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Abstract
The aim of this study was to investigate the flexibility of Cellprofiler.

Cellprofiler is a platform that is designed to analyze real-life

microscopy images. In this paper, we describe how Cellprofiler can

be used to:

➢ Differentiate nuclei based on the cell type in primary cardiac

tissue;

➢ Analyze nuclei size in primary cardiac tissue;

➢ Analyze the nuclear structure of LMNA KO- and KD-clones in

an intestinal organoid model;

➢ Differentiate the polarization of membrane layers in intestinal

organoids.

All the projects show how easy Cellprofiler can be. While on the

other hand, the sky is the limit with Cellprofiler.



Introduction

Omics, a term to describe the quantification of huge amounts of

data points within defined boundaries1. For example, genomics

where form, structure, mapping of the genome is studied2. Or

metabolic, which focuses on both identification and quantification of

all metabolites in a body3. Each of these studies aims to measure

and quantify small aspects of a giant process. With techniques like

single-cell whole-genome sequencing, whereas the name suggests,

the whole genome of a single cell can be sequenced within a day4.

Gathering genomic data was never this easy. Although huge steps

have been made in these forms of omics, imaging is still not fully

usable in these forms of high throughput analysis. Even though

Microscopes have gotten better over the years, with never seen

before resolutions. With confocal microscopes, it is possible to stain

exclusively DNA within cells with DAPI and observe DNA structure5,6.

Once the cells have been stained and are under the microscope, the

researcher picks a couple of representative spots. These spots can

then be quantified by hand in software like ImageJ7. Or software like

Ilastik can be used to use machine learning in order to segment

images8. The downside of software such as these is that they still

need the user to analyze the images by either. Whether it is all

images by hand, as in ImageJ, or a small portion in order to train

the algorithm, as in Ilastik. Although these techniques could be used

with small sets of images. If an imaging technique called scanning is

used, in which the whole surface is imaged, analyzing all images by

hand is not feasible anymore. Both techniques don’t show true high

throughput capabilities needed in omics research. With this paper, a

new generation of images analysis is shown, with the use of

Cellprofiler. Cellprofiler is software designed for high-throughput,

custom and easy, image analysis9. Here we show that Cellprofiler

can be used to
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➢ Differentiate nuclei based on the cell type in primary cardiac

tissue;

➢ Analyze nuclei size in primary cardiac tissue10;

➢ Analyze the nuclear structure of LMNA KO- and KD-clones in

an intestinal organoid model11;

➢ Differentiate the polarization of membrane layers in intestinal

organoids.

In order to show the potential power of Cellprofiler.

Results

Using Cellprofiler4.0 with primary cardiac tissue
images in order to differentiate nuclei of different
cell types

background/method

The images used are generated by Christian Blok and commissioned

by Jiayi Pei. The background of this research lies in the effects of the

PLN-R14del mutation, in expressed genes of a human heart

compared to healthy hearths10. Associated with the PLN-R14del is

both arrhythmogenic cardiomyopathy (ACM) and dilated

cardiomyopathy12,13. Dutch patient screenings show that this

mutation is the cause of 12% and 15% of the cardiomyopathy

cases14. Phospholamban (PLN) is a small peptide, with less than 150

amino acids is affected by this mutation. And regulates the calcium

(Ca2+) pumps in the cardiac cells15. It specifically regulates ATP2A2.

It is shown that PLN-R14del cardiac tissue is infiltrated with

adipocytes, resulting in cardiomyocytes fully surrounded with

adipocytes. This pattern of fat accumulation in cardiac cells is not

unique to PLN-R14del cells. Mutations in the PKP2 or TNNT2 gene

also show a comparable pattern of fat accumulation in adults16,17.
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This pattern of fat accumulation can also be observed in the cardiac

tissue of young cardiomyopathy patients containing mutations in

genes associated with fatty acid oxidation, such as HADHA18. Jiayi et

al. with their research explored the role of epigenetic changes and

their effects on cardiac tissue10. Within this research, they explored

several candidates that might induce metabolic changes in cardiac

tissue. The candidates ATP2A2, PLN, TNNI3, HADHA, PLIN4,

ATP5F1A, PPARA, and KLF15 were all examined inside cardiac tissue,

making use of immunofluorescence. In total 4 tissue samples are

taken. 2 of PLN-R14del heart tissue (PLN1 and PLN2) and 2 healthy

donor hearths (ctr1 and ctr2) are imaged under the Leica SP8X

confocal microscope. The tissue is cut in 2 directions, both

longitudinal (L) and transversal (T). Besides the 2 cutting directions,

tissue is also collected from the subepicardial part of the heart (S).

resulting in 4 tissue samples, cut in 3 different ways. Every sample

was stained with DAPI in order to stain the nuclei and TNNI3 to stain

the sarcomeres. On further investigation of the images, it was

discovered that not all nuclei were surrounded with sarcomeres as

one would expect. Some nuclei would float around (figure 1).

https://paperpile.com/c/pHXtrV/1btI
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Figure 1. Showing stained cardiac tissue, in blue: DNA
(DAPI), in green: sarcomeres (TNNI3), and in red:
mitochondria (ATP5F1A)

Knowing that the cells filled with sarcomeres were cardiomyocytes,

because of the other stainings also inside these cells, it was unclear

to which cells these other nuclei belonged. Within this research, the

goal is to generate a pipeline within Cellprofiler4.0 that can

differentiate the nuclei belonging to the cardiomyocytes and the

nuclei belonging to the unknown cells. Giving the option to use

Cellprofiler4.0 to analyze 2 groups of the same cell type within the

same images.

Method

The total Cellprofiler4.0 pipeline consists of 11 modules, not

including the obligatory 4 starting modules (table 1.). The whole

pipeline is divided into 3 parts, identifying the sarcomeres,

identifying and quantifying 2 groups of nuclei based on the

sarcomere location, preparing and saving final images, and varying

features.



Table 1. schematic overview of the Cellprofiler4.0 pipeline from
beginning to end.

Input

36 immunofluorescence cardiac tissue images
were produced with the Leica SP8X confocal
microscope. stained with 4 different stainings

Cellprofiler4.0 Modules

Identifying
sarcomeres

IdentifyPrimaryObjects

Identifying nuclei MaskImage

Identifying nuclei IdentifyPrimaryObjects

Identifying nuclei MaskImage

Identifying nuclei IdentifyPrimaryObjects

Preparing final
images

GrayToColor

Preparing final
images

DisplayDataOnImage

Preparing final
images

DisplayDataOnImage

Preparing final
images

SaveImages

Calculating final
features

MeasureObjectSizeShape

Calculating final
features

ExportToSpreadsheet

Downstream analysis

Custom Python script for Violin plot generation



Identifying sarcomeres

IdentifyPrimaryObjects
First, the sarcomeres are identified. For this, the

IdentifyPrimaryObjects module is used with advanced settings. For

some parameters the default settings of this module are used, only

exemptions are listed. The typical diameter of the primary object

lies between 1 and 10000 pixels, to ensure every pixel in the image

is taken into account. Both objects outside the diameter range and

touching the border are not discarded. For the intensity threshold,

the threshold determining whether a pixel is on the foreground or

background, the Otsu method is used. Three-class foreground

thresholding was used. When using a two-class system, the

threshold whether a pixel is a foreground or background is

somewhere in the middle of the black to white scale (figure 2).

While using a three-class thresholding method, the scale is divided

into 3 parts, and in this case, the middle part will be seen as

foreground (figure 2). This results in a more lenient selection. This

method is used to ensure that all pixels belonging to the sarcomeres

are identified and can be used to generate a mask.

Figure 2. Showing the difference between 2-class and 3-class
thresholding in Otsu thresholding. (Upper) Showing a 2-class division, with
the threshold whether a pixel is a foreground or background lying somewhere in
the middle. (lower) Showing a 3-class division, dividing the scale into 3 classes,
and giving the user the choice if the middle part is either foreground or
background.

The threshold correction factor is set to 0.1. With the Otsu

thresholding method, it is inherently assumed approximately 50% of



the original image is covered with the foreground. Generally, the

sarcomeres fill up more than 50% of the image (figure 3A).

Sometimes the sarcomeres also contain holes that should be filled

(figure 3B). Thus the thresholding factor needs to be lowered,

signaling that probably more than 50% of the image is filled with

objects (figure 3C). And no method for declumping is selected.

Figure 3. Showing the effects of changing the correction factor has on the
objects Cellprofiler4.0 generates. (1A) Example of sacromere staining unprocessed.
(1B) IdentifyPrimaryObjects, correction factor = 1.0. (1C) IdentifyPrimaryObjects,
correction factor = 0.1

Differentiating nuclei types

MaskImage (unknown cells)
The MaskImage module can be used to mask certain areas. This is

managed by setting the brightness value of each pixel in the

selected area to 0 (image 4). The area masked out is indicated with

the sarcomere object generated in the first IdentifyPrimaryObjects

module. The mask is inverted, thus resulting in only the image

outside of the sarcomere object. Thus all nuclei are in unknown

cells.



Figure 4. Showing stained nuclei before (A) and after
masking all nuclei in cardiomyocytes (B).

IdentifyPrimaryObjects (unknown cells)
All unmasked nuclei are identified. These are the nuclei not in the

cardiomyocytes. The IdentifyPrimaryObjects module is used with

advanced settings. For some parameters the default settings of this

module are used, only the exemptions are listed. The typical

diameter of the nuclei is between 10 and 100 pixels. Objects

touching the border are not discarded. Thresholding is done with the

two-class Otsu method. The threshold factor is lowered to 0.7 to

help the filling process of the nuclei (figure 5). Because the nuclei

are generally separated from each other the declumping is set to

none.



Figure 5. Showing the IdentifyPrimaryObjects module on the nuclei of
unknown cells.

MaskImage (cardiomyocytes)
The area masked out is indicated with the sarcomere object

generated in the first IdentifyPrimaryObjects module (figure 6). The

mask is not inverted, resulting in only the image inside of the

sarcomere object. Suggesting all nuclei are in cardiomyocytes.

Figure 6. (A) Showing the original stained nuclei. (B) Showing stained
nuclei after masking the sarcomeres.



IdentifyPrimaryObjects (cardiomyocytes)
All unmasked nuclei are identified. Because of the nature of the

mask, these nuclei are inside the cardiomyocytes.

IdentifyPrimaryObjects module is used with advanced settings. For

some parameters the default settings of this module are used, only

the exemptions are listed. The typical diameter of the nuclei is

between 10 and 200 pixels. Objects touching the border are not

discarded. Thresholding is done with a two-class Otsu method. with

a correction factor of 0.1. No declumping is performed (figure 7).

Figure 7. Showing the IdentifyPrimaryObjects module of the nuclei
inside the cardiomyocytes.

Preparing final images
GrayToColor
The images are imaged per channel separately and loaded in a

grayscale into Cellprofiler4.0. In order to generate a color image

showing three of the four channels, the GrayToColor module is used

(figure 8). Here channel 00 (DAPI), channel 02 (HADHA, PLN or

ATP5F1A), and channel 03 (TNNI3) are used.



Figure 8. Showing the original channels in black and gray was used
to generate the full-color image.

DisplayDataOnImage
This module is used in order to display any measurements as an

overlay on an earlier image. It was used to display the number

category, of the Object_number measurement, of the primary

objects identified in the IdentifyPrimaryObjects module on top of the

original image. The DisplayDataOnImage module was run twice, first

for displaying the identified nuclei in the unknown cells and again for

the nuclei inside the cardiomyocytes (figure 9).



Figure 9. Showing the differentiated counted nuclei in the
cardiomyocytes (magenta) and in unknown cells (yellow). In this
tissue the nuclei are stained with DAPI (blue), PPARa is stained (not
shown), ATP5F1A (red), and the sarcomeres with TNNI3 (green).

SaveImages
The produced images are saved in tiff format for every image set.

Calculating final features

MeasureObjectSizeShape

This module is used to measure several size and shape features of

the earlier identified object of the IdentifyPrimaryObjects module. In

default mode, applied to a 2D image, this module measures a total

of 18 different features.

ExportToSpreadsheet

All measured features are exported to a comma-separated

spreadsheet.



Downstream analysis

In order to compare the overall nucleus size a custom python script

was used to export the data from the spreadsheet and visualize this

in a violin plot.

results
The nucleus size of both the unknown cells and the cardiomyocytes

is compared. In total 1095 nuclei belonging to unknown cells are

identified. A total of 651 nuclei belonging to cardiomyocytes are

identified. Overall the average nucleus size of cardiomyocytes is

larger than those of the unknown cells. On average the nucleus size

of cardiomyocytes in PLN-R14del cardiac tissue is larger than those

of the healthy controls. Suggesting an increase in nucleus size in

diseased tissue.

Figure 10. Violin plot showing nucleus size of both control and
PLN-R14del cardiac tissue, comparing cardiomyocytes (blue) with
unknown cells (orange)

Discussion

Cellprofiler4.0 was used to differentiate nuclei based on their cell

type. This method of combining 2 stainings in order to differentiate



cell types can be used not only in cardiomyocytes but in other

tissues or on other cells as well. This is based on the localization of

the sarcomeres. Although this is a good indication of whether a cell

is a cardiomyocyte or not, it is not a 100% guarantee. The

sarcomeres could also lie in a different Z-stack which could result in

the macromers not being fully visible. instead staining unique for

cardiomyocytes would work better for this method. For example, a

cardiac troponin staining. The downside is that the cardiac staining

does not fill up the whole cell body. Besides the sarcomeres not

being a failproof method of differentiating, the nuclei in the provided

image set contained holes. these holes as seen in figure 9 in

unknown nuclei 3,4,6 (yellow). These holes could have a couple of

reasons. It could be that the staining didn’t fully work or that the

image is taken in the wrong z-stack. Small holes can be filled up by

adjusting the correction factor, but in this example, the hole is too

big. Due to these holes, the IdentifyPrimaryObjects module has

difficulties correctly identifying the nuclei as a single identity.

Although this technique of combining 2 stainings is not fully

failproof, with the right stainings and imaging it could be very useful

in all kinds of stainings. Ali Nasser will continue on optimizing this

pipeline in order to apply it to different tissue and cell types.



Using Cellprofiler4.0 together with an
iPSC-cardiomyocyte model to analyze the effects of
different growth media on nucleus size

background/method

The images used in this analysis were provided by Jiayi Pei and

Renee Maas. Human cardiac induced pluripotent stem cells (iPSC)

were seeded on a seahorse plate, in order to perform a seahorse

assay. Here PLN iPSC-cardiomyocytes (D4) are compared to control

iPSCs from a healthy donor (CVI-111). The original goal is to

analyze the metabolic activity of the cells. The cells are grown on a

high lipid medium, a high glucose medium, and a maturation growth

medium. The aim of the Cellprofiler4.0 pipeline is to analyze the

difference in nucleus growth. All nuclei are stained with a Hoechst

staining. and imaged with a 20x magnification.

Method

The total Cellprofiler4.0 pipeline consists of 6 modules, not including

the obligatory 4 starting modules (table 2). The goal of the pipeline

is to identify and quantify the nuclei stained with a Hoechst staining

and compare patients with control.
Table 2. Summarizing the image input into Cellprofiler, the Cellprofiler
pipeline, and the downstream analysis performed on the output of
Cellprofiler.

Input

60 immunofluorescence cardiac tissue
image sets were produced with the
Leica SP8X confocal microscope.
stained with 3 different stainings

Cellprofiler4.0 modules

ColorToGray

IdentifyPrimaryObjects



DisplayDataOnImage

SaveImages

MeasureObjectSizeShape

ExportToSpreadsheet

Downstream analysis

Custom python script for graph
generation

ColorToGray

The images originally are in color but the Cellprofiler4.0 object

identifier only works with grayscale images. Thus the images are

converted to grayscale. Only the Hoechst staining is converted. The

color splitting is based on the RGB model.

IdentifyPrimaryObjects

All stained nuclei are identified. IdentifyPrimaryObjects module is

used with advanced settings. For some parameters the default

settings of this module are used, only the exemptions are listed. The

typical diameter of nuclei is between 30 and 150 pixels. Objects

touching the border are discarded to exclude nuclei that are not

completely imaged. These nuclei are left out because their object

would not reflect the actual nucleus size, only a part of it. A global

3-class Otsu thresholding method is used. Pixels falling in the third

class are seen as the background. Because there is a significant

amount of nuclei not completely in focus and thus have a lower

intensity (figure 11).



Image 11. showing 3 nuclei fully in focus, with a 4th nucleus out of focus
and thus discarded as background.

The thresholding correction factor is set to 0.8. Both the method for

distinguishing clumped objects and drawing separation lines

between these objects are based on the shape of the object (figure

12).

Figure 12. Showing an example of the IdentifyPrimaryObjects module

DisplayDataOnImage

This module is used in order to display any measurements as an

overlay on an earlier image. It was used to display the number

category, of the Object_number measurement, of the primary

objects identified in the IdentifyPrimaryObjects module on top of the

original image.



SaveImages

The produced images are saved in tiff format for every image set.

MeasureObjectSizeShape

This module is used to measure several size and shape features of

the earlier identified object of the IdentifyPrimaryObjects module. In

default mode, applied to a 2D image, this module measures a total

of 18 different features.

ExportToSpreadsheet

All measured features are exported to a comma-separated

spreadsheet.

results

The nucleus size of both D4 and CVI-111 are compared, within the

same growth media. Here it can be seen that only in a high glucose

environment the CVI-111 cells on average contain larger nuclei

compared to the D4 cells (table 3, figure 13). In both the maturation

medium and the lipid medium the D4 cells on average contain larger

nuclei compared to the CVI-111 cells (table 3, figure 13). When

comparing growth media, it is observed that in both maturation

medium and lipid medium the D4 cell nuclei are on average larger

(table 3, figure 13). With the maturation nuclei being the largest

(table 3, figure 13). While in the CVI-111 cells, the nuclei in the

maturation medium are on average the smallest (table 3, figure 13).

The CVI-111 nuclei in the hg medium are the largest (table 3, figure

13).

Hg Maturation Lipid

D4 2379 3019 3011

CVI-111 3014 2483 3009

Table 3. Showing the average nucleus size in pixels per sample group.



Figure 13. Violin graph showing the nucleus size (in pixels) of both D4
cells (orange) and CVI-111 cells (blue) grown on a high glucose medium
(hg, left), a maturation medium (middle), and a lipid medium (right).

Discussion

Analyzing nucleus size can be a difficult process, taking up a large

amount of time. This research shows the capabilities of

Cellprofiler4.0 in fully automating this process. Thus taking away

any subjectivity in measuring nuclei. Although Cellprofiler4.0 has

some tools to remove nuclei that are in the background, these tools

don’t function without fault. Thus it is advised to limit the number of

nuclei visible in a different z-stack as much as possible. The same

goes for the declumping methods usable in Cellprofiler4.0. The

declumping works, but is far from optimal. Thus it is advised to

search for spots where the nuclei are not too clumped up. The

seahorse assay shows an interesting view on the possible effects of

growth media and how this affects the nucleus size and should

definitely be investigated more. This project and this pipeline will be

further used by Karen and Jiayi Pei in order to optimize the pipeline.



Using Cellprofiler4.0 with an intestinal organoid
model in order to analyze the nuclear structure of
LMNA KO and KD clones.

background

The original dataset was generated and provided by Bianca A.

Meyer. The goal of the research was to generate PKP2 and LMNA

gene-edited primary intestinal organoids11. familial arrhythmogenic

right ventricular (ARVC) is a form of cardiomyopathy that in many

cases has been shown to be caused by mutations in a single gene19.

Dutch patient screenings showed that a major group of familial

ARVC is caused by mutations in the PKP2 gene20. While dilated

cardiomyopathy in 5-10% of the cases is caused by a mutation in

the LMNA gene21. In order to find potential drugs that can counter

the effects of these mutations, organoids can be used22. Organoids

are 3D cell structures, That mimic organ composition, that are

patient-derived. Meaning that they display the same genetic

properties as an individual. Making these structures ideal for the

study of drug responses of patients. For the organoid generation,

four different pathogenic variants have been selected11. 2 different

variants for the PKP2 mutation and 2 variants for the LMNA

mutation. For each of these variants, one pegRNA was designed and

cloned. These pegRNAs were used to transfect HEK293T cells

together with a reported GFP-reporter plasmid to assess transfection

efficiency. In the end, they managed to generate 3 PKP2 and 3

LMNA knockout or knockdown intestinal organoid lines. After the

generation of these knockout and knockdown organoid lines, a small

group of organoids was stained with DAPI in order to investigate any

nuclear morphology. Only LMNA organoids were stained because the

LMNA gene plays a role in maintaining nuclear integrity, chromatin

organization, and gene expression. Thus knocking such a gene out

could result in significant morphological changes in the nuclear
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structure. In total 24 images coming from 6 different groups,

containing both patients and controls, were stained with DAPI,

imaged with the Leica SP8X confocal microscope, and analyzed with

Cellprofiler4.09. Cellprofiler4.0 was used in order to investigate if the

knocking-down or -out of LMNA in organoids has any effect on

nuclear morphology.

methods

The total Cellprofiler4.0 pipeline consists of 8 modules, not including

the obligatory 4 starting modules (table 4).

Table 4. table showing the whole pipeline from input images to

downstream analysis.

Input

24 organoid images produced with the Leica SP8X
confocal microscope

Cellprofiler4.0 Modules

ColorToGray

Threshold

MaskImage

IdentifyPrimaryObjects

DisplayDataOnImage

SaveImages

MeasureObjectSizeShape

ExportToSpreadshet

Downstream analysis

Python script for:
- Violin plot generation
- Two sample student’s t-test

ColorToGray

Cellprofiler4.0 is only capable of working with black and white

images. Since the images are provided in color they have to be

https://paperpile.com/c/pHXtrV/ZV2G


converted to a black and white image. This is done with the

ColorToGray module. Only a single channel was imaged, so only the

blue channel was converted to gray (figure 14).

Figure 14. Showing the ColorToGray module On the left is the original color
image. On the left is the image after converting the blue channel to a grayscale
image.

Threshold

Every image has a scalebar in the lower right corner (figure 15).

Figure 15. Image showing the scalebar present in every image.

This scalebar needs to be filtered out otherwise, Cellprofiler4.0 will

detect these spots as possible cells. This is because Cellprofiler4.0

works by detecting lighter spots in darker areas. The Threshold

module works by manually selecting a brightness, every pixel with a

higher brightness gets marked. Because the brightness of every

pixel is represented by a value between 0 and 1. And because the



scale bar is pure white, thus has a brightness value of 1. The

threshold was set to 0.99, meaning that every pixel that has a

brightness > 0.99 gets selected (figure 16).

Figure 16. Image showing all pixels selected by the Threshold method. On
the left is the image before Threshold. on the right are all pixels with a brightness
value > 0.99 marked in white.

MaskImage

The MaskImage module can be used to mask certain areas. This is

managed by setting the brightness value of each pixel in the

selected area to 0 (figure 17). The masked area was indicated by

the pixel selected in the threshold module.

Figure 17. image showing the original image (left) and the image after
removing the scalebar by masking it (right)



IdentifyPrimaryObjects

In this module, the nuclei are identified and counted (figure 18). The

typical diameter of the objects is set to a minimum of 20 pixels and

a maximum of 250 pixels. For the largest part, the default settings

are used with some exemptions. Nuclei touching the border of the

image are taken not discarded because, for the raw count of the

nuclei, these nuclei are essential. The threshold for each image is

calculated globally because the background in these images is

mostly uniform. For the same reason, the Robust Background

method was chosen as the thresholding method. 10% of the pixels

with the lowest intensity are discarded because these pixels are

most likely part of nuclei in a lower z-stack. The threshold correction

factor was lowered to 0.8 in order to fill in gaps within the nuclei.

Both the distinguishing and drawing lines between clumps are based

on the shape of the nuclei. Because most nuclei in these organoids

have fairly predictable shapes.

Figure 18. Showing the IdentifyPrimaryObject module. The top left,
showing the original image. The lower left, showing the borders of objects
Cellprofiler4.0 has identified. The top right shows the declumping of found objects
and identifying them as unique objects.



DisplayDataOnImage

This module is used in order to display any measurements as an

overlay on an earlier image. It was used to display the number

category, of the Object_number measurement, of the primary

objects identified in the IdentifyPrimaryObjects module on top of the

original image (figure 19).

Figure 19. Showing the output of the DisplayDataOnImage module. The
original microscopy image overlayed with the nuclei counts Cellprofiler
quantified.

SaveImages

This module was used to save the image generated in the

DisplayDataOnImage module.

MeasureObjectSizeShape

This module is used to measure several size and shape features of

the earlier identified object of the IdentifyPrimaryObjects module. In

default mode, applied to a 2D image, this module measures a total



of 18 different features.

ExportToSpreadsheet

Here all measurements made in earlier modules

(IdentifyPrimaryObjects & MeasureObjectSizeShape) are converted

to a comma-separated spreadsheet. For each nucleus found, all

features are separately noted and ready for downstream analysis.

results

In total 3 control groups, 2 knockout groups, and 1 knockdown

group are compared. The first control is a primary intestinal

organoid, derived from a healthy donor, this is STE030. 4 images

are taken, it should be noted that the digital zoom in the 4 images is

not equal, it varies from 0.97 to 2.65 (Table 5). This may alter the

results in the end. These variations in digital zoom are in all image

sets. In total 329 nuclei were identified. The other 2 control groups

5-12 and 5-14 are healthy organoids that are transfected with

empty plasmids. This is done in order to check if the transfection

has any influence on organoid growth. 5 images from the 5-12 are

supplied, resulting in 515 unique nuclei (Table 5). From the control

group 5-14, 4 images are made which resulted in a total of 124

nuclei (Table 5). Apart from the control groups, 2 knockout

organoids are stained. the first is 5-4, an LMNA knockout. 3 images

are made, resulting in 469 nuclei (Table 5). 3 images from the 5-8

LMNA knockout are provided, resulting in 169 nuclei (Table 5). The

last group is 5-5, this is the LMNA knockdown. There are 5 images

from this group, which resulted in 125  nuclei (Table 5).



Table 5. Showing all groups used in the LMNA experiment. total of 6
groups, 3 control, 2 knockouts, 1 knockdown. For each group the total number of
images is shown and the number of identified nuclei.

Name STE030 5-12 5-14 5-4 5-8 5-5

Group Control Control Control Knockout Knockout Knockdow
n

No. images 4 5 4 3 3 5

Identified
nuclei

329 515 124 469 169 125

Although the provided images show different levels of digital zoom,

resulting in different nuclei sizes. These differences provide no

problem for the quantification of different nuclei. The software is

fully capable of distinguishing smaller nuclei from larger ones (figure

20). These differences in zoom only provide difficulties when metrics

are analyzed that are based on a pixel count. For example the

nucleus area size.

Figure 20. DAPI staining of healthy control organoids (STE030) overlayed
with nuclei counts provided by Cellprofiler4.0 showing different digital
zoom levels. (A). STE030 image 3, digital zoom level 2.65. (B). STE030 image
4, digital zoom level 1.00.

In total 18 different characteristics of the identified nuclei are

measured. These measurements are then plotted to violin plots with



a custom python script, to give a clear overview of the data (Figure

21).

Figure 21. Two examples of figures that can be extracted from the
spreadsheet exported by Cellprofiler4.0

Each characteristic is statistically checked for any significant

differences between groups. This is done via a two-sample student’s

t-test (see supplementary table 1). In total 35 features had a

significant difference between at least 1 control and 1 knockout or

knockdown group (Table 6).

Table Table 6. Showing features with a significant
difference between means, in controls and either
KO- or KD- organoids (P>0.05).
Feature Group1 group2 pvalue

AreaShape_MedianRadius KO (5-8) IC2 (5-14) 0,758

AreaShape_FormFactor KO (5-8) C (STE030) 0,355

AreaShape_Compactness KO (5-8) C (STE030) 0,679

AreaShape_Compactness KO (5-4) IC1 (5-12) 0,303

AreaShape_Eccentricity KO (5-8) IC2 (5-14) 0,620

AreaShape_Eccentricity KO (5-8) KO (5-4) 0,455

AreaShape_Eccentricity KO (5-8) KD (5-5) 0,383

AreaShape_Eccentricity KO (5-8) IC1 (5-12) 0,123

AreaShape_Eccentricity IC2 (5-14) KO (5-4) 0,222

AreaShape_Eccentricity IC2 (5-14) C (STE030) 0,229

AreaShape_Eccentricity IC2 (5-14) KD (5-5) 0,719

AreaShape_Eccentricity IC2 (5-14) IC1 (5-12) 0,442



AreaShape_Eccentricity KO (5-4) KD (5-5) 0,969

AreaShape_Eccentricity C (STE030) KD (5-5) 0,493

AreaShape_Eccentricity C (STE030) IC1 (5-12) 0,515

AreaShape_Eccentricity KD (5-5) IC1 (5-12) 0,790

AreaShape_Solidity KO (5-8) KO (5-4) 0,929

AreaShape_Solidity KO (5-8) C (STE030) 0,350

AreaShape_Solidity IC2 (5-14) KD (5-5) 0,520

AreaShape_Solidity KO (5-4) C (STE030) 0,199

AreaShape_Extent KO (5-8) IC2 (5-14) 0,282

AreaShape_Extent KO (5-8) KO (5-4) 0,784

AreaShape_Extent KO (5-8) C (STE030) 0,104

AreaShape_Extent KO (5-4) C (STE030) 0,934

AreaShape_Orientation KO (5-8) IC2 (5-14) 0,727

AreaShape_Orientation KO (5-8) KO (5-4) 0,243

AreaShape_Orientation KO (5-8) C (STE030) 0,443

AreaShape_Orientation KO (5-8) IC1 (5-12) 0,966

AreaShape_Orientation IC2 (5-14) KO (5-4) 0,163

AreaShape_Orientation IC2 (5-14) C (STE030) 0,762

AreaShape_Orientation IC2 (5-14) IC1 (5-12) 0,742

AreaShape_Orientation KO (5-4) KD (5-5) 0,227

AreaShape_Orientation KO (5-4) IC1 (5-12) 0,107

AreaShape_Orientation C (STE030) IC1 (5-12) 0,368

Discussion

Cellprofiler4.0 is fully capable of distinguishing large amounts of

nuclei. The fact that this large group of images were all in a different

zoom, and thus had a huge fluctuation in nuclei size, was no

problem at all for the software. The whole pipeline is easy to run

locally but can also without a problem be used on Galaxy. A large

downside is that there is no module that can be used to detect small

irregularities in the nucleus form. Such as the dents that have been

found in the Knockout treatment. In theory, it would be great if

something comparable to the Boundingbox could be used. A circle

around each individual object, which is a certain percentage bigger

than the original. From there one could calculate how much of a

percentage the outer wall of the nucleus takes in. This shows even

though the pipeline is fully working, it still can be improved. The



project will continue and be done by Karen Gaar-Humphreys and

Maaike de Vries.

Using Cellprofiler4.0 in combination with intestinal
organoids in order to differentiate organoids based
on the polarization of the membrane layers

background/method

The original dataset was generated and provided by Zahra

Shojaeijeshvaghani and Maaike de Vries. With this research, the

apical and basolateral polarization in intestinal organoids was

examined. Normally the polarization of intestinal organoids is

characterized by the expression of a6-integrin. Integrin is in normal

situations, a cell surface protein. Thus the integrins are expressed in

the basolateral layer of the organoids (figure 22). While

filamentous-actin (F-actin), in normal cells, shows more apical

expression and is more expressed in the lumen of the organoids

(figure 22).

Figure 22. Showing the normal expression of a6-integrin, F-actin, and
DNA (DAPI) in organoids. The a6-integrin is expressed on the outer membrane
while the F-actin lines more of the lumen.

While normal intestinal organoids are characterized by the

a6-integrin expression on the outside of the F-actin ring. Due to

certain mutations, this normal polarization could change. The

polarization of these organoids could invert, which could lead to

inflammations. Organoids with an inverted polarity is marked by

their F-actin expression on the outer membrane of the organoids.



While a6-integrin in these organoids is within the F-actin ring

(Figure 23).

Figure 23. Showing the expression of a6-integrin, F-actin, and DNA
(DAPI) within organoids with inverted polarity. The F-actin is expressed on
the outer membrane of the organoids and the a6-integrin is contained within the
F-actin ring.

The goal was to use Cellprofiler4.0 to distinguish between normal

and inverted intestinal organoids. And use the software to quantify

these normal and inverted organoids.

Methods

The total Cellprofiler4.0 pipeline consists of 16 modules, not

including the obligatory 4 starting modules (table 7). The whole

pipeline consists of 3 large parts. The pre-processing of the images,

resizing the images and adjusting the intensity. The quantification of

both normal and inverted organoids. And, image generation showing

the quantification results.

Table 7. Showing the full pipeline used to distinguish between normal and
inverted intestinal organoids.

Input

5 intestinal organoid image sets were
produced with the Leica SP8X confocal
microscope

Cellprofiler4.0 modules

Pre-processing GrayToColor

Pre-processing Resize

Pre-processing RescaleItensity



Pre-processing Resize

Pre-processing RescaleIntensity

Quantification of organoids IdentifyPrimaryObjects

Quantification of organoids ExpandOrShrinkObjects

Quantification of organoids MaskImages

Quantification of organoids IdentifyPrimaryObjects

Quantification of organoids ExpandOrShrinkObjects

Quantification of organoids MaskImages

Quantification of organoids IdentifyPrimaryObjects

Quantification of organoids Resize

Result image generation DisplayDataOnImages

Result image generation DisplayDataOnImages

Result image generation SaveImages

Pre-processing

GrayToColor

The images are imaged per channel separately and loaded in a

grayscale into Cellprofiler4.0. In order to generate a color image

showing all three channels overlapping the GrayToColor module is

used (figure 24). Here channel 00 (DAPI), channel 01 (a6-integrin),

and channel 02 (F-actin) are used. It is clearly shown that the

intensity of these images is really low.



Figure 24. showing the GrayToColor module. The top left shows the
DAPI staining, the top right shows the a6-integrin staining, the bottom left
shows the F-actin staining, and the bottom right shows the merged color
image. Both the contrast and the brightness of the merged image are
increased post generation.

Resize

Because of the huge resolution of the original images, the image

needs to be rescaled. This is done in order to contain memory usage

as much as possible. Both the a6-integrin (ch01) and the F-actin

(ch02) images are shrunken to 25% of their original size.

RescaleItensity

Because the original image intensity was too low for Cellprofiler4.0

to make a clear distinguishment between fore- and background, the



intensity is rescaled. The intensity of the actin image (figure 25A) is

increased by a factor of 6.66 (Figure 25B). While the intensity of the

a6-integrin (figure 25C) is increased by a factor of 20 (figure 25D).

Figure 25. Showing the RescaleIntesity module. (A) F-actin image before
rescaling (B) F-actin image after rescaling (C) a6-integrin image before rescaling
(D) a6-integrin image after rescaling

Quantification of organoids

In normal intestinal organoids, the integrin is expressed on the

outer membrane of the organoids. While in inverted organoids, the

actin is on the outer membrane. This difference is used to identify

whether an organoid is normal or inverted.



IdentifyPrimaryObjects

First, all Integrin bodies are identified. using IdentifyPrimaryObjects

(Figure 26). IdentifyPrimaryObjects module is used with advanced

settings. For some parameters the default settings of this module

are used, only the exemptions are listed. The typical diameter of the

integrin bodies is between 20 and 200 pixels. Objects outside this

diameter range and objects toucher the border are discarded. A

global 2-class Otsu method is used for thresholding. A correction

factor of 0.5 is applied. The declumping of objects and drawing of

dividing lines are both based on the shape of the object.

Figure 26. Showing the IdentifyPrimaryObjects module. On the left is the
original integrin image. On the right are the identified objects.

These objects are used in order to identify inversed organoids.

These objects are subtracted from the F-actin image. All normal

organoids will be removed because the integrin object is on the

outside of the organoids and thus is larger. While all inverted

organoids will still be present. Here the F-actin ring is larger than

the integrin ring, thus subtracting the integrin signal from the actin

signal will result in actin rings.



ExpandOrShrinkObjects

Because after subtraction of the integrin object, the inverse actin

signal should still form a full circle, the integrin objects are shrunken

by 2 pixels. With this method, all pixels on the perimeter of the

object are removed twice, thus on all sides, the object is 2 pixels

smaller.

MaskImages

The shrunken integrin objects are used as a mask for the actin

image. The mask is inverted, this results in the original actin image

where all integrin objects are blacked out (figure 27). This image

can be used to identify all organoids where the actin ring is on the

outside of the integrin bodies.

Figure 27. The results of the MaskImages module. On the left, the original
actin image, on the right the actin image with the integrin objects blacked out.

IdentifyPrimaryObjects



The IdentifyPrimaryObjects module is used on the masked actin

image, to quantify all inversed organoids (figure 28). The

IdentifyPrimaryObjects module is used with advanced settings. For

some parameters the default settings of this module are used, only

the exemptions are listed. The typical size of the inverted organoids

is between 20 and 100 pixels. object touching the border of the

image is not discarded. A manual thresholding method is selected

and set to 0.15. The declumping of objects and drawing of dividing

lines are both based on the shape of the object.

Figure 28. Showing the accepted and denied objects in the masked actin
image. On the left are the objects found in the original image, green outlined objects
are accepted, magenta outlined objects are denied due to size. On the right are the
generated objects.

ExpandOrShrinkObjects

In order to further identify all normal organoids, the inverse objects

that have been found are enlarged. These enlarged objects can then

be used to remove the inverse organoids from the actin signal. To

enlarge the object, one pixel is added to each pixel that is on the

outside of an object. This process is repeated 15 times for every



object, thus adding 15 pixels to every possible side of each found

object.

MaskImages

The enlarged objects based on the inversed organoids are used to

mask the actin image. The mask is inverted thus resulting in an

image where all normal organoids are showing. And all organoids

that are inverted are blacked out (figure 29).

Figure 29. Showing the MaskImages module. On the left, the original actin staining. On
right the masked image, showing blacked-out spots where the inverted organoids are.

IdentifyPrimaryObjects

The IdentifyPrimaryObjects module is used on the masked actin

image, to quantify all normal organoids (figure 30). The

IdentifyPrimaryObjects module is used with advanced settings. For

some parameters the default settings of this module are used, only

the exemptions are listed. The typical diameter of the organoids is

between 20 and 100 pixels. All objects touching the border of the

image are retained. A global manual threshold is selected and set to

0.15. The declumping of objects and drawing of dividing lines are

both based on the shape of the object.



Figure 30. Showing the IdentifyPrimaryObjects module. On the left is the masked
actin image. On the right, the identified and accepted objects.

Result image generation

Resize

In order to project the quantification of the organoids, the original

image needs to be resized as well. Thus the image generated in the

GrayToColor module is shrunken to 25% of its initial size.

DisplayDataOnImages

The module is used twice in order to project the counted organoids

over the original image. Showing both normal and inverted

organoids (figure 31).



Figure 31. Showing the results from the pipeline. Both normal organoids (yellow)
and inverted organoids (Magenta) are quantified in the same image.

SaveImages

The image from the last module is saved in a custom output

location.



Results

The goal of the project is to set up a pipeline that is capable of

separating both normal and inverted organoids. Cellprofiler4.0 finds

more normal organoids than that there are in the images in all cases

(N=5). While Cellprofiler4.0 correctly finds all inverse organoids in 2

cases while in 3 cases Cellprofiler4.0 finds fewer inverse organoids

than there are in the image (table 8).

Table 8. comparing the number of organoids found by Cellprofiler4.0 and by
counting organoids by hand. accuracy is calculated by adding correctly classified
sites and dividing it by the total number of reference sites.

Hand count Cellprofiler4.0 Cellprofiler4.0
sensitivity

Image Normal Inversed Normal Inversed Normal Inversed

1 30 3 37 2 1.233 0.666

2 20 3 30 2 1.500 0.666

3 15 3 16 3 1.066 1

4 17 3 27 2 1.588 0.666

5 23 6 26 6 1.130 1

Discussion

The Cellprofiler4.0 pipeline is quite good at distinguishing inverse

organoids from normal organoids. But the pipeline needs some

improvement in segmenting and declumping large organoids.

Currently, Cellprofiler4.0 finds more normal organoids than when

organoids are counted by hand. This can be blamed on the

declumping. If large groups of organoids grow closer to each other,

Cellprofiler4.0 has more difficulties separating them correctly. As can

be observed in image 4 (table 8). Where Cellprofiler4.0 finds 10

organoids to many. This image contains a large cluster of closely

growing organoids, which Cellprofiler4.0 finds very hard to separate

(Figure 32). This results in single organoids being recognized and

counted as several organoids. Although the separation between



inverse and normal organoids works well. The quantification within

these separated groups can be highly optimized.

Figure 32. Showing a zoomed-in view on a group of organoids. Cellprofiler4.0
wrongly counts single organoids as multiple organoids. In an example in the
left panel within the red circle.

Besides normal polarization and inverted polarization, the intestinal

organoids can exist in a third state. This state is called aberrant.

Figure 33. Showing the expression of a6-integrin (red), F-actin (green),
and DNA (DAPI) within organoids with aberrant polarity. (A) showing an
example of an organoid have F-actin and a6-integrin expressed both in the outer
lumen. (B) Showing an example of F-actin lining multiple lumens

Aberrant polarity is assigned to organoids that show expression of

both α6-Integrin and F-actin at their outer border (figure 33A), to

organoids with multiple F-actin-lined lumens (figure 33B), and also

to organoids that completely lack the expression of either

α6-Integrin or F-actin. We tried to use Cellprofiler to extract these

forms of polarization as well, but sadly it didn’t work. The structural



differences with normally polarized organoids are too small for

Cellprofiler to differentiate. Background staining is also seen in these

images. This background staining obstructs the identification of

organoids. Cellprofiler has difficulties with distinguishing the

background noise from the organoids because the intensity

differences are too small.

Figure 34. Showing the original integrin staining, conversion to black and white,
and the identifyPrimaryObjects module. in the original integrin staining (left) a lot of
background staining is observed. The background noise is also observed when the image is
converted to black and white (middle). This results in a lot of false positives within the
identifyPrimaryObjects module of cellprofiler (right)

Overall conclusion
The aim of this study was to investigate the flexibility of

Cellprofileras a platform to analyze real-life image analysis from

human material (disease stage) generated by various researchers.

Here we describe how Cellprofiler can be used to:

➢ Analyze nuclei size in primary cardiac tissue;

➢ Differentiate nuclei based on the cell type in primary cardiac

tissue;

➢ Analyze the nuclear structure of LMNA KO- and KD-clones in

an intestinal organoid model;

➢ Differentiate the polarization of membrane layers in intestinal

organoids.



Showing Cellprofiler is no black box system. It is giving the analyst

the power to correct errors in imaging and emphasizing the

importance of close collaboration between imager and analyst.
Table 9.

Cellprofiler4.0 pipelines

Primary cardiac
tissue - PLN

IPSC-cardiomyocy
te model

Intestinal
organoids - LMNA
KO, KD

Intestinal
organoids -
polariy

IdentifyPrimaryObjects ColorToGray ColorToGray GrayToColor

MaskImage IdentifyPrimaryObjects Threshold Resize

IdentifyPrimaryObjects DisplayDataOnImage MaskImage RescaleItensity

MaskImage SaveImages IdentifyPrimaryObjects Resize

IdentifyPrimaryObjects MeasureObjectSizeShape DisplayDataOnImage RescaleIntensity

GrayToColor ExportToSpreadsheet SaveImages IdentifyPrimaryObjects

DisplayDataOnImage MeasureObjectSizeShape ExpandOrShrinkObjects

DisplayDataOnImage ExportToSpreadshet MaskImages

SaveImages IdentifyPrimaryObjects

MeasureObjectSizeShape ExpandOrShrinkObjects

ExportToSpreadsheet MaskImages

IdentifyPrimaryObjects

Resize

DisplayDataOnImages

DisplayDataOnImages

SaveImages

Overall discussion

Cellprofiler is a really powerful piece of software. It is capable of

analyzing primary cells, scans, organoids, and even tissue.

Cellprofiler can be very precise but lacks some power in correcting

the images. The better the microscopy images are the better

Cellprofiler works. Although Cellprofiler can in for example, correct

for holes in the tissue, as seen in the sacromeres in the nuclei

differentiation pipeline. If the holes are too big, as seen in the same



pipeline with the nuclei itself, it is not as precise anymore. The same

goes for background lighting, if there is too much background

staining, Cellprofiler has large difficulties to differentiate foreground

and background, as seen in the organoid polarization pipeline.
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Additional

When running Cellprofiler locally, one could run into some problems.

Because microscopy images can get quite large, the usage of

Cellprofiler can take up quite some memory. In order to tackle this,

instead of running Cellprofiler locally, Cellprofiler can be run

externally on large servers. One of those servers is Galaxy, which

introduces Cellprofiler on July 1st, 2020. The Galaxy instance

Europe is the biggest in Europe and has free storage capabilities up

to 250 GB for free. The servers can be used to run Cellprofiler

without worrying about memory. Together with Niels Mol, we aimed

to set up Galaxy as the most used

Supplementary figures
Supplementary figures are added in a separate folder.
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