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Abstract: 

Urban green spaces (UGSs) have been recognized as an essential role in urban ecosystem. Existing 

literature focused on the measurement of urban green space accessibility (UGSA) and inequity in a 

single city or cities in the same region. However, it is important to compare it on a global scale to raise 

the concern of policymakers and ensure the minimal UGSA standard and environmental justice for their 

citizens. By adopting the enhanced two-step floating catchment area (E2SFCA) method on 10 selected 

cities in North America, Asia, and Europe, we computed the normalized accessibility score for each 

population grid cell at a 250 × 250 m level. In addition, we measured the population-weighted average 

UGSA and the Gini coefficient to evaluate the overall accessibility and inequity for the selected cities. 

The result showed that in a single city, population grid cells with higher accessibility scores are 

concentrated near UGS with large size or dense distribution. However, the majority of the population 

only has a low accessibility level according to the criteria we set. When comparing UGSA among 10 

cities, residents in North American cities have higher accessibility to UGS than European cities, and 

the Asian cities have the worst accessibility. Additionally, there is a severe inequity among people in 

all the cities, especially in Dublin, Shanghai, and Dhaka. 
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1. Introduction 

Urban green spaces (UGSs) have been recognized as an essential role in urban ecosystem. In addition 

to serving as places for leisure, sports, and socializing, UGSs function as homes for natural species, 

helping increase biodiversity (Nielsen et al., 2014). Numerous research has been conducted on the 

benefits UGSs could bring. The majority of the results showed they could reduce the mortality (Barboza 

et al., 2021; Gascon et al., 2016; Labib et al., 2021) and relieve noncommunicable diseases (World 

Health Organization, 2016), such as reduction of risk of cardiovascular disease (Tamosiunas et al., 

2014), alleviation of diabetes mellitus conditions (De la Fuente et al., 2020), and respiratory conditions 

(Fuertes et al., 2020; Mueller et al., 2022), and more. In addition to physical health, it has been indicated 

that increasing exposure to UGS is associated with low mental illness (Beyer et al., 2014; Sugiyama et 

al., 2008), especially during the pandemic (Reid et al., 2022; Wortzel et al., 2021). 

Therefore, research on accessibility to UGSs has raised concerns in the past few decades. Most of them 

could be divided into two broad categories, (a) the description of the urban green space accessibility 

(UGSA) and (b) the inequity of UGSA in a city (Nesbitt et al., 2019). Studies concerning the description 

of the UGSA mainly have two differences. The first is the data source of UGS. One of the major sources 

is government websites (Comber et al., 2008; Labib et al., 2021; Liu et al., 2021; Talen, 1997; Wu & 

He, 2018; Xiao et al., 2017). Another common source is the green space layer from GIS software such 

as open street map (OSM) (Wang et al., 2021), ESRI (Zhang et al., 2011), and Google Earth (Y. Chen 

et al., 2022). Derived data is another source, such as using supervised classification (Fan et al., 2017). 

The second is the models they used, from container approach (Abercrombie et al., 2008; De Chiara & 

Koppelman, 1975; Maroko et al., 2009; Timperio et al., 2007; Wang et al., 2021; Zhang et al., 2011), 

proximity approach (Maroko et al., 2009; Talen, 1997; Wang et al., 2021; Zhang et al., 2011), kernel 

density (Fan et al., 2017; Levine, 2010) in the early period to the interpolation methods such as gravity 

model (Hansen, 1959; Liu et al., 2021; Shen, 1998; Zhang et al., 2011), and 2SFCA (Luo & Qi, 2009; 

Luo & Wang, 2003; L. Shi et al., 2020; X. Shi et al., 2012; van Heerden et al., 2022; Ye et al., 2018) in 

recent studies.  
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Based on the measurement of UGSA, a large portion of studies focused on the inequity among different 

subgroups in a city, such as income-based (Comber et al., 2008; Liu et al., 2021; Wu & He, 2018) and 

racial/ethnic groups (Liu et al., 2021; Maroko et al., 2009; Talen, 1997). Some commonly used indices 

to measure the inequity of UGSA include Gini coefficient (Y. Chen et al., 2022) and Palma ratio (Liu 

et al., 2021). In addition, researchers used regression to discuss the relationship between UGSA and 

socioeconomic factors (Y. Chen et al., 2020; Nesbitt et al., 2019), such as education, ethnicity, income, 

and population density.  

In addition to research on a single city, a few studies compared the UGSA for urban and rural areas 

within a country or region, such as the US (Zhang et al., 2011; Zhou & Kim, 2013), Europe (Wolff et 

al., 2020), China (Y. Chen et al., 2022), and Chile (Rojas et al., 2016). They showed that urban citizens 

enjoy a larger green space and accessibility than rural citizens (Y. Chen et al., 2022; Wolff et al., 2020; 

Zhang et al., 2011; Zhou & Kim, 2013). However, most of the existing literature focused on a single 

city or cities in the same region or country. Few studies made a comparison for UGSA or environmental 

justice on a global scale due to lack of consistent data, comparable and reproducible methods.  

Therefore, this study aims to narrow down such gaps in the existing literature. It used a quantitative and 

replicable method to measure the UGSA in the selected cities of North America, Asia, and Europe, and 

evaluate the inequity of them. This study contributes to the research of UGSA in three ways. First, it is 

the first study to compare accessibility and inequity to UGS in global wide cities, not just in a single 

city or cities in the same region. Second, most of the existing literature focused on cities in high-income 

countries, and research on low or middle-income countries is limited. We selected 10 cities according 

to economic, demographic, and geographic dimensions, which could provide credible and robust results. 

Last but not least, we provided a modular model developed in python to make the computation of UGSA 

reproduceable for multiple cities at ease. In most studies, the common software used for the computation 

of UGSA is QGIS or ArcGIS. Nevertheless, they are inefficient when the number of cities as well as 

the spatial unit of analysis increase since the overall modelling approaches are often not replicable.  

The following study is structured in five parts. Section 2 is a literature review of different approaches 

measuring the UGSA and inequity. Section 3 introduces data, study area, and methodology, then 
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followed by the section presenting results, including the accessibility maps for 10 cities, the proportion 

of citizens with different accessibility levels, population-weighted average accessibility scores, and the 

Gini coefficient for those cities. In section 5, we compared the results with other studies and discussed 

limitations. At last, we summarized the whole study in section 6. The overall reproducible workflow of 

the methods can be found in the GitHub repository, https://github.com/qiuyixu/Green-space-

accessibility-. 

2. Literature review  

2.1 Measurement of accessibility 

The concept of accessibility describes the convenience (Alam et al., 2010) or potential to access 

spatially distributed opportunities (Páez et al., 2012) under various contexts. Approaches to measure 

accessibility have been evolving over the decades. Wang et al. (2021) and Zhang et al. (2011) both 

summarized the existing measurements of UGSA, which could be divided into three broad 

methodological approaches, namely container approach, travel cost approach, and spatial interaction 

method.  

2.1.1 Container approach 

In the early period, the "container approach” is one of the most common approaches. This method 

measures the total number or acreage of parks located within a typical geographic unit, such as zip code 

or census tract (De Chiara & Koppelman, 1975; Maroko et al., 2009). In light by the basic concept, 

many researchers created various indices, such as the percentage of the area used for UGS, and the area 

of UGS per capita within the geographic unit (Talen, 1997; Timperio et al., 2007; Wang et al., 2021). 

Though with advantages of computational convenience and suitability for regions that lack data, it could 

generate contradictory results to reality, especially for indices of normalized population (Abercrombie 

et al., 2008; Timperio et al., 2007). One of the reasons is the heterogeneous distribution of population 

within a geographic unit. Normalized population could not represent the real demand for a certain UGS 

(Maroko et al., 2009). Another reason is the famous Modifiable Areal Unit Problem (MAUP), which 
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describes geographic measures or relationships of interest that could change because of the definition 

of spatial scales of the geographic unit of analysis (Zhang et al., 2011). As Wang et al. (2021) and Zhang 

et al. (2011) mentioned, this approach could lead to inconsistency if choosing a different distance 

threshold as the geographic container.  

2.1.2 Travel cost approach 

Travel cost approach measures the minimum travel time or distance (Euclidian or road network based) 

to UGS (Maroko et al., 2009). One of the advantages of this method is the measurement of distance or 

time is intuitive and interpretable. However, the assumption that people could only access the nearest 

UGS is unrealistic. Thus, a modified travel cost approach – proximity method, is used in many later 

studies. It measures the number of UGS a certain geographic unit could reach within a distance threshold 

or the average distance to all UGS within a certain distance (Zhang et al., 2011). Talen (1997) used this 

approach to compare equitability in facility distribution in Pueblo and Macon and revealed that the park 

distribution tends to benefit lower-income, non-White neighborhoods in Macon, but not Pueblo. Wang 

et al. (2021) compared the result of this method with the spatial interaction approach and found that the 

UGSA calculated under the two approaches are similar.  

2.1.3 Spatial interaction method 

2.1.3.1 Gravity model 

Hansen-type measurement was first proposed by Hansen (1959) as the form of equation (1). In the 

context of UGSA, 𝐴! is the cumulative accessibility of population location i, 𝑆" is the number or area 

of UGS in location j, 𝑑!" is the distance from location i to j, and 𝑓 is the distance decay function 

between i and j.  

 𝐴! = ∑ 𝑆"𝑓(𝑑!")"          (1) 

Then Shen’s model (Shen, 1998) modified the Hansen-type measurement by dividing a demand-related 

variable, which is shown in the equation (2) and (3). All the definitions of variables are the same as 
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above, except 𝑃# is the population at location k, and 𝑑#" is the distance between k and j. Compared 

with Hansen-type, Shen’s model breaks the assumption of uniformly spatially distributed demand. To 

be specific, uniformly distributed demand assumes people are evenly distributed at a location, which is 

not the case in most cities. The accessibility is more realistic if the demand potential (𝐷") at each location 

is considered. In addition, this model avoids the MAUP problem in the container approach, because it 

doesn’t need the geographic unit to compute the accessibility (Zhang et al., 2011). However, due to the 

assumption that each population location has access to all the UGS, the main drawback is it only 

considers the supply of green space but not the demand for them (Liu et al., 2021).  

 𝐴! =	∑
$!%('"!)

)!
*
"+,          (2) 

 𝐷" =	∑ 𝑃#𝑓(𝑑#")-
#+,                            (3) 

2.1.3.2 Two-step floating catchment area  

The 2SFCA analysis includes two steps which are shown in the equation (4) and (5). 𝑆" is the area of 

UGS at location j, 𝑑. is catchment size, 𝑑#" is the distance between location k and j, and 𝑃# is the 

population within the catchment size. The first step is to compute the supply-demand ratio (𝑅!) of 

opportunities (UGS, job vacancy, physician, and more). The second step is to sum up the ratio of the 

opportunity each population location could reach within a certain distance (Luo & Qi, 2009). It is a 

special type of gravity model, as long as setting the distance decay function equals 1 in the catchment 

area and 0 outside (Luo & Qi, 2009). Compared with the gravity model, it uses catchment size to set 

catchment areas, which introduces the measurement of the supply-demand ratio of a UGS. Due to the 

advantage in interpretation, many UGSA research employed this approach in the past few decades (L. 

Shi et al., 2020; van Heerden et al., 2022; Ye et al., 2018). However, the main drawback is the 

assumption that people could not reach a UGS if the distance exceeds the catchment size. This is true 

for most situations because people probably go for a walk or exercise after a day of working just in the 

nearest park. However, it is also common that people would like to go to a wetland, zoo, or national 

park, which is far away from them in their free time. Under these situations, the accessibility could be 

distorted. Variants of this model have been proposed in recent decades, such as applying the distance 
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decay function in the second step (X. Shi et al., 2012) or both steps (Enhancement 2FSCA) (Luo & Qi, 

2009).  

 𝑅" =	
$!

∑ 	1##${&#!'&(}
                              (4) 

 𝐴!2 =	∑ 𝑅""3{'#!5'(} = ∑ $!
∑ 1##${&"!'&(}

"3{'#!5'(}          (5) 

2.2 UGSA inequality 

Based on the measurements of accessibility, many studies focused on the problems of environmental 

equity and equality. Not surprisingly, people with higher socioeconomic status and belong to major 

ethnics, or regions with higher housing prices indeed have higher accessibility to UGS in general 

(Comber et al., 2008; Liu et al., 2021; Maroko et al., 2009; Talen, 1997; Wu & He, 2018). In Beijing, 

Wu & He (2018) revealed that the higher-income residential zones have significantly higher access to 

UGS. In Chicago, Liu et al. (2021) found that the rank from highest accessibility to lowest is white-

majority census tract, black-majority census tract, and Hispanic-majority census tract respectively, and 

the inequality inside the black-majority census tract based on income is the most severe one. In Pueblo, 

Talen (1997) demonstrated that regions with low housing value and high percentage of Hispanics have 

low access to UGS. In Leicester, Comber et al. (2008) showed that Christians have 44% more access to 

UGS than Hindus. More interestingly, Altmetric & Hamilton (2012) found that after realizing the UGS 

inequity, increasing UGS in the low-income area leads to the green space paradox, that is the low-

income people would move to a lower green space.  

Generally, two indices are used to measure the equity of UGSA, Gini coefficient and Palma ratio. Gini 

coefficient describes how inequal a situation departs from the perfect equality. It is defined based on 

the Lorenz curve, and the value equals the area between the line at 45 degrees and the Lorenz curve for 

accessibility (van Heerden et al., 2022). Another popular method is Palma ratio. It measures the inequity 

between the richest 10% and the poorest 10% of the population based on income. Compared with Gini 

coefficient, it is commonly used for income inequality measurement, and focuses more on polar groups 

(such as the richest and poorest).  
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3. Data and Methodology 

3.1 Study area 

We selected 10 world's major metropolitan cities from Asia, North America, and Europe. They are 

Amsterdam, The Netherlands; Dublin, Ireland; Ghent, Belgium; Dhaka, Bangladesh; Tel Aviv, Israel; 

Shanghai, China; Vancouver, Canada; Washington D.C., US; Philadelphia, US; Denver, US. We used 

the administration boundary of those cities to do the analysis, except Dhaka, Shanghai, and Amsterdam. 

For Dhaka, we chose the metropolitan area of the city since over 80% of the population is concentrated 

here. For Amsterdam, we used the bounding box for its urban area from OSM. For Shanghai, we 

selected the central area (Y. Chen et al., 2020), including Huangpu district, Xuhui district, Changning 

district, Jingan district, Putuo district, Hongkou district, Yangpu district, and Pudong.  

As shown in table 1, the values of the UGS/total area ratio range from 42.99% to 0.81%. Three 

American cities have significantly higher UGS/total area ratios, which are 42.99% (Washington D.C.), 

33.41% (Philadelphia), and 22.32% (Denver). Dublin has the highest UGS/total area ratio among the 

three European cities with a value of 6.33%. The ratio for Tel Aviv is 4.08%, which is much higher 

than the two other Asian cities. Dhaka has the lowest ratio among the 10 cities, with the value of 0.81%. 

As we can see, most of the cities meet the minimum UGS requirement of WHO (World Health 

Organization, 2017), which is 9 𝑚7 UGS per capita, except the three Asian cities. In addition, the 

population density varies, from 10600 (Dhaka, the world's most densely populated urban area) to 1700 

(Ghent). As Nesbitt et al. (2019) revealed that economic factors are positively correlated to UGS, when 

selecting cities, we also considered different economic development levels as shown in table 1. Figure 

1 is the spatial distribution of UGSs in 10 cities. The cities in North America have more huge green 

spaces, and the distributions are even, while UGS in Ghent and Dhaka are relatively concentrated. 
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Table 1: Description of 10 cities from economic, demographic, and geographic dimensions1 

Continent City Urban 
Population 

Urban 
Population /𝑘𝑚! 

GDP per 
capita ($) 

UGS (𝑘𝑚!) UGS/total 
area (%) 

UGS/capita 
(𝑚!) 

North 
America 

Philadelphia 1603797 4612 68128.80 123.49 33.41 77.00 
Denver 715522 1805 58682.58 89.43 22.32 124.99 

Vancouver 662248 5750 40363.05 16.07 11.9 24.27 
Washington D.C. 689545 4361 98041.82 76.09 42.99 110.35 

Europe 
Ghent 260341 1700 39381.55 8.35 5.35 32.07 
Dublin 1173179 3689 83605.63 20.12 6.33 17.15 

Amsterdam 1558755 5214 38448.28 15.21 1.33 9.76 

Asia 
Tel Aviv 1388400 8058 67899.10 7.18 4.08 5.17 
Dhaka 21741090 10060 7655.50 17.58 0.81 0.81 

Shanghai 24890116 3925 89488.43 114.79 1.81 4.61 

 

Figure 1: Spatial distribution of UGS in 10 cities 

3.2 Data 

We used UGS data from multiple sources. For US cities, UGS was extracted from Prior-Magee et al. 

(2020). For Dublin, we obtained the UGS dataset from the Smart Dublin website (Dublin City Council 

et al., 2022). For Amsterdam, we used UGS data from the City of Amsterdam (City of Amsterdam, 

 
1 Population, city area size, GDP per capita are all from Wikipedia in 2022, and UGS size see the data source in section 3.  
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2022). For Dhaka, we collected from City planning authority (2022) by RAJUK. For Ghent, we 

extracted data from Open Data Portaal (2022). For Tel Aviv-Yafo, we got the data from Municipality 

of Tel Aviv-Yafo (2022). For Vancouver, we collected the data from City of Vancouver (2022). For 

Shanghai, we sourced the data from Li et al. (2020). According to WHO guidelines, urban residents 

should be able to access UGS of at least 0.04 ha (400 𝑚7) within 300 m of their home (World Health 

Organization, 2017). As a result, we selected a size of UGS greater than 0.04 ha. 

Road network data, city bounding boxes, and administrative boundaries were extracted from OSM 

using OSMnx package (Boeing, 2017). The grid population data for the year 2015 came from 

disaggregated census or administrative units to grid cells by CIESIN GPWv4.10. Here we chose a 250 

× 250 m grid size.  

3.3 Method  

3.3.1 Catchment size and travel mode 

Choosing the catchment size is essential for UGSA analysis. As suggested by WHO, citizens should 

live within 10 minutes’ walk to a UGS nearby (“Environmental Sustainability in Metropolitan Areas”, 

2013). Accordingly, many studies set catchment sizes ranging from 300 m to 1000 m based on the 

walking speeds between 0.9 and 1.5 m/s (Nesbitt et al., 2019; Wang et al., 2021; Wu & He, 2018; Ye 

et al., 2018). In addition, other travel modes such as cycling and driving were also taken into account 

(Wang et al., 2021). However, because our research is based on cities worldwide, the main travel mode 

varies and is highly correlated with economic factors. Compared with other travel modes, walking is a 

more general one. In addition, walking and cycling are economic, environmentally friendly, and healthy 

traveling modes. Boone et al. (2009) revealed that people are likely to walk or cycle rather than driving 

if the distance is less than 1 mile. Ye et al. (2018) discovered that in Macau 80–90% of residents walk 

to UGSs. As a result, we selected walking as the travel mode, and the catchment sizes were 300 m, 600 

m, and 1000m respectively.  
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3.3.2 Edge effect 

Edge effect in the UGSA context refers to the situation that citizens who live near the borders of the 

urban area have access to UGSs outside the study area (Liu et al., 2021). If neglecting this situation, the 

UGSA for citizens who live near the boundary could be underestimated (X. Chen, 2017; Sadler et al., 

2011). As a result, we set a buffer distance that equals the catchment size around the boundary of the 

study area to clip the green space data.   

Meanwhile, citizens outside the borders could have access to UGSs near the borders of the urban area. 

If not taking this situation into account, UGSA for population grid cells around UGSs near the fringe 

of the urban area could be overestimated due to the underestimation of demand for those UGSs. 

Accordingly, we set a buffer distance that equals twice the catchment size around the boundary of the 

study area to clip the population data.   

3.3.3 Definition of destination and origin  

Most studies used geometric centroid of UGSs as the destination (Comber et al., 2008; Dai, 2010; Liu 

et al., 2021; Maroko et al., 2009; Wu & He, 2018; Zhang et al., 2011). However, in some situations 

such as UGSs with a large area, this measurement is oversimplified thus bringing inaccurate results. 

Therefore, some studies tried to simulate the realistic entrance of UGSs, which are defined as the 

intersection points of the road network and UGS with buffer (Labib et al., 2021; Wang et al., 2021). 

The buffer distance usually equals the width of the road network which extends the boundary of UGSs 

to connect with the road network.  

We tested both destinations and found the simulation entrance method is more reasonable, which is 

consistent with (Wang et al., 2021). Thus, we chose the simulation entrances as the destinations in the 

rest of the article. As this study selected cities on a worldwide scale, we set a 20 m buffer distance 

considering wider roads in some cities (Wang et al., 2021). 

Because we used a comprehensive road network, there could be multiple road lines along with each 

other (usually two walking roads) as shown in figure 2a. To solve this problem, if the distance between 
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two intersection points that belong to the same UGS is less than 50m, we chose the first one. In figure 

2a, the orange ones are all the intersection points between road networks and UGS boundary with buffer, 

and the green ones are the selected entrance gates, which seem more reasonable and could reduce the 

computationally intensive problem. 

For origin, we used centroid of each population grid cell. The grid size of 250 × 250 m ensured that all 

UGS caught some population (Ye et al., 2018). Meanwhile, it could reduce the computationally 

intensive problem compared with a smaller one.  

3.3.4 Measuring the UGSA  

We used an enhanced two-step floating catchment area (E2SFCA) method to compute the UGSA in 

different cities at a 250× 250 m grid cell level. Figures 2a and 2b show the demand catchment area and 

supply catchment area respectively. The first step of this approach is to compute the supply-demand 

ratio of UGSs as is shown in equation (6). Where 𝑅" is the supply-demand ratio of UGS j. 𝑆" is the 

area size of UGS j. 𝑃# is the population number in grid cell k. 𝑑#" is the distance between the centroid 

of grid cell k and the nearest entrance of UGS j. 𝑑. is the catchment size (300m, 600m, 1000m)， 

which determines the service area of UGS j. 𝐺/𝑑#" , 𝑑.1 is the distance decay function of UGS j 

applying the Gaussian distribution equation in formulation (7). We assumed that grid cell k has no 

access to UGS j if 𝑑#"  is larger than the catchment size, that means 𝐺/𝑑#" , 𝑑.1  equals 0. The 

nominator of equation (6) represents the supply of UGS j, and the denominator describes the demand 

for UGS j.  

 𝑅" =	
$!

∑ 89'#!,'(;	1##${&#!'&(}
                   (6) 

 𝐺/𝑑#" , 𝑑.1 = 	

⎩
⎨

⎧<*
+
,×.

&#!
&(

/
,
*0*

+
,

,=<*
+
,

,														𝑖𝑓		𝑑#" <	𝑑.		

0,																																		𝑖𝑓	𝑑#" ≥ 𝑑.	

       (7) 

The second step is to compute the UGSA for each population grid cell. In equation (8), 𝑅"  is the 

supply-demand ratio calculated in the first step. If the nearest entrance of UGS j falls into the catchment 
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area of grid cell i (use the centroid of grid cell i and add a 𝑑. buffer), then sum up all the supply-

demand ratio of UGS multiple the accordingly distance decay function.  

 𝐴! =	∑ 𝐺/𝑑#" , 𝑑.1	𝑅""3{'#!5'(} = ∑ 𝐺/𝑑#" , 𝑑.1	
$!

∑ 89'#!,'(;	1##${&"!'&(}
"3{'#!5'(}      (8) 

Next, we normalized the accessibility score for each population grid cell to make it comparable among 

different cities as equation (9).  

 𝐴* =	
>"
1"

                              (9) 

𝐴!  is the accessibility score of population grid cell i, 𝑃!  is the population of it. If the scores for 

population grid cells A and B are the same, but B has a larger population, then the above formula could 

generate different scores for them.   

Except for normalizing the accessibility score for a single population grid cell, we further computed the 

population-weighted average accessibility score for the whole city using equation (10). 𝐴!  is the 

accessibility score for grid cell i; 𝑃! is the population for grid cell i; 𝐴̅ is the population-weighted 

average accessibility score of a city.  

 𝐴̅ = 	∑ 𝐴!*
!+, ∗ 1"

	∑ 1"1
"2+

                           (10) 
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Figure 2a: Definition of supply catchment area 

 

Figure 2b: Definition of demand catchment area 

3.3.5 Measuring the inequity of UGSA  

As discussed above, two indices are commonly used to measure the inequity of UGSA. We chose the 

Gini coefficient to represent the inequity of UGSA since Palma ratio is often used for comparison 

among different subgroups. In addition, Gini coefficient is more straightforward and interpretable 

(CEDLAS & World Bank, 2022). It is a ratio with a value between 0 and 1, and the higher the value 

the greater inequity. Before using formula (11) to calculate the value, we ranked the accessibility score 
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in ascending order. l is the index of the population grid cell with the highest accessibility. 𝐴! is the 

normalized UGSA in population grid cell i. 𝑛! is the population of grid cell i.  

 𝐺 = 1 − 2∑ ?∑ ∑ >"×*"#
"2+#

∑ >"×*"3
"2+

× *"
∑ *"3
"2+

A@
#+,                    (11) 

3.3.6 Definition of UGSA levels 

We set the standard of classifying 4 levels (No accessibility, Low accessibility, Middle accessibility, 

and High accessibility) of UGSA based on our hypothetical calculation. Then we can calculate the 

proportion of the population belonging to those levels in a city. We assumed that there are 1000 

residents live near a UGS (𝑈𝐺𝑆A in figure 3) according to the standards set in the UK (Parry et al., 

2016) and US (Handley et al., 2011). As WHO suggested, at least 9 𝑚7 of green per capita should be 

available	(Russo & Cirella, 2018). Thus, the minimal size of 𝑈𝐺𝑆A  is 9000 𝑚7 . No accessibility 

means people do not have any UGS within their catchment size. Then, the hypothetical maximum value 

for Low accessibility can be set as the score of population grid cell A under the worst situation of having 

access to UGS, which is assumed as (figure 3): 

l Only one person is living in grid cell A, 999 people live in grid cell B. 

l The person who lives in grid cell A could only reach 𝑈𝐺𝑆A within a certain catchment size. 

l Grid cell B is inside the UGS, which means distance between the centroid of grid cell B and the 

entrance of 𝑈𝐺𝑆A is 0.  

l Grid cell A is at the boundary of the catchment area of 𝑈𝐺𝑆A, which means distance between the 

centroid of grid cell A and the entrance of 𝑈𝐺𝑆A is catchment size. 

The supply-demand ratio of 𝑈𝐺𝑆A 	is the lowest under this condition, which is 6.5. Then, applying the 

E2SFCA model described above, we used supply-demand ratio of 𝑈𝐺𝑆A  to multiply the weight 

calculated by Gaussian distribution and got the score of 5.5. This accessibility score for A is the lowest 

under the situation of having access to UGS, and we set it as the maximum value for Low accessibility. 

Then, we assumed that the distance between the centroid of grid cell A and the entrance of 𝑈𝐺𝑆A is 
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half of the catchment size, and all other conditions remain unchanged. The score we got is 7.9, which 

is the maximum value for Middle accessibility.  

 

Figure 3: Definition of different UGSA levels 

4. Results 

4.1 Measurement and comparison of UGSA 

Figure 4 is the spatial pattern of normalized accessibility scores for ten selected cities with catchment 

sizes of 300 m, 600 m, and 1000 m respectively. The results are classified based on the quantile 

classification method. To make the results in different cities and catchment sizes comparable, we 

averaged the upper limit of each quantile for 10 cities under the catchment size of 1000 m, and got the 

values of 0, 0.025, 0.065, 0.186 respectively2. In general, population grid cells with high accessibility 

scores are concentrated near UGSs. However, even though some grid cells have many UGSs around 

them, due to the high demand for those UGSs, the accessibility scores are not high. In addition, the 

accessibility scores are lower in the city center than in other areas in most cities, such as Washington 

D.C, Dublin, Amsterdam, Tel Aviv-Yafo, and Shanghai. This is understandable because most of the 

city centers are places for entertainment, commerce, and shopping. If separated by green spaces, the 

convenience could be weakened (Reimers & Clulow, 2000). In addition, higher population density in 

the city center leads to high demand for UGSs. 

 
2 The reason to choose 1000 m to get the averaged values is that the accessibility scores of 1000 m are wide enough to 
recognize the difference among quantiles. 
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In Vancouver, the western part has higher accessibility than the eastern due to the lower population 

density. In addition, West Vancouver is made up of affluent areas such as Kitsilano, while East 

Vancouver is for the working class traditionally. This reveals the inequity of UGSA to some extent and 

we discussed it in detail in the next section. In Denver, a lower population leads to higher accessibility 

scores in the southeast part. For Washington D.C., high accessibility scores appear on the border of the 

city, where huge parks are situated such as Rock Creek Park, and National Capital Parks. In Philadelphia, 

the large size of UGSs and less dense population contribute to extremely high scores in the Chestnut 

Hill district. It is also an affluent district known as the city's garden district, which indicated the 

existence of inequity. In Dublin, a dense population in the city centre leads to a higher demand for 

UGSs, thus the accessibility scores for this area are relatively low. For Amsterdam, there is a large and 

continuous area in Westpoort that has no accessibility since it is an industrial district and does not have 

UGS. In addition, the Centrum area has a relatively low accessibility score than other areas because of 

the large population and low supply of UGSs. For Ghent, due to the green space is concentrated in the 

middle part, the areas that have access to UGSs are concentrated accordingly. In Tel Aviv-Yafo, the 

low supply of UGSs and large population lead to the low accessibility scores in the city centre area. For 

the two cities from developing countries, Shanghai and Dhaka have distinctively low accessibility 

scores than other cities. This results from the low supply of UGSs (both size and number) in Dhaka. In 

Shanghai, the distribution of accessibility scores is consistent with the population distribution. As a 

result, the border area has a higher score than the inland area which is densely populated. 

In addition, with the increase in catchment size, many population grid cells in different cities change to 

a higher accessibility score, especially from no accessibility to a low score (smaller than 0.025). This is 

consistent with common sense that with a larger catchment size people could have access to more UGSs. 

Meanwhile, in figure 4, we could find the scores for some population grid cells declined with increasing 

catchment size. This usually happened in population grid cells with scores greater than 0.186 and scores 

between 0.065 and 0.186. The reason is that increasing the service area of UGS leads to a lower supply-

demand ratio of it.  
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Figure 4: Spatial distribution of UGSA in 10 cities 
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Figure 5 illustrates the proportion of people who have no, low, middle, and high accessibility to UGSs 

in 10 cities according to the standard we set above. With a decreasing catchment size, the proportion of 

having no access to UGS increased which is consistent with the spatial distribution in figure 4. For 

residents who have access to UGS, their accessibility level is low, and the total percentage of the 

population with middle and high accessibility is less than 1% in each city. The four cities (Vancouver, 

Denver, Washington DC, and Philadelphia) in North America perform best. Larger than 97% of the 

population in those cities have access to UGS in 1000 m, and nearly half of their population have access 

in 300 m. In addition, proportions of high and middle accessibility to UGS in the four cities are higher 

than in other cities. Dublin performs best among the three European cities with 51.11% of its population 

having access to UGS under the 300 m distance threshold. The performances of those three Asian cities, 

especially the two from developing countries (Dhaka and Shanghai) are the worst. Under WHO 

standards, only 25.33% in Shanghai and 19.91% in Dhaka have low accessibility within 300 m.  

 

Figure 5: Proportion of population of different levels: In each figure, from left to right is the proportion 
of four levels accordingly. If no number is shown for a certain level, it means 0%. 

0.41 

2.47 

2.70 

3.00 

10.32 

26.30 

31.10 

35.22 

36.52 

39.16 

99.59 

97.27 

96.94 

96.90 

89.64 

73.70 

68.90 

64.78 

63.47 

60.84 

0.11 

0.21 

0.04 

0.01 

0.01 

0.15 

0.15 

0.06 

0.02 

0.00 

0% 20% 40% 60% 80% 100%

Vancouver

Denver

Washington DC

Philadelphia

Dublin

Amsterdam

Shanghai

Dhaka

Ghent

Tel Aviv-Yafo

No Access Low Access Middle Access High Access

6.65 

8.30 

15.02 

16.38 

23.28 

44.69 

46.12 

50.02 

52.77 

57.70 

93.34 

90.98 

84.84 

83.15 

76.44 

55.30 

53.88 

49.86 

47.23 

42.30 

0.01 

0.38 

0.05 

0.16 

0.08 

0.01 

0.08 

0.34 

0.09 

0.31 

0.20 

0.04 

0.00 20.00 40.00 60.00 80.00 100.00

Vancouver

Washington DC

Philadelphia

Denver

Dublin

Amsterdam

Tel Aviv-Yafo

Ghent

Shanghai

Dhaka

No Access Low Access Middle Access High Access

33.06 

40.16 

51.11 

51.66 

53.21 

55.25 

70.37 

71.07 

74.67 

80.09 

65.62 

59.81 

48.75 

48.11 

45.67 

44.75 

29.29 

28.87 

25.33 

19.91 

0.41 

0.01 

0.01 

0.07 

0.60 

0.19 

0.04 

0.91 

0.02 

0.13 

0.16 

0.53 

0.15 

0.03 

0% 20% 40% 60% 80% 100%

Washington DC

Vancouver

Dublin

Philadelphia

Denver

Tel Aviv-Yafo

Ghent

Amsterdam

Shanghai

Dhaka

No Access Low Access Middle Access High Access

10000 m 600 m 

300 m 



 21 

The comparison of population-weighted average UGSA of those cities is shown in table 2. The 

catchment size we choose is 300 m3. The ranking of scores is consistent with the conclusion above, that 

is the North American cities have higher accessibility to UGS than European cities, and the Asian cities 

have the worst accessibility among 10 selected cities. The ranking of Vancouver dropped due to its 

proportion of people who have high access to UGS is lower.  

4.2 Measurement of inequity of UGSA 

From the spatial pattern of UGSs in figure 4, we revealed that there exists inequity of UGSA in cities. 

As described in the methodology, we used Gini coefficient to represent the inequity of UGSA 

quantitatively. Table 2 is the result of Gini coefficient for 10 cities with a catchment size of 300 m. The 

values for 10 cities are all greater than 0.85, which indicates a severe inequity among people. The values 

for Shanghai, Dublin, and Dhaka are over 0.96, approximately maximal inequality (Gini coefficient 

equals 1). Combining factors of Gini coefficient and population-weighted average score, the three 

American cities, Denver, Washington D.C., and Philadelphia have a higher accessibility score and 

relatively better equity to UGSs among the selected cities. Meanwhile, though Dublin has a higher 

population-weighted average UGSA score, the distribution of UGSA is extremely inequal. The 

accessibility score for Dhaka and Shanghai are the lowest, and they also have the worst problem of 

extreme inequity in UGSA.  

Table 2: Population-weighted average UGSA and Gini coefficient for 10 cities 
 

Population-weighted average UGSA Gini Coefficient 
Washington DC 65.96  0.920  

Denver 39.85  0.906  
Dublin 24.32  0.968  

Philadelphia 19.50  0.923  
Ghent 13.06  0.922  

Vancouver 9.98  0.878  
Amsterdam 7.69  0.919  

Tel Aviv-Yafo 5.52  0.853  
Shanghai 2.07  0.960  

Dhaka 0.29  0.972  

 
3 We chose 300 m not only due to it is the suggested minimum distance from WHO, but also it is the strictest one. 
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5. Discussion 

From the perspective of a single city, our results regarding the distribution of accessibility are consistent 

with some previous studies. Most people in the selected cities have access to UGS within 1000 m, but 

the accessibility level is low. (Liu et al., 2021; Wang et al., 2021; Wu & He, 2018; Ye et al., 2018) all 

showed that accessibility in their study areas was heavily skewed to low scores. In addition, a large 

portion of locations with high accessibility scores is located around huge natural UGS. This could give 

some suggestions to policymakers, in order to raise the accessibility for residents, more attention should 

be paid to artificially creating and maintaining UGSs since the natural green resource in a city is limited. 

In addition, for a catchment size of 1000 m, over 60% of citizens have access to UGS in all cities. 

However, with a stricter catchment size of 300 m, which is also the WHO recommended standard, 

nearly half of the population has no accessibility and the proportion in four cities (Shanghai, Dhaka, 

Ghent, Amsterdam) are even over 70%. This indicated that the measurement of UGSA is highly 

sensitive to the catchment sizes, which is consistent with Wang et al. (2021).  

In our analysis, residents who live in the city center showed lower UGSA than non-center areas, which 

contradicted some existing research (Liu et al., 2021; Wang et al., 2021). One of the reasons is that we 

considered the edge effect in our study. The increased boundary leads to a higher UGSA for citizens 

who live near the boundary. In addition, the model used to measure the UGSA plays an important role. 

E2SFCA model used in our analysis took both supply and demand of a UGS into consideration, whereas 

the gravity model only considered the supply side of UGS (Wang et al., 2021). The UGSA calculated 

by E2SFCA tends to have a lower score than the gravity model due to the denser population in the city 

center in most cities. In addition, different cities have different structures and urban planning. City 

center in Vancouver, Dublin, Shanghai, Tel Aviv-Yafo, and Amsterdam is concentrated with places for 

entertainment and shopping. If they were segmented by green space, the convenience could be reduced.  

Few studies compared UGSA in cities worldwide. According to our results, cities in North America 

have higher accessibility scores than the other two continents, and cities in Asia have the least 

accessibility scores in general. This could be explained by the uneven distribution of natural resources. 

To be specific, the total area of UGS in North American cities and the number of huge natural green 



 23 

spaces are larger than in other cities. Considering the economic factor, cities with higher GDP per capita 

have better accessibilities in general. Nevertheless, there still exist cities with higher GDP per capita, 

but a much lower UGSA, such as Tel Aviv-Yafo, and Shanghai. Moreover, we revealed that the 

relationship between UGSA and population density is weak. This can be observed from cities such as 

Philadelphia, Vancouver, Amsterdam, and Tel Aviv-Yafo. These places have dense population while 

achieved a higher accessibility score than other less densely populated cities. Additionally, we 

discovered severe inequity among people in all selected cities. This is consistent with Y. Chen et al. 

(2020, 2022), Comber et al. (2008), Liu et al. (2021), Timperio et al. (2007) and Wu & He (2018). The 

comparison of UGSA in cities with different socioeconomic factors and structures could raise the 

concern of policymakers to ensure the minimal UGSA standard and environmental justice for their 

citizens. For cities with similar structure, economic development level, or demographic but lower 

accessibility and severe inequity, urban planners could take the construction or maintenance of UGSs 

in cities with higher accessibility as a reference.  

At last, we would like to mention that our research has several limitations. First, the proportion of 

selected cities in developing countries is low. As we compared the accessibility on a worldwide scale, 

including cities with various socioeconomic factors is beneficial. However, UGS data in some countries 

is not available due to low quality. Second, the E2FSCA model assumes that people cannot access UGS 

out of catchment size, which is not practical. In addition, the selection of catchment size and travel 

mode is subjective. Except for walking, many citizens prefer driving to UGS, especially families. Third, 

the simulation of fake entrances may not be accurate, which could impact the measurement of 

accessibility, especially for UGS with huge sizes. Lastly, we compared the accessibility and inequity of 

UGSA among cities with different characteristics in a qualitative way. Based on our study, more 

quantitative methods could be applied to analyze the relationship between UGSA and socioeconomic 

factors.  

6. Conclusion 

We selected 10 different cities according to economic, demographic, and geographic conditions, and 

computed the normalized UGSA based on the E2SFCA model. We considered the impact of the edge 
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effect on both accessibility of citizens living near the boundary and the demand-supply ratio of UGS 

near the boundary, and selected intersection points between the road network and the boundary of UGS 

as fake entrances to ensure the credible and robust results. To better visualize the result of the 

comparison, we set the standard of four accessibility levels based on WHO suggestion and calculate the 

proportion of residents belonging to different levels accordingly. Based on the normalized accessibility 

score for each population grid cell, we compared the population-weighted average UGSA and evaluate 

the environmental justice in the selected cities using Gini coefficient.  

For accessibility in a single city, population grid cells with high accessibility scores are concentrated 

near UGSs with large size or dense distribution. From the accessibility map, we also revealed that city 

center tends to have a lower score than other areas of that city. Nevertheless, for citizens who have 

access to UGSs in the selected cities, their accessibility level is low. With a decreasing catchment size, 

the proportion of having no access to UGSs substantially increased. When comparing UGSA in 10 cities, 

we found that based on population-weighted average scores and different levels of accessibility of 

residents, North American cities have higher accessibility to UGSs than European cities, and the Asian 

cities have the worst accessibility among 10 selected cities. However, there is a severe inequity among 

people in all the cities since all Gini coefficient values for 10 cities are larger than 0.8. Among all cities, 

Dublin, Shanghai, and Dhaka exist extreme inequity since Gini coefficient is all over 0.96.  
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