lakes and sections identified as lake, but not showing as lake on

the Sentinel-2 images, is given by the precision at 49.6 %. Table 3.3 also gives the sensitivity

at 72.2 % meaning the classification misses ∼ 27% of the total photons identified as lakes

by Sentinel-2. The Sentinel-2 NDWI threshold can not be seen as the whole truth due to

resolution disparities and misclassification in the NDWI method but provides a good insight

into the overall performance of the lake classification. The confusion matrix shows that the

lake classification does classify more photons as lakes than Sentinel-2 and misses relatively

little lakes in comparison to the Sentinel-2 method. The sensitivity jumps to 96% when

”sloped lake” is also counted as a positive classification, a significant increase. For this

second scenario the precision stays constant at ∼ 50% indicating no loss in overall accuracy.

Table 3.3: Confusion matrix for the classification result

Class Lake (ICESat) no Lake (ICESat)

Lake (S2) 1.61 % 0.62 % Sensitivity: 72.2 %
no Lake (S2) 1.63 % 96.15 %

Precision: 49.6 % Accuracy: 97.8 %
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3.4 Lake depths

3.4.1 Assessment of the fit

The fitted relation for the empirical and physical method as described in 2.3.4 are shown in

figure 3.6a and figure 3.6b with the background showing the validation dataset. As reflectance

decreases the depth increases for both the green and red relation. The empirical relations

have a significantly better fit, with Pearson correlation coefficients of 0.44 and 0.31 for the

green and red band respectively, than the physical relations. The sensitivity of fit to the

substrate albedo parameter Ad is shown with the dashed lines. The shape of the physical

relation does not seem to fit the overall shape of the estimated ICESat-2 depths from the

validation dataset. The bad fit of the physical relationship is expressed in the negative R2

values indicating a horizontal line is a better fit to the overall dataset. The relation for the

red band has a more non-linear shape then the green reflectance with depth only significantly

increasing below a reflectance of 0.1. The non-linearity lowers the predictive capabilities of the

model at lower reflectances. Both the green and red relation have a clear set of points which

do not fit the relations as they show higher depths for a higher reflectance than expected.

The physical method predicts negative depths for reflectances larger than 0.51 for both the

green and red relation which is a non-physical solution.

(a) Plot showing the ICESat-2 depth as grey scat-
ters, the fitted empirical and optimal physical rela-
tion in darkgreen and seagreen respectively and two
alternative physical fits as dashed lines in olive and
darkolive.

(b) Plot showing the ICESat-2 depth as grey scat-
ters, the fitted empirical and optimal physical rela-
tion in maroon and orange respectively and two al-
ternative physical fits as dashed lines in yellow and
gold.

3.4.2 Out-of-sample test

To further assess the quality of the depth estimates the empirical and physical relation are

tested out-of-sample for which the depths are given in figure 3.7a. The same test is applied

to the machine learning approach as laid out in section 2.3.4. The figure shows only the

empirical relations for both green and red and the machine learning approach as the physical

relation gives non-physical results and does not generalise well. Extrapolation of the ICESat-

2 depths across an entire track is feasible with a RMSE of 2.15, 2.43 and 1.54 meters for

the green empirical, red empirical and machine learning approach respectively. The machine

learning approach holds a R2 value of 0.7 indicating a medium strong correlation between
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(a) Estimated vs expected lake depth tested out of
sample for the Green (Darkgreen) and Red (Maroon)
Empirical method and the Machine learning (ML)
approach (Blue).

(b) The importance of the different input bands for
the Machine Learning approach visualized as a bar
graph.

the ICESat-2 depths and the estimated depths from Sentinel-2 imagery. The green and red

empirical relations show no depth estimates deeper than 10 m and underestimate the depth

for a continuous array of samples as can be seen in the bottom right quadrant of figure 3.7a.

all three comparisons show a narrowing effect of their distribution towards deeper depths

indicating estimating depth of shallow lakes is more ambiguous than deeper lakes.

Some extra insight into the workings of the machine learning method is given in figure

3.7b. The figure shows that the green reflectance is the feature that contributes the most

information to the predictive power of the machine learning method. The enhanced NDWI

is the second most important feature followed by the NIR band.

3.4.3 Relations applied

Figures 3.8a and 3.8b show an out of sample estimation of the lake depth retrieved from

the sentinel 2 images using the empirical and physical method for both the green and red

band. Both methods utilizing the red bands underestimate the depth of the lakes which is

particularly noticeable in figure 3.8a. The methods utilizing the green band are closer to the

ICESat-2 depth for the deeper lake but overestimate the depth of the shallow lake. The result

for all four methods is only visible for regions indicated as lake by the Sentinel-2 images which

makes the depth retrievals non-continuous. All four methods provide a bottom line which

moves in steps as its dependent on the Sentinel-2 resolution and was not smoothed. Figures

3.8c and 3.8d show the same out of sample estimation but then for the machine learning

method laid out in section 2.3.4. The bottom classification shows the same non-continuous

structure and stepped height as bottom depth estimated from the empirical and physical

relation. However, the depth estimates are much closer to the ICESat-2 depth estimates.

The two example lakes have distinct differences in depth which are both captured by the

trained machine learning model.
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(a) Lake 1 - Empirical and physical relations (b) Lake 2 - Empirical and physical relations

(c) Lake 1 - Machine learning (d) Lake 2 - Machine learning

Figure 3.8: Out of sample results for the an empirical, physical and machine learning approach to the
extrapolation of ICESat-2 lake depth estimates. The estimated depth to be emulated by the models
is shown as the purple bottom line. The empirical and physical methods are displayed as shades of
green and red in figure (a) and (b). The result from the machine learning model is visualized as a
pink line in figures (c) and (d)

19



Discussion

4.1 Photon classification

The two phase clustering approach for the photon classification has delivered visually

consistent and correct results. The background noise is removed consistently, leaving a very

clear surface reflection and bottom separation for regions with sufficient bottom photons.

However, a better screening of valid regions is needed prior to classification, besides the post

classification filter, so that regions with insufficient or inconsistent photon returns can be

removed or correctly parameterized for. Figure 4.9a shows an example of a non-valid region

as the surface return is very light in comparison to the number background noise photons with

roughly 20% of the photons being part of the displayed surface. The surface is still correctly

identified but a wrongful Eps parameterisation leaves all background noise photons classified

as bottom returns. Solutions could be: Identifying sparse surface returns after classification

and removing all associated bottom returns, implementing a maxEps parameter for step

1 of the classification, changing the automated Eps parameterisation so that it identifies

breakpoints in the optimisation graph and acts on them or lastly alter the normalisation of

the Nearest Neighbour (NN) distance in the Eps parameterisation to give more magnitude to

the lower NN distances. Solving this parameterisation of Eps for varying statistical scenarios

will also enable further generalisation of the method so that weak beams and overpasses

during the night can be used.

Apparent multiple surface returns are common in many classified lakes and are often

classified as either surface or bottom returns. The second implicated surface, most often,

consists of less photons than the actual surface or the bottom. This means it is not picked up

by the window based median and does not impact the result. This is in contrast to histogram

based methods which will have to eliminate these returns from the histogram to implicate

the correct surface or bottom.

Something else to take into account is that DBSCAN only operates on a two dimensional

dataset with the photon height and along track distance, no weight is given to the across

track distance. The across track distance is not constant meaning two photons with the same

or very similar along track distances might still originate from locations several meters apart.

A lake is a 3D feature so the height of these two photons might vary quite a lot, dependent

on the type of hydrological feature. These 3D depth variations are represented as depth

differences in 2D in the current method which distorts the 2D view of the data and impacts

the classification. The best way to tackle this is introduce the across track distance as a

third dimension so that the DBSCAN algorithm can take it into account when estimating

the similarity. From small visual tests done early in the creation of this thesis the impact on

the classification seemed to be little but the computational requirements were significantly

higher. Further research on this topic would be needed quantify the impact of adding the

across track distance as a third dimension to both the result and the overall computation time.



(a) 2D plot showing the estimated lake surface line
(purple when classified as lake by S2), and the classified
photon scatters (grey for surface and blue for bottom).

(b) Graph showing the increase of core points for DB-
SCAN (x-axis) as the Eps would increase (y-axis), the
dot shows the automatically chosen value.

4.2 Surface and bottom retrieval

The photon classification is important but provides no real interpretable result as the

photons returns are still chaotic and manual bottom retrieval from this would be based on

arbitrary decisions. The median over a distance based window has shown as a good way

to generalise the classification to a return at every sampling point. The smoothing window

for both the surface and the bottom however has an impact on the resolution of the surface

and bottom retrieval. On top of this it is hard to estimate the best smoothing window for

the lines. Increasing the window will generate a more consistent return but will further

reduce the possibility to identify intricate surface and bottom geometry. However, reducing

the window size to a minimal size is not optimal either as at a certain point the window

is so small that it is back on the photon level, meaning no generalisation has happened.

On top of this the window size can not be smaller than the sample rate as data would be

omitted further hindering an optimal estimate. Every halving of the sample rate doubles

the computation time of this step in the method. This means decreasing the window size

can also lead to significant increase in computation time. In this thesis a choice is made to

sample the bottom at a the lowest possible window size so to catch the smallest hydrological

features while the surface is smoothed over a smaller distance window but with much more

photons so to make sure it is as consistent as possible. As without a good surface return the

bottom return is useless because no correct depth can be calculated.

Another factor to consider is that the smoothing window for the surface and bottom

requires sufficient signal photons within the size of each window or it wont return any value.

In figure 4.10a a sudden depression in the surface estimate can be seen. This estimated

depression is not a correct representation of the surface but a drop in surface returns made
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the distance based window estimate very volatile, picking the bottom as a signal instead. If

gaps are even larger and/or no bottom photons are accidentally classified as surface, then the

line would have a break instead. This means there would be no way to calculate the depth

at that location. A wrong depth estimate can have knock on effects in the model training for

extrapolation, so having no data can be considered better than wrong data.

The method always calculates both a surface line and a bottom line. For most regions it

can very well identify whether or not this bottom return is actual signal or noise. For intense

geographical regions however, like crevasses or steep slopes, the classification has a harder

time. In figure 4.10b we see a region where the surface slope is changing so quickly that the

estimate is trailing the surface. This violet colour of the line indicates the two estimates are

more than 1 meter apart for most of the region. However, lakes in these regions are mostly

correctly identified. This is because if crevasses are water filled low slope is still detected.

The classification distance window might not be perfectly aligning with the crevasse bottom

though, which may make it so the next slope is classified as a lake as well. Some of these

features are smaller than the bottom classification window can manage.

Overall the easiest way to reduce the trailing bottom line problem, is by setting the

bottom height to the surface height for every section that is not classified as a lake. A small

smoothing window might be needed at the edges of each lake. This solution would also

remove the minimum lake depth of 1 meter as the bottom line at the edges of a lake bent

better towards the surface improving the training for the extrapolation model. A closed of

lake also better reflects the reality as the lake depth is considered 0 at the lake edge.

Lastly on the surface and bottom estimates, it is important to mention that there is a

small assumption in the calculation of the lake depth which can cause artifacts. As described

in section 2.3.2, the depth is calculated assuming the surface and bottom are parallel. This

makes it so lakes that exist on a sloped surface might have their depth misrepresented. These

cases are not abundant, as lakes on sloped surfaces still have a flat surface return. Shallow

surface streams on a sloped surface however do not fit this criteria. Overall for future research

it needs to be considered that the way depth is calculated provides a bias to the classification

of hydrological features.

4.2.1 Validation

The validation used in this thesis aimed to provide both validation and generalised extrap-

olation at the same time. It is clear from, especially the results for the physical validation,

that this was not feasible at the same time. With the current methods and lack of in-situ

measurements there is no way to properly validate the accuracy of the ICESat-2 depths only

from this research. Further research is needed to compare and validate the method proposed

in this thesis against other unsupervised methods and in-situ measurements, like done in

Fricker et al. (2021). Only the empirical and machine learning method showed any sign of

generalisation. From the physical method the only conclusion that could be taken is that the

ICESat-2 depths are very inaccurate which does not seem plausible given the high accuracy

of ICESat-2 in other research. The proper validation method would have been to scale the

physical relation for individual lakes, but even this can’t be considered a ground truth to
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(a) 2D plot showing the estimated lake bottom line
(purple when classified as lake), lake surface line (pur-
ple when classified as lake by S2), and the classified
photon scatters (grey for surface and blue for bottom).

(b) 2D plot showing the estimated lake bottom line
(purple when classified as lake), lake surface line (pur-
ple when classified as lake by S2), and the classified
photon scatters (grey for surface and blue for bottom).

properly validate a model with. For now we assume the ICESat-2 depth estimates to be close

to the potential ground truth as the ATL03 product comes from a clear physical relation and

has proven to be accurate from previous research [Ma et al. (2020), Fricker et al. (2021)].

The lake classification does have strong validation data, as it was compared to a Sentinel-

2 NDWI thresholding mechanism which is considered an accurate standard widely used for

lake classification [Moussavi et al. (2020)]. The confusion matrix indicates that the lake clas-

sification misses only few lake pixels in comparison to Sentinel-2 but that it overestimates

the amount of lake pixels compared to Sentinel-2. The confusion matrix is an aggregate

statistic over the entire track consisting of more than 22 million samples. The difference

noted with the Sentinel-2 classification does not have to mean the ICESat-2 method is in-

herently incorrect, as it has a significantly higher resolution meaning it could have identified

lakes Sentinel-2 cant have seen. The Sentinel-2 and ICESat-2 images were taken ∼12 hours

apart which can already have a material difference on highly variable environments like an ice

sheet ablation zone. Features, like floating ice for example, will be different in both images

impacting the confusion matrix. On top of this the Sentinel-2 data was not checked filtered

for pixels with clouds. The cloud percentage on all the used images was low and no clouds

were apparent over the ICESat-2 track. However this could still have an impact as Sentinel-2

misses lakes and this reflecting badly on the accuracy of the ICESat-2 classification. Besides

this it is important to note that regions with denser photon returns have a higher impact on

the confusion matrix as it was calculated on a per-photon basis. For more consistent valida-

tion it would have been better to sample the lake classification at a set along-track distance

resolution and compare that to the Sentinel-2 classification instead. Overall the classification

does seem to be relatively accurate and properly reflect floating ice, very small hydrological

features and the boundaries of supraglacial lakes.
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4.2.2 Extrapolation

The physical method generalises poorly overall which makes it unusable for calculating

depth estimates at scale. The empirical method generalises relatively well and has some

predictive capabilities. However, the relation operates at a much higher accuracy when used

on a lake by lake basis as shown in Datta & Wouters (2021). The proposed machine learning

method provides significantly better results than both the empirical and physical relation,

which shows in the out of sample results as displayed in figure 3.8c and 3.8d. It is important

to note however that the photon based dataset caused complications for the model training.

Like mentioned before in 4.2.1 re-implementing some of the method to return a dataset

sampled at a constant distance would mean the validation data better represents the actual

distribution of the various hydrological features. If this solution is implemented, more data

would be retained. This is because implementing a filter to keep only the unique values for the

model training, what is done now, would no longer be needed. Relatively little data (∼2000

unique rows) was used in this thesis to train the machine learning model as all validation

data came from the 1222 ICESat-2 track. Even less could be used to create the out of sample

prediction displayed in figure 3.8c and 3.8d as the entire beam which hold that lake has to

be omitted from the training. Overall I expect the generalisation capabilities of the model to

significantly improve when its trained on more than one track. Figure 3.8d is also displayed

in Datta & Wouters (2021) so a small comparison can be made. Both the empirical relations

for the green and red band shown in the Watta algorithm paper better estimate the depth

than the more generalised empirical relation found in this paper. The lake bottom found in

this thesis is very similar to the Watta retrieved depth estimates and the machine learning

method proposed in this thesis seem to outperform both of the empirical relations displayed

in Datta & Wouters (2021).
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Conclusion

This thesis presents a new method for supraglacial lake depth and surface retrieval from the

ICESat-2 ATL03 product leveraging an automated parameterisation of DBSCAN clustering.

The proposed method provides a consistent and visually accurate surface estimate, similar

to the ATL06 product, as well as a continuous lake depth estimate with a lake classification.

The method is able to detect lakes and other surface hydrological features as small as ∼10-

20 meters at a 97.8 % accuracy, compared to the traditional NDWI lake classification, and

matches very well with optical images taken of the study area. The depth estimated retrieved

in this thesis are hard to validate but show a very consistent return amongst a wide variety

of lake types. The depth estimates are not materially impacted by apparent multiple surface

returns, indicate floating ice and show no sign of loss of predictive capability with depth.

Overall the proposed method operates under relatively little computational overhead, espe-

cially the photon classification, and provides depth estimates at a native vertical resolution

from only one data-source over the entirety of the Greenland Ice sheet. Beyond the depth

estimates a machine learning method is proposed to extrapolate the depth estimated from

the ICESat-2 imagery leveraging optical imagery by Sentinel-2. An out-of-sample test shows

that the method is able to predict lake depth with a RMSE of 1.54 meters and a R2 value of

0.7. The method can be used to estimate supraglacial lake depths, in a generalized setting

for other ablation areas; and do so with a higher accuracy than the generalised version of

the traditional empirical and physical relations for depth estimates. The automated param-

eterisation method for DBSCAN clustering laid out in this case study needs to be further

advanced so that it can be used on the weak ICEsat-2 beams and in situations with more

noisy photon returns. Advancements are warranted to make the method more efficient and

return results only for areas with classified lakes while clearly highlighting the lake bound-

aries. Lastly more work is needed to validate the retrieved lake depth estimates with ground

truth, something that was not feasible in this research.
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Appendix & data availability

Data availability

Data products:

- ICESat-2: NASA NSIDC DAAC (NASA National Snow and Ice Data Center Distributed

Active Archive Center) via IcePyx Scheick et al. (2019–) or via https://nsidc.org/data/atl03

- Sentinel-2: Copernicus open access hub API via https://scihub.copernicus.eu/dhus

Processing steps and code:

- Open source code: https://github.com/gjvanleeuwen/ClassifylakesICESat2

Appendix

Table 6.4: Sentinel-2 data products - L1C

S2 Tile sensing date

T22WEB 2019-06-16
T22WEC 2019-06-16
T22WEV 2019-06-16
T22WFV 2019-06-16
T22WEV 2019-06-17
T22WFS 2019-06-17
T22WFT 2019-06-17
T22WFU 2019-06-17
T22WFV 2019-06-17



Figure 6.11: Classification of Surface (yellow) and bottom (grey) and graph showing the increase of
points included (x-axis) as Eps would increase (y-axis) for 4 different lakes and two processing steps.
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