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Abstract

The diversified top-𝑘 clique search problem (DTKC) problem is a diversity graph prob-
lem in which the goal is to find a clique set of 𝑘 cliques that cover the most nodes in
a graph. DTKC is a combinatorial optimisation problem and can be seen as a com-
bination of the maximum clique problem and maximal clique enumeration. In recent
years, a new research field arose that research if reinforcement learning can be used for
combinatorial optimisation problems. However, no reinforcement learning algorithm
exists for DTKC or any other diversity graph problem. Therefore, we propose Deep
Clique Comparison Agent (DCCA), which utilises PPO, Graph Isomorphic Networks
and the encode-process-decode paradigm to compose an optimal clique set. We tested
DCCA for DTKC and the diversified top-𝑘 weighted clique search problem (DTKWC).
Our results showed that DCCA could outperform previous methods for DTKC, but only
on higher values of 𝑘, such as if 𝑘 = 50. However, we only saw this occur on simpler
graphs and DCCA performed significantly worse on the other problem, DTKWC. Due
to the novelty of DCCA, we believe that future research can significantly improve our
results.
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Chapter 1

Introduction

Reinforcement learning (RL) is one of the three machine learning paradigms. The goal
of RL is to get an agent to behave in such a manner that it will maximise its reward based
on the environment and the current state of that environment. This definition sounds
complex, but it can be easily explained by using a chess game as an example. The goal
of chess is to capture your opponent’s king while making sure your opponent does not
capture your king. When it is your turn, you need to decide what action brings you
closer to that goal. This action can be any available move for that current board state,
even sacrificing one of your pieces, so long if that action results in you winning. This
way of decision-making is what an RL agent should learn, thus not only the best move
given the current state but also what it needs to do to go the best state, which is when it
captures its opponent’s king.

In the recent years, there has been a rise in interest in RL. There are various reasons
for this, like advancements in self-driving cars (Kiran et al., 2021) and when AlphaGo
(Silver et al., 2016) defeated the number one Go player in the world. This defeat sur-
prised a lot of machine learning researchers because Go is one of the most complex
games, and they were not expecting such a program to be possible at that time. This
victory showed the power of RL for complex problems. Since then, there has been a
lot of research about utilising RL on another set of problems, namely, combinatorial
optimisation problems.

A combinatorial optimisation (CO) problem is a problem that has a finite set of so-
lutions, of which only one is the most optimal. At first sight, this sounds not difficult
to achieve; however, two essential traits of CO problems make this process not only
difficult but almost impossible to achieve. Firstly, to find the optimal solution, all the
possible have to be checked to ensure that the optimal solution is the optimal solution.
If the set of possible solutions is not too big, then this would not be a problem. Unfortu-
nately, for most CO problems, the number of possible solutions can quickly grow larger
than the number of stars in the observable universe. For example, a travelling salesman
problem (TSP)1 instance with 24,978 cities would have approximately 1.529×10138446
possible solution; in comparison, the number of possible moves in Go is 10130 (Licht-

1See section 2.2 for an explanation of the problem
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enstein and Sipser, 1980), and the estimated number of atoms in the whole observable
is between 1078 and 1082 (Villanueva, 2018). A solution for the TSP instance, with
24,978 cities, was found, which would take an Intel Xeon 2.8 GHz processor around
84.8 years to compute (Applegate et al., 2010).

The execution time needed for finding an optimal solution is almost always an issue.
For instance, if a navigation system takes too long to find the best route, it would render
it completely useless. Therefore heuristic algorithms are mainly used for CO problems.
A heuristic algorithm does not guarantee that it will find the optimal solution but rather
that it finds a good enough result in a reasonable time.

Using reinforcement learning for finding solutions for CO problems is a new but
emerging research field. One of the reasons is that many CO problems can easily be
formulated as a Markov Decision Process - especially the reward function - because it
is always evident when one solution is better than another (Mazyavkina et al., 2021).
Another significant reason is the lack of suitable labelled training data. It is easy to
create an instance for most CO problems, but labelling the correct answer is expensive
operation (Cappart et al., 2021). This labelling cost is why supervised learning is less
used on CO problems.

This thesis will propose a novel reinforcement learning approach for the diversified
top-𝑘 clique search problem, which can be extended to other diversity graph problems.
This research aims to determine if reinforcement learning will improve the previously
established results of the diversified top-𝑘 clique search problem on either the execution
time or final score, through a new reinforcement learning algorithm called the Deep
Clique Comparison Agent (DCCA).

We start by giving relevant background information, which is essential for under-
standing our research question. After that, we state the main and sub research questions
for this thesis. The next chapter shall go more in-depth on the topics discussed in our
background section and focuses on relevant information for our algorithm.

Our methodology chapter explains how we designed our algorithm and show our
argumentation for these design choices. Next, we will discuss our experimental setup,
in which we state how we conduct our experiments and how we will compare DCCA
to other non-RL methods, which act as our baselines. Lastly, we will show the results
of our experiments and explain them in our discussion chapter.

1.1 Background
This section shows essential background information. The first subsection discusses
the essential parts of graph theory, such as the notation we will use for graphs and
important definitions, such as the definition of a clique. After that, we show the problem
statement of the diversified top-𝑘 clique search problem (DTKC), and we discuss related
diversity graph problems. However, we will not discuss previous approaches for it,
those we discuss in our literature review. Our next section gives background information
about reinforcement learning (RL) and states essential definitions of it. In it, we will
also show some RL algorithms; however, this is only done such that we can give a
better background to important definitions. The RL algorithms, we considered for our
approach will be explained in the literature review. Lastly, we explain how graph neural
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networks function because we believe this is the best method to encode graphs for our
research.

1.1.1 Graph Theory
Graph theory is the study of graphs and is said to be introduced by Euler in his paper
about the seven bridges of Königsberg (Euler, 1741). Consequently, people have used
graph theory to explain interactions in various applications, such as molecular biology
(Huber et al., 2007), social network analysis (Otte and Rousseau, 2002) and the spread
of COVID-19 (Alguliyev et al., 2021). This section will explain the basics of graph
theory necessary to understand the diversified top-𝑘 clique search problem (DTKC).

The simplest definition of a graph  = (𝑉 ,𝐸) consists of two sets: a set of nodes
(𝑉 ) and a set of edges (𝐸). A node expresses an object within a graph, while an edge
between two nodes defines a relationship between the two. Both an edge and node can
contain attributes. These attributes can be anything. For example, which group a node
belongs to or the weight of an edge. An edge can either be undirected or directed. An
undirected edge can be traversed from either node. Such an edge could be used to define
a friendship relationship between two people or a two-way street between two locations.
If an entity is at a node with directed edges, that entity can only move from that node
to neighbouring nodes if an edge is directed to that neighbouring node.

An edge in the set of edges 𝐸 is a tuple with two nodes (𝑢, 𝑣), with 𝑢 ≠ 𝑣, 𝑦 ∈ 𝑉
and 𝑣 ∈ 𝑉 . If an edge is undirected, then (𝑢, 𝑣) = (𝑣, 𝑢), but if an edge is directed then
(𝑢, 𝑣) ≠ (𝑣, 𝑢), because the edge points from node 𝑢 to node 𝑣. This definition of an
edge allows us to define more complex functions that describe a node’s property. Two
important properties are finding all the neighbouring nodes and the degree of a node.
These properties are essential in the later definitions of DTKC.
Definition 1.1.1. Neighbourhood and Degree - The neighbourhood of a node 𝑣, graph
 = (𝑉 ,𝐸), is the set 𝑁(𝑣,) = {𝑢 ∈ 𝑉 |(𝑣, 𝑢) ∈ 𝐸}. This set contains all the nodes
connected to 𝑣. The degree of node 𝑣 is 𝑑(𝑣,) = |𝑁(𝑣,)|.

The degree and neighbourhood are essential because we need to find maximal cliques
in a graph (see definition 1.1.2). In essence, the degree helps us find the best-connected
node, and the neighbourhood set allows us to find the maximal clique from this node.
However, finding a maximal clique can be difficult because it is an NP-Complete prob-
lem (Karp, 1972). This complexity means that there is currently no algorithm that can
easily find a maximal clique, but a clique can easily be verified as a maximal clique.
Definition 1.1.2. Maximal Clique - A clique 𝐶 , in a graph  = (𝑉 ,𝐸) is a set of nodes
𝐶 ⊆ 𝑉 , such that all nodes are connected to each other. This clique 𝐶 is then maximal
if there exists no other clique 𝐶 ′ for which 𝐶 ⊆ 𝐶 ′.

The definition of a clique is strict in that all the nodes in the clique need to be
connected. If needed, it is possible to loosen this definition to become a 𝑠-plex (see
definition 1.1.3). A 𝑠-plex (Seidman and Foster, 1978) is similar to a clique, except
each node does not need to be connected to all other nodes. The complexity of the
𝑠-plex problem is also NP-complete (Balasundaram et al., 2011).
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Definition 1.1.3. 𝑠-plex - A subgraph 𝑃 ⊆ (𝑉 ,𝐸) is a 𝑠-plex if the following holds:
min𝑣∈𝑉 (𝑃 ) 𝑑(𝑣, 𝑃 ) ≥ |𝑉 (𝑃 )| − 𝑠.

Cliques and 𝑠-plex are examples of subgraphs, which algorithms can find through
constraints. However, it is also possible to search directly for subgraphs in a given
graph 𝐺, which are isomorphic (see definition 1.1.4) to a queried graph. Finding these
subgraphs is called the subgraph isomorphism problem, which is again NP-Complete
(Cook, 1971).
Definition 1.1.4. Graph Isomorphism - Graph 𝐺 and graph 𝐻 are isomorphic 𝐺 ≃ 𝐻
to each other, if there exist a function: 𝑓 ∶ 𝐺 ↦ 𝐻 , for all 𝑢, 𝑣 ∈ 𝑉 (𝐺), (𝑢, 𝑣) ∈
𝐸(𝐺) ⇔ (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸(𝐻)

1.1.2 Diversified Top-𝑘 Clique Search
The diversified top-𝑘 clique search problem (DTKC) is formulated in the paper "Di-
versified Top-𝑘 Clique Search" (Yuan et al., 2015). The goal of DTKC is to find 𝑘
cliques, such that most nodes in the graph are covered. Yuan et al. (2015) describe
how DTKC combines two other combinatorial optimisation (CO) problems problems,
namely, maximal clique enumeration (MCE) and max 𝑘-cover2. Both these problems
have been studied extensively, and previous work also researched the combination of
the two problems. In these methods, first, all the maximal cliques are found in the
graph. Then, from those cliques, 𝑘 cliques are picked which cover the most nodes
(Feige, 1998; Lin et al., 2007). However, these methods do not scale to larger graphs
because the number of cliques in a graph grows exponentially with the number of nodes
in a graph (Eppstein et al., 2010). Yuan et al. (2015) tries to alleviate this by always
keeping only 𝑘 cliques in memory.
Definition 1.1.5. Coverage - The coverage of clique set  =

{

𝐶1,…𝐶𝑘
} is all the

nodes of the cliques 𝐶 ∈ .
Cov() =

⋃

𝐶∈
𝐶 (1.1)

For example, the coverage of figure 1.1a would be Cov({𝐶1, 𝐶3
}

) =
{

𝑥1,… , 𝑥11
},

while the coverage of figure 1.1b would be Cov(
{

𝐶2, 𝐶3
}

) =
{

𝑥4, 𝑥6,… , 𝑥11
}

Problem Statement DTKC. The problem statement of DTKC states: Given a graph
 and an integer 𝑘, the goal of DTKC is to find a set of cliques , such that | | ≤ 𝑘,
any 𝐶 ∈  is a clique and |Cov()| is maximised.

One approach for finding a diversified top-𝑘 clique set is to find the largest 𝑘 cliques
in a graph. At first sight, this approach seems effective because the largest 𝑘 cliques
contain the most cliques in total. However, previous work shows that large cliques are
likely to overlap (Wang et al., 2013). Because of this, the set of largest 𝑘 cliques is likely
not the most diverse clique set because a lot of cliques in the set will overlap. How this
happens is shown in example 1.1.

2Sections 2.2.2 and 2.2.3 will discuss these problems in-depth
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Example 1.1. The graph in figure 1.1 has three cliques: 𝐶1 =
{

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5
},

𝐶2 =
{

𝑥4, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10
} and 𝐶3 =

{

𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11
}, and we set 𝑘 = 2.

The figure shows that picking cliques 𝐶1 and 𝐶3 would lead to the most diverse set,
even though |𝐶1| < |𝐶2|. This example also shows why the set of largest 𝑘 cliques is
not always the most diverse set.

𝐶1

𝐶3

𝑥1

𝑥2
𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝑥10

𝑥11

(a) Diversified Top-2 Cliques
𝐶2 𝐶3

𝑥1

𝑥2
𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝑥10

𝑥11

(b) Top-2 Maximal Cliques
Figure 1.1: There exist three cliques in this graph and although 𝐶2 is larger, the com-
bination of 𝐶1 and 𝐶3 covers the most nodes.

Besides DTKC, there also exist many other related diversity graph problems. An
excellent example is the diversified top-𝑘 𝑠-plex search problem (Wu and Yin, 2021a),
which uses 𝑠-plexes instead of cliques. Another example is diversified top-𝑘 subgraph
querying (DTKSQ) (Fan et al., 2013; Yang et al., 2016; Wang and Zhan, 2018). With
DTKSQ, the goal is to find a set 𝑘 subgraphs that is isomorphic to the queried graph.
However, diversified top-𝑘 weighted clique search problem (DTKWC) is most similar
to DTKC, except that the goal is not to find the clique set that maximises the coverage
but that the summation of the nodes’ weights in the coverage is maximised. We will use
the definition of DTKWC a lot in this thesis and, therefore, we will state the complete
problem statement for it:

Problem Statement DTKWC. The problem statement of DTKWC states: Given a
weighted graph , with a weight function 𝑤(𝑢) ∈ ℤ and an integer 𝑘, the goal of
DTKC is to find a set of cliques , such that | | ≤ 𝑘, any 𝐶 ∈  is a clique and
∑

𝑢∈Cov()𝑤(𝑢) is maximised.

1.1.3 Reinforcement Learning
The introduction described that reinforcement learning (RL) aims to get an agent to
learn to behave in an environment such that it maximises its cumulative reward. This
section will explain essential concepts of this field, such as how to formulate a rein-
forcement learning problem, the difference between Model-Based and Model-Free al-
gorithm, and the exploration-exploitation trade-off.

Two essential components in RL are the agent and the environment. The agent is
the RL algorithm, which makes decisions based on the current state of the environment,
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which is the place where the agent operates. An environment can be anything from a
game of Mario to how a robot interacts in the real world. These examples are entirely
different in terms of what their goal is and how an RL agent should behave in the en-
vironment. However, a Markov decision process (MDP) can formulise how an agent
should act in each environment (Bellman, 1957). An MDP describes what kind of ac-
tions are possible, the different states of the environment, the reward function and how
to get to each state. This thesis will use the MDP notation used by Mazyavkina et al.
(2021).
𝑆 - state space 𝑠𝑡 ∈ 𝑆 A state describes the current setting of the environment. This

state is everything that the agent needs to make a decision. The state-space is the
set of all the possible states in the environment. This set can both be finite, in the
case of chess, or be infinite if the state contains real numbers.

𝐴 - action space 𝑎𝑡 ∈ 𝐴 The action space describes all the possible actions for the
agent. An action can be one or multiple values, depending on the environment.
Each value in the action variable can either be continuous or discrete.

𝑅 - Reward function 𝑅 ∶ 𝑆 × 𝐴 → ℝ The reward function maps a state and an action
to a real number. The reward indicates how well the agent’s action was at that
state.

Transition function 𝑇 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) The transition function dictates the transition be-
tween states through the action chosen by the agent.

Discount factor 𝛾 The discount factor 𝛾 indicates whether the agent will prefer a short-
term or long term reward. If 𝛾 is close too 1, the agent will prefer the long-term
reward, and if 𝛾 = 0 meaning that the agent will only opt for the short term
reward.

𝐻 - horizon The horizon is the length of the episode. An RL task can either be episodic,
which says that there is a terminal state, or continuous, which means that there is
no state at which the environment will stop. Each RL solution for a CO problem
will be episodic.

RL algorithms can be divided into two categories: Model-Based and Model-Free
algorithms. Model-Based algorithms have access to a model of the environment or can
learn this model. If an algorithm is Model-Based, it will rely on planning. This capacity
to plan is possible because the algorithm knows what states are possible in the future and
what actions it can take based on these states (Sutton and Barto, 2018). One of the best-
known model-based algorithms is Monte Carlo tree search (MCTS) (Coulom, 2007).
MCTS will decide which action to take at each state based on simulated outcomes of
all the possible actions and then takes the action with the highest estimated reward. The
reason it can do this is that it knows the whole model of the environment. For instance,
it knows the possible actions for both itself and all the other agents in the environment.
Through this knowledge, it can simulate the outcome of the environment from any given
state.
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Model-Free algorithms are, as the name implies, not based on any model of the
environment and thus do not know the transition function. Instead, these algorithms
decide which action to take based on previously earned rewards. These agents learn
this through trial-and-error by interacting with the environment. An essential aspect of
this is the exploration-exploitation trade-off (Sutton and Barto, 2018). This trade-off is
not only applicable to RL but also to how we people learn in our life. It explains the
dilemma of choosing the action, which, according to our current knowledge, leads to
the best reward, or exploring new actions, which can lead to a better reward, but also at
risk it can result in a lower reward.

A common way of balancing the exploration-exploitation trade-off in RL is through
the 𝜖-greedy strategy (Sutton and Barto, 2018). With this strategy, the RL agent will
have a 1−𝜖 chance of exploiting the current action and an 𝜖 chance of exploring through
picking a random action. However, this strategy is in most cases not optimal because 𝜖 is
static, and in most environments, an RL agent would benefit the most from exploring at
the start of the learning process because it lacks any knowledge about it and only should
start to exploit more when the agent has enough knowledge about the environment.
Modified versions of 𝜖-greedy try to solve this problem. For example, annealing 𝜖-
greedy (Akanmu et al., 2019) starts with a high 𝜖 and will lower over time. Another
version is adaptive 𝜖-greedy (Mignon and A. Rocha, 2017), which decides to lower or
higher 𝜖 based on the current results.

Two of the most well-known Model-Free algorithms are SARSA (Rummery and
Niranjan, 1994) and Q-Learning (Watkins and Dayan, 1992), with both algorithms try-
ing to achieve the same: learning the best action for a given state. Both algorithms learn
the quality of a state-action pair 𝑄(𝑆𝑡, 𝐴𝑡) through temporal difference (TD) learning
(Sutton and Barto, 2018). With TD learning, 𝑄(𝑆𝑡, 𝐴𝑡) is not updated after an episode
but after each step. Equation 1.2 shows the update for SARSA, and Equation 1.3 shows
the update for Q-learning. Both equations use the observed reward 𝑅𝑡+1, from moving
from 𝑆𝑡 to 𝑆𝑡+1, and their version of the estimated reward, 𝑄(𝑆𝑡+1, 𝐴𝑡+1) for SARSA or
max
𝑎

𝑄(𝑆𝑡+1, 𝑎) for Q-learning, to update the quality of the action pair. This process is
called bootstrapping because the agent updates 𝑄(𝐴𝑡, 𝑆𝑇 ) through another estimation.
The one exception is the update at a terminal state; then, the estimated reward will be
set to zero.

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼
[

𝑅𝑡+1 + 𝛾 𝑄(𝑆𝑡+1, 𝐴𝑡+1) −𝑄(𝑆𝑡, 𝐴𝑡)
] (1.2)

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼
[

𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑆𝑡+1, 𝑎) −𝑄(𝑆𝑡, 𝐴𝑡)
]

(1.3)

The difference in the estimated reward between SARSA and Q-learning shows that
SARSA is an On-Policy method, and Q-learning is an Off-Policy method (Sutton and
Barto, 2018). On-policy methods will try to improve a policy, which also decides which
action to pick. SARSA is such a method because it uses the same policy to pick the cur-
rent action as it did to get the estimated reward. Opposite to this is Off-policy methods;
these methods update their policy using a different policy from which it decides its ac-
tions. For example, most Q-learning models learn through a version of 𝜖-greedy, but
their estimated reward, max

𝑎
𝑄(𝑆𝑡+1, 𝑎), is a greedy policy because it picks the quality

of the state-action pair if the best action was chosen for the next state.

10



Another method for updating an agent is Monte-Carlo estimation (Sutton and Barto,
2018). This method uses a collected trajectory 𝜏 to calculate the returns and uses the
returns to update the agent. This differs from Bootstrapping in that Bootstrapping uses
the current reward and the estimated state-action value of the next state.

𝐺(𝜏) =
∞
∑

𝑡=0
𝛾 𝑡𝑟𝑡 (1.4)

Equation 1.4 shows how these returns are calculated by the summation of the current
reward with the discounted rewards in future states until the final state of trajectory 𝜏.
In the equation 𝑟𝑡 is the reward found at time step 𝑡 and 𝛾 is the discount factor.

1.1.4 Graph Neural Networks
Besides the multilayer perceptron (MLP), there is a wide range of artificial neural net-
works specialised in handling different kinds of input data. For example, convolutional
neural networks (CNN) and recurrent neural networks (RNN) were introduced to han-
dle images and text input data, respectively. Since then, both have been used on a wide
range of input data besides the previous two mentioned. However, both architectures
can not handle non-euclidian structured input data, such as graphs. Therefore, Graph
Neural Networks (GNN) were introduced.

This section will explain the fundamentals of GNN, which is the method we used
to encode our graphs. Besides GNN, there also exist other methods to encode graphs.
However, many of these methods are not usable for this research because they func-
tion only with unlabelled graphs. For example, methods such as struct2vec (Figueiredo
et al., 2017) do not function with labelled graphs and are therefore unusable for other
diversity graph problems such as the diversified top-𝑘 weighted clique search problem.
We need to state that GNNs only function with labelled graphs; however, we can add
custom node features to capture the needed structural information of a graph3. More-
over, other methods for labelled graphs, such as DeepWalk (Perozzi et al., 2014) and
Node2Vec (Grover and Leskovec, 2016), cannot encode essential structural informa-
tion about the graph. The only other considered option was Structure2Vec (Dai et al.,
2016), which can be made to function with unlabelled and labelled graphs, and encodes
the structural information of a graph. However, we found that available implementa-
tions of Structure2Vec were outdated, and thus we decided to focus on GNNs. We start
by explaining the basics of how GNN function and afterwards we state on what kind of
problems they are used.

Most GNN architectures function by first collecting the node features of the node
itself and its direct neighbour nodes and then passing this through an aggregation func-
tion. The aggregation function can be any function but is most commonly a sum or
mean pooling function. Next, the GNN passes the aggregated information through a
learnable update function. A GNN does this for each node simultaneously. Therefore,
the order of the nodes does not matter and means that an GNN is permutation invariant.
An essential aspect of an GNN architecture is the number of layers used. With a single
layer GNN, the output of a node will only contain the information of the node itself

3We will explain how this is done in section 2.5.2 in the literature review.
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and its direct neighbours. However, adding more layers will result in the output of a
node, including information of nodes further away in the graph. Therefore, an 𝑛-layer
GNN architecture will include the information of 𝑛-hops away from that given node
(Sanchez-Lengeling et al., 2021).

We see GNN primarily being used for three kinds of prediction problems on graphs:
node-level, edge-level, and graph-level tasks. With node-level tasks, the goal is to iden-
tify a node’s role within a graph. An example of a node-level task would be to predict
the label of a node. Edge-level tasks focus on the interaction between two nodes in
a graph by predicting if there is a link or properties of the interaction. Graph-level
tasks try to predict the properties of the whole graph (Sanchez-Lengeling et al., 2021).
Lastly, there exists a less studied prediction problem, namely subgraph-level prediction
problems.

Subgraph-level prediction problems can be categorised as being somewhere be-
tween node-level and graph-level prediction problems. Therefore, we see solutions used
for those problems also used for subgraph-level tasks. For example, with graph-level
tasks, it is common to pool the embedded information of all the nodes after the GNN
pass. This method can also be used for subgraph-level tasks by only pooling the infor-
mation of the nodes in the subgraph (Duvenaud et al., 2015). Another technique based
on node-level tasks is to extract the information subgraph’s nodes through a GNN and a
virtual node linked to all the nodes in the subgraph (Li et al., 2015). Nevertheless, these
techniques show a lack of GNN architectures specialised for subgraph-level tasks. Re-
cently there has been more research on such architectures, like SubGNN by Alsentzer
et al. (2020). However, we found those architectures to be unproven and challenging to
implement at this moment and therefore focused on the two previous mentioned tech-
niques.

Within the research field of GNN architectures, many different kinds of architectures
exist, each with its strengths and weaknesses. Cappart et al. (2021) explains this as a
three-way trade-off between scalability, expressivity, and generalisation.

1. The scalability of GNN architecture is measured by how well it can handle large
graphs with millions of nodes without running into memory problems.

2. A GNN architecture is said to be expressive if it can capture all the essential
information of the graph in the output of a node.

3. When a GNN architecture can generalise well, a trained network can achieve
similar scores with different structured graphs.

When we try to answer our research question, we must decide how to handle this trade-
off when implementing our algorithm.

1.2 Research Question
Our main research question is: Will a reinforcement learning approach for the di-
versified top-𝑘 clique search problem (DTKC) provide better results than previous
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traditional methods? An RL method will be an improvement if it either gets the high-
est score or if it gets similar results to previous algorithm, but with less runtime. How-
ever, to answer the main research question, this thesis will need to answer the following
sub-questions:

• How can we use a GNN architecture to encode the whole graph, and how can we
retrieve relevant information about the clique sets afterwards?

• How can we encode the structural information of a graph, such that the RL agent
can make a decision about the candidate clique set?

• How well will Deep Clique Comparison Agent (DCCA) generalise and scale be-
tween different graphs?

• Could a reinforcement learning method for DTKC not only work for a single value
of 𝑘 but every possible value of 𝑘 and how does it compare to other algorithms
for different values of 𝑘?

• Can DCCA be extended to other diversified graph problems, such as the diversi-
fied top-𝑘 weighted clique search problem (DTKWC) problem?

13



Chapter 2

Literature Review

The literature review chapter shows an overview of the relevant research field for our
proposed method. We first explain models that can generate graphs. We later use those
models to generate graphs to train Deep Clique Comparison Agent (DCCA). After-
wards, we explain combinatorial optimisation. In it we state relevant information and
related problems to the diversified top-𝑘 clique search problem (DTKC). After that, we
give an extensive overview of two approaches for DTKC, namely, EnumKOpt (Yuan
et al., 2015) and TOPKLS (Wu et al., 2020). We also explain TOPKWCLQ (Wu and
Yin, 2021b), an extension of TOPKLS, for the diversified top-𝑘 weighted clique search
problem. Both TOPKLS and TOPKWCLQ are essential for our research, because we
compare DCCA to them.

The following section gives an overview of reinforcement learning algorithms. We
omit to discuss deep RL algorithms for continuous action spaces. The reason for this
is that our approach has a discrete action space. We also primarily focus on policy
gradient algorithms and, in particular, PPO because this is the algorithm we use for our
approach. Our next section focuses on graph neural networks and how we can encode
graphs as input for our proposed approach. In it, we show what kind of node features
we can use, and GIN, the GNN architecture we will use for our approach.

Our last section combines the information of all the previous sections and explains
how reinforcement learning is used for combinatorial optimisation problems. We first
state how to categorise these methods and explain other relevant concepts. We conclude
by detailing some of these proposed methods, how they could be categorised and why
they are relevant for our research.

2.1 Graph Generators
There is a subfield within the graph theory research field focused on finding models that
can create graphs that hold specific properties. This subsection discusses two graph
models, namely the Erdős-Rényi model and the Barabási–Albert model.

The Erdős-Rényi (ER) model (Erdös and Rényi, 1959) generates random graphs,
which can either be done through 𝐺(𝑛, 𝑚) or 𝐺(𝑛, 𝑝). With 𝐺(𝑛, 𝑚), the model will
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generate a graph with 𝑛 nodes and a total of 𝑚 edges. Each possible edge has an equal
chance of being generated by the model. The other function, 𝐺(𝑛, 𝑝), again generates 𝑛
nodes, but in this model, each edge has a probability of 𝑝 to be generated. Therefore,
if 𝑝 = 1, the model will generate a complete graph, with all possible edges existing in
the graph. The reverse happens with 𝑝 = 0 because the model generates a graph with
no edges. However, ER models are not realistic to real-world graphs and are unlikely
to cluster due to this randomness.

The Barabási–Albert (BA) model (Albert and Barabási, 2002) tries to solve this
problem by generating graphs through preferential attachment. The BA model generates
graphs through 𝐺(𝑛, 𝑚), in which 𝑛 is again the number of nodes in the graph and 𝑚
is the number of edges from that generated node to other nodes in the graph. The BA
model adds these nodes iteratively to the graph. Each added node is then connected to
𝑚 previous generated nodes, with the probability of that a node picked being higher if
it already has many connections. Equation 2.1 calculates this probability for a node, by
dividing the degree of that node with the summation of the degrees of all the nodes.
Graphs generated by the BA model are more likely to have hubs, which are nodes with
a significantly higher degree than the average degree of the graph. These hubs are also
seen in many real-world graphs, which indicates that the BA model generates graphs
that are more similar to real-world graphs, like social networks.

𝑝𝑣 =
𝑑(𝑣,)

∑

𝑢∈𝑉 () 𝑑(𝑢,)
(2.1)

There are many extensions to the BA model, such as the extended Barabási–Albert
model (Albert and Barabási, 2000) and the Holme and Kim algorithm (Holme and
Kim, 2002). This paragraph will discuss one of these, namely the dual Barabási–Albert
model (Moshiri, 2018), which we used in the generation of our training and evaluation
data sets. The Dual BA model generates graphs by 𝐺(𝑛, 𝑚1, 𝑚2, 𝑝), again with prefer-
ential attachment. However, with Dual BA for each node, either 𝑚1 connections are
made with probability 𝑝 or 𝑚2 with probability 1 − 𝑝. This allows the dual BA model
to generate cliques that vary more in size than the original BA model does. We will
show this in our analysis of the data sets and graph generator models used for training
(section 4.1.1).

2.2 Combinatioral Optimisation
Combinatorial optimisation (CO) problems are problems that have multiple solutions,
but only one solution is the most optimal. The solutions for these problems are found
by searching through a finite set of objects, and any found solution should satisfy a set
of constraints. An objective function then compares the quality of the found solution,
and the goal is to either maximise or minimise this objective function.

One of the best known CO problems is the travelling salesman problem (TSP). TSP
is not related to diversified top-𝑘 clique search problem (DTKC); however, TSP has
the most RL algorithms of any CO problems, and thus a basic understanding of TSP is
needed to understand its RL algorithms. The goal of TSP is to find the shortest route
given a list of cities such that each city on that list is visited at most once. TSP is
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not hard to solve with four cities because there are only 25 possible routes; however, if
there are ten cities, the number of possible routes grows to 3628800. The reason for this
significant growth is that are always 𝑛! routes possible with 𝑛 cities (Laporte, 1992).

TSP shows why it is hard to answer CO problems because finding an optimal solu-
tion is done by checking all the possible solutions while the search space grows factori-
ally to the number of cities to visit. CO tries to alleviate this problem, by, for example,
decreasing the set of possible solutions or by optimising the search. This research field
is too considerable to discuss in its entirety, so this research proposal will only focus on
CO problems, problems closely related to DTKC and techniques used to find solutions
for these problems.

2.2.1 Local Search
Local Search is a widely used heuristic algorithm that moves through the search space
by changing small parts of the solution (Aarts and Lenstra, 1997). How this is done
depends on the problem itself, but in most instances, Local Search changes the solution
only if it improves some score function. Because of this, Local Search gets regularly
stuck at a local optimum. A metaheuristic algorithm can alleviate this problem. Simu-
lated Annealing (Laarhoven and Aarts, 1987), variable neighbourhood search (Mlade-
nović and Hansen, 1997) and evolutionary programming (Ryan, 2003) are examples of
metaheuristic algorithms.

2.2.2 Maximal Clique Enumeration
Maximal clique enumeration (MCE) is the enumeration of all the maximal cliques in
given graph . For smaller graphs, MCE is doable in a reasonable amount of time,
but MCE does not scale well to the size of graphs for two reasons. The first is the
complexity, which grows exponentially because the upper bound of maximal cliques in
a graph is 3𝑛∕3 (Moon and Moser, 1965), with 𝑛 the number of nodes in a graph. This
problem can be alleviated by algorithms, like the Bron–Kerbosch algorithm (Bron and
Kerbosch, 1973) for dense graphs or the algorithm of Eppstein et al. (2010) for sparse
graphs. Nevertheless, these algorithms do not solve the second problem of MCE, which
is the problem of saving all the cliques in memory. The space complexity problem is
harder to solve, especially for dense graphs. For this reason, solutions for the diversified
top-𝑘 clique search problem (Yuan et al., 2015; Wu et al., 2020) always have at most 𝑘
cliques in memory.

Bron–Kerbosch algorithm

As previously mentioned, the Bron–Kerbosch algorithm (Bron and Kerbosch, 1973)
enumerates all the maximal cliques in a graph. One of the main benefits of this algo-
rithm is that the algorithm does not have to store any found clique. The Bron–Kerbosch
starts with three sets: 𝑃 , 𝑅 and 𝑋. 𝑃 contains all the nodes that the algorithm consid-
ers for forming a maximal clique. 𝑅 contains all the nodes that will form the maximal
clique. Lastly, 𝑋 contains all the nodes that the algorithm has already processed. At
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the start of the process, 𝑃 contains all the nodes of the graph, and 𝑅 and 𝑋 are empty
sets.
Algorithm 1 Bron–Kerbosch algorithm

1: function BRONKERBOSCH(𝑃 , 𝑅, 𝑋, )
2: if 𝑃 = ∅ ∧𝑋 = ∅ then
3: Report 𝑅 as a maximal clique
4: end if
5: for each 𝑣 ∈ 𝑃 do
6: BronKerbosch(𝑃 ∩𝑁(𝑣,), 𝑅 ∪𝑁(𝑣,), 𝑋 ∩𝑁(𝑣,))
7: 𝑃 ← 𝑃 ⧵ {𝑣}
8: 𝑋 ← 𝑋 ∪ {𝑣}
9: end for

10: end function

Algorithm 1 shows how the Bron-Kerbosch algorithm is a recursive backtracking
algorithm. At the start of the call, it checks if both 𝑋 and 𝑃 are empty, and if so, then
𝑅 is a maximal clique. Otherwise, it checks every node in 𝑃 to check if it can form a
maximal clique by recursively calling itself with as input 𝑅, with the node added, and
only considering the neighbourhood of that node in the next call. It then removes the
node from P and adds it to 𝑋. If at a particular call of the algorithm 𝑃 is empty, but 𝑋
is not, then it means the clique 𝑅 is not maximal.
Algorithm 2 Pivot Bron–Kerbosch algorithm

1: function BRONKERBOSCHPIVOT(𝑃 , 𝑅, 𝑋, )
2: if 𝑃 = ∅ ∧𝑋 = ∅ then
3: Report 𝑅 as a maximal clique
4: end if
5: 𝑢 ← argmax𝑣∈𝑃∪𝑋 |𝑃 ∩𝑁(𝑣,)|
6: for each 𝑣 ∈ 𝑃 ∪𝑁(𝑢,) do
7: BronKerboschPivot(𝑃 ∩𝑁(𝑣,), 𝑅 ∪𝑁(𝑣,), 𝑋 ∩𝑁(𝑣,))
8: 𝑃 ← 𝑃 ⧵ {𝑣}
9: 𝑋 ← 𝑋 ∪ {𝑣}

10: end for
11: end function

The main issue of the original Bron-Kerbosch algorithm is that it considers too many
non-maximal cliques. For this reason, Tomita et al. (2006) proposed a new version of
the algorithm (algorithm 2), in which it does not consider all the nodes in 𝑃 anymore.
They did this by adding a pivot node 𝑢, which must come from the set𝑃∪𝑋. Due to pivot
node 𝑢, algorithm 2 has only to consider nodes in 𝑃 that are either 𝑢 or non-neighbours
of node 𝑢. The pivot node 𝑢 can be any node in 𝑃 ∪𝑋, but Cazals and Karande (2008)
show that the pivot method used in algorithm 2 leads to the best results, and we also see
this pivot method in other algorithms (Yuan et al., 2015; Hagberg et al., 2008).
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2.2.3 Max 𝑘-cover
The goal of the maximum coverage problem, also known as the Max 𝑘-cover problem,
is to find a subset of 𝑘 items from a given set, which maximises the coverage. One
can formalise this problem as follows: Provided a set 𝑆 =

{

𝑠1, 𝑠2,… , 𝑠𝑚−1, 𝑠𝑚
}, find

subset 𝑆′ ⊆ 𝑆, such that it is |𝑆′
| ≤ 𝑘 and maximised for ||

|

⋃

𝑠𝑖∈𝑆′ 𝑆𝑖
|

|

|

. The max 𝑘-cover
problem has been extended to a wide range of issues, but one important one, for this
thesis is the max vertex cover problem (Croce and Paschos, 2012). The objective of
the max vertex cover problem is similar to the one of max-𝑘 cover, except that now the
goal is to find 𝑘 nodes, which maximise a specific function. The most common of these
functions is to maximise the number of edges, thereby finding the 𝑘 best-connected
nodes in a graph.

2.2.4 Maximum Clique Problem
The maximum clique problem (MC) is closely related to DTKC1 in that the maximum
clique is the largest maximal clique in a graph and thus covers the most nodes. The
difficulty of this problem comes from the fact that all cliques have to be checked to find
the maximum clique. It is important to note that any maximum clique is the maximal
independent set in the complementary graph2.

2.3 Diversified Top-𝑘 Clique Search
Previously, we stated the problem statement of the diversified top-𝑘 clique search prob-
lem (DTKC) and the diversified top-𝑘 weighted clique search problem (DTKWC) and
discussed other related diversity graph problems3. This section will discuss two ap-
proaches for DTKC, EnumKOpt (Yuan et al., 2015) and TOPKLS (Wu et al., 2020),
and one for DTKWC, TOPKWCLQ (Wu and Yin, 2021b), which is an extension of
TOPKLS. We start by explaining EnumKOpt and afterwards explain both TOPKLS and
TOPKWCLQ, which we will do in one section as both are similar in how they operate.

2.3.1 EnumKOpt
The first ever approach for DTKC is EnumKOpt by Yuan et al. (2015), who also defined
this problem. This section will explain how they implemented EnumKOpt, which they
did in multiple versions, that build up to EnumKOpt.
Definition 2.3.1. Private-Node-Set - Given a set of cliques =

{

𝐶1, 𝐶2,… , 𝐶𝑘−1, 𝐶𝑘
}

in a graph , and for any 𝐶 ∈ , the private-node-set is the set of nodes, which only
occur in clique 𝐶 and not in any other clique in .

priv(𝐶,) = 𝐶 ⧵ Cov( ⧵ {𝐶}) (2.2)
1If 𝑘 = 1, then DTKC is equivalent to the maximum clique problem
2A complementary graph ′ is the inverse of a given graph .
3See section 1.1.2
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𝐴

𝐵

𝐶

Figure 2.1: This figure shows three cliques: 𝐴, 𝐵 and 𝐶 . The greyed part in the figure
is the private-node-set of clique 𝐴. This figure is an example of 2.3.1

Definition 2.3.2. Min-Cover-Clique Given a clique set  =
{

𝐶1, 𝐶2,… , 𝐶𝑘−1, 𝐶𝑘
} in

a graph , the Min-Cover-Clique is the clique, which has the lowest amount of private
nodes.

Cmin() = argmin
𝐶∈

{|priv(𝐶,)|} (2.3)
The first version that Yuan et al. (2015) present is EnumKBasic. This algorithm

modified the MCE algorithm of Eppstein et al. (2010). The original algorithm tries to
find all the cliques in a graph, and when it finds a clique, the algorithm adds it to the
list of cliques. Yuan et al. (2015) changed this part in EnumKBasic, such that there are
never more than 𝑘 cliques stored. When EnumKBasic finds a clique, it will first see if
the size of the current candidate clique set is smaller than 𝑘; if this is the case, it will
just add the clique to the candidate clique set. Otherwise, it will compare how many
private nodes the found clique has compared to Cmin(), which needs to be 𝛼× |Cov()|

||better than Cmin(), with 𝛼 being a parameter. The function can be seen in algorithm
3.

Yuan et al. (2015) also introduce three other versions of EnumKBasic, namely:
EnumK, EnumKOpt, SeqEnumK and IOEnumK. However, these versions are less im-
portant because they only introduce optimisations or are built to function on enormous
graphs, with the exception being EnumKOpt, which also introduces pruning strategies.
This section will give a brief outline of each version, except for EnumKOpt, which will
be explained more in-depth. The second version, EnumK, adds a novel Private-Node-set
Preserved Index (PNP-Index). The PNP-Index allow EnumK to function far more effec-
tive compared to EnumKBasic while operating identical. EnumKOpt improves EnumK
by adding three strategies to reduce the number of cliques considered by the algorithm.
The first strategy is Global Pruning. With this strategy, each node in the graph is as-
signed a global priority. The higher a node priority is, the more likely it is that it is
a member of a large maximal clique. EnumKOpt will find cliques based on the nodes
with the highest priority first. EnumKOpt will halt if the global pruning score becomes
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Algorithm 3 CandMaintainBasic
1: function CANDMAINTAINBASIC(clique 𝐶 , clique set )
2: if || < 𝑘 then
3:  ← ∪ {𝐶}
4: return 
5: end if
6: ′ ←

(

 ⧵
{

Cmin()
})

∪ 𝐶
7: if |

|

priv(𝐶,′)|
|

> |

|

priv(Cmin(),)|
|

+ 𝛼 × |Cov()|
||

then
8: return ′

9: else
10: return 
11: end if
12: end function

lower than 𝛼 × |Cov()|
||

. The second strategy used is Local Pruning. Local pruning lets
EnumKOpt know if the clique it is currently building still has the potential to improve
the candidate clique set. Lastly, Yuan et al. (2015) describe that if the initial candidate
clique set of 𝑘 cliques is of high enough quality, both Global and Local Pruning will
perform better. For this reason, they created a method that tries to find 𝑘 cliques not
randomly but in such a way that the coverage of the set is considered. Yuan et al. (2015)
built the last two versions, SeqEnumKOpt and IOEnumKOpt, not to be improvements
on EnumKOpt, but to function with graphs too large to fit into the main memory.

2.3.2 TOPKLS & TOPKWCLQ
The second method for DTKC is a local search algorithm introduced by Wu et al. (2020)
Their paper presents the TOPKLS algorithm, which utilises two novel strategies, namely
enhanced configuration checking (ECC) and a heuristic that can score the quality of
found maximal clique.

The first strategy, ECC, is a modified version of the Configuration Checking al-
gorithm, introduced by Cai et al. (2011), which can prevent cycling the same candi-
date solution in local search combinatorial optimisation problems (Cai et al., 2015; Li
et al., 2016; Wang et al., 2016) and constraint satisfaction problems (Cai and Su, 2013;
Abramé et al., 2016). Wu et al. (2020) describe how Configuration Checking did not
reduce cycling with DTKC, and thus they had to change the configuration of a node and
when the configuration is changed.
Definition 2.3.3. Configuration ECC - Given a candidate maximal clique set  and
an undirected graph  = (𝑉 ,𝐸), the configuration of a node 𝑣 ∈ 𝑉 () is the set 𝑆 =
{𝑢|𝑢 ∈ 𝑁(𝑣,) ⧵ Cov()}

Definition 2.3.4. Configuration Change ECC - Given a candidate maximal clique set
 and an undirected graph  = (𝑉 ,𝐸), the configuration of a node 𝑣 ∈ 𝑉 () is changed
if the set 𝑆 = {𝑢|𝑢 ∈ 𝑁(𝑣,) ⧵ Cov()} has been changed since the last time the node
𝑣 was removed from Cov().
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With these definitions of ECC, TOPKLS (Wu et al., 2020) will only consider adding
maximal cliques to the candidate clique set, for which all the nodes the configuration
has been changed. Therefore, a newfound maximal clique can not contain any nodes for
which the configuration has not been changed. Wu et al. (2020) stored the configuration
of each node through a Boolean array. If ConfChange [𝑣] = 1, the configuration of
node 𝑣 is altered, and ConfChange [𝑣] = 0 expresses that the configuration has not
been changed. ECC will change the configuration based on the following three rules:

• Rule 1 states: that at the start ConfChange [𝑣] is set to "1" for all the nodes 𝑣 in
the input graph .

• Rule 2 states: when a maximal clique 𝐶 is removed from the candidate solution
, then for each 𝑣 ∈ priv(𝐶,), ConfChange [𝑣] = 0 and for each node 𝑢 ∈
(𝑁(𝑣) ⧵ cov()) is to ConfChange [𝑢] = 1, because 𝑣 has been added to their set
configuration.

• Rule 3 states: when a new maximal clique 𝐶 is added to the candidate solution
, then for each 𝑣 ∈ priv(𝐶,), ConfChange [𝑢] = 1, for each node 𝑢 ∈ (𝑁(𝑣)⧵
cov(∪ {𝐶}))

The TOPKLS algorithm finds a clique set through the usage of local search (Wu
et al., 2020). This local search runs for a fixed time or until it finds a clique set covering
all the nodes in the graph. At each iteration of the algorithm, TOPKLS finds an initial
set of cliques of size 𝑘, which it then starts to improve with local search. For each round
of the local search, TOPKLS finds a new clique and adds it to the candidate clique set
and removes Cmin() from the clique set after adding the newfound clique. This order
of actions means that Cmin() can also be the newfound clique. If the newfound clique
set has a better coverage, it will become the new candidate clique set; otherwise, the
old candidate clique set stays the candidate clique set in the next iteration of the local
search. The local search will stop if the candidate clique set is not improving for several
iterations. When this happens, TOPKLS will compare this candidate set to the previous
one on their coverage and keep the best set. It will then go to the next iteration and
repeat the process with a new initial candidate set.

Wu et al. (2020) compared TOPKLS to EnumKOpt Yuan et al. (2015) on a set of
real-world graphs, for 𝑘 = 10, 𝑘 = 20, 𝑘 = 30, 𝑘 = 40 and 𝑘 = 50 and both algorithms
have a cutoff time of 600 seconds. The results show that, depending on the graph,
EnumKOpt and TOPLKS either score the same or that TOPKLS achieved a higher score.
Only on one graph got EnumKOpt a better score than TOPKLS. However, this comes
at a cost of TOPKLS having a substantially longer average runtime on each graph than
EnumKOpt. Wu et al. (2020) also used significantly smaller graphs for their experiments
with TOPKLS than Yuan et al. (2015) did for their algorithm, which they tested on
graphs with 118 million nodes. In contrast, for the experiments with TOPKLS, the
number of nodes ranged from a few hundred thousand to a few million nodes.

Cmin() = argmin
𝐶∈

{

∑

𝑢∈𝐶
𝑤(𝑢)

}

(2.4)

21



TOPKWCLQ (Wu and Yin, 2021b) functions similar to TOPKLS, with the main
difference being the score function. In equation 2.4, we show how TOPKWCLQ selects
the clique that should be removed from the clique set. With TOPKLS, this was the clique
with the lowest number of nodes in its private-node-set. However, with TOPKWCLQ,
this is the clique with the lowest score, which is the summation of the nodes’ weights
in the clique.

2.4 Reinforcement Learning Algorithms
This section focuses on three kinds of deep reinforcement learning (RL) algorithms:
DQN, Policy Gradient, and Neural MCTS. Previously, we discussed in section 1.1.3
essential terminology of RL, which we will use in this section. We mainly focus on
Policy Gradient algorithms, and especially PPO (Schulman et al., 2017), because our
approach will use PPO as its RL algorithm.

2.4.1 DQN
In section 1.1.3, we briefly discussed Q-Learning and SARSA. Both of these RL meth-
ods are Tabular methods, which means that their learned approximated state or state-
action values are stored in arrays or tables. These methods work well if the action and
state spaces are small enough, such that the agent can easily store them in memory. Still,
most action and state spaces are too large for tabular methods. However, researchers
have started to combine deep learning methods with RL in recent years, which resulted
in deep reinforcement learning. Deep RL utilises deep learning methods to encode the
state to an output. The deep learning architecture used depends on the task; for in-
stance, a CNN is used if the input is an image and an RNN for text-based encodings.
The main downside of deep RL methods, compared to tabular RL methods, is that it
almost always needs more training examples.

One of the most famous deep RL algorithms is deep Q-Learning (DQN) (Mnih
et al., 2013). DQN uses a neural network that encodes the current state and outputs the
Q-value of each action. This method differs from tabular Q-learning, which stores the
current value of each state-action pair. DQN allowed RL to function in environments
with an infinite state space. However, without any modification, DQN was too unstable
to use. For this reason, two essential modifications were proposed: Experience Replay
and Target Networks.

Experience Replay is a memory buffer (Mnih et al., 2013), which stores previous
experiences. The DQN agent samples a set of previous experiences from this buffer each
time it updates the network’s weights, in place of using only the last experience, which
the agent adds to the buffer. Each experience is stored in a tuple of ⟨𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1, 𝑅𝑡+1

⟩,
with the Experience Replay itself being, in most cases, a First-in-First-out (FIFO) replay
buffer and having a set maximum size. The size of the Experience Replay affects the
results significantly, with the results dropping if either the buffer is too large or too small
(Zhang and Sutton, 2017). DQN benefited greatly from using a memory buffer because
it became more stable and became more data-efficient.
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𝑎𝑡 = argmax
𝑎

𝑄(𝑠, 𝑎, 𝜃) (2.5)
The other modification to DQN is the usage of two separate weights for the network 𝑄,
namely, the standard weights 𝜃 and the target weights 𝜃target. A DQN agent uses the
standard weights to decide which action to pick through picking an action by equation
2.5, and the agent updates 𝜃 after each batch. The agent only uses 𝜃target for calculating
the estimated reward for non-terminal states, for which only the found reward is used.
This calculation is then used for 𝜃 as the loss. The loss calculation can be seen in
equation 2.6. The main difference with DQN and tabular Q-learning, is that DQN uses
a batch of experiences and thus the expected value of this batch is used as the loss.
After a certain number of updates have happened, the agent will do 𝜃target = 𝜃. This
architecture design made DQN significantly more stable.

𝐽 (𝜃) = 𝔼𝑠,𝑎,𝑠′,𝑟

(

𝑟 + 𝛾𝑄
(

𝑠′,max
𝑎′

𝑄
(

𝑠′, 𝑎′; 𝜃target
)

; 𝜃target
)

−𝑄 (𝑠, 𝑎; 𝜃)
)2

(2.6)

2.4.2 Policy-Gradient Methods
Besides DQN, a value-based method, another kind of Model-Free deep RL method
exists, namely policy gradients. The goal of a policy gradients method is to learn a
policy 𝜋(𝑎|𝑠, 𝜃), with 𝜃 being the network weights, to maximise the expected reward.
A policy gradients method will thus only output which action to take and not its value.
One clear benefit of policy gradient methods over DQN is that they can function in
discrete and continuous action spaces, while DQN only functions with discrete action
spaces.

One of the oldest policy gradient methods is REINFORCE (Williams, 1992). RE-
INFORCE uses a Monte-Carlo method for training, which means it will play out using
𝜋(⋅|⋅, 𝜃) and use these experiences to update 𝜃 afterwards. Equation 2.7 shows how the
gradient is calculated for REINFORCE, which uses the return of a trajectory 𝜏.

∇𝜃𝐽 (𝜃) = 𝔼𝜋
[

𝐺𝑡(𝜏)∇𝜃 ln𝜋𝜃
(

𝐴𝑡|𝑆𝑡
)] (2.7)

On its own, REINFORCE proved to be unstable, similar to DQN. A baseline was
added to solve this problem. A baseline can be any function, but it should not vary with
the chosen actions (Mazyavkina et al., 2021). One common approach for the baseline
is to add a second neural network that estimates the value of the current state. How-
ever, REINFORCE with baseline still has a high variance because of the Monte-Carlo
estimation for training.
Definition 2.4.1. Baseline A Baseline 𝑏 function can be any function that reduces the
variance of the policy and consequently should increase the bias. The most common
approach for a baseline function is to use a learnable state-value function, 𝑣̂; however,
some algorithms use domain-specific baseline functions.

These value networks are separate networks from the policy network and predict the
expected future returns from that state. These value networks use the TD-error 𝛿 as the
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target for these networks. Equation 2.8 shows how 𝛿 is calculated. It is not uncommon
for the policy and value networks to share layers, especially if the model is complex.

𝛿𝑡 = 𝐺𝑡 + 𝛾𝑣̂
(

𝑠𝑡+1
)

− 𝑣̂ (2.8)
The REINFORCE with baseline combined a policy gradient method with a value-

based method. This combination is similar to how another sort of policy gradient
method functions, namely, Actor-Critic methods (Konda and Tsitsiklis, 2003). Actor-
Critic methods have two networks, an Actor network and a Critic network. The Actor
network is the policy and outputs which action to take, while the Critic network outputs
a single value, which is an estimation of the current value of that state.

One of the most widely used Actor-Critic methods is A3C (Mnih et al., 2016). A3C
introduced two new strategies. The first is that A3C can be trained asynchronously.
Therefore, someone can train A3C using only a single global network and have multiple
agents collect experience in their environment. The other is using the Advantage for an
Actor Critic method. The Advantage tells us how beneficial an action is compared to
if a random action is taken at that state. A3C uses this estimated Advantage in the
calculation of the loss. The paper of Mnih et al. (2016) also introduces a synchronous
version of A3C, named A2C.

The Advantage function

The Advantage function 𝐴(𝑎𝑡, 𝑠𝑡) = 𝑄(𝑎𝑡, 𝑠𝑡) − 𝑣(𝑎𝑡, 𝑠𝑡) tells how much better an action
𝑎𝑡 is at state 𝑠𝑡 than all the other actions. Mnih et al. (2016) argues that 𝐴̂(𝑎𝑡, 𝑠𝑡) = 𝑟𝑡−𝑏𝑡can estimate the Advantage function because 𝑟𝑡 estimates 𝑄(𝑎𝑡, 𝑠𝑡) and 𝑏𝑡 estimates
𝑣(𝑠𝑡). When a value network 𝑣̂(𝑠𝑡) is used as baseline, then equation 2.9 can calculate
the estimated advantage by using the TD-error from equation 2.8 and a horizon of 𝑇 .
Schulman et al. (2015b) introduced an improved version of this advantage function,
named Generalised Advantage Estimation (GAE) (Equation 2.10). They introduced
the 𝜆 parameter, which helps lower the variance further. If 𝜆 = 1, then GAE is equal to
equation 2.9.

𝐴̂
(

𝑎𝑡, 𝑠𝑡
)

= 𝛿𝑡 + 𝛾𝛿𝑡+1 +⋯ + 𝛾𝑇−𝑡+1𝛿𝑇−1 (2.9)

𝐴̂GAE (

𝑎𝑡, 𝑠𝑡
)

= 𝛿𝑡 + (𝜆𝛾) 𝛿𝑡+1 +⋯ + (𝜆𝛾)𝑇−𝑡+1 𝛿𝑇−1 (2.10)

Proximal Policy Optimization Algorithms

Policy gradient methods have two significant downsides. The first is that they are sen-
sitive to the learning rate, with a too-small learning rate resulting in almost no progress
happening and a too-large learning rate creating much noise and thus instability. The
second downside is that policy gradient methods are sample-inefficient. However, a
new policy gradient algorithm was introduced to solve these issues, namely, Proximal
Policy Optimization Algorithms (PPO) (Schulman et al., 2017). PPO solves the sen-
sitivity to the learning rate by optimising another algorithm, Trust Region Proximal
Optimization (TRPO) (Schulman et al., 2015a). TRPO makes use of trust regions to
optimise how large of a step it can take without moving too far from its current policy.
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TRPO does this by making sure that the Kullback–Leibler divergence 𝐷KL (Kullback
and Leibler, 1951) between its current policy and a new policy is not too large. How-
ever, one major issue of TRPO is that it uses second-order methods, which are highly
complex to compute. For this reason, PPO modified this part of TRPO, such that the
methods used are first order. PPO tries to be less sample-efficient by training on the
data from one or multiple episodes for a certain number of epochs.
Definition 2.4.2. Probability Ratio The probability ratio 𝑟𝑡(𝜃) is the difference between
the current policy and the old policy:

𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃old (𝑎𝑡|𝑠𝑡)

(2.11)

PPO does this modification by clipping the policy’s loss, such that 𝑟𝑡(𝜃) stays close
to 1 after each iteration. Therefore, Schulman et al. (2017) proposed the cost function
found in equation 2.12.

𝐽CLIP
𝑡 (𝜃) = 𝔼̂

[

min
(

𝑟𝑡 (𝜃) 𝐴̂𝑡, clip (𝑟𝑡 (𝜃) , 1 − 𝜖, 1 + 𝜖
)

𝐴̂𝑡
)] (2.12)

Equation 2.12 shows how it clips the ratio and then multiplies it by the Advantage ex-
plained in section 2.4.2. 𝜖 is a hyperparameter, which indicates the clipping range, with
is in most cases 𝜖 either 0.1, 0.2 or 0.3. This clipping allows PPO to run multiple epochs
on the same data, whereas other Policy Gradient algorithms could not. It also made it so
that PPO is more sample efficient and less sensitive to the learning rate. PPO combines
this loss with the loss of the value function and an entropy bonus (equation 2.13).

𝐽PPO
𝑡 (𝜃) = 𝔼̂

[

𝐽CLIP
𝑡 (𝜃) − 𝑐1𝐽

VALUE
𝑡 (𝜃) + 𝑐2𝑆

[

𝜋𝜃
]] (2.13)

In equation 2.13, 𝐽VALUE
𝑡 (𝜃) is the mean-squared error between the value function and

the target, with 𝑐1 being the value coefficient. This coefficient is a hyperparameter and
indicates the strength of the value loss in the total loss. Tuning 𝑐1 is essential if the
value and policy networks share layers. The addition of an entropy bonus 𝑆 [

𝜋𝜃
] helps

PPO with exploration, with a higher value 𝑐2 resulting in more exploration.
Another concept that Schulman et al. (2017) introduced with PPO was the idea of

early stopping an episode. The main reasoning is that the start of an episode contains
enough information for training. PPO also allows multiple agents to collect data con-
currently, after which PPO updates the network’s weights.

Lastly, it is expected that during training, PPO selects actions stochastic, which
means that they are picked based on a probability distribution that it learns. This is be-
cause it helps with exploration during training and is how PPO handles the exploration-
exploitation trade-off, which we discussed in section 1.1.3. In most research, PPO
selects actions deterministic, meaning it will always select the best action during the
model evaluation. It is also possible for PPO to select actions stochastic during the
evaluation. However, we will set PPO to select actions deterministic when we do the
experiments for our algorithm.
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2.4.3 Neural MCTS
All the previously explained deep RL algorithms are model-free algorithms, which
means they do not know the workings of the transition function. However, some re-
cent breakthroughs showed how model-based deep RL could function and how it can
even learn the rules of the environment. AlphaGo (Silver et al., 2016) popularised the
model-based approach for deep RL. Silver et al. (2016) implemented AlphaGo through
a combination of policy and value networks and MCTS. However, it still had some do-
main knowledge of the game Go programmed into it, needed human data and needed
to know the rules of Go. Later research improved upon AlphaGo, with AlphaGo Zero
(Silver et al., 2017b) removing the need for human data and domain knowledge and
AlphaZero (Silver et al., 2017a) also being able to play chess and shogi. The latest ver-
sion, MuZero (Schrittwieser et al., 2019), can even learn the rules of a game and learn
how to play Atari games. Recent applications of this algorithm can accurately predict
human protein structures, which is a challenging task (Tunyasuvunakool et al., 2021;
Baek et al., 2021). However, these algorithms are currently unfeasible in most cases be-
cause of the required hardware, with MuZero being trained on 40 TPU’s (Schrittwieser
et al., 2019).

2.5 Graph Neural Networks
In this section, we start by explaining the essential information about Graph Isomorphic
Networks (GIN). As previously mentioned, in our background explanation of Graph
Neural Networks (GNN)4, we need to decide how we want to handle the three-way
trade-off between scalability, expressivity, and generalisation. Due to the novelty of our
approach, we decided to focus on the expressivity of an GNN architecture. Therefore,
we decided to use GIN instead of other architectures, such as Graph Convolutional
Networks (Kipf and Welling, 2017) and Graph Attention Networks (Veličković et al.,
2017), which are known to scale and generalise better.

Next, we will explain how to select custom node features such that an GNN archi-
tecture can encode more information about the graph in its outputs.

2.5.1 Graph Isomorphism Network (GIN)
The focus on the expressiveness of a GNN architecture made us decide to use a Graph
Isomorphic Networks (GIN), such that the network can encode the needed structural
information. Xu et al. (2018a) developed GIN with the hypothesis that GNN could dif-
ferentiate between graph structures similar to the Weisfeiler-Lehman (WL) test (Sher-
vashidze et al., 2011).

Xu et al. (2018a) wanted to develop a GNN architecture, GIN, with the same strength
as the WL-test. Therefore, they asserted that GIN should output the same outputs for
two graphs if the WL-test state that those graphs are isomorphic. They also asserted
that previous GNN architectures, such as GraphSage (Hamilton et al., 2017) and GCN
(Kipf and Welling, 2017), were not potent enough for this task.

4See section 1.1.4
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The primary reason for this is the shallow update function of previous GNN archi-
tectures. The update function consisted, in most cases, of a single layer update function,
which is not powerful enough to simulate a WL-test. Therefore, they added an MLP
update function within GIN.

ℎ(𝑙)𝑣 = MLP
(

(1 + 𝜖) ⋅ ℎ(𝑙−1)𝑣 +
∑

𝑢∈𝑁(𝑣,)
ℎ(𝑙−1)𝑢

)

(2.14)

Equation 2.14 shows how GIN aggregates the information of the node (ℎ(𝑙−1)𝑣 ) and its
neighbours (∑𝑢∈𝑁(𝑣,) ℎ

(𝑙−1)
𝑢 ) from the previous layer (𝑙−1). GIN does this aggregation

by summation because, according to Xu et al. (2018a), doing a mean or max aggregation
would result in too much information lost. 𝜖 in equation ref is used to strengthen or
lessen the influence of the own node in the aggregation. Xu et al. state in their paper
that 𝜖 is a learnable value. However, they found that the best results in most test cases
were with 𝜖 = 0 and it not being learnable.

Xu et al. (2018a) also proposed how to design a "readout" function for GIN networks
for graph-level tasks, which by association should also work for subgraph-level tasks.
Their proposition states that both a mean and max aggregation function will result in
losing essential structural information. They state that only a sum aggregation of the
nodes encodings will capture enough structural information.

2.5.2 Node Attributes
As previously mentioned, GNN architectures are primarily used for node-level, graph-
level or edge-level tasks, in which either the node or edge itself has features. However,
most graph CO problems, like DTKC, have no features or only weights, like DTKWC,
as features. Therefore, adding features to either the node or the edges is necessary.

Some research is done on which features can help GNN capture the necessary in-
formation. Cui et al. (2021) describe some node features that can be added to nodes
in a graph and separates them into two distinct groups: positional features and struc-
tural features. Positional features help a GNN capture information about the position of
nodes in a graph, such that it can learn how close two nodes are together in the graph.
Examples of custom positional node features are the output of DeepWalk (Perozzi et al.,
2014) and random node features.

Structural features help GNN learn the role of a node in a graph. Therefore, if two
nodes are far from each other in a graph but have similar roles, for example, being hub-
nodes, then with structural node features, GNNs should be able to learn to place them
in the same class. Cui et al. (2021) states that one-hot encoding of the degree and the
PageRank (Page et al., 1999) of the node could act as structural node features. Another
structural feature is a shared vector of all 1, which is then used by all the nodes (Errica
et al., 2019). This shared vector can only help identify structural information if the
aggregation is a summation. With a single GNN layer and a shared vector, the GNN
can identify how many neighbours each node has because the summation is the number
of neighbours. With each subsequent GNN layer, this information is passed on to its
neighbours, and the node receives more information about its neighbours.
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2.6 Reinforcement Learning in Combinatioral Optimi-
sation

Recently, an uprise in research of utilising reinforcement learning (RL) for combina-
torial optimisation (CO) problems has happened. Before it, researchers used mainly
supervised methods for CO problems with specialised networks like Hopfield Net-
works (Mańdziuk, 1996; Liang, 1996) and, more recently, Pointer Networks (Vinyals
et al., 2015). However, these algorithms could not scale and did work well with unseen
data. The paper of Bello et al. (2016) introduced a framework for utilising RL for CO
and coined the term neural combinatorial optimisation (NCO) for machine learning for
NCO5. This section will first explain some definitions and training strategies used in
NCO-RL. Afterwards, we describe some current state-of-the-art NCO-RL approaches.

The survey paper of Mazyavkina et al. (2021) shows examples of how RL can be
integrated for CO problems. Mazyavkina et al. (2021) does this by dividing approaches
into different categories. The first category divides RL methods that finds solutions on
its own, which they named Principal learners from those that improve the workings of
another solver and thus is Jointly trained. Secondly, they distinguish between RL meth-
ods, which find their solution through a Constructive heuristic or improve an existing
solution through an Improve heuristic. With the Constructive heuristic, a RL method
will build a solution until it is a valid solution. If a method uses an Improve heuristic,
it starts with a valid solution and improves the existing solution.

Another essential aspect of NCO is how each method is trained (Bello et al., 2016).
The most common approach, especially for deep RL, is to pretrain an RL algorithm on
different instances of the CO problem. The instances can either be real-world data or,
more common, randomly generated data, like through the Erdős-Rényi model (Erdös
and Rényi, 1959) and the Barabási–Albert model (Albert and Barabási, 2002). The
reason why an RL agent can learn on randomly generated data is that the goal function
of a CO problem can easily be translated to the reward function of an RL agent. An
RL agent can also train directly on the CO problem that needs to be solved. We see
this exclusively done with tabular RL algorithm because they are significantly faster to
train. This retraining of tabular RL algorithms allows those algorithms to generalise
better between different instances of a CO problem. However, this also increases the
runtime significantly because those algorithms need to retrain for each instance.

Cappart et al. (2021) describe two benefits of NCO. The first, the describe, is the
encode-process-decode paradigm (Hamrick et al., 2018), and explains how it can be
utilised in NCO. They state how one network can encode the inputs of a CO problem
to a latent encoding . This latent encoding can then be reused, which can alleviate
the scalability problem of NCO. Another potential advantage of this paradigm is the
potential for multi-task learning. For example, in the context of DTKC, both a Clique
Finding Agent and Clique Comparison Agent use the same latent encoding.

Secondly, Cappart et al. (2021) state an interesting promise of NCO, namely, its
potential to work with natural inputs and data that has non-linear relations, something
classical CO algorithms struggle with. A common problem that limits CO algorithms

5NCO-RL will be used in this proposal for the research field of reinforcement learning for combinatorial
optimisation
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from functioning on real-world problems is their need to function with abstractified
input data. This abstractification is mainly done manually and therefore can miss latent
information about, for example, the weight between two nodes. NCO should overcome
this; however, research lacks on how to use natural inputs and non-linear relations with
NCO (Cappart et al., 2021).

2.6.1 Recent developments
Although travelling salesman problem (TSP) is not related to DTKC, it is the most
widely studied CO problem in NCO-RL research. Therefore, it has the most NCO-RL
algorithms, which can act as examples of the different NCO-RL categories of Mazyavk-
ina et al. (2021), which were introduced in the introduction of this section. Bello et al.
(2016) was the first to create an RL agent for TSP, which used the then-recently pro-
posed Pointer Network architecture to encode the input space. The agent started from
an arbitrary starting node, from which it picked the next state until each node in the
instance was visited. The proposed algorithm of Bello et al. (2016) is an example of
a Principal learner with a Constructive heuristic. After the algorithm of Bello et al.
(2016), proposed methods used similar techniques, with the only significant improve-
ment being the inclusion of Attention (Deudon et al., 2018; Kool et al., 2019). Chen
and Tian (2019) proposed an algorithm that improves an existing TSP solution until
convergence. Their algorithm also worked for the Job-Shop Scheduling Problem and
other routing problems and outperformed existing non-NCO solutions. Cappart et al.
(2020) gives another example of Jointly trained RL algorithm. Their paper proposes
an RL algorithm that improves Constraint Programming, which can solve a wide range
of CO problems. Cappart et al. (2020) also noticed how Constraint Programming is
linked to Dynamic Programming. The previously shown examples of NCO-RL are all
pretrained deep RL algorithm. However, a later paper (Zheng et al., 2020) states how
deep RL struggles to scale to larger problem instances of TSP. In their paper, Zheng
et al. (2020) proposes a tabular agent, which improves the Lin-Kernighan-Helsgaun al-
gorithm. Their algorithm outperformed deep RL algorithms by a significant margin
and had no problems with scaling.

Currently, no RL algorithm exists for DTKC; however, there are many approaches
for finding solutions for the maximum clique problem (MC) and the maximum inde-
pendent set problem (MIS)6. Abe et al. (2019) proposed one of the first approaches for
the maximum clique problem, which could also be trained for other NP-Hard graph
problems. Their proposed algorithms uses Neural MCTS with an GIN architecture to
encode the graphs, which is a principal learner that improves existing solutions. They
tested this algorithm on some real-world graphs and found that it could find comparable
results to previous approaches and even found maximum cliques for some graphs that
surpass previous best-known solutions. However, they only tested it on small graphs,
with at most 5000 nodes. This is likely due to GIN not being scalable, but they state
that another GNN architecture could replace GIN in future approaches. Another al-
gorithm is the one we previously described by Cappart et al. (2020), which uses RL
to enhance the functioning of Decision Diagrams and encodes the graph with Struc-

6In section 2.2.4, we explained MC and MIS, and how they are related to DTKC
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ture2Vec (S2V) (Dai et al., 2016). Therefore, this algorithm is a joint learner, because
it improves the workings of another algorithm, which means it is not relevant for our
approach, because we cannot utilise Decision Diagrams for DTKC. Lastly, the algo-
rithm of Ahn et al. (2020) tried to alleviate this scalability problem, that limited Abe
et al. (2019). Ahn et al. (2020) described how they designed an RL agent with PPO and
a GCN as encoder, such that the algorithm could learn to defer. This deferring meant
that the agent decided at each transition to either include, exclude or defer a node in its
solution, with deferring meaning that the algorithm decides at a later stage of the node
will be included or excluded. Ahn et al. (2020) tested their approach on graphs with a
maximum size of two million nodes. The results show that the algorithm of Ahn et al.
(2020) outperformed not only other NCO-RL algorithms but also classical algorithms.

Although there is no paper on utilising RL on a diversified graph problem, there is
a paper that utilises RL for a diversified top-𝑘 recommender system (Zou et al., 2019).
The algorithm used neural MCTS, based on AlphaGo (Silver et al., 2016), for the RL
agent. However, the most critical aspect of this paper for DTKC is how actions are
rewarded. Zou et al. (2019) designed the reward function in such a way that it rewards
diversification.

The examples given in the previous paragraphs show the potential of RL on CO
problems. Nevertheless, they are still focused on the theoretical sides of the problem.
However, recently a practical breakthrough application was proposed (Mirhoseini et al.,
2021). This paper by Mirhoseini et al. (2021) proposes an NCO-RL agent that can
design TPU chips, which is a CO problem. The agent created chip designs significantly
faster than humans do7. These designs were also similar in quality.

7The agent needed only about six hours for a design, while a human team would take at least weeks.

30



Chapter 3

Methodology

We showed in the literature review that DTKC consists of two steps: finding a maxi-
mal clique and then deciding if the found clique should replace a clique in the current
candidate clique set. We decided to focus on the second step and implement an RL
algorithm that learns how to compose the best clique set, with the clique finding being
done by another algorithm. Therefore, we propose the Deep Clique Comparison Agent
(DCCA), which can learn to find the ideal clique set depending on the diversity graph
problem and not only for DTKC.

We decided to use reinforcement learning because of the infinite number of training
graphs we can generate through the dual BA model. Supervised learning needs to have
labelled data, which does not exist for DTKC or DTKWC. Approaches, such as TOPKLS
and EnumKOpt (Wu et al., 2020; Yuan et al., 2015), could generate this data. However,
this data will likely not be the exact solution because both algorithms find their solution
through approximation. Thus, a supervised model trained on this data will likely make
the same mistakes as TOPKLS and EnumKOpt. This data could be combined with
Imitation Learning, but this again will limit an algorithm to only problems that already
have an existing algorithm (Cappart et al., 2021).

The literature section stated that almost every CO problem has a discrete observation
and action space. In theory, this would mean that a Tabular RL algorithm could learn
a CO problem. Nonetheless, the number of possible states is too expansive for any
Tabular RL algorithm to learn. Hence, we decided to leverage deep learning methods,
especially GNNs, to overcome this problem.

This chapter will discuss our proposed algorithm and design choices. We start by
how the diversified top-𝑘 clique search problem and other diversity graphs problems
can be formulated as a Markov decision process (MDP).

3.1 MDP
We can formulate the diversified top-𝑘 clique search problem (DTKC) or any related
problem, such as the weighted variant, as a Markov Decision Process. The following
Markov decision process (MDP) shows how this formulation:
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• State: Each state 𝑠𝑡 consists of the current candidate clique set 𝑡 with the new-
found clique set 𝐶𝑡. Therefore, a state is 𝑠𝑡 = 𝑡 ∪

{

𝐶𝑡
}

• Action: The action space is discrete and always consists of 𝑘 + 1 possible ac-
tions. The action 𝑎𝑡 signifies which clique will be removed and replaced by the
newfound clique, except when 𝑎𝑡 = 𝑘 + 1, which is used to signify that the new-
found clique will not replace a clique.

• Transition: The transition function removes the selected clique from the state
and adds a new clique found. Therefore, the function is as follows: 𝑇 (

𝑠𝑡+1|𝑠𝑡, 𝑎𝑡
)

=
𝑠𝑡 ⧵

{

(

𝑡 ∪
{

𝐶𝑡
})

𝑎𝑡

}

∪
{

𝐶𝑡+1
}

• Reward Function: The reward function is the difference in score between the
next state and the current state. The score function differs between problems, but
for DTKC, it is the coverage of the clique set. We will explain the reward function
in-depth in subsection 3.1.1.

To find all the cliques in a graph, we use the Pivot Bron–Kerbosch algorithm1 (Cazals
and Karande, 2008). We decided to use this algorithm for two reasons. The first reason
is that this algorithm is deterministic; therefore, the ordering of the cliques will always
be in the same order for a given graph, and thus, the MDP can model the state transition.
For instance, the clique finding algorithms used by TOPKLS (Wu et al., 2020) and
TOPKWCLQ (Wu and Yin, 2021b) are stochastic. The second reason is that it can be
used for both DTKC and DTKWC. This is the reason is why we cannot use the clique
finding algorithm of EnumKOpt (Yuan et al., 2015) because it only functions for DTKC.

3.1.1 Reward Function
The design of the reward function took more time than initially planned. There are two
reasons for this, which we will discuss in this section and how we overcame it such that
we can defend the final reward function.

At first sight, the reward function should be the score function of DTKC or any
other diversified graph problem. However, the first issue with this reward function is
that the action taken does not influence the score enough. This problem correlates to
the parameter 𝑘, with example 3.1 showing this correlation.
Example 3.1. If our reward function is the coverage of the current clique set and 𝑘 = 50,
then a single clique will only have a 2% influence on the score compared to the other
cliques. With 𝑘 = 10, this influence would increase to 10%.

Therefore, the reward function should be the difference in score between time step
𝑡 + 1 and 𝑡 and thus is 𝑟𝑡 = score(𝑠𝑡+1) − score(𝑠𝑡). The difference in score gives more
information about the individual action, and through an high enough 𝛾 , it should also
help decide on future actions. The main issue with using this reward function is that the
range of possible rewards is enormous; depending on the graph, the range of rewards

1See algorithm 2 in section 2.2.2
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can easily be between -100 and 100. Nevertheless, there are two possible solutions to
solve this problem.

The first is to divide the reward by the maximum clique for DTKC or the max-
imum weighted clique for DTKWC. There are algorithms that find these cliques ei-
ther precisely or through approximation (Boppana and Halldórsson, 1992; Warren and
Hicks, 2006).However, due to both problems being NP-Hard, finding these cliques can
be computationally heavy depending on the graph and therefore slow down training sig-
nificantly when graphs are generated during training. Another negative of this solution
is that it only can be used for DTKC and DTKWC. Therefore, we decided to focus on
another solution.

The second solution is to scale the reward by a scalar value 𝜌 such that the reward
range stays closer to 0. Cappart et al. (2018) proposed this solution for their deep RL
algorithm for the maximum cut-problem and the maximum independent set. They ar-
gued that it improved training because gradient descent struggles with sparse and large
rewards. We also decided to implement this scaling for our algorithm because it allows
the agent to learn other problems than DTKC and DTKWC. The final reward function
is thus equation 3.1, with 𝜌 being the scalar value:

𝑟𝑡 = 𝜌
(score(𝑠𝑡+1) − score(𝑠𝑡)

)

. (3.1)
The last two equations show the specific reward function for each problem we will train
DCCA for. The reward function for DTKC (equation 3.2) is the difference between the
size of the new coverage and the old coverage. For DTKWC (equation 3.3), this is the
difference between the summation of the weights between the old and new coverage.

𝑟DTKC
𝑡 = 𝜌

(

|

|

|

Cov
(

𝑡+1
)

|

|

|

− |

|

|

Cov
(

𝑡
)

|

|

|

)

(3.2)

𝑟DTKWC
𝑡 = 𝜌
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⎜
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⎝
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∑

𝑣∈Cov(𝑡+1)
𝑤(𝑣)

⎞

⎟

⎟

⎠

−
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⎜

⎝

∑

𝑢∈Cov(𝑡)
𝑤(𝑢)

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

(3.3)

3.2 Network Architecture
Our algorithm DCCA, encodes the graph and the cliques by using two graph neural
network architectures, one for encoding all the nodes in the graph and the second archi-
tecture which acts as the actor and critic network for the PPO algorithm. This section
will first discuss each architecture separately and conclude by explaining how the two
interact. Figure 3.1 shows how the networks are connected.
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 Graph
Encoder 

Actor
Network

Critic
Network

Figure 3.1: This figure show our network design. We will explain how the Graph En-
coder functions in section 3.2.1. This networks gets as input a graph  and outputs the
latent node encodings . These encodings are then used at each step in the episode by
the actor and critic network, which we explain in section 3.2.2

3.2.1 Graph Encoder
The task of the first network is to encode the whole graph such that the structural infor-
mation of the graph is encoded into latent vectors for the nodes. Therefore, we needed
to find a GNN architecture that would capture this information and select input features,
which help the GNN architecture capture this information. We decided to use a Graph
Isomorphic Networks (GIN) (Xu et al., 2018a) as our GNN architecture, based on the
usage by Abe et al. (2019). They demonstrated that an RL agent could learn to find the
maximum clique in a given graph using a GIN.

In their paper, Abe et al. (2019) used five layers of GIN with a hidden dimension
of 32 and each MLP. The GIN layers also consisted of five layers, in which the input
and output dimensions were thus 32 and the hidden dimension 16. As input, they used
a vector of ones, which helped capture the structural information of the graph. Other
research also shows that this method can capture the relevant structural information
(Cui et al., 2021).

For DCCA, we decided to use a similar network setup as Abe et al. (2019). We
decided to test different numbers of GIN layers and hidden dimension sizes for both
the GIN layer and the MLP within the GIN layer. We will state the final setup in our
hyperparameter section (table 4.8).

The graph encoder will encode the latent representation of the nodes 𝑧 ∈  of
a given graph . The actor and critic network use  as their input at each step. We
based this setup on the encode-process-decode paradigm (Cappart et al., 2021), which
states that multiple computations can be done on the same latent space.

The main downside of using GIN is that the architecture is computational heavy
compared to other architecture such as Graph Convolutional Networks (Kipf and Welling,
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2017) and Graph Attention Networks (Veličković et al., 2017). However, the GIN en-
coder network is only run once for each graph, and thus this computational heaviness
is insignificant during the evaluation, but it does increase the training time.

3.2.2 Actor-Critic Network
Both the actor and critic network use a GIN architecture. Therefore, we decided to use
the virtual node method for our subgraph-level task. The upcoming paragraphs will
explain both networks and the inputs for them.

Actor Network

The actor network has as input each clique and thus uses 𝑘 + 1 virtual nodes, one for
each clique in the current candidate clique set 𝐷𝑡 and the newfound clique 𝐶𝑡. It is
essential to state that the input of each clique node is independent of one another. This
independence means two virtual nodes can share the same nodes as input, but they do
not communicate. Figure 3.2 shows an example of this procedure.

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8 𝑥9

𝐶 ′
1 𝐶 ′

2 𝐶 ′
3

Figure 3.2: This figure shows the actor input for three different cliques, with 𝐶1 =
{

𝑥1, 𝑥2, 𝑥3, 𝑥4
}, 𝐶2 =

{

𝑥3, 𝑥4, 𝑥5
} and 𝐶3 =

{

𝑥7, 𝑥8, 𝑥9
}. 𝐶1 and 𝐶2 share the nodes

𝑥3 and 𝑥4, and therefore both have their latent encoding 𝑧𝑖 ∈  as input.

Equation 3.4 shows the input for the actor network. The 0 in the calculation is
normally the node itself, but because we use virtual nodes, this will be 0. The actor
network collects the latent node encodings 𝑧𝑢 ∈  from a clique 𝑢 ∈ 𝐶𝑖. It does this
for all the cliques in the current candidate clique set 𝐶 ∈ 𝑡 and the newfound clique
𝐶𝑡. Therefore, the final output of the actor network is 𝑋 ∈ ℝ(𝑘+1).

𝐶 ′
𝑖 = MLP

(

(1 + 𝜖) ⋅ 0 +
∑

𝑢∈𝐶𝑖

𝑧𝑢

)

(3.4)
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Critic Network

The critic network uses a single virtual node with Cov(𝑡 ∪
{

𝐶𝑡
}

) as input. This virtual
node outputs the value of that state. This method is based on the algorithm of Zhang
et al. (2020), which used a similar setup for their critic network. Figure 3.3 shows an
example of this process.

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8 𝑥9

𝑣̂

Figure 3.3: The figure shows how 𝑣̂(𝑠𝑡) is calculated by collating the latent encodings
of the cliques in figure 3.2, with 𝑠𝑡 =

{

𝐶1, 𝐶2, 𝐶3
}

Equation 3.5 shows the input for the critic network. The input of this is the coverage
of the current candidate clique set 𝑡 and the newfound clique 𝐶𝑡. The critic network
collects all the latent node encodings 𝑧𝑢 ∈  from all the nodes found in the coverage
of the current state 𝑢 ∈ Cov

(

𝑠𝑡
), which is Cov

(

𝑠𝑡
)

= Cov
(

𝑡 ∪
{

𝐶𝑡
}). The final

output is then a single value 𝑣̂(𝑠𝑡) ∈ ℝ

𝑣̂(𝑠𝑡) = MLP
⎛

⎜

⎜

⎝

(1 + 𝜖) ⋅ 0 +
∑

𝑢∈Cov(𝑡 ∪{𝐶𝑡})
𝑧𝑢
⎞

⎟

⎟

⎠

(3.5)

3.3 Deep Clique Comparison Agent (DCCA)
This section will discuss how implemented Deep Clique Comparison Agent (DCCA),
for which we used PPO. We start by showing how DCCA executes a single episode.
Afterwards, we explain the training procedure of DCCA. Lastly, we state our argumen-
tation of why we chose to use PPO over other reinforcement learning algorithms.
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Algorithm 4 The clique composing operation of DCCA
1: function COMPOSECLIQUESET(Graph , actor weights 𝜃𝑎, graph encoder weights

𝜃)
2:  ← ∅ ⊳ Initialise an empty candidate clique set
3:  ← 𝜃() ⊳ Gather the node latent features for the whole graph
4: for 𝐶 ∈ PivotBronKerbosch() do
5: if || < 𝑘 then ⊳ The first 𝑘 cliques are added
6:  ← ∪ {𝐶}
7: else
8: ∗ ← ∪ {𝐶}
9: 𝑎 ← 𝜋𝜃𝑎 (

∗,) ⊳ The actor decides which clique should be removed
10:  ← ∗ ⧵

{

∗
𝑎
}

11: end if
12: end for
13: return 
14: end function

In algorithm 4, we show how DCCA composes a clique set from a graph. At the
start of the run, the algorithm initialises an empty candidate clique set. It uses the graph
encoder network to generate the latent node encodings  for the whole graph, which
we reuse as input for the actor-network at each iteration. Cappart et al. (2021) argues
how the encode-process-decode paradigm can be used for algorithmic reusing, which
we do, or multi-task learning, for which we make recommendations in our discussion.
This reusing of the latent encodings allows us to speed the execution time of DCCA
significantly because calculating the node latent encodings of the whole graph is the
computationally heaviest task and should improve the scalability of DCCA.

We use the Pivot Bron-Kerbosch algorithm (Cazals and Karande, 2008) to find all
the maximal cliques in the graph. The algorithm will always add the first 𝑘 cliques to the
candidate clique set . When | | = 𝑘, a decision clique set ∗ is created by adding
the newfound clique to . The actor-network then uses ∗, and the latent node features
𝑧𝑛 ∈  as input to decide which clique should be removed from ∗. This clique is
then removed, and  becomes ∗ with the removed clique. This process repeats until
Deep Clique Comparison Agent (DCCA) checked every clique in graph , at which
point the current candidate clique set will be returned as the final clique set.
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Figure 3.4: The flowchart of the training procedure of DCCA.
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Figure 3.4 shows the training procedure of DCCA. We start by initialising the weights
of all the networks, which are the graph encoder, actor and critic network. After that,
the training loop starts. At the beginning of each loop, we will generate a graph. This
graph is then used to create training examples by running an episode using algorithm 4.
We generate batches from those training examples with a custom batching algorithm,
which we will explain in section 3.3.1. Those batches are shuffled at the start of each
epoch. DCCA will then train 𝐸 epochs on those batches. After that, it will either start
a new episode with a newly generated graph or stop training, if it trained for a certain
threshold of steps.

Besides PPO and other policy gradient algorithms, the literature review chapter also
discussed two different deep RL algorithms: DQN and Neural MCTS. Both DQN and
Neural MCTS would have been good choices; however, they are significantly slower to
train or take many more resources.

Compared to PPO, DQN is, in most cases, slower to train while being more sample
efficient and therefore is the better choice if gathering data is computationally heavy.
For DTKC and DTKWC, this is not the case because, for both problems, we can gather
unlimited data without it being computationally heavy to do. DQN is comparably even
slower for our approach than PPO because PPO can gather data from each episode by
reusing the output of the graph encoder . With DQN, this would not be possible
because DQN does gradient ascent after each action taken, thus changing the weights
for the graph encoder.

We decided not to use Neural MCTS because it is slower to train, similar to DQN,
and needs significantly more resources. Moreover, due to Neural MCTS being a recent
development, there are few implementations, and thus it would be considerably harder
to implement.

3.3.1 Batching Algorithm
Most batching methods for training a GNN architecture can be divided into two groups,
one for graph-level tasks and one for node-level tasks. With batching for graph-level
tasks, the batching algorithm will combine multiple graphs into a single graph for a
single forward pass. Node-level tasks combine multiple node-level tasks for a single
graph into one pass. For example, it will try to predict the node labels for all the nodes in
a single forward pass. However, DCCA is a subgraph-level task, for which no batching
algorithm exists. Therefore, we decided to design a new batching algorithm to improve
the training time significantly.

As previously mentioned, we collect 𝑘+1 clique outputs for the actor network and a
single coverage output for the value network through a GNN architecture from a latent
encoded graph. This new batching algorithm aims to have a single pass of the graph
encoder network for the graph and then perform 𝐵 steps on this latent encoded graph,
in which 𝐵 is the batch size. Therefore, the batching algorithm collects 𝐵 steps, which
were performed on the same graph, such that 𝐵(𝑘 + 1) cliques inputs and 𝐵 coverage
inputs are collected. The network’s output is thus two vectors, 𝐗 ∈ ℝ𝐵(𝑘+1)×1, the
output of the actor network and 𝐕 ∈ ℝ𝐵×1, the output of the value network. 𝑋 does not
have the correct output dimensions because we want to have the cliques of the same step
in a single row, such that the 𝐵(𝑘+1)×1 vector is transformed into a 𝐵 ×𝑘+1 matrix.
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The algorithm, therefore, creates a batch index vector 𝐼 ∈ ℤ𝐵(𝑘+1)×1
+ that collects the

cliques’ outputs of a single step in a row such that we get a 𝐵 × (𝑘 + 1) matrix.

3.3.2 Software and Hardware
We implemented DCCA in Python with the use of PyTorch and Pytorch Geometric
(Paszke et al., 2019; Fey and Lenssen, 2019). We used NetworkX to find the cliques
in a graph (Hagberg et al., 2008). We did the experiments with a Ryzen 5 2600 Six-
Core Processor 3.4 GHz CPU, 16GB RAM and an Nvidia GeForce RTX 2060 GPU.
We based our algorithm on the code from Kostrikov (2018)2.

3.4 Closing Remarks
This chapter discussed our proposed algorithm named DCCA. We showed how DTKC
and other diversity graph problems could be formulated as an MDP and how to approach
the reward function. After that, we explained the network design and how DCCA only
has to calculate the latent encodings of a graph once, such that the actor and critic
network can reuse them to compose the clique set. Later in the thesis, we will show
that reusing is possible through experiments. If possible, this reusing would be not
only beneficial for DCCA but also for other NCO-RL algorithms because it could help
lessen the scalability problem of NCO-RL.

We also discussed how the actor and critic networks use virtual nodes and GIN. It is
essential to state that because the virtual nodes are 0, the GIN operation is theoretically
identical to sum pooling the node encodings and passing them through an MLP. How-
ever, this method allows future research to change the GIN architecture to other GNN
architectures.

The last section states how implemented PPO for DCCA. We explained how each
step DCCA takes during an episode and why we decided to use PPO instead of other
deep-RL algorithms. We also introduced a novel batching algorithm for subgraph-level
tasks because of the lack of batching algorithms for these tasks. Other GNN research
for subgraph-level tasks could use this batching algorithm for their algorithms.

2https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
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Chapter 4

Experimental Setup

This chapter will discuss how we will conduct the experiments and the graphs we will
use for training and to compare DCCA to previous works. We will conduct experiments
for both the diversified top-𝑘 clique search problem (DTKC) and the diversified top-𝑘
weighted clique search problem (DTKWC). First, we analyse the generated graphs we
used in training Deep Clique Comparison Agent (DCCA) and for the comparison, and
later in the chapter, we will discuss the measurements we will use in the comparison.

We will compare DCCA on three different sizes of 𝑘, namely 𝑘 = 10, 𝑘 = 30 and
𝑘 = 50. We do not test for 𝑘 = 20 and 𝑘 = 40 due to the scope of this thesis, and
the results of the other three settings should give enough information about how DCCA
reacts to different sizes of 𝑘.

As baseline, we will use TOPKLS (Wu et al., 2020) for DTKC and TOPKWCLQ
(Wu and Yin, 2021b) for DTKWC. We will train DCCA for both problems and all the
previously stated values of 𝑘. Lastly, we will train DCCA on different data sets to see
how well DCCA can generalise and scale, and what the best method is to train it.

4.1 Graph Analysis
In our comparison, we will use generated graphs and real-world graphs to see how well
DCCA can generalise. Therefore, we will analyse each graph generation function by
generating 1000 graphs. The analysis will show the input parameters for each graph,
the number of cliques in the graph, the mean, the maximum and minimum size of a
clique and standard deviation and the mean degree.

4.1.1 Generated Graphs
We decided to use only graphs generated by the Dual Barabási–Albert (BA) model. The
reason is that other models, such as the normal BA model and the Erdős-Rényi (ER)
model, do not generate graphs with diverse enough clique sizes without needing to be of
enormous sizes1. This subsection will analyse graphs generated by the Dual BA model

1In appendix 4.2, we show an analysis of these models.
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for training our agents and evaluating them.
We generate the first set of graphs with the same input variables, namely: 𝑛 = 1500,

𝑚1 = 6, 𝑚2 = 150 and 𝑝 = 0.982. Table 4.1 shows the results of these graphs. For
the evaluation, we generated 10 graphs with these input variables. The sections that
show the results of these graphs are called: Dual Barabási–Albert model - Same
Parameters.

Value Mean SD Max Min
Mean Clique Size 4.592 0.923 8.61 2.921
SD Clique Size 3.183 0.903 6.014 1.277

Max Clique Size 17.523 2.481 25 10
Number of Cliques 8374.086 976.968 13783 6721

|𝑉 | 1500 0 1500 1500
|𝐸| 12112.272 753.138 14436 9828

Mean Degree 16.15 1.004 19.248 13.104
Table 4.1: The results of the graphs generated with the same input parameters

We created graphs where each input variable was randomly chosen from a given
range for the second set of graphs. 𝑛 is between 1250 and 2250, 𝑚1 is between 5 and
10, 𝑚2 is between 100 and 150 and 𝑝 between 0.95 and 0.98. Table 4.2 shows the results
of the generated graphs. We chose to generate 15 graphs for the evaluation because of
the increased randomness. The sections that show the results of these graphs are called:
Dual Barabási–Albert model - Random Parameters

Value Mean SD Max Min
Mean Clique Size 7.399 2.94 19.176 3.111
SD Clique Size 3.816 1.1 7.482 1.237

Max Clique Size 17.932 3.927 32 9
Number of Cliques 30463.952 26255.725 303074 5394

|𝑉 | 1741.541 284.468 2250 1250
|𝐸| 18966.346 4733.997 33235 8155

Mean Degree 21.745 3.88 31.949 12.345
Table 4.2: The results for the mixed set of graphs.

Table 4.3 shows the analysis of the graphs generated with 𝑛 = 1250, 𝑚1 = 5,
𝑚2 = 100 and 𝑝 = 0.98, which are the least complex graphs possible to generate.

2We explained the function of each parameter in section 2.1
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Value Mean SD Max Min
Mean Clique Size 3.592 0.506 6.298 2.623
SD Clique Size 2.078 0.526 3.991 0.913

Max Clique Size 12.555 1.847 18 8
Number of Cliques 5906.676 514.628 9324 4939

|𝑉 | 1250 0 1250 1250
|𝐸| 8028.29 444.816 9550 6795

Mean Degree 12.845 0.712 15.28 10.872
Table 4.3: The results of the least complex graphs possible in the mixed set

Table 4.4 shows the analysis of the graphs generated with 𝑛 = 2250, 𝑚1 = 10,
𝑚2 = 150 and 𝑝 = 0.95, which are the most complex graphs possible to generate.

Value Mean SD Max Min
Mean Clique Size 10.997 1.18 15.154 7.011
SD Clique Size 4.346 0.429 5.928 3.152

Max Clique Size 22.631 2.117 31 17
Number of Cliques 129840.406 44073.95 360661 42258

|𝑉 | 2250 0 2250 2250
|𝐸| 35823.34 1341.627 40040 31360

Mean Degree 31.843 1.193 35.591 27.876
Table 4.4: The results of the most complex graphs possible in the mixed set

4.1.2 Real-world Graphs
We selected graphs from the same set as TOPKLS (Wu et al., 2020) for the real-world
graphs (Rossi and Ahmed, 2015). We chose 15 random graphs from this data set, from
the in total of 139 graphs, with the maximum size being 200,000 nodes. The reason
why we only chose 15 is that the scope of our thesis is too small to test more graphs.
Non of these graphs are weighted; thus, we add a random weight to each node between
1 and 10. Wu and Yin (2021b) does a similar method to all add weights to non-weighted
graphs, to test TOPKWCLQ. In section 4.2, we show an analysis of each of those graphs
and the other graphs used to evaluate our agents.

4.2 Evaluation Graphs
This section gives an overview of the graphs we used in the evaluation. The tables show
the number of nodes and edges of a given graph, with the total number of cliques, with
the mean, max and standard deviation size of those cliques found.
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4.2.1 Dual Barabási–Albert model - Same Parameters
Table 4.5 shows the graphs we will use for the evaluation, which we generated using
the same input parameters found in table 4.1. The measured attributes show that these
graphs are all similar.

Clique Size

Graph |𝑉 | |𝐸|

Total
Maximal Cliques Mean SD Max

graph_0 1500 12276 8391 4.376 2.95 18
graph_1 1500 11556 8425 3.931 2.41 14
graph_2 1500 11844 7772 4.252 2.871 17
graph_3 1500 12132 7660 4.499 3.411 19
graph_4 1500 11844 8046 4.153 2.767 18
graph_5 1500 12708 7998 4.59 3.44 21
graph_6 1500 11412 7949 3.624 2.08 15
graph_7 1500 11124 7758 3.617 2.128 15
graph_8 1500 11412 7530 3.781 2.316 15
graph_9 1500 12420 8896 5.387 3.778 17

Table 4.5: The evaluation graphs generated with same parameters as the ones found in
table 4.1, namely, 𝑛 = 1500, 𝑚1 = 6, 𝑚2 = 150 and 𝑝 = 0.98. The first column (|𝑉 |)
shows the number of nodes in the graph and the second column (|𝐸|) the number of
edges. In the third column, we show the total number of maximal cliques in that graph,
with the last three being the mean, standard deviation (SD) and maximum size of those
found cliques.

4.2.2 Dual Barabási–Albert model - Random Parameters
Table 4.6 shows the graph we generated from the random range input attributes. In it,
we see that the measured attributes of these graphs vary significantly more than those
found in table 4.5. We expected this variation because of the random input parameters.
However, the most important difference is the total number of cliques, which is, on
average, significantly larger than the graphs found in table 4.5.
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Clique Size

Graph |𝑉 | |𝐸|

Total
Maximal Cliques Mean SD Max

graph_0 2011 19102 30305 8.872 4.767 19
graph_1 1305 15521 20476 5.802 2.726 14
graph_2 1941 18063 36603 8.306 3.693 19
graph_3 2123 16398 18817 8.176 5.338 18
graph_4 1958 22833 176203 14.458 4.124 25
graph_5 1609 18066 58995 11.824 4.268 22
graph_6 2175 26158 31070 4.434 2.114 12
graph_7 1376 15268 14466 5.099 2.898 15
graph_8 2185 21878 42139 9.961 4.751 18
graph_9 1382 12813 26959 11.093 4.8 21

graph_10 1817 20744 21678 7.305 4.865 20
graph_11 2072 25336 69770 10.024 4.108 21
graph_12 1984 18827 17366 4.998 3.167 15
graph_13 1277 14568 43274 20.944 7.045 32
graph_14 1337 11178 8174 5.334 3.865 18

Table 4.6: The evaluation graphs generated with same parameters as the ones found in
table 4.2, namely, with 𝑛 being between 1250 and 2250, 𝑚1 being between 5 and 10,
𝑚2 being between 100 and 150 and 𝑝 between 0.95 and 0.98

4.2.3 Real-world Graphs
The last set of evaluation graphs is the set of real-world graphs. Table 4.7 shows that
these graphs vary the most in their measured attributes. For example, rt-retweet only
has 99 maximal cliques, while soc-buzznet has 390,020,762 maximal cliques. This size
likely indicates that DCCA needs days to check all the cliques in soc-buzznet, which
would mean it is drastically slower than previous methods, such as TOPKLS.
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Clique Size

Graph |𝑉 | |𝐸|

Total
Maximal Cliques Mean SD Max

ca-GrQc 5242 14484 3906 3.053 2.012 44
ca-netscience 379 914 203 3.557 1.244 9
ia-email-univ 1133 5451 3267 3.035 1.096 12

ia-infect-dublin 410 2765 1247 5.018 2.452 16
ia-infect-hyper 113 2196 5347 9.423 2.29 15

inf-power 4941 6594 5687 2.092 0.326 6
rt-retweet 96 117 99 2.101 0.333 4

sc-shipsec1 140385 1707759 505189 5.775 2.654 24
soc-buzznet 101163 2763066 390020762 15.317 4.113 31
socfb-CMU 6621 249959 1242538 12.291 6.169 45

tech-RL-caida 190914 607610 480784 2.893 1.501 17
tech-WHOIS 7476 56943 3575771 42.985 7.498 58

tech-internet-as 40164 85123 69584 2.919 1.633 16
tech-routers-rf 2113 6632 3457 3.219 1.912 16

web-arabic-2005 163598 1747269 93444 3.326 6.01 102
web-spam 4767 37375 64228 8.078 3.616 20
Table 4.7: This table shows the real-world graphs we use for our evaluation.

4.3 Trained Agents
This section will explain each trained version of Deep Clique Comparison Agent (DCCA)
and show for which problem they were trained and which data set they used. As men-
tioned in the introduction of this chapter, we will only train the agents for 𝑘 = 10,
𝑘 = 30, and 𝑘 = 50. We trained these agents on the data sets discussed in the graph
analysis section. DCCA trained on the graphs in table 4.1, we notate with DCCA-same
and when trained on the graphs in table 4.2 we notate it as DCCA-mix. To train them
for DTKWC, we add random weights to each node between 1 and 10. We will compare
these versions of DCCA in our results to determine the effect of the training graphs for
the results. We also trained DCCA for both the diversified top-𝑘 clique search problem
and the diversified top-𝑘 weighted clique search problem.

4.3.1 Hyperparameters
Table 4.8 shows the hyperparameters for DCCA, the only distinction between the weighted
version and the non-weighted version is the lower reward scaling. We used the same
network design as Abe et al. (2019), which means we used 5 GIN layers in the encoder;
each MLP in the GIN has an input size and output size of 32 and a hidden size of 16
for each hidden layer, with three hidden layers. The actor and critic networks also use
GIN with the same MLP design, except that the output size is 1. The input size of the
first GIN layer is 33 for DTKWC, because we add the normalised weight to each nodes
input. We used ReLU for the activation function (Agarap, 2018). We used Generalised
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Advantage Estimation (GAE) to calculate the advantage during training. We added a
cutoff time of 900 seconds to DCCA. Otherwise, DCCA needs days to run on larger
graphs.

We trained DCCA for 4 million steps. After each 100 episodes, we compared DCCA
to some test cases and saved those results and the weights of the networks. In the final
comparison, we used the weights that scored the best at those test cases. Our reasoning
behind this is that we train DCCA for a significant amount of different setups; therefore,
the ideal number of steps varies for values of 𝑘 and if it is either trained for DTKC or
DTKWC.

Hyperparameter Value
Discount Factor 𝛾 0.99

GAE-lambda 𝜆 0.9
Learning Rate 𝛼 2.5 × 10−4

Epochs 𝐸 5
Batch Size 𝐵 128

PPO Horizon 𝐻 4096
Clip Rate 𝜖 0.1

Value Coefficient 𝑐1 0.5
Entropy Coefficient 𝑐2 0.01

Reward Scaling DTKC 𝜌 0.1
Reward Scaling DTKWC 𝜌 0.01

Table 4.8: We tuned the hyperparameters based on the non-weighted variant for 𝑘 = 10

For TOPKLS (DTKC) and TOPKWCLQ (DWTKC), we used the input parameters
of TOPKLS (Wu et al., 2020). Therefore, we set 𝑚min = 50 and 𝑚max = 200, and we
tested for a cutoff time of 600 seconds and 60 seconds.

4.4 Interpreting Results
As mentioned in the introduction of this chapter, we will compare DCCA, trained with
hyperparameters in table 4.8, to TOPKLS and TOPKWCLQ. Due to the stochastic nature
of both TOPKLS and TOPKWCLQ, we have run both multiple times with different
seeds. We decided to repeat a run five times with the following seeds: 1234, 2345,
3456, 4567 and 5678. The average of these runs is then the final score. DCCA is
deterministic and thus only runs once. Ideally, we would have trained DCCA multiple
times and run each trained version on the evaluation graphs. However, we found too
late in the process that this is common for RL algorithms and we did not have enough
time to do this full comparison.

Our results will state the average score, standard deviation of this score, and the
maximum score of the five runs for TOPKLS and TOPKWCLQ. The score is either
the length of the coverage set for DTKC or the summation of the nodes weights in that
coverage set for DTKWC. We will state the end score of a graph and the maximum score
found during that run for either trained version of DCCA, namely, DCCA-Same, the
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one trained on graphs with the same parameter (table 4.1) and DCCA-Mix, the one on
a broader range (table 4.2). DCCA can output a lower score than the maximum score it
found during their run. The difference between the output score and the maximum score
can determine the stability of DCCA and will indicate future improvements. We will
state the percentage difference between the average score of TOPKLS or TOPKWCLQ
and the max score of DCCA.

Both the baselines, TOPKLS and TOPKWCLQ, were tested with a cutoff time of
600 seconds. We already argued that DCCA is probably faster on graphs with fewer
cliques because it only checks each clique once. However, to test if this speed-up is
significant, we will also test both baselines with a cutoff time of 60 seconds. We then can
compare both cutoff times to conclude if our speed-up is significant. If this difference
is insignificant, it would mean that the baseline algorithms find similar solutions for the
lower cutoff time; therefore, our speed-up advantage is also insignificant. To test the
significance, we will use a dependent T-test, in which the percentage difference between
the max score of DCCA and the mean result of the baseline is compared between the
two cutoff time. This test will be done for both versions of DCCA, so for DCCA-Same,
trained on the dual BA graphs generated by the same input parameters (table 4.1), and
DCCA-Mix, trained on the dual BA graphs from a range of input parameters (table 4.2).
We will do this for each evaluation graph set and value 𝑘.

However, we can not make a fair comparison between the runtime of DCCA and that
of TOPKLS (Wu et al., 2020) and TOPKWCLQ (Wu and Yin, 2021b) because DCCA is
written in Python, and TOPKLS and TOPKWCLQ are in C++ and are therefore likely
inherently faster. Nevertheless, different graphs, problems or values of 𝑘 can affect the
final run time and tell us how DCCA holds up in different scenarios.
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Chapter 5

Results

In the results chapter, we will show the results of DCCA. We divided this chapter into
two sections: one for the diversified top-𝑘 clique search problem (DTKC) and one
for the diversified top-𝑘 weighted clique search problem (DTKWC). In each section,
we will discuss the results of each data set separately and compare DCCA-Same and
DCCA-Mix to either TOPKLS for DTKC or TOPKWCLQ for DTKWC.

For all the evaluation graph sets, we will show the results for each of tested value
of 𝑘, which are 𝑘 = 10, 𝑘 = 30 and 𝑘 = 50. We separated each table into three
parts, one for TOPKLS or TOPKWCLQ and one for both DCCA-Same and DCCA-
Mix. The part of TOPKLS and TOPKWCLQ shows the mean results of five runs, with
the standard deviation in parentheses, in the Result column, with a separate column for
the maximum score found in these five runs. As previously mentioned, we used cutoff
times of 600 seconds and 60 seconds for TOPKLS and TOPKWCLQ.

The results for DCCA show the maximum found score during evaluation, the end
score of the clique set, which DCCA returned at the end of the run and the total run time.
The End Score column also shows the percentage difference between the end and the
maximum scores in parentheses. In the Max Score column, we also state the percent-
age difference between the maximum score and the mean result of either TOPKLS or
TOPKWCLQ. If the run time is written in bold, it means that DCCA terminated before
it checked all the cliques because it exceeded the cutoff time of 900 seconds. Appendix
C shows the full results of DCCA, such as the total number of steps taken, and when the
max score was found. Earlier, we said we tested for both a cutoff time of 600 seconds
and 60 seconds. We use a dependent t-test to see if the difference between the results of
the two cutoff times is significant. To test this significance, we compare the percentage
difference between the max score of DCCA and the results either of TOPKLS or TOP-
KWCLQ for a cutoff of 600 seconds and 60 seconds. We do this for both DCCA-Mix
and DCCA-Same. For these tests, the significance level is 𝛼 = 0.01.

In each table, we state the mean difference with standard deviation between the
maximum score of DCCA and the mean result of the baseline algorithm and between the
maximum and end score. In each table, we will show the best result in bold. When we
discuss the results of the real-world graphs, we will show separately the mean difference
between the graphs which DCCA completed and the ones it terminated early on.
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5.1 Diversified Top-𝑘 Clique Search
This section shows the results of our experiments for the diversified top-𝑘 clique search
problem (DTKC). These results show that DCCA is significantly worse than the base-
line, TOPKLS, for both cutoff times. When the cutoff time is 600 seconds, the average
percentage difference between the max score of DCCA and the mean result of TOPKLS
is for DCCA-Same -23.02% (SD=14.07%) and DCCA-Mix it is -26.62% (SD=14.24%).
If we lower the cutoff time to 60 seconds, we see the difference being lower between the
max score and the mean result. However, it is still considerably worse, with the differ-
ence for DCCA-Same being -22.14% (SD=14.16%) and for DCCA-Mix being -25.78%
(SD=14.38%). Nevertheless, the results vary significantly between the graph sets and
for different values of 𝑘. For example, DCCA-Mix outperformed TOPKLS on average
on the dual BA graphs generated with the same input parameters (table 4.5) for both a
cutoff time of 600 seconds (table 5.3) and 60 seconds (table 5.6). While DCCA-Same
also outperformed on the same graph set, with 𝑘 = 50, but only when the cutoff is 60
seconds (table 5.6).

Moreover, DCCA is also significantly faster on those graphs. This indicates that
DCCA is an improvement on both runtime and score for those graphs and when 𝑘 = 50.
However, on the largest graphs found in the results of the real-world graphs (section
5.1.3), DCCA terminated the run because it reached its cutoff time of 900 seconds,
indicating that it can not scale to those graphs. This is because there are too many
maximal cliques in those graphs. We will expand on this in our discussion.

5.1.1 Dual Barabási–Albert model - Same Parameters
Tables 5.1, 5.2 and 5.3 show the results of the graphs generated with the same input
parameters. We compared TOPKLS to both DCCA-Same, which is trained on dual
BA graphs generated with the same input parameters, similar to how these graphs are
generated and the ones in section 5.2.1, and DCCA-Mix, which is trained on dual BA
graphs from a range of input variables, similar to the graph found in section 5.1.2 and
5.2.2. In the results of this section, we see, on average, TOPKLS outperforming DCCA-
Mix and DCCA-Same for 𝑘 = 10 and 𝑘 = 30. However, the difference in performance
is smaller for 𝑘 = 30 than it is for 𝑘 = 10. Moreover, DCCA-Mix even outperforms
TOPKLS when 𝑘 = 50, and DCCA-Same is only slightly worse than TOPKLS with
a cutoff time of 600. When the cutoff time is 60, then DCCA-Same also outperforms
TOPKLS for 𝑘 = 50. When we compare DCCA-Mix and DCCA-Same, we see that
DCCA-Same performs better when 𝑘 = 10 and 𝑘 = 30, and DCCA-Mix is better when
𝑘 = 50.

TOPKLS cutoff of 600 seconds

When we combine the results of all the three tested values of 𝑘 (tables 5.1, 5.2 and 5.3),
we see that the mean difference between TOPKLS and DCCA-Same is −4.25% (SD =
3.25) and the mean difference between TOPKLS and DCCA-Mix is −16.94% (SD =
4.29%). The mean difference between the end and the max score for DCCA-Same is
−3.43% (SD = 4.29%) and for DCCA-Mix is −11.68% (SD = 5.76%). This indicates

50



that on average DCCA-Same is better compared to DCCA-Mix. However, DCCA-Mix
outperformed TOPKLS when 𝑘 = 50 (table 5.3).

TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 51.2 (0.4) 52 600 49 (-2.0%) 50 (-2.34%) 6.8 24 (-33.33%) 36 (-29.69%) 6.83
graph_1 48.4 (0.49) 49 600 41 (-8.89%) 45 (-7.02%) 6.85 18 (-41.94%) 31 (-35.95%) 6.78
graph_2 49.8 (0.4) 50 600 44 (0.0%) 44 (-11.65%) 6.2 23 (-36.11%) 36 (-27.71%) 6.25
graph_3 52.0 (0.0) 52 600 46 (-2.13%) 47 (-9.62%) 6.23 25 (-24.24%) 33 (-36.54%) 6.23
graph_4 50.2 (0.4) 51 600 42 (-12.5%) 48 (-4.38%) 6.56 22 (-31.25%) 32 (-36.25%) 6.46
graph_5 54.2 (0.4) 55 600 48 (-4.0%) 50 (-7.75%) 6.5 29 (-19.44%) 36 (-33.58%) 6.59
graph_6 47.0 (0.0) 47 600 45 (0.0%) 45 (-4.26%) 6.41 19 (-36.67%) 30 (-36.17%) 6.36
graph_7 46.4 (0.49) 47 600 42 (0.0%) 42 (-9.48%) 6.45 21 (-25.0%) 28 (-39.66%) 6.4
graph_8 46.8 (0.4) 47 600 47 (0.0%) 47 (0.43%) 6.21 23 (-28.12%) 32 (-31.62%) 6.03
graph_9 52.4 (0.49) 53 600 39 (-13.33%) 45 (-14.12%) 7.2 25 (-21.88%) 32 (-38.93%) 7.21

Table 5.1: The results for 𝑘 = 10. The columns for TOPKLS show the mean results,
with standard deviation, in the Result column from the 5 runs, while the Max col-
umn shows highest found score of those 5 runs. In the results for DCCA-Same and
DCCA-Mix, we show the score of the final clique set with the percentual difference
between it and the max score in the End Score column. In the Max Score column, the
highest found score during the run with percentual difference between it and the mean
result of TOPKLS. DCCA-Same: mean difference between TOPKLS is -7.02% (SD =
4.44%) with the mean difference between the end and the max score being -4.28% (SD =
5.31%). DCCA-Mix: mean difference between TOPKLS is -34.61% (SD = 3.9%) with
the mean difference between the end and the max score being -29.8% (SD = 7.27%).

TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 110.0 (0.63) 111 600 101 (-4.72%) 106 (-3.64%) 10.52 88 (-1.12%) 89 (-19.09%) 9.81
graph_1 108.0 (0.0) 108 600 96 (-3.03%) 99 (-8.33%) 10.39 62 (-24.39%) 82 (-24.07%) 9.91
graph_2 108.4 (0.49) 109 600 102 (-2.86%) 105 (-3.14%) 9.76 94 (0%) 94 (-13.28%) 9.05
graph_3 109.8 (0.75) 111 600 95 (-9.52%) 105 (-4.37%) 9.53 73 (-13.1%) 84 (-23.5%) 9.04
graph_4 109.0 (0.0) 109 600 98 (-3.92%) 102 (-6.42%) 10.01 85 (-1.16%) 86 (-21.1%) 9.37
graph_5 113.0 (0.0) 113 600 98 (-5.77%) 104 (-7.96%) 9.77 100 (0%) 100 (-11.5%) 9.42
graph_6 106.4 (0.49) 107 600 99 (-3.88%) 103 (-3.2%) 10.05 90 (0%) 90 (-15.41%) 9.26
graph_7 105.8 (0.4) 106 600 102 (0%) 102 (-3.59%) 9.89 91 (0%) 91 (-13.99%) 9.32
graph_8 105.0 (0.0) 105 600 99 (-3.88%) 103 (-1.9%) 9.39 91 (0%) 91 (-13.33%) 8.89
graph_9 111.2 (0.4) 112 600 95 (-4.04%) 99 (-10.97%) 11.29 100 (0%) 100 (-10.07%) 10.47

Table 5.2: The results for 𝑘 = 30. DCCA-Same: mean difference between TOPKLS is
-5.35% (SD = 2.92%) with the mean difference between the end and the max score being
-4.16% (SD = 2.41%). DCCA-Mix: mean difference between TOPKLS is -16.54% (SD
= 5.04%) with the mean difference between the end and the max score being -3.98%
(SD = 8.24%).
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TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 158.0 (1.26) 160 600 158 (-2.47%) 162 (2.53%) 13.44 163 (-1.21%) 165 (4.43%) 13.62
graph_1 159.8 (0.98) 161 600 157 (-3.09%) 162 (1.38%) 13.51 148 (-1.99%) 151 (-5.51%) 13.67
graph_2 157.4 (0.8) 159 600 155 (-2.52%) 159 (1.02%) 12.84 157 (0%) 157 (-0.25%) 12.6
graph_3 154.2 (0.4) 155 600 156 (-0.64%) 157 (1.82%) 12.51 153 (-5.56%) 162 (5.06%) 12.5
graph_4 157.6 (0.49) 158 600 150 (-1.96%) 153 (-2.92%) 12.86 159 (0%) 159 (0.89%) 13.03
graph_5 160.8 (1.47) 163 600 152 (-3.18%) 157 (-2.36%) 12.99 158 (0%) 158 (-1.74%) 12.93
graph_6 157.2 (0.75) 158 600 150 (-1.96%) 153 (-2.67%) 12.7 151 (-1.95%) 154 (-2.04%) 12.85
graph_7 155.8 (0.4) 156 600 153 (-0.65%) 154 (-1.16%) 12.48 161 (0%) 161 (3.34%) 12.35
graph_8 151.4 (0.8) 152 600 152 (-1.94%) 155 (2.38%) 12.08 158 (0%) 158 (4.36%) 12.16
graph_9 159.4 (1.02) 161 600 154 (0%) 154 (-3.39%) 14.45 148 (-1.99%) 151 (-5.27%) 14.37

Table 5.3: The results for 𝑘 = 50. DCCA-Same: mean difference between TOPKLS is
-0.34% (SD = 2.39%) with the mean difference between the end and the max score being
-1.84% (SD = 1.08%). DCCA-Mix: mean difference between TOPKLS is 0.33% (SD
= 3.95%) with the mean difference between the end and the max score being -1.27%
(SD = 1.76%).

TOPKLS cutoff of 60 seconds

The combination of the the results of all the three tested values of 𝑘 (tables 5.4, 5.5, and
5.6) with a cutoff of 60 seconds, show that the mean difference between TOPKLS and
DCCA-Same is −3.14% (SD = 3.35) and the mean difference between TOPKLS and
DCCA-Mix is −16% (SD = 4.42%).

TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 50.2 (0.4) 51 60 49 (-2.0%) 50 (-0.4%) 6.8 24 (-33.33%) 36 (-28.29%) 6.83
graph_1 47.6 (0.49) 48 60 41 (-8.89%) 45 (-5.46%) 6.85 18 (-41.94%) 31 (-34.87%) 6.78
graph_2 49.0 (0.63) 50 60 44 (0.0%) 44 (-10.2%) 6.2 23 (-36.11%) 36 (-26.53%) 6.25
graph_3 51.0 (0.0) 51 60 46 (-2.13%) 47 (-7.84%) 6.23 25 (-24.24%) 33 (-35.29%) 6.23
graph_4 49.2 (0.4) 50 60 42 (-12.5%) 48 (-2.44%) 6.56 22 (-31.25%) 32 (-34.96%) 6.46
graph_5 53.4 (0.49) 54 60 48 (-4.0%) 50 (-6.37%) 6.5 29 (-19.44%) 36 (-32.58%) 6.59
graph_6 46.8 (0.4) 47 60 45 (0.0%) 45 (-3.85%) 6.41 19 (-36.67%) 30 (-35.9%) 6.36
graph_7 46.0 (0.63) 47 60 42 (0.0%) 42 (-8.7%) 6.45 21 (-25.0%) 28 (-39.13%) 6.4
graph_8 46.2 (0.4) 47 60 47 (0.0%) 47 (1.73%) 6.21 23 (-28.12%) 32 (-30.74%) 6.03
graph_9 52.0 (0.63) 53 60 39 (-13.33%) 45 (-13.46%) 7.2 25 (-21.88%) 32 (-38.46%) 7.21

Table 5.4: The results for 𝑘 = 10. DCCA-Same: mean difference between TOPKLS is
-5.7% (SD = 4.62%) with the mean difference between the end and the max score being
-4.28% (SD = 5.31%). DCCA-Mix: mean difference between TOPKLS is -33.68% (SD
= 4.13%) with the mean difference between the end and the max score being -29.8%
(SD = 7.27%).
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TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 109.0 (0.0) 109 60 101 (-4.72%) 106 (-2.75%) 10.52 88 (-1.12%) 89 (-18.35%) 9.81
graph_1 107.2 (0.4) 108 60 96 (-3.03%) 99 (-7.65%) 10.39 62 (-24.39%) 82 (-23.51%) 9.91
graph_2 107.8 (0.4) 108 60 102 (-2.86%) 105 (-2.6%) 9.76 94 (0.0%) 94 (-12.8%) 9.05
graph_3 109.2 (0.98) 111 60 95 (-9.52%) 105 (-3.85%) 9.53 73 (-13.1%) 84 (-23.08%) 9.04
graph_4 108.4 (0.49) 109 60 98 (-3.92%) 102 (-5.9%) 10.01 85 (-1.16%) 86 (-20.66%) 9.37
graph_5 112.0 (0.0) 112 60 98 (-5.77%) 104 (-7.14%) 9.77 100 (0.0%) 100 (-10.71%) 9.42
graph_6 105.8 (0.75) 107 60 99 (-3.88%) 103 (-2.65%) 10.05 90 (0.0%) 90 (-14.93%) 9.26
graph_7 105.2 (0.4) 106 60 102 (0.0%) 102 (-3.04%) 9.89 91 (0.0%) 91 (-13.5%) 9.32
graph_8 104.4 (0.49) 105 60 99 (-3.88%) 103 (-1.34%) 9.39 91 (0.0%) 91 (-12.84%) 8.89
graph_9 110.6 (0.49) 111 60 95 (-4.04%) 99 (-10.49%) 11.29 100 (0.0%) 100 (-9.58%) 10.47

Table 5.5: The results for 𝑘 = 30. DCCA-Same: mean difference between TOPKLS is
-4.74% (SD = 2.92%) with the mean difference between the end and the max score being
-4.16% (SD = 2.41%). DCCA-Mix: mean difference between TOPKLS is -16.0% (SD
= 5.06%) with the mean difference between the end and the max score being -3.98%
(SD = 8.24%).

TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 155.0 (0.63) 156 60 158 (-2.47%) 162 (4.52%) 13.44 163 (-1.21%) 165 (6.45%) 13.62
graph_1 157.4 (1.2) 159 60 157 (-3.09%) 162 (2.92%) 13.51 148 (-1.99%) 151 (-4.07%) 13.67
graph_2 154.8 (1.83) 157 60 155 (-2.52%) 159 (2.71%) 12.84 157 (0.0%) 157 (1.42%) 12.6
graph_3 152.8 (1.6) 155 60 156 (-0.64%) 157 (2.75%) 12.51 153 (-5.56%) 162 (6.02%) 12.5
graph_4 155.2 (0.75) 156 60 150 (-1.96%) 153 (-1.42%) 12.86 159 (0.0%) 159 (2.45%) 13.03
graph_5 159.0 (1.9) 162 60 152 (-3.18%) 157 (-1.26%) 12.99 158 (0.0%) 158 (-0.63%) 12.93
graph_6 154.8 (0.98) 156 60 150 (-1.96%) 153 (-1.16%) 12.7 151 (-1.95%) 154 (-0.52%) 12.85
graph_7 153.2 (0.4) 154 60 153 (-0.65%) 154 (0.52%) 12.48 161 (0.0%) 161 (5.09%) 12.35
graph_8 150.2 (0.75) 151 60 152 (-1.94%) 155 (3.2%) 12.08 158 (0.0%) 158 (5.19%) 12.16
graph_9 158.2 (1.47) 161 60 154 (0.0%) 154 (-2.65%) 14.45 148 (-1.99%) 151 (-4.55%) 14.37

Table 5.6: The results for 𝑘 = 50. DCCA-Same: mean difference between TOPKLS is
1.01% (SD = 2.5%) with the mean difference between the end and the max score being
-1.84% (SD = 1.08%). DCCA-Mix: mean difference between TOPKLS is 1.69% (SD
= 4.06%) with the mean difference between the end and the max score being -1.27%
(SD = 1.76%).

Results T-Test

The results of the dependent T-test between the percentage difference of TOPKLS with
a cutoff time of 600 seconds and 60 seconds for both DCCA-Same and DCCA-Mix are
as follow:

• If 𝑘 = 10, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −5.70%, SD = 4.62%) and 600 seconds (M = −7.02%, SD =
4.44%) is significant, T(9)=7.7558, 𝑝 < 0.01. For DCCA-Mix, the difference
between a cutoff time of 60 seconds (M = −33.68%, SD = 4.13%) or 600 seconds
(M = −34.61%, SD = 3.90%) is significant, T(9)=7.6271, 𝑝 < 0.01.

• If 𝑘 = 30, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −4.74%, SD = 2.92%) and 600 seconds (M = −5.35%, SD =
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2.92%) is significant, T(9)=14.0085, 𝑝 < 0.01. For DCCA-Mix, the difference
between a cutoff time of 60 seconds (M = −16.00%, SD = 5.06%) or 600 seconds
(M = −16.54%, SD = 5.04%) is significant, T(9)=13.5332, 𝑝 < 0.01.

• If 𝑘 = 50, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = 1.01%, SD = 2.50%) and 600 seconds (M = −0.34%, SD = 2.39%)
is significant, T(9)=10.0826, 𝑝 < 0.01. For DCCA-Mix, the difference between a
cutoff time of 60 seconds (M = 1.69%, SD = 4.06%) or 600 seconds (M = 0.33%,
SD = 3.95%) is significant, T(9)=9.9785, 𝑝 < 0.01.

5.1.2 Dual Barabási–Albert model - Random Parameters
The results shown in tables 5.7, 5.8, and 5.9 show that TOPKLS outperforms DCCA
on every graph, for every value of 𝑘. When we compare these results to those of the
graphs generated with the input parameter (tables 5.1, 5.2 and 5.3), we see that both
DCCA-Same and DCCA-Mix score worse compared to the baseline. The runtime for
both is also higher for both. This likely indicates that DCCA struggles with graphs with
more cliques. Nevertheless, when we compare DCCA-Mix and DCCA-Same, we see
that DCCA-Same is better when 𝑘 = 10 and 𝑘 = 30 and DCCA-Mix is better when
𝑘 = 50. This behaviour happened also in the previous results in section 5.1.1.

TOPKLS cutoff of 600 seconds

When we combine the results of all the three tested values of 𝑘 (tables 5.7, 5.8, and 5.9),
we see that the mean difference between TOPKLS and DCCA-Same is −21.87% (SD =
12.55) and the mean difference between TOPKLS and DCCA-Mix is −20.59% (SD =
10.58%). The mean difference between the end and the max score for DCCA-Same is
−10.37% (SD = 8.36%) and for DCCA-Mix is −9.27% (SD = 5.64%).
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TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 68.6 (0.8) 70 600 32 (-42.86%) 56 (-18.37%) 24.02 41 (-22.64%) 53 (-22.74%) 24.53
graph_1 60.0 (0.0) 60 600 37 (-24.49%) 49 (-18.33%) 16.41 41 (-19.61%) 51 (-15.0%) 16.04
graph_2 70.0 (0.63) 71 600 33 (-40.0%) 55 (-21.43%) 29.57 48 (-12.73%) 55 (-21.43%) 29.29
graph_3 60.8 (0.75) 62 600 36 (-32.08%) 53 (-12.83%) 15.05 32 (-25.58%) 43 (-29.28%) 15.05
graph_4 85.2 (1.17) 87 600 48 (-5.88%) 51 (-40.14%) 144.21 53 (-17.19%) 64 (-24.88%) 143.41
graph_5 74.0 (0.0) 74 600 36 (-37.93%) 58 (-21.62%) 47.18 44 (-15.38%) 52 (-29.73%) 47.25
graph_6 59.6 (0.8) 61 600 37 (-17.78%) 45 (-24.5%) 24.76 46 (-8.0%) 50 (-16.11%) 24.8
graph_7 57.4 (0.49) 58 600 46 (-8.0%) 50 (-12.89%) 11.49 32 (-25.58%) 43 (-25.09%) 11.49
graph_8 68.8 (0.4) 69 600 33 (-35.29%) 51 (-25.87%) 33.55 44 (-15.38%) 52 (-24.42%) 33.85
graph_9 69.4 (0.49) 70 600 49 (-3.92%) 51 (-26.51%) 21.53 30 (-21.05%) 38 (-45.24%) 21.64

graph_10 65.4 (0.49) 66 600 40 (-23.08%) 52 (-20.49%) 17.53 49 (-15.52%) 58 (-11.31%) 17.39
graph_11 74.8 (1.17) 77 600 34 (-35.85%) 53 (-29.14%) 56.61 55 (-3.51%) 57 (-23.8%) 55.66
graph_12 57.0 (0.63) 58 600 43 (-2.27%) 44 (-22.81%) 13.68 43 (-8.51%) 47 (-17.54%) 13.78
graph_13 77.8 (0.4) 78 600 41 (-16.33%) 49 (-37.02%) 35.35 43 (-12.24%) 49 (-37.02%) 35.52
graph_14 54.6 (0.49) 55 600 46 (0.0%) 46 (-15.75%) 6.49 28 (-24.32%) 37 (-32.23%) 6.43

Table 5.7: The results for 𝑘 = 10. DCCA-Same: mean difference between TOPKLS
is -23.18% (SD = 7.85%) with the mean difference between the end and the max score
being -21.72% (SD = 15.11%). DCCA-Mix: mean difference between TOPKLS is
-25.05% (SD = 8.82%) with the mean difference between the end and the max score
being -16.48% (SD = 6.74%).

TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 130.2 (0.75) 131 600 91 (-1.09%) 92 (-29.34%) 36.27 109 (-4.39%) 114 (-12.44%) 36.27
graph_1 123.6 (0.49) 124 600 99 (-12.39%) 113 (-8.58%) 24.46 83 (-14.43%) 97 (-21.52%) 24.22
graph_2 133.2 (0.4) 134 600 90 (-2.17%) 92 (-30.93%) 43.86 115 (-0.86%) 116 (-12.91%) 43.66
graph_3 118.8 (0.75) 120 600 97 (0.0%) 97 (-18.35%) 22.37 111 (0.0%) 111 (-6.57%) 22.44
graph_4 149.6 (1.02) 151 600 75 (-9.64%) 83 (-44.52%) 213.13 102 (-0.97%) 103 (-31.15%) 209.97
graph_5 135.4 (0.8) 136 600 95 (-4.04%) 99 (-26.88%) 69.01 115 (-4.17%) 120 (-11.37%) 70.37
graph_6 125.8 (0.75) 127 600 89 (-8.25%) 97 (-22.89%) 37.31 99 (-9.17%) 109 (-13.35%) 36.94
graph_7 118.8 (0.4) 119 600 100 (-2.91%) 103 (-13.3%) 17.65 69 (-29.59%) 98 (-17.51%) 16.98
graph_8 129.2 (0.4) 130 600 94 (-5.05%) 99 (-23.37%) 50.99 98 (-10.09%) 109 (-15.63%) 50.08
graph_9 127.8 (0.4) 128 600 108 (-4.42%) 113 (-11.58%) 32.25 50 (-16.67%) 60 (-53.05%) 32.7

graph_10 126.6 (1.02) 128 600 98 (-3.92%) 102 (-19.43%) 25.41 106 (-7.02%) 114 (-9.95%) 25.3
graph_11 141.2 (0.98) 143 600 91 (-4.21%) 95 (-32.72%) 89.02 104 (-8.77%) 114 (-19.26%) 82.2
graph_12 117.6 (0.8) 119 600 97 (-6.73%) 104 (-11.56%) 20.66 102 (-1.92%) 104 (-11.56%) 20.47
graph_13 130.6 (0.49) 131 600 109 (0.0%) 109 (-16.54%) 53.98 52 (-11.86%) 59 (-54.82%) 53.99
graph_14 113.4 (0.49) 114 600 109 (0.0%) 109 (-3.88%) 9.69 53 (-14.52%) 62 (-45.33%) 9.81

Table 5.8: The results for 𝑘 = 30. DCCA-Same: mean difference between TOPKLS is
-20.93% (SD = 10.74%) with the mean difference between the end and the max score
being -4.32% (SD = 3.67%). DCCA-Mix: mean difference between TOPKLS is -
22.43% (SD = 16.01%) with the mean difference between the end and the max score
being -8.96% (SD = 7.85%).
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TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 184.8 (0.98) 186 600 151 (-1.31%) 153 (-17.21%) 49.7 143 (-3.38%) 148 (-19.91%) 47.61
graph_1 183.6 (0.49) 184 600 154 (-3.14%) 159 (-13.4%) 32.93 158 (-4.24%) 165 (-10.13%) 31.44
graph_2 187.2 (0.75) 188 600 154 (-3.14%) 159 (-15.06%) 60.71 143 (-7.74%) 155 (-17.2%) 57.22
graph_3 163.6 (1.02) 165 600 153 (0.0%) 153 (-6.48%) 31.09 153 (-1.29%) 155 (-5.26%) 29.35
graph_4 202.0 (0.0) 202 600 58 (-22.67%) 75 (-62.87%) 304.08 136 (-2.86%) 140 (-30.69%) 280.6
graph_5 188.6 (1.02) 190 600 162 (-1.22%) 164 (-13.04%) 96.15 157 (-0.63%) 158 (-16.22%) 92.27
graph_6 185.2 (0.75) 186 600 141 (-4.73%) 148 (-20.09%) 49.86 143 (-4.03%) 149 (-19.55%) 48.33
graph_7 178.4 (0.49) 179 600 149 (-5.7%) 158 (-11.43%) 24.01 154 (0.0%) 154 (-13.68%) 23.24
graph_8 183.0 (0.63) 184 600 160 (-0.62%) 161 (-12.02%) 69.12 151 (-0.66%) 152 (-16.94%) 65.48
graph_9 173.4 (0.49) 174 600 95 (0.0%) 95 (-45.21%) 46.11 159 (-0.62%) 160 (-7.73%) 43.17

graph_10 184.8 (0.4) 185 600 152 (-2.56%) 156 (-15.58%) 35.09 159 (0.0%) 159 (-13.96%) 33.84
graph_11 199.2 (0.4) 200 600 158 (-8.14%) 172 (-13.65%) 115.55 152 (-6.17%) 162 (-18.67%) 111.51
graph_12 175.4 (0.49) 176 600 152 (-1.3%) 154 (-12.2%) 27.93 155 (-1.9%) 158 (-9.92%) 26.94
graph_13 171.0 (0.63) 172 600 55 (-15.38%) 65 (-61.99%) 75.29 150 (-0.66%) 151 (-11.7%) 70.19
graph_14 162.6 (1.02) 164 600 149 (-6.29%) 159 (-2.21%) 13.14 156 (-1.27%) 158 (-2.83%) 12.73

Table 5.9: The results for 𝑘 = 50. DCCA-Same: mean difference between TOPKLS
is -21.5% (SD = 19.06%) with the mean difference between the end and the max score
being -5.08% (SD = 6.3%). DCCA-Mix: mean difference between TOPKLS is -14.29%
(SD = 6.9%) with the mean difference between the end and the max score being -2.36%
(SD = 2.34%).

TOPKLS cutoff of 60 seconds

When we combine the results of all the three tested values of 𝑘 (tables 5.10, 5.11, and
5.12) with a cutoff of 60 seconds, we see that the mean difference between TOPKLS
and DCCA-Same is −20.82% (SD = 12.73) and the mean difference between TOPKLS
and DCCA-Mix is −19.52% (SD = 10.9%).

TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 66.8 (0.75) 68 60 32 (-42.86%) 56 (-16.17%) 24.02 41 (-22.64%) 53 (-20.66%) 24.53
graph_1 59.0 (0.0) 59 60 37 (-24.49%) 49 (-16.95%) 16.41 41 (-19.61%) 51 (-13.56%) 16.04
graph_2 68.6 (0.8) 70 60 33 (-40.0%) 55 (-19.83%) 29.57 48 (-12.73%) 55 (-19.83%) 29.29
graph_3 60.0 (0.89) 61 60 36 (-32.08%) 53 (-11.67%) 15.05 32 (-25.58%) 43 (-28.33%) 15.05
graph_4 83.6 (0.8) 85 60 48 (-5.88%) 51 (-39.0%) 144.21 53 (-17.19%) 64 (-23.44%) 143.41
graph_5 72.4 (0.8) 73 60 36 (-37.93%) 58 (-19.89%) 47.18 44 (-15.38%) 52 (-28.18%) 47.25
graph_6 58.4 (1.74) 61 60 37 (-17.78%) 45 (-22.95%) 24.76 46 (-8.0%) 50 (-14.38%) 24.8
graph_7 56.2 (0.4) 57 60 46 (-8.0%) 50 (-11.03%) 11.49 32 (-25.58%) 43 (-23.49%) 11.49
graph_8 67.4 (1.02) 69 60 33 (-35.29%) 51 (-24.33%) 33.55 44 (-15.38%) 52 (-22.85%) 33.85
graph_9 68.6 (0.49) 69 60 49 (-3.92%) 51 (-25.66%) 21.53 30 (-21.05%) 38 (-44.61%) 21.64

graph_10 63.4 (0.49) 64 60 40 (-23.08%) 52 (-17.98%) 17.53 49 (-15.52%) 58 (-8.52%) 17.39
graph_11 73.0 (0.89) 74 60 34 (-35.85%) 53 (-27.4%) 56.61 55 (-3.51%) 57 (-21.92%) 55.66
graph_12 56.0 (1.1) 58 60 43 (-2.27%) 44 (-21.43%) 13.68 43 (-8.51%) 47 (-16.07%) 13.78
graph_13 77.4 (0.49) 78 60 41 (-16.33%) 49 (-36.69%) 35.35 43 (-12.24%) 49 (-36.69%) 35.52
graph_14 53.6 (0.8) 55 60 46 (0.0%) 46 (-14.18%) 6.49 28 (-24.32%) 37 (-30.97%) 6.43

Table 5.10: The results for 𝑘 = 10. DCCA-Same: mean difference between TOPKLS
is -21.68% (SD = 8.13%) with the mean difference between the end and the max score
being -21.72% (SD = 15.11%). DCCA-Mix: mean difference between TOPKLS is
-23.57% (SD = 9.28%) with the mean difference between the end and the max score
being -16.48% (SD = 6.74%).
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TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 127.8 (0.75) 129 60 91 (-1.09%) 92 (-28.01%) 36.27 109 (-4.39%) 114 (-10.8%) 36.27
graph_1 122.0 (0.0) 122 60 99 (-12.39%) 113 (-7.38%) 24.46 83 (-14.43%) 97 (-20.49%) 24.22
graph_2 132.0 (0.63) 133 60 90 (-2.17%) 92 (-30.3%) 43.86 115 (-0.86%) 116 (-12.12%) 43.66
graph_3 117.2 (0.4) 118 60 97 (0.0%) 97 (-17.24%) 22.37 111 (0.0%) 111 (-5.29%) 22.44
graph_4 147.8 (1.33) 150 60 75 (-9.64%) 83 (-43.84%) 213.13 102 (-0.97%) 103 (-30.31%) 209.97
graph_5 134.2 (0.75) 135 60 95 (-4.04%) 99 (-26.23%) 69.01 115 (-4.17%) 120 (-10.58%) 70.37
graph_6 124.4 (0.8) 125 60 89 (-8.25%) 97 (-22.03%) 37.31 99 (-9.17%) 109 (-12.38%) 36.94
graph_7 117.8 (0.4) 118 60 100 (-2.91%) 103 (-12.56%) 17.65 69 (-29.59%) 98 (-16.81%) 16.98
graph_8 127.6 (0.49) 128 60 94 (-5.05%) 99 (-22.41%) 50.99 98 (-10.09%) 109 (-14.58%) 50.08
graph_9 126.8 (0.75) 128 60 108 (-4.42%) 113 (-10.88%) 32.25 50 (-16.67%) 60 (-52.68%) 32.7

graph_10 124.4 (0.8) 125 60 98 (-3.92%) 102 (-18.01%) 25.41 106 (-7.02%) 114 (-8.36%) 25.3
graph_11 138.8 (1.17) 141 60 91 (-4.21%) 95 (-31.56%) 89.02 104 (-8.77%) 114 (-17.87%) 82.2
graph_12 116.6 (1.62) 119 60 97 (-6.73%) 104 (-10.81%) 20.66 102 (-1.92%) 104 (-10.81%) 20.47
graph_13 129.2 (0.75) 130 60 109 (0.0%) 109 (-15.63%) 53.98 52 (-11.86%) 59 (-54.33%) 53.99
graph_14 112.2 (0.4) 113 60 109 (0.0%) 109 (-2.85%) 9.69 53 (-14.52%) 62 (-44.74%) 9.81

Table 5.11: The results for 𝑘 = 30. DCCA-Same: mean difference between TOPKLS
is -19.98% (SD = 10.78%) with the mean difference between the end and the max score
being -4.32% (SD = 3.67%). DCCA-Mix: mean difference between TOPKLS is -
21.48% (SD = 16.27%) with the mean difference between the end and the max score
being -8.96% (SD = 7.85%).

TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 182.8 (0.75) 184 60 151 (-1.31%) 153 (-16.3%) 49.7 143 (-3.38%) 148 (-19.04%) 47.61
graph_1 181.2 (0.4) 182 60 154 (-3.14%) 159 (-12.25%) 32.93 158 (-4.24%) 165 (-8.94%) 31.44
graph_2 186.4 (1.02) 188 60 154 (-3.14%) 159 (-14.7%) 60.71 143 (-7.74%) 155 (-16.85%) 57.22
graph_3 161.6 (0.8) 163 60 153 (0.0%) 153 (-5.32%) 31.09 153 (-1.29%) 155 (-4.08%) 29.35
graph_4 201.0 (0.89) 202 60 58 (-22.67%) 75 (-62.69%) 304.08 136 (-2.86%) 140 (-30.35%) 280.6
graph_5 186.2 (0.4) 187 60 162 (-1.22%) 164 (-11.92%) 96.15 157 (-0.63%) 158 (-15.15%) 92.27
graph_6 184.4 (0.8) 185 60 141 (-4.73%) 148 (-19.74%) 49.86 143 (-4.03%) 149 (-19.2%) 48.33
graph_7 177.0 (0.63) 178 60 149 (-5.7%) 158 (-10.73%) 24.01 154 (0.0%) 154 (-12.99%) 23.24
graph_8 181.4 (1.02) 183 60 160 (-0.62%) 161 (-11.25%) 69.12 151 (-0.66%) 152 (-16.21%) 65.48
graph_9 171.2 (0.98) 172 60 95 (0.0%) 95 (-44.51%) 46.11 159 (-0.62%) 160 (-6.54%) 43.17

graph_10 183.6 (1.02) 185 60 152 (-2.56%) 156 (-15.03%) 35.09 159 (0.0%) 159 (-13.4%) 33.84
graph_11 198.0 (0.63) 199 60 158 (-8.14%) 172 (-13.13%) 115.55 152 (-6.17%) 162 (-18.18%) 111.51
graph_12 174.6 (0.49) 175 60 152 (-1.3%) 154 (-11.8%) 27.93 155 (-1.9%) 158 (-9.51%) 26.94
graph_13 169.4 (1.5) 172 60 55 (-15.38%) 65 (-61.63%) 75.29 150 (-0.66%) 151 (-10.86%) 70.19
graph_14 160.4 (2.06) 163 60 149 (-6.29%) 159 (-0.87%) 13.14 156 (-1.27%) 158 (-1.5%) 12.73

Table 5.12: The results for 𝑘 = 50. DCCA-Same: mean difference between TOPKLS
is -20.79% (SD = 19.27%) with the mean difference between the end and the max score
being -5.08% (SD = 6.3%). DCCA-Mix: mean difference between TOPKLS is -13.52%
(SD = 7.15%) with the mean difference between the end and the max score being -2.36%
(SD = 2.34%).

Results T-Test

The results of the dependent T-test between the percentage difference of TOPKLS with
a cutoff time of 600 seconds and 60 seconds for both DCCA-Same and DCCA-Mix are
as follow:

• If 𝑘 = 10, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −21.68%, SD = 8.13%) and 600 seconds (M = −23.18%, SD =
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7.85%) is significant, T(14)=11.1383, 𝑝 < 0.01. For DCCA-Mix, the difference
between a cutoff time of 60 seconds (M = −23.57%, SD = 9.28%) or 600 seconds
(M = −25.05%, SD = 8.82%) is significant, T(14)=9.9108, 𝑝 < 0.01.

• If 𝑘 = 30, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −19.98%, SD = 10.78%) and 600 seconds (M = −20.93%, SD =
10.74%) is significant, T(14)=14.1680, 𝑝 < 0.01. For DCCA-Mix, the differ-
ence between a cutoff time of 60 seconds (M = −21.48%, SD = 16.27%) or 600
seconds (M = −22.43%, SD = 16.01%) is significant, T(14)=9.6207, 𝑝 < 0.01.

• If 𝑘 = 50, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −20.79%, SD = 19.27%) and 600 seconds (M = −21.50%, SD =
19.06%) is significant, T(14)=7.6096, 𝑝 < 0.01. For DCCA-Mix, the difference
between a cutoff time of 60 seconds (M = −13.52%, SD = 7.15%) or 600 seconds
(M = −14.29%, SD = 6.90%) is significant, T(14)=8.5333, 𝑝 < 0.01.

5.1.3 Real-world Graphs
The results of the real-world graphs in tables 5.13, 5.14 and 5.15 show that TOPKLS is
the better option for all graphs. DCCA-Mix and DCCA-Same timeout on some graphs,
because it took longer than 900 seconds. We see a significant difference in the results
between those and the graphs they did not timeout1, indicating that if they had finished
on those graphs, that the results might have been better. If we only look at the graphs
they both finished and compare them to each other; we see that DCCA-Same is better
when 𝑘 = 10 and 𝑘 = 30, and DCCA-Mix is better when 𝑘 = 50, which also saw in the
previous two experiments (sections 5.1.1 and 5.1.2)

TOPKLS cutoff of 600 seconds

When we combine the results of all the three tested values of 𝑘 (tables 5.13, 5.14 and
5.15), we see that for all the graphs, the mean difference between TOPKLS and DCCA-
Same is −42.95% (SD = 26.4) and the mean difference between TOPKLS and DCCA-
Mix is −42.32% (SD = 27.84%). The mean difference between the end and the max
score for DCCA-Same is −18.1% (SD = 18.12%) and for DCCA-Mix is −16.83% (SD
= 15.94%).

For the graphs that DCCA finished, the mean difference between TOPKLS and
DCCA-Same is −31.69% (SD = 20.06) and the mean difference between TOPKLS and
DCCA-Mix is −30.11% (SD = 22.03%). The mean difference between the end and the
max score for DCCA-Same is −12.49% (SD = 14.29%) and for DCCA-Mix is −10.03%
(SD = 10.89%).

Lastly, for the graphs that DCCA timed out at, the mean difference between TOP-
KLS and DCCA-Same is −65.49% (SD = 23.11) and the mean difference between TOP-
KLS and DCCA-Mix is −66.73% (SD = 21.98%). The mean difference between the end
and the max score for DCCA-Same is −29.31% (SD = 20.13%) and for DCCA-Mix is
−30.42% (SD = 15.3%).

1The graphs at which the runtime is less then 900 seconds
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TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

ca-GrQc 246.0 (0.0) 246 600 191 (-7.73%) 207 (-15.85%) 3.39 191 (-8.17%) 208 (-15.45%) 3.38
ca-netscience 68.0 (0.0) 68 600 65 (0.0%) 65 (-4.41%) 0.15 62 (0.0%) 62 (-8.82%) 0.15
ia-email-univ 75.0 (0.0) 75 600 34 (-12.82%) 39 (-48.0%) 2.57 34 (-15.0%) 40 (-46.67%) 2.66

ia-infect-dublin 110.0 (0.0) 110 600 43 (-32.81%) 64 (-41.82%) 0.95 42 (-22.22%) 54 (-50.91%) 1.01
inf-power 46.0 (0.0) 46 600 44 (-2.22%) 45 (-2.17%) 4.63 28 (-28.21%) 39 (-15.22%) 4.59
rt-retweet 24.0 (0.0) 24 600 21 (0.0%) 21 (-12.5%) 0.07 19 (0.0%) 19 (-20.83%) 0.07

sc-shipsec1 232.8 (2.04) 236 600 204 (-7.27%) 220 (-5.5%) 900.0 98 (-41.67%) 168 (-27.84%) 900.0
soc-buzznet 152.6 (2.73) 158 600 27 (-40.0%) 45 (-70.51%) 900.0 28 (-37.78%) 45 (-70.51%) 900.0
socfb-CMU 314.6 (1.74) 317 600 43 (-47.56%) 82 (-73.94%) 900.0 55 (-24.66%) 73 (-76.8%) 900.0

tech-RL-caida 103.4 (1.02) 105 600 26 (-50.94%) 53 (-48.74%) 900.0 25 (-46.81%) 47 (-54.55%) 900.0
tech-WHOIS 280.6 (1.2) 282 600 64 (-7.25%) 69 (-75.41%) 900.0 51 (-25.0%) 68 (-75.77%) 900.0

tech-internet-as 59.2 (1.17) 61 600 31 (-32.61%) 46 (-22.3%) 88.58 36 (-12.2%) 41 (-30.74%) 88.52
tech-routers-rf 95.4 (0.49) 96 600 27 (-34.15%) 41 (-57.02%) 2.83 26 (-36.59%) 41 (-57.02%) 2.78

web-arabic-2005 738.0 (0.0) 738 600 500 (-0.4%) 502 (-31.98%) 372.54 439 (-5.79%) 466 (-36.86%) 372.48
web-spam 126.0 (0.0) 126 600 44 (-33.33%) 66 (-47.62%) 53.91 44 (-15.38%) 52 (-58.73%) 53.73

Table 5.13: The results for 𝑘 = 10. If the runtime for DCCA is stated in bold, it
means that DCCA terminated early on those graphs, because it exceeded the 900 sec-
onds timeout limit. DCCA-Same: mean difference between TOPKLS is -37.18% (SD
= 25.79%) for all graphs, -28.37% (SD = 19.65%) for the finished graphs and -54.82%
(SD = 29.6%) for the not finished graphs and with the mean difference between the end
and the max score being -20.61% (SD = 18.59%) for all graphs, -15.61% (SD = 15.67%)
for the finished graphs and -30.6% (SD = 21.68%) for the not finished graphs. DCCA-
Mix: mean difference between TOPKLS is -43.11% (SD = 22.73%) for all graphs,
-34.12% (SD = 18.59%) for the finished graphs and -61.09% (SD = 20.61%) for the
not finished graphs with the mean difference between the end and the max score being
-21.3% (SD = 14.93%) for all graphs, -14.36% (SD = 11.91%) for the finished graphs
and -35.18% (SD = 9.98%) for the not finished graphs.
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TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

ca-GrQc 422.4 (0.49) 423 600 380 (-0.52%) 382 (-9.56%) 5.19 380 (-3.31%) 393 (-6.96%) 5.3
ca-netscience 158.0 (0.0) 158 600 128 (-2.29%) 131 (-17.09%) 0.21 144 (0.0%) 144 (-8.86%) 0.2
ia-email-univ 173.2 (0.75) 174 600 82 (-1.2%) 83 (-52.08%) 4.05 89 (-2.2%) 91 (-47.46%) 4.06

ia-infect-dublin 215.2 (0.4) 216 600 113 (-0.88%) 114 (-47.03%) 1.46 97 (-9.35%) 107 (-50.28%) 1.51
inf-power 120.8 (0.75) 122 600 82 (-14.58%) 96 (-20.53%) 7.01 115 (0.0%) 115 (-4.8%) 6.97
rt-retweet 62.0 (0.0) 62 600 33 (-23.26%) 43 (-30.65%) 0.08 51 (-3.77%) 53 (-14.52%) 0.08

sc-shipsec1 627.8 (2.04) 630 600 337 (-21.99%) 432 (-31.19%) 900.0 479 (-3.43%) 496 (-20.99%) 900.0
soc-buzznet 333.6 (3.88) 338 600 39 (-27.78%) 54 (-83.81%) 900.0 37 (-27.45%) 51 (-84.71%) 900.0
socfb-CMU 685.4 (2.06) 687 600 85 (-39.29%) 140 (-79.57%) 900.0 73 (-38.66%) 119 (-82.64%) 900.0

tech-RL-caida 242.0 (2.28) 246 600 62 (-17.33%) 75 (-69.01%) 900.0 65 (-26.14%) 88 (-63.64%) 900.0
tech-WHOIS 486.6 (1.5) 489 600 29 (-69.79%) 96 (-80.27%) 900.0 33 (-65.62%) 96 (-80.27%) 900.0

tech-internet-as 123.4 (1.02) 125 600 88 (-10.2%) 98 (-20.58%) 134.7 88 (-17.76%) 107 (-13.29%) 132.23
tech-routers-rf 180.4 (0.49) 181 600 68 (-19.05%) 84 (-53.44%) 4.26 67 (-20.24%) 84 (-53.44%) 4.25

web-arabic-2005 1769.0 (0.0) 1769 600 1294 (-8.87%) 1420 (-19.73%) 497.4 1709 (-2.84%) 1759 (-0.57%) 500.35
web-spam 267.6 (1.5) 270 600 73 (-28.43%) 102 (-61.88%) 82.16 81 (-16.49%) 97 (-63.75%) 82.18

Table 5.14: The results for 𝑘 = 30. If the runtime for DCCA is stated in bold, it
means that DCCA terminated early on those graphs, because it exceeded the 900 sec-
onds timeout limit. DCCA-Same: mean difference between TOPKLS is -45.09% (SD
= 25.63%) for all graphs, -33.26% (SD = 18.58%) for the finished graphs and -68.77%
(SD = 21.72%) for the not finished graphs and with the mean difference between the
end and the max score being -19.03% (SD = 18.23%) for all graphs, -10.93% (SD =
10.11%) for the finished graphs and -35.24% (SD = 20.99%) for the not finished graphs.
DCCA-Mix: mean difference between TOPKLS is -39.74% (SD = 31.03%) for all
graphs, -26.39% (SD = 24.2%) for the finished graphs and -66.45% (SD = 26.74%) for
the not finished graphs with the mean difference between the end and the max score be-
ing -15.82% (SD = 18.16%) for all graphs, -7.6% (SD = 7.78%) for the finished graphs
and -32.26% (SD = 22.62%) for the not finished graphs.
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TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

ca-GrQc 546.6 (0.49) 547 600 507 (-3.24%) 524 (-4.13%) 6.83 500 (-3.29%) 517 (-5.42%) 7.03
ca-netscience 222.0 (0.0) 222 600 185 (0.0%) 185 (-16.67%) 0.25 207 (0.0%) 207 (-6.76%) 0.24
ia-email-univ 252.8 (0.75) 254 600 121 (0.0%) 121 (-52.14%) 5.3 129 (0.0%) 129 (-48.97%) 5.2

ia-infect-dublin 280.6 (0.49) 281 600 122 (-1.61%) 124 (-55.81%) 1.93 123 (-3.91%) 128 (-54.38%) 1.97
inf-power 180.8 (0.75) 182 600 146 (-1.35%) 148 (-18.14%) 9.25 146 (-8.75%) 160 (-11.5%) 9.31
rt-retweet 82.0 (0.0) 82 600 55 (-14.06%) 64 (-21.95%) 0.08 73 (-1.35%) 74 (-9.76%) 0.08

sc-shipsec1 997.8 (2.71) 1000 600 549 (-5.02%) 578 (-42.07%) 900.0 554 (-4.81%) 582 (-41.67%) 900.0
soc-buzznet 483.6 (3.83) 489 600 39 (-36.07%) 61 (-87.39%) 900.0 39 (-30.36%) 56 (-88.42%) 900.0
socfb-CMU 955.6 (4.13) 961 600 159 (-23.92%) 209 (-78.13%) 900.0 173 (-30.8%) 250 (-73.84%) 900.0

tech-RL-caida 362.4 (2.06) 366 600 93 (-3.12%) 96 (-73.51%) 900.0 81 (-15.62%) 96 (-73.51%) 900.0
tech-WHOIS 620.0 (3.58) 625 600 60 (-42.31%) 104 (-83.23%) 900.0 55 (-37.5%) 88 (-85.81%) 900.0

tech-internet-as 183.0 (1.1) 185 600 48 (-52.48%) 101 (-44.81%) 185.85 68 (-39.29%) 112 (-38.8%) 186.23
tech-routers-rf 246.8 (1.33) 249 600 89 (-28.8%) 125 (-49.35%) 5.62 91 (-22.88%) 118 (-52.19%) 5.81

web-arabic-2005 2789.0 (0.0) 2789 600 2488 (-3.49%) 2578 (-7.57%) 690.79 2550 (0.0%) 2550 (-8.57%) 697.03
web-spam 382.0 (2.1) 385 600 132 (-4.35%) 138 (-63.87%) 110.07 143 (-2.05%) 146 (-61.78%) 111.68

Table 5.15: The results for 𝑘 = 50. If the runtime for DCCA is stated in bold, it
means that DCCA terminated early on those graphs, because it exceeded the 900 sec-
onds timeout limit. DCCA-Same: mean difference between TOPKLS is -46.58% (SD
= 27.79%) for all graphs, -33.44% (SD = 21.95%) for the finished graphs and -72.86%
(SD = 17.99%) for the not finished graphs and with the mean difference between the
end and the max score being -14.65% (SD = 17.53%) for all graphs, -10.94% (SD =
17.1%) for the finished graphs and -22.09% (SD = 17.74%) for the not finished graphs.
DCCA-Mix: mean difference between TOPKLS is -44.09% (SD = 29.75%) for all
graphs, -29.81% (SD = 23.31%) for the finished graphs and -72.65% (SD = 18.6%) for
the not finished graphs with the mean difference between the end and the max score
being -13.37% (SD = 14.73%) for all graphs, -8.15% (SD = 12.96%) for the finished
graphs and -23.82% (SD = 13.3%) for the not finished graphs.

TOPKLS cutoff of 60 seconds

When we combine the results of all the three tested values of 𝑘 (tables 5.16, 5.17, and
5.18) for a cutoff of 60 seconds, we see that for all the graphs, the mean difference
between TOPKLS and DCCA-Same is −42.45% (SD = 26.4%) and the mean difference
between TOPKLS and DCCA-Mix is −41.81% (SD = 27.83%).

For the graphs that DCCA finished, the mean difference between TOPKLS and
DCCA-Same is −31.2% (SD = 19.99%) and the mean difference between TOPKLS
and DCCA-Mix is −29.62% (SD = 21.96%).

Lastly, for the graphs that DCCA timed out at, because it took longer then 900
seconds, the mean difference between TOPKLS and DCCA-Same is −64.94% (SD =
23.21%) and the mean difference between TOPKLS and DCCA-Mix is −66.21% (SD
= 22.1%).
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TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

ca-GrQc 246.0 (0.0) 246 60 191 (-7.73%) 207 (-15.85%) 3.39 191 (-8.17%) 208 (-15.45%) 3.38
ca-netscience 68.0 (0.0) 68 60 65 (0.0%) 65 (-4.41%) 0.15 62 (0.0%) 62 (-8.82%) 0.15
ia-email-univ 74.6 (0.49) 75 60 34 (-12.82%) 39 (-47.72%) 2.57 34 (-15.0%) 40 (-46.38%) 2.66

ia-infect-dublin 110.0 (0.0) 110 60 43 (-32.81%) 64 (-41.82%) 0.95 42 (-22.22%) 54 (-50.91%) 1.01
inf-power 46.0 (0.0) 46 60 44 (-2.22%) 45 (-2.17%) 4.63 28 (-28.21%) 39 (-15.22%) 4.59
rt-retweet 24.0 (0.0) 24 60 21 (0.0%) 21 (-12.5%) 0.07 19 (0.0%) 19 (-20.83%) 0.07

sc-shipsec1 230.6 (2.06) 234 60 204 (-7.27%) 220 (-4.6%) 900.0 98 (-41.67%) 168 (-27.15%) 900.0
soc-buzznet 147.6 (2.8) 151 60 27 (-40.0%) 45 (-69.51%) 900.0 28 (-37.78%) 45 (-69.51%) 900.0
socfb-CMU 310.2 (3.92) 314 60 43 (-47.56%) 82 (-73.57%) 900.0 55 (-24.66%) 73 (-76.47%) 900.0

tech-RL-caida 99.6 (1.85) 102 60 26 (-50.94%) 53 (-46.79%) 900.0 25 (-46.81%) 47 (-52.81%) 900.0
tech-WHOIS 276.8 (1.17) 278 60 64 (-7.25%) 69 (-75.07%) 900.0 51 (-25.0%) 68 (-75.43%) 900.0

tech-internet-as 56.6 (1.5) 58 60 31 (-32.61%) 46 (-18.73%) 88.58 36 (-12.2%) 41 (-27.56%) 88.52
tech-routers-rf 93.6 (0.8) 95 60 27 (-34.15%) 41 (-56.2%) 2.83 26 (-36.59%) 41 (-56.2%) 2.78

web-arabic-2005 737.8 (0.4) 738 60 500 (-0.4%) 502 (-31.96%) 372.54 439 (-5.79%) 466 (-36.84%) 372.48
web-spam 124.4 (0.49) 125 60 44 (-33.33%) 66 (-46.95%) 53.91 44 (-15.38%) 52 (-58.2%) 53.73

Table 5.16: The results for 𝑘 = 10. DCCA-Same: mean difference between TOPKLS
is -36.52% (SD = 25.74%) for all graphs, -27.83% (SD = 19.57%) for the finished graphs
and -53.91% (SD = 29.83%) for the not finished graphs and with the mean difference
between the end and the max score being -20.61% (SD = 18.59%) for all graphs, -
15.61% (SD = 15.67%) for the finished graphs and -30.6% (SD = 21.68%) for the not
finished graphs. DCCA-Mix: mean difference between TOPKLS is -42.52% (SD =
22.62%) for all graphs, -33.64% (SD = 18.47%) for the finished graphs and -60.27%
(SD = 20.8%) for the not finished graphs with the mean difference between the end and
the max score being -21.3% (SD = 14.93%) for all graphs, -14.36% (SD = 11.91%) for
the finished graphs and -35.18% (SD = 9.98%) for the not finished graphs.

TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

ca-GrQc 422.0 (0.0) 422 60 380 (-0.52%) 382 (-9.48%) 5.19 380 (-3.31%) 393 (-6.87%) 5.3
ca-netscience 158.0 (0.0) 158 60 128 (-2.29%) 131 (-17.09%) 0.21 144 (0.0%) 144 (-8.86%) 0.2
ia-email-univ 171.2 (0.98) 173 60 82 (-1.2%) 83 (-51.52%) 4.05 89 (-2.2%) 91 (-46.85%) 4.06

ia-infect-dublin 214.0 (0.63) 215 60 113 (-0.88%) 114 (-46.73%) 1.46 97 (-9.35%) 107 (-50.0%) 1.51
inf-power 119.4 (0.49) 120 60 82 (-14.58%) 96 (-19.6%) 7.01 115 (0.0%) 115 (-3.69%) 6.97
rt-retweet 62.0 (0.0) 62 60 33 (-23.26%) 43 (-30.65%) 0.08 51 (-3.77%) 53 (-14.52%) 0.08

sc-shipsec1 624.4 (3.2) 630 60 337 (-21.99%) 432 (-30.81%) 900.0 479 (-3.43%) 496 (-20.56%) 900.0
soc-buzznet 327.4 (5.99) 338 60 39 (-27.78%) 54 (-83.51%) 900.0 37 (-27.45%) 51 (-84.42%) 900.0
socfb-CMU 679.0 (4.15) 687 60 85 (-39.29%) 140 (-79.38%) 900.0 73 (-38.66%) 119 (-82.47%) 900.0

tech-RL-caida 233.8 (1.94) 236 60 62 (-17.33%) 75 (-67.92%) 900.0 65 (-26.14%) 88 (-62.36%) 900.0
tech-WHOIS 483.8 (2.04) 487 60 29 (-69.79%) 96 (-80.16%) 900.0 33 (-65.62%) 96 (-80.16%) 900.0

tech-internet-as 120.2 (2.48) 123 60 88 (-10.2%) 98 (-18.47%) 134.7 88 (-17.76%) 107 (-10.98%) 132.23
tech-routers-rf 178.4 (0.49) 179 60 68 (-19.05%) 84 (-52.91%) 4.26 67 (-20.24%) 84 (-52.91%) 4.25

web-arabic-2005 1768.6 (0.49) 1769 60 1294 (-8.87%) 1420 (-19.71%) 497.4 1709 (-2.84%) 1759 (-0.54%) 500.35
web-spam 263.8 (0.98) 265 60 73 (-28.43%) 102 (-61.33%) 82.16 81 (-16.49%) 97 (-63.23%) 82.18

Table 5.17: The results for 𝑘 = 30. DCCA-Same: mean difference between TOPKLS
is -44.62% (SD = 25.68%) for all graphs, -32.75% (SD = 18.59%) for the finished graphs
and -68.36% (SD = 21.79%) for the not finished graphs and with the mean difference
between the end and the max score being -19.03% (SD = 18.23%) for all graphs, -
10.93% (SD = 10.11%) for the finished graphs and -35.24% (SD = 20.99%) for the not
finished graphs. DCCA-Mix: mean difference between TOPKLS is -39.23% (SD =
31.11%) for all graphs, -25.84% (SD = 24.23%) for the finished graphs and -66.0% (SD
= 26.87%) for the not finished graphs with the mean difference between the end and the
max score being -15.82% (SD = 18.16%) for all graphs, -7.6% (SD = 7.78%) for the
finished graphs and -32.26% (SD = 22.62%) for the not finished graphs.
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TOPKLS DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

ca-GrQc 544.6 (1.36) 546 60 507 (-3.24%) 524 (-3.78%) 6.83 500 (-3.29%) 517 (-5.07%) 7.03
ca-netscience 221.2 (0.4) 222 60 185 (0.0%) 185 (-16.37%) 0.25 207 (0.0%) 207 (-6.42%) 0.24
ia-email-univ 250.8 (1.33) 253 60 121 (0.0%) 121 (-51.75%) 5.3 129 (0.0%) 129 (-48.56%) 5.2

ia-infect-dublin 279.2 (0.4) 280 60 122 (-1.61%) 124 (-55.59%) 1.93 123 (-3.91%) 128 (-54.15%) 1.97
inf-power 179.4 (0.49) 180 60 146 (-1.35%) 148 (-17.5%) 9.25 146 (-8.75%) 160 (-10.81%) 9.31
rt-retweet 82.0 (0.0) 82 60 55 (-14.06%) 64 (-21.95%) 0.08 73 (-1.35%) 74 (-9.76%) 0.08

sc-shipsec1 993.6 (3.2) 999 60 549 (-5.02%) 578 (-41.83%) 900.0 554 (-4.81%) 582 (-41.43%) 900.0
soc-buzznet 477.4 (6.59) 489 60 39 (-36.07%) 61 (-87.22%) 900.0 39 (-30.36%) 56 (-88.27%) 900.0
socfb-CMU 943.4 (7.5) 958 60 159 (-23.92%) 209 (-77.85%) 900.0 173 (-30.8%) 250 (-73.5%) 900.0

tech-RL-caida 353.8 (1.94) 356 60 93 (-3.12%) 96 (-72.87%) 900.0 81 (-15.62%) 96 (-72.87%) 900.0
tech-WHOIS 614.4 (3.01) 620 60 60 (-42.31%) 104 (-83.07%) 900.0 55 (-37.5%) 88 (-85.68%) 900.0

tech-internet-as 179.2 (1.94) 182 60 48 (-52.48%) 101 (-43.64%) 185.85 68 (-39.29%) 112 (-37.5%) 186.23
tech-routers-rf 243.0 (0.63) 244 60 89 (-28.8%) 125 (-48.56%) 5.62 91 (-22.88%) 118 (-51.44%) 5.81

web-arabic-2005 2788.6 (0.49) 2789 60 2488 (-3.49%) 2578 (-7.55%) 690.79 2550 (0.0%) 2550 (-8.56%) 697.03
web-spam 378.2 (1.6) 381 60 132 (-4.35%) 138 (-63.51%) 110.07 143 (-2.05%) 146 (-61.4%) 111.68

Table 5.18: The results for 𝑘 = 50. DCCA-Same: mean difference between TOPKLS
is -46.2% (SD = 27.77%) for all graphs, -33.02% (SD = 21.83%) for the finished graphs
and -72.57% (SD = 18.01%) for the not finished graphs and with the mean difference
between the end and the max score being -14.65% (SD = 17.53%) for all graphs, -
10.94% (SD = 17.1%) for the finished graphs and -22.09% (SD = 17.74%) for the not
finished graphs. DCCA-Mix: mean difference between TOPKLS is -43.69% (SD =
29.75%) for all graphs, -29.37% (SD = 23.19%) for the finished graphs and -72.35%
(SD = 18.63%) for the not finished graphs with the mean difference between the end
and the max score being -13.37% (SD = 14.73%) for all graphs, -8.15% (SD = 12.96%)
for the finished graphs and -23.82% (SD = 13.3%) for the not finished graphs.

Results T-Test

The results of the dependent T-test between the percentage difference of TOPKLS with
a cutoff time of 600 seconds and 60 seconds for both DCCA-Same and DCCA-Mix are
as follow:

• If 𝑘 = 10, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −36.52%, SD = 25.74%) and 600 seconds (M = −37.18%, SD =
25.79%) is insignificant, T(14)=2.6338, p=0.0196. For DCCA-Mix, the differ-
ence between a cutoff time of 60 seconds (M =−42.52, SD = 22.62%) or 600 sec-
onds (M = −43.11%, SD = 22.73%) is insignificant, T(14)=2.6539, p=0.0189.

• If 𝑘 = 30, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −44.62%, SD = 25.68%) and 600 seconds (M = −45.09%, SD
= 25.63%) is significant, T(14)=3.3031, 𝑝 < 0.01. For DCCA-Mix, the differ-
ence between a cutoff time of 60 seconds (M = −39.23%, SD = 31.11%) or 600
seconds (M = −39.74%, SD = 31.03%) is significant, T(14)=3.1850, 𝑝 < 0.01.

• If 𝑘 = 50, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −46.20%, SD = 27.77%) and 600 seconds (M = −46.58%, SD
= 27.79%) is significant, T(14)=4.7262, 𝑝 < 0.01. For DCCA-Mix, the differ-
ence between a cutoff time of 60 seconds (M = −43.69%, SD = 29.75%) or 600
seconds (M = −44.09%, SD = 29.75%) is significant, T(14)=4.5827, 𝑝 < 0.01.
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5.2 Diversified Top-𝑘 Weighted Clique Search
The results of the experiments of the diversified top-𝑘 weighted clique search problem
(DTKWC) show that the baseline, TOPKWCLQ, is significantly better for both cutoff
times. We show this by stating the average percentage between the max score of DCCA
and the mean results of TOPKWCLQ. For a cutoff of 600 seconds, this average differ-
ence is for DCCA-Same -35.5% (SD=13.53%) and DCCA-Mix -37.49% (SD=12.39%).
This difference becomes smaller when the cutoff time is 60 seconds; however, it is still
-34.83% (SD=13.57%) for DCCA-Same and -36.84% (SD=12.48%) for DCCA-Mix.

The difference between TOPKWCLQ and DCCA-Same and DCCA-Mix is larger
than it was between TOPKLS and DCCA for the diversified top-𝑘 clique search problem
(DTKC) (section 5.1). This difference indicates that there is a reason why DCCA could
find better results for DTKC than it could for DTKWC. Our discussion of the results
will explain why this happened in section 6.1.

5.2.1 Dual Barabási–Albert model - Same Parameters
The results for DTKWC in tables 5.19, 5.20, and 5.21 show that TOPKWCLQ, with a
cutoff time 600 seconds is significantly better than DCCA, especially compared to the
same graphs for the diversified top-𝑘 clique search problem in section 5.1.1. Lowering
the cutoff time of TOPKWCLQ does not change this (tables 5.22, 5.23, and 5.24). Nev-
ertheless, when we compare DCCA-Mix and DCCA-Same, we see similar behaviour
that DCCA-Same is better at 𝑘 = 10 and 𝑘 = 30, and DCCA-Mix when 𝑘 = 50.

TOPKWCLQ cutoff of 600 seconds

When we combine the results of all the three tested values of 𝑘 (tables 5.19, 5.20,
and 5.21), we see that the mean difference between TOPKWCLQ and DCCA-Same is
−24.24% (SD = 3.01) and the mean difference between TOPKWCLQ and DCCA-Mix
is −29.5% (SD = 4.49%). The mean difference between the end and the max score for
DCCA-Same is −5.66% (SD = 5.45%) and for DCCA-Mix is −10.68% (SD = 4.66%).

TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 346.6 (3.2) 350 600 264 (-4.69%) 277 (-20.08%) 7.04 153 (-31.39%) 223 (-35.66%) 6.79
graph_1 331.6 (1.96) 334 600 213 (-19.62%) 265 (-20.08%) 6.99 137 (-34.13%) 208 (-37.27%) 6.81
graph_2 344.6 (2.15) 348 600 262 (0.0%) 262 (-23.97%) 6.41 132 (-33.67%) 199 (-42.25%) 6.28
graph_3 339.0 (3.16) 345 600 246 (-5.38%) 260 (-23.3%) 6.43 154 (-13.97%) 179 (-47.2%) 6.26
graph_4 333.6 (1.96) 337 600 226 (0.0%) 226 (-32.25%) 6.78 120 (-21.05%) 152 (-54.44%) 6.5
graph_5 368.8 (3.31) 373 600 279 (-3.12%) 288 (-21.91%) 6.72 166 (-31.69%) 243 (-34.11%) 6.54
graph_6 327.4 (1.74) 329 600 201 (-12.99%) 231 (-29.44%) 6.54 119 (-35.68%) 185 (-43.49%) 6.37
graph_7 350.6 (1.85) 353 600 253 (-4.53%) 265 (-24.42%) 6.64 155 (-27.91%) 215 (-38.68%) 6.29
graph_8 343.8 (1.6) 346 600 251 (0.0%) 251 (-26.99%) 6.33 174 (-16.35%) 208 (-39.5%) 6.05
graph_9 388.8 (1.6) 391 600 231 (-27.13%) 317 (-18.47%) 7.43 202 (-17.55%) 245 (-36.99%) 7.27

Table 5.19: The results for 𝑘 = 10. DCCA-Same: mean difference between TOPKW-
CLQ is -24.09% (SD = 4.38%) with the mean difference between the end and the max
score being -7.75% (SD = 9.25%). DCCA-Mix: mean difference between TOPKW-
CLQ is -40.96% (SD = 6.15%) with the mean difference between the end and the max
score being -26.34% (SD = 8.28%).
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TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 759.6 (4.76) 764 600 567 (0.0%) 567 (-25.36%) 10.6 564 (-0.53%) 567 (-25.36%) 10.92
graph_1 763.2 (2.99) 768 600 525 (-7.41%) 567 (-25.71%) 10.61 526 (-1.87%) 536 (-29.77%) 10.74
graph_2 756.4 (4.5) 761 600 511 (-12.8%) 586 (-22.53%) 9.81 544 (-1.27%) 551 (-27.15%) 10.01
graph_3 737.4 (1.85) 739 600 497 (-15.33%) 587 (-20.4%) 9.63 498 (-9.62%) 551 (-25.28%) 9.64
graph_4 743.2 (2.48) 746 600 516 (-4.27%) 539 (-27.48%) 10.17 524 (-4.73%) 550 (-26.0%) 10.48
graph_5 772.8 (3.12) 777 600 584 (-2.83%) 601 (-22.23%) 10.18 625 (-6.58%) 669 (-13.43%) 10.42
graph_6 738.6 (3.61) 745 600 516 (-4.27%) 539 (-27.02%) 10.01 539 (0.0%) 539 (-27.02%) 10.28
graph_7 776.6 (2.15) 780 600 541 (-10.13%) 602 (-22.48%) 9.92 588 (-4.23%) 614 (-20.94%) 10.03
graph_8 750.6 (4.59) 757 600 566 (-6.45%) 605 (-19.4%) 9.48 566 (-3.25%) 585 (-22.06%) 9.68
graph_9 794.4 (6.22) 803 600 548 (-6.0%) 583 (-26.61%) 11.25 549 (-4.52%) 575 (-27.62%) 11.29

Table 5.20: The results for 𝑘 = 30. DCCA-Same: mean difference between TOPKW-
CLQ is -23.92% (SD = 2.88%) with the mean difference between the end and the max
score being -6.95% (SD = 4.66%). DCCA-Mix: mean difference between TOPKW-
CLQ is -24.46% (SD = 4.66%) with the mean difference between the end and the max
score being -3.66% (SD = 2.95%).

TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 1131.6 (6.56) 1143 600 861 (0.0%) 861 (-23.91%) 14.08 879 (-0.45%) 883 (-21.97%) 14.64
graph_1 1147.2 (3.66) 1153 600 804 (-7.05%) 865 (-24.6%) 14.33 850 (0.0%) 850 (-25.91%) 14.33
graph_2 1130.6 (3.72) 1134 600 822 (-4.97%) 865 (-23.49%) 13.05 807 (-4.95%) 849 (-24.91%) 12.97
graph_3 1106.0 (2.37) 1109 600 801 (-1.35%) 812 (-26.58%) 12.9 827 (-7.7%) 896 (-18.99%) 14.05
graph_4 1115.6 (1.74) 1118 600 843 (-0.82%) 850 (-23.81%) 13.55 823 (0.0%) 823 (-26.23%) 13.8
graph_5 1144.2 (2.48) 1147 600 836 (-0.36%) 839 (-26.67%) 13.87 878 (0.0%) 878 (-23.27%) 13.27
graph_6 1112.6 (5.12) 1120 600 838 (-0.24%) 840 (-24.5%) 13.23 839 (-1.06%) 848 (-23.78%) 14.11
graph_7 1156.0 (3.52) 1162 600 892 (-1.55%) 906 (-21.63%) 12.91 922 (-1.39%) 935 (-19.12%) 13.27
graph_8 1123.6 (4.08) 1131 600 835 (-1.65%) 849 (-24.44%) 12.77 883 (0.0%) 883 (-21.41%) 12.53
graph_9 1166.6 (6.28) 1175 600 805 (-4.73%) 845 (-27.57%) 15.1 830 (-4.82%) 872 (-25.25%) 15.66

Table 5.21: The results for 𝑘 = 50. DCCA-Same: mean difference between TOPKW-
CLQ is -24.72% (SD = 1.77%) with the mean difference between the end and the max
score being -2.27% (SD = 2.43%). DCCA-Mix: mean difference between TOPKW-
CLQ is -23.08% (SD = 2.64%) with the mean difference between the end and the max
score being -2.04% (SD = 2.76%).

TOPKWCLQ cutoff of 60 seconds

When we combine the results of all the three tested values of 𝑘 (tables 5.22, 5.23, and
5.24) with a cutoff of 60 seconds, we see that the mean difference between TOPKWCLQ
and DCCA-Same is −23.42% (SD = 3.09) and the mean difference between TOPKW-
CLQ and DCCA-Mix is −28.76% (SD = 4.58%).
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TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 340.2 (1.94) 342 60 264 (-4.69%) 277 (-18.58%) 7.04 153 (-31.39%) 223 (-34.45%) 6.79
graph_1 326.8 (2.14) 330 60 213 (-19.62%) 265 (-18.91%) 6.99 137 (-34.13%) 208 (-36.35%) 6.81
graph_2 339.2 (1.94) 342 60 262 (0.0%) 262 (-22.76%) 6.41 132 (-33.67%) 199 (-41.33%) 6.28
graph_3 333.0 (4.73) 338 60 246 (-5.38%) 260 (-21.92%) 6.43 154 (-13.97%) 179 (-46.25%) 6.26
graph_4 331.6 (2.8) 337 60 226 (0.0%) 226 (-31.85%) 6.78 120 (-21.05%) 152 (-54.16%) 6.5
graph_5 364.0 (0.63) 365 60 279 (-3.12%) 288 (-20.88%) 6.72 166 (-31.69%) 243 (-33.24%) 6.54
graph_6 324.2 (2.04) 328 60 201 (-12.99%) 231 (-28.75%) 6.54 119 (-35.68%) 185 (-42.94%) 6.37
graph_7 347.4 (1.5) 349 60 253 (-4.53%) 265 (-23.72%) 6.64 155 (-27.91%) 215 (-38.11%) 6.29
graph_8 334.4 (1.2) 336 60 251 (0.0%) 251 (-24.94%) 6.33 174 (-16.35%) 208 (-37.8%) 6.05
graph_9 381.8 (1.94) 385 60 231 (-27.13%) 317 (-16.97%) 7.43 202 (-17.55%) 245 (-35.83%) 7.27

Table 5.22: The results for 𝑘 = 10. DCCA-Same: mean difference between TOPKQ-
CLQ is -22.93% (SD = 4.64%) with the mean difference between the end and the max
score being -7.75% (SD = 9.25%). DCCA-Mix: mean difference between TOPKQ-
CLQ is -40.05% (SD = 6.37%) with the mean difference between the end and the max
score being -26.34% (SD = 8.28%).

TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 749.4 (7.09) 763 60 567 (0.0%) 567 (-24.34%) 10.6 564 (-0.53%) 567 (-24.34%) 10.92
graph_1 755.0 (3.74) 759 60 525 (-7.41%) 567 (-24.9%) 10.61 526 (-1.87%) 536 (-29.01%) 10.74
graph_2 750.0 (6.48) 759 60 511 (-12.8%) 586 (-21.87%) 9.81 544 (-1.27%) 551 (-26.53%) 10.01
graph_3 730.4 (1.62) 733 60 497 (-15.33%) 587 (-19.63%) 9.63 498 (-9.62%) 551 (-24.56%) 9.64
graph_4 740.6 (2.87) 745 60 516 (-4.27%) 539 (-27.22%) 10.17 524 (-4.73%) 550 (-25.74%) 10.48
graph_5 765.2 (6.37) 776 60 584 (-2.83%) 601 (-21.46%) 10.18 625 (-6.58%) 669 (-12.57%) 10.42
graph_6 731.2 (1.17) 733 60 516 (-4.27%) 539 (-26.29%) 10.01 539 (0.0%) 539 (-26.29%) 10.28
graph_7 770.0 (3.85) 775 60 541 (-10.13%) 602 (-21.82%) 9.92 588 (-4.23%) 614 (-20.26%) 10.03
graph_8 745.2 (6.05) 757 60 566 (-6.45%) 605 (-18.81%) 9.48 566 (-3.25%) 585 (-21.5%) 9.68
graph_9 781.8 (4.4) 790 60 548 (-6.0%) 583 (-25.43%) 11.25 549 (-4.52%) 575 (-26.45%) 11.29

Table 5.23: The results for 𝑘 = 30. DCCA-Same: mean difference between TOPKQ-
CLQ is -23.18% (SD = 2.86%) with the mean difference between the end and the max
score being -6.95% (SD = 4.66%). DCCA-Mix: mean difference between TOPKQ-
CLQ is -23.72% (SD = 4.67%) with the mean difference between the end and the max
score being -3.66% (SD = 2.95%).
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TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 1123.0 (6.36) 1135 60 861 (0.0%) 861 (-23.33%) 14.08 879 (-0.45%) 883 (-21.37%) 14.64
graph_1 1137.6 (5.78) 1143 60 804 (-7.05%) 865 (-23.96%) 14.33 850 (0.0%) 850 (-25.28%) 14.33
graph_2 1122.8 (6.05) 1133 60 822 (-4.97%) 865 (-22.96%) 13.05 807 (-4.95%) 849 (-24.39%) 12.97
graph_3 1099.0 (5.55) 1109 60 801 (-1.35%) 812 (-26.11%) 12.9 827 (-7.7%) 896 (-18.47%) 14.05
graph_4 1113.2 (1.94) 1115 60 843 (-0.82%) 850 (-23.64%) 13.55 823 (0.0%) 823 (-26.07%) 13.8
graph_5 1137.2 (4.26) 1144 60 836 (-0.36%) 839 (-26.22%) 13.87 878 (0.0%) 878 (-22.79%) 13.27
graph_6 1102.6 (4.63) 1109 60 838 (-0.24%) 840 (-23.82%) 13.23 839 (-1.06%) 848 (-23.09%) 14.11
graph_7 1144.8 (4.45) 1152 60 892 (-1.55%) 906 (-20.86%) 12.91 922 (-1.39%) 935 (-18.33%) 13.27
graph_8 1118.0 (6.87) 1131 60 835 (-1.65%) 849 (-24.06%) 12.77 883 (0.0%) 883 (-21.02%) 12.53
graph_9 1153.0 (3.74) 1157 60 805 (-4.73%) 845 (-26.71%) 15.1 830 (-4.82%) 872 (-24.37%) 15.66

Table 5.24: The results for 𝑘 = 50. DCCA-Same: mean difference between TOPKQ-
CLQ is -24.17% (SD = 1.77%) with the mean difference between the end and the max
score being -2.27% (SD = 2.43%). DCCA-Mix: mean difference between TOPKQ-
CLQ is -22.52% (SD = 2.69%) with the mean difference between the end and the max
score being -2.04% (SD = 2.76%).

Results T-Test

The results of the dependent T-test between the percentage difference of TOPKWCLQ
with a cutoff time of 600 seconds and 60 seconds for both DCCA-Same and DCCA-Mix
are as follow:

• If 𝑘 = 10, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −22.93%, SD = 4.64%) and 600 seconds (M = −24.09%, SD =
4.38%) is significant, T(9)=7.6443, 𝑝 < 0.01. For DCCA-Mix, the difference
between a cutoff time of 60 seconds (M = −40.05%, SD = 6.37%) or 600 seconds
(M = −40.96%, SD = 6.15%) is significant, T(9)=7.2496, 𝑝 < 0.01.

• If 𝑘 = 30, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −23.18%, SD = 2.86%) and 600 seconds (M = −23.92%, SD =
2.88%) is significant, T(9)=9.5226, 𝑝 < 0.01. For DCCA-Mix, the difference
between a cutoff time of 60 seconds (M = −23.72%, SD = 4.67%) or 600 seconds
(M = −24.46%, SD = 4.66%) is significant, T(9)=9.4219, 𝑝 < 0.01.

• If 𝑘 = 50, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −24.17%, SD = 1.77%) and 600 seconds (M = −24.72%, SD =
1.77%) is significant, T(9)=8.7088, 𝑝 < 0.01. For DCCA-Mix, the difference
between a cutoff time of 60 seconds (M = −22.52%, SD = 2.69%) or 600 seconds
(M = −23.08%, SD = 2.64%) is significant, T(9)=8.7045, 𝑝 < 0.01.

5.2.2 Dual Barabási–Albert model - Random Parameters
The results for DTKWC in tables 5.25, 5.26, and 5.27 show that TOPKWCLQ, with a
cutoff time of 600 seconds, is significantly better than DCCA, with a more significant
difference than the results in section 5.2.1. The difference between the two graph sets
we also saw in section 5.1, indicating that similar reasons that explain the difference
between the two graph sets, in both problems. Again, lowering the cutoff time to 60
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seconds does not impact the results (tables 5.28, 5.29, and 5.30). Interesting to note,
is that again DCCA-Same is better at 𝑘 = 10 and 𝑘 = 30 and DCCA-Mix is better at
𝑘 = 50, when the two compared to each other. This repeated behaviour indicates that
this is no coincidence and that there is a reason why this must occur at every graph set,
so far. We will explain this behaviour for this in section 6.1.

TOPKWCLQ cutoff of 600 seconds

When we combine the results of all the three tested values of 𝑘 (tables 5.25, 5.26,
and 5.27), we see that the mean difference between TOPKWCLQ and DCCA-Same is
−34.9% (SD = 11.37) and the mean difference between TOPKWCLQ and DCCA-Mix
is −34.64% (SD = 7.65%). The mean difference between the end and the max score
for DCCA-Same is −12.19% (SD = 10.63%) and for DCCA-Mix is −15.56% (SD =
7.38%).

TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 437.0 (4.69) 444 600 286 (-15.13%) 337 (-22.88%) 26.4 179 (-36.97%) 284 (-35.01%) 25.31
graph_1 390.8 (3.54) 394 600 206 (-20.77%) 260 (-33.47%) 16.85 184 (-21.03%) 233 (-40.38%) 16.74
graph_2 412.0 (2.76) 417 600 282 (-8.14%) 307 (-25.49%) 30.48 169 (-34.5%) 258 (-37.38%) 30.58
graph_3 374.6 (2.65) 378 600 252 (-8.36%) 275 (-26.59%) 15.89 181 (-27.31%) 249 (-33.53%) 15.75
graph_4 498.2 (1.17) 500 600 241 (-25.39%) 323 (-35.17%) 149.6 158 (-32.48%) 234 (-53.03%) 146.36
graph_5 483.6 (4.59) 490 600 313 (-14.71%) 367 (-24.11%) 48.77 209 (-35.09%) 322 (-33.42%) 48.59
graph_6 395.0 (2.97) 398 600 218 (-24.04%) 287 (-27.34%) 25.78 138 (-45.67%) 254 (-35.7%) 25.74
graph_7 364.8 (2.14) 369 600 277 (-6.1%) 295 (-19.13%) 11.94 163 (-40.07%) 272 (-25.44%) 12.03
graph_8 413.8 (2.93) 418 600 260 (-8.45%) 284 (-31.37%) 35.47 176 (-35.53%) 273 (-34.03%) 35.46
graph_9 415.4 (2.42) 418 600 257 (0.0%) 257 (-38.13%) 22.56 209 (-18.99%) 258 (-37.89%) 22.66

graph_10 414.4 (5.2) 420 600 259 (-5.47%) 274 (-33.88%) 18.26 227 (-12.02%) 258 (-37.74%) 18.43
graph_11 434.2 (3.82) 440 600 215 (-24.83%) 286 (-34.13%) 58.39 134 (-40.71%) 226 (-47.95%) 58.14
graph_12 372.8 (5.49) 382 600 204 (-15.0%) 240 (-35.62%) 14.42 216 (-17.24%) 261 (-29.99%) 14.48
graph_13 481.2 (2.32) 484 600 210 (-40.0%) 350 (-27.27%) 37.4 387 (-3.73%) 402 (-16.46%) 37.76
graph_14 353.6 (2.42) 358 600 236 (-2.88%) 243 (-31.28%) 6.72 137 (-35.98%) 214 (-39.48%) 6.74

Table 5.25: The results for 𝑘 = 10. DCCA-Same: mean difference between TOPKW-
CLQ is -29.72% (SD = 5.48%) with the mean difference between the end and the max
score being -14.62% (SD = 10.75%). DCCA-Mix: mean difference between TOPKW-
CLQ is -35.83% (SD = 8.53%) with the mean difference between the end and the max
score being -29.15% (SD = 11.96%).
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TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 875.2 (4.62) 881 600 492 (-6.29%) 525 (-40.01%) 38.21 479 (-20.3%) 601 (-31.33%) 39.32
graph_1 862.4 (6.15) 874 600 528 (-7.85%) 573 (-33.56%) 25.56 533 (-6.65%) 571 (-33.79%) 25.86
graph_2 835.8 (1.94) 838 600 502 (-7.04%) 540 (-35.39%) 48.17 495 (-11.92%) 562 (-32.76%) 46.42
graph_3 782.2 (3.82) 786 600 521 (-5.96%) 554 (-29.17%) 23.71 507 (-16.06%) 604 (-22.78%) 24.02
graph_4 936.8 (1.72) 939 600 326 (-23.29%) 425 (-54.63%) 228.42 453 (-18.23%) 554 (-40.86%) 226.67
graph_5 919.6 (3.98) 923 600 528 (-5.55%) 559 (-39.21%) 75.07 506 (-16.91%) 609 (-33.78%) 74.69
graph_6 886.8 (4.26) 894 600 449 (-17.77%) 546 (-38.43%) 39.52 448 (-18.25%) 548 (-38.2%) 39.15
graph_7 810.8 (2.48) 814 600 472 (-20.27%) 592 (-26.99%) 18.28 481 (-17.92%) 586 (-27.73%) 18.25
graph_8 831.8 (5.98) 842 600 511 (-12.95%) 587 (-29.43%) 53.04 503 (-9.37%) 555 (-33.28%) 53.97
graph_9 821.6 (2.33) 824 600 629 (-3.97%) 655 (-20.28%) 34.21 326 (-2.98%) 336 (-59.1%) 34.68

graph_10 870.8 (3.71) 876 600 534 (-10.4%) 596 (-31.56%) 27.81 525 (-11.32%) 592 (-32.02%) 27.78
graph_11 898.8 (6.24) 910 600 501 (-7.39%) 541 (-39.81%) 88.7 472 (-12.1%) 537 (-40.25%) 90.3
graph_12 810.8 (2.23) 813 600 481 (-17.21%) 581 (-28.34%) 21.77 528 (-7.53%) 571 (-29.58%) 21.97
graph_13 870.4 (4.22) 875 600 290 (-10.22%) 323 (-62.89%) 57.13 521 (0.0%) 521 (-40.14%) 57.03
graph_14 776.4 (5.75) 787 600 566 (-5.03%) 596 (-23.24%) 10.24 294 (-14.29%) 343 (-55.82%) 10.25

Table 5.26: The results for 𝑘 = 30. DCCA-Same: mean difference between TOPKW-
CLQ is -35.53% (SD = 11.27%) with the mean difference between the end and the max
score being -10.75% (SD = 6.13%). DCCA-Mix: mean difference between TOPKW-
CLQ is -36.76% (SD = 9.75%) with the mean difference between the end and the max
score being -12.26% (SD = 6.02%).

TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 1263.0 (6.72) 1274 600 850 (-0.82%) 857 (-32.15%) 51.16 798 (-4.32%) 834 (-33.97%) 52.32
graph_1 1269.6 (10.13) 1289 600 874 (-2.35%) 895 (-29.51%) 34.48 863 (-7.7%) 935 (-26.35%) 35.65
graph_2 1222.0 (4.98) 1229 600 733 (-8.26%) 799 (-34.62%) 61.54 724 (-14.32%) 845 (-30.85%) 61.82
graph_3 1161.2 (2.64) 1164 600 798 (-6.01%) 849 (-26.89%) 31.7 837 (-2.9%) 862 (-25.77%) 32.74
graph_4 1323.4 (4.41) 1330 600 196 (-49.87%) 391 (-70.45%) 303.5 761 (-12.33%) 868 (-34.41%) 302.58
graph_5 1300.0 (4.94) 1306 600 814 (-0.49%) 818 (-37.08%) 100.41 849 (-5.03%) 894 (-31.23%) 100.3
graph_6 1314.2 (3.71) 1318 600 811 (-5.7%) 860 (-34.56%) 52.54 786 (-6.54%) 841 (-36.01%) 52.56
graph_7 1204.2 (3.76) 1209 600 778 (-9.43%) 859 (-28.67%) 24.35 817 (-1.92%) 833 (-30.83%) 24.9
graph_8 1213.6 (3.83) 1219 600 601 (-5.5%) 636 (-47.59%) 71.39 791 (-5.83%) 840 (-30.78%) 73.84
graph_9 1190.6 (1.96) 1193 600 900 (0.0%) 900 (-24.41%) 45.65 662 (-1.63%) 673 (-43.47%) 47.53

graph_10 1268.0 (3.95) 1274 600 814 (-3.78%) 846 (-33.28%) 37.19 834 (-7.33%) 900 (-29.02%) 35.55
graph_11 1294.0 (8.41) 1308 600 229 (-37.6%) 367 (-71.64%) 118.66 802 (-6.85%) 861 (-33.46%) 117.75
graph_12 1203.4 (2.87) 1207 600 791 (-9.81%) 877 (-27.12%) 29.73 852 (-2.41%) 873 (-27.46%) 29.85
graph_13 1230.2 (3.43) 1235 600 261 (-27.5%) 360 (-70.74%) 74.76 920 (0.0%) 920 (-25.22%) 76.02
graph_14 1154.8 (6.4) 1165 600 883 (-0.9%) 891 (-22.84%) 13.56 795 (0.0%) 795 (-31.16%) 13.87

Table 5.27: The results for 𝑘 = 50. DCCA-Same: mean difference between TOPKW-
CLQ is -39.44% (SD = 17.35%) with the mean difference between the end and the max
score being -11.2% (SD = 15.0%). DCCA-Mix: mean difference between TOPKW-
CLQ is -31.33% (SD = 4.66%) with the mean difference between the end and the max
score being -5.27% (SD = 4.15%).

TOPKWCLQ cutoff of 60 seconds

When we combine the results of all the three tested values of 𝑘 (tables 5.28, 5.29, and
5.30) with a cutoff of 60 seconds, we see that the mean difference between TOPKWCLQ
and DCCA-Same is −34.12% (SD = 11.51) and the mean difference between TOPKW-
CLQ and DCCA-Mix is −33.89% (SD = 7.75%).
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TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 431.6 (2.87) 436 60 286 (-15.13%) 337 (-21.92%) 26.4 179 (-36.97%) 284 (-34.2%) 25.31
graph_1 384.2 (2.48) 389 60 206 (-20.77%) 260 (-32.33%) 16.85 184 (-21.03%) 233 (-39.35%) 16.74
graph_2 407.2 (5.91) 417 60 282 (-8.14%) 307 (-24.61%) 30.48 169 (-34.5%) 258 (-36.64%) 30.58
graph_3 368.8 (4.07) 374 60 252 (-8.36%) 275 (-25.43%) 15.89 181 (-27.31%) 249 (-32.48%) 15.75
graph_4 490.4 (3.44) 495 60 241 (-25.39%) 323 (-34.14%) 149.6 158 (-32.48%) 234 (-52.28%) 146.36
graph_5 479.0 (7.92) 489 60 313 (-14.71%) 367 (-23.38%) 48.77 209 (-35.09%) 322 (-32.78%) 48.59
graph_6 386.0 (3.85) 392 60 218 (-24.04%) 287 (-25.65%) 25.78 138 (-45.67%) 254 (-34.2%) 25.74
graph_7 357.8 (3.43) 361 60 277 (-6.1%) 295 (-17.55%) 11.94 163 (-40.07%) 272 (-23.98%) 12.03
graph_8 404.6 (4.08) 412 60 260 (-8.45%) 284 (-29.81%) 35.47 176 (-35.53%) 273 (-32.53%) 35.46
graph_9 411.0 (3.35) 417 60 257 (0.0%) 257 (-37.47%) 22.56 209 (-18.99%) 258 (-37.23%) 22.66

graph_10 410.8 (6.55) 420 60 259 (-5.47%) 274 (-33.3%) 18.26 227 (-12.02%) 258 (-37.2%) 18.43
graph_11 425.6 (4.41) 433 60 215 (-24.83%) 286 (-32.8%) 58.39 134 (-40.71%) 226 (-46.9%) 58.14
graph_12 365.4 (6.15) 376 60 204 (-15.0%) 240 (-34.32%) 14.42 216 (-17.24%) 261 (-28.57%) 14.48
graph_13 475.0 (4.0) 481 60 210 (-40.0%) 350 (-26.32%) 37.4 387 (-3.73%) 402 (-15.37%) 37.76
graph_14 348.8 (1.72) 352 60 236 (-2.88%) 243 (-30.33%) 6.72 137 (-35.98%) 214 (-38.65%) 6.74

Table 5.28: The results for 𝑘 = 10. DCCA-Same: mean difference between TOPKQ-
CLQ is -28.62% (SD = 5.57%) with the mean difference between the end and the max
score being -14.62% (SD = 10.75%). DCCA-Mix: mean difference between TOPKQ-
CLQ is -34.82% (SD = 8.67%) with the mean difference between the end and the max
score being -29.15% (SD = 11.96%).

TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 861.0 (3.9) 866 60 492 (-6.29%) 525 (-39.02%) 38.21 479 (-20.3%) 601 (-30.2%) 39.32
graph_1 856.8 (5.27) 866 60 528 (-7.85%) 573 (-33.12%) 25.56 533 (-6.65%) 571 (-33.36%) 25.86
graph_2 827.0 (6.36) 835 60 502 (-7.04%) 540 (-34.7%) 48.17 495 (-11.92%) 562 (-32.04%) 46.42
graph_3 774.8 (4.96) 784 60 521 (-5.96%) 554 (-28.5%) 23.71 507 (-16.06%) 604 (-22.04%) 24.02
graph_4 931.8 (5.27) 939 60 326 (-23.29%) 425 (-54.39%) 228.42 453 (-18.23%) 554 (-40.55%) 226.67
graph_5 909.0 (4.94) 916 60 528 (-5.55%) 559 (-38.5%) 75.07 506 (-16.91%) 609 (-33.0%) 74.69
graph_6 876.0 (4.05) 882 60 449 (-17.77%) 546 (-37.67%) 39.52 448 (-18.25%) 548 (-37.44%) 39.15
graph_7 800.8 (3.71) 805 60 472 (-20.27%) 592 (-26.07%) 18.28 481 (-17.92%) 586 (-26.82%) 18.25
graph_8 821.8 (3.31) 826 60 511 (-12.95%) 587 (-28.57%) 53.04 503 (-9.37%) 555 (-32.47%) 53.97
graph_9 814.8 (4.71) 822 60 629 (-3.97%) 655 (-19.61%) 34.21 326 (-2.98%) 336 (-58.76%) 34.68

graph_10 859.4 (3.93) 865 60 534 (-10.4%) 596 (-30.65%) 27.81 525 (-11.32%) 592 (-31.11%) 27.78
graph_11 888.0 (3.35) 894 60 501 (-7.39%) 541 (-39.08%) 88.7 472 (-12.1%) 537 (-39.53%) 90.3
graph_12 803.8 (5.15) 808 60 481 (-17.21%) 581 (-27.72%) 21.77 528 (-7.53%) 571 (-28.96%) 21.97
graph_13 864.4 (1.02) 866 60 290 (-10.22%) 323 (-62.63%) 57.13 521 (0.0%) 521 (-39.73%) 57.03
graph_14 764.4 (1.02) 766 60 566 (-5.03%) 596 (-22.03%) 10.24 294 (-14.29%) 343 (-55.13%) 10.25

Table 5.29: The results for 𝑘 = 30. DCCA-Same: mean difference between TOPKQ-
CLQ is -34.82% (SD = 11.45%) with the mean difference between the end and the max
score being -10.75% (SD = 6.13%). DCCA-Mix: mean difference between TOPKQ-
CLQ is -36.08% (SD = 9.87%) with the mean difference between the end and the max
score being -12.26% (SD = 6.02%).
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TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

graph_0 1248.8 (5.04) 1255 60 850 (-0.82%) 857 (-31.37%) 51.16 798 (-4.32%) 834 (-33.22%) 52.32
graph_1 1253.8 (10.09) 1270 60 874 (-2.35%) 895 (-28.62%) 34.48 863 (-7.7%) 935 (-25.43%) 35.65
graph_2 1215.8 (6.73) 1226 60 733 (-8.26%) 799 (-34.28%) 61.54 724 (-14.32%) 845 (-30.5%) 61.82
graph_3 1151.6 (3.5) 1158 60 798 (-6.01%) 849 (-26.28%) 31.7 837 (-2.9%) 862 (-25.15%) 32.74
graph_4 1313.8 (8.77) 1330 60 196 (-49.87%) 391 (-70.24%) 303.5 761 (-12.33%) 868 (-33.93%) 302.58
graph_5 1290.2 (7.49) 1302 60 814 (-0.49%) 818 (-36.6%) 100.41 849 (-5.03%) 894 (-30.71%) 100.3
graph_6 1306.4 (6.62) 1316 60 811 (-5.7%) 860 (-34.17%) 52.54 786 (-6.54%) 841 (-35.62%) 52.56
graph_7 1192.4 (4.27) 1198 60 778 (-9.43%) 859 (-27.96%) 24.35 817 (-1.92%) 833 (-30.14%) 24.9
graph_8 1204.0 (2.61) 1206 60 601 (-5.5%) 636 (-47.18%) 71.39 791 (-5.83%) 840 (-30.23%) 73.84
graph_9 1183.4 (6.28) 1191 60 900 (0.0%) 900 (-23.95%) 45.65 662 (-1.63%) 673 (-43.13%) 47.53

graph_10 1258.4 (5.12) 1263 60 814 (-3.78%) 846 (-32.77%) 37.19 834 (-7.33%) 900 (-28.48%) 35.55
graph_11 1281.2 (5.34) 1290 60 229 (-37.6%) 367 (-71.35%) 118.66 802 (-6.85%) 861 (-32.8%) 117.75
graph_12 1195.2 (4.75) 1203 60 791 (-9.81%) 877 (-26.62%) 29.73 852 (-2.41%) 873 (-26.96%) 29.85
graph_13 1223.6 (0.8) 1225 60 261 (-27.5%) 360 (-70.58%) 74.76 920 (0.0%) 920 (-24.81%) 76.02
graph_14 1140.4 (3.88) 1145 60 883 (-0.9%) 891 (-21.87%) 13.56 795 (0.0%) 795 (-30.29%) 13.87

Table 5.30: The results for 𝑘 = 50. DCCA-Same: mean difference between TOPKQ-
CLQ is -38.92% (SD = 17.52%) with the mean difference between the end and the max
score being -11.2% (SD = 15.0%). DCCA-Mix: mean difference between TOPKQ-
CLQ is -30.76% (SD = 4.73%) with the mean difference between the end and the max
score being -5.27% (SD = 4.15%).

Results T-Test

The results of the dependent T-test between the percentage difference of TOPKWCLQ
with a cutoff time of 600 seconds and 60 seconds for both DCCA-Same and DCCA-Mix
are as follow:

• If 𝑘 = 10, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −28.62%, SD = 5.57%) and 600 seconds (M = −29.72%, SD =
5.48%) is significant, T(14)=12.5459, 𝑝 < 0.01. For DCCA-Mix, the difference
between a cutoff time of 60 seconds (M = −34.82%, SD = 8.67%) or 600 seconds
(M = −35.83%, SD = 8.53%) is significant, T(14)=11.7241, 𝑝 < 0.01.

• If 𝑘 = 30, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −34.82%, SD = 11.45%) and 600 seconds (M = −35.53%, SD =
11.27%) is significant, T(14)=10.6381, 𝑝 < 0.01. For DCCA-Mix, the difference
between a cutoff time of 60 seconds (M = −36.08%, SD = 9.87%) or 600 seconds
(M = −36.76%, SD = 9.75%) is significant, T(14)=11.6640, 𝑝 < 0.01.

• If 𝑘 = 50, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −38.92%, SD = 17.52%) and 600 seconds (M = −39.44%, SD =
17.35%) is significant, T(14)=8.3399, 𝑝 < 0.01. For DCCA-Mix, the difference
between a cutoff time of 60 seconds (M = −30.76%, SD = 4.73%) or 600 seconds
(M = −31.33%, SD = 4.66%) is significant, T(14)=12.3291, 𝑝 < 0.01.

5.2.3 Real-world Graphs
This difference between DCCA and TOPKWCLQ is even more noticeable in the real-
world graphs, shown in tables 5.31, 5.32, and 5.33. These tables show again that for
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the graphs that DCCA finished, DCCA-Mix scores better than DCCA-Same for 𝑘 = 50
and DCCA-Same scores better with 𝑘 = 10 and 𝑘 = 30.

TOPKWCLQ cutoff of 600 seconds

When we combine the results of all the three tested values of 𝑘 (tables 5.31, 5.32, and
5.33), we see that for all the graphs, the mean difference between TOPKWCLQ and
DCCA-Same is −47.37% (SD = 26.2) and the mean difference between TOPKWCLQ
and DCCA-Mix is −48.33% (SD = 25.03%). The mean difference between the end
and the max score for DCCA-Same is −16.39% (SD = 16.93%) and for DCCA-Mix is
−16.79% (SD = 13.68%).

For the graphs that DCCA finished, the mean difference between TOPKWCLQ and
DCCA-Same is −36.29% (SD = 19.94) and the mean difference between TOPKWCLQ
and DCCA-Mix is −37.25% (SD = 19.86%). The mean difference between the end
and the max score for DCCA-Same is −13.09% (SD = 16.3%) and for DCCA-Mix is
−11.66% (SD = 11.44%).

Lastly, for the graphs that DCCA timed out at, the mean difference between TOP-
KWCLQ and DCCA-Same is −69.54% (SD = 23.3) and the mean difference between
TOPKWCLQ and DCCA-Mix is −70.49% (SD = 19.26%). The mean difference be-
tween the end and the max score for DCCA-Same is −23% (SD = 15.61%) and for
DCCA-Mix is −27.06% (SD = 11.72%).

TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

ca-GrQc 1481.0 (0.0) 1481 600 1142 (-8.57%) 1249 (-15.67%) 3.83 1142 (-7.83%) 1239 (-16.34%) 3.95
ca-netscience 391.0 (0.0) 391 600 352 (0.0%) 352 (-9.97%) 0.15 330 (-1.79%) 336 (-14.07%) 0.15
ia-email-univ 444.8 (1.47) 447 600 158 (-19.8%) 197 (-55.71%) 2.78 158 (-18.13%) 193 (-56.61%) 2.57

ia-infect-dublin 622.0 (0.0) 622 600 370 (-0.27%) 371 (-40.35%) 1.08 231 (-3.75%) 240 (-61.41%) 1.05
inf-power 286.0 (0.0) 286 600 196 (0.0%) 196 (-31.47%) 4.72 162 (-12.43%) 185 (-35.31%) 4.71
rt-retweet 198.0 (0.0) 198 600 142 (0.0%) 142 (-28.28%) 0.07 130 (0.0%) 130 (-34.34%) 0.07

sc-shipsec1 1377.0 (6.6) 1389 600 1082 (-5.99%) 1151 (-16.41%) 900.0 560 (-37.08%) 890 (-35.37%) 900.0
soc-buzznet 904.4 (15.29) 914 600 90 (-52.63%) 190 (-78.99%) 900.0 169 (-33.73%) 255 (-71.8%) 900.0
socfb-CMU 1772.0 (10.33) 1790 600 238 (-27.44%) 328 (-81.49%) 900.0 211 (-35.67%) 328 (-81.49%) 900.0

tech-RL-caida 683.2 (17.53) 715 600 143 (-56.93%) 332 (-51.41%) 900.0 141 (-46.79%) 265 (-61.21%) 900.0
tech-WHOIS 1626.6 (12.08) 1640 600 309 (-5.21%) 326 (-79.96%) 900.0 316 (-3.36%) 327 (-79.9%) 900.0

tech-internet-as 391.8 (11.72) 413 600 190 (-17.75%) 231 (-41.04%) 90.64 267 (-11.59%) 302 (-22.92%) 90.87
tech-routers-rf 585.0 (3.16) 589 600 266 (-0.37%) 267 (-54.36%) 2.94 225 (0.0%) 225 (-61.54%) 2.89

web-arabic-2005 4049.0 (0.0) 4049 600 2706 (-7.55%) 2927 (-27.71%) 365.21 2098 (-12.07%) 2386 (-41.07%) 357.55
web-spam 720.2 (2.48) 723 600 218 (-41.55%) 373 (-48.21%) 55.82 218 (-36.26%) 342 (-52.51%) 55.37

Table 5.31: The results for 𝑘 = 10. If the runtime for DCCA is stated in bold, it
means that DCCA terminated early on those graphs, because it exceeded the 900 sec-
onds timeout limit. DCCA-Same: mean difference between TOPKWCLQ is -44.07%
(SD = 23.38%) for all graphs, -35.28% (SD = 15.47%) for the finished graphs and -
61.65% (SD = 28.2%) for the not finished graphs and with the mean difference between
the end and the max score being -16.27% (SD = 19.68%) for all graphs, -9.59% (SD =
13.52%) for the finished graphs and -29.64% (SD = 24.67%) for the not finished graphs.
DCCA-Mix: mean difference between TOPKWCLQ is -48.39% (SD = 21.83%) for all
graphs, -39.61% (SD = 18.05%) for the finished graphs and -65.95% (SD = 18.89%)
for the not finished graphs with the mean difference between the end and the max score
being -17.37% (SD = 16.08%) for all graphs, -10.38% (SD = 10.94%) for the finished
graphs and -31.33% (SD = 16.42%) for the not finished graphs.
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TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

ca-GrQc 2511.2 (1.47) 2513 600 2220 (-3.18%) 2293 (-8.69%) 5.94 2220 (-3.18%) 2293 (-8.69%) 6.1
ca-netscience 947.6 (0.8) 948 600 808 (-0.62%) 813 (-14.2%) 0.21 798 (-1.97%) 814 (-14.1%) 0.21
ia-email-univ 1020.8 (1.47) 1022 600 430 (-12.24%) 490 (-52.0%) 3.99 422 (-11.9%) 479 (-53.08%) 4.05

ia-infect-dublin 1269.6 (3.93) 1276 600 531 (-13.8%) 616 (-51.48%) 1.52 521 (-9.55%) 576 (-54.63%) 1.51
inf-power 775.8 (0.75) 777 600 590 (0.0%) 590 (-23.95%) 7.31 419 (-12.34%) 478 (-38.39%) 7.34
rt-retweet 434.0 (0.0) 434 600 350 (0.0%) 350 (-19.35%) 0.08 202 (-25.19%) 270 (-37.79%) 0.08

sc-shipsec1 3797.2 (16.07) 3816 600 1740 (-30.2%) 2493 (-34.35%) 900.0 1771 (-29.47%) 2511 (-33.87%) 900.0
soc-buzznet 2016.6 (27.36) 2058 600 227 (-21.18%) 288 (-85.72%) 900.0 193 (-39.69%) 320 (-84.13%) 900.0
socfb-CMU 3931.0 (14.18) 3951 600 463 (-7.95%) 503 (-87.2%) 900.0 517 (-28.19%) 720 (-81.68%) 900.0

tech-RL-caida 1561.0 (15.71) 1581 600 438 (-11.52%) 495 (-68.29%) 900.0 364 (-31.06%) 528 (-66.18%) 900.0
tech-WHOIS 2807.8 (12.81) 2830 600 376 (-32.86%) 560 (-80.06%) 900.0 345 (-21.23%) 438 (-84.4%) 900.0

tech-internet-as 884.8 (7.65) 897 600 181 (-53.35%) 388 (-56.15%) 135.17 390 (-34.12%) 592 (-33.09%) 140.35
tech-routers-rf 1167.0 (3.46) 1172 600 353 (-23.43%) 461 (-60.5%) 4.38 420 (-11.39%) 474 (-59.38%) 4.43

web-arabic-2005 10483.0 (0.0) 10483 600 7240 (-7.08%) 7792 (-25.67%) 564.19 9099 (-1.21%) 9210 (-12.14%) 600.55
web-spam 1589.4 (7.96) 1597 600 369 (-44.18%) 661 (-58.41%) 85.25 369 (-42.25%) 639 (-59.8%) 86.33

Table 5.32: The results for 𝑘 = 30. If the runtime for DCCA is stated in bold, it means
that DCCA terminated early on those graphs, because it exceeded the 900 seconds
timeout limit. DCCA-Same: mean difference between TOPKWCLQ is -48.4% (SD
= 26.09%) for all graphs, -37.04% (SD = 20.39%) for the finished graphs and -71.12%
(SD = 21.86%) for the not finished graphs and with the mean difference between the
end and the max score being -17.44% (SD = 16.52%) for all graphs, -15.79% (SD =
19.02%) for the finished graphs and -20.74% (SD = 11.01%) for the not finished graphs.
DCCA-Mix: mean difference between TOPKWCLQ is -48.09% (SD = 25.4%) for all
graphs, -37.11% (SD = 19.86%) for the finished graphs and -70.05% (SD = 21.58%)
for the not finished graphs with the mean difference between the end and the max score
being -20.18% (SD = 13.78%) for all graphs, -15.31% (SD = 14.03%) for the finished
graphs and -29.93% (SD = 6.62%) for the not finished graphs.
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TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

ca-GrQc 3257.0 (5.9) 3264 600 2930 (-2.27%) 2998 (-7.95%) 8.13 2893 (-2.79%) 2976 (-8.63%) 8.36
ca-netscience 1304.2 (0.75) 1305 600 1150 (0.0%) 1150 (-11.82%) 0.25 1128 (-0.79%) 1137 (-12.82%) 0.27
ia-email-univ 1490.6 (3.98) 1496 600 724 (-0.69%) 729 (-51.09%) 5.24 677 (-2.45%) 694 (-53.44%) 5.78

ia-infect-dublin 1662.0 (1.26) 1664 600 665 (-11.45%) 751 (-54.81%) 2.02 665 (-11.21%) 749 (-54.93%) 2.0
inf-power 1220.0 (2.28) 1224 600 743 (-13.2%) 856 (-29.84%) 10.45 743 (-11.86%) 843 (-30.9%) 9.87
rt-retweet 539.0 (0.0) 539 600 447 (-3.25%) 462 (-14.29%) 0.08 423 (-2.98%) 436 (-19.11%) 0.08

sc-shipsec1 6047.8 (23.37) 6079 600 2960 (-14.6%) 3466 (-42.69%) 900.0 3084 (-5.28%) 3256 (-46.16%) 900.0
soc-buzznet 2959.6 (36.27) 3012 600 227 (-26.77%) 310 (-89.53%) 900.0 235 (-27.91%) 326 (-88.98%) 900.0
socfb-CMU 5490.4 (19.16) 5515 600 442 (-15.16%) 521 (-90.51%) 900.0 784 (-27.0%) 1074 (-80.44%) 900.0

tech-RL-caida 2346.4 (15.37) 2361 600 615 (-4.06%) 641 (-72.68%) 900.0 541 (-8.31%) 590 (-74.86%) 900.0
tech-WHOIS 3590.6 (18.65) 3621 600 394 (-32.42%) 583 (-83.76%) 900.0 326 (-31.08%) 473 (-86.83%) 900.0

tech-internet-as 1349.6 (6.71) 1362 600 231 (-50.0%) 462 (-65.77%) 186.18 697 (-25.53%) 936 (-30.65%) 196.25
tech-routers-rf 1630.6 (4.96) 1635 600 488 (-27.6%) 674 (-58.67%) 5.77 492 (-25.57%) 661 (-59.46%) 6.42

web-arabic-2005 16637.0 (0.0) 16637 600 14480 (-3.29%) 14972 (-10.01%) 802.15 13860 (-2.95%) 14282 (-14.16%) 799.37
web-spam 2271.2 (7.88) 2283 600 640 (-27.36%) 881 (-61.21%) 115.58 715 (-6.78%) 767 (-66.23%) 121.69

Table 5.33: The results for 𝑘 = 50. If the runtime for DCCA is stated in bold, it means
that DCCA terminated early on those graphs, because it exceeded the 900 seconds time-
out limit. DCCA-Same: mean difference between TOPKWCLQ is -49.64% (SD =
29.14%) for all graphs, -36.55% (SD = 23.97%) for the finished graphs and -75.83%
(SD = 19.84%) for the not finished graphs and with the mean difference between the
end and the max score being -15.47% (SD = 14.59%) for all graphs, -13.91% (SD =
16.36%) for the finished graphs and -18.6% (SD = 11.15%) for the not finished graphs.
DCCA-Mix: mean difference between TOPKWCLQ is -48.51% (SD = 27.86%) for all
graphs, -35.03% (SD = 21.66%) for the finished graphs and -75.45% (SD = 17.29%)
for the not finished graphs with the mean difference between the end and the max score
being -12.83% (SD = 11.18%) for all graphs, -9.29% (SD = 9.35%) for the finished
graphs and -19.92% (SD = 12.12%) for the not finished graphs.

TOPKWCLQ cutoff of 60 seconds

When we combine the results of all the three tested values of 𝑘 (tables 5.34, 5.35, and
5.36) for a cutoff of 60 seconds, we see that for all the graphs, the mean difference
between TOPKWCLQ and DCCA-Same is −46.95% (SD = 26.1%) and the mean dif-
ference between TOPKWCLQ and DCCA-Mix is −47.86% (SD = 25.09%).

For the graphs that DCCA finished, the mean difference between TOPKWCLQ and
DCCA-Same is −35.92% (SD = 19.76%) and the mean difference between TOPKW-
CLQ and DCCA-Mix is −36.81% (SD = 19.99%).

Lastly, for the graphs that DCCA timed out at, the mean difference between TOP-
KWCLQ and DCCA-Same is−69.02% (SD = 23.41%) and the mean difference between
TOPKWCLQ and DCCA-Mix is −69.97% (SD = 19.33%).
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TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

ca-GrQc 1481.0 (0.0) 1481 60 1142 (-8.57%) 1249 (-15.67%) 3.83 1142 (-7.83%) 1239 (-16.34%) 3.95
ca-netscience 391.0 (0.0) 391 60 352 (0.0%) 352 (-9.97%) 0.15 330 (-1.79%) 336 (-14.07%) 0.15
ia-email-univ 440.6 (1.74) 443 60 158 (-19.8%) 197 (-55.29%) 2.78 158 (-18.13%) 193 (-56.2%) 2.57

ia-infect-dublin 622.0 (0.0) 622 60 370 (-0.27%) 371 (-40.35%) 1.08 231 (-3.75%) 240 (-61.41%) 1.05
inf-power 286.0 (0.0) 286 60 196 (0.0%) 196 (-31.47%) 4.72 162 (-12.43%) 185 (-35.31%) 4.71
rt-retweet 198.0 (0.0) 198 60 142 (0.0%) 142 (-28.28%) 0.07 130 (0.0%) 130 (-34.34%) 0.07

sc-shipsec1 1366.2 (4.26) 1371 60 1082 (-5.99%) 1151 (-15.75%) 900.0 560 (-37.08%) 890 (-34.86%) 900.0
soc-buzznet 847.8 (15.48) 863 60 90 (-52.63%) 190 (-77.59%) 900.0 169 (-33.73%) 255 (-69.92%) 900.0
socfb-CMU 1751.0 (24.73) 1790 60 238 (-27.44%) 328 (-81.27%) 900.0 211 (-35.67%) 328 (-81.27%) 900.0

tech-RL-caida 661.6 (13.63) 678 60 143 (-56.93%) 332 (-49.82%) 900.0 141 (-46.79%) 265 (-59.95%) 900.0
tech-WHOIS 1587.2 (14.03) 1609 60 309 (-5.21%) 326 (-79.46%) 900.0 316 (-3.36%) 327 (-79.4%) 900.0

tech-internet-as 367.4 (8.14) 380 60 190 (-17.75%) 231 (-37.13%) 90.64 267 (-11.59%) 302 (-17.8%) 90.87
tech-routers-rf 578.4 (4.32) 582 60 266 (-0.37%) 267 (-53.84%) 2.94 225 (0.0%) 225 (-61.1%) 2.89

web-arabic-2005 4047.0 (2.45) 4049 60 2706 (-7.55%) 2927 (-27.67%) 365.21 2098 (-12.07%) 2386 (-41.04%) 357.55
web-spam 715.6 (5.71) 723 60 218 (-41.55%) 373 (-47.88%) 55.82 218 (-36.26%) 342 (-52.21%) 55.37

Table 5.34: The results for 𝑘 = 10. DCCA-Same: mean difference between TOPKQ-
CLQ is -43.43% (SD = 23.2%) for all graphs, -34.75% (SD = 15.19%) for the finished
graphs and -60.78% (SD = 28.28%) for the not finished graphs and with the mean dif-
ference between the end and the max score being -16.27% (SD = 19.68%) for all graphs,
-9.59% (SD = 13.52%) for the finished graphs and -29.64% (SD = 24.67%) for the not
finished graphs. DCCA-Mix: mean difference between TOPKQCLQ is -47.68% (SD
= 22.01%) for all graphs, -38.98% (SD = 18.51%) for the finished graphs and -65.08%
(SD = 18.91%) for the not finished graphs with the mean difference between the end and
the max score being -17.37% (SD = 16.08%) for all graphs, -10.38% (SD = 10.94%)
for the finished graphs and -31.33% (SD = 16.42%) for the not finished graphs.

TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

ca-GrQc 2505.4 (4.96) 2512 60 2220 (-3.18%) 2293 (-8.48%) 5.94 2220 (-3.18%) 2293 (-8.48%) 6.1
ca-netscience 945.6 (2.06) 948 60 808 (-0.62%) 813 (-14.02%) 0.21 798 (-1.97%) 814 (-13.92%) 0.21
ia-email-univ 1017.6 (3.93) 1022 60 430 (-12.24%) 490 (-51.85%) 3.99 422 (-11.9%) 479 (-52.93%) 4.05

ia-infect-dublin 1262.6 (1.85) 1266 60 531 (-13.8%) 616 (-51.21%) 1.52 521 (-9.55%) 576 (-54.38%) 1.51
inf-power 772.8 (0.75) 774 60 590 (0.0%) 590 (-23.65%) 7.31 419 (-12.34%) 478 (-38.15%) 7.34
rt-retweet 434.0 (0.0) 434 60 350 (0.0%) 350 (-19.35%) 0.08 202 (-25.19%) 270 (-37.79%) 0.08

sc-shipsec1 3768.8 (15.66) 3793 60 1740 (-30.2%) 2493 (-33.85%) 900.0 1771 (-29.47%) 2511 (-33.37%) 900.0
soc-buzznet 1952.4 (21.96) 1984 60 227 (-21.18%) 288 (-85.25%) 900.0 193 (-39.69%) 320 (-83.61%) 900.0
socfb-CMU 3888.0 (14.17) 3909 60 463 (-7.95%) 503 (-87.06%) 900.0 517 (-28.19%) 720 (-81.48%) 900.0

tech-RL-caida 1531.4 (16.7) 1551 60 438 (-11.52%) 495 (-67.68%) 900.0 364 (-31.06%) 528 (-65.52%) 900.0
tech-WHOIS 2766.6 (9.77) 2775 60 376 (-32.86%) 560 (-79.76%) 900.0 345 (-21.23%) 438 (-84.17%) 900.0

tech-internet-as 866.6 (11.48) 886 60 181 (-53.35%) 388 (-55.23%) 135.17 390 (-34.12%) 592 (-31.69%) 140.35
tech-routers-rf 1156.8 (8.63) 1170 60 353 (-23.43%) 461 (-60.15%) 4.38 420 (-11.39%) 474 (-59.02%) 4.43

web-arabic-2005 10476.2 (6.05) 10483 60 7240 (-7.08%) 7792 (-25.62%) 564.19 9099 (-1.21%) 9210 (-12.09%) 600.55
web-spam 1571.4 (13.75) 1594 60 369 (-44.18%) 661 (-57.94%) 85.25 369 (-42.25%) 639 (-59.34%) 86.33

Table 5.35: The results for 𝑘 = 30. DCCA-Same: mean difference between TOPKQ-
CLQ is -48.07% (SD = 26.0%) for all graphs, -36.75% (SD = 20.24%) for the finished
graphs and -70.72% (SD = 21.96%) for the not finished graphs and with the mean dif-
ference between the end and the max score being -17.44% (SD = 16.52%) for all graphs,
-15.79% (SD = 19.02%) for the finished graphs and -20.74% (SD = 11.01%) for the not
finished graphs. DCCA-Mix: mean difference between TOPKQCLQ is -47.73% (SD
= 25.37%) for all graphs, -36.78% (SD = 19.82%) for the finished graphs and -69.63%
(SD = 21.67%) for the not finished graphs with the mean difference between the end and
the max score being -20.18% (SD = 13.78%) for all graphs, -15.31% (SD = 14.03%)
for the finished graphs and -29.93% (SD = 6.62%) for the not finished graphs.
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TOPKWCLQ DCCA-Same DCCA-Mix

Graphs Result Max Run
Time End Score Max Score Run

Time End Score Max Score Run
Time

ca-GrQc 3245.6 (2.15) 3249 60 2930 (-2.27%) 2998 (-7.63%) 8.13 2893 (-2.79%) 2976 (-8.31%) 8.36
ca-netscience 1302.0 (0.89) 1303 60 1150 (0.0%) 1150 (-11.67%) 0.25 1128 (-0.79%) 1137 (-12.67%) 0.27
ia-email-univ 1480.6 (4.32) 1486 60 724 (-0.69%) 729 (-50.76%) 5.24 677 (-2.45%) 694 (-53.13%) 5.78

ia-infect-dublin 1655.8 (2.93) 1659 60 665 (-11.45%) 751 (-54.64%) 2.02 665 (-11.21%) 749 (-54.77%) 2.0
inf-power 1212.2 (2.04) 1216 60 743 (-13.2%) 856 (-29.38%) 10.45 743 (-11.86%) 843 (-30.46%) 9.87
rt-retweet 539.0 (0.0) 539 60 447 (-3.25%) 462 (-14.29%) 0.08 423 (-2.98%) 436 (-19.11%) 0.08

sc-shipsec1 5997.6 (19.06) 6028 60 2960 (-14.6%) 3466 (-42.21%) 900.0 3084 (-5.28%) 3256 (-45.71%) 900.0
soc-buzznet 2892.0 (47.68) 2960 60 227 (-26.77%) 310 (-89.28%) 900.0 235 (-27.91%) 326 (-88.73%) 900.0
socfb-CMU 5444.6 (36.1) 5497 60 442 (-15.16%) 521 (-90.43%) 900.0 784 (-27.0%) 1074 (-80.27%) 900.0

tech-RL-caida 2315.2 (23.58) 2351 60 615 (-4.06%) 641 (-72.31%) 900.0 541 (-8.31%) 590 (-74.52%) 900.0
tech-WHOIS 3557.4 (23.84) 3589 60 394 (-32.42%) 583 (-83.61%) 900.0 326 (-31.08%) 473 (-86.7%) 900.0

tech-internet-as 1320.8 (9.04) 1331 60 231 (-50.0%) 462 (-65.02%) 186.18 697 (-25.53%) 936 (-29.13%) 196.25
tech-routers-rf 1614.6 (10.8) 1633 60 488 (-27.6%) 674 (-58.26%) 5.77 492 (-25.57%) 661 (-59.06%) 6.42

web-arabic-2005 16628.4 (7.09) 16637 60 14480 (-3.29%) 14972 (-9.96%) 802.15 13860 (-2.95%) 14282 (-14.11%) 799.37
web-spam 2254.4 (5.89) 2262 60 640 (-27.36%) 881 (-60.92%) 115.58 715 (-6.78%) 767 (-65.98%) 121.69

Table 5.36: The results for 𝑘 = 50. DCCA-Same: mean difference between TOPKQ-
CLQ is -49.36% (SD = 29.11%) for all graphs, -36.25% (SD = 23.84%) for the finished
graphs and -75.57% (SD = 19.98%) for the not finished graphs and with the mean dif-
ference between the end and the max score being -15.47% (SD = 14.59%) for all graphs,
-13.91% (SD = 16.36%) for the finished graphs and -18.6% (SD = 11.15%) for the not
finished graphs. DCCA-Mix: mean difference between TOPKQCLQ is -48.18% (SD
= 27.9%) for all graphs, -34.67% (SD = 21.63%) for the finished graphs and -75.19%
(SD = 17.4%) for the not finished graphs with the mean difference between the end and
the max score being -12.83% (SD = 11.18%) for all graphs, -9.29% (SD = 9.35%) for
the finished graphs and -19.92% (SD = 12.12%) for the not finished graphs.

Results T-Test

The results of the dependent T-test between the percentage difference of TOPKWCLQ
with a cutoff time of 600 seconds and 60 seconds for both DCCA-Same and DCCA-Mix
are as follow:

• If 𝑘 = 10, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −43.43%, SD = 23.20%) and 600 seconds (M = −44.07%, SD =
23.38%) is insignificant, T(14)=2.3961, p=0.0311. For DCCA-Mix, the differ-
ence between a cutoff time of 60 seconds (M =−47.68, SD = 22.01%) or 600 sec-
onds (M = −48.39%, SD = 21.83%) is insignificant, T(14)=2.0750, p=0.0569.

• If 𝑘 = 30, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −48.07%, SD = 26.00%) and 600 seconds (M = −48.40%, SD
= 26.09%) is significant, T(14)=5.3263, 𝑝 < 0.01. For DCCA-Mix, the differ-
ence between a cutoff time of 60 seconds (M = −47.73%, SD = 25.37%) or 600
seconds (M = −48.09%, SD = 25.40%) is significant, T(14)=4.1122, 𝑝 < 0.01.

• If 𝑘 = 50, then for DCCA-Same, the difference between a cutoff time of 60
seconds (M = −49.36%, SD = 29.11%) and 600 seconds (M = −49.64%, SD
= 29.14%) is significant, T(14)=5.5939, 𝑝 < 0.01. For DCCA-Mix, the differ-
ence between a cutoff time of 60 seconds (M = −48.18%, SD = 27.90%) or 600
seconds (M = −48.51%, SD = 27.86%) is significant, T(14)=3.5953, 𝑝 < 0.01.
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Chapter 6

Discussion and Conclusion

Our discussion chapter will explain the results of our experiments, suggest future re-
search and answer the research question. We start by discussing and explaining the
results such that we can answer our research question. The following section will eval-
uate our main and sub research questions. Lastly, we will make recommendations for
future research.

6.1 Discussion of the Results
Globally our results show that DCCA is currently not an improvement on the baselines,
TOPKLS or TOPKWCLQ. However, we still see that it can be an improvement in some
results (section 5.1.1) for the diversified top-𝑘 clique search problem (DTKC). This
section will discuss four essential aspects of our results. The first aspect is the difference
in score between DCCA and the baselines, TOPKLS and TOPKWCLQ and how it is
depending on the evaluation graph set and the value of 𝑘. As previously stated, we saw
DCCA only performed well on one evaluation graph set (table 4.5) and primarily for
higher values of 𝑘. Our discussion of these results will explain why DCCA performed
differently between the evaluation graph sets. Next, we will discuss the second aspect,
namely, why the end and max scores differ in the results of DCCA.

The third aspect is the results of the runtime and its significance for the performance
of DCCA and our research. We will explain what parts affected the runtime and what
caused DCCA to vary so much in runtime between graphs. Moreover, we discuss the
influence of the encode-process-decode paradigm on the runtime.

Lastly, we will discuss why DCCA performed significantly worse on the diversified
top-𝑘 weighted clique search problem (DTKWC) than it did on DTKC. We will focus
mainly on the reasons that only affected DCCA on DTKWC.

The results of the three evaluation graph sets for DTKC show that DCCA scored
well on only one graph set, namely, the dual Barabási–Albert (BA) graph generated with
the same input parameter. When comparing these graphs (table 4.5), we see that these
graphs have significantly fewer maximal cliques than most real-world graphs (table 4.7)
and the dual BA graphs generated by random input parameters (table 4.6). We believe
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this indicates that DCCA has trouble learning the transition function. This inability to
learn the transition function means that DCCA cannot learn which clique comes next
from the Pivot Bron-Kerbosch algorithm (Tomita et al., 2006). Therefore, it does not
know which cliques are already shown and which are still to come, which indicates that
DCCA can not directly observe the complete state. Hence, DTKC and other diversity
graphs problem should likely be formulated as a partially observable Markov decision
process (POMDP) (Åström, Karl Johan, 1965), not as an MDP. The reason why DCCA
performed better on smaller graphs is that the network architecture could better encode
the transition function of those graphs, because they have less cliques. We believe this
is the most crucial reason why DCCA did not perform well on larger graphs, with more
cliques. We will provide possible solutions for this in our Future Research section.

However, this does not completely explain why DCCA performed worse on the
smaller real-world graphs, such as rt-retweet and ca-netscience. The most likely cause
for these results is that DCCA can not generalise well to graphs that are structurally
different from those generated by the dual BA model. We expected this to happen;
however, DCCA’s inability to generalise is more substantial than expected. The pre-
viously stated problem of not observing the complete state, is likely the main reason
for this and, therefore, our first reason. Nevertheless, this is likely not the only rea-
son why it could not generalise well to differently structured graphs. We believe the
second reason for these results is how we generated training graphs, which we only
did through the dual BA model. This method is common for training deep RL meth-
ods for combinatorial optimisation problems. For example, the algorithm of Abe et al.
(2019), on which we based our network design, also trained on generated graphs but
their algorithm could generalise well to real-world graphs. However, their and all pre-
vious algorithms in the neural combinatorial optimisation with reinforcement learning
(NCO-RL) research field are node-level CO problems, while DTKC is a subgraph-level
task. Therefore, this might indicate that for subgraph-level CO problems, the training
graphs should have more variation and can not be generated by a single model, if the
goal is that the algorithm can generalise well between different graphs. Our Future
Research section explains how future research could handle this problem.

We believe that the first reason, of not observing the whole state, and second reason,
of how we generate training graphs, are the main causes for DCCA inability to gener-
alise. However, there might another explanation why it could not generalise well. Our
third reason why it could not generalise well between different graphs is that DCCA
could likely not learn the maximum possible score of that graph and, therefore, could
not compose the ideal clique set because it could not see how valuable a clique is for
that given graph. For example, according to our analysis in table 4.7, rt-retweet and
ca-netscience are similar in size in the number of nodes and edges. However, the cover-
age score found by TOPKLS differs significantly between the two graphs. For 𝑘 = 10,
the mean result for rt-retweet is 82 and for ca-netscience 222 (table 5.13). We already
stated that this might be an issue in section 3.1.1 and that we could normalise the re-
ward through the maximum clique for DTKC and the maximum weighted clique for
DTKWC. However, these problems are NP-hard and would increase the training time
significantly if we needed to find those cliques for each generated graph. Moreover, the
values of those maximum cliques are likely not related to the maximum score of both
DTKC and DTKWC. However, we are unsure about this being a problem, because most
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NCO-RL approaches do not normalise the reward (Mazyavkina et al., 2021). This can
indicate two things. First, it could mean that the problem of not normalising the reward
is not an issue, and the first and second reasons explain the generalisation problem. Sec-
ondly, this normalisation problem is only relevant to diversity graph problems and not
other CO graph problems. Therefore, we state this as our third reason because we are
unsure if the normalisation is a problem. However, if future research can exclude the
first and second reasons for the inability to generalise, it might be that the normalisation
is the cause of the generalisation problem.

We also see a difference in results for DCCA between the different values of 𝑘,
with DCCA performing better with higher values of 𝑘. We believe this primarily stems
from two reasons. The first reason is that both TOPKLS and TOPKWCLQ can try fewer
possible combinations with 𝑘 = 50 than with 𝑘 = 10. We know that number of possible
formable clique sets in is the binomial coefficient of the number of cliques and 𝑘1.
Therefore, there are significantly more combinations possible for 𝑘 = 50. Because
both TOPKLS and TOPKWCLQ terminate at a cutoff time, they have searched less of
the possible solutions for higher values of 𝑘. For example, with 𝑘 = 10, table 5.1
shows that the standard deviation of the results for TOPKLS for some graphs is 0. This
likely indicates that the found result is the optimal clique set. Meanwhile, if 𝑘 = 50, no
standard deviation is 0 (table 5.3).

The second reason is that the actor and critic network have more input encodings
with higher values of 𝑘. This increase in the number of inputs most likely benefits
the critic network more than it does the actor network. In appendix B.1, we show the
explained variance of each of our trained models2. The explained variance for when
𝑘 = 50 is more stable then if 𝑘 = 10. The difference in stability can also be caused by
the clique set being more stable if 𝑘 = 50 and thus more easily learned for the value
network but we think that having more inputs is the more crucial reason. We believe this
and the reason in the previous paragraph are the most likely reasons, with the first reason
being more important, that DCCA performed better at higher values of 𝑘 compared to
the baseline algorithms, TOPKLS and TOPKWCLQ.

The previously stated problem of DCCA not observing the whole state likely also
causes the difference between the max and end score for DCCA. This causes DCCA to
not know if the best cliques are already shown or are still to come from the Pivot Bron-
Kerbosch algorithm. Therefore, we believe that reformulating the MDP to a POMDP
might solve this problem because it allows DCCA to learn which cliques are shown and
which are not.

The results of the score show one interesting detail, namely, when comparing the
two different trained versions of DCCA, DCCA-Mix and DCCA-Same, that DCCA-
Mix almost always scored better on 𝑘 = 50 and DCCA-Same on 𝑘 = 10 and 𝑘 = 30.
We found these results to be too consistent to be a coincidence; therefore, there needs
to be a reason why this happens. However, we could not find a direct cause for this. We
believe that a reason might be that DCCA-Same gets overtrained on too similar graphs

1The number of possible clique sets is equal to (

|𝐶|

𝑘

)

= |𝐶|!
𝑘!(|𝐶|−𝑘)! in which |𝐶| is the number of maximal

cliques in a graph.
2The explained variance indicates how much of the variance is explained by the model, with 1 being the

highest number possible.
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if 𝑘 = 50 and prefers more variation in the training graphs at higher values of 𝑘 and less
with lower values of 𝑘. Nevertheless, we strongly believe that there are other factors
that cause this result; therefore, more research is needed on why this occurred and what
the most optimal method is to generate training graphs.

The results show a considerable variation in the runtime. This runtime mostly de-
pends on the number of cliques in a graph. It shows that DCCA is considerably faster
if the number of cliques is low. We see this mainly in the results of the dual BA graphs
generated by the same input parameters in sections 5.1.1 and 5.2.1. This is especially
important when 𝑘 = 50 because DCCA outperforms TOPKLS on most graphs (tables
5.3 and 5.6). Therefore, we can clearly state that for 𝑘 = 50, DCCA is the best method
for this graph set for DTKC.

Nevertheless, it is also essential that this difference is significant when we lower the
cutoff time. According to the T-test, the difference in results for when the cutoff time
is 600 or 60 seconds is significant. Therefore, lowering the cutoff time only lets DCCA
perform better in comparison to TOPKLS for this graph set. Moreover, the T-tests for
the other graphs show similar results, with only two exceptions, namely for real-world
graphs if 𝑘 = 10, for both DTKC 5.13) and DTKWC (table 5.31). This means that the
cutoff time has a significant factor on much the max score differs from the results of the
baselines, TOPKLS and TOPKWCLQ, which indicates that DCCA is an improvement
on runtime for smaller graphs.

The runtime is mainly affected by the number of cliques in a graph and, to a lesser
extent, by the value of 𝑘 and the graph size. That the number of cliques mainly af-
fects the runtime is enormously significant for this research because it signifies that the
clique finding algorithm causes the scalability issue of our algorithm and not the GNN
architecture. We can state that this is because the runtime complexity of GIN is equal
to the number of edges in the input graph (Wu et al., 2019), and we can see that the
average number of steps per second for a graph does not scale at the same level. For
example, if we look at the extended results in appendix C, we can see that when 𝑘 = 10
for the graph tech-internet-as, the average number of steps per second is 785.35, and
that for ca-netscience, it is 1371.43. This is still a difference of 74.63%; however, tech-
internet-as has 85123 edges, and ca-netscience has 914 edges, which is a difference of
9213.24%. Therefore, using the encode-process-decode paradigm significantly helped
with scaling our algorithm. Otherwise, we had to implement DCCA such that the whole
graph acted as input at each step, meaning that the number of edges in a graph should
affect the runtime significantly more than it does now. This result is significant because
Cappart et al. (2021) state in their survey paper that one of the issues of using GIN
architectures for graph combinatorial optimisation problems is the scalability issue to
larger graphs. We showed that the encode-process-decode paradigm helps to overcome
this issue. Therefore, the scalability issue is not caused by DCCA, but by the clique
finding algorithm we used, the Pivot Bron-Kerbosch algorithm. This means that we
only need to improve or change the clique finding algorithm, such that DCCA can scale
to larger graphs in relation to the runtime.

Nevertheless, we see that the graph size affects the runtime. The most likely cause is
a combination of how the runtime of the Pivot Bron-Kerbosch algorithm scales to larger
graphs (Segundo et al., 2018) and the overhead within how we implemented DCCA,
which are procedures like removing cliques from a set and storing graphs into memory.
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The reason that larger graphs affect the runtime of the Pivot Bron-Kerbosch algorithm
is that a larger percentage of the checked cliques will not be maximal. Therefore, it will
run slower on larger graphs. We can prove that this influenced the runtime by comparing
the runtimes of the same graph for different values of 𝑘 and showing of different values
of 𝑘 affected the runtime.

For this example, we take graph_0 from the dual BA graphs generated with the same
input parameters (table 4.5). In the results (section 5.1.1), we see that the runtime is
6.8 seconds, when 𝑘 = 10, it is 10.52 seconds, when 𝑘 = 30, and it is 13.44 seconds,
when 𝑘 = 50. Therefore, if the value of 𝑘 had the biggest influence, then DCCA would
run three times slower for 𝑘 = 30 compared to 𝑘 = 10. However, we only see a 54.71%
increase in runtime. For 𝑘 = 50, it would even be fives time longer, but the difference is
97.65%. Therefore, we can see that a significant part of the runtime is caused by finding
the cliques in the graph. Still, we believe that the effect of 𝑘 can be averted, which we
will expand on in our Future Research section.

One of the most significant outcomes of this research is that DCCA scored signifi-
cantly worse on the diversified top-𝑘 weighted clique search problem (DTKWC) than it
did on DTKC. We believe the primary reason that DCCA scores lower on DTKWC is
that the node’s weights are over-smoothed in the output node encodings by the Graph
Encoder. This over-smoothing is a common problem with GNN architectures (Chen
et al., 2019). If over-smoothed, the output encoding of all the nodes becomes too simi-
lar. This problem can make important information, like the node’s weight, unreadable to
the actor and critic network. The most significant factor that can cause over-smoothing
is the number of GNN layers, with each extra layer increasing its risk. Therefore, our
five-layer Graph Encoder might need fewer layers for DTKWC. However, we also make
other recommendations in our Future Research section.

6.2 Evaluation Research Questions
The previous section discussed the results of DCCA. This section indirectly answered
our main and sub research questions. However, this section answers them directly. We
start by doing this for the sub research questions and finish with the main research
question.

Our first sub-question asked how a graph should be encoded such that DCCA can use
it to compose a clique set. We used an GIN architecture as our graph encoder. This ap-
proach allowed us to implement DCCA, such that it only has to encode the whole graph
once and then use the latent node encodings to compose the ideal clique set through the
encode-process-decode paradigm. At each step, we collect the encodings of the current
candidate clique set and the newfound clique using another GIN network through virtual
nodes that represent the cliques and act as outputs for them. Our results showed that
DCCA could outperform previous approaches in specific conditions while using this
paradigm on both the runtime and the score. On larger or differently structured graphs,
it performed significantly worse and even timed out on the largest graphs. However,
the reason for this timeout is because DCCA uses the Pivot Bron-Kerbosch algorithm.
This algorithm enumerates all the cliques in the graph; therefore, DCCA scales to the
number of cliques. Other algorithms, like EnumKOpt (Yuan et al., 2015), optimise this
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part such that not every clique has to be checked. This means that the scalability issue of
DCCA, in relation to the runtime, is not caused by how we implemented DCCA but by
the clique finding algorithm we used. Because of this, DCCA could use another maxi-
mal clique enumeration algorithm or other methods, which optimises the clique finding
for diversity graph problems, such that it can also scale to larger graphs. Therefore, we
believe that our approach of using the encode-process-decode paradigm by encoding
the graph once and then reusing this latent encoding with another network is the right
approach for DTKC and likely other diversity graph problems.

The second sub-question is related to the first question in that it asks how we should
encode the structural information of a graph. To answer this, we looked at what kind
of input features for the nodes we should use. We decided to use a vector of ones as
the input node features, based on the paper of Abe et al. (2019) and other research
(Cui et al., 2021). We showed that this method could work for DTKC. However, these
node features, in combination with the network design of the graph encoder, might have
hindered DCCA from learning how to compose cliques for DTKWC. The main issue
we encountered in answering this sub-question was the lack of research into artificial
node features - especially concerning CO problems. Therefore, we recommend future
research into the topic, which will hugely benefit this research field. To summarise, we
believe to have found a method to encode the structural information for DTKC but not
DTKWC. However, we also think it can be improved.

Our next sub-question asked how well DCCA can generalise and scale to different
graphs. Our literature review mentioned the trade-off between scalability, expressivity,
and generalisation in GNN architectures. We decided to focus first on the expressivity
of the network because of the novelty of DCCA. It was no surprise that DCCA could
not scale and generalise to other graphs. The reason that DCCA could not scale to larger
graphs is for two reasons. The first reason is the previously mentioned reason that we
used the Pivot Bron-Kerbosch algorithm, which finds all the maximal cliques in the in-
put graph. However, this explains only why DCCA would timeout on the largest graphs
and only relates to the runtime. The second reason that it could not scale well to graphs
with more cliques is that it likely could not fully learn the transition function of the
Markov decision process (MDP) because it could not entirely observe the whole state.
This problem of not being able to observe the state entirely is likely also why DCCA
could not generalise well between different graphs. Therefore, we recommended refor-
mulating the MDP as a partially observable Markov decision process (POMDP). This
problem is likely the main reason, why it could not generalise between different. There-
fore, we noted the second and third reasons why it could not generalise well to different
graphs. We believe that the first reason is the essential explanation and that the second
reason is more important than the third, but not the first. The second reason is how we
generated training graphs, in that we used only the dual Barabási–Albert (BA) model.
We based this approach on previous research (Abe et al., 2019; Mazyavkina et al., 2021;
Cappart et al., 2021); however, this research only focused on node-level tasks and not
subgraph-level tasks. Therefore, it is likely that subgraph-level tasks should use other
methods or strategies to generate training graphs. Lastly, we believe the third reason
why DCCA could not generalise well is that it could not learn how valuable a clique
is in a given graph. We noted that two similar graphs could have varying maximal
scores. This variation likely caused DCCA not to be able to learn how valuable a clique
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is in relation to the graph. We do not see other NCO-RL methods having this issue
(Mazyavkina et al., 2021), which can indicate that this is reason is not true or only a
problem for diversity graph problems, such as DTKC and DTKWC. For this reason, we
stated this as our third reason and we believe that our first and second reasons are more
likely to cause this problem. Therefore, we first recommend reformulating the MDP to
a partially observable Markov decision process (POMDP) and designing an algorithm
based on that because this will likely help with both generalisation and scalability. If
this does not improve the generalisation of this algorithm, we recommend trying other
graph generator models or strategies, which we explain in our future research section.
If both these fail, we recommend researching methods to normalise the reward given a
graph. We will give recommendation on all three reasons in our future research section.

We also wanted to know if we could build DCCA to work for different values of
𝑘. Hence, we tested DCCA for 𝑘 = 10, 𝑘 = 30 and 𝑘 = 50 and compared them the
scores of TOPKLS for DTKC and TOPKWCLQ for DTKWC. Our results show that
our algorithm, DCCA, works better for higher values of 𝑘 when we compare DCCA to
previous approaches. We also saw, that when 𝑘 = 50, DCCA could even outperform
previous approaches. We stated that two reasons probably cause this. The first is that
the baseline algorithms, TOPKLS and TOPKWCLQ, perform worse for higher values of
𝑘 because they can search less of the possible clique set combinations when compared
to lower values 𝑘 before they reach the cutoff time. We argued this by showing that the
search space grows with the value of 𝑘. The second reason is that with higher values
of 𝑘, DCCA gets more inputs, which primarily benefits the critic network. However,
we only saw this happening at the one graph set (table 4.5) - whereas DCCA struggled
with the other graph sets (tables 4.6 and 4.7).

In our last sub-research question, we asked if DCCA could work on other diversity
graph problems. We tested it on DTKWC and compared them to the results of TOP-
KWCLQ. The results show that DCCA struggled learning how to compose clique sets
for DTKWC and consequently likely also for other diversity graph problems. We rea-
soned that this is because of the over-smoothing problem, caused by to many layers in
the Graph Encoder network. Nevertheless, we believe that future research can improve
DCCA such that it can work for other diversity graph problems, which we clarify in our
future research section.

Lastly, our main research question asked if a reinforcement learning approach can
provide better results for DTKC. When we look at the score, we can conclude that
DCCA does, but only on a limited amount of graphs and for higher values of 𝑘. If we
compare the run time, DCCA is only faster for smaller graphs because it has to check
every clique in the graph. However, DCCA is the first RL approach for any diversified
graph problem, and we believe future research can improve the results further and help
alleviate the problems of scalability and generalisation.

6.3 Future Research
Our results show that DCCA can learn to compose a clique set for DTKC, which scores
similarly to TOPKLS and even outperforms TOPKLS for some graphs. However, DCCA
can only do this when the evaluation graphs are generated by the dual Barabási–Albert
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model with the same parameters and, therefore, cannot generalise and scale well to
different and larger graphs. Another issue is its scalability to larger graphs because it
has to check every clique in the graph. We found that the scalability problem of the
runtime was not caused by DCCA, but by the use of Pivot Bron-Kerbosch algorithm.
Therefore, we start by making recommendations to solve this problem.

The simplest solution to solve the scalability problem for DTKC is to combine
DCCA with EnumKOpt (Yuan et al., 2015). Utilising EnumKOpt will limit the number
of cliques that DCCA has to check because EnumKOpt prunes non-viable solutions.
DCCA will handle the composition of the clique set. However, this combination would
only work for DTKC and not DTKWC or other diversify graph problems.

Another solution is to create another agent who finds the cliques for DCCA. This
setup would result in a cooperative multi-agent environment where DCCA still func-
tions the same, but the other agent finds the cliques based on the current candidate clique
set (Oroojlooyjadid and Hajinezhad, 2019). Kim et al. (2021) implemented a similar
setup for the travelling salesman problem (TSP), in which one policy tried to find a
solution and another policy tried to improve the found solution. In such an approach,
both agents might be able to share the graph encoder by using the same latent space
 for the clique finding and the clique comparison. We recommend comparing such
an approach to when both agents do not share the graph encoder. However, this agent
will likely face the same problem as DCCA, in that it will not know which cliques are
already seen.

In discussing the results, we argued that one of DCCA main issues is the inability
to learn to predict which cliques are already enumerated and which cliques still need
to be enumerated, which is more noticeable for larger graphs and graphs that are struc-
turally different to the generated graphs. DCCA likely cannot completely observe the
current state, and, therefore, the problem should be formulated as a POMDP (Åström,
Karl Johan, 1965). However, we think that including an RNN would improve the re-
sults of DCCA significantly (Kapturowski et al., 2019). The main argument behind
this hypothesis is that by using an RNN network, DCCA can learn which cliques are
already enumerated and which are not. The input of the RNN could be the coverage of
the clique set with the newfound clique Cov(∪

{

𝐶𝑇
}

). The output of the RNN could
be combined with the input for both the actor and critic networks. We see that other
NCO-RL algorithms also use RNN architectures, mostly for TSP, to encode the state
space (Mazyavkina et al., 2021).

The discussion of the results showed that DCCA could not generalise well between
differently structured graphs. We argued, as our second reason, that this is because of
how generated training graphs. We based our approach for this on previous research
(Abe et al., 2019; Mazyavkina et al., 2021; Cappart et al., 2021). This research showed
that algorithms trained on generated graphs could generalise well to different graphs;
however, all of this research was focused on node-level tasks and, again, not subgraph-
level tasks. Therefore, we believe that using only the dual BA model was not the right
approach for our thesis. Future research could use other graph generation models, such
as those used in community detection research. Examples of these are the Stochastic
Block Model (Holland et al., 1983) or LFR Benchmark algorithm (Lancichinetti et al.,
2008). Other options would be to train future improvements of DCCA on a combination
of different graph generator models. Lastly, we believe another option might be to use
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methods like NetGAN (Bojchevski et al., 2018). NetGAN can generate graphs similar
to real-world graphs and is based on recent breakthroughs with Generative Adversar-
ial Networks and their ability to generate images. One of these proposed approaches
will likely improve DCCA’s ability to generalise between different graphs; however, we
cannot state which is the best candidate. Therefore, we recommend that future research
compares those methods. This comparison will benefit DTKC, other diversity graph
problems and likely other research that needs to generate graphs to train a GNN for
subgraph-level tasks.

In discussion of the results, we stated, as our third reason, that one of the issues
of DCCA is that the maximum score of graph can vary wildly between graphs, even
though those graphs can have the same size. Our reward function does not normalise
the reward, which meant it would be harder for DCCA to learn how valuable a clique is,
given that graph. We stated in section 3.1.1 that either the maximum clique for DTKC
or the maximum weighted clique for DTKWC might be used for normalisation. Never-
theless, this would likely not be beneficial because it limits any future approach to only
DTKC and DTKWC. Moreover, there is no evidence that either the maximum clique or
the maximum weighted clique hold any relation to the maximum score. A solution for
this would be to find another method or value of normalising the reward, by domain-
knowledge of the problem. However, this will likely be infeasible due to DTKC and
other diversity graph problems being NP-Hard, and thus, finding or approximating the
maximum reward by domain-knowledge almost impossible. Another reason we do not
recommend this approach is that each diversity graph problem likely has a different
method or value for the normalisation, while the intent is to have DCCA easily be ex-
tendable to other diversity graph problems. Therefore, we believe that another solution
might be to use adaptive normalisation, such as POP-ART (van Hasselt et al., 2016).
With POP-ART, the agent learns how to scale the reward, which might allow DCCA
to learn how to scale the reward based on the graph. Nevertheless, we want to note
that agents trained with POP-ART performed significantly worse in some tests, accord-
ing to their results. Therefore, it might be necessary to research a similar methods to
POP-ART but that is focused on diversity graph problems.

In our discussion of the runtime, we stated that the usage of the Pivot Bron-Kerbosch
algorithm affected the total run time of DCCA. Due to the scope of this thesis, we did
not have the resources to optimise this; therefore, we believe improving this process
can significantly improve the runtime. Options for this are to rewrite DCCA in C++ or
use another algorithm for finding the cliques, which we described earlier in this section.
However, finding or designing a different maximal clique enumeration algorithm would
need a focused research approach. Therefore, a simple adjustment would be to use
a more optimised version of the Bron-Kerbosch algorithm, such as the algorithm of
Segundo et al. (2018). We also stated that higher values of 𝑘 increased the run time.
One shortcoming of DCCA is that it rechecks every clique at each step of the episode,
which should not be necessary because the output for each clique is independent of the
other cliques. Therefore, we believe this process should be optimised such that it checks
the clique once and then keeps the result in memory until the clique is removed from
the clique set.

Our results showed that DCCA could not learn how to compose a clique set for
DTKWC. We argued that the most probable reason for this is a combination of the
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input features and the network design of the graph encoder, which caused the node’s
weights to be unreadable. However, we still believe DCCA could also function for
DTKWC by adjusting both. The capability of the graph encoder could be enhanced
by using Jumping Knowledge (Xu et al., 2018b). Jumping Knowledge combines the
output of the multiple layers of a GNN as the final output of that GNN. Hence, it should
alleviate the over-smoothing problem, which caused the node’s weight to be unreadable
for DCCA because of five GIN layers. To test if Jumping Knowledge will improve
results, one could first test the GNN network by trying to let it learn the combined
weights of cliques in a supervised manner.

We also believe that the results of DCCA could be improved by adjusting the input
features. We see that the research into adding node features is limited, especially for
graph CO problems (Cappart et al., 2021). Therefore, we strongly recommend research-
ing which node features should be added for graph CO problems. This research could
then act as starting point for research into neural combinatorial optimisation (NCO) to
decide which features to add to which problem.

Aside from the node features, we also noticed the lack of research into subgraph-
level task GNN architectures or embedding methods. The only considerable research
we found into the topic was SubGNN (Alsentzer et al., 2020). This made our research
significantly harder because we had to implement our solution without any meaningful
examples of subgraph-level approaches. Therefore, we believe that research into either
comparing current methods for subgraph-level tasks or finding new methods of encod-
ing subgraphs will benefit DCCA and other future subgraph-level task approaches.

If future research shows that future approaches can compose a clique set for DTKWC.
In that case, these approaches should be tested on other diversity graph problems, such
as the diversity top-𝑘 𝑠-plex problem (Wu and Yin, 2021a) and diversified top-𝑘 sub-
graph querying (Fan et al., 2013). After that, these approaches could be extended to
function on max 𝑘-cover problems. However, to do this would likely require a com-
plete overhaul of the network architecture.

We implemented DCCA using PPO, an actor-critic policy gradient method and saw
its benefits for DTKC. However, PPO and other policy gradient algorithm might not be
the best RL algorithm for DTKC and other diversity graph problems. We, therefore,
recommend also trying to implement DCCA using DQN (Mnih et al., 2013). One of
the main limitations of DQN is that it is only compatible with a discrete action space.
However, this limitation is irrelevant because DTKC and any other diversity graph will
likely always have a discrete action space. Hence, we believe that DQN and its extended
version, such as Rainbow DQN (Hessel et al., 2018), could improve the performance
of future approaches at the cost of increased training time.

Besides DQN, we believe that Neural MCTS might even result in better perfor-
mance than either DQN or PPO. This believe mainly stem from other algorithms that
use neural MCTS. For example, we see neural MCTS being implemented for all kinds of
optimisation problems, ranging from fluid-structure topology optimisation (Gaymann
and Montomoli, 2019) to the bin packing problem (Laterre et al., 2018). Moreover, two
examples stand out for us regarding Neural MCTS. The first is the algorithm by Abe
et al. (2019), on which we based our graph encoder network. One of the problems it
worked for was the maximum clique, which is highly related to DTKC, and showed its
potential to graph problems in combination with GNN. The other example is the algo-
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rithm of Zou et al. (2019), which tried to find the top 𝑘 diverse recommendations from
a database. This algorithm showed the potential of neural MCTS to find a diverse top-𝑘
set.

A lot of research states the promise of neural combinatorial optimisation (NCO) to
function on instances of CO problems that previous algorithms could not because of
the need to abstract the input data or because of non-linear relations in the data. Nev-
ertheless, we do not see any benchmark problems that explicitly test these promised
properties. We already see the promise of this field with the paper of Mirhoseini et al.
(2021), which introduced an RL algorithm that can learn how to design efficient com-
puter chips by formulating it as a CO problem. This problem could act as a benchmark,
but we also recommend adjusting existing CO problems, such as the travelling sales-
man problem (TSP) and DTKC, to have natural inputs or non-linear relations in the
data. These benchmarks should significantly advance this research field because they
will allow better research into solutions that can be applied to the real world and to cases
for which classical CO algorithms cannot be adapted.

6.4 Conclusion
This thesis examined how to use reinforcement learning for the diversified top-𝑘 clique
search problem (DTKC). Our research question asked whether a reinforcement learning
approach will improve the results of DTKC on either the runtime or the score. Deep
Clique Comparison Agent (DCCA), outperformed TOPKLS, a previous approach, on
smaller generated graphs when 𝑘 = 50 but performed significantly worse on larger
generated graphs and real-world graphs and did not work at all for the diversified top-𝑘
weighted clique search problem (DTKWC). Nevertheless, these insights are important
because this is the first time reinforcement learning and deep learning methods are used
for DTKC or any other diversity graph problem. We also presume that DTKC is one of
the most complex combinatorial optimisation problems to which a deep RL approach
is tried for. We showed that a deep RL algorithm could compose a diverse clique set
through the encode-process-decode paradigm. Showing that this paradigm can work
in such an environment might be our most significant contribution to the fields of deep
learning and combinatorial optimisation. It could lessen the problem of scalability that
most deep learning methods currently have in this research field.

In our discussion, we made recommendations for future research, that may help
a future approaches with other diversity graph problems, such as DTKC, and what is
necessary to improve the results with DTKC. We believe that deep RL is the right ap-
proach for DTKC and similar problems, especially for higher values of 𝑘. Lastly, we
expect deep RL algorithms, such as DCCA, to be more useful in domains where the
data consists of natural inputs and can not be abstractified for classical combinatorial
optimisation algorithms.
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Glossary

BA Barabási–Albert. 2, 14, 15, 28, 31, 41, 42, 44, 50, 54, 64, 67, 77, 82, 83, 113, 114,
117, 119, 122, 123, 126, 128, 131, 132, 135, 137, 140, 141, 144, 146

CO combinatorial optimisation. 4, 5, 7, 9, 14–16, 20, 27–31, 80, 82, 86, 87

DCCA Deep Clique Comparison Agent. 1, 2, 5, 13, 14, 31, 33, 34, 36–41, 45–54,
56–61, 63–65, 67–69, 71–74, 76, 80–87, 112, 121

DQN deep Q-Learning. 22, 23, 39, 86
DTKC diversified top-𝑘 clique search problem. 1, 5–8, 12–16, 18, 20, 27–33, 39–41,

46, 47, 49, 50, 64, 77, 78, 80–87, 112, 130
DTKSP diversified top-𝑘 𝑠-plex search problem. 8
DTKSQ diversified top-𝑘 subgraph querying. 8
DTKWC diversified top-𝑘 weighted clique search problem. 1, 8, 11, 13, 14, 18, 27,

31–33, 39, 41, 46, 47, 49, 64, 67, 77, 78, 80–87, 112, 131

ECC enhanced configuration checking. 20, 21
ER Erdős-Rényi. 14, 15, 28, 41

GAE Generalised Advantage Estimation. 24, 46, 47
GAT Graph Attention Networks. 26, 35
GCN Graph Convolutional Networks. 26, 30, 34
GIN Graph Isomorphic Networks. 1, 14, 26, 27, 29, 34, 35, 40, 46, 80, 81, 86
GNN Graph Neural Networks. 11, 12, 14, 26, 27, 29, 39, 40, 82, 86

MC maximum clique problem. 18, 29
MCE maximal clique enumeration. 7, 16, 19, 82, 85
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MCTS Monte Carlo tree search. 9, 22, 26, 29, 30, 39, 86, 87
MDP Markov decision process. 9, 31, 40, 82, 83
MIS maximum independent set problem. 29
MLP multilayer perceptron. 11, 27, 34, 40, 46

NCO neural combinatorial optimisation. 28, 29, 86, 87
NCO-RL neural combinatorial optimisation with reinforcement learning. 28–30, 40,

78, 79, 83, 84

POMDP partially observable Markov decision process. 78, 79, 82–84
PPO Proximal Policy Optimization Algorithms. 1, 14, 22, 24, 25, 30, 33, 36, 39, 40,

86

RL reinforcement learning. 4, 5, 8–10, 13–15, 22, 23, 26, 28–31, 33, 34, 39, 40, 83,
86, 87

TD temporal difference. 10, 23, 24
TRPO Trust Region Proximal Optimization. 24, 25
TSP travelling salesman problem. 4, 5, 15, 16, 29, 84, 87
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Appendix A

Graph Analysis

A.1 The Barabási–Albert model and the Erdős-Rényi
model

A.1.1 The Barabási–Albert model

Value Mean SD Max Min
Mean Clique Size 3.002 0.024 3.12 2.933
SD Clique Size 1.015 0.034 1.148 0.901

Max Clique Size 9.636 0.744 12 8
Number of Cliques 19567.706 134.208 19998 19143

|𝑉 | 1500 0 1500 1500
|𝐸| 22275 0 22275 22275

Mean Degree 29.7 0 29.7 29.7
Table A.1: Generated with BA-model with 𝑛 = 1500 and 𝑚 = 15

Value Mean SD Max Min
Mean Clique Size 4.532 0.068 4.789 4.337
SD Clique Size 1.964 0.08 2.222 1.685

Max Clique Size 15.372 0.971 19 13
Number of Cliques 68180.907 1293.997 73582 64289

|𝑉 | 1500 0 1500 1500
|𝐸| 44100 0 44100 44100

Mean Degree 58.8 0 58.8 58.8
Table A.2: Generated with BA-model with 𝑛 = 1500 and 𝑚 = 20
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A.1.2 The Erdős-Rényi model

Value Mean SD Max Min
Mean Clique Size 2.055 0.003 2.064 2.047
SD Clique Size 0.228 0.006 0.245 0.211

Max Clique Size 3.195 0.396 4 3
Number of Cliques 10240.125 89.244 10557 9955

|𝑉 | 1500 0 1500 1500
|𝐸| 11243.789 107.53 11577 10877

Mean Degree 14.992 0.143 15.436 14.503
Table A.3: Generated with ER-model with 𝑛 = 1500 and 𝑝 = 0.01

Value Mean SD Max Min
Mean Clique Size 2.265 0.006 2.285 2.247
SD Clique Size 0.443 0.003 0.454 0.433

Max Clique Size 4.001 0.032 5 4
Number of Cliques 16800.388 94.103 17055 16465

|𝑉 | 1500 0 1500 1500
|𝐸| 22482.919 151.075 22909 22051

Mean Degree 29.977 0.201 30.545 29.401
Table A.4: Generated with ER-model with 𝑛 = 1500 and 𝑝 = 0.02
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Appendix B

Training Statistics

B.1 Explained Variance
The figures in this section of the appendix show the explained variance during the run.
The explained variance indicates how much of the variance is accounted for in pre-
dicting the value of the state. The most optimal value for the explained variance is 1,
which indicates that the value network explains all the variance. Lower values for the
explained variance indicate issues with the value network.

B.1.1 Diversified Top-𝑘 Clique Search

Figure B.1: The explained variance for 𝑘 = 10
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Figure B.2: The explained variance for 𝑘 = 30

Figure B.3: The explained variance for 𝑘 = 50
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B.1.2 Diversified Top-𝑘 Weighted Clique Search

Figure B.4: The explained variance for 𝑘 = 10

Figure B.5: The explained variance for 𝑘 = 30
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Figure B.6: The explained variance for 𝑘 = 50

B.2 Reward Sum
The figures of the reward sum show the summation of all the rewards for that episode.
Therefore, a higher value is always strictly better.

B.2.1 Diversified Top-𝑘 Clique Search

Figure B.7: The reward sum for 𝑘 = 10
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Figure B.8: The reward sum for 𝑘 = 30

Figure B.9: The reward sum for 𝑘 = 50
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B.2.2 Diversified Top-𝑘 Weighted Clique Search

Figure B.10: The reward sum for 𝑘 = 10

Figure B.11: The reward sum for 𝑘 = 30
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Figure B.12: The reward sum for 𝑘 = 50

B.3 Distribution Entropy
The distribution entropy is the Shannon Entropy (Shannon, 1948) over all the actions
during training. At the start of training, it will be maximal because each action has
an equal probability of being selected. During training, the entropy should gradually
decrease because DCCA becomes more certain about which action is the best given that
state.

B.3.1 Diversified Top-𝑘 Clique Search

Figure B.13: The distribution entropy for 𝑘 = 10
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Figure B.14: The distribution entropy for 𝑘 = 30

Figure B.15: The distribution entropy for 𝑘 = 50
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B.3.2 Diversified Top-𝑘 Weighted Clique Search

Figure B.16: The distribution entropy for 𝑘 = 10

Figure B.17: The distribution entropy for 𝑘 = 30
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Figure B.18: The distribution entropy for 𝑘 = 50
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Appendix C

Results

In this appendix, we show the full results of our experiments. Each compared setup has
its’ section; therefore, we have three sections in this appendix, the results of DCCA-
Same, the results of DCCA-Mix, and the results of TOPKLS or TOPKWCLQ. These
sections are then separated into subsections for each problem: the diversified top-𝑘
clique search problem (DTKC) and diversified top-𝑘 weighted clique search problem
(DTKWC). In each of these subsections, we organise the results by one which evaluation
graph set it was tested.

C.1 DCCA-Same
C.1.1 Diversified top-𝑘 clique search problem
This subsection shows the results of DCCA-Same. We start by explaining what each
result is. In each table, we first note the end and max scores. The end score is the score,
which is either the coverage or the total of the coverage of the returned clique set. The
max score is the highest found score during the run. The following column shows the
percentual difference between the max and end scores, with 0% meaning that the end
and max scores are the same. After that, we show the total runtime and the time at
which the max score was found. Lastly, we show the total number of cliques checked
for that graph and at which step the max score was found.
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Dual Barabási–Albert model - Same Parameters

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 49 50 -2.0% 6.8 2.2 8380 2695
graph_1 41 45 -8.89% 6.85 0.83 8414 1019
graph_2 44 44 0.0% 6.2 1.48 7761 1841
graph_3 46 47 -2.13% 6.23 1.44 7649 1734
graph_4 42 48 -12.5% 6.56 1.16 8035 1414
graph_5 48 50 -4.0% 6.5 1.42 7987 1557
graph_6 45 45 0.0% 6.41 4.78 7938 5964
graph_7 42 42 0.0% 6.45 0.56 7747 653
graph_8 47 47 0.0% 6.21 3.3 7519 3935
graph_9 39 45 -13.33% 7.2 2.38 8885 2909

Table C.1: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 10.

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 101 106 -4.72% 10.52 4.9 8360 3758
graph_1 96 99 -3.03% 10.39 3.12 8394 2509
graph_2 102 105 -2.86% 9.76 5.41 7741 4259
graph_3 95 105 -9.52% 9.53 3.68 7629 2926
graph_4 98 102 -3.92% 10.01 4.96 8015 3917
graph_5 98 104 -5.77% 9.77 5.69 7967 4551
graph_6 99 103 -3.88% 10.05 4.53 7918 3606
graph_7 102 102 0.0% 9.89 8.2 7727 6392
graph_8 99 103 -3.88% 9.39 3.51 7499 2793
graph_9 95 99 -4.04% 11.29 5.98 8865 4654

Table C.2: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 30.
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Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 158 162 -2.47% 13.44 10.5 8340 6509
graph_1 157 162 -3.09% 13.51 12.72 8374 7886
graph_2 155 159 -2.52% 12.84 7.6 7721 4572
graph_3 156 157 -0.64% 12.51 10.52 7609 6386
graph_4 150 153 -1.96% 12.86 10.0 7995 6214
graph_5 152 157 -3.18% 12.99 6.89 7947 4152
graph_6 150 153 -1.96% 12.7 8.0 7898 4970
graph_7 153 154 -0.65% 12.48 11.26 7707 6945
graph_8 152 155 -1.94% 12.08 6.86 7479 4231
graph_9 154 154 0.0% 14.45 13.07 8845 8007

Table C.3: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 50.

Dual Barabási–Albert model - Random Parameters

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 32 56 -42.86% 24.02 10.44 30294 13030
graph_1 37 49 -24.49% 16.41 9.73 20465 12024
graph_2 33 55 -40.0% 29.57 5.1 36592 6349
graph_3 36 53 -32.08% 15.05 7.78 18806 9697
graph_4 48 51 -5.88% 144.21 35.78 176192 43126
graph_5 36 58 -37.93% 47.18 30.78 58984 38193
graph_6 37 45 -17.78% 24.76 4.91 31059 6113
graph_7 46 50 -8.0% 11.49 4.13 14455 5176
graph_8 33 51 -35.29% 33.55 4.0 42128 5004
graph_9 49 51 -3.92% 21.53 15.99 26948 19926

graph_10 40 52 -23.08% 17.53 8.81 21667 10666
graph_11 34 53 -35.85% 56.61 3.3 69759 4089
graph_12 43 44 -2.27% 13.68 10.14 17355 12851
graph_13 41 49 -16.33% 35.35 6.51 43263 8019
graph_14 46 46 0.0% 6.49 2.21 8163 2769

Table C.4: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 10.
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Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 91 92 -1.09% 36.27 33.53 30274 27949
graph_1 99 113 -12.39% 24.46 15.22 20445 12527
graph_2 90 92 -2.17% 43.86 29.87 36572 25130
graph_3 97 97 0.0% 22.37 21.73 18786 18250
graph_4 75 83 -9.64% 213.13 72.71 176172 59854
graph_5 95 99 -4.04% 69.01 51.58 58964 44038
graph_6 89 97 -8.25% 37.31 24.94 31039 20567
graph_7 100 103 -2.91% 17.65 7.85 14435 6109
graph_8 94 99 -5.05% 50.99 34.65 42108 28592
graph_9 108 113 -4.42% 32.25 23.33 26928 19394

graph_10 98 102 -3.92% 25.41 18.88 21647 16020
graph_11 91 95 -4.21% 89.02 48.82 69739 38862
graph_12 97 104 -6.73% 20.66 9.37 17335 7804
graph_13 109 109 0.0% 53.98 47.5 43243 37897
graph_14 109 109 0.0% 9.69 8.0 8143 6705

Table C.5: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 30.

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 151 153 -1.31% 49.7 49.06 30254 29857
graph_1 154 159 -3.14% 32.93 22.69 20425 14059
graph_2 154 159 -3.14% 60.71 49.81 36552 29830
graph_3 153 153 0.0% 31.09 28.34 18766 17061
graph_4 58 75 -22.67% 304.08 1.53 176152 932
graph_5 162 164 -1.22% 96.15 77.95 58944 47624
graph_6 141 148 -4.73% 49.86 26.3 31019 16361
graph_7 149 158 -5.7% 24.01 12.82 14415 7621
graph_8 160 161 -0.62% 69.12 54.55 42088 33245
graph_9 95 95 0.0% 46.11 40.38 26908 23564

graph_10 152 156 -2.56% 35.09 17.67 21627 10838
graph_11 158 172 -8.14% 115.55 62.97 69719 37737
graph_12 152 154 -1.3% 27.93 14.9 17315 9196
graph_13 55 65 -15.38% 75.29 0.0 43223 0
graph_14 149 159 -6.29% 13.14 10.27 8123 6329

Table C.6: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 50.
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Real-World Graphs

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

ca-GrQc 191 207 -7.73% 3.39 3.27 3895 3765
ca-netscience 65 65 0.0% 0.15 0.14 192 183
ia-email-univ 34 39 -12.82% 2.57 1.61 3256 2059

ia-infect-dublin 43 64 -32.81% 0.95 0.28 1236 365
inf-power 44 45 -2.22% 4.63 4.12 5676 5054
rt-retweet 21 21 0.0% 0.07 0.04 88 54

sc-shipsec1 204 220 -7.27% 900.0 121.11 281213 37811
soc-buzznet 27 45 -40.0% 900.0 252.2 383999 106859
socfb-CMU 43 82 -47.56% 900.0 108.31 1020899 124372

tech-RL-caida 26 53 -50.94% 900.0 555.81 214561 132658
tech-WHOIS 64 69 -7.25% 900.0 147.57 1008696 168031

tech-internet-as 31 46 -32.61% 88.58 30.48 69573 24002
tech-routers-rf 27 41 -34.15% 2.83 0.18 3446 219

web-arabic-2005 500 502 -0.4% 372.54 24.41 93433 6129
web-spam 44 66 -33.33% 53.91 2.04 64217 2464

Table C.7: The complete results of the evaluation on the real world graphs with 𝑘 = 10.

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

ca-GrQc 380 382 -0.52% 5.19 5.01 3875 3745
ca-netscience 128 131 -2.29% 0.21 0.2 172 163
ia-email-univ 82 83 -1.2% 4.05 2.54 3236 2034

ia-infect-dublin 113 114 -0.88% 1.46 1.03 1216 868
inf-power 82 96 -14.58% 7.01 4.56 5656 3684
rt-retweet 33 43 -23.26% 0.08 0.01 68 2

sc-shipsec1 337 432 -21.99% 900.0 218.48 196485 47827
soc-buzznet 39 54 -27.78% 900.0 393.07 246995 106839
socfb-CMU 85 140 -39.29% 900.0 739.2 647201 529998

tech-RL-caida 62 75 -17.33% 900.0 793.6 150413 132638
tech-WHOIS 29 96 -69.79% 900.0 49.82 679691 37481

tech-internet-as 88 98 -10.2% 134.7 58.84 69553 30703
tech-routers-rf 68 84 -19.05% 4.26 0.21 3426 172

web-arabic-2005 1294 1420 -8.87% 497.4 63.22 93413 12100
web-spam 73 102 -28.43% 82.16 3.07 64197 2445

Table C.8: The complete results of the evaluation on the real world graphs with 𝑘 = 30.
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Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

ca-GrQc 507 524 -3.24% 6.83 6.59 3855 3725
ca-netscience 185 185 0.0% 0.25 0.24 152 151
ia-email-univ 121 121 0.0% 5.3 4.05 3216 2454

ia-infect-dublin 122 124 -1.61% 1.93 0.69 1196 428
inf-power 146 148 -1.35% 9.25 8.19 5636 4993
rt-retweet 55 64 -14.06% 0.08 0.0 48 0

sc-shipsec1 549 578 -5.02% 900.0 302.68 148161 49884
soc-buzznet 39 61 -36.07% 900.0 602.58 185084 123727
socfb-CMU 159 209 -23.92% 900.0 367.69 501539 202106

tech-RL-caida 93 96 -3.12% 900.01 100.81 119957 13490
tech-WHOIS 60 104 -42.31% 900.0 66.49 502736 37439

tech-internet-as 48 101 -52.48% 185.85 3.52 69533 1337
tech-routers-rf 89 125 -28.8% 5.62 1.54 3406 941

web-arabic-2005 2488 2578 -3.49% 690.79 531.74 93393 72131
web-spam 132 138 -4.35% 110.07 62.91 64177 36634

Table C.9: The complete results of the evaluation on the real world graphs with 𝑘 = 50.

C.1.2 Diversified top-𝑘 weighted clique search problem
Dual Barabási–Albert model - Same Parameters

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 264 277 -4.69% 7.04 1.91 8380 2271
graph_1 213 265 -19.62% 6.99 0.94 8414 1134
graph_2 262 262 0.0% 6.41 2.89 7761 3479
graph_3 246 260 -5.38% 6.43 2.0 7649 2345
graph_4 226 226 0.0% 6.78 2.32 8035 2741
graph_5 279 288 -3.12% 6.72 0.81 7987 782
graph_6 201 231 -12.99% 6.54 0.54 7938 653
graph_7 253 265 -4.53% 6.64 1.28 7747 1470
graph_8 251 251 0.0% 6.33 3.35 7519 3935
graph_9 231 317 -27.13% 7.43 2.96 8885 3535

Table C.10: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 10.
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Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 567 567 0.0% 10.6 10.34 8360 8158
graph_1 525 567 -7.41% 10.61 3.14 8394 2478
graph_2 511 586 -12.8% 9.81 3.31 7741 2605
graph_3 497 587 -15.33% 9.63 3.71 7629 2926
graph_4 516 539 -4.27% 10.17 4.51 8015 3557
graph_5 584 601 -2.83% 10.18 6.72 7967 5212
graph_6 516 539 -4.27% 10.01 3.25 7918 2576
graph_7 541 602 -10.13% 9.92 4.56 7727 3505
graph_8 566 605 -6.45% 9.48 3.51 7499 2772
graph_9 548 583 -6.0% 11.25 3.77 8865 2977

Table C.11: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 30.

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 861 861 0.0% 14.08 13.95 8340 8265
graph_1 804 865 -7.05% 14.33 10.34 8374 6040
graph_2 822 865 -4.97% 13.05 5.19 7721 3069
graph_3 801 812 -1.35% 12.9 6.92 7609 4080
graph_4 843 850 -0.82% 13.55 12.32 7995 7289
graph_5 836 839 -0.36% 13.87 10.67 7947 6080
graph_6 838 840 -0.24% 13.23 12.88 7898 7689
graph_7 892 906 -1.55% 12.91 10.04 7707 5997
graph_8 835 849 -1.65% 12.77 7.68 7479 4572
graph_9 805 845 -4.73% 15.1 8.24 8845 4834

Table C.12: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 50.
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Dual Barabási–Albert model - Random Parameters

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 286 337 -15.13% 26.4 11.71 30294 13448
graph_1 206 260 -20.77% 16.85 7.59 20465 9227
graph_2 282 307 -8.14% 30.48 15.66 36592 18752
graph_3 252 275 -8.36% 15.89 0.51 18806 613
graph_4 241 323 -25.39% 149.6 22.17 176192 26255
graph_5 313 367 -14.71% 48.77 34.69 58984 41918
graph_6 218 287 -24.04% 25.78 5.62 31059 6656
graph_7 277 295 -6.1% 11.94 3.98 14455 4779
graph_8 260 284 -8.45% 35.47 16.87 42128 20125
graph_9 257 257 0.0% 22.56 16.68 26948 19926

graph_10 259 274 -5.47% 18.26 8.92 21667 10317
graph_11 215 286 -24.83% 58.39 3.62 69759 4343
graph_12 204 240 -15.0% 14.42 2.96 17355 3540
graph_13 210 350 -40.0% 37.4 0.88 43263 1045
graph_14 236 243 -2.88% 6.72 1.59 8163 1937

Table C.13: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 10.

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 492 525 -6.29% 38.21 21.66 30274 17071
graph_1 528 573 -7.85% 25.56 7.74 20445 6152
graph_2 502 540 -7.04% 48.17 38.64 36572 29656
graph_3 521 554 -5.96% 23.71 14.01 18786 11047
graph_4 326 425 -23.29% 228.42 0.56 176172 442
graph_5 528 559 -5.55% 75.07 55.46 58964 43621
graph_6 449 546 -17.77% 39.52 24.43 31039 19106
graph_7 472 592 -20.27% 18.28 5.72 14435 4489
graph_8 511 587 -12.95% 53.04 35.9 42108 28542
graph_9 629 655 -3.97% 34.21 26.5 26928 20872

graph_10 534 596 -10.4% 27.81 14.05 21647 10884
graph_11 501 541 -7.39% 88.7 44.09 69739 34594
graph_12 481 581 -17.21% 21.77 10.32 17335 8229
graph_13 290 323 -10.22% 57.13 14.77 43243 11455
graph_14 566 596 -5.03% 10.24 5.98 8143 4736

Table C.14: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 30.

119



Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 850 857 -0.82% 51.16 50.5 30254 29857
graph_1 874 895 -2.35% 34.48 28.22 20425 16685
graph_2 733 799 -8.26% 61.54 42.4 36552 25220
graph_3 798 849 -6.01% 31.7 20.76 18766 12269
graph_4 196 391 -49.87% 303.5 0.02 176152 11
graph_5 814 818 -0.49% 100.41 88.96 58944 52268
graph_6 811 860 -5.7% 52.54 39.09 31019 23064
graph_7 778 859 -9.43% 24.35 16.47 14415 9759
graph_8 601 636 -5.5% 71.39 7.02 42088 4187
graph_9 900 900 0.0% 45.65 41.84 26908 24672

graph_10 814 846 -3.78% 37.19 26.2 21627 15246
graph_11 229 367 -37.6% 118.66 0.02 69719 12
graph_12 791 877 -9.81% 29.73 13.79 17315 8075
graph_13 261 360 -27.5% 74.76 0.0 43223 1
graph_14 883 891 -0.9% 13.56 8.25 8123 4946

Table C.15: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 50.

Real-World Graphs

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

ca-GrQc 1142 1249 -8.57% 3.83 3.69 3895 3765
ca-netscience 352 352 0.0% 0.15 0.15 192 183
ia-email-univ 158 197 -19.8% 2.78 1.7 3256 2032

ia-infect-dublin 370 371 -0.27% 1.08 0.55 1236 641
inf-power 196 196 0.0% 4.72 4.21 5676 5069
rt-retweet 142 142 0.0% 0.07 0.05 88 66

sc-shipsec1 1082 1151 -5.99% 900.0 158.17 280958 49924
soc-buzznet 90 190 -52.63% 900.0 3.72 384235 1537
socfb-CMU 238 328 -27.44% 900.0 680.83 1017588 769463

tech-RL-caida 143 332 -56.93% 900.0 559.33 212953 132650
tech-WHOIS 309 326 -5.21% 900.0 97.59 1009925 110874

tech-internet-as 190 231 -17.75% 90.64 42.16 69573 32380
tech-routers-rf 266 267 -0.37% 2.94 0.42 3446 493

web-arabic-2005 2706 2927 -7.55% 365.21 23.58 93433 6100
web-spam 218 373 -41.55% 55.82 2.12 64217 2464

Table C.16: The complete results of the evaluation on the real world graphs with 𝑘 = 10.
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Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

ca-GrQc 2220 2293 -3.18% 5.94 5.73 3875 3745
ca-netscience 808 813 -0.62% 0.21 0.21 172 171
ia-email-univ 430 490 -12.24% 3.99 2.46 3236 2012

ia-infect-dublin 531 616 -13.8% 1.52 0.76 1216 621
inf-power 590 590 0.0% 7.31 6.53 5656 5062
rt-retweet 350 350 0.0% 0.08 0.07 68 57

sc-shipsec1 1740 2493 -30.2% 900.0 234.92 188322 49904
soc-buzznet 227 288 -21.18% 900.0 381.03 253840 106881
socfb-CMU 463 503 -7.95% 900.0 59.83 635415 42125

tech-RL-caida 438 495 -11.52% 900.0 796.11 149956 132630
tech-WHOIS 376 560 -32.86% 900.0 205.5 615418 147671

tech-internet-as 181 388 -53.35% 135.17 2.8 69553 1444
tech-routers-rf 353 461 -23.43% 4.38 0.19 3426 154

web-arabic-2005 7240 7792 -7.08% 564.19 36.16 93413 6213
web-spam 369 661 -44.18% 85.25 3.21 64197 2445

Table C.17: The complete results of the evaluation on the real world graphs with 𝑘 = 30.

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

ca-GrQc 2930 2998 -2.27% 8.13 7.85 3855 3725
ca-netscience 1150 1150 0.0% 0.25 0.25 152 152
ia-email-univ 724 729 -0.69% 5.24 5.05 3216 3104

ia-infect-dublin 665 751 -11.45% 2.02 0.82 1196 485
inf-power 743 856 -13.2% 10.45 6.59 5636 3512
rt-retweet 447 462 -3.25% 0.08 0.07 48 43

sc-shipsec1 2960 3466 -14.6% 900.0 382.01 137663 58577
soc-buzznet 227 310 -26.77% 900.0 519.31 185889 106819
socfb-CMU 442 521 -15.16% 900.0 78.64 454513 42095

tech-RL-caida 615 641 -4.06% 900.0 843.48 117826 110540
tech-WHOIS 394 583 -32.42% 900.0 326.03 448021 167937

tech-internet-as 231 462 -50.0% 186.18 0.03 69533 9
tech-routers-rf 488 674 -27.6% 5.77 0.53 3406 322

web-arabic-2005 14480 14972 -3.29% 802.15 617.13 93393 72131
web-spam 640 881 -27.36% 115.58 4.21 64177 2430

Table C.18: The complete results of the evaluation on the real world graphs with 𝑘 = 50.

C.2 DCCA-Mix
This subsection shows the results of DCCA-Mix. How we conducted the experiments
for DCCA-Mix is the same as for DCCA-Same. Therefore, the explanation of each
column is the same as in subsection C.1.

121



C.2.1 Diversified top-𝑘 clique search problem
Dual Barabási–Albert model - Same Parameters

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 24 36 -33.33% 6.83 0.17 8380 211
graph_1 18 31 -41.94% 6.78 0.82 8414 1019
graph_2 23 36 -36.11% 6.25 0.16 7761 197
graph_3 25 33 -24.24% 6.23 0.15 7649 182
graph_4 22 32 -31.25% 6.46 0.52 8035 641
graph_5 29 36 -19.44% 6.59 0.25 7987 119
graph_6 19 30 -36.67% 6.36 0.18 7938 226
graph_7 21 28 -25.0% 6.4 0.43 7747 495
graph_8 23 32 -28.12% 6.03 0.07 7519 87
graph_9 25 32 -21.88% 7.21 0.02 8885 24

Table C.19: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 10.

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 88 89 -1.12% 9.81 6.37 8360 5425
graph_1 62 82 -24.39% 9.91 3.05 8394 2510
graph_2 94 94 0.0% 9.05 5.42 7741 4627
graph_3 73 84 -13.1% 9.04 5.87 7629 4926
graph_4 85 86 -1.16% 9.37 2.68 8015 2282
graph_5 100 100 0.0% 9.42 7.97 7967 6716
graph_6 90 90 0.0% 9.26 6.97 7918 5944
graph_7 91 91 0.0% 9.32 3.37 7727 2789
graph_8 91 91 0.0% 8.89 4.46 7499 3819
graph_9 100 100 0.0% 10.47 8.58 8865 7270

Table C.20: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 30.
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Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 163 165 -1.21% 13.62 11.24 8340 6879
graph_1 148 151 -1.99% 13.67 8.06 8374 4933
graph_2 157 157 0.0% 12.6 10.91 7721 6680
graph_3 153 162 -5.56% 12.5 8.71 7609 5261
graph_4 159 159 0.0% 13.03 7.33 7995 4481
graph_5 158 158 0.0% 12.93 9.93 7947 6080
graph_6 151 154 -1.95% 12.85 8.09 7898 4970
graph_7 161 161 0.0% 12.35 12.29 7707 7673
graph_8 158 158 0.0% 12.16 8.74 7479 5372
graph_9 148 151 -1.99% 14.37 9.99 8845 6118

Table C.21: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 50.

Dual Barabási–Albert model - Random Parameters

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 41 53 -22.64% 24.53 0.6 30294 747
graph_1 41 51 -19.61% 16.04 15.07 20465 19230
graph_2 48 55 -12.73% 29.29 6.41 36592 8047
graph_3 32 43 -25.58% 15.05 0.41 18806 458
graph_4 53 64 -17.19% 143.41 34.9 176192 43236
graph_5 44 52 -15.38% 47.25 14.17 58984 17669
graph_6 46 50 -8.0% 24.8 4.89 31059 6113
graph_7 32 43 -25.58% 11.49 0.48 14455 604
graph_8 44 52 -15.38% 33.85 0.72 42128 887
graph_9 30 38 -21.05% 21.64 11.48 26948 14355

graph_10 49 58 -15.52% 17.39 1.67 21667 1978
graph_11 55 57 -3.51% 55.66 26.55 69759 33230
graph_12 43 47 -8.51% 13.78 3.48 17355 4368
graph_13 43 49 -12.24% 35.52 0.84 43263 1042
graph_14 28 37 -24.32% 6.43 0.08 8163 96

Table C.22: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 10.
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Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 109 114 -4.39% 36.27 16.21 30274 13486
graph_1 83 97 -14.43% 24.22 2.01 20445 1729
graph_2 115 116 -0.86% 43.66 35.02 36572 29271
graph_3 111 111 0.0% 22.44 19.45 18786 16332
graph_4 102 103 -0.97% 209.97 173.55 176172 145729
graph_5 115 120 -4.17% 70.37 65.06 58964 54419
graph_6 99 109 -9.17% 36.94 18.99 31039 16011
graph_7 69 98 -29.59% 16.98 7.48 14435 6414
graph_8 98 109 -10.09% 50.08 29.34 42108 24540
graph_9 50 60 -16.67% 32.7 0.02 26928 16

graph_10 106 114 -7.02% 25.3 10.88 21647 9329
graph_11 104 114 -8.77% 82.2 39.4 69739 33388
graph_12 102 104 -1.92% 20.47 7.37 17335 6165
graph_13 52 59 -11.86% 53.99 1.55 43243 1255
graph_14 53 62 -14.52% 9.81 0.1 8143 81

Table C.23: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 30.

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 143 148 -3.38% 47.61 21.84 30254 13665
graph_1 158 165 -4.24% 31.44 18.47 20425 11984
graph_2 143 155 -7.74% 57.22 40.15 36552 25595
graph_3 153 155 -1.29% 29.35 19.14 18766 12254
graph_4 136 140 -2.86% 280.6 259.74 176152 163266
graph_5 157 158 -0.63% 92.27 74.71 58944 47524
graph_6 143 149 -4.03% 48.33 29.16 31019 18647
graph_7 154 154 0.0% 23.24 22.01 14415 13648
graph_8 151 152 -0.66% 65.48 51.39 42088 33016
graph_9 159 160 -0.62% 43.17 33.6 26908 20842

graph_10 159 159 0.0% 33.84 23.98 21627 15278
graph_11 152 162 -6.17% 111.51 59.27 69719 37576
graph_12 155 158 -1.9% 26.94 12.64 17315 8075
graph_13 150 151 -0.66% 70.19 58.17 43223 35601
graph_14 156 158 -1.27% 12.73 11.65 8123 7426

Table C.24: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 50.
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Real-World Graphs

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

ca-GrQc 191 208 -8.17% 3.38 3.26 3895 3765
ca-netscience 62 62 0.0% 0.15 0.14 192 179
ia-email-univ 34 40 -15.0% 2.66 1.65 3256 2059

ia-infect-dublin 42 54 -22.22% 1.01 0.3 1236 365
inf-power 28 39 -28.21% 4.59 4.07 5676 5038
rt-retweet 19 19 0.0% 0.07 0.03 88 37

sc-shipsec1 98 168 -41.67% 900.0 159.58 280791 49924
soc-buzznet 28 45 -37.78% 900.0 250.83 385146 107311
socfb-CMU 55 73 -24.66% 900.0 223.24 1050548 260384

tech-RL-caida 25 47 -46.81% 900.0 551.09 216080 132658
tech-WHOIS 51 68 -25.0% 900.0 0.83 1053040 759

tech-internet-as 36 41 -12.2% 88.52 71.37 69573 56227
tech-routers-rf 26 41 -36.59% 2.78 0.18 3446 219

web-arabic-2005 439 466 -5.79% 372.48 5.35 93433 1344
web-spam 44 52 -15.38% 53.73 2.03 64217 2464

Table C.25: The complete results of the evaluation on the real world graphs with 𝑘 = 10.

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

ca-GrQc 380 393 -3.31% 5.3 5.11 3875 3745
ca-netscience 144 144 0.0% 0.2 0.2 172 171
ia-email-univ 89 91 -2.2% 4.06 2.48 3236 2012

ia-infect-dublin 97 107 -9.35% 1.51 1.06 1216 868
inf-power 115 115 0.0% 6.97 6.22 5656 5049
rt-retweet 51 53 -3.77% 0.08 0.06 68 46

sc-shipsec1 479 496 -3.43% 900.0 617.81 197041 135373
soc-buzznet 37 51 -27.45% 900.0 395.61 246570 107297
socfb-CMU 73 119 -38.66% 900.0 343.83 674661 260363

tech-RL-caida 65 88 -26.14% 900.01 793.76 150380 132638
tech-WHOIS 33 96 -65.62% 900.0 49.56 675493 37472

tech-internet-as 88 107 -17.76% 132.23 34.69 69553 18201
tech-routers-rf 67 84 -20.24% 4.25 0.24 3426 199

web-arabic-2005 1709 1759 -2.84% 500.35 384.98 93413 72151
web-spam 81 97 -16.49% 82.18 3.07 64197 2449

Table C.26: The complete results of the evaluation on the real world graphs with 𝑘 = 30.
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Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

ca-GrQc 500 517 -3.29% 7.03 6.79 3855 3725
ca-netscience 207 207 0.0% 0.24 0.24 152 152
ia-email-univ 129 129 0.0% 5.2 3.96 3216 2454

ia-infect-dublin 123 128 -3.91% 1.97 0.79 1196 482
inf-power 146 160 -8.75% 9.31 8.25 5636 4998
rt-retweet 73 74 -1.35% 0.08 0.07 48 43

sc-shipsec1 554 582 -4.81% 900.0 776.62 145994 126013
soc-buzznet 39 56 -30.36% 900.0 482.15 185709 98743
socfb-CMU 173 250 -30.8% 900.0 482.06 490594 260343

tech-RL-caida 81 96 -15.62% 900.0 78.46 117373 10136
tech-WHOIS 55 88 -37.5% 900.0 1.53 504799 743

tech-internet-as 68 112 -39.29% 186.23 3.38 69533 1271
tech-routers-rf 91 118 -22.88% 5.81 1.32 3406 798

web-arabic-2005 2550 2550 0.0% 697.03 665.67 93393 89157
web-spam 143 146 -2.05% 111.68 40.38 64177 23557

Table C.27: The complete results of the evaluation on the real world graphs with 𝑘 = 50.

C.2.2 Diversified top-𝑘 weighted clique search problem
Dual Barabási–Albert model - Same Parameters

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 153 223 -31.39% 6.79 0.17 8380 209
graph_1 137 208 -34.13% 6.81 0.75 8414 932
graph_2 132 199 -33.67% 6.28 0.12 7761 153
graph_3 154 179 -13.97% 6.26 0.23 7649 287
graph_4 120 152 -21.05% 6.5 0.52 8035 642
graph_5 166 243 -31.69% 6.54 0.22 7987 85
graph_6 119 185 -35.68% 6.37 0.19 7938 232
graph_7 155 215 -27.91% 6.29 0.42 7747 495
graph_8 174 208 -16.35% 6.05 0.11 7519 131
graph_9 202 245 -17.55% 7.27 0.74 8885 906

Table C.28: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 10.
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Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 564 567 -0.53% 10.92 10.64 8360 8147
graph_1 526 536 -1.87% 10.74 7.34 8394 5707
graph_2 544 551 -1.27% 10.01 8.27 7741 6391
graph_3 498 551 -9.62% 9.64 5.17 7629 4100
graph_4 524 550 -4.73% 10.48 5.11 8015 3917
graph_5 625 669 -6.58% 10.42 6.86 7967 5192
graph_6 539 539 0.0% 10.28 8.91 7918 6865
graph_7 588 614 -4.23% 10.03 6.45 7727 4948
graph_8 566 585 -3.25% 9.68 3.87 7499 2990
graph_9 549 575 -4.52% 11.29 5.95 8865 4636

Table C.29: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 30.

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 879 883 -0.45% 14.64 14.07 8340 8001
graph_1 850 850 0.0% 14.33 14.29 8374 8352
graph_2 807 849 -4.95% 12.97 9.72 7721 5778
graph_3 827 896 -7.7% 14.05 8.12 7609 4380
graph_4 823 823 0.0% 13.8 13.46 7995 7805
graph_5 878 878 0.0% 13.27 12.99 7947 7778
graph_6 839 848 -1.06% 14.11 13.78 7898 7717
graph_7 922 935 -1.39% 13.27 9.29 7707 5413
graph_8 883 883 0.0% 12.53 12.32 7479 7355
graph_9 830 872 -4.82% 15.66 8.48 8845 4834

Table C.30: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 50.
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Dual Barabási–Albert model - Random Parameters

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 179 284 -36.97% 25.31 10.11 30294 11904
graph_1 184 233 -21.03% 16.74 5.04 20465 6159
graph_2 169 258 -34.5% 30.58 14.61 36592 17240
graph_3 181 249 -27.31% 15.75 0.47 18806 559
graph_4 158 234 -32.48% 146.36 112.8 176192 135289
graph_5 209 322 -35.09% 48.59 29.31 58984 35197
graph_6 138 254 -45.67% 25.74 5.5 31059 6656
graph_7 163 272 -40.07% 12.03 3.27 14455 3941
graph_8 176 273 -35.53% 35.46 18.36 42128 21550
graph_9 209 258 -18.99% 22.66 0.38 26948 453

graph_10 227 258 -12.02% 18.43 4.58 21667 5257
graph_11 134 226 -40.71% 58.14 26.84 69759 32002
graph_12 216 261 -17.24% 14.48 2.44 17355 2954
graph_13 387 402 -3.73% 37.76 31.41 43263 36014
graph_14 137 214 -35.98% 6.74 0.09 8163 103

Table C.31: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 10.

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 479 601 -20.3% 39.32 13.28 30274 10185
graph_1 533 571 -6.65% 25.86 8.64 20445 6815
graph_2 495 562 -11.92% 46.42 25.11 36572 19753
graph_3 507 604 -16.06% 24.02 14.78 18786 11467
graph_4 453 554 -18.23% 226.67 174.21 176172 135493
graph_5 506 609 -16.91% 74.69 49.5 58964 38913
graph_6 448 548 -18.25% 39.15 8.8 31039 6963
graph_7 481 586 -17.92% 18.25 6.27 14435 4951
graph_8 503 555 -9.37% 53.97 28.67 42108 22295
graph_9 326 336 -2.98% 34.68 0.06 26928 48

graph_10 525 592 -11.32% 27.78 9.37 21647 7263
graph_11 472 537 -12.1% 90.3 44.86 69739 34594
graph_12 528 571 -7.53% 21.97 11.03 17335 8690
graph_13 521 521 0.0% 57.03 49.65 43243 37655
graph_14 294 343 -14.29% 10.25 0.1 8143 81

Table C.32: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 30.
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Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

graph_0 798 834 -4.32% 52.32 18.57 30254 10880
graph_1 863 935 -7.7% 35.65 22.94 20425 13169
graph_2 724 845 -14.32% 61.82 33.78 36552 19876
graph_3 837 862 -2.9% 32.74 19.41 18766 11418
graph_4 761 868 -12.33% 302.58 232.74 176152 136531
graph_5 849 894 -5.03% 100.3 82.85 58944 48547
graph_6 786 841 -6.54% 52.56 35.06 31019 21316
graph_7 817 833 -1.92% 24.9 10.98 14415 6394
graph_8 791 840 -5.83% 73.84 57.82 42088 33016
graph_9 662 673 -1.63% 47.53 41.61 26908 23672

graph_10 834 900 -7.33% 35.55 25.33 21627 15478
graph_11 802 861 -6.85% 117.75 60.64 69719 36878
graph_12 852 873 -2.41% 29.85 14.25 17315 8230
graph_13 920 920 0.0% 76.02 75.95 43223 43184
graph_14 795 795 0.0% 13.87 13.83 8123 8100

Table C.33: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 50.

Real-World Graphs

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

ca-GrQc 1142 1239 -7.83% 3.95 3.81 3895 3765
ca-netscience 330 336 -1.79% 0.15 0.14 192 179
ia-email-univ 158 193 -18.13% 2.57 1.61 3256 2059

ia-infect-dublin 231 240 -3.75% 1.05 0.05 1236 55
inf-power 162 185 -12.43% 4.71 0.11 5676 137
rt-retweet 130 130 0.0% 0.07 0.05 88 66

sc-shipsec1 560 890 -37.08% 900.0 82.39 288251 26478
soc-buzznet 169 255 -33.73% 900.0 353.55 377722 148063
socfb-CMU 211 328 -35.67% 900.0 511.89 1013147 576615

tech-RL-caida 141 265 -46.79% 900.0 557.96 213625 132650
tech-WHOIS 316 327 -3.36% 900.0 97.72 1014030 110873

tech-internet-as 267 302 -11.59% 90.87 48.86 69573 37241
tech-routers-rf 225 225 0.0% 2.89 0.22 3446 264

web-arabic-2005 2098 2386 -12.07% 357.55 4.15 93433 1109
web-spam 218 342 -36.26% 55.37 2.11 64217 2464

Table C.34: The complete results of the evaluation on the real world graphs with 𝑘 = 10.
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Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

ca-GrQc 2220 2293 -3.18% 6.1 5.87 3875 3745
ca-netscience 798 814 -1.97% 0.21 0.2 172 163
ia-email-univ 422 479 -11.9% 4.05 2.53 3236 2034

ia-infect-dublin 521 576 -9.55% 1.51 0.76 1216 621
inf-power 419 478 -12.34% 7.34 4.78 5656 3683
rt-retweet 202 270 -25.19% 0.08 0.01 68 4

sc-shipsec1 1771 2511 -29.47% 900.01 230.38 184694 47827
soc-buzznet 193 320 -39.69% 900.0 210.11 250692 58882
socfb-CMU 517 720 -28.19% 900.0 358.39 649487 260363

tech-RL-caida 364 528 -31.06% 900.0 761.66 148926 126196
tech-WHOIS 345 438 -21.23% 900.0 1.21 657896 759

tech-internet-as 390 592 -34.12% 140.35 35.21 69553 17508
tech-routers-rf 420 474 -11.39% 4.43 0.25 3426 198

web-arabic-2005 9099 9210 -1.21% 600.55 460.73 93413 72151
web-spam 369 639 -42.25% 86.33 3.23 64197 2445

Table C.35: The complete results of the evaluation on the real world graphs with 𝑘 = 30.

Graph Score
End

Score
Max

Difference
Percentage

Run
Time

Max Score
Found Time

Total
Step

Max Score
Found Step

ca-GrQc 2893 2976 -2.79% 8.36 8.07 3855 3725
ca-netscience 1128 1137 -0.79% 0.27 0.25 152 143
ia-email-univ 677 694 -2.45% 5.78 5.45 3216 3027

ia-infect-dublin 665 749 -11.21% 2.0 0.8 1196 482
inf-power 743 843 -11.86% 9.87 8.75 5636 5000
rt-retweet 423 436 -2.98% 0.08 0.06 48 37

sc-shipsec1 3084 3256 -5.28% 900.0 500.11 141546 79259
soc-buzznet 235 326 -27.91% 900.0 610.66 182801 123727
socfb-CMU 784 1074 -27.0% 900.0 509.21 458015 260343

tech-RL-caida 541 590 -8.31% 900.01 858.91 115725 110532
tech-WHOIS 326 473 -31.08% 900.0 1.73 474851 743

tech-internet-as 697 936 -25.53% 196.25 50.19 69533 17491
tech-routers-rf 492 661 -25.57% 6.42 0.55 3406 322

web-arabic-2005 13860 14282 -2.95% 799.37 604.71 93393 71392
web-spam 715 767 -6.78% 121.69 4.54 64177 2431

Table C.36: The complete results of the evaluation on the real world graphs with 𝑘 = 50.

C.3 TOPKLS and TOPKWCLQ
The results of TOPKLS and TOPKWCLQ are the mean results of five runs. In the
score columns, we show the mean, standard deviation and the highest score of the five
runs. The score is either the length of the coverage, for DTKC, or the summation of the
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weights in the coverage, for DTKWC. The time found column, notes how long it took
for the best scoring set was found in the run. Again, we state the mean and standard
deviation. Lastly, we state the mean and standard deviation step this set was found. The
results of the different cutoff times, 600 seconds and 60 seconds, will be seperated into
different subsections.

C.3.1 Diversified top-𝑘 clique search problem (TOPKLS) with a
cutoff time of 600 seconds

Dual Barabási–Albert model - Same Parameters

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 51.2 0.4 52 165.36 93.76 25159117.8 14282260.89
graph_1 48.4 0.49 49 206.43 176.14 29462900.2 24948414.37
graph_2 49.8 0.4 50 227.88 222.09 35840439.0 34938968.31
graph_3 52.0 0 52 243.88 135.65 36329709.6 19989814.39
graph_4 50.2 0.4 51 183.65 176.44 26152345.6 23909695.33
graph_5 54.2 0.4 55 186.14 167.07 27958128.8 25025605.08
graph_6 47.0 0 47 33.49 39.65 4768548.8 5558120.02
graph_7 46.4 0.49 47 32.88 27.39 4909558.6 4213456.18
graph_8 46.8 0.4 47 125.68 102.17 19183496.6 15688657.32
graph_9 52.4 0.49 53 71.59 78.29 10348784.8 11216604.95

Table C.37: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 10.

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 110.0 0.63 111 290.29 205.98 33354386.0 23631787.59
graph_1 108.0 0 108 179.81 130.99 20557752.0 14581950.56
graph_2 108.4 0.49 109 128.18 120.41 15201800.8 14308033.88
graph_3 109.8 0.75 111 155.58 127.04 18360842.4 14984248.16
graph_4 109.0 0 109 107.2 70.07 12456872.2 8148009.68
graph_5 113.0 0 113 349.76 156.07 39800915.0 17776516.2
graph_6 106.4 0.49 107 137.59 136.06 15941719.2 15746009.69
graph_7 105.8 0.4 106 64.51 35.56 7662446.4 4225516.95
graph_8 105.0 0 105 87.01 77.35 10206079.6 9243104.1
graph_9 111.2 0.4 112 213.53 192.97 24812186.6 22469568.42

Table C.38: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 30.
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Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 158.0 1.26 160 333.77 200.45 31222696.2 18489600.47
graph_1 159.8 0.98 161 231.72 165.14 21652276.4 15413220.01
graph_2 157.4 0.8 159 233.5 196.57 22903505.6 19252516.18
graph_3 154.2 0.4 155 256.28 219.74 24224329.6 20643037.98
graph_4 157.6 0.49 158 312.82 127.57 29278547.4 12025348.34
graph_5 160.8 1.47 163 263.6 216.23 24099234.6 20027091.97
graph_6 157.2 0.75 158 341.48 149.63 33267202.2 14608211.35
graph_7 155.8 0.4 156 167.95 77.39 16241257.0 7589953.67
graph_8 151.4 0.8 152 151.27 120.14 14960969.2 12061524.95
graph_9 159.4 1.02 161 244.11 193.23 22612961.8 17848551.42

Table C.39: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 50.

Dual Barabási–Albert model - Random Parameters

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 68.6 0.8 70 217.57 167.29 27912751.0 21535654.06
graph_1 60.0 0 60 202.54 158.66 18945901.4 14951978.91
graph_2 70.0 0.63 71 255.76 104.47 33344455.8 13438415.31
graph_3 60.8 0.75 62 209.99 185.94 32349827.0 28733748.62
graph_4 85.2 1.17 87 160.02 109.65 18328167.8 12604613.25
graph_5 74.0 0 74 232.04 87.92 27436623.2 10357948.83
graph_6 59.6 0.8 61 221.99 168.15 19311842.6 14628465.51
graph_7 57.4 0.49 58 188.32 179.19 19115408.8 18198209.08
graph_8 68.8 0.4 69 341.58 212.32 42174808.6 25953460.46
graph_9 69.4 0.49 70 128.84 116.04 17897411.2 16138857.67

graph_10 65.4 0.49 66 250.25 119.76 26172796.6 12480249.46
graph_11 74.8 1.17 77 293.7 222.66 29675425.6 22515220.25
graph_12 57.0 0.63 58 140.7 79.49 17007277.8 9557722.38
graph_13 77.8 0.4 78 167.47 165.55 22344606.2 22111441.43
graph_14 54.6 0.49 55 207.36 184.53 29347513.8 26047919.84

Table C.40: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 10.
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Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 130.2 0.75 131 316.51 156.35 32064693.2 15907812.28
graph_1 123.6 0.49 124 168.5 71.99 12868959.0 5405454.79
graph_2 133.2 0.4 134 106.85 62.8 10948838.0 6327827.05
graph_3 118.8 0.75 120 137.08 74.12 16276658.4 8753910.6
graph_4 149.6 1.02 151 214.26 164.96 19257165.6 14996233.9
graph_5 135.4 0.8 136 227.21 149.17 21160109.8 13895718.84
graph_6 125.8 0.75 127 348.89 200.97 25945983.6 14786223.57
graph_7 118.8 0.4 119 213.26 132.13 17552484.4 11051607.12
graph_8 129.2 0.4 130 242.28 109.66 23184137.6 10277507.04
graph_9 127.8 0.4 128 245.12 207.39 26089281.0 22062420.66

graph_10 126.6 1.02 128 251.79 130.47 21498930.4 11050025.86
graph_11 141.2 0.98 143 250.64 149.92 20225554.6 12125036.65
graph_12 117.6 0.8 119 158.78 137.93 15461854.0 13373144.7
graph_13 130.6 0.49 131 254.72 136.97 25856893.4 14077588.43
graph_14 113.4 0.49 114 190.64 127.06 20767250.8 13980533.93

Table C.41: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 30.

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 184.8 0.98 186 267.08 142.61 22964535.4 12366324.48
graph_1 183.6 0.49 184 192.11 77.19 12832292.2 5184266.15
graph_2 187.2 0.75 188 281.62 202.95 24142138.2 17342541.22
graph_3 163.6 1.02 165 255.48 96.72 25491095.2 9699191.04
graph_4 202.0 0 202 204.8 175.98 16079726.4 13833596.85
graph_5 188.6 1.02 190 310.6 139.63 24989872.2 11321862.68
graph_6 185.2 0.75 186 199.0 171.52 12333560.4 10388134.02
graph_7 178.4 0.49 179 144.43 68.45 10408575.2 4902042.21
graph_8 183.0 0.63 184 199.92 178.31 16716021.6 14940293.77
graph_9 173.4 0.49 174 346.12 103.56 31634042.6 9498722.98

graph_10 184.8 0.4 185 289.53 210.11 21258930.8 15426216.78
graph_11 199.2 0.4 200 255.83 115.8 18355669.6 8442452.19
graph_12 175.4 0.49 176 171.35 128.43 14164858.0 10519846.98
graph_13 171.0 0.63 172 237.01 181.42 21747628.8 16738893.25
graph_14 162.6 1.02 164 160.52 205.74 14962149.6 19190171.72

Table C.42: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 50.
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Real-World Graphs

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD

ca-GrQc 246.0 0 246 1.01 0.87 129570.6 105827.08
ca-netscience 68.0 0 68 0.02 0.01 2363.8 2101.33
ia-email-univ 75.0 0 75 188.42 211.65 31383322.0 35319254.31

ia-infect-dublin 110.0 0 110 0.22 0.16 20354.2 14019.4
inf-power 46.0 0 46 0.24 0.22 65687.6 64064.48
rt-retweet 24.0 0 24 0.01 0.0 716.0 386.6

sc-shipsec1 232.8 2.04 236 105.67 83.14 3745722.2 2959164.65
soc-buzznet 152.6 2.73 158 278.55 241.72 10937534.8 9466475.74
socfb-CMU 314.6 1.74 317 206.99 178.28 2934337.4 2520863.02

tech-RL-caida 103.4 1.02 105 344.41 164.46 58939271.2 27665261.85
tech-WHOIS 280.6 1.2 282 189.52 67.77 22230262.6 7777586.06

tech-internet-as 59.2 1.17 61 190.13 176.7 56976376.8 53085266.38
tech-routers-rf 95.4 0.49 96 247.66 60.79 54041863.4 13453852.17

web-arabic-2005 738.0 0 738 35.28 28.3 1625191.6 1306582.78
web-spam 126.0 0 126 175.13 89.22 20130436.2 10368411.23

Table C.43: The complete results of the evaluation on the real world graphs with 𝑘 = 10.

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD

ca-GrQc 422.4 0.49 423 151.41 195.92 14195683.6 18364234.21
ca-netscience 158.0 0 158 18.43 11.15 2308500.8 1383293.87
ia-email-univ 173.2 0.75 174 315.14 187.95 37204549.4 22330539.94

ia-infect-dublin 215.2 0.4 216 207.73 163.65 14110686.2 11344746.48
inf-power 120.8 0.75 122 225.83 94.23 39334972.6 16440476.55
rt-retweet 62.0 0 62 0.01 0.0 1195.0 477.32

sc-shipsec1 627.8 2.04 630 175.12 145.4 5024853.0 4208699.86
soc-buzznet 333.6 3.88 338 191.0 143.59 6263463.6 4649418.26
socfb-CMU 685.4 2.06 687 197.46 100.68 2461416.2 1289121.83

tech-RL-caida 242.0 2.28 246 241.14 101.47 27588969.6 11426598.96
tech-WHOIS 486.6 1.5 489 210.37 130.97 16808536.4 10364145.17

tech-internet-as 123.4 1.02 125 245.11 155.02 46597312.2 29461800.32
tech-routers-rf 180.4 0.49 181 392.7 131.95 56118451.4 18593684.91

web-arabic-2005 1769.0 0 1769 60.26 48.32 1624547.6 1306065.03
web-spam 267.6 1.5 270 211.22 128.4 18018180.4 10838497.6

Table C.44: The complete results of the evaluation on the real world graphs with 𝑘 = 30.
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Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD

ca-GrQc 546.6 0.49 547 237.28 151.16 17746747.2 11359490.11
ca-netscience 222.0 0 222 209.54 164.22 21045590.6 16323566.79
ia-email-univ 252.8 0.75 254 269.32 186.31 25500533.2 17699605.44

ia-infect-dublin 280.6 0.49 281 226.08 147.07 12441966.4 8104443.06
inf-power 180.8 0.75 182 287.5 120.03 39074560.6 16331639.41
rt-retweet 82.0 0 82 0.0 0.0 333.4 146.87

sc-shipsec1 997.8 2.71 1000 220.54 118.4 5509010.0 2957985.66
soc-buzznet 483.6 3.83 489 187.02 96.42 5837172.4 3016683.0
socfb-CMU 955.6 4.13 961 305.87 145.93 3753354.2 1796570.57

tech-RL-caida 362.4 2.06 366 356.33 158.03 30985744.2 13531116.58
tech-WHOIS 620.0 3.58 625 282.02 180.21 18569988.6 12021338.82

tech-internet-as 183.0 1.1 185 203.31 143.16 28507619.6 20152824.23
tech-routers-rf 246.8 1.33 249 297.91 122.24 34234775.4 14242307.54

web-arabic-2005 2789.0 0 2789 84.79 68.79 1623903.6 1305547.28
web-spam 382.0 2.1 385 203.92 127.82 14194164.4 8957428.32

Table C.45: The complete results of the evaluation on the real world graphs with 𝑘 = 50.

C.3.2 Diversified top-𝑘 weighted clique search problem (TOPKW-
CLQ) with a cutoff time of 600 seconds

Dual Barabási–Albert model - Same Parameters

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 346.6 3.2 350 368.14 108.19 45615830.6 13494287.21
graph_1 331.6 1.96 334 152.58 82.23 19264587.8 10381091.93
graph_2 344.6 2.15 348 322.13 180.85 42585000.2 23799599.53
graph_3 339.0 3.16 345 352.74 177.84 44695121.4 22664497.75
graph_4 333.6 1.96 337 310.83 243.55 39097626.8 30497689.39
graph_5 368.8 3.31 373 155.45 100.65 19124834.4 12005226.33
graph_6 327.4 1.74 329 215.01 164.44 27257290.2 21052928.69
graph_7 350.6 1.85 353 331.28 137.3 42670020.2 16908987.02
graph_8 343.8 1.6 346 357.99 143.34 46715114.6 18594978.5
graph_9 388.8 1.6 391 283.18 126.63 36759432.0 16472177.9

Table C.46: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 10.
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Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 759.6 4.76 764 283.54 254.19 29465850.4 26470917.53
graph_1 763.2 2.99 768 337.69 84.96 34802840.2 8680970.73
graph_2 756.4 4.5 761 228.15 155.78 23649030.6 16049748.72
graph_3 737.4 1.85 739 412.82 196.18 43663597.4 20724037.2
graph_4 743.2 2.48 746 207.64 186.53 21296328.4 19109083.01
graph_5 772.8 3.12 777 198.16 112.7 20239128.6 11461290.54
graph_6 738.6 3.61 745 325.03 206.41 34355206.4 21838543.37
graph_7 776.6 2.15 780 386.81 162.17 41585447.2 17452270.45
graph_8 750.6 4.59 757 304.25 155.88 32655464.2 16737083.26
graph_9 794.4 6.22 803 331.21 119.12 35531396.6 12895900.2

Table C.47: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 30.

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 1131.6 6.56 1143 167.07 135.82 13934632.0 10944692.97
graph_1 1147.2 3.66 1153 363.71 90.59 31523026.0 7982271.6
graph_2 1130.6 3.72 1134 296.94 173.54 26266947.8 15294900.26
graph_3 1106.0 2.37 1109 224.66 149.41 19848303.6 13237211.62
graph_4 1115.6 1.74 1118 167.85 132.15 14059418.2 10876078.47
graph_5 1144.2 2.48 1147 400.61 110.81 34127276.6 9289948.89
graph_6 1112.6 5.12 1120 306.99 133.44 26551267.6 11895389.22
graph_7 1156.0 3.52 1162 364.17 178.69 31135578.6 15394828.71
graph_8 1123.6 4.08 1131 209.58 152.01 18941429.6 13883159.85
graph_9 1166.6 6.28 1175 412.78 151.53 35742092.6 13201663.43

Table C.48: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 50.
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Dual Barabási–Albert model - Random Parameters

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 437.0 4.69 444 258.33 160.87 28606588.6 17973325.48
graph_1 390.8 3.54 394 378.75 68.78 30510095.4 5611380.62
graph_2 412.0 2.76 417 186.92 130.32 20528430.4 14220195.04
graph_3 374.6 2.65 378 234.4 118.17 31586610.6 16107019.26
graph_4 498.2 1.17 500 245.97 90.52 24642966.0 8921186.86
graph_5 483.6 4.59 490 345.21 168.36 35242337.0 17041588.95
graph_6 395.0 2.97 398 206.99 172.41 14670303.8 12365517.49
graph_7 364.8 2.14 369 409.84 175.54 35001266.2 14992101.32
graph_8 413.8 2.93 418 311.41 174.39 32306256.8 17868505.57
graph_9 415.4 2.42 418 299.72 182.44 35425276.2 21459743.01

graph_10 414.4 5.2 420 316.62 232.48 27881616.0 20542466.69
graph_11 434.2 3.82 440 356.97 102.07 30299364.2 8688129.2
graph_12 372.8 5.49 382 223.55 196.46 22331776.8 19381893.96
graph_13 481.2 2.32 484 261.02 95.07 31320353.8 11251397.5
graph_14 353.6 2.42 358 281.48 185.32 35070345.0 22891214.28

Table C.49: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 10.

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 875.2 4.62 881 313.73 114.24 28865272.4 10384839.01
graph_1 862.4 6.15 874 372.94 80.86 26542060.0 5744423.86
graph_2 835.8 1.94 838 255.22 163.43 23879042.0 15299764.63
graph_3 782.2 3.82 786 253.37 164.41 28231534.6 18384280.1
graph_4 936.8 1.72 939 247.35 173.54 21098693.6 14805338.88
graph_5 919.6 3.98 923 473.46 88.78 40211125.6 7362610.37
graph_6 886.8 4.26 894 323.54 203.38 20524812.0 12900365.98
graph_7 810.8 2.48 814 312.88 175.69 22754423.4 12706900.53
graph_8 831.8 5.98 842 267.27 121.54 23967366.0 10916696.3
graph_9 821.6 2.33 824 296.35 145.86 29344323.2 14485415.22

graph_10 870.8 3.71 876 340.2 126.77 25753043.0 9572217.11
graph_11 898.8 6.24 910 254.92 213.51 18413164.4 15418907.99
graph_12 810.8 2.23 813 342.88 162.13 28126556.2 13402273.64
graph_13 870.4 4.22 875 291.66 195.47 29316506.8 19662374.07
graph_14 776.4 5.75 787 216.7 127.33 22489936.0 13205389.17

Table C.50: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 30.
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Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 1263.0 6.72 1274 329.43 141.24 25656550.2 11066986.64
graph_1 1269.6 10.13 1289 314.01 203.61 19050321.0 12398337.86
graph_2 1222.0 4.98 1229 237.98 208.19 18879983.8 16660566.69
graph_3 1161.2 2.64 1164 442.26 79.24 41335879.6 7401937.36
graph_4 1323.4 4.41 1330 315.26 177.85 23190022.6 13134145.47
graph_5 1300.0 4.94 1306 433.23 110.98 31424986.8 8236580.03
graph_6 1314.2 3.71 1318 226.58 191.33 12295732.6 10484634.34
graph_7 1204.2 3.76 1209 268.71 49.83 16557439.4 2826521.28
graph_8 1213.6 3.83 1219 375.12 139.73 28536062.2 10826891.55
graph_9 1190.6 1.96 1193 336.29 165.97 28589315.2 14112715.49

graph_10 1268.0 3.95 1274 419.47 155.4 27058659.2 9911731.53
graph_11 1294.0 8.41 1308 294.87 165.87 18378440.8 10527114.11
graph_12 1203.4 2.87 1207 250.16 177.26 18310597.0 12921201.27
graph_13 1230.2 3.43 1235 268.62 138.37 22839257.2 11796120.07
graph_14 1154.8 6.4 1165 203.53 145.69 17560732.4 12632790.16

Table C.51: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 50.

Real-World Graphs

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD

ca-GrQc 1481.0 0 1481 0.84 0.71 111534.0 95679.26
ca-netscience 391.0 0 391 0.66 0.36 128154.0 69791.59
ia-email-univ 444.8 1.47 447 299.39 125.35 46769884.6 19486500.71

ia-infect-dublin 622.0 0 622 8.31 4.65 760307.0 439611.71
inf-power 286.0 0 286 1.23 1.42 344550.8 414999.14
rt-retweet 198.0 0 198 0.14 0.13 39388.4 39367.25

sc-shipsec1 1377.0 6.6 1389 264.92 128.89 9455755.8 4575869.56
soc-buzznet 904.4 15.29 914 348.69 147.5 12079882.4 5065507.21
socfb-CMU 1772.0 10.33 1790 230.32 174.28 3053837.0 2296305.69

tech-RL-caida 683.2 17.53 715 254.77 211.61 42835018.0 35313623.64
tech-WHOIS 1626.6 12.08 1640 206.82 21.87 24408257.2 2594237.57

tech-internet-as 391.8 11.72 413 328.23 185.64 102254382.0 58150547.69
tech-routers-rf 585.0 3.16 589 369.8 133.9 82197675.4 30358190.59

web-arabic-2005 4049.0 0 4049 51.43 48.54 2289660.6 2155222.25
web-spam 720.2 2.48 723 205.53 202.28 22332340.2 22130321.34

Table C.52: The complete results of the evaluation on the real world graphs with 𝑘 = 10.
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Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD

ca-GrQc 2511.2 1.47 2513 349.97 203.15 34304743.4 19930733.81
ca-netscience 947.6 0.8 948 240.02 203.06 32953758.2 27753192.13
ia-email-univ 1020.8 1.47 1022 146.99 148.11 17585244.4 17719673.28

ia-infect-dublin 1269.6 3.93 1276 206.28 172.99 14239918.4 11939151.94
inf-power 775.8 0.75 777 216.2 104.38 40638016.6 19643910.72
rt-retweet 434.0 0 434 3.1 3.16 556675.0 558365.63

sc-shipsec1 3797.2 16.07 3816 261.1 149.58 7697635.0 4387973.68
soc-buzznet 2016.6 27.36 2058 344.44 134.99 10781681.4 4255164.73
socfb-CMU 3931.0 14.18 3951 487.75 126.41 6168181.2 1559535.1

tech-RL-caida 1561.0 15.71 1581 111.67 68.12 13331238.8 8116599.46
tech-WHOIS 2807.8 12.81 2830 361.4 92.74 29326649.2 7621077.02

tech-internet-as 884.8 7.65 897 190.02 122.94 37246980.4 24215401.09
tech-routers-rf 1167.0 3.46 1172 182.56 95.34 28548356.2 14976109.46

web-arabic-2005 10483.0 0 10483 96.21 82.8 2470245.2 2132179.23
web-spam 1589.4 7.96 1597 313.61 186.47 26347815.8 15800238.11

Table C.53: The complete results of the evaluation on the real world graphs with 𝑘 = 30.

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD

ca-GrQc 3257.0 5.9 3264 428.65 119.72 31617116.6 8862658.48
ca-netscience 1304.2 0.75 1305 217.15 164.28 22144243.2 16725083.14
ia-email-univ 1490.6 3.98 1496 221.82 155.38 20462918.8 14418180.14

ia-infect-dublin 1662.0 1.26 1664 342.05 163.26 18680637.6 8939021.74
inf-power 1220.0 2.28 1224 97.08 25.17 13487207.0 3762415.27
rt-retweet 539.0 0 539 0.09 0.06 8377.0 6551.41

sc-shipsec1 6047.8 23.37 6079 304.24 170.21 7717723.8 4349463.96
soc-buzznet 2959.6 36.27 3012 380.19 152.12 10778817.4 4254034.39
socfb-CMU 5490.4 19.16 5515 282.29 229.39 3321747.8 2701505.98

tech-RL-caida 2346.4 15.37 2361 169.1 154.37 15029116.8 13725825.27
tech-WHOIS 3590.6 18.65 3621 190.77 173.9 12911780.4 11809759.83

tech-internet-as 1349.6 6.71 1362 292.23 176.77 42505847.6 25716458.6
tech-routers-rf 1630.6 4.96 1635 281.15 146.47 33548395.2 17421694.85

web-arabic-2005 16637.0 0 16637 127.09 110.03 2469265.2 2131333.34
web-spam 2271.2 7.88 2283 290.43 197.97 20535729.6 14106897.59

Table C.54: The complete results of the evaluation on the real world graphs with 𝑘 = 50.
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C.3.3 Diversified top-𝑘 clique search problem (TOPKLS) with a
cutoff time of 60 seconds

Dual Barabási–Albert model - Same Parameters

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 50.2 0.4 51 15.11 15.63 2230962.2 2316914.21
graph_1 47.6 0.49 48 22.52 15.72 3220450.2 2322904.86
graph_2 49.0 0.63 50 12.31 11.7 1862785.6 1793180.4
graph_3 51.0 0 51 3.4 3.1 512093.8 469097.66
graph_4 49.2 0.4 50 11.39 16.42 1659551.4 2374018.86
graph_5 53.4 0.49 54 21.67 20.0 3160380.8 2918325.54
graph_6 46.8 0.4 47 11.03 9.15 1647563.6 1365134.46
graph_7 46.0 0.63 47 17.37 18.34 2651002.8 2805533.08
graph_8 46.2 0.4 47 12.74 15.0 1845338.6 2131540.88
graph_9 52.0 0.63 53 19.12 19.64 2865315.0 2945554.81

Table C.55: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 10.

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 109.0 0 109 16.1 13.06 1902798.2 1542700.67
graph_1 107.2 0.4 108 21.0 19.01 2501331.6 2262281.68
graph_2 107.8 0.4 108 17.98 15.56 2182366.4 1895894.99
graph_3 109.2 0.98 111 11.44 6.93 1376443.0 832621.37
graph_4 108.4 0.49 109 17.19 17.54 2032839.0 2078177.69
graph_5 112.0 0 112 22.65 15.45 2646652.6 1807020.56
graph_6 105.8 0.75 107 23.02 20.02 2742733.6 2386708.08
graph_7 105.2 0.4 106 17.38 12.45 2103687.8 1504857.85
graph_8 104.4 0.49 105 6.75 5.32 824569.6 649770.72
graph_9 110.6 0.49 111 30.98 17.57 3624932.0 2004449.82

Table C.56: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 30.
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Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 155.0 0.63 156 17.91 6.75 1784076.2 679268.15
graph_1 157.4 1.2 159 24.72 16.24 2467597.4 1621569.62
graph_2 154.8 1.83 157 28.92 22.15 2966398.4 2270906.29
graph_3 152.8 1.6 155 23.45 13.27 2400193.0 1357735.85
graph_4 155.2 0.75 156 30.98 5.48 3096391.0 541383.02
graph_5 159.0 1.9 162 26.47 14.0 2617776.6 1380868.53
graph_6 154.8 0.98 156 25.2 17.54 2526560.0 1762140.36
graph_7 153.2 0.4 154 29.52 17.53 2998878.4 1782085.25
graph_8 150.2 0.75 151 33.62 17.1 3477016.4 1768075.89
graph_9 158.2 1.47 161 35.16 6.4 3537580.2 646673.48

Table C.57: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 50.

Dual Barabási–Albert model - Random Parameters

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 66.8 0.75 68 21.25 10.12 2759953.0 1330251.53
graph_1 59.0 0 59 15.25 12.05 1443283.0 1138980.43
graph_2 68.6 0.8 70 31.43 15.28 4143780.8 2016879.79
graph_3 60.0 0.89 61 23.69 5.89 3778244.6 924399.76
graph_4 83.6 0.8 85 12.74 9.61 1494262.8 1141648.9
graph_5 72.4 0.8 73 19.88 12.42 2332882.8 1439300.55
graph_6 58.4 1.74 61 18.05 10.92 1658974.8 1004713.26
graph_7 56.2 0.4 57 36.16 19.12 3629984.6 1925815.84
graph_8 67.4 1.02 69 18.16 12.74 2276661.8 1588855.41
graph_9 68.6 0.49 69 38.31 10.94 5530204.6 1573520.55
graph_10 63.4 0.49 64 17.53 8.15 1845449.6 856137.54
graph_11 73.0 0.89 74 27.8 20.37 2857206.0 2069577.66
graph_12 56.0 1.1 58 12.73 12.32 1492587.8 1461897.8
graph_13 77.4 0.49 78 36.32 4.44 4996526.0 600997.7
graph_14 53.6 0.8 55 12.61 9.17 1815145.8 1294592.4

Table C.58: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 10.
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Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 127.8 0.75 129 26.1 18.67 2679800.0 1925751.88
graph_1 122.0 0 122 26.82 14.09 2071671.0 1096189.74
graph_2 132.0 0.63 133 21.0 11.59 2178688.6 1213273.36
graph_3 117.2 0.4 118 28.0 12.21 3391609.0 1555874.18
graph_4 147.8 1.33 150 29.43 9.63 2771689.6 936956.99
graph_5 134.2 0.75 135 21.15 16.63 1995368.4 1570574.62
graph_6 124.4 0.8 125 8.96 5.0 685845.4 384075.58
graph_7 117.8 0.4 118 36.7 9.5 3068274.0 775850.25
graph_8 127.6 0.49 128 11.24 10.16 1122360.8 1023971.44
graph_9 126.8 0.75 128 21.64 15.86 2351521.0 1723117.32
graph_10 124.4 0.8 125 19.45 16.28 1688334.0 1422589.28
graph_11 138.8 1.17 141 32.7 19.69 2773376.0 1673219.48
graph_12 116.6 1.62 119 9.82 15.58 978526.6 1550937.32
graph_13 129.2 0.75 130 33.5 20.91 3588249.0 2245670.22
graph_14 112.2 0.4 113 12.67 10.16 1385244.2 1078769.01

Table C.59: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 30.

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 182.8 0.75 184 20.29 17.67 1807868.8 1577839.93
graph_1 181.2 0.4 182 23.18 17.91 1571529.6 1197193.48
graph_2 186.4 1.02 188 30.56 24.29 2590427.4 2034303.71
graph_3 161.6 0.8 163 30.23 18.96 3071774.8 1908375.09
graph_4 201.0 0.89 202 21.65 21.86 1692432.4 1713139.74
graph_5 186.2 0.4 187 15.24 11.51 1270205.2 967268.33
graph_6 184.4 0.8 185 10.24 5.73 674053.4 377469.97
graph_7 177.0 0.63 178 36.72 9.51 2676900.6 697740.98
graph_8 181.4 1.02 183 11.07 11.14 960395.8 969556.75
graph_9 171.2 0.98 172 15.04 13.44 1415592.6 1280855.21
graph_10 183.6 1.02 185 28.16 16.61 2142253.4 1268776.14
graph_11 198.0 0.63 199 26.35 21.47 1865407.2 1530076.88
graph_12 174.6 0.49 175 34.17 11.07 2920592.0 924280.93
graph_13 169.4 1.5 172 27.45 20.86 2550931.2 1951073.8
graph_14 160.4 2.06 163 14.21 9.82 1337476.2 922944.96

Table C.60: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 50.
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Real-World Graphs

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD

ca-GrQc 246.0 0 246 0.94 0.75 129570.6 105827.08
ca-netscience 68.0 0 68 0.02 0.01 2363.8 2101.33
ia-email-univ 74.6 0.49 75 27.96 19.95 4736294.8 3377103.66

ia-infect-dublin 110.0 0 110 0.22 0.15 20354.2 14019.4
inf-power 46.0 0 46 0.23 0.22 65687.6 64064.48
rt-retweet 24.0 0 24 0.01 0.0 716.0 386.6

sc-shipsec1 230.6 2.06 234 22.69 12.61 831605.8 459314.64
soc-buzznet 147.6 2.8 151 20.79 23.19 849465.4 947780.45
socfb-CMU 310.2 3.92 314 27.4 17.06 408664.0 254107.83

tech-RL-caida 99.6 1.85 102 27.72 15.08 4878365.4 2655916.11
tech-WHOIS 276.8 1.17 278 27.51 16.45 3336670.8 2015445.31

tech-internet-as 56.6 1.5 58 28.43 13.15 8802101.2 4021959.21
tech-routers-rf 93.6 0.8 95 12.87 10.82 2932975.2 2470756.02

web-arabic-2005 737.8 0.4 738 22.94 18.48 1080079.2 872177.4
web-spam 124.4 0.49 125 28.82 15.82 3400250.0 1878020.18

Table C.61: The complete results of the evaluation on the real world graphs with 𝑘 = 10.

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD

ca-GrQc 422.0 0 422 16.81 12.66 1638312.6 1234839.84
ca-netscience 158.0 0 158 17.1 10.26 2308500.8 1383293.87
ia-email-univ 171.2 0.98 173 30.99 12.54 3765800.2 1532536.07

ia-infect-dublin 214.0 0.63 215 34.07 18.43 2443768.6 1323485.2
inf-power 119.4 0.49 120 20.93 8.78 3935742.0 1642382.44
rt-retweet 62.0 0 62 0.01 0.01 1195.0 477.32

sc-shipsec1 624.4 3.2 630 21.96 16.26 656103.2 486834.49
soc-buzznet 327.4 5.99 338 16.11 17.08 576281.2 613412.09
socfb-CMU 679.0 4.15 687 42.82 19.28 577896.8 258821.16

tech-RL-caida 233.8 1.94 236 27.66 9.64 3176637.6 1125775.04
tech-WHOIS 483.8 2.04 487 43.52 13.4 3659491.6 1109812.67

tech-internet-as 120.2 2.48 123 33.79 19.83 6635979.6 3854335.06
tech-routers-rf 178.4 0.49 179 33.2 18.11 5025531.2 2756907.05

web-arabic-2005 1768.6 0.49 1769 26.27 8.94 726506.0 248367.48
web-spam 263.8 0.98 265 26.22 13.92 2298260.2 1217366.2

Table C.62: The complete results of the evaluation on the real world graphs with 𝑘 = 30.
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Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD

ca-GrQc 544.6 1.36 546 16.33 15.26 1268528.0 1185200.68
ca-netscience 221.2 0.4 222 14.15 21.46 1463123.2 2212350.95
ia-email-univ 250.8 1.33 253 27.57 14.73 2681292.2 1442409.09

ia-infect-dublin 279.2 0.4 280 15.2 14.24 854225.4 793794.03
inf-power 179.4 0.49 180 27.84 11.55 3909686.0 1631509.83
rt-retweet 82.0 0 82 0.01 0.0 333.4 146.87

sc-shipsec1 993.6 3.2 999 33.85 11.09 861693.4 284503.9
soc-buzznet 477.4 6.59 489 34.14 19.86 1092520.0 629266.01
socfb-CMU 943.4 7.5 958 28.18 20.23 358160.8 257770.61

tech-RL-caida 353.8 1.94 356 35.61 12.52 3176129.6 1125595.0
tech-WHOIS 614.4 3.01 620 43.38 6.47 3008992.2 442662.68

tech-internet-as 179.2 1.94 182 27.47 14.62 3951492.8 2117264.15
tech-routers-rf 243.0 0.63 244 36.13 12.64 4271846.4 1479181.52

web-arabic-2005 2788.6 0.49 2789 36.26 12.4 726218.0 248269.02
web-spam 378.2 1.6 381 32.77 11.34 2355585.6 809906.22

Table C.63: The complete results of the evaluation on the real world graphs with 𝑘 = 50.

C.3.4 Diversified top-𝑘 weighted clique search problem (TOPKW-
CLQ) with a cutoff time of 60 seconds

Dual Barabási–Albert model - Same Parameters

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 340.2 1.94 342 30.56 21.19 3683393.6 2586101.66
graph_1 326.8 2.14 330 24.31 16.11 2969762.0 1974908.33
graph_2 339.2 1.94 342 20.82 13.2 2647113.4 1672653.43
graph_3 333.0 4.73 338 21.58 17.96 2615422.0 2184294.2
graph_4 331.6 2.8 337 32.26 17.2 3765645.8 1959382.5
graph_5 364.0 0.63 365 38.78 12.22 4647384.6 1535238.28
graph_6 324.2 2.04 328 17.93 13.99 2157489.8 1623778.68
graph_7 347.4 1.5 349 28.42 13.31 3560963.4 1673894.82
graph_8 334.4 1.2 336 20.0 19.99 2515936.6 2548720.71
graph_9 381.8 1.94 385 33.19 14.35 4128084.4 1835003.02

Table C.64: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 10.
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Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 749.4 7.09 763 31.63 8.37 3230969.0 866307.39
graph_1 755.0 3.74 759 11.69 12.54 1118941.8 1135212.49
graph_2 750.0 6.48 759 41.58 14.07 4372632.8 1544689.09
graph_3 730.4 1.62 733 27.73 16.34 2796570.4 1711697.81
graph_4 740.6 2.87 745 28.64 19.14 2870563.0 1923809.55
graph_5 765.2 6.37 776 23.87 13.75 2311409.2 1316150.3
graph_6 731.2 1.17 733 25.31 21.21 2534296.0 2123584.72
graph_7 770.0 3.85 775 29.66 21.01 2904422.6 2014528.68
graph_8 745.2 6.05 757 26.46 20.14 2750389.0 2102986.93
graph_9 781.8 4.4 790 38.87 13.53 3950218.2 1393962.12

Table C.65: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 30.

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 1123.0 6.36 1135 35.81 11.16 3153708.8 981171.39
graph_1 1137.6 5.78 1143 17.95 14.77 1577258.4 1294221.55
graph_2 1122.8 6.05 1133 30.43 11.33 2643978.8 969251.76
graph_3 1099.0 5.55 1109 38.25 19.82 3434973.0 1783450.07
graph_4 1113.2 1.94 1115 34.18 21.88 2959926.8 1922967.64
graph_5 1137.2 4.26 1144 27.41 13.19 2370368.6 1148120.9
graph_6 1102.6 4.63 1109 16.74 15.89 1433579.2 1380675.93
graph_7 1144.8 4.45 1152 35.38 15.63 3145089.0 1377469.44
graph_8 1118.0 6.87 1131 40.04 12.98 3673763.2 1180342.51
graph_9 1153.0 3.74 1157 36.76 15.1 3170191.8 1347827.59

Table C.66: The complete results of the evaluation on the generated graphs by the dual
BA-model using the same input parameters with 𝑘 = 50.
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Dual Barabási–Albert model - Random Parameters

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 431.6 2.87 436 33.8 16.25 3706137.6 1787379.16
graph_1 384.2 2.48 389 34.11 12.39 2836562.2 1056025.88
graph_2 407.2 5.91 417 26.34 19.31 3038927.2 2244349.66
graph_3 368.8 4.07 374 17.58 11.4 2373778.2 1535664.29
graph_4 490.4 3.44 495 26.42 11.92 2811354.2 1264381.7
graph_5 479.0 7.92 489 29.23 17.86 3116357.8 1905738.36
graph_6 386.0 3.85 392 23.31 15.61 1752953.0 1174005.79
graph_7 357.8 3.43 361 38.26 17.13 3420531.4 1533505.33
graph_8 404.6 4.08 412 21.8 15.22 2267543.2 1570428.95
graph_9 411.0 3.35 417 47.3 11.75 5724360.6 1425517.89
graph_10 410.8 6.55 420 36.27 17.95 3237954.2 1607793.51
graph_11 425.6 4.41 433 33.71 21.93 2996466.8 1953788.1
graph_12 365.4 6.15 376 29.71 18.74 3169062.6 2005428.91
graph_13 475.0 4.0 481 35.77 13.15 4454373.8 1650956.74
graph_14 348.8 1.72 352 29.66 21.78 3753017.8 2760383.57

Table C.67: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 10.

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 861.0 3.9 866 17.91 11.36 1680400.2 1069088.79
graph_1 856.8 5.27 866 36.18 15.32 2613148.8 1099143.48
graph_2 827.0 6.36 835 20.82 17.16 1903505.0 1568208.41
graph_3 774.8 4.96 784 35.23 9.52 3998043.4 1057810.52
graph_4 931.8 5.27 939 39.02 14.09 3249885.4 1138781.53
graph_5 909.0 4.94 916 27.11 11.89 2243383.0 1002590.43
graph_6 876.0 4.05 882 24.59 9.52 1525248.2 591130.97
graph_7 800.8 3.71 805 21.97 15.57 1530527.4 1080004.27
graph_8 821.8 3.31 826 30.72 15.17 2805019.0 1388632.52
graph_9 814.8 4.71 822 19.19 11.87 1931614.8 1211252.76
graph_10 859.4 3.93 865 37.64 15.5 2945906.4 1218525.61
graph_11 888.0 3.35 894 24.19 14.95 1810397.6 1108344.01
graph_12 803.8 5.15 808 32.26 15.49 2737688.2 1347450.58
graph_13 864.4 1.02 866 37.86 17.14 3718504.6 1696077.43
graph_14 764.4 1.02 766 29.4 15.21 3089665.4 1604001.71

Table C.68: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 30.
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Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD
graph_0 1248.8 5.04 1255 22.71 15.34 1767470.2 1207186.89
graph_1 1253.8 10.09 1270 22.53 10.01 1326228.0 596734.24
graph_2 1215.8 6.73 1226 21.9 17.17 1764883.6 1402876.68
graph_3 1151.6 3.5 1158 46.46 8.76 4515394.8 857922.09
graph_4 1313.8 8.77 1330 25.85 19.64 1893581.0 1433647.74
graph_5 1290.2 7.49 1302 23.27 10.84 1714274.0 794268.74
graph_6 1306.4 6.62 1316 19.94 8.23 1081699.8 455235.64
graph_7 1192.4 4.27 1198 20.58 17.38 1301662.6 1061197.06
graph_8 1204.0 2.61 1206 44.11 7.65 3500015.4 600118.77
graph_9 1183.4 6.28 1191 35.14 15.37 2802986.8 1271819.25

graph_10 1258.4 5.12 1263 31.42 13.07 2140566.6 894826.05
graph_11 1281.2 5.34 1290 28.78 17.51 1823506.0 1099356.25
graph_12 1195.2 4.75 1203 39.99 17.87 2965493.4 1324173.47
graph_13 1223.6 0.8 1225 31.14 16.02 2764665.2 1431713.57
graph_14 1140.4 3.88 1145 43.88 8.2 3919830.4 730050.58

Table C.69: The complete results of the evaluation on the generated graphs by the dual
BA-model using a range of input parameters with 𝑘 = 50.

Real-World Graphs

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD

ca-GrQc 1481.0 0 1481 0.79 0.68 111534.0 95679.26
ca-netscience 391.0 0 391 0.63 0.34 128154.0 69791.59
ia-email-univ 440.6 1.74 443 24.4 18.08 4008789.6 2979608.81

ia-infect-dublin 622.0 0 622 7.95 4.58 760307.0 439611.71
inf-power 286.0 0 286 1.16 1.41 344550.8 414999.14
rt-retweet 198.0 0 198 0.13 0.12 39388.4 39367.25

sc-shipsec1 1366.2 4.26 1371 35.78 15.65 1333950.8 584272.47
soc-buzznet 847.8 15.48 863 33.34 11.77 1204923.8 428684.3
socfb-CMU 1751.0 24.73 1790 39.3 11.47 564352.4 163731.4

tech-RL-caida 661.6 13.63 678 45.82 17.33 7787935.6 2947499.04
tech-WHOIS 1587.2 14.03 1609 31.69 15.1 3865606.8 1827879.96

tech-internet-as 367.4 8.14 380 30.16 11.95 9662682.8 3796481.9
tech-routers-rf 578.4 4.32 582 40.43 13.87 9292910.4 3175704.03

web-arabic-2005 4047.0 2.45 4049 10.1 12.88 474041.8 603241.11
web-spam 715.6 5.71 723 34.49 15.59 3998794.0 1804361.56

Table C.70: The complete results of the evaluation on the real world graphs with 𝑘 = 10.
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Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD

ca-GrQc 2505.4 4.96 2512 22.67 15.66 2251287.6 1555626.84
ca-netscience 945.6 2.06 948 11.04 12.89 1534781.8 1786190.36
ia-email-univ 1017.6 3.93 1022 30.92 16.24 3756027.8 1959364.49

ia-infect-dublin 1262.6 1.85 1266 27.14 18.67 1961036.0 1349856.81
inf-power 772.8 0.75 774 26.36 12.75 5231112.4 2542945.15
rt-retweet 434.0 0 434 2.86 2.86 556675.0 558365.63

sc-shipsec1 3768.8 15.66 3793 34.15 13.8 1038995.2 420512.55
soc-buzznet 1952.4 21.96 1984 25.31 5.33 813088.6 167719.28
socfb-CMU 3888.0 14.17 3909 36.17 17.87 476620.8 235157.16

tech-RL-caida 1531.4 16.7 1551 15.21 12.29 1774246.0 1412637.81
tech-WHOIS 2766.6 9.77 2775 29.75 15.77 2531547.2 1324022.45

tech-internet-as 866.6 11.48 886 27.1 24.1 5574826.0 4943954.9
tech-routers-rf 1156.8 8.63 1170 27.51 17.9 4391034.8 2863130.6

web-arabic-2005 10476.2 6.05 10483 20.41 18.58 574653.8 523491.72
web-spam 1571.4 13.75 1594 13.51 3.84 1206762.2 348472.43

Table C.71: The complete results of the evaluation on the real world graphs with 𝑘 = 30.

Scores Time Found Step Found
Graph Mean SD Best Mean SD Mean SD

ca-GrQc 3245.6 2.15 3249 25.96 10.94 2082723.6 866788.22
ca-netscience 1302.0 0.89 1303 30.91 15.77 3338243.2 1702906.76
ia-email-univ 1480.6 4.32 1486 19.79 16.14 1944265.8 1587032.76

ia-infect-dublin 1655.8 2.93 1659 36.77 19.43 2084776.0 1101377.54
inf-power 1212.2 2.04 1216 19.12 7.21 2825183.6 1067069.32
rt-retweet 539.0 0 539 0.08 0.06 8377.0 6551.41

sc-shipsec1 5997.6 19.06 6028 31.19 18.65 806849.8 485853.83
soc-buzznet 2892.0 47.68 2960 23.24 11.63 662345.6 338013.57
socfb-CMU 5444.6 36.1 5497 23.08 19.59 285664.4 241937.93

tech-RL-caida 2315.2 23.58 2351 31.81 19.01 2932011.8 1785989.61
tech-WHOIS 3557.4 23.84 3589 25.5 9.98 1783790.2 698120.93

tech-internet-as 1320.8 9.04 1331 28.92 23.02 4385152.8 3498676.33
tech-routers-rf 1614.6 10.8 1633 22.18 20.25 2747483.4 2510840.01

web-arabic-2005 16628.4 7.09 16637 17.9 19.9 362747.6 403562.7
web-spam 2254.4 5.89 2262 31.4 18.96 2336738.8 1412738.35

Table C.72: The complete results of the evaluation on the real world graphs with 𝑘 = 50.
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